WO2013002534A1 - Method for molding a magnesium plate having high strength due to a local softening process using quick heating and high strength magnesium plate component molded thereby - Google Patents

Method for molding a magnesium plate having high strength due to a local softening process using quick heating and high strength magnesium plate component molded thereby Download PDF

Info

Publication number
WO2013002534A1
WO2013002534A1 PCT/KR2012/005036 KR2012005036W WO2013002534A1 WO 2013002534 A1 WO2013002534 A1 WO 2013002534A1 KR 2012005036 W KR2012005036 W KR 2012005036W WO 2013002534 A1 WO2013002534 A1 WO 2013002534A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
magnesium
magnesium plate
local softening
local
Prior art date
Application number
PCT/KR2012/005036
Other languages
French (fr)
Korean (ko)
Inventor
김수호
이영선
박찬희
Original Assignee
한국기계연구원
오창석
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원, 오창석 filed Critical 한국기계연구원
Publication of WO2013002534A1 publication Critical patent/WO2013002534A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working

Definitions

  • the present invention relates to a molding process of a high strength magnesium sheet through a local softening process and a high strength magnesium sheet molded part molded by the same.
  • An object of the present invention is to provide a molding method of a high strength magnesium sheet through a local softening process by rapid heating and a high strength magnet sheet molded part molded by the molding.
  • the local banquet step (step 1) to locally increase the elongation by rapid heat treatment only the part that needs to be molded into a high strength magnesium sheet Oi-temper; And '
  • a magnesium plate forming method through a local softening process comprising the step (step 2) of forming a locally softened magnesium plate in step 1.
  • the part which does not need to be processed or the processing amount is small and maintains high strength is not heated or only minimally heated, so the magnesium plate before molding Has the effect of maintaining the initial mechanical properties.
  • the magnesium plate before molding Has the effect of maintaining the initial mechanical properties.
  • by forming simultaneously with the local heating there is an additional effect of improving the mechanical properties of the molding part by utilizing the dynamic recrystallization phenomena generated in the high-strength magnesium plate microstructure by the action of heat and deformation.
  • the high-strength magnesium plate according to the present invention can be molded into the desired part shape because the site where the heating is not maintained maintains the mechanical properties of the raw material and the site where the heating is locally improves the formability.
  • Magnesium sheet molding parts maintain the excellent mechanical properties of the initial high strength magnesium sheet. Therefore, by applying the magnet plate molded parts according to the present invention to the transport equipment, while maintaining a high mechanical strength and exhibits the maximum weight loss effect, it is possible to save energy through the fuel economy of the transport equipment.
  • step 1 is a local softening step step of rapidly heat-treating a high-strength magnet plate, (H-temper) to a portion requiring molding processing to locally increase the calculation rate.
  • H-temper high-strength magnet plate
  • the rapid heating heat treatment of the first stage may be performed by heating using a heat source such as a high frequency wave, a laser, and a halogen lamp.
  • the heat treatment may be performed through a silver forming mold in which a heating element is inserted only in the molding part. Can be.
  • the rapid heat treatment for the local softening is preferably carried out at a temperature of 150 to 400 ° C.
  • the rapid heat treatment is performed at less than 150 ° C, there is a problem that a desired level of formability cannot be obtained.
  • the rapid heat treatment is performed at a temperature exceeding 400 ° C, moldability is increased but mechanical properties are excessively degraded. there is a problem.
  • the rapid heat treatment is performed within 1 to 120 seconds, which is suitable for the plate forming process in a continuous process (In-line). The longer the rapid heat treatment is performed, the more delayed the molding process of the magnesium plate is, and thus the productivity decreases.
  • step 2 is a step of forming the locally softened magnesium plate in step 1.
  • the molding process of step 2 is to be processed through a plastic deformation process, such as clamping, press forging, etc. according to the field and the degree of processing to apply the plate material, there is no particular limitation.
  • "Washing-forming group in step 2 may be carried out at a temperature not higher than room temperature to 400 ° C, and most preferably is carried out at room temperature.
  • the molding of step 2 is performed at a temperature in the above range, thereby maintaining the mechanical properties while simultaneously forming the magnet plate.
  • the magnesium plate formed by the present invention is characterized by excellent strength.
  • the molding process of the magnesium sheet according to the present invention may be performed simultaneously by the local softening by the rapid heat treatment of step 1 and the molding of the step 2 by a mold including a heating element, thereby continuous Productivity is improved by the process.
  • the heat source of the mold may be a high frequency, a laser, a halogen lamp, but is not particularly limited thereto.
  • the present invention provides a molded magnesium molded part through the molding process.
  • Magnesium and magnesium alloy plates having a dense hexagonal lattice (HCP) crystal structure are plate materials using conventional plastic working processes applied to carbon steel having a body centered cubic (BCC) crystal structure and aluminum alloy having a face centered cubic (FCC) crystal structure. Molding is difficult This is because of the low symmetry characteristic of the dense hexagonal crystal structure and the large anisotropy of the rolled sheet, which is caused by the preferential arrangement of the dense surface parallel to the rolling direction during the rolling process.
  • the magnesium plate molded part according to the present invention selectively improves the moldability by heating only the portion that needs to be molded, and the portion that does not need to be heated does not heat to maintain the mechanical properties of the original magnesium plate. Molding is carried out. This solves the conventional problem that the mechanical properties are deteriorated by applying high temperature heat to the whole plate to process the magnesium plate, there is an effect that can improve the formability of the magnesium plate and maintain or improve the mechanical properties. Meanwhile, the magnesium plate molded part according to the present invention may be used as a vehicle body or an electronic product case of a transportation device.
  • the magnesium plate molded part according to the present invention As a large-area part of the transport machine, it is possible to reduce the weight of the transport device, thereby improving fuel efficiency and energy saving effect.
  • electronic products such as notebooks, it is possible to obtain a lightening effect of the electronic products and to improve the strength of the electronic case can be protected from the outer layer.
  • Step 1 After processing a 1 mm thick H-Temper High Strength Magnesium Alloy (AZ31-H24) plate into 150 mm long and 15 mm wide specimens, the center of the specimen was heated to 40 ° C / sec using an electrical resistance heating method. A local softening heat treatment was performed to heat up to 150 ° C. at a heating rate and maintain the temperature for 60 seconds. At this time, the temperature was measured using a thermocouple spot-welded to the test specimen from left to right 40 mm from the center of heating.
  • Step 2 In step 1, the locally softened magnesium sheet test specimen was uniaxially stretched at a crosshead speed of 3 mm / sec to form a high strength magnesium alloy sheet.
  • a high strength magnesium alloy plate was formed in the same manner as in Example 1 except that the center of the test piece was heated to 200 ° C. in Step 1 of Example 1 to perform a local softening heat treatment.
  • the magnesium plate material uniaxially tensioned by Example 1 and Example 2 of the present invention was found to significantly improve the local elongation, that is, formability by deformation after local heating. It was confirmed that the magnet plate of Comparative Example 1, which was uniaxially stretched in a heated state, showed no increase in formability due to local heating, so that the AZ31 H-temper plate had a value in the elongation range of 15-20% which is typical. . Through this, it was confirmed that the molding process according to the present invention can improve the formability of the high strength magnesium sheet.
  • the magnesium sheet formed in Examples 1 and 2 was compared with the hardness value of the magnesium sheet (temper) which was completely annealed by the hardness of the molding portion by the combined action of the addition heat and the molding. It can be seen that it is very high. This is due to the dynamic recrystallization that occurs in the microstructure by the combined action of local heating and molding of high strength fine magnesium plate (H-teniper), and the mechanical properties of the molding site using the molding process according to the present invention are improved. It was confirmed that an additional effect of improvement could be obtained.
  • the microstructure of the high strength magnesium plate (AZ31 H-temper) subjected to local heating according to Example 1 was observed by scanning electron microscopy to analyze the microstructure, and the results are shown in FIG. 3.
  • Example 1 the "combined action of heating and molding, forming part of a high strength magnesium plate the local heating is performed by, as shown in Fig. 3 got widely up the dynamic recrystallization in grain boundaries and twin crystal interface, whereby It can be seen that the grain size is very small.
  • the grain refinement due to the same loading crystal phenomenon appears, thereby improving the moldability of the part requiring processing, and the mechanical properties of the molded part after molding are confirmed to be improved. It was.

Abstract

The present invention relates to a method for molding a magnesium plate having high strength due to a local softening process using quick heating, and to a high-strength magnesium plate molded thereby. More particularly, the present invention relates to the method for molding the magnesium plate through the local softening process, the method comprising: a local softening step (step 1) of performing a heat treatment on only a portion which requires molding within a high-strength magnesium plate so as to locally improve elongation; and a molding step (step 2) of molding the magnesium plate which is locally softened in step 1. The present invention also relates to the magnesium plate molded using the molding method. According to the present invention, the method for molding the magnesium plate through the local softening process and the high-strength magnesium plate molded by the method enable local heating to be selectively performed on only a portion which requires molding so as to improve elongation. The portion which does not require processing and thus has to maintain a high strength is not heated or is only minimally heated so as to enable the portion which does not require processing to maintain the initial mechanical characteristics that the portion has before the molding is performed.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
급속가열에 의한 국부연화 공정을 통한 고강도 마그네슴 판재의 성형가공법 및 이에 의하여 성형가공된 고강도 마그네슴 판재 성형부품  Forming process of high strength magnet sheet by local softening process by rapid heating and high strength magnet sheet forming part molded by this
【기술분야】 Technical Field
본 발명은 국부연화 공정을 통한 고강도 마그네슘 판재의 성형가공법 및 이 에 의하여 성형가공된 고강도 마그네슘 판재 성형부품에 관한 것이다ᅳ  The present invention relates to a molding process of a high strength magnesium sheet through a local softening process and a high strength magnesium sheet molded part molded by the same.
【배경기술】 Background Art
최근 정부의 정책 및 연구개발 방향은 고갈위기에 처해 가는 에너지 자원의 효율적인 이용과 환경오염 저감에 대한 사회적 요구에 부웅하기 위한 방향으로 추 진되고 있다. 특히 지구온난화의 주원인인 이산화탄소 및 각종 배기가스에 의한 환 경오염을 감소시키기 위한 규제가 단계적으로 제정되고 있으며, 한정된 에너지 자 원의 효율적인 이용을 위한 연구개발이 활발하게 진행되고 있는 상황이다. 그 중 환경오염을 감소시키고 에너지 자원 이용의 효율성을 향상시키기 위하 여 각종 수송기기에 경량소재를 적용하여 기존의 철강소재를 대체함으로써 수송기 기의 경량화를 이루고자 하는 기술이 핵심적인 기술로 손꼽히고 있으며, 이러한 목 적을 달성하기 위하여 경량소재 중에서 비중이 철의 1/4 이하이며 비강도가 높은 마그네슘이 가장 유력한 경량소재로 주목 받고 있다. 한편 기술적으로 성숙단계에 있는 마그네슘 주조재의 생산공정에 비하여, 소 성가공 공정을 이용한 마그네슘 판재 부품제조 기술의 경우, 기술적 기반이 매우 취약하여 최근에야 전 세계적으로 연구개발이 시작되고 있으며, 국내의 경우에도 기술개발 초기단계에 있다. 따라서 국내 부품소재산업을 활성화시키고 고부가가치 를 창출할 수 있는 마그네슘 판재 부품을 자동차산업ᅳ 전자기기산업 등에 적용하기 위해서는 다양한 마그네슴 판재의 성형공정 및 부품제조 기술 개발이 절실하게 요 구되는 실정이다. 조밀육방격자구조 (Hexagonal Close Packed: HCP)를 갖는 마그네슘 소재는 상 온에서의 성형성이 매우 열악하여 스탬핑 (Stamping), 프레스 단조 (Press Forging), 디프드로잉 (Deep Drawing) 등 통상의 금속판재 성형공정올 통한 판재성형품 제조가 불가능하여 불가피하게 열간성형 공법을 적용하여야 한다. 그러나 고은에서의 성형 은 성형 후에 소재의 강도 저하를 유발하므로, 원소재의 강도 유지를 위한 저온 또 는 상온에서의 성형공법 개발이 절실히 요구되고 있는 실정이다. 이에 본 발명자들은 마그네슴 소재 성형부품의 전체적인 강도를 성형 전의 강도수준으로 유지함과 동시에 성형성을 향상시킬 수 있는 방법을 연구하던 증, 마 그네슴 판재의 제조 시 압연 후에 마지막 소둔을 수행하지 않아 높은 강도를 갖는 마그네슘 판재 원소재 (H-temper)에 성형이 필요한 부분만을 국부적으로 급속가열하 여 연신율을 향상시킴으로써 성형이 필요하지 않거나 적은 양의 성형이 필요한 부 분의 강도를 원소재의 강도로 유지 또는 저하시키지 않으면서 국부적인 성형이 가 능한 마그네슘 판재 성형가공법을 개발하고, 본 발명을 완성하였다. Recently, the government's policy and R & D direction has been promoted to address the social demand for efficient use of energy resources and reducing environmental pollution. In particular, regulations to reduce environmental pollution caused by carbon dioxide and various exhaust gases, which are the main causes of global warming, have been enacted in stages, and research and development are being actively conducted for efficient use of limited energy resources. Among them, to reduce environmental pollution and improve the efficiency of energy resource utilization, lightweight technology is applied to various transportation equipment to replace existing steel materials. In order to achieve this purpose, magnesium, which has a specific gravity less than 1/4 of iron and high specific strength, is attracting attention as the most powerful lightweight material. On the other hand, compared with the production process of magnesium casting material, which is technically mature, the manufacturing technology of magnesium plate parts using the firing process is very weak in technical foundation, and recently, R & D is started in the world. Edo is in the early stages of technology development. Therefore, in order to revitalize the domestic parts and materials industry and to apply magnesium plate parts that can create high added value, it is urgently needed to develop a variety of magnet plate forming processes and parts manufacturing technology. Magnesium material with Hexagonal Close Packed (HCP) has very poor formability at room temperature, so it can be used for stamping, press forging, In general metal plate forming process such as deep drawing, it is impossible to manufacture the plate molded products through all the hot forming process must be applied. However, molding in high silver causes a decrease in strength of the material after molding, and therefore, there is an urgent need for development of molding methods at low or normal temperatures to maintain the strength of raw materials. Therefore, the inventors of the present invention have studied the method of improving the formability while maintaining the overall strength of the molded parts of the magnet material at the same level as the strength before molding, and do not perform the final annealing after rolling in the manufacture of the plate material. By locally rapid heating only the portion of the magnesium plate raw material (H-temper) having strength to improve the elongation, the strength of the portion that does not require molding or requires a small amount of molding is maintained or Magnesium plate forming process was developed, which can be locally molded without deterioration, and completed the present invention.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명의 목적은 급속가열에 의한 국부연화 공정을 통한 고강도 마그네슘 판재의 성형가공법 및 이에 의하여 성형가공된 고강도 마그네슴 판재 성형부품을 제공하는 데 있다.  SUMMARY OF THE INVENTION An object of the present invention is to provide a molding method of a high strength magnesium sheet through a local softening process by rapid heating and a high strength magnet sheet molded part molded by the molding.
【기술적 해결방법】 Technical Solution
상기 목적을 달성하기 위하여, 본 발명에서는 고강도 마그네슘 판재 Oi- temper)에 성형가공이 필요한 부분만 급속 열처리하여 국부적으로 연신율을 높이는 국부연회- 단계 (단계 1); 및' In order to achieve the above object, in the present invention, the local banquet step (step 1) to locally increase the elongation by rapid heat treatment only the part that needs to be molded into a high strength magnesium sheet Oi-temper; And '
상기 단계 1에서 국부적으로 연화된 마그네슘 판재를 성형가공하는 단계 (단 계 2)를 포함하는 국부연화 공정을 통한 마그네슘 판재 성형가공법을 제공한다.  Provided is a magnesium plate forming method through a local softening process comprising the step (step 2) of forming a locally softened magnesium plate in step 1.
【유리한 효과】 Advantageous Effects
본 발명에 따른 급속가열에 의한 국부연화 공정을 통한 고강도 마그네슴 판 재의 성형가공법 및 이에 의하여 성형된 고강도 마그네슘 판재 성형부품은 성형이 필요한 부위만을 선택적으로 국부가열하여 연신율을 높이고 이에 따라 성형성을 향 상시킬 수 있으며, 이때 가공이 불필요하거나 가공량이 적고 고강도를 유지해야 하 는 부위는 무가열 또는 최소한의 가열만이 수행되어 성형 전의 마그네슘 판재가 갖 는 초기 기계적 특성을 유지할 수 있는 효과가 있디-. 또한 국부적인 가열과 동시에 성형이 이루어짐으로써 열과 변형의 작용에 의해 고강도 마그네슘 판재 미세조직 내에서 발생하는 동적재결정현상을 활용하여 성형부위의 기계적 성질을 향상시킬 수 있는 부가적인 효과가 있다ᅳ 이에 따라, 본 발명에 따른 고강도 마그네슘 판재 는 가열이 이루어지지 않는 부위는 원소재가 갖는 기계적 특성을 유지하고 국부적 으로 가열이 이루어지는 부위는 성형성이 향상되어 목적하는 부품형상으로 성형할 수 있어, 본 발명에 따른 마그네슘 판재 성형부품은 초기 고강도 마그네슘 판재의 우수한 기계적 특성을 유지하게 된다. 따라서 본 발명에 따른 마그네슴 판재 성형 부품을 수송기기에 적용함으로써 높은 기계적 강도를 유지함과 동시에 최대한의 무 게감량 효과를 나타내어 수송기기의 연비향상을 통한 에너지 절감이 가능하다. Forming method of high strength magnet plate through the local softening process by rapid heating according to the present invention and the high strength magnesium plate molded parts formed by this to selectively localize only the parts that need to be molded to increase the elongation and thereby improve the formability In this case, the part which does not need to be processed or the processing amount is small and maintains high strength is not heated or only minimally heated, so the magnesium plate before molding Has the effect of maintaining the initial mechanical properties. In addition, by forming simultaneously with the local heating, there is an additional effect of improving the mechanical properties of the molding part by utilizing the dynamic recrystallization phenomena generated in the high-strength magnesium plate microstructure by the action of heat and deformation. The high-strength magnesium plate according to the present invention can be molded into the desired part shape because the site where the heating is not maintained maintains the mechanical properties of the raw material and the site where the heating is locally improves the formability. Magnesium sheet molding parts maintain the excellent mechanical properties of the initial high strength magnesium sheet. Therefore, by applying the magnet plate molded parts according to the present invention to the transport equipment, while maintaining a high mechanical strength and exhibits the maximum weight loss effect, it is possible to save energy through the fuel economy of the transport equipment.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 성형 전후의 시험편 변형을 나타낸 사진이고;  1 is a photograph showing specimen deformation before and after molding;
도 2는 시험편이 변형된 후 비커스경도값 변화를 측정한 그래프이고;  2 is a graph measuring the Vickers hardness value change after the test piece is deformed;
도 3은 시험편이 변형된 후 미세조직을 관찰한 사진이다.  3 is a photograph observing the microstructure after the specimen is deformed.
【발명의 실시를 위한 최선의 형태】 [Best form for implementation of the invention]
이하, 본 발명을 상세하게 설명한다. 본 발명은  Hereinafter, the present invention will be described in detail. The present invention
고강도 마그네슴 판재 (H-temper)의 성형가공이 필요한 부위만 열처리하여 국 부적으로 연신율을 높이는 국부연화 단계 (단계 1); 및  Localized softening step of locally increasing the elongation by heat-treating only the portion of the high-strength magnet plate (H-temper) molding process (step 1); And
싱-기 단계 1에서 국부연화된 마그네슘 판재를 성형가공하는 단계 (단계 2)를 포함하는 국부연화 공정을 통한 마그네슴 판재의 성형가공법을 제공한다. 이하, 본 발명을 단계별로 상세히 설명한디-. 본 발명에 따른 마그네슴 판재의 성형가공법에 있어서, 단계 1은 고강도 마 그네슴 판재, (H-temper)를 성형가공이 필요한 부위에 한하여 급속 열처리하여 국부 적으로 연산율을 높이는 국부연화 단계 단계이다. 기존의 마그네슘 판재 성형공정 에서는 판재 전체를 가열하여 성형함으로써 성형이 필요하지 않거나 성형이 적게 필요한 부분까지 가열되었고, 이에 따라 판재 전체가 소둔되어 연화되는 효과에 의 해 기계적 특성이 저하되는, 즉 성형 전 원소재의 고강도 특성을 잃어버리는 문제 가 있었다. 하지만 본 발명에 따른 성형가공법에서는 마그네슘 판재 원소재의 성형 가공이 필요한 부분만을 가열함으로써, 성형이 필요하지 않은 부분의 기계적 특성 을 유지하면서 동시에 판재의 성형이 필요한 부분의 연신율을 높여 성형성을 향상 시킬 수 있다. 싱-기 단계 1의 급속가열 열처리는 고주파, 레이저 및 할로겐 램프 등의 열원 을 이용한 가열을 통하여 수행될 수 있으며, 바람직하게는 성형부위에만 가열원 (Heating element)를 삽입한 은간 성형 금형을 통하여 수행될 수 있다. Provided is a method for forming a magnet plate through a local softening process comprising the step of forming a locally softened magnesium plate in step 1 (step 2). Hereinafter, the present invention will be described in detail step by step. In the molding process of the magnet plate according to the present invention, step 1 is a local softening step step of rapidly heat-treating a high-strength magnet plate, (H-temper) to a portion requiring molding processing to locally increase the calculation rate. . In the existing magnesium sheet forming process, the entire sheet is heated and molded to form a part that does not require molding or requires a small amount of molding. Accordingly, the entire sheet is annealed and softened. There is a problem that the mechanical properties are reduced, that is, the high strength properties of the raw material before molding. However, in the molding process according to the present invention, by heating only the portion that needs to be molded of the magnesium plate raw material, while maintaining the mechanical properties of the portion that does not need to be formed at the same time to increase the elongation of the portion that needs to be formed to improve the formability Can be. The rapid heating heat treatment of the first stage may be performed by heating using a heat source such as a high frequency wave, a laser, and a halogen lamp. Preferably, the heat treatment may be performed through a silver forming mold in which a heating element is inserted only in the molding part. Can be.
이때, 상기 국부연화를 위한 급속열처리는 150 내지 400 °C의 온도에서 수행 되는 것이 바람직하다. 상기 급속열처리가 150 °C 미만에서 수행되는 경우, 원하는 수준의 성형성을 얻을 수 없는 문제점이 있으며 , 400 °C를 초과하는 온도에서 급속 열처리가 수행되는 경우 성형성은 증가하지만 기계적 특성이 과도하게 떨어지는 문 제가 있다. 상기 급속열처리는 1 내지 120초 이내에 수행됨으로써 연속공정 (In-line)에 서의 판재성형공정에 적합하다. 급속열처리가 수행되는 시간이 길수록 마그네슘 판 재의 성형공정이 연속적이지 못하고 지연되므로 이에 따라 생산성이 떨어진다. 하 지만 본 발명에 따른 성형가공법에서는 급속열처리를 통해 마그네슘 판재를 국부적 으로 연화시킴으로써 연속공정을 통한 생산이 가능하며, 생삳성이 향상될 수 있다. 본 발명에 따른 마그네슘 판재의 성형가공법에 있어서, 단계 2는 상기 단계 1에서 국부연화된 마그네슘 판재를 성형가공하는 단계이다. 단계 2의 성형가공은 판재를 적용할 분야 및 가공 정도에 따라 스램핑, 프레스 단조 등과 같은 소성변형 공정을 통하여 가공이 수행되게 되며, 이에 특별한 제한을 두지 않는다. ' 싱-기 단계 2의 성형은 상온 내지 400 °C 이하의 온도에서 수행될 수 있으며, 가장 바람직하게는 상온에서 수행된다. 상기 범위의 온도에서 단계 2의 성형이 수 행됨으로써 마그네슴 판재의 성형을 수행함과 동시에 기계적 특성을 유지할 수 있 디-. 또한 상기한 온도범위에서 열과 변형의 복합적인 영향에 의해 발생하는 동적재 결정현상을 활용하여 성형부위의 기계적 성질이 향상되는 부가적인 효과를 얻을 수 있다. 이에 따라 본 발명에 의해 성형된 마그네슘 판재는 강도가 우수한 특징이 있 다. 본 발명에 따른 마그네슘 판재의 성형가공법은 상기 단계 1의 급속열처리에 의한 국부연화와 상기 단계 2의 성형가공이 열원 (Heating element)을 포함하는 금 형에 의해 동시에 수행될 수 있으며, 이에 의한 연속적인 공정에 의해 생산성이 향 상된다. 이때, 상기 금형의 열원은 고주파, 레이저, 할로겐 램프 둥이 이용될 수 있으며 , 특별히 이에 제한되는 것은 아니다. 또한, 본 발명은 상기 성형가공법을 통해 성형가공된 마그네슘 성형부품을 제공한다. 조밀육방격자 (HCP) 결정구조를 갖는 마그네슘 및 마그네슘 합금 판재는 체심 입방정 (BCC) 결정구조를 갖는 탄소강 및 면심입방정 (FCC) 결정구조를 갖는 알루미 늄합금 등에 적용되는 통상의 소성가공 공정을 이용한 판재성형이 어렵다. 이는 조 밀육방정 결정구조의 특징인 낮은 대칭성과 압연공정 시 조밀면이 압연방향에 평행 하게 우선적으로 배열됨으로써 나타나는 압연판재의 큰 이방성으로 인해 외부웅력 에 대해 작용하는 슬립계가 극히 제한되기 때문이다. 이러한 마그네슴 판재와난성 형성을 해결하기 위해서는 비조밀면 슬립계가 활성화되어 성형성이 향상되는 고온 에서의 성형 또는 가공이 불가피 하며, 이에 따라 고온에서의 성형으로 원소재의 기계적 강도가 떨어지게 되는 문제점이 있었다. At this time, the rapid heat treatment for the local softening is preferably carried out at a temperature of 150 to 400 ° C. When the rapid heat treatment is performed at less than 150 ° C, there is a problem that a desired level of formability cannot be obtained. When the rapid heat treatment is performed at a temperature exceeding 400 ° C, moldability is increased but mechanical properties are excessively degraded. there is a problem. The rapid heat treatment is performed within 1 to 120 seconds, which is suitable for the plate forming process in a continuous process (In-line). The longer the rapid heat treatment is performed, the more delayed the molding process of the magnesium plate is, and thus the productivity decreases. However, in the molding process according to the present invention, by locally softening the magnesium sheet through rapid heat treatment, it is possible to produce the product through a continuous process and improve productivity. In the molding method of the magnesium plate according to the present invention, step 2 is a step of forming the locally softened magnesium plate in step 1. The molding process of step 2 is to be processed through a plastic deformation process, such as clamping, press forging, etc. according to the field and the degree of processing to apply the plate material, there is no particular limitation. "Washing-forming group in step 2 may be carried out at a temperature not higher than room temperature to 400 ° C, and most preferably is carried out at room temperature. The molding of step 2 is performed at a temperature in the above range, thereby maintaining the mechanical properties while simultaneously forming the magnet plate. In addition, by utilizing the dynamic material crystal phenomenon generated by the combined effect of heat and deformation in the above temperature range can be obtained an additional effect of improving the mechanical properties of the molded part. Accordingly, the magnesium plate formed by the present invention is characterized by excellent strength. The molding process of the magnesium sheet according to the present invention may be performed simultaneously by the local softening by the rapid heat treatment of step 1 and the molding of the step 2 by a mold including a heating element, thereby continuous Productivity is improved by the process. At this time, the heat source of the mold may be a high frequency, a laser, a halogen lamp, but is not particularly limited thereto. In addition, the present invention provides a molded magnesium molded part through the molding process. Magnesium and magnesium alloy plates having a dense hexagonal lattice (HCP) crystal structure are plate materials using conventional plastic working processes applied to carbon steel having a body centered cubic (BCC) crystal structure and aluminum alloy having a face centered cubic (FCC) crystal structure. Molding is difficult This is because of the low symmetry characteristic of the dense hexagonal crystal structure and the large anisotropy of the rolled sheet, which is caused by the preferential arrangement of the dense surface parallel to the rolling direction during the rolling process. In order to solve the formation of the magnet plate and the difficulty, it is inevitable to form or process at a high temperature where the non-dense surface slip system is activated to improve the formability, and accordingly, the mechanical strength of the raw material is degraded by forming at a high temperature. .
하지만 본 발명에 따른 마그네슘 판재 성형부품은 성형이 필요한 부분만을 선택적으로 가열하여 성형성을 향상시키고, 성형이 필요하지 않은 부분은 가열하지 않아 가열이 되지 않은 부위는 원래의 마그네슘 판재의 기계적 특성을 유지하며 성 형가공이 수행된다. 이를 통하여 마그네슘 판재를 가공하기 위해 고온의 열을 판재 전체에 가하여 기계적 특성이 저하되었던 종래의 문제를 해결하고, 마그네슘 판재 의 성형성을 향상시키고 기계적 특성을 유지하거나향상시킬 수 있는 효과가 있다. 한편, 본 발명에 따른 마그네슘 판재 성형부품은 수송기기의 차체 또는 전자 제품 케이스로 이용할 수 있다. 본 발명에 따른 마그네슘 판재 성형부품을 수송기 기의 대면적 부품으로 이용함으로써, 수송기기의 경량화가 가능하며 이에 따라 연 비가 향상되어 에너지 절감효과가 있다. 또한, 노트북 등의 전자제품에 적용함으로 써 전자제품의 경량화 효과를 얻을 수 있으며 전자제품 케이스의 강도가 향상되어 외부층격으로부터 보호할 수 있다.  However, the magnesium plate molded part according to the present invention selectively improves the moldability by heating only the portion that needs to be molded, and the portion that does not need to be heated does not heat to maintain the mechanical properties of the original magnesium plate. Molding is carried out. This solves the conventional problem that the mechanical properties are deteriorated by applying high temperature heat to the whole plate to process the magnesium plate, there is an effect that can improve the formability of the magnesium plate and maintain or improve the mechanical properties. Meanwhile, the magnesium plate molded part according to the present invention may be used as a vehicle body or an electronic product case of a transportation device. By using the magnesium plate molded part according to the present invention as a large-area part of the transport machine, it is possible to reduce the weight of the transport device, thereby improving fuel efficiency and energy saving effect. In addition, by applying to electronic products such as notebooks, it is possible to obtain a lightening effect of the electronic products and to improve the strength of the electronic case can be protected from the outer layer.
정정용지 (규칙 제 91조) ISA/KR 예를 들어, 자동차의 천장 (Roof)과 같은 대면적 부품은 도장후 열처리 공정 에서 열팽창계수의 차이에 의해 발생하는 비를림 (Buckling) 등에 의해 치수 및 형 상의 변화가 발생되며, 이를 최소화하기 위해 200 MPa 이상의 항복강도가 요구된 다. 가공할 판재 전체를 가열하는 기존의 방법으로는 상기와 같은 높은 항복강도 값을 유지하기 어려웠지만, 차체에 본 발명에 의해 성형된 마그네슘 판재를 적용하 는 경우 바람직하게는 판재의 가장자리 부위만 연신율을 높여주어 가공함으로써 차 체에 적용되기 위한 항복강도 값 이상을 유지함과 동시에 원하는 형태로의 가공이 가능하며, 마그네슘 판재의 적용으로 인한 경량화로 인하여 연비 향상 및 에너지 절감 효과를 얻을 수 있다. Correction Sheet (Rule 91) ISA / KR For example, large-area parts such as the roof of automobiles have changes in dimensions and shapes due to buckling caused by the difference in coefficient of thermal expansion in the post-painting heat treatment process. Yield strength above 200 MPa is required. Although it is difficult to maintain such a high yield strength value by the conventional method of heating the whole sheet to be processed, when applying the magnesium sheet formed by the present invention to the vehicle body, it is preferable to extend the elongation only at the edge portion of the sheet. By increasing and processing, it is possible to maintain the yield strength value to be applied to the car body and at the same time, to be processed in the desired shape, and to improve fuel efficiency and energy saving effect due to light weight due to the application of magnesium plate.
【발명의 실시를 위한 형태】 [Form for implementation of invention]
이하, 실시예를 통하여 본 발명을 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는' 것은 아니다. Hereinafter, the present invention will be described in detail through examples. However, it will 'be limited by the following examples, it may make to the contents of the present invention to illustrate the invention.
<실시예 1>고강도 마그네슘 합금 판재의 국부성형 1 Example 1 Local Molding of High Strength Magnesium Alloy Plate 1
단계 1: 1讓두께의 H-Temper 고강도 마그네슘 합금 (AZ31-H24) '판재를 길이 150 mm, 폭 15 睡의 시험편으로 가공한 후, 전기저항 가열방법을 이용하여 시험편 중심부를 40 °C/초의 가열속도로 150 °C까지 가열하고 60초간 온도를 유지하는 국 부연화 열처리를 수행하였다. 이때 가열이 이루.어지는 중심부로부터 좌우 40 mm까 지 시험편에 점용접된 열전대를 이용하여 온도를 측정하였다. 단계 2: 상기 단계 1에서 국부연화된 마그네슘 판재 시험편을 으 3 mm/초의 크로스헤드 속도로 파단이 일어날 때까지 일축 인장하여 고강도 마그네슘 합금 판 재를 성형하였다. Step 1: After processing a 1 mm thick H-Temper High Strength Magnesium Alloy (AZ31-H24) plate into 150 mm long and 15 mm wide specimens, the center of the specimen was heated to 40 ° C / sec using an electrical resistance heating method. A local softening heat treatment was performed to heat up to 150 ° C. at a heating rate and maintain the temperature for 60 seconds. At this time, the temperature was measured using a thermocouple spot-welded to the test specimen from left to right 40 mm from the center of heating. Step 2: In step 1, the locally softened magnesium sheet test specimen was uniaxially stretched at a crosshead speed of 3 mm / sec to form a high strength magnesium alloy sheet.
<실시예 2>고강도 마그네슘 합금 판재의 국부성형 2 Example 2 Local Forming of High Strength Magnesium Alloy Plate 2
상기 실^예 1의 단계 1에서 시험편 중심부를 200 °C까지 가열하여 국부연화 열처리를 수행한 것을 제외하고는 상가 실시예 1과 동일하게 수행하여 고강도 마그 네슘 합금 판재를 성형하였다. A high strength magnesium alloy plate was formed in the same manner as in Example 1 except that the center of the test piece was heated to 200 ° C. in Step 1 of Example 1 to perform a local softening heat treatment.
<비교예 1> Comparative Example 1
정정용지 (규칙 제 91조) ISA/KR 상기 실시예 1의 단계 1을 수행하지 않고, 상온에서 시험편의 파단이 일어날 때까지 일축 인장하여 고강도마그네슘 합금 판재를 성형하였다. Correction Sheet (Rule 91) ISA / KR Without performing step 1 of Example 1, a high strength magnesium alloy sheet was formed by uniaxial stretching until breakage of the test piece occurred at room temperature.
<실험예 ;1> 마그네슘 판재의 연신율 측정 Experimental Example ; 1> Elongation measurement of magnesium plate
상기 실시예 1 및 2와 비교예 1에서 성형된 고강도 마그네슘 합금 판재의 연 신율을 분석하기 위하여, 시험편에 표시한 그리드의 위치 변화로부터 국부 연신율 을측정하였고, 그 결과를 도 1 및 표 1에 나타내썼다.  In order to analyze the elongation of the high strength magnesium alloy sheet formed in Examples 1 and 2 and Comparative Example 1, the local elongation was measured from the change of position of the grid indicated on the test piece, and the results are shown in FIGS. wrote.
【표 1】 Table 1
Figure imgf000009_0001
Figure imgf000009_0001
도 1 및 표 1에 나타낸 바와 같이, 본 발명의 실시예 1 및 실시예 2에 의해 일축 인장된 마그네슘 판재는 국부가열 후 변형에 의하여 국부연신율 즉, 성형성이 크게 향상되는 것으로 나타났으며, 미가열 상태로 일축인장된 비교예 1의 마그네슴 판재는 국부적인 가열에 의한 성형성 증가 효과가 나타나지 않아 AZ31 H-temper 판 재가 통상적으로 나타내는 15 - 20 %의 연신율 범위의 값을 나타내는 것을 확인하 였다. 이를 통하여 본 발명에 따른 성형가공법으로 고강도 마그네슘 판재의 성형성 을향상시킬 수 있음을 확인하였다.  As shown in Figure 1 and Table 1, the magnesium plate material uniaxially tensioned by Example 1 and Example 2 of the present invention was found to significantly improve the local elongation, that is, formability by deformation after local heating. It was confirmed that the magnet plate of Comparative Example 1, which was uniaxially stretched in a heated state, showed no increase in formability due to local heating, so that the AZ31 H-temper plate had a value in the elongation range of 15-20% which is typical. . Through this, it was confirmed that the molding process according to the present invention can improve the formability of the high strength magnesium sheet.
<실험예 2> 비커스 경도 측정 Experimental Example 2 Vickers Hardness Measurement
본 발명의 실시예 1 및 2에 의해 국부가열이 이루어진 고강도 마그네슘 판재 (H-temper)의 성형이 수행된 후, 국부가열 열원으로부터 50 mm 떨어진 위치까지 비 쩌스 경도값을 측정하였고, 그 결과를 하기 도 2에 나타내었다 ' After the molding of the high-strength magnesium plate (H-temper) subjected to local heating by Examples 1 and 2 of the present invention was carried out, the V as hardness value was measured to a position 50 mm away from the local heating source, and the results are as follows. It is shown in Fig '
도 2에 나타낸 바와 같이, 실시예 1 및 2에 의해 성형된 마그네슘 판재는국 부가열 및 성형의 복합적인 작용에 의해 성형부위의 경도값아 완전히 소둔된 마그 네슘 판재 (으 temper)의 경도값에 비해 매우 높은 것을 알 수 있다. 이는 고강도 미ᅳ 그네슘 판재 (H-teniper)의 국부가열 및 성형의 복합적인 작용에 의해 미세조직 내에 서 발생하는 동적재결정에 의한 것으로 본 발명에 따른 성형가공법을 이용하여 성 형부위의 기계적 성질이 향상되는 부가적인 효과를 얻을 수 있음을 확인하였다.  As shown in Fig. 2, the magnesium sheet formed in Examples 1 and 2 was compared with the hardness value of the magnesium sheet (temper) which was completely annealed by the hardness of the molding portion by the combined action of the addition heat and the molding. It can be seen that it is very high. This is due to the dynamic recrystallization that occurs in the microstructure by the combined action of local heating and molding of high strength fine magnesium plate (H-teniper), and the mechanical properties of the molding site using the molding process according to the present invention are improved. It was confirmed that an additional effect of improvement could be obtained.
정정용지 (규칙 제 91조) ISA/KR <실험예 3>주사전자현미경 분석 Correction Sheet (Rule 91) ISA / KR Experimental Example 3 Scanning Electron Microscope Analysis
본 발명에 따론 실시예 1에 의해 국부가열이 수행된 고강도 마그네슘 판재 (AZ31 H-temper)의 성형부위를 주사전자현미경으로 관찰화여 미세구조를 분석하였 고, 그 결과를 도 3에 나타내었다.  According to the present invention, the microstructure of the high strength magnesium plate (AZ31 H-temper) subjected to local heating according to Example 1 was observed by scanning electron microscopy to analyze the microstructure, and the results are shown in FIG. 3.
도 3에 나타낸 바와 같이 , 실시예 1에 '의해 국부가열이 수행된 고강도 마그 네슘 판재의 성형부위에는 가열 및 성형의 복합적인 작용에 의해 결정립계와 쌍정 계면에서 광범위하게 동적재결정이 일어났고, 이에 의해 결정립 크기가 매우 작아 진 것을 알 수 있다. 즉, 본 발명에 따른 국부가열에 의한 연화 및 성형에 의해 동 적재결정현상에 의한 결정립 미세화가 나타나고, 이로 인해 가공이 필요한 부위의 성형성이 향상되며, 성형 후 성형부위의 기계적 성질이 향상됨을 확인하였다. By Example 1, the "combined action of heating and molding, forming part of a high strength magnesium plate the local heating is performed by, as shown in Fig. 3 got widely up the dynamic recrystallization in grain boundaries and twin crystal interface, whereby It can be seen that the grain size is very small. In other words, by softening and forming by local heating according to the present invention, the grain refinement due to the same loading crystal phenomenon appears, thereby improving the moldability of the part requiring processing, and the mechanical properties of the molded part after molding are confirmed to be improved. It was.
정정용지 (규칙 제 91조) ISA/KR Correction Sheet (Rule 91) ISA / KR

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
고강도 마그네슴 판재 (H-temper) 중 성형가공이 필요한 부위만 열처리하여 국부적으로 연신율을 높이는 국부연화 딘-계 (단계 1); 및  Localized softening din-based by heat-treating only the portion of the high-strength magnet plate (H-temper) that needs to be processed to increase the elongation locally (step 1); And
상기 단계 1에서 국부연화된 마그네슘 판재를 성형가공하는 단계 (단계 2)를 포함하는 국부연화 공정을 통한 고강도 마그네슴 판재의 성형가공법.  Molding method of high-strength magnet sheet through the local softening process comprising the step (step 2) of forming a locally softened magnesium plate in step 1.
【청구항 2] [Claim 2]
저 U항에 있어세 상기 단계 1의 국부연화는 150 내지 400 °C의 온도에서 수 행되는 것을 특징으로 하는 국부연화 공정을 통한 마그네슴 판재의 성형가공법. The method of claim 1, wherein the local softening of step 1 is carried out at a temperature of 150 to 400 ° C molding process of the magnet plate material through a local softening process.
【청구항 3】 [Claim 3]
저 U항에 있어서, 상기 단계 1의 국부연화는 급속열처리는 1 내지 120초간 수 행되어 연속공정 (In-line)에 적합한 것을 특징으로 하는 국부연화 공정을 통한 마 그네슴 판재의 성형가공법.  The method of claim U, wherein the local softening of step 1 is a rapid heat treatment is carried out for 1 to 120 seconds to form a continuous process (In-line) of the magnet plate material forming process through a local softening process.
【청구항 4】 [Claim 4]
제 1항에 있어서, 상기 단계 1의 금속열처리는 고주파, 레이저 및 할로겐 램 프로 이루어진 군으로부터 선택되는 어느 하나의 열원 (Heating element)에 의하여 수행되는 것을 특징으로 하는 국부연화공정을 통한 마그네슴 합금 판재의 성형가공 법 .  The method of claim 1, wherein the heat treatment of the metal of step 1 is a magnet alloy sheet through a local softening process, characterized in that performed by any one heat source (Heating element) selected from the group consisting of high frequency, laser and halogen lamps. Forming Process of.
【청구항 5】 [Claim 5]
제 1항에 있어서, 상기 단계 2의 성형가공은 상온 내지 400 °C의 온도에서 수 행되는 것을 특징으로 하는 국부연화공정을 통한 마그네슘 합금 판재의 The method of claim 1, wherein the forming process of step 2 of the magnesium alloy sheet through a local softening process, characterized in that carried out at a temperature of room temperature to 400 ° C.
성형가공법. Molding process.
【청구항 6】 [Claim 6]
제 1항에 있어서, 상기 단계 2의 성형가공은 스탬핑 (Stamping), 프레스 단조 (Press forging) 및 굽힘 (Bending) 공정으로 이루어진 군으로부터 선택되는 어 느 하나의 공정을 통하여 수행되는 것을 특징으로 하는 국부연화공정을 통한 마그 네슘 합금 판재의 성형가공법ᅳ The method of claim 1, wherein the forming process of step 2 is carried out through any one process selected from the group consisting of stamping, pressing forging and bending (bending) process. Forming Process of Magnesium Alloy Plate through Softening Process
【청구항 7] [Claim 7]
거 U항에 았어서, 상기 단계 1의 국부연화 및 단계 2의 성형가공은  In the U term, the local softening of step 1 and the forming process of step 2
열원 (Heating element)올 포함하는 금형에 의해 동시에 수행되는 것을 특징으로 하 는 국부연화공정을 통한 마그네슴 합금 판재의 성형가공법. Molding method of the magnet alloy plate material through a local softening process, characterized in that performed simultaneously by a mold containing a heat source (Heating element).
【청구항 8】 [Claim 8]
제 1항 내지 제 7힝- 중 어느 하나의 성형가공법에 의해 성형가공된 마그네슴 합금 성형 부품  Magnesium alloy molded part molded by the molding method of any one of claims 1 to 7.
【청구항 9】 [Claim 9]
거 18항에 있어서, 상기 성형가공된 마그네슴 성형부품은 수송기기의 대면적 부품 또는 전자제품 및 전자기기에 적용되는 것을 특징으로 하는 마그네슘 성형부  The method of claim 18, wherein the molded magnesium molded part is a magnesium molded part, characterized in that applied to large area parts of the transport equipment or electronics and electronic devices
PCT/KR2012/005036 2011-06-27 2012-06-26 Method for molding a magnesium plate having high strength due to a local softening process using quick heating and high strength magnesium plate component molded thereby WO2013002534A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110062314A KR20130001511A (en) 2011-06-27 2011-06-27 Forming method of high-strength magnesium blanks employing the tailored softening process, and magnesium plate thereby
KR10-2011-0062314 2011-06-27

Publications (1)

Publication Number Publication Date
WO2013002534A1 true WO2013002534A1 (en) 2013-01-03

Family

ID=47424350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005036 WO2013002534A1 (en) 2011-06-27 2012-06-26 Method for molding a magnesium plate having high strength due to a local softening process using quick heating and high strength magnesium plate component molded thereby

Country Status (2)

Country Link
KR (1) KR20130001511A (en)
WO (1) WO2013002534A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101465998B1 (en) * 2013-03-04 2014-11-27 주식회사 성우하이텍 Heating appartaus of light irradiation type

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007694A (en) * 2005-06-30 2007-01-18 Mingjun Xu Method for working magnesium alloy and producing process therefor
KR100716374B1 (en) * 2006-05-03 2007-05-11 현대자동차주식회사 Device and method for bending mg alloy pipe
KR20090120996A (en) * 2008-05-21 2009-11-25 (주)지비엠 Method for warm press of mg alloy sheet
KR20100035983A (en) * 2008-09-29 2010-04-07 케이씨케미칼 주식회사 Method for manufacturing case of electronic products using magnesium alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007694A (en) * 2005-06-30 2007-01-18 Mingjun Xu Method for working magnesium alloy and producing process therefor
KR100716374B1 (en) * 2006-05-03 2007-05-11 현대자동차주식회사 Device and method for bending mg alloy pipe
KR20090120996A (en) * 2008-05-21 2009-11-25 (주)지비엠 Method for warm press of mg alloy sheet
KR20100035983A (en) * 2008-09-29 2010-04-07 케이씨케미칼 주식회사 Method for manufacturing case of electronic products using magnesium alloy

Also Published As

Publication number Publication date
KR20130001511A (en) 2013-01-04

Similar Documents

Publication Publication Date Title
Mozaffari et al. Al/Ni metal intermetallic composite produced by accumulative roll bonding and reaction annealing
Li et al. The impact of intercritical annealing in conjunction with warm deformation process on microstructure, mechanical properties and TRIP effect in medium-Mn TRIP steels
CN104959437B (en) Forming method for improving forming performance of 6XXX series aluminum alloy plate
JP6850797B2 (en) Process for warm molding of hardened aluminum alloy
WO2012043832A1 (en) Method for manufacturing press-formed article
KR20130138169A (en) Processing of alpha/beta titanium alloys
JP5527498B2 (en) Magnesium alloy plate excellent in room temperature formability and processing method of magnesium alloy plate
JP2013510723A (en) Method of forming a component of complex shape from sheet material
CN104046933A (en) Thermal-mechanical treatment method for enhancing plasticity and forming property of high strength aluminum alloy sheet
TW201713779A (en) Austenitic stainless steel foil
Lapovok et al. Processing and properties of ultrafine-grain aluminium alloy 6111 sheet
CN108138266A (en) For making the method for the aluminium alloy warm working age-hardenable in T4 annealed strips
JP5376507B2 (en) Magnesium alloy sheet having excellent cold formability and method for producing the same
JP2009148823A (en) Warm press-forming method for aluminum alloy cold-rolled sheet
JP2010053386A (en) Magnesium alloy sheet material which is excellent in formability, and producing method therefor
WO2013002534A1 (en) Method for molding a magnesium plate having high strength due to a local softening process using quick heating and high strength magnesium plate component molded thereby
JP5612992B2 (en) Manufacturing method of hot-formed products
KR101427293B1 (en) Forming method of high-strength magnesium blanks employing the tailored softening process, and magnesium plate thereby
JP2006299295A (en) High temperature molding method for aluminum alloy
KR20140114474A (en) Method for manufacturing cold rolled magnesium alloy sheet having enhanced formability, yield strength and tensile strength and cold rolled magnesium alloy sheet having enhanced formability, yield strength and tensile strength manufactured thereby
KR20170075407A (en) Magnesium alloy sheet, method for manufacturing the same
Kim et al. Annealing of flexible-rolled Al–5.5 wt% Mg alloy sheets for auto body application
JP2003103311A (en) Press forming method for magnesium alloy thin plate
JP2021062407A (en) Molding method for aluminum alloy
JP2005273003A (en) Production method of aluminum-magnesium-silicon alloy sheet suitable for flat hemming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803787

Country of ref document: EP

Kind code of ref document: A1