WO2013002794A1 - Compositions industrielles comprenant des protéines lactosériques de soja - Google Patents

Compositions industrielles comprenant des protéines lactosériques de soja Download PDF

Info

Publication number
WO2013002794A1
WO2013002794A1 PCT/US2011/042445 US2011042445W WO2013002794A1 WO 2013002794 A1 WO2013002794 A1 WO 2013002794A1 US 2011042445 W US2011042445 W US 2011042445W WO 2013002794 A1 WO2013002794 A1 WO 2013002794A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
soy
limited
combinations
whey
Prior art date
Application number
PCT/US2011/042445
Other languages
English (en)
Inventor
Tam H. Tran
Original Assignee
Solae, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solae, Llc filed Critical Solae, Llc
Priority to PCT/US2011/042445 priority Critical patent/WO2013002794A1/fr
Publication of WO2013002794A1 publication Critical patent/WO2013002794A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D189/00Coating compositions based on proteins; Coating compositions based on derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J189/00Adhesives based on proteins; Adhesives based on derivatives thereof

Definitions

  • compositions comprising soy whey proteins recovered or isolated in accordance with the processes disclosed herein to form industrial products such as adhesives, paper coatings, films, inks, and paints.
  • the present disclosure provides a composition comprising soy whey proteins that have been recovered from soy processing streams, along with other ingredients to form adhesives, paper coatings, films, inks, and paints.
  • the present soy recovery process utilizes one or more membrane or chromatographic separation operations for isolating and removing soy proteins, including novel soy whey proteins and purified target proteins, as well as sugars, minerals, and other constituents to form a purified waste water stream.
  • Methods for making the adhesives, paper coatings, films, inks, and paints are also disclosed.
  • soybean Glycine max
  • Soybeans are of great economic importance as a source of edible oil, high-protein foods, food ingredients, and stockfeed, as well as many industrial products.
  • Soy proteins are typically in one of three forms when consumed by humans. These include flour (grits), concentrates, and isolates. All three types are made from defatted soybean flakes. Flours and grits contain at least 50% protein and are prepared by milling the flakes. Soy protein concentrates contain 65 wt.% to 90 wt.% protein on a dry weight basis, with the major non-protein component being fiber. Concentrates are made by repeatedly washing the soy flakes with water, which may optionally contain low levels of food grade alcohols or buffers. The effluent from the repeated washings is discarded and the solid residue is dried, thereby producing the desired concentrate. The yield of concentrates from the starting material is approximately 60-70%.
  • Soy protein concentrate preparation generally results in two streams: soy isolate and a soy molasses stream, which may contain up to 55 wt.% soy protein. On a commercial scale, significant volumes of this molasses are generated that must be discarded. The total protein content may contain up to 15 wt. % of the total protein content of the soybeans from which they are derived. Thus, a significant fraction of soy protein is discarded during processes typically used for soy protein concentrate preparation.
  • Soy protein isolates are the most highly refined soy protein products commercially available, as well as the most expensive. However, as with soy protein concentrates, many of the valuable minerals, vitamins, isoflavones, and phytoestrogens are drawn off to form a waste stream along with the low-molecular weight sugars in making the isolates. Soy protein isolates contain a minimum of 90% protein on a dry weight basis and little or no soluble carbohydrates or fiber. Isolates are typically made by extracting defatted soy flakes or soy flour with a dilute alkali (pH ⁇ 9) and centrifuging. The extract is adjusted to pH 4.5 with a food grade acid such as sulfuric, hydrochloric, phosphoric or acetic acid.
  • a food grade acid such as sulfuric, hydrochloric, phosphoric or acetic acid.
  • solubility of the proteins is at a minimum so they will precipitate out.
  • the protein precipitate is then dried after being adjusted to a neutral pH or is dried without any pH adjustment to produce the soy protein isolate.
  • the yield of the isolate is 30% to 50% of the original soy flour and 60% of the protein in the flour. This extremely low yield along with the many required processing steps contributes to the high costs involved in producing soy protein isolates.
  • soy protein isolates are desired for a variety of applications.
  • the aqueous stream i.e., soy whey stream
  • soy whey stream is relatively dilute (e.g., less than about 5 wt.% solids, typically about 2 wt.% solids).
  • the soy whey stream is relatively dilute (e.g., less than about 5 wt.% solids, typically about 2 wt.% solids).
  • significant volumes of the soy whey stream are generated that must be treated and/or discarded.
  • soy whey stream may contain a substantial proportion of the total protein content of the soybeans used in preparation of soy protein isolates.
  • the soy whey stream may contain up to 45 wt.% of the total protein content of the soybeans from which soy protein isolates are derived.
  • soy protein is typically discarded during conventional soy protein isolate production.
  • soy molasses also referred to as soy solubles
  • soy molasses is obtained when vacuum distillation removes the ethanol from an aqueous ethanol extract of defatted soy meal.
  • the feed stream is heated to a temperature chosen according to the specific solubility of the desired isoflavone fraction.
  • the stream is then passed through an ultrafiltration membrane, which allows isoflavone molecules below a maximum molecular weight to permeate.
  • the permeate may then be concentrated using a reverse osmosis membrane.
  • the concentrated stream is then put through a resin adsorption process using at least one liquid chromatography column to further separate the fractions.
  • Soy whey and soy molasses also contain a significant amount of protease inhibitors.
  • protease inhibitors are known to at least inhibit trypsin, chymotrypsin and potentially a variety of other key transmembrane proteases that regulate a range of key metabolic functions.
  • Topical administration of protease inhibitors finds use in such conditions as atopic dermatitis, a common form of inflammation of the skin, which may be localized to a few patches or involve large portions of the body.
  • the depigmenting activity of protease inhibitors and their capability to prevent ultraviolet-induced pigmentation have been demonstrated both in vitro and in vivo (See e.g., Paine et al., J. Invest.
  • protease inhibitors have also been reported to facilitate wound healing. For example, secretory leukocyte protease inhibitor was demonstrated to reverse the tissue destruction and speed the wound healing process when topically applied. In addition, serine protease inhibitors can also help to reduce pain in lupus erythematosus patients (See e.g., U.S. Pat. No. 6,537,968). Naturally occurring protease inhibitors can be found in a variety of foods such as cereal grains (oats, barley, and maize), brussels sprouts, onion, beetroot, wheat, finger millet, and peanuts. One source of interest is the soybean.
  • Kunitz-trypsin inhibitor is major member of the first class whose members have approximately 170 - 200 amino acids, molecular weights between 20 - 25 kDa, and act principally against trypsin.
  • Kunitz-trypsin proteinase inhibitors are mostly single chain polypeptides with 4 cysteines linked in two disulfide bridges, and with one reactive site located in a loop defined by disulfide bridge.
  • the second class of inhibitors contains 60 - 85 amino acids, has a range in molecular weight of 6 - 10 kDa, has a higher number of disulfide bonds, is relatively heat-stable, and inhibits both trypsin and chymotrypsin at independent binding sites.
  • Bowman-Birk inhibitor (BBI) is an example of this class.
  • the average level of protease inhibitors present in soybeans is around 1 .4 percent and 0.6 percent for KTI and BBI, respectively. Notably, these low levels make it impractical to isolate the natural protease inhibitor for clinical applications.
  • a process involving use of immobilized chymotrypsin, while it does not bind KTI has several problems, such as not being cost effective for scale-up and the possibility of chymotrypsin leaching from the resin following numerous uses and cleaning steps.
  • Many older BBI purification methods use anion exchange chromatography, which technique can result in subfractionation of BBI isomers,
  • anion exchange chromatography it has been difficult with anion exchange chromatography to obtain a KTI-free BBI fraction without significant loss of BBI yield. Accordingly, all of the methods currently known for isolating BBI are problematic due to slow processing, low yield, low purity, and/or the need for a number of different steps which results in an increase of time and cost requirements.
  • Methods of purification which only utilize filtration are not effective as sole methods due to membrane fouling, incomplete and/or imperfect separation of non-protein components from BBI proteins, and ineffective separation of BBI proteins from other proteins.
  • Methods of purification which only utilize chromatography are also not effective as sole methods due to binding capacity and overloading issues, incomplete and/or imperfect separation issues (e.g. separation of BBI from KTI), irreversible binding of protein to resin issues, resin lifetime issues, and it is relatively expensive compared to other techniques.
  • Methods of purification which involve only ammonium sulfate precipitation are not effective as sole methods due to the possibility of irreversible precipitation of BBI proteins, potential loss of activity of BBI proteins, incomplete precipitation of BBI proteins ( i.e. loss of yield), and the need to remove the ammonium sulfate from the final product, which adds an additional step and cost.
  • compositions which comprise soy whey proteins that have been recovered in accordance with the methods described herein.
  • the compositions may additionally comprise at least one other ingredient and are formed into adhesives, paper coatings, films, inks, paints, and/or personal care products.
  • the adhesives that contain soy whey protein as an ingredient have been found to have a stable flow and long stringy finger tack which are desirable qualities in adhesives.
  • novel soy whey proteins allows for the manufacturing of novel adhesives, paper coatings, films, inks, paints, and personal care products which contain the novel soy whey proteins and exhibit improved functionality in such applications.
  • the present disclosure relates to compositions which comprise soy whey proteins that have been recovered in accordance with the novel methods for purifying soy processing streams disclosed herein.
  • the compositions disclosed herein are then used to make industrial products such as adhesives, paper coatings, films, inks, and paints.
  • the present disclosure provides industrial products such as adhesives, paper coatings, films, inks, and paints that contain recovered soy whey protein.
  • the soy whey protein has been found to lead to adhesives having a more stable flow and longer stringier finger tack compared to adhesives that use currently available soy protein isolate.
  • the industrial products of the present disclosure incorporate soy whey protein that has been recovered from processing streams in accordance with novel processing methods.
  • a sequence of membrane or chromatographic separation operation steps which are described below in further detail, are combined in varying order to comprise the overall process for recovering soy whey protein and other constituents from a processing stream.
  • the present processing method results in the isolation and removal of one or more soy whey protein, sugars, and minerals from a soy processing stream, the soy processing stream comprising the soy whey proteins, one or more soy storage proteins, one or more sugars, and one or more minerals.
  • the removal of the soy whey proteins from the processing streams in accordance with the novel processing methods allows the soy whey protein to be used in compositions to produce industrial products such as adhesives, paper coatings, films, inks, and paints.
  • the present invention comprises personal care compositions comprising an effective amount of a soy whey protein of the present invention in a suitable cosmetic carrier.
  • FIG. 1 is a chart setting forth the proteins found in whey streams and their characteristics.
  • FIG. 2 graphically depicts the solubility of the soy whey proteins over a pH range of 3-7 as compared to that of soy protein isolates.
  • FIG. 3 graphically depicts the rheological properties of the soy whey proteins compared to soy protein isolate.
  • FIG. 4A is a schematic flow sheet depicting Steps 0 through 4 in a process for recovery of a purified soy whey protein from processing stream.
  • FIG. 4B is a schematic flow sheet depicting Steps 5, 6, 14, 15, 16, and 17 in a process for recovery of a purified soy whey protein from processing stream.
  • FIG. 4C is a schematic flow sheet depicting Steps 7 through 13 in a process for recovery of a purified soy whey protein from processing stream.
  • FIG. 5 graphically illustrates the breakthrough curve when loading soy whey at 10, 15, 20 and 30 mL/min (5.7, 8.5, 1 1 .3, 17.0 cm/min linear flow rate, respectively) through a SP Gibco cation exchange resin bed plotted against empty column volumes loaded.
  • FIG. 6 graphically illustrates protein adsorption on SP Gibco cation exchange resin when passing soy whey at 10, 15, 20 and 30 mL/min (5.7, 8.5, 1 1 .3, 17.0 cm/min linear flow rate, respectively) plotted against empty column volumes loaded.
  • FIG. 7 graphically illustrates the breakthrough curve when loading soy whey at 15 mL/min and soy whey concentrated by a factor of 3 and 5 through SP Gibco cation exchange resin bed plotted against empty column volumes loaded.
  • FIG. 8 graphically illustrates protein adsorption on SP Gibco cation exchange resin when passing soy whey and soy whey concentrated by a factor of 3 and 5 at 15 mL/min through SP Gibco cation exchange resin bed plotted against empty column volumes loaded.
  • FIG. 9 graphically depicts equilibrium protein adsorption on SP Gibco cation exchange resin when passing soy whey and soy whey concentrated by a factor of 3 and 5 at 15 mL/min through SP Gibco cation exchange resin bed plotted against equilibrium protein concentration in the flow through.
  • FIG. 10 graphically illustrates the elution profiles of soy whey proteins desorbed with varying linear velocities over time.
  • FIG. 1 1 graphically illustrates the elution profiles of soy whey proteins desorbed with varying linear velocities with column volumes.
  • FIG. 12 depicts a sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of Mimo6ME fractions.
  • FIG. 13 depicts a SDS-PAGE analysis of Mimo4SE fractions.
  • FIG. 14 depicts a SDS-PAGE analysis of Mimo6HE fractions.
  • FIG. 15 depicts a SDS-PAGE analysis of Mimo6ZE fractions.
  • Described herein are novel processes for recovering highly purified target proteins and other products from a variety of leguminous plant processing streams (including soy whey streams and soy molasses streams) generated in the manufacture of soy protein isolates.
  • the processes of the present disclosure comprise one or more operations ⁇ e.g. membrane separation operations) selected and designed to provide recovery of the desired proteins or other products, or separation of various components of the soy whey stream, or both.
  • BBI Bowman-Birk inhibitor
  • KTI Kunitz trypsin inhibitor
  • various sugars may utilize a plurality of separation techniques, ⁇ e.g. membrane, chromatographic, centrifugation, or filtration).
  • separation techniques ⁇ e.g. membrane, chromatographic, centrifugation, or filtration.
  • the specific separation technique will depend upon the desired component to be recovered by separating it from other components of the processing stream.
  • a purified fraction is typically prepared by removal of one or more impurities (e.g. microorganisms or minerals), followed by removal of additional impurities including one or more soy storage proteins ⁇ i.e. glycinin and ⁇ -conglycinin), followed by removal of one or more soy whey proteins (including, for example, KTI and other non-BBI proteins or peptides), and/or followed by removal of one or more additional impurities including sugars from the soy whey.
  • impurities e.g. microorganisms or minerals
  • additional impurities including one or more soy storage proteins ⁇ i.e. glycinin and ⁇ -conglycinin
  • soy whey proteins including, for example, KTI and other non-BBI proteins or peptides
  • Removal of the various components of the soy whey typically comprises concentration of the soy whey prior to and/or during removal of the components of the soy whey.
  • the methods of the present invention also will reduce pollution generated from processing large quantities of aqueous waste.
  • fractions that are enriched in the individual, targeted proteins and free of impurities that may be antagonists or toxins, or may otherwise have a deleterious effect.
  • a soy storage protein-enriched fraction may be recovered, along with a fraction enriched in one or more soy whey proteins.
  • a fraction enriched in one more sugars ⁇ e.g. oligosaccharides and/or polysaccharides) is also typically prepared.
  • the present methods provide a fraction that is suitable as a substrate for recovery of individual, targeted proteins, and also provide other fractions that can be used as substrates for economical recovery of other useful products from aqueous soy whey.
  • a useful fraction from which the sugars can be further separated thus yielding additional useful fractions: a concentrated sugar and a mineral fraction (that may include citric acid), and a relatively pure aqueous fraction that may be disposed of with minimal, if any, treatment or recycled as process water.
  • Process water thus produced may be especially useful in practicing the present methods.
  • a further advantage of the present methods may be reduced process water requirements as compared to conventional isolate preparation processes.
  • Methods of the present disclosure provide advantages over conventional methods for manufacture of soy protein isolates and concentrates in at least two ways.
  • conventional methods for manufacturing soy protein materials typically dispose of the soy whey stream (e.g. aqueous soy whey or soy molasses).
  • soy whey stream e.g. aqueous soy whey or soy molasses
  • the products recovered by the methods of the present disclosure represent an additional product, and a revenue source not currently realized in connection with conventional soy protein isolate and soy protein concentrate manufacture.
  • treatment of the soy whey stream or soy molasses to recover products preferably reduces the costs associated with treatment and disposal of the soy whey stream or soy molasses.
  • various methods of the present invention provide a relatively pure soy processing stream that may be readily utilized in various other processes or disposed of with minimal, if any, treatment, thereby reducing the environmental impact of the process.
  • soy whey proteins recovered in accordance with the processes of the present disclosure represent a significant advance in the art over other soy proteins and isolates.
  • the soy whey proteins of the present disclosure which are recovered from a processing stream, possess unique characteristics as compared to other soy proteins found in the art.
  • Soy protein isolates are typically precipitated from an aqueous extract of defatted soy flakes or soy flour at the isoelectric point of soy storage proteins ⁇ e.g. a pH of about 4.5).
  • soy protein isolates generally include proteins that are not soluble in acidic liquid media.
  • soy protein concentrates the second-most refined soy protein material
  • soy whey proteins recovered by the processes of the present disclosure differ in that they are generally acid-soluble, meaning they are soluble in acidic liquid media.
  • soy whey protein compositions derived from an aqueous soy whey that exhibit advantageous characteristics over soy proteins found in the prior art possess high solubility (i.e. SSI% greater than 80) across a relatively wide pH range of the aqueous (typically acidic) medium (e.g. an aqueous medium having a pH of from about 2 to about 10, from about 2 to about 7, or from about 2 to about 6) at ambient conditions ⁇ e.g. a temperature of about 25°C).
  • SSI% high solubility
  • the aqueous (typically acidic) medium e.g. an aqueous medium having a pH of from about 2 to about 10, from about 2 to about 7, or from about 2 to about 6
  • ambient conditions e.g. a temperature of about 25°C
  • solubility of the soy whey proteins isolated in accordance with the methods of the present disclosure was at least 80%, and in all but one instance (i.e. pH 4) was at least about 90%.
  • soy whey proteins of the present disclosure also possess much lower viscosity than other soy whey proteins.
  • Table 1 the soy whey proteins of the present invention displayed viscoelastic properties (i.e. rheological properties) more similar to that of water than shown by soy protein isolate.
  • the viscosity of water is about 1 centipoise (cP) at 20 Q C.
  • the soy whey proteins of the present disclosure were found to exhibit viscosity within the range of from about 2.0 to 10.0 cP, and preferably from about 3.6 to 7.5 cP.
  • soy whey protein of the present disclosure available and better suited for use in certain applications that regularly involve the use of other proteins (e.g., in acidic beverages), because it has much better flow characteristics than that of soy isolate.
  • soy proteins constitute at least about 10 wt.%, at least about 15 wt.%, or at least about 20 wt.% of the soy whey stream (dry weight basis). Typically, soy proteins constitute from about 10 to about 40 wt.%, or from about 20 to about 30 wt.% of the soy whey stream (dry weight basis). Soy protein isolates typically contain a significant portion of the storage proteins of the soybean. However, the soy whey stream remaining after isolate precipitation likewise contains one or more soy storage proteins.
  • the sugars of the soy whey stream generally include one or more monosaccharides, and/or one or more oligosaccharides or polysaccharides.
  • the soy whey stream comprises monosaccharides selected from the group consisting of glucose, fructose, and combinations thereof.
  • monosaccharides constitute from about 0.5% to about 10 wt. % and, more typically from about 1 % to about 5 wt.% of the soy whey stream (dry weight basis).
  • the soy whey stream comprises oligosaccharides selected from the group consisting of sucrose, raffinose, stachyose, and combinations thereof.
  • oligosaccharides constitute from about 30% to about 60% and, more typically, from about 40% to about 50% by weight of the soy whey stream (dry weight basis).
  • the aqueous soy whey stream also typically comprises an ash fraction that includes a variety of components including, for example, various minerals, isoflavones, phytic acid, citric acid, saponins, and vitamins.
  • Minerals typically present in the soy whey stream include sodium, potassium, calcium, phosphorus, magnesium, chloride, iron, manganese, zinc, copper, and combinations thereof.
  • Vitamins present in the soy whey stream include, for example, thiamine and riboflavin.
  • the ash fraction typically constitutes from about 5% to about 30% and, more typically, from about 10% to about 25% by weight of the soy whey stream (dry weight basis).
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 7a include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Products from stream 7b include but are not limited to, water, minerals, and combinations thereof.
  • Step 8 (as shown in FIG. 4C) - a mineral removal step can start with peptides, soy oligosaccharides, water, minerals, and combinations thereof from streams 5b, 6b, 7a, and/or 12b. It includes an electrodialysis membrane step. Process variables and alternatives in this step include but are not limited to, ion exchange columns, chromatography, and combinations thereof. Processing aids that can be used in this mineral removal step include but are not limited to, water, enzymes, and combinations thereof. Enzymes include but are not limited to protease, phytase, and combinations thereof.
  • the pH of step 8 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • Step 10 (as shown in FIG. 4C) - a soy oligosaccharide fractionation step can start with soy oligosaccharides, and combinations thereof from streams 9b, 5b, 6b, 7a, and/or 8a. It includes a chromatography step. Process variables and alternatives in this step include but are not limited to, chromatography, nanofiltration, and combinations thereof. Processing aids that can be used in this soy oligosaccharide fractionation step include but are not limited to acid or base to adjust the pH as one skilled in the art would know, based on the resin used. Products from stream 10a include but are not limited to, soy oligosaccharides. Products from stream 10b include but are not limited to soy oligosaccharides.
  • Step 12 (as shown in FIG. 4C) - an additional protein separation from soy oligosaccharides step can start with peptides, soy oligosaccharides, water, minerals, and combinations thereof from stream 7a, 5b, and/or 6b. It includes an ultrafiltration step.
  • Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, ultrafiltration with pore sizes between about 50 kDa and about 1 kDa, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • Processing aids that can be used in this protein separation from sugars step include but are not limited to, acids, bases, protease, phytase, and combinations thereof.
  • the pH of step 12 can be between about 2.0 and about 12.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 ⁇ 0 and about 75 °C, or about 50 °C.
  • Products from stream 12b include but are not limited to, soy oligosaccharides, water, minerals, and combinations thereof.
  • Products from stream 12a include but are not limited to, peptides, other proteins, and combinations thereof.
  • the exhaust temperature can be between about 65 °C and about 98 °C, or about 88 °C.
  • Products from stream 17a include but are not limited to, water.
  • Products from stream 17b include but are not limited to, soy whey protein which includes, BBI, KTI, other proteins, and combinations thereof.
  • the soy whey protein products of the current application can have at least about 20 wt.% dry basis protein, at least about 60 wt.% dry basis protein, at least about 75 wt.% dry basis protein, at least about 80 wt.% dry basis protein, at least about 85 wt.% dry basis protein, at least about 90 wt.% dry basis protein, or at least about 95 wt.% dry basis protein.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • Step 5 (See FIG. 4B) is done.
  • the protein separation and concentration step in this embodiment starts with the whey from stream 0a. It includes an ultrafiltration step.
  • Processing aids that can be used in the ultrafiltration step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, and combinations thereof.
  • Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, ultrafiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 5 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • Step 6 the protein washing and purification step starts with soy whey protein, BBI, KTI, storage proteins, other proteins or purified pre-treated whey from stream 5a. It includes a diafiltration step.
  • Process variables and alternatives in this step include but are not limited to, reslurrying, crossflow membrane filtration, ultrafiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • Processing aids that can be used in the protein washing and purification step include but are not limited to, water, steam, and combinations thereof.
  • the pH of step 6 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 6a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins, and combinations thereof.
  • Products from stream 6b include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Embodiment 3 starts with Step 0 (See FIG. 4A) which is a whey protein pretreatment that can start with feed streams including but not limited to isolated soy protein (ISP) molasses, ISP whey, soy protein concentrate (SPC) molasses, SPC whey, functional soy protein concentrate (FSPC) whey, and combinations thereof.
  • Processing aids that can be used in the whey protein pretreatment step include but are not limited to, acids, bases, sodium hydroxide, calcium hydroxide, hydrochloric acid, water, steam, and combinations thereof.
  • the pH of step 0 after the pH is adjusted can be between about 3.0 and about 6.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • the pH hold times can vary between about 0 minutes to about 60 minutes, or between about 5 minutes and about 20 minutes, or about 10 minutes.
  • the product of stream 3 is a suspension of purified pre-treated soy whey and precipitated minerals.
  • Step 4 the mineral removal step can start with the suspension of purified pre-treated whey and precipitated minerals from stream 3. It includes a centrifugation step. Process variables and alternatives in this step include but are not limited to, centrifugation, filtration, dead-end filtration, crossflow membrane filtration and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof. Products from the mineral removal step include but are not limited to a de-mineralized pre- treated whey in stream 4a and insoluble minerals with some protein mineral complexes in stream 4b.
  • Step 5 the protein separation and concentration step can start with purified pre-treated whey from stream 4a. It includes an ultrafiltration step. Processing aids that can be used in the ultrafiltration step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, and combinations thereof. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, ultrafiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 5 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 ⁇ 0 and about 75 °C, or about 50 °C.
  • Products from stream 5a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins and combinations thereof.
  • Products from stream 5b include but are not limited to, peptides, soy oligosaccharides, minerals and combinations thereof.
  • Embodiment 4 starts with Step 0 (See FIG. 4A) whey protein pretreatment that can start with feed streams including but not limited to isolated soy protein (ISP) molasses, ISP whey, soy protein concentrate (SPC) molasses, SPC whey, functional soy protein concentrate (FSPC) whey, and combinations thereof.
  • Processing aids that can be used in the whey protein pretreatment step include but are not limited to, acids, bases, sodium hydroxide, calcium hydroxide, hydrochloric acid, water, steam, and combinations thereof.
  • the pH of step 0 after the pH is adjusted can be between about 3.0 and about 6.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • Step 3 the mineral precipitation step can start with purified pre-treated soy whey from stream 0a. It includes a precipitation step by pH and/or temperature change. Process variables and alternatives in this step include but are not limited to, an agitated or recirculating reaction tank. Processing aids that can be used in the mineral precipitation step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, sodium chloride, phytase, and combinations thereof.
  • the pH of step 3 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • the pH hold times can vary between about 0 minutes to about 60 minutes, or between about 5 minutes and about 20 minutes, or about 10 minutes.
  • the product of stream 3 is a suspension of purified pre-treated soy whey and precipitated minerals.
  • Step 4 the mineral removal step can start with the suspension of purified pre-treated whey and precipitated minerals from stream 3. It includes a centrifugation step. Process variables and alternatives in this step include but are not limited to, centrifugation, filtration, dead-end filtration, crossflow membrane filtration and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof. Products from the mineral removal step include but are not limited to a de-mineralized pre- treated whey in stream 4a and insoluble minerals with some protein mineral complexes in stream 4b.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 5a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins and combinations thereof.
  • Products from stream 5b include but are not limited to, peptides, soy oligosaccharides, minerals and combinations thereof.
  • Step 6 the protein washing and purification step can start with soy whey protein, BBI, KTI, storage proteins, other proteins or purified pre-treated whey from stream 5a. It includes a diafiltration step.
  • Process variables and alternatives in this step include but are not limited to, reslurrying, crossflow membrane filtration, ultrafiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • Processing aids that can be used in the protein washing and purification step include but are not limited to, water, steam, and combinations thereof.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • Products from the whey protein pretreatment include but are not limited to soluble components in the aqueous phase of the whey stream (pre-treated soy whey) (molecular weight of equal to or less than about 50 kiloDalton (kDa)) in stream 0a and insoluble large molecular weight proteins (between about 300kDa and between about 50kDa) in stream 0b, such as pre-treated soy whey, storage proteins, and combinations thereof.
  • pre-treated soy whey molecular weight of equal to or less than about 50 kiloDalton (kDa)
  • insoluble large molecular weight proteins between about 300kDa and between about 50kDa
  • Step 3 the mineral precipitation step can start with pre-treated soy whey from stream 0a. It includes a precipitation step by pH and/or temperature change. Process variables and alternatives in this step include but are not limited to, an agitated or recirculating reaction tank. Processing aids that can be used in the mineral precipitation step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, sodium chloride, phytase, and combinations thereof.
  • the pH of step 3 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • the pH hold times can vary between about 0 minutes to about 60 minutes, or between about 5 minutes and about 20 minutes, or about 10 minutes.
  • the product of stream 3 is a suspension of purified pre-treated soy whey and precipitated minerals.
  • Step 4 the mineral removal step can start with the suspension of purified pre-treated whey and precipitated minerals from stream 3. It includes a centrifugation step. Process variables and alternatives in this step include but are not limited to, centrifugation, filtration, dead-end filtration, crossflow membrane filtration and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof. Products from the mineral removal step include but are not limited to a de-mineralized pre- treated whey in stream 4a and insoluble minerals with some protein mineral complexes in stream 4b.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 5a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins and combinations thereof.
  • Products from stream 5b include but are not limited to, peptides, soy oligosaccharides, minerals and combinations thereof.
  • Step 6 the protein washing and purification step can start with soy whey protein, BBI, KTI, storage proteins, other proteins or purified pre-treated whey from stream 5a. It includes a diafiltration step.
  • Process variables and alternatives in this step include but are not limited to, reslurrying, crossflow membrane filtration, ultrafiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • Processing aids that can be used in the protein washing and purification step include but are not limited to, water, steam, and combinations thereof.
  • the pH of step 6 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 6a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins, and combinations thereof.
  • Products from stream 6b include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Step 16 a heat treatment and flash cooling step can start with soy whey protein, BBI, KTI and, other proteins from streams 6a. It includes an ultra high temperature step. Process variables and alternatives in this step include but are not limited to, heat sterilization, evaporation, and combinations thereof. Processing aids that can be used in this heat treatment and flash cooling step include but are not limited to, water, steam, and combinations thereof.
  • the temperature of the heating step can be between about 129°C and about 160°C, or about 152°C. Temperature hold time can be between about 8 seconds and about 15 seconds, or about 9 seconds.
  • the temperature can be between about 50 °C and about 95 °C, or about 82°C.
  • Products from stream 16 include but are not limited to, soy whey protein.
  • Step 17 a drying step can start with soy whey protein , BBI, KTI and, other proteins from stream 16. It includes a drying step.
  • the liquid feed temperature can be between about 50 °C and about 95 °C, or about 82 °C.
  • the inlet temperature can be between about 175°C and about 370 °C, or about 290 °C.
  • the exhaust temperature can be between about 65 °C and about 98 °C, or about 88 °C.
  • Products from stream 17a include but are not limited to, water.
  • Products from stream 17b include but are not limited to, soy whey protein which includes, BBI, KTI and, other proteins.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • Products from the whey protein pretreatment include but are not limited to soluble components in the aqueous phase of the whey stream (pre-treated soy whey) (molecular weight of equal to or less than about 50 kiloDalton (kDa) in stream 0a and insoluble large molecular weight proteins (between about 300kDa and between about 50kDa) in stream 0b, such as pre-treated soy whey, storage proteins, and combinations thereof.
  • pre-treated soy whey molecular weight of equal to or less than about 50 kiloDalton (kDa) in stream 0a and insoluble large molecular weight proteins (between about 300kDa and between about 50kDa) in stream 0b, such as pre-treated soy whey, storage proteins, and combinations thereof.
  • Step 3 the mineral precipitation step can start with pre-treated soy whey from stream 0a. It includes a precipitation step by pH and/or temperature change. Process variables and alternatives in this step include but are not limited to, an agitated or recirculating reaction tank. Processing aids that can be used in the mineral precipitation step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, sodium chloride, phytase, and combinations thereof.
  • the pH of step 3 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • Step 4 the mineral removal step can start with the suspension of purified pre-treated whey and precipitated minerals from stream 3. It includes a centrifugation step. Process variables and alternatives in this step include but are not limited to, centrifugation, filtration, dead-end filtration, crossflow membrane filtration and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof. Products from the mineral removal step include but are not limited to a de-mineralized pre- treated whey in stream 4a and insoluble minerals with some protein mineral complexes in stream 4b.
  • Step 5 the protein separation and concentration step can start with purified pre-treated whey from stream 4a. It includes an ultrafiltration step. Processing aids that can be used in the ultrafiltration step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, and combinations thereof. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, ultrafiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 5 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • Step 6 the protein washing and purification step can start with soy whey protein, BBI, KTI, storage proteins, other proteins or purified pre-treated whey from stream 5a. It includes a diafiltration step.
  • Process variables and alternatives in this step include but are not limited to, reslurrying, crossflow membrane filtration, ultrafiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • Processing aids that can be used in the protein washing and purification step include but are not limited to, water, steam, and combinations thereof.
  • the pH of step 6 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 6a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins, and combinations thereof.
  • Products from stream 6b include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Step 15 a water removal step can start with soy whey protein, BBI, KTI and, other proteins from stream 6a. It includes an evaporation step. Process variables and alternatives in this step include but are not limited to, evaporation, nanofiltration, reverse osmosis, and combinations thereof. Products from stream 15a include but are not limited to, water. Stream 15b products include but are not limited to soy whey protein, BBI, KTI and, other proteins.
  • Step 16 a heat treatment and flash cooling step can start with soy whey protein, BBI, KTI and, other proteins from stream 15b. It includes an ultra high temperature step. Process variables and alternatives in this step include but are not limited to, heat sterilization, evaporation, and combinations thereof. Processing aids that can be used in this heat treatment and flash cooling step include but are not limited to, water, steam, and combinations thereof.
  • the temperature of the heating step can be between about 129°C and about 160°C, or about 152°C. Temperature hold time can be between about 8 seconds and about 15 seconds, or about 9 seconds.
  • the temperature can be between about 50 °C and about 95 °C, or about 82°C.
  • Products from stream 16 include but are not limited to, soy whey protein.
  • Step 17 a drying step can start with soy whey protein , BBI, KTI and, other proteins from stream 16. It includes a drying step.
  • the liquid feed temperature can be between about 50 °C and about 95 °C, or about 82 °C.
  • the inlet temperature can be between about 175°C and about 370 °C, or about 290 °C.
  • the exhaust temperature can be between about 65 °C and about 98 °C, or about 88 °C.
  • Products from stream 17a include but are not limited to, water.
  • Products from stream 17b include but are not limited to, soy whey protein which includes, BBI, KTI and, other proteins.
  • Embodiment 7 starts with Step 0 (See FIG. 4A) the whey protein pretreatment can start with feed streams including but not limited to isolated soy protein (ISP) molasses, ISP whey, soy protein concentrate (SPC) molasses, SPC whey, functional soy protein concentrate (FSPC) whey, and combinations thereof.
  • Processing aids that can be used in the whey protein pretreatment step include but are not limited to, acids, bases, sodium hydroxide, calcium hydroxide, hydrochloric acid, water, steam, and combinations thereof.
  • the pH of step 0 after the pH is adjusted can be between about 3.0 and about 6.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • Products from the whey protein pretreatment include but are not limited to soluble components in the aqueous phase of the whey stream (pre-treated soy whey) (molecular weight of equal to or less than about 50 kiloDalton (kDa)) in stream 0a and insoluble large molecular weight proteins (between about 300kDa and between about 50kDa) in stream 0b, such as pre-treated soy whey, storage proteins, and combinations thereof.
  • pre-treated soy whey molecular weight of equal to or less than about 50 kiloDalton (kDa)
  • insoluble large molecular weight proteins between about 300kDa and between about 50kDa
  • Step 2 a water and mineral removal can start with the pre-treated soy whey from stream 0b. It includes a nanofiltration step for water removal and partial mineral removal. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, reverse osmosis, evaporation, nanofiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 2 can be between about 2.0 and about 12.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 ⁇ 0 and about 75 °C, or about 50 °C.
  • Products from this water removal step include but are not limited to purified pre- treated soy whey in stream 2a and water, some minerals, monovalent cations and combinations thereof in stream 2b.
  • Step 5 the protein separation and concentration step can start with the whey from stream 2a. It includes an ultrafiltration step. Processing aids that can be used in the ultrafiltration step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, and combinations thereof. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, ultrafiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 5 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 5a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins and combinations thereof.
  • Products from stream 5b include but are not limited to, peptides, soy oligosaccharides, minerals and combinations thereof.
  • Embodiment 8 starts with Step 0 (See FIG. 4A) the whey protein pretreatment can start with feed streams including but not limited to isolated soy protein (ISP) molasses, ISP whey, soy protein concentrate (SPC) molasses, SPC whey, functional soy protein concentrate (FSPC) whey, and combinations thereof.
  • Processing aids that can be used in the whey protein pretreatment step include but are not limited to, acids, bases, sodium hydroxide, calcium hydroxide, hydrochloric acid, water, steam, and combinations thereof.
  • the pH of step 0 after the pH is adjusted can be between about 3.0 and about 6.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • Products from the whey protein pretreatment include but are not limited to soluble components in the aqueous phase of the whey stream (pre-treated soy whey) (molecular weight of equal to or less than about 50 kiloDalton (kDa)) in stream 0a and insoluble large molecular weight proteins (between about 300kDa and between about 50kDa) in stream Ob, such as pre-treated soy whey, storage proteins, and combinations thereof.
  • pre-treated soy whey molecular weight of equal to or less than about 50 kiloDalton (kDa)
  • insoluble large molecular weight proteins between about 300kDa and between about 50kDa
  • Step 2 a water and mineral removal can start with the pre-treated soy whey from stream 0b. It includes a nanofiltration step for water removal and partial mineral removal. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, reverse osmosis, evaporation, nanofiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 2 can be between about 2.0 and about 12.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 5°C and about 90 °C, or between about 2 °C and about 75 °C, or about 50 °C.
  • Products from this water removal step include but are not limited to purified pre- treated soy whey in stream 2a and water, some minerals, monovalent cations and combinations thereof in stream 2b.
  • Step 5 the protein separation and concentration step can start with the whey from stream 2a. It includes an ultrafiltration step. Processing aids that can be used in the ultrafiltration step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, and combinations thereof. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, ultrafiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 5 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 5a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins and combinations thereof.
  • Products from stream 5b include but are not limited to, peptides, soy oligosaccharides, minerals and combinations thereof.
  • Step 6 the protein washing and purification step can start with soy whey protein, BBI, KTI, storage proteins, other proteins or purified pre-treated whey from stream 5a. It includes a diafiltration step.
  • Process variables and alternatives in this step include but are not limited to, reslurrying, crossflow membrane filtration, ultrafiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • Processing aids that can be used in the protein washing and purification step include but are not limited to, water, steam, and combinations thereof.
  • the pH of step 6 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 6a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins, and combinations thereof.
  • Products from stream 6b include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Embodiment 9 starts with Step 0 (See FIG. 4A) the whey protein pretreatment can start with feed streams including but not limited to isolated soy protein (ISP) molasses, ISP whey, soy protein concentrate (SPC) molasses, SPC whey, functional soy protein concentrate (FSPC) whey, and combinations thereof.
  • Processing aids that can be used in the whey protein pretreatment step include but are not limited to, acids, bases, sodium hydroxide, calcium hydroxide, hydrochloric acid, water, steam, and combinations thereof.
  • the pH of step 0 after the pH is adjusted can be between about 3.0 and about 6.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • Products from the whey protein pretreatment include but are not limited to soluble components in the aqueous phase of the whey stream (pre-treated soy whey) (molecular weight of equal to or less than about 50 kiloDalton (kDa)) in stream 0a and insoluble large molecular weight proteins (between about 300kDa and between about 50kDa) in stream Ob, such as pre-treated soy whey, storage proteins, and combinations thereof.
  • pre-treated soy whey molecular weight of equal to or less than about 50 kiloDalton (kDa)
  • insoluble large molecular weight proteins between about 300kDa and between about 50kDa
  • Step 2 a water and mineral removal can start with the pre-treated soy whey from stream 0b. It includes a nanofiltration step for water removal and partial mineral removal. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, reverse osmosis, evaporation, nanofiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 2 can be between about 2.0 and about 12.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 ⁇ 0 and about 75 °C, or about 50 °C.
  • Products from this water removal step include but are not limited to purified pre- treated soy whey in stream 2a and water, some minerals, monovalent cations and combinations thereof in stream 2b.
  • Step 3 the mineral precipitation step can start with purified pre-treated soy whey from stream 2a. It includes a precipitation step by pH and/or temperature change. Process variables and alternatives in this step include but are not limited to, an agitated or recirculating reaction tank. Processing aids that can be used in the mineral precipitation step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, sodium chloride, phytase, and combinations thereof.
  • the pH of step 3 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • the pH hold times can vary between about 0 minutes to about 60 minutes, or between about 5 minutes and about 20 minutes, or about 10 minutes.
  • the product of stream 3 is a suspension of purified pre-treated soy whey and precipitated minerals.
  • Step 4 the mineral removal step can start with the suspension of purified pre-treated whey and precipitated minerals from stream 3. It includes a centrifugation step. Process variables and alternatives in this step include but are not limited to, centrifugation, filtration, dead-end filtration, crossflow membrane filtration and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof. Products from the mineral removal step include but are not limited to a de-mineralized pre- treated whey in stream 4a and insoluble minerals with some protein mineral complexes in stream 4b.
  • Step 5 the protein separation and concentration step can start with purified pre-treated whey from stream 4a. It includes an ultrafiltration step. Processing aids that can be used in the ultrafiltration step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, and combinations thereof. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, ultrafiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 5 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 5a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins and combinations thereof.
  • Products from stream 5b include but are not limited to, peptides, soy oligosaccharides, minerals and combinations thereof.
  • Embodiment 10 starts with Step 0 (See FIG. 4A) the whey protein pretreatment can start with feed streams including but not limited to isolated soy protein (ISP) molasses, ISP whey, soy protein concentrate (SPC) molasses, SPC whey, functional soy protein concentrate (FSPC) whey, and combinations thereof.
  • Processing aids that can be used in the whey protein pretreatment step include but are not limited to, acids, bases, sodium hydroxide, calcium hydroxide, hydrochloric acid, water, steam, and combinations thereof.
  • the pH of step 0 after the pH is adjusted can be between about 3.0 and about 6.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • Products from the whey protein pretreatment include but are not limited to soluble components in the aqueous phase of the whey stream (pre-treated soy whey) (molecular weight of equal to or less than about 50 kiloDalton (kDa)) in stream 0a and insoluble large molecular weight proteins (between about 300kDa and between about 50kDa) in stream 0b, such as pre-treated soy whey, storage proteins, and combinations thereof.
  • pre-treated soy whey molecular weight of equal to or less than about 50 kiloDalton (kDa)
  • insoluble large molecular weight proteins between about 300kDa and between about 50kDa
  • Step 2 a water and mineral removal can start with the pre-treated soy whey from stream 0b. It includes a nanofiltration step for water removal and partial mineral removal. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, reverse osmosis, evaporation, nanofiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 2 can be between about 2.0 and about 12.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 ⁇ 0 and about 75 °C, or about 50 °C.
  • Products from this water removal step include but are not limited to purified pre- treated soy whey in stream 2a and water, some minerals, monovalent cations and combinations thereof in stream 2b.
  • Step 3 the mineral precipitation step can start with purified pre-treated soy whey from stream 2a. It includes a precipitation step by pH and/or temperature change. Process variables and alternatives in this step include but are not limited to, an agitated or recirculating reaction tank. Processing aids that can be used in the mineral precipitation step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, sodium chloride, phytase, and combinations thereof.
  • the pH of step 3 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • the pH hold times can vary between about 0 minutes to about 60 minutes, or between about 5 minutes and about 20 minutes, or about 10 minutes.
  • the product of stream 3 is a suspension of purified pre-treated soy whey and precipitated minerals.
  • Step 4 the mineral removal step can start with the suspension of purified pre-treated whey and precipitated minerals from stream 3. It includes a centrifugation step. Process variables and alternatives in this step include but are not limited to, centrifugation, filtration, dead-end filtration, crossflow membrane filtration and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof. Products from the mineral removal step include but are not limited to a de-mineralized pre- treated whey in stream 4a and insoluble minerals with some protein mineral complexes in stream 4b.
  • Step 5 the protein separation and concentration step can start with purified pre-treated whey from stream 4a. It includes an ultrafiltration step. Processing aids that can be used in the ultrafiltration step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, and combinations thereof. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, ultrafiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 5 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 5a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins and combinations thereof.
  • Products from stream 5b include but are not limited to, peptides, soy oligosaccharides, minerals and combinations thereof.
  • Step 6 the protein washing and purification step can start with soy whey protein, BBI, KTI, storage proteins, other proteins or purified pre-treated whey from stream 5a. It includes a diafiltration step.
  • Process variables and alternatives in this step include but are not limited to, reslurrying, crossflow membrane filtration, ultrafiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • Processing aids that can be used in the protein washing and purification step include but are not limited to, water, steam, and combinations thereof.
  • the pH of step 6 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 6a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins, and combinations thereof.
  • Products from stream 6b include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Embodiment 1 1 starts with Step 0 (See FIG. 4A) the whey protein pretreatment can start with feed streams including but not limited to isolated soy protein (ISP) molasses, ISP whey, soy protein concentrate (SPC) molasses, SPC whey, functional soy protein concentrate (FSPC) whey, and combinations thereof.
  • Processing aids that can be used in the whey protein pretreatment step include but are not limited to, acids, bases, sodium hydroxide, calcium hydroxide, hydrochloric acid, water, steam, and combinations thereof.
  • the pH of step 0 after the pH is adjusted can be between about 3.0 and about 6.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • Products from the whey protein pretreatment include but are not limited to soluble components in the aqueous phase of the whey stream (pre-treated soy whey) (molecular weight of equal to or less than about 50 kiloDalton (kDa)) in stream 0a and insoluble large molecular weight proteins (between about 300kDa and between about 50kDa) in stream Ob, such as pre-treated soy whey, storage proteins, and combinations thereof.
  • pre-treated soy whey molecular weight of equal to or less than about 50 kiloDalton (kDa)
  • insoluble large molecular weight proteins between about 300kDa and between about 50kDa
  • Step 2 a water and mineral removal can start with the pre-treated soy whey from stream 0b. It includes a nanofiltration step for water removal and partial mineral removal. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, reverse osmosis, evaporation, nanofiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 2 can be between about 2.0 and about 12.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 ⁇ 0 and about 75 °C, or about 50 °C.
  • Products from this water removal step include but are not limited to purified pre- treated soy whey in stream 2a and water, some minerals, monovalent cations and combinations thereof in stream 2b.
  • Step 3 the mineral precipitation step can start with purified pre-treated soy whey from stream 2a. It includes a precipitation step by pH and/or temperature change. Process variables and alternatives in this step include but are not limited to, an agitated or recirculating reaction tank. Processing aids that can be used in the mineral precipitation step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, sodium chloride, phytase, and combinations thereof.
  • the pH of step 3 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • the pH hold times can vary between about 0 minutes to about 60 minutes, or between about 5 minutes and about 20 minutes, or about 10 minutes.
  • the product of stream 3 is a suspension of purified pre-treated soy whey and precipitated minerals.
  • Step 4 the mineral removal step can start with the suspension of purified pre-treated whey and precipitated minerals from stream 3. It includes a centrifugation step. Process variables and alternatives in this step include but are not limited to, centrifugation, filtration, dead-end filtration, crossflow membrane filtration and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof. Products from the mineral removal step include but are not limited to a de-mineralized pre- treated whey in stream 4a and insoluble minerals with some protein mineral complexes in stream 4b.
  • Step 5 the protein separation and concentration step can start with purified pre-treated whey from stream 4a. It includes an ultrafiltration step. Processing aids that can be used in the ultrafiltration step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, and combinations thereof. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, ultrafiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 5 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 5a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins and combinations thereof.
  • Products from stream 5b include but are not limited to, peptides, soy oligosaccharides, minerals and combinations thereof.
  • Step 6 the protein washing and purification step can start with soy whey protein, BBI, KTI, storage proteins, other proteins or purified pre-treated whey from stream 5a. It includes a diafiltration step.
  • Process variables and alternatives in this step include but are not limited to, reslurrying, crossflow membrane filtration, ultrafiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • Processing aids that can be used in the protein washing and purification step include but are not limited to, water, steam, and combinations thereof.
  • the pH of step 6 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 6a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins, and combinations thereof.
  • Products from stream 6b include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Step 16 a heat treatment and flash cooling step can start with soy whey protein, BBI, KTI and, other proteins from stream 6a. It includes an ultra high temperature step. Process variables and alternatives in this step include but are not limited to, heat sterilization, evaporation, and combinations thereof. Processing aids that can be used in this heat treatment and flash cooling step include but are not limited to, water, steam, and combinations thereof.
  • the temperature of the heating step can be between about 129°C and about 160°C, or about 152°C. Temperature hold time can be between about 8 seconds and about 15 seconds, or about 9 seconds.
  • the temperature can be between about 50 °C and about 95 °C, or about 82°C.
  • Products from stream 16 include but are not limited to, soy whey protein.
  • Step 17 a drying step can start with soy whey protein, BBI, KTI and, other proteins from stream 16. It includes a drying step.
  • the liquid feed temperature can be between about 50 °C and about 95 °C, or about 82 °C.
  • the inlet temperature can be between about 175°C and about 370 °C, or about 290 °C.
  • the exhaust temperature can be between about 65 °C and about 98 °C, or about 88 °C.
  • Products from stream 17a include but are not limited to, water.
  • Products from stream 17b include but are not limited to, soy whey protein which includes, BBI, KTI and, other proteins.
  • Embodiment 12 starts with Step 0 (See FIG. 4A) the whey protein pretreatment can start with feed streams including but not limited to isolated soy protein (ISP) molasses, ISP whey, soy protein concentrate (SPC) molasses, SPC whey, functional soy protein concentrate (FSPC) whey, and combinations thereof.
  • Processing aids that can be used in the whey protein pretreatment step include but are not limited to, acids, bases, sodium hydroxide, calcium hydroxide, hydrochloric acid, water, steam, and combinations thereof.
  • the pH of step 0 after the pH is adjusted can be between about 3.0 and about 6.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • Products from the whey protein pretreatment include but are not limited to soluble components in the aqueous phase of the whey stream (pre-treated soy whey) (molecular weight of equal to or less than about 50 kiloDalton (kDa)) in stream 0a and insoluble large molecular weight proteins (between about 300kDa and between about 50kDa) in stream 0b, such as pre-treated soy whey, storage proteins, and combinations thereof.
  • pre-treated soy whey molecular weight of equal to or less than about 50 kiloDalton (kDa)
  • insoluble large molecular weight proteins between about 300kDa and between about 50kDa
  • Step 2 a water and mineral removal can start with the purified pre-treated soy whey from stream 1 b or pre-treated soy whey from stream 0b. It includes a nanofiltration step for water removal and partial mineral removal. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, reverse osmosis, evaporation, nanofiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 2 can be between about 2.0 and about 12.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from this water removal step include but are not limited to purified pre-treated soy whey in stream 2a and water, some minerals, monovalent cations and combinations thereof in stream 2b.
  • Step 3 the mineral precipitation step can start with purified pre-treated soy whey from stream 2a. It includes a precipitation step by pH and/or temperature change. Process variables and alternatives in this step include but are not limited to, an agitated or recirculating reaction tank. Processing aids that can be used in the mineral precipitation step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, sodium chloride, phytase, and combinations thereof.
  • the pH of step 3 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • the pH hold times can vary between about 0 minutes to about 60 minutes, or between about 5 minutes and about 20 minutes, or about 10 minutes.
  • the product of stream 3 is a suspension of purified pre-treated soy whey and precipitated minerals.
  • Step 4 the mineral removal step can start with the suspension of purified pre-treated whey and precipitated minerals from stream 3. It includes a centrifugation step. Process variables and alternatives in this step include but are not limited to, centrifugation, filtration, dead-end filtration, crossflow membrane filtration and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof. Products from the mineral removal step include but are not limited to a de-mineralized pre- treated whey in stream 4a and insoluble minerals with some protein mineral complexes in stream 4b.
  • Step 5 the protein separation and concentration step can start with purified pre-treated whey from stream 4a. It includes an ultrafiltration step. Processing aids that can be used in the ultrafiltration step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, and combinations thereof. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, ultrafiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 5 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 5a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins and combinations thereof.
  • Products from stream 5b include but are not limited to, peptides, soy oligosaccharides, minerals and combinations thereof.
  • Step 6 the protein washing and purification step can start with soy whey protein, BBI, KTI, storage proteins, other proteins or purified pre-treated whey from stream 5a. It includes a diafiltration step.
  • Process variables and alternatives in this step include but are not limited to, reslurrying, crossflow membrane filtration, ultrafiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • Processing aids that can be used in the protein washing and purification step include but are not limited to, water, steam, and combinations thereof.
  • the pH of step 6 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 6a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins, and combinations thereof.
  • Products from stream 6b include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Step 15 a water removal step can start with soy whey protein, BBI, KTI and, other proteins from stream 6a. It includes an evaporation step. Process variables and alternatives in this step include but are not limited to, evaporation, nanofiltration, reverse osmosis, and combinations thereof. Products from stream 15a include but are not limited to, water. Stream 15b products include but are not limited to soy whey protein, BBI, KTI and, other proteins.
  • Step 16 a heat treatment and flash cooling step can start with soy whey protein, BBI, KTI and, other proteins from stream 15b. It includes an ultra high temperature step. Process variables and alternatives in this step include but are not limited to, heat sterilization, evaporation, and combinations thereof. Processing aids that can be used in this heat treatment and flash cooling step include but are not limited to, water, steam, and combinations thereof.
  • the temperature of the heating step can be between about 129°C and about 160°C, or about 152°C. Temperature hold time can be between about 8 seconds and about 15 seconds, or about 9 seconds.
  • the temperature can be between about 50 °C and about 95 °C, or about 82°C.
  • Products from stream 16 include but are not limited to, soy whey protein.
  • Step 17 a drying step can start with soy whey protein, BBI, KTI and, other proteins from stream 16. It includes a drying step.
  • the liquid feed temperature can be between about 50 °C and about 95 °C, or about 82 °C.
  • the inlet temperature can be between about 175°C and about 370 °C, or about 290 °C.
  • the exhaust temperature can be between about 65 °C and about 98 °C, or about 88 °C.
  • Products from stream 17a include but are not limited to, water.
  • Products from stream 17b include but are not limited to, soy whey protein which includes, BBI, KTI and, other proteins.
  • Embodiment 13 starts with Step 0 (See FIG. 4A) the whey protein pretreatment can start with feed streams including but not limited to isolated soy protein (ISP) molasses, ISP whey, soy protein concentrate (SPC) molasses, SPC whey, functional soy protein concentrate (FSPC) whey, and combinations thereof.
  • Processing aids that can be used in the whey protein pretreatment step include but are not limited to, acids, bases, sodium hydroxide, calcium hydroxide, hydrochloric acid, water, steam, and combinations thereof.
  • the pH of step 0 after the pH is adjusted can be between about 3.0 and about 6.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • Products from the whey protein pretreatment include but are not limited to soluble components in the aqueous phase of the whey stream (pre-treated soy whey) (molecular weight of equal to or less than about 50 kiloDalton (kDa)) in stream 0a and insoluble large molecular weight proteins (between about 300kDa and between about 50kDa) in stream 0b, such as pre-treated soy whey, storage proteins, and combinations thereof.
  • pre-treated soy whey molecular weight of equal to or less than about 50 kiloDalton (kDa)
  • insoluble large molecular weight proteins between about 300kDa and between about 50kDa
  • Step 3 the mineral precipitation step can start with pre-treated soy whey from stream 0a. It includes a precipitation step by pH and/or temperature change. Process variables and alternatives in this step include but are not limited to, an agitated or recirculating reaction tank. Processing aids that can be used in the mineral precipitation step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, sodium chloride, phytase, and combinations thereof.
  • the pH of step 3 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • the pH hold times can vary between about 0 minutes to about 60 minutes, or between about 5 minutes and about 20 minutes, or about 10 minutes.
  • the product of stream 3 is a suspension of purified pre-treated soy whey and precipitated minerals.
  • Step 4 the mineral removal step can start with the suspension of purified pre-treated whey and precipitated minerals from stream 3. It includes a centrifugation step. Process variables and alternatives in this step include but are not limited to, centrifugation, filtration, dead-end filtration, crossflow membrane filtration and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof. Products from the mineral removal step include but are not limited to a de-mineralized pre- treated whey in stream 4a and insoluble minerals with some protein mineral complexes in stream 4b.
  • Step 2 a water and mineral removal can start with the purified pre-treated soy whey from stream 1 b or pre-treated soy whey from stream 0b. It includes a nanofiltration step for water removal and partial mineral removal. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, reverse osmosis, evaporation, nanofiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 2 can be between about 2.0 and about 12.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from this water removal step include but are not limited to purified pre-treated soy whey in stream 2a and water, some minerals, monovalent cations and combinations thereof in stream 2b.
  • Step 5 the protein separation and concentration step can start with the whey from stream 2a. It includes an ultrafiltration step. Processing aids that can be used in the ultrafiltration step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, and combinations thereof. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, ultrafiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 5 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 5a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins and combinations thereof.
  • Products from stream 5b include but are not limited to, peptides, soy oligosaccharides, minerals and combinations thereof.
  • Embodiment 14 starts with Step 0 (See FIG. 4A) the whey protein pretreatment can start with feed streams including but not limited to isolated soy protein (ISP) molasses, ISP whey, soy protein concentrate (SPC) molasses, SPC whey, functional soy protein concentrate (FSPC) whey, and combinations thereof.
  • Processing aids that can be used in the whey protein pretreatment step include but are not limited to, acids, bases, sodium hydroxide, calcium hydroxide, hydrochloric acid, water, steam, and combinations thereof.
  • the pH of step 0 after the pH is adjusted can be between about 3.0 and about 6.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • Products from the whey protein pretreatment include but are not limited to soluble components in the aqueous phase of the whey stream (pre-treated soy whey) (molecular weight of equal to or less than about 50 kiloDalton (kDa)) in stream 0a and insoluble large molecular weight proteins (between about 300kDa and between about 50kDa) in stream 0b, such as pre-treated soy whey, storage proteins, and combinations thereof.
  • pre-treated soy whey molecular weight of equal to or less than about 50 kiloDalton (kDa)
  • insoluble large molecular weight proteins between about 300kDa and between about 50kDa
  • Step 3 the mineral precipitation step can start with pretreated soy whey from stream 0a. It includes a precipitation step by pH and/or temperature change. Process variables and alternatives in this step include but are not limited to, an agitated or recirculating reaction tank. Processing aids that can be used in the mineral precipitation step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, sodium chloride, phytase, and combinations thereof.
  • the pH of step 3 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • the pH hold times can vary between about 0 minutes to about 60 minutes, or between about 5 minutes and about 20 minutes, or about 10 minutes.
  • the product of stream 3 is a suspension of purified pre-treated soy whey and precipitated minerals.
  • Step 2 a water and mineral removal can start with the purified pre-treated soy whey from stream 4a. It includes a nanofiltration step for water removal and partial mineral removal. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, reverse osmosis, evaporation, nanofiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 2 can be between about 2.0 and about 12.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from this water removal step include but are not limited to purified pre-treated soy whey in stream 2a and water, some minerals, monovalent cations and combinations thereof in stream 2b.
  • Step 5 the protein separation and concentration step can start with the whey from stream 2a. It includes an ultrafiltration step. Processing aids that can be used in the ultrafiltration step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, and combinations thereof. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, ultrafiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 5 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 5a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins and combinations thereof.
  • Products from stream 5b include but are not limited to, peptides, soy oligosaccharides, minerals and combinations thereof.
  • Step 6 the protein washing and purification step can start with soy whey protein, BBI, KTI, storage proteins, other proteins or purified pre-treated whey from stream 5a. It includes a diafiltration step.
  • Process variables and alternatives in this step include but are not limited to, reslurrying, crossflow membrane filtration, ultrafiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • Processing aids that can be used in the protein washing and purification step include but are not limited to, water, steam, and combinations thereof.
  • the pH of step 6 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 6a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins, and combinations thereof.
  • Products from stream 6b include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Embodiment 15 starts with Step 0 (See FIG. 4A) the whey protein pretreatment can start with feed streams including but not limited to isolated soy protein (ISP) molasses, ISP whey, soy protein concentrate (SPC) molasses, SPC whey, functional soy protein concentrate (FSPC) whey, and combinations thereof.
  • Processing aids that can be used in the whey protein pretreatment step include but are not limited to, acids, bases, sodium hydroxide, calcium hydroxide, hydrochloric acid, water, steam, and combinations thereof.
  • the pH of step 0 after the pH is adjusted can be between about 3.0 and about 6.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • Products from the whey protein pretreatment include but are not limited to soluble components in the aqueous phase of the whey stream (pre-treated soy whey) (molecular weight of equal to or less than about 50 kiloDalton (kDa)) in stream 0a and insoluble large molecular weight proteins (between about 300kDa and between about 50kDa) in stream 0b, such as pre-treated soy whey, storage proteins, and combinations thereof.
  • pre-treated soy whey molecular weight of equal to or less than about 50 kiloDalton (kDa)
  • insoluble large molecular weight proteins between about 300kDa and between about 50kDa
  • Step 3 the mineral precipitation step can start with pretreated soy whey from stream 0a. It includes a precipitation step by pH and/or temperature change. Process variables and alternatives in this step include but are not limited to, an agitated or recirculating reaction tank. Processing aids that can be used in the mineral precipitation step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, sodium chloride, phytase, and combinations thereof.
  • the pH of step 3 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • the pH hold times can vary between about 0 minutes to about 60 minutes, or between about 5 minutes and about 20 minutes, or about 10 minutes.
  • the product of stream 3 is a suspension of purified pre-treated soy whey and precipitated minerals.
  • Step 4 the mineral removal step can start with the suspension of purified pre-treated whey and precipitated minerals from stream 3. It includes a centrifugation step. Process variables and alternatives in this step include but are not limited to, centrifugation, filtration, dead-end filtration, crossflow membrane filtration and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof. Products from the mineral removal step include but are not limited to a de-mineralized pre- treated whey in stream 4a and insoluble minerals with some protein mineral complexes in stream 4b.
  • Step 2 a water and mineral removal can start with the purified pre-treated soy whey from stream 1 b or pre-treated soy whey from stream 0b. It includes a nanofiltration step for water removal and partial mineral removal. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, reverse osmosis, evaporation, nanofiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 2 can be between about 2.0 and about 12.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from this water removal step include but are not limited to purified pre-treated soy whey in stream 2a and water, some minerals, monovalent cations and combinations thereof in stream 2b.
  • Step 5 the protein separation and concentration step can start with the whey from stream 2a. It includes an ultrafiltration step. Processing aids that can be used in the ultrafiltration step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, and combinations thereof. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, ultrafiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 5 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 5a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins and combinations thereof.
  • Products from stream 5b include but are not limited to, peptides, soy oligosaccharides, minerals and combinations thereof.
  • Step 6 the protein washing and purification step can start with soy whey protein, BBI, KTI, storage proteins, other proteins or purified pre-treated whey from stream 5a. It includes a diafiltration step.
  • Process variables and alternatives in this step include but are not limited to, reslurrying, crossflow membrane filtration, ultrafiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • Processing aids that can be used in the protein washing and purification step include but are not limited to, water, steam, and combinations thereof.
  • the pH of step 6 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 6a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins, and combinations thereof.
  • Products from stream 6b include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Step 16 a heat treatment and flash cooling step can start with soy whey protein, BBI, KTI and, other proteins from stream 6a. It includes an ultra high temperature step. Process variables and alternatives in this step include but are not limited to, heat sterilization, evaporation, and combinations thereof. Processing aids that can be used in this heat treatment and flash cooling step include but are not limited to, water, steam, and combinations thereof.
  • the temperature of the heating step can be between about 129°C and about 160°C, or about 152°C. Temperature hold time can be between about 8 seconds and about 15 seconds, or about 9 seconds.
  • the temperature can be between about 50 °C and about 95 °C, or about 82°C.
  • Products from stream 16 include but are not limited to, soy whey protein.
  • Step 17 a drying step can start with soy whey protein, BBI, KTI and, other proteins from stream 16. It includes a drying step.
  • the liquid feed temperature can be between about 50 °C and about 95 °C, or about 82 °C.
  • the inlet temperature can be between about 175°C and about 370 °C, or about 290 °C.
  • the exhaust temperature can be between about 65 °C and about 98 °C, or about 88 °C.
  • Products from stream 17a include but are not limited to, water.
  • Products from stream 17b include but are not limited to, soy whey protein which includes, BBI, KTI and, other proteins.
  • Embodiment 16 starts with Step 0 (See FIG. 4A) the whey protein pretreatment can start with feed streams including but not limited to isolated soy protein (ISP) molasses, ISP whey, soy protein concentrate (SPC) molasses, SPC whey, functional soy protein concentrate (FSPC) whey, and combinations thereof.
  • Processing aids that can be used in the whey protein pretreatment step include but are not limited to, acids, bases, sodium hydroxide, calcium hydroxide, hydrochloric acid, water, steam, and combinations thereof.
  • the pH of step 0 after the pH is adjusted can be between about 3.0 and about 6.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • Products from the whey protein pretreatment include but are not limited to soluble components in the aqueous phase of the whey stream (pre-treated soy whey) (molecular weight of equal to or less than about 50 kiloDalton (kDa)) in stream 0a and insoluble large molecular weight proteins (between about 300kDa and between about 50kDa) in stream 0b, such as pre-treated soy whey, storage proteins, and combinations thereof.
  • pre-treated soy whey molecular weight of equal to or less than about 50 kiloDalton (kDa)
  • insoluble large molecular weight proteins between about 300kDa and between about 50kDa
  • Step 3 the mineral precipitation step can start with pretreated soy whey from stream 0a. It includes a precipitation step by pH and/or temperature change. Process variables and alternatives in this step include but are not limited to, an agitated or recirculating reaction tank. Processing aids that can be used in the mineral precipitation step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, sodium chloride, phytase, and combinations thereof.
  • the pH of step 3 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • the pH hold times can vary between about 0 minutes to about 60 minutes, or between about 5 minutes and about 20 minutes, or about 10 minutes.
  • the product of stream 3 is a suspension of purified pre-treated soy whey and precipitated minerals.
  • Step 4 the mineral removal step can start with the suspension of purified pre-treated whey and precipitated minerals from stream 3. It includes a centrifugation step. Process variables and alternatives in this step include but are not limited to, centrifugation, filtration, dead-end filtration, crossflow membrane filtration and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof. Products from the mineral removal step include but are not limited to a de-mineralized pre- treated whey in stream 4a and insoluble minerals with some protein mineral complexes in stream 4b.
  • Step 2 a water and mineral removal can start with the purified pre-treated soy whey from stream 4a. It includes a nanofiltration step for water removal and partial mineral removal. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, reverse osmosis, evaporation, nanofiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 2 can be between about 2.0 and about 12.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from this water removal step include but are not limited to purified pre-treated soy whey in stream 2a and water, some minerals, monovalent cations and combinations thereof in stream 2b.
  • Step 5 the protein separation and concentration step can start with the whey from stream 2a. It includes an ultrafiltration step. Processing aids that can be used in the ultrafiltration step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, and combinations thereof. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, ultrafiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 5 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 5a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins and combinations thereof.
  • Products from stream 5b include but are not limited to, peptides, soy oligosaccharides, minerals and combinations thereof.
  • Step 6 the protein washing and purification step can start with soy whey protein, BBI, KTI, storage proteins, other proteins or purified pre-treated whey from stream 5a. It includes a diafiltration step.
  • Process variables and alternatives in this step include but are not limited to, reslurrying, crossflow membrane filtration, ultrafiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • Processing aids that can be used in the protein washing and purification step include but are not limited to, water, steam, and combinations thereof.
  • the pH of step 6 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 6a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins, and combinations thereof.
  • Products from stream 6b include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Step 15 a water removal step can start with soy whey protein, BBI, KTI and, other proteins from stream 6a. It includes an evaporation step. Process variables and alternatives in this step include but are not limited to, evaporation, nanofiltration, reverse osmosis, and combinations thereof. Products from stream 15a include but are not limited to, water. Stream 15b products include but are not limited to soy whey protein, BBI, KTI and, other proteins.
  • Step 16 a heat treatment and flash cooling step can start with soy whey protein, BBI, KTI and, other proteins from stream 15b. It includes an ultra high temperature step. Process variables and alternatives in this step include but are not limited to, heat sterilization, evaporation, and combinations thereof. Processing aids that can be used in this heat treatment and flash cooling step include but are not limited to, water, steam, and combinations thereof.
  • the temperature of the heating step can be between about 129°C and about 160°C, or about 152°C. Temperature hold time can be between about 8 seconds and about 15 seconds, or about 9 seconds.
  • the temperature can be between about 50 °C and about 95 °C, or about 82°C.
  • Products from stream 16 include but are not limited to, soy whey protein.
  • Step 17 a drying step can start with soy whey protein , BBI, KTI and, other proteins from stream 16. It includes a drying step.
  • the liquid feed temperature can be between about 50 °C and about 95 °C, or about 82 °C.
  • the inlet temperature can be between about 175°C and about 370 °C, or about 290 °C.
  • the exhaust temperature can be between about 65 °C and about 98 °C, or about 88 °C.
  • Products from stream 17a include but are not limited to, water.
  • Products from stream 17b include but are not limited to, soy whey protein which includes, BBI, KTI and, other proteins.
  • Embodiment 17 starts with Step 0 (See FIG. 4A) the whey protein pretreatment can start with feed streams including but not limited to isolated soy protein (ISP) molasses, ISP whey, soy protein concentrate (SPC) molasses, SPC whey, functional soy protein concentrate (FSPC) whey, and combinations thereof.
  • Processing aids that can be used in the whey protein pretreatment step include but are not limited to, acids, bases, sodium hydroxide, calcium hydroxide, hydrochloric acid, water, steam, and combinations thereof.
  • the pH of step 0 after the pH is adjusted can be between about 3.0 and about 6.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • Products from the whey protein pretreatment include but are not limited to soluble components in the aqueous phase of the whey stream (pre-treated soy whey) (molecular weight of equal to or less than about 50 kiloDalton (kDa)) in stream 0a and insoluble large molecular weight proteins (between about 300kDa and between about 50kDa) in stream 0b, such as pre-treated soy whey, storage proteins, and combinations thereof.
  • pre-treated soy whey molecular weight of equal to or less than about 50 kiloDalton (kDa)
  • insoluble large molecular weight proteins between about 300kDa and between about 50kDa
  • Step 1 Microbiology reduction can start with the product of the whey protein pretreatment step, including but not limited to pre- treated soy whey.
  • This step involves microfiltration of the pre-treated soy whey.
  • Process variables and alternatives in this step include but are not limited to, centrifugation, dead-end filtration, heat sterilization, ultraviolet sterilization, microfiltration, crossflow membrane filtration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 1 can be between about 2.0 and about 12.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from step 1 include but are not limited to storage proteins, microorganisms, silicon, and combinations thereof in stream 1 a and purified pre- treated soy whey in stream 1 b.
  • Step 3 the mineral precipitation step can start with pretreated soy whey from stream 1 b. It includes a precipitation step by pH and/or temperature change. Process variables and alternatives in this step include but are not limited to, an agitated or recirculating reaction tank. Processing aids that can be used in the mineral precipitation step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, sodium chloride, phytase, and combinations thereof.
  • the pH of step 3 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • the pH hold times can vary between about 0 minutes to about 60 minutes, or between about 5 minutes and about 20 minutes, or about 10 minutes.
  • the product of stream 3 is a suspension of purified pre-treated soy whey and precipitated minerals.
  • Step 4 the mineral removal step can start with the suspension of purified pre-treated whey and precipitated minerals from stream 3. It includes a centrifugation step. Process variables and alternatives in this step include but are not limited to, centrifugation, filtration, dead-end filtration, crossflow membrane filtration and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof. Products from the mineral removal step include but are not limited to a de-mineralized pre- treated whey in stream 4a and insoluble minerals with some protein mineral complexes in stream 4b.
  • Step 2 (See FIG. 4A) -
  • a water and mineral removal can start with the purified pre-treated soy whey from stream 4a. It includes a nanofiltration step for water removal and partial mineral removal. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, reverse osmosis, evaporation, nanofiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 2 can be between about 2.0 and about 12.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from this water removal step include but are not limited to purified pre-treated soy whey in stream 2a and water, some minerals, monovalent cations and combinations thereof in stream 2b.
  • Step 5 the protein separation and concentration step can start with the whey from stream 2a. It includes an ultrafiltration step. Processing aids that can be used in the ultrafiltration step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, and combinations thereof. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, ultrafiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 5 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 5a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins and combinations thereof.
  • Products from stream 5b include but are not limited to, peptides, soy oligosaccharides, minerals and combinations thereof.
  • Step 6 the protein washing and purification step can start with soy whey protein, BBI, KTI, storage proteins, other proteins or purified pre-treated whey from stream 5a. It includes a diafiltration step.
  • Process variables and alternatives in this step include but are not limited to, reslurrying, crossflow membrane filtration, ultrafiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • Processing aids that can be used in the protein washing and purification step include but are not limited to, water, steam, and combinations thereof.
  • the pH of step 6 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 6a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins, and combinations thereof.
  • Products from stream 6b include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Step 15 a water removal step can start with soy whey protein, BBI, KTI and, other proteins from stream 6a. It includes an evaporation step. Process variables and alternatives in this step include but are not limited to, evaporation, nanofiltration, reverse osmosis, and combinations thereof. Products from stream 15a include but are not limited to, water. Stream 15b products include but are not limited to soy whey protein, BBI, KTI and, other proteins.
  • Step 16 a heat treatment and flash cooling step can start with soy whey protein, BBI, KTI and, other proteins from stream 15b. It includes an ultra high temperature step. Process variables and alternatives in this step include but are not limited to, heat sterilization, evaporation, and combinations thereof. Processing aids that can be used in this heat treatment and flash cooling step include but are not limited to, water, steam, and combinations thereof.
  • the temperature of the heating step can be between about 129°C and about 160°C, or about 152°C. Temperature hold time can be between about 8 seconds and about 15 seconds, or about 9 seconds.
  • the temperature can be between about 50 °C and about 95 °C, or about 82°C.
  • Products from stream 16 include but are not limited to, soy whey protein.
  • Step 17 a drying step can start with soy whey protein, BBI, KTI and, other proteins from stream 16. It includes a drying step.
  • the liquid feed temperature can be between about 50 °C and about 95 °C, or about 82 °C.
  • the inlet temperature can be between about 175°C and about 370 °C, or about 290 °C.
  • the exhaust temperature can be between about 65 °C and about 98 °C, or about 88 °C.
  • Products from stream 17a include but are not limited to, water.
  • Products from stream 17b include but are not limited to, soy whey protein which includes, BBI, KTI and, other proteins.
  • Embodiment 18 starts with Step 0 (See FIG. 4A) the whey protein pretreatment can start with feed streams including but not limited to isolated soy protein (ISP) molasses, ISP whey, soy protein concentrate (SPC) molasses, SPC whey, functional soy protein concentrate (FSPC) whey, and combinations thereof.
  • Processing aids that can be used in the whey protein pretreatment step include but are not limited to, acids, bases, sodium hydroxide, calcium hydroxide, hydrochloric acid, water, steam, and combinations thereof.
  • the pH of step 0 after the pH is adjusted can be between about 3.0 and about 6.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 70 °C and about 95 °C, or about 85 °C. Temperature hold times can vary between about 0 minutes to about 20 minutes, or about 10 minutes. After the hold time, the stream is passed through a centrifugal separation step, typically an intermittent discharge disc clarifying centrifuge, in order to separate the precipitate from the whey stream.
  • a centrifugal separation step typically an intermittent discharge disc clarifying centrifuge
  • Products from the whey protein pretreatment include but are not limited to soluble components in the aqueous phase of the whey stream (pre-treated soy whey) (molecular weight of equal to or less than about 50 kiloDalton (kDa)) in stream 0a and insoluble large molecular weight proteins (between about 300kDa and between about 50kDa) in stream 0b, such as pre-treated soy whey, storage proteins, and combinations thereof.
  • pre-treated soy whey molecular weight of equal to or less than about 50 kiloDalton (kDa)
  • insoluble large molecular weight proteins between about 300kDa and between about 50kDa
  • Step 1 Microbiology reduction can start with the product of the whey protein pretreatment step, including but not limited to pre- treated soy whey.
  • This step involves microfiltration of the pre-treated soy whey.
  • Process variables and alternatives in this step include but are not limited to, centrifugation, dead-end filtration, heat sterilization, ultraviolet sterilization, microfiltration, crossflow membrane filtration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 1 can be between about 2.0 and about 12.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from step 1 include but are not limited to storage proteins, microorganisms, silicon, and combinations thereof in stream 1 a and purified pre- treated soy whey in stream 1 b.
  • Step 2 a water and mineral removal can start with the purified pre-treated soy whey from stream 1 b. It includes a nanofiltration step for water removal and partial mineral removal. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, reverse osmosis, evaporation, nanofiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 2 can be between about 2.0 and about 12.0, or between about 3.5 and about 5.5, or about 5.3.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C or about 50 °C.
  • Products from this water removal step include but are not limited to purified pre-treated soy whey in stream 2a and water, some minerals, monovalent cations and combinations thereof in stream 2b.
  • Step 3 the mineral precipitation step can start with purified pre-treated soy whey from stream 2a. It includes a precipitation step by pH and/or temperature change. Process variables and alternatives in this step include but are not limited to, an agitated or recirculating reaction tank. Processing aids that can be used in the mineral precipitation step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, sodium chloride, phytase, and combinations thereof.
  • the pH of step 3 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • the pH hold times can vary between about 0 minutes to about 60 minutes, or between about 5 minutes and about 20 minutes, or about 10 minutes.
  • the product of stream 3 is a suspension of purified pre-treated soy whey and precipitated minerals.
  • Step 4 See FIG. 4A - the mineral removal step can start with the suspension of purified pre-treated whey and precipitated minerals from stream 3. It includes a centrifugation step. Process variables and alternatives in this step include but are not limited to, centrifugation, filtration, dead-end filtration, crossflow membrane filtration and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • Products from the mineral removal step include but are not limited to a de-mineralized pre- treated whey in stream 4a and insoluble minerals with some protein mineral complexes in stream 4b.
  • Step 5 the protein separation and concentration step can start with purified pre-treated whey from stream 4a. It includes an ultrafiltration step. Processing aids that can be used in the ultrafiltration step include but are not limited to, acids, bases, calcium hydroxide, sodium hydroxide, hydrochloric acid, and combinations thereof. Process variables and alternatives in this step include but are not limited to, crossflow membrane filtration, ultrafiltration, and combinations thereof. Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • the pH of step 5 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 8.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 5a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins and combinations thereof.
  • Products from stream 5b include but are not limited to, peptides, soy oligosaccharides, minerals and combinations thereof.
  • Step 6 the protein washing and purification step can start with soy whey protein, BBI, KTI, storage proteins, other proteins or purified pre-treated whey from stream 5a. It includes a diafiltration step.
  • Process variables and alternatives in this step include but are not limited to, reslurrying, crossflow membrane filtration, ultrafiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • Crossflow membrane filtration includes but is not limited to: spiral-wound, plate and frame, hollow fiber, ceramic, dynamic or rotating disk, nanofiber, and combinations thereof.
  • Processing aids that can be used in the protein washing and purification step include but are not limited to, water, steam, and combinations thereof.
  • the pH of step 6 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 6a include but are not limited to, soy whey protein, BBI, KTI, storage proteins, other proteins, and combinations thereof.
  • Products from stream 6b include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Step 15 a water removal step can start with soy whey protein, BBI, KTI and, other proteins from stream 6a. It includes an evaporation step. Process variables and alternatives in this step include but are not limited to, evaporation, nanofiltration, reverse osmosis, and combinations thereof. Products from stream 15a include but are not limited to, water. Stream 15b products include but are not limited to soy whey protein, BBI, KTI and, other proteins.
  • Step 16 a heat treatment and flash cooling step can start with soy whey protein, BBI, KTI and, other proteins from stream 15b. It includes an ultra high temperature step. Process variables and alternatives in this step include but are not limited to, heat sterilization, evaporation, and combinations thereof. Processing aids that can be used in this heat treatment and flash cooling step include but are not limited to, water, steam, and combinations thereof.
  • the temperature of the heating step can be between about 129°C and about 160°C, or about 152°C. Temperature hold time can be between about 8 seconds and about 15 seconds, or about 9 seconds.
  • the temperature can be between about 50 °C and about 95 °C, or about 82°C.
  • Products from stream 16 include but are not limited to, soy whey protein.
  • Step 17 a drying step can start with soy whey protein, BBI, KTI and, other proteins from stream 16. It includes a drying step.
  • the liquid feed temperature can be between about 50 °C and about 95 °C, or about 82 °C.
  • the inlet temperature can be between about 175°C and about 370 °C, or about 290 °C.
  • the exhaust temperature can be between about 65 °C and about 98 °C, or about 88 °C.
  • Products from stream 17a include but are not limited to, water.
  • Products from stream 17b include but are not limited to, soy whey protein which includes, BBI, KTI and, other proteins.
  • Embodiment 19 encompasses Step 7 (See FIG. 4C) a water removal step can start with peptides, soy oligosaccharides, water, minerals, and combinations thereof from stream 5b and/or stream 6b.
  • Soy oligosaccharides include but are not limited to sucrose, raffinose, stachyose, verbascose, monosaccharides, and combinations thereof.
  • It includes a nanofiltration step. Process variables and alternatives in this step include but are not limited to, reverse osmosis, evaporation, nanofiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • the pH of step 7 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 7a include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Products from stream 7b include but are not limited to, water, minerals, and combinations thereof.
  • Embodiment 20 starts with Step 7 (See FIG. 4C) a water removal step can start with peptides, soy oligosaccharides, water, minerals, and combinations thereof from stream 5b and/or stream 6b.
  • Soy oligosaccharides include but are not limited to sucrose, raffinose, stachyose, verbascose, monosaccharides, and combinations thereof.
  • It includes a nanofiltration step. Process variables and alternatives in this step include but are not limited to, reverse osmosis, evaporation, nanofiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • the pH of step 7 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 7a include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Products from stream 7b include but are not limited to, water, minerals, and combinations thereof.
  • Step 1 1 a water removal step can start with soy oligosaccharides such as, raffinose, stachyose, verbascose, and combinations thereof from stream 7a. It includes an evaporation step. Process variables and alternatives in this step include but are not limited to, evaporation, reverse osmosis, nanofiltration, and combinations thereof. Processing aids that can be used in this water removal step include but are not limited to, defoamer, steam, vacuum, and combinations thereof. The temperature can be between about 5°C and about 90 °C, or about 60 °C. Products from stream 1 1 a include but are not limited to, water. Products from stream 1 1 b include but are not limited to, soy oligosaccharides.
  • soy oligosaccharides such as, raffinose, stachyose, verbascose, and combinations thereof from stream 7a. It includes an evaporation step. Process variables and alternatives in this step include but are not limited to, e
  • Embodiment 21 starts with Step 7 (See FIG. 4C) a water removal step can start with peptides, soy oligosaccharides, water, minerals, and combinations thereof from stream 5b and/or stream 6b.
  • Soy oligosaccharides include but are not limited to sucrose, raffinose, stachyose, verbascose, monosaccharides, and combinations thereof.
  • It includes a nanofiltration step. Process variables and alternatives in this step include but are not limited to, reverse osmosis, evaporation, nanofiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • the pH of step 7 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 7a include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Products from stream 7b include but are not limited to, water, minerals, and combinations thereof.
  • Step 8 a mineral removal step can start with peptides, soy oligosaccharides, water, minerals, and combinations thereof from stream 7a. It includes an electrodialysis membrane step. Process variables and alternatives in this step include but are not limited to, ion exchange columns, chromatography, and combinations thereof. Processing aids that can be used in this mineral removal step include but are not limited to, water, enzymes, and combinations thereof. Enzymes include but are not limited to protease, phytase, and combinations thereof.
  • the pH of step 8 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 50 °C, or about 40 °C.
  • Products from stream 8a include but are not limited to, de- mineralized soy oligosaccharides with conductivity between about 10 milli Siemens/centimeter (mS/cm) and about 0.5mS/cm, or about 2mS/cm.
  • Products from stream 8b include but are not limited to, minerals, water, and combinations thereof.
  • Embodiment 22 starts with Step 7 (See FIG. 4C) a water removal step can start with peptides, soy oligosaccharides, water, minerals, and combinations thereof from stream 5b and/or stream 6b.
  • Soy oligosaccharides include but are not limited to sucrose, raffinose, stachyose, verbascose, monosaccharides, and combinations thereof.
  • It includes a nanofiltration step. Process variables and alternatives in this step include but are not limited to, reverse osmosis, evaporation, nanofiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • the pH of step 7 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 7a include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Products from stream 7b include but are not limited to, water, minerals, and combinations thereof.
  • Step 8 a mineral removal step can start with peptides, soy oligosaccharides, water, minerals, and combinations thereof from stream 7a. It includes an electrodialysis membrane step. Process variables and alternatives in this step include but are not limited to, ion exchange columns, chromatography, and combinations thereof. Processing aids that can be used in this mineral removal step include but are not limited to, water, enzymes, and combinations thereof. Enzymes include but are not limited to protease, phytase, and combinations thereof.
  • the pH of step 8 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 50 °C, or about 40 °C.
  • Products from stream 8a include but are not limited to, de- mineralized soy oligosaccharides with conductivity between about 10 milli Siemens/centimeter (mS/cm) and about 0.5mS/cm, or about 2mS/cm.
  • Products from stream 8b include but are not limited to, minerals, water, and combinations thereof.
  • Step 1 1 a water removal step can start with soy oligosaccharides such as, raffinose, stachyose, verbascose, and combinations thereof from stream 8a. It includes an evaporation step. Process variables and alternatives in this step include but are not limited to, evaporation, reverse osmosis, nanofiltration, and combinations thereof. Processing aids that can be used in this water removal step include but are not limited to, defoamer, steam, vacuum, and combinations thereof. The temperature can be between about 5°C and about 90 °C, or about 60 °C. Products from stream 1 1 a include but are not limited to, water. Products from stream 1 1 b include but are not limited to, soy oligosaccharides.
  • soy oligosaccharides such as, raffinose, stachyose, verbascose, and combinations thereof from stream 8a. It includes an evaporation step. Process variables and alternatives in this step include but are not limited to, e
  • Embodiment 23 starts with Step 7 (See FIG. 4C) a water removal step can start with peptides, soy oligosaccharides, water, minerals, and combinations thereof from stream 5b and/or stream 6b.
  • Soy oligosaccharides include but are not limited to sucrose, raffinose, stachyose, verbascose, monosaccharides, and combinations thereof.
  • It includes a nanofiltration step. Process variables and alternatives in this step include but are not limited to, reverse osmosis, evaporation, nanofiltration, water diafiltration, buffer diafiltration, and combinations thereof.
  • the pH of step 7 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 75 °C, or about 50 °C.
  • Products from stream 7a include but are not limited to, peptides, soy oligosaccharides, water, minerals, and combinations thereof.
  • Products from stream 7b include but are not limited to, water, minerals, and combinations thereof.
  • Step 8 a mineral removal step can start with peptides, soy oligosaccharides, water, minerals, and combinations thereof from stream 7a. It includes an electrodialysis membrane step. Process variables and alternatives in this step include but are not limited to, ion exchange columns, chromatography, and combinations thereof. Processing aids that can be used in this mineral removal step include but are not limited to, water, enzymes, and combinations thereof. Enzymes include but are not limited to protease, phytase, and combinations thereof.
  • the pH of step 8 can be between about 2.0 and about 12.0, or between about 6.0 and about 9.0, or about 7.0.
  • the temperature can be between about 5°C and about 90 °C, or between about 25 °C and about 50 °C, or about 40 °C.
  • Products from stream 8a include but are not limited to, de- mineralized soy oligosaccharides with conductivity between about 10 milli Siemens/centimeter (mS/cm) and about 0.5mS/cm, or about 2mS/cm.
  • Products from stream 8b include but are not limited to, minerals, water, and combinations thereof.
  • Step 9 a color removal step can start with de- mineralized soy oligosaccharides from stream 8a. It utilizes an active carbon bed. Process variables and alternatives in this step include but are not limited to, ion exchange. Processing aids that can be used in this color removal step include but are not limited to, active carbon, ion exchange resins, and combinations thereof. The temperature can be between about 5°C and about 90 °C, or about 40 °C. Products from stream 9a include but are not limited to, color compounds. Stream 9b is a decolored solution. Products from stream 9b include but are not limited to, soy oligosaccharides, and combinations thereof.
  • Step 10 a soy oligosaccharide fractionation step can start with soy oligosaccharides, and combinations thereof from stream 9b. It includes a chromatography step. Process variables and alternatives in this step include but are not limited to, chromatography, nanofiltration, and combinations thereof. Processing aids that can be used in this soy oligosaccharide fractionation step include but are not limited to acid or base to adjust the pH as one skilled in the art would know, based on the resin used. Products from stream 10a include but are not limited to, soy oligosaccharides. Products from stream 10b include but are not limited to soy oligosaccharides.
  • Step 1 1 a water removal step can start with soy oligosaccharides such as, raffinose, stachyose, verbascose, and combinations thereof from stream 10a. It includes an evaporation step. Process variables and alternatives in this step include but are not limited to, evaporation, reverse osmosis, nanofiltration, and combinations thereof. Processing aids that can be used in this water removal step include but are not limited to, defoamer, steam, vacuum, and combinations thereof. The temperature can be between about 5°C and about 90 °C, or about 60 °C. Products from stream 1 1 a include but are not limited to, water. Products from stream 1 1 b include but are not limited to, soy oligosaccharides.
  • soy oligosaccharides such as, raffinose, stachyose, verbascose, and combinations thereof from stream 10a. It includes an evaporation step. Process variables and alternatives in this step include but are not limited to, e
  • Isolated soy proteins are larger molecules and typically have a decreasing viscosity with increasing shear, which indicates a shear-thinning flow behavior. Due to molecular weight, isolated soy protein usually has a high viscosity. Due to soy whey protein's smaller molecular weight, the viscosity of soy whey protein is lower than the viscosity of isolated soy protein. Further, the viscosity of soy whey protein tends to remain stable even when applied shear is changed. Thus, soy whey protein exhibits a more stable flow compared to isolated soy protein.
  • soy whey protein This is a clear benefit when manufacturing adhesives, water-based paints, inks, films, and paper coatings.
  • Molecular weight measurements are based on SDS_PAGE data.
  • the lower molecular weight of soy whey protein allows soy whey protein to be added to industrial products such as adhesives, water-based paints, inks, films, and paper coatings without increasing the viscosity of the finished product. This increased viscosity control is important in paper coating, paint, and ink applications.
  • Soy whey protein is soluble over a wide pH range. Thus, an addition of a base to solubilize the soy whey protein is not required. Adhesives, paper coatings, paints, inks, and personal care products may be prepared without having to add an alkali. This is an advantage over current products.
  • the personal care compositions of the present invention include any composition that may be applied to the skin, hair, lips, or nails to provide a cosmetic or beneficial effect.
  • These personal care compositions include, but are not limited to, skin care, skin cleansing, make-up, facial lotions; creme moisturizers; body washes; body lotions; foot and hand cremes; lipsticks; eye shadow; foundations; facial powders; deodorants; shaving creme compositions, including gel types; nail polish; shaving lotions; creme and lotion depilatories; facial masks made with clay materials; and anti-aging products; and hair care compositions such as shampoos, hair conditioners, hair treatment creams, styling gels and foams, hair mousses, hair sprays, set lotions, blow-styling lotions, hair color lotions, hair relaxing compositions, permanent wave first agents and permanent wave second agents.
  • a soy whey protein of the present invention for use in personal care compositions is unhydrolyzed.
  • a soy whey protein of the present invention for use in personal care compositions is hydrolyzed (see, for example, U.S. Pre-Grant Patent Application Publication No. 20070041925).
  • a soy whey protein of the present invention for use in personal care compositions is partially hydrolyzed. Partial hydrolysis of proteins is well known in the art (see, for example, U.S. Patent No.
  • acid soluble refers to a substance having a solubility of at least about 80% with a concentration of 10 grams per liter (g/L) in an aqueous medium having a pH of from about 2 to about 7.
  • SPI sey protein isolate
  • ISP isolated soy protein
  • sugar oligosaccharide is defined as including but not limited to sugar.
  • Sugar is defined as including but not limited to sucrose, raffinose, stachyose, verbascose, monosaccharides, and combinations thereof.
  • soy whey protein as used herein is defined as including protein soluble at those pHs where soy storage proteins are typically insoluble, including but not limited to BBI, KTI, lunasin, lipoxygenase, dehydrins, lectins, peptides, and combinations thereof. Soy whey protein may further include storage proteins.
  • subject refers to a mammal (preferably a human), bird, fish, reptile, or amphibian, in need of treatment for a pathological state, which pathological state includes, but is not limited to, diseases associated with muscle, uncontrolled cell growth, autoimmune diseases, and cancer.
  • processing stream refers to the secondary or incidental product derived from the process of refining a whole legume or oilseed, including an aqueous or solvent stream, which includes, for example, an aqueous soy extract stream, an aqueous soymilk extract stream, an aqueous soy whey stream, an aqueous soy molasses stream, an aqueous soy protein concentrate soy molasses stream, an aqueous soy permeate stream, and an aqueous tofu whey stream, and additionally includes soy whey protein, for example, in both liquid and dry powder form, that can be recovered as an intermediate product in accordance with the methods disclosed herein.
  • aqueous or solvent stream which includes, for example, an aqueous soy extract stream, an aqueous soymilk extract stream, an aqueous soy whey stream, an aqueous soy molasses stream, an aqueous soy protein concentrate soy molasses stream, an aque
  • aqueous raw soy whey (not pre-treated) with a total solids content of 3.7% and dry basis protein content of 19.8% was microfiltered using two different membranes in an OPTISEP® 7000 module, manufactured by SmartFlow Technologies.
  • the first membrane, BTS-25 was a polysulfone construction with 0.5um pore size manufactured by Pall.
  • Aqueous soy whey was concentrated to a 1 .6x factor, at an average flux of 30 liters/meter 2 /hr (LMH).
  • the concentrated aqueous soy whey was then passed through a modified polysulfone microfiltration membrane, MPS 0.45, manufactured by Pall.
  • the aqueous soy whey was concentrated from 1 .6x to 1 1 x at an average flux of 28 LMH.
  • Permeate from the microfiltration process 132 liters total, was then introduced into an OPTISEP® 7000 module with ultrafiltration membranes, RC100, which are 100kDa regenerated cellulose membranes manufactured by Microdyn-Nadir.
  • the microfiltered aqueous soy whey was concentrated to about 20x using a 20L tank setup at an average flux of 30LMH before being transferred to a 5L tank setup in order to minimize the hold-up volume of the system.
  • the aqueous soy whey was concentrated from 20x to 66x at an average flux rate of 9LMH, reaching a final retentate volume of 2 liters.
  • the final retentate was 24.0% total solids, and 83.0% dry basis protein content.
  • the permeate of the NF20 process was then introduced into an OPTISEP® 3000 module with thin film reverse osmosis membranes with a 98.2% NaCI rejection rate, SG, manufactured by GE.
  • the feed was concentrated 12x at an average flux rate of 8LMH.
  • the permeate of the SG membrane 9.2 liters, consisted primarily of water, suitable for re-use in a process with minimal further treatment.
  • the retentate of the SG process 0.8 liters, consisted predominantly of a concentrated mineral fraction.
  • 61 .7 liters of soy molasses with a total solids content of 62.7% and dry basis protein content of 18.5% was diluted with 61 .7 liters of water prior to microfiltration.
  • the diluted soy molasses was then microfiltered using an OPTISEP® 7000 module, manufactured by SmartFlow Technologies.
  • the diluted soy molasses passed through a modified polysulfone microfiltration membrane, MPS 0.45, manufactured by Pall.
  • the diluted soy molasses was concentrated to a 1 .3x factor, at an average flux of 6 liters/meter 2 /hr (LMH).
  • the feed was concentrated 6.7x at an average flux rate of 7.9LMH.
  • DSF Defatted soy flour
  • MMM-0.8 The microfiltration membrane, MMM-0.8, was a polysulfone and polyvinylpropylene construction with 0.8um pore size manufactured by Pall.
  • Ox factor at an average flux of 29 liters/meter 2 /hr (LMH).
  • Permeate from the microfiltration process was then introduced into an OPTISEP® 800 module with ultrafiltration membranes, RC100, which are 100kDa regenerated cellulose membranes manufactured by Microdyn- Nadir.
  • the microfiltered aqueous soy extract was concentrated to about 6.3x at an average flux rate of 50LMH.
  • the final retentate measured 84.7% dry basis protein content.
  • Example 4 Capture of Bulk Soy Whey Protein using Ion Exchange Chromatography (to establish conditions for use in Continuous Separation Technology CSEP (simulated moving bed chromatography))
  • CSEP experiments were performed by passing feed material (soy whey) through a column (ID 1 .55cm, length 9.5 cm, volume 18 ml_) packed with SP GibcoCel resin.
  • feed material sodium whey
  • the column was connected to a positive displacement pump and samples of flow through and eluates were collected at the outlet of the column.
  • Different experimental conditions were used to determine the effect of feed concentration, feed flow rate and elution flow rate on the binding capacity of the resin.
  • Soy whey was prepared from the defatted soy flake. Briefly, one part of defatted flake was mixed with 15 parts of water at 32 °C. The pH of the solution was adjusted to 7.0 using 2 M NaOH and proteins were extracted into the aqueous phase by stirring the solution for 15 min. The protein extract was separated from the insoluble material by centrifugation at 3000xg for 10 min. The pH of the collected supernatant was adjusted to 4.5 using 1 M HCI and the solution was stirred for 15 min followed by heating to a temperature of 57°C. This treatment resulted in precipitation of the storage proteins while the whey proteins remained soluble. The precipitated proteins were separated from the whey by centrifugation at 3000xg for 10 min.
  • soy whey was concentrated using a Lab-Scale Amicon DC-10LA ultrafiltration unit and Amicon 3K membrane. Prior to ultrafiltration, pH of soy whey was adjusted to 5.5 with 2 M NaOH to avoid membrane fouling at acidic conditions. 10 L of whey was processed with the flux at ⁇ 100 mL/min. Once the concentration factor of 5 in the retentate was reached, both retentate and permeate streams were collected. Soy whey concentrates 2.5X, 3X, and 4X were prepared by mixing a known amount of permeate and 5X whey concentrate. The pH of all soy concentrates was readjusted if necessary to 4.5.
  • the proteins are adsorbed by the resin and reach equilibrium with the liquid phase.
  • the bound protein band extends down the column and reaches equilibrium with the liquid phase.
  • the curve describing the change in the flow through concentration compared to the feed concentration with the passage of fluid is the breakthrough curve.
  • the concentration of protein in the solid phase increases as the breakthrough curve is developed, and the adsorption wave moves through the bed. As more fluid is passed through the bed, the flow through concentration increases asymptotically to the incoming fluid stream and at the same time a similar phenomena is achieved with the solid phase.
  • Protein adsorption was calculated as the difference in the protein content in the feed and flow through by mass balance.
  • Example 5 Capture of Bulk Soy Whey Protein from a pre-treated whey process (PT)
  • the feed stream to the process, pre-treated whey protein, (also referred to PT whey) had approximately 1 .4% - 2.0% solids. It was comprised of approximately 18% minerals, 18% protein, and 74% sugars and other materials.
  • NF Nanofiltration
  • the NF membranes (Alfa Laval NF99 8038/48) for the trial were polyamide type thin film composite on polyester membranes with a 2kDa molecular weight cutoff (MWCO) that allowed water, monovalent cations, and a very small amount of sugars and protein to pass through the pores.
  • the membrane housing held 3 membrane elements.
  • Each element was 8 inches in diameter and had 26.4 square meters of membrane surface area. The total membrane surface area for the process was 79.2 square meters. These membranes were stable up to 1 bar of pressure drop across each membrane element. For the entire module containing 3 membrane elements, a pressure drop of 3 bar was the maximum allowable.
  • the NF feed rate of PT whey was approximately 2,500 L / hour. The temperature of this feed was approximately 45-50 °C, and the temperature of the NF operation was regulated to be in this range using cooling water.
  • Initial product flux rates were approximately 16-22 liters per meter squared per hour (LMH).
  • the feed pressure at the inlet of the module was approximately 6 bar. Through the duration of the 6 hour run, the flux dropped as a result of fouling. The feed pressure was increased incrementally to maintain higher flux, but as fouling occurred, the pressure was increased to the maximum, and the flux slowly tapered from that point. Volumetric concentration factors were between 2X and approximately 4X.
  • a Precipitation step was performed to separate, e.g., phosphorous and calcium salts and complexes from the PT whey. Precipitation conditions were at pH 9 while maintaining the temperature at 45 °C with a residence time of approximately 15 minutes. The precipitation process occurred in a 1000 liter. This tank had multiple inlets and outlets where materials can be piped into and out of it. A small centrifugal pump circulated product out of the tank and back into the side of the tank to promote agitation and effective mixing of the 35% NaOH added to the system to maintain the target pH. This pump also sent product into the centrifuge when one of the T-valves connected to this recirculation loop was opened.
  • Precipitation conditions were at pH 9 while maintaining the temperature at 45 °C with a residence time of approximately 15 minutes.
  • the precipitation process occurred in a 1000 liter. This tank had multiple inlets and outlets where materials can be piped into and out of it.
  • a small centrifugal pump circulated product out of the tank and back into
  • Concentrated PT whey from the NF was fed directly into the top of the tank. 35% NaOH was connected into the feed line from the NF in order to control the pH at the target value. PT whey was fed into this mixing tank at approximately 2,500L / hour and fed out at the same rate.
  • an Alfa Laval Disc Centrifuge (Clara 80) with intermittent solids ejection system was used to separate precipitated solids (including insoluble soy fiber, insoluble soy protein) from the rest of the sugar- and protein-containing whey stream.
  • concentrated PT whey from the precipitation tank was pumped into a disc-centrifuge where this suspension was rotated and accelerated by centrifugal force.
  • the continuous feed flow rate was approximately 2.5 m3/hr, with a pH of 9.0 and 45 °C.
  • the next step was an Ultrafiltration (UF) membrane. Protein was concentrated by being retained by a membrane while other smaller solutes pass into the permeated stream. From the centrifuge a diluted stream the containing protein, minerals and sugars was fed to the UF.
  • the UF equipment and the membrane were supplied from Alfa Laval while the CI P chemicals came from Ecolab, Inc.
  • the tested membrane, GR70PP/80 from Alfa-Laval had a MWCO of 10kDa and was constructed of polyethersulfone (PES) cast onto a polypropylene polymer backing.
  • the feed pressure varied throughout the trial from 1 -7 bar, depending upon the degree of fouling of the membranes.
  • the temperature was controlled to approximately 65 °C.
  • the system was a feed and bleed setup, where the retentate was recycled back to the feed tank while the permeate proceeded on to the next step in the process.
  • the system was operated until a volume concentration factor of 30x was reached.
  • the feed rate to the UF was approximately 1 ,600 L / hour.
  • the setup had the ability to house 3 tubes worth of 6.3" membrane elements. However, only one of the three tubes was used.
  • the membrane skid had an automatic control system that allowed control of the temperature, operating pressures (inlet, outlet, and differential) and volume concentration factor during process.
  • the retentate was diafiltered (DF) with one cubic meter of water, (approximately 5 parts of diafiltration water per part of concentrated retentate) to yield a high protein retentate.
  • DF diafiltered
  • the system was cleaned with a typical CIP protocol used with most protein purification processes.
  • the retentate contained about 80% dry basis protein after diafiltration.
  • the permeate of the UF/DF steps contained the sugars and was further concentrated in a Reverse Osmosis Membrane system (RO).
  • RO Reverse Osmosis Membrane system
  • the UF permeate was transferred to an RO system to concentrate the feed stream from approximately 2% total solids (TS) to 20% TS.
  • the process equipment and membranes (RO98pHt) for the RO unit operation were supplied by Alfa-Laval.
  • the feed pressure was increased in order to maintain a constant flux, up to 45 bar at a temperature of 50°C.
  • Electrodialysis Membrane Electrodialysis Membrane
  • Electrodialysis from Eurodia Industrie SA removes minerals from the sugar solution.
  • the electrodialysis process has two product streams. One is the product, or diluate, stream which was further processed to concentrate and pasteurize the SOS concentrate solution.
  • the other stream from the electrodialysis process is a brine solution which contains the minerals that were removed from the feed stream.
  • the trial achieved >80% reduction in conductivity, resulting in a product stream that measured ⁇ 3 mS/cm conductivity.
  • the batch feed volume was approx 40 liters at a temperature of 40°C and a pH of 7.
  • the ED unit operated at 18V and had up to 50 cells as a stack size.
  • the de-mineralized sugar stream from the ED was further processed in an Evaporation step.
  • the evaporation of the SOS stream was carried out on Anhydro ' s Lab E vacuum evaporator.
  • SOS product was evaporated to 40-75 % dry matter with a boiling temperature of approximately 50- 55°C and a ⁇ of 5-20°C.
  • a Spray Dryer was used to dry UF/DF retentate suspension.
  • the suspension was then fed directly to the spray dryer where it was combined with heated air under pressure and then sprayed through a nozzle.
  • the dryer removed the water from the suspension and generated a dry powder, which was collected in a bucket after it was separated from the air stream in a cyclone.
  • the feed suspension was thermally treated at 150°C for 9 seconds before it entered the spray dryer to kill the microbiological organisms.
  • the spray dryer was a Production Minor from the company Niro/GEA.
  • the dryer was set up with co-current flow and a two fluid nozzle. The drying conditions varied somewhat during the trial. Feed temperatures were about 80°C, nozzle pressure was about 4 bars, and inlet air temperatures was about 250°C.
  • Example 6 Capture of Bulk Soy Whey Protein whey pre-treatment process and cross-flow filtration membranes
  • aqueous soy whey also referred to as raw whey
  • pH was increased to 5.3 by the addition of 50% sodium hydroxide.
  • the pH- adjusted raw whey was then fed to a second reaction vessel with a 10 minute average residence time in a continuous process where the temperature was increased to 190°F by the direct injection of steam.
  • the heated and pH-adjusted raw whey was then cooled to 90 degrees F by passing through a plate and frame heat exchanger with chilled water as the cooling medium.
  • the cooled raw whey was then fed into an Alfa Laval VNPX510 clarifying centrifuge where the suspended solids, predominantly insoluble large molecular weight proteins, were separated and discharged in the underflow to waste and the clarified centrate proceeded to the next reaction vessel.
  • the pH of the clarified centrate, or pre- treated whey protein was adjusted to 8.0 using 12.5% sodium hydroxide and held for 10 minutes prior to being fed into an Alfa Laval VNPX510 clarifying centrifuge where the suspended solids, predominantly insoluble minerals, were separated and discharged in the underflow to waste.
  • the clarified centrate proceeded to a surge tank prior to ultrafiltration.
  • the material was then homogenized by pumping through a homogenizing valve at 6000 psi inlet and 2500 outlet pressure prior to entering the spray drier through a nozzle and orifice combination in order to atomize the solution.
  • the spray drier was operated at 538°F inlet temperature and 197°F outlet temperature, and consisted of a drying chamber, cyclone and baghouse. The spray dried soy whey protein, a total of 4 lbs, was collected from the cyclone bottom discharge.
  • Example 8 Capture of Bulk Soy Whey Protein from spray-dried SWP using Expanded Bed Adsorption (EBA) Chromatography
  • Spray-dried soy whey powder was slurried to a concentration of 10 mg/ml in water and adjusted to pH 4.0 with acetic acid. 400 ml of the slurry was then applied directly to the bottom of a 1 x25 cm column of Mimo-4SE resin (UpFront Chromatography, Copenhagen Denmark) that had been equilibrated in 10 mM sodium citrate, pH 4.0. Material was loaded at 20-25°C using a linear flow rate of 7.5 cm/min. Samples of the column flow-through were collected at regular intervals for later analysis. Unbound material was washed free of the column using 10 column volumes of equilibration buffer. Bound material was eluted with 30 mM NaOH.
  • Formula 2 was made using the same procedure and parameters as Formula 1 except the 88.7 g casein was replaced with a blend of 66.525 g casein and 22.175 g ISP.
  • Formula 3 was made using the same procedure and parameters as Formula 1 except the 88.7 g casein was replaced with a blend of 66.525 g casein and 22.175 g SWP.
  • the three adhesives were compared with respect to pH, solids, viscosity and finger tack (Table 5).
  • the viscosity was measured by means of a Brookfield viscometer.
  • the finger tack is a test to measure the tack of the adhesive and was performed as follows: A small amount of adhesive was placed between the thumb and the index finger. After rubbing for about 3 seconds, the index finger and the thumb were pulled apart. If a long, uninterrupted string was formed, the tack was judged good. If a short and broken string was formed, the tack was judged bad. The results indicated that while all three samples showed similar pH and solids, there were noticeable differences in flow behavior and finger tack.
  • Formula 2 that contained a blend of 75% casein and 25% soy protein isolate, had very high and instable viscosity and very short pasty finger tack.
  • Formula 3 that contained a blend of 75% casein and 25% soy whey protein, had a much more stable, almost Newtonian flow, and much better longer, stringier finger tack. The performance of Formula 3 appeared to approach those of Formula 1 which was the 100% casein formulation.
  • a flexible film containing soy whey protein can prepared as follow: Slowly add soy whey protein into water in the quantities listed in Table 6 under steady agitation using mixers known in the art such as those from Premier Mill or Glas-Col, for 30 minutes until all of the soy whey protein is uniformly dispersed to form a 10% to 20% soy whey protein solution. Glycerol in the listed amounts, is then added to the soy whey protein solution to form the final solution. This solution is dried at room temperature (25 °C) to form a film.
  • a water-based flexographic ink that contains soy whey protein can be formulated as follows:
  • a soy whey protein varnish is prepared by dispersing 30 parts of soy whey protein in 70 parts of water.
  • the ratio of soy whey protein and water can be modified depending on the target viscosity and can range from 30 parts SWP and 70 parts water to 50 parts SWP and 50 parts water.
  • the pH is adjusted to 9 by adding ammonia to ensure full solubility (Table 7).
  • a water-based interior paint that contains soy whey protein can be prepared as follows: Add the ingredients listed in Table 9 serially under agitation using mixers known in the art like those supplied by Premier Mill or Glas-Col until all ingredients are homogenously dispersed and a uniform paint is formed. The resulting paint formulation contains 51 % pigment and 7.5 % binder.
  • the level of soy whey protein in the paint formulation can range from 10 parts to
  • a paper coating formulation that contains soy whey protein can be prepared as follows (Table 10): Dissolve 0.15 parts of sodium hydroxide in 75 parts of water, disperse 100 parts of kaolin pigment into the liquid under agitation using mixers known in the art such as those supplied by Premier Mill or Glas-Col and hold the resulting pigment slurry under constant agitation for 20 minutes until the pigment becomes fully uniformly dispersed. Slowly disperse 5 parts of soy whey protein under constant mixing and keep mixing for 15 minutes until all the soy whey protein is dissolve. Add 10 parts of styrene butadiene latex and mix for 5 minutes. The resulting paper coating formulation is then ready for testing and use.
  • a shampoo comprising a soy whey protein of the present invention is prepared by adding the ingredients in Table 4 under moderate agitation until they are completely dissolved. In certain aspects, the ingredients are added in serial order.
  • a skin care emulsion containing a soy whey protein of the present invention is prepared by adding the ingredients in Table 5.
  • Ingredients for phase (A) are mixed under moderate agitation at 70 Q C until completely blended.
  • Ingredients for phase (B) are mixed at 70 Q C using 70 Q C de-ionized water. When both phases are clear they are blended together at high shear until a white composition is obtained. The composition is cooled to 35 Q C and the perfume of phase (C) is added under moderate agitation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dairy Products (AREA)
  • Peptides Or Proteins (AREA)

Abstract

L'invention concerne des produits industriels et des produits d'hygiène personnelle comprenant une protéine lactosérique de soja.
PCT/US2011/042445 2011-06-29 2011-06-29 Compositions industrielles comprenant des protéines lactosériques de soja WO2013002794A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2011/042445 WO2013002794A1 (fr) 2011-06-29 2011-06-29 Compositions industrielles comprenant des protéines lactosériques de soja

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/042445 WO2013002794A1 (fr) 2011-06-29 2011-06-29 Compositions industrielles comprenant des protéines lactosériques de soja

Publications (1)

Publication Number Publication Date
WO2013002794A1 true WO2013002794A1 (fr) 2013-01-03

Family

ID=47424448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/042445 WO2013002794A1 (fr) 2011-06-29 2011-06-29 Compositions industrielles comprenant des protéines lactosériques de soja

Country Status (1)

Country Link
WO (1) WO2013002794A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014018929A2 (fr) * 2012-07-26 2014-01-30 Solae, Llc Agent moussant pour l'utilisation dans des produits de soins personnels et des produits industriels
WO2014018923A2 (fr) * 2012-07-26 2014-01-30 Solae, Llc Agent émulsifiant pour l'utilisation dans des produits de soins personnels et des produits industriels
WO2018094357A1 (fr) * 2016-11-18 2018-05-24 Caddis Adhesives, Inc. Compositions adhésives accordables et procédés
CN111018164A (zh) * 2020-03-09 2020-04-17 烟台双塔食品股份有限公司 一种从豌豆豆清废水中提取抗菌肽及白蛋白的方法
CN114560928A (zh) * 2019-08-27 2022-05-31 合肥天汇孵化科技有限公司 一种基于大豆深加工废液以豆清水为原料粗提sbti蛋白工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2881159A (en) * 1956-04-02 1959-04-07 Glidden Co Process for isolating soya protein
US5780439A (en) * 1989-10-02 1998-07-14 Novartis Nutrition Ag Whey protein hydrolysates and mixtures thereof with casein and/or soy protein hydrolysates
US6896917B2 (en) * 2001-03-19 2005-05-24 Council Of Scientific & Industrial Research Process for preparation of protein-hydrolysate from soy flour
US7300681B2 (en) * 2000-02-21 2007-11-27 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for the production of protein preparations with essentially constant properties

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2881159A (en) * 1956-04-02 1959-04-07 Glidden Co Process for isolating soya protein
US5780439A (en) * 1989-10-02 1998-07-14 Novartis Nutrition Ag Whey protein hydrolysates and mixtures thereof with casein and/or soy protein hydrolysates
US7300681B2 (en) * 2000-02-21 2007-11-27 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for the production of protein preparations with essentially constant properties
US6896917B2 (en) * 2001-03-19 2005-05-24 Council Of Scientific & Industrial Research Process for preparation of protein-hydrolysate from soy flour

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014018929A2 (fr) * 2012-07-26 2014-01-30 Solae, Llc Agent moussant pour l'utilisation dans des produits de soins personnels et des produits industriels
WO2014018923A2 (fr) * 2012-07-26 2014-01-30 Solae, Llc Agent émulsifiant pour l'utilisation dans des produits de soins personnels et des produits industriels
WO2014018929A3 (fr) * 2012-07-26 2014-08-28 Solae, Llc Agent moussant pour l'utilisation dans des produits de soins personnels et des produits industriels
WO2014018923A3 (fr) * 2012-07-26 2014-08-28 Solae, Llc Agent émulsifiant pour l'utilisation dans des produits de soins personnels et des produits industriels
WO2018094357A1 (fr) * 2016-11-18 2018-05-24 Caddis Adhesives, Inc. Compositions adhésives accordables et procédés
CN114560928A (zh) * 2019-08-27 2022-05-31 合肥天汇孵化科技有限公司 一种基于大豆深加工废液以豆清水为原料粗提sbti蛋白工艺
CN111018164A (zh) * 2020-03-09 2020-04-17 烟台双塔食品股份有限公司 一种从豌豆豆清废水中提取抗菌肽及白蛋白的方法
CN111018164B (zh) * 2020-03-09 2020-07-31 烟台双塔食品股份有限公司 一种从豌豆豆清废水中提取抗菌肽及白蛋白的方法

Similar Documents

Publication Publication Date Title
US20120329993A1 (en) Soy whey protein compositions and methods for recovering same
US5410021A (en) Recovery of protein, protein isolate and/or starch from cereal grains
EP1450621B1 (fr) Procede continu de production d'isolat de proteines de graines oleagineuses
EP3586644B1 (fr) Production de produits de protéines de légumineuse à graines avec réduction de l'astringence
JP3756153B2 (ja) 油糧種子タンパク質単離物の製造
WO2013002794A1 (fr) Compositions industrielles comprenant des protéines lactosériques de soja
EP0517831B1 (fr) Recuperation de proteines, d'isolats de proteines et/ou d'amidon de graines de cereales
WO2006047308A2 (fr) Nouveau procede d'obtention de fractions de proteines vegetales et compositions associees
AU2019271991B2 (en) Preparation of soy protein products ("s810")
KR20100051807A (ko) 이온 교환을 포함하는 2s 카놀라 단백질의 제조방법
WO2013159192A1 (fr) Production améliorée de produits protéiques solubles à partir de légumineuses
US20150246332A1 (en) Foaming agent for use in industrial products
EP2725911A1 (fr) Compositions pour dessert contenant des protéines de lait de soja isolées à partir de flux de traitement
AU2015296764A1 (en) Preparation of pulse protein products ("YP810")
WO2014018923A2 (fr) Agent émulsifiant pour l'utilisation dans des produits de soins personnels et des produits industriels
EP2725910A1 (fr) Compositions alimentaires liquides contenant des protéines de lait de soja isolées à partir de flux de traitement
WO2013002786A1 (fr) Compositions alimentaires destinées à être cuites au four et contenant des protéines de lait de soja isolées à partir de flux de traitement
US7300681B2 (en) Method for the production of protein preparations with essentially constant properties
BR102012016983A2 (pt) Método para recuperar a proteína de soro de leite de soja e composição de proteína de soro de leite de soja
Lee Manufacturing Soy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868700

Country of ref document: EP

Kind code of ref document: A1