WO2013002314A1 - 原子力発電プラント用蒸気発生器伝熱管の製造方法および蒸気発生器伝熱管 - Google Patents

原子力発電プラント用蒸気発生器伝熱管の製造方法および蒸気発生器伝熱管 Download PDF

Info

Publication number
WO2013002314A1
WO2013002314A1 PCT/JP2012/066496 JP2012066496W WO2013002314A1 WO 2013002314 A1 WO2013002314 A1 WO 2013002314A1 JP 2012066496 W JP2012066496 W JP 2012066496W WO 2013002314 A1 WO2013002314 A1 WO 2013002314A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
tube
heat transfer
steam generator
transfer tube
Prior art date
Application number
PCT/JP2012/066496
Other languages
English (en)
French (fr)
Inventor
繁俊 兵藤
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CA2839831A priority Critical patent/CA2839831C/en
Priority to EP12738236.4A priority patent/EP2728585B1/en
Priority to CN201280032232.4A priority patent/CN103635973B/zh
Priority to KR1020147002251A priority patent/KR101602710B1/ko
Priority to JP2012529829A priority patent/JP5218704B1/ja
Publication of WO2013002314A1 publication Critical patent/WO2013002314A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/023Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes, for nuclear reactors as far as they are not classified, according to a specified heating fluid, in another group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B29/00Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents
    • B24B29/02Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents designed for particular workpieces
    • B24B29/06Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents designed for particular workpieces for elongated workpieces having uniform cross-section in one main direction
    • B24B29/08Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents designed for particular workpieces for elongated workpieces having uniform cross-section in one main direction the cross-section being circular, e.g. tubes, wires, needles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/36Single-purpose machines or devices
    • B24B5/38Single-purpose machines or devices for externally grinding travelling elongated stock, e.g. wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/08Modifying the physical properties of iron or steel by deformation by cold working of the surface by burnishing or the like
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/006Details of nuclear power plant primary side of steam generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the present invention relates to a method of manufacturing a steam generator heat transfer tube used in a nuclear power plant and a steam generator heat transfer tube.
  • a nuclear power plant generates steam by generating fission energy, spraying the steam on a turbine, and rotating it to generate power.
  • the nuclear reactor is a boiling water light water reactor (BWR) that rotates the turbine with steam generated by fission energy, hot water (primary cooling water) generated by fission energy, and another steam (secondary cooling water). ), And the steam is used to rotate the turbine, and there are various types such as a pressurized water reactor (PWR).
  • BWR boiling water light water reactor
  • the primary cooling water pressurized to high pressure becomes hot water of about 300 ° C. without boiling, and a steam generator tubule having a diameter of about 2 cm installed innumerably in the steam generator (The secondary cooling water that is transferred through the SG tube) and flows outside the SG tube is heated and boiled.
  • the primary cooling water that has been deprived of heat by the secondary cooling water returns to the reactor, is heated again, and the secondary cooling water that has become steam turns through the turbine, and then is cooled by the condenser, and again the steam generator Return to and heated.
  • a nickel base alloy such as a 60% Ni-30% Cr-10% Fe alloy having excellent mechanical performance and excellent corrosion resistance is used for the steam generator member.
  • SG tube after processing an alloy having a predetermined chemical composition into a predetermined product shape by hot processing and cold processing, solid solution of carbide generated during hot processing, removal of internal strain generated in the processing process, etc.
  • first heat treatment process Heat treatment (annealing) process
  • straightening process for adjusting linearity, repair of scratches caused by each process and adjustment of surface roughness
  • first heat treatment step For the purpose of precipitating C solid dissolved in the polishing step and the first heat treatment step as Cr carbide (Cr 23 C 6 ) semi-continuously on the grain boundary and recovering the Cr-deficient layer in the vicinity of the Cr carbide It is manufactured through the heat treatment step (hereinafter referred to as “second heat treatment step”).
  • Patent Documents 1 to 6 The applicant discloses the inventions according to Patent Documents 1 to 6 regarding the method of manufacturing the SG tube.
  • Japanese Patent Laid-Open No. 05-112842 JP 05-195191 A Japanese Patent Laid-Open No. 7-252564 JP 2002-121630 A JP 2007-224371 A JP 2007-224372 A
  • the polishing process for steam generator heat transfer tubes used in nuclear power plants must satisfy strict polishing allowance regulations (0.01 mm or more) and residual stress regulations on the pipe surface (138 MPa or less).
  • belt paper type polishing has been employed in the conventional polishing process.
  • a polishing process performed between the first heat treatment process and the second heat treatment process is performed using “Emery paper No. 320”.
  • the front and rear heat treatment steps can be performed continuously, but the polishing step always requires replacement of the abrasive.
  • the abrasive tends to fall off and the polishing amount tends to decrease. For this reason, since the replacement frequency of the polishing paper is increased, it has been a cause of reducing the production efficiency of the SG tube.
  • a method (hereinafter referred to as “wheel type polishing”) in which a tube surface is polished using a self-driven flap foil is used in various fields.
  • this wheel type polishing has a high grinding ability, it is suitable for highly efficient grinding, but has the following problems.
  • the present inventors have a surface roughness Ra of the tube after the polishing step of 1 ⁇ m or less, preferably 0.5 ⁇ m or less, and a polishing amount (difference in outer diameter before and after polishing).
  • a surface roughness Ra of the tube after the polishing step of 1 ⁇ m or less, preferably 0.5 ⁇ m or less, and a polishing amount (difference in outer diameter before and after polishing).
  • the present inventors subdivide the polishing process in the steam generator heat transfer tube for a nuclear power plant into a rough polishing process, an intermediate polishing process, and a finish polishing process. In particular, each process is polished with a plurality of heads. It has been found that residual stress exceeding a specified value is not applied when a multistage polishing process is used.
  • the present invention has been made on the basis of such knowledge, and an object thereof is to provide a method of manufacturing a steam generator heat transfer tube for a nuclear power plant and a steam generator heat transfer tube with improved manufacturing efficiency.
  • the gist of the present invention is the following method for producing a steam generator heat transfer tube for a nuclear power plant.
  • (D) The nuclear power plant according to any one of (A) to (C), wherein the surface roughness Ra of the tube after the polishing step is 1.0 ⁇ m or less, and the polishing amount after the polishing step is 80 ⁇ m or more.
  • the production efficiency of the steam generator heat transfer tube for a nuclear power plant can be improved.
  • the steam generator heat transfer tube for a nuclear power plant that is the subject of the present invention is a step of annealing the tube after obtaining a seamless tube by a normal process such as piercing rolling, drawing rolling, constant diameter rolling, etc.
  • One heat treatment step a polishing step for polishing the outer surface of the tube, and a heat treatment step (the second heat treatment step described above) for performing a heat treatment in an environment of an oxidation-inhibiting atmosphere.
  • the tube 1 is rotated in the circumferential direction (arrow A in the drawing) in the longitudinal direction (arrow in the drawing). B), and the wheel-type abrasive 2 is brought into contact with the outer surface of the tube 1 for polishing.
  • polishing can be carried out by bringing the wheel-type abrasive 2 into contact with the outer surface of the tube 1 in the circumferential direction (arrow C in the figure).
  • the mechanical strength of the abrasive is higher than that of the belt paper used in the conventional method, so it is easy to control the load during polishing. Even if the wheel material is worn, the wheel current is controlled so that the load current is constant (constant load control) while controlling the rotation speed of the electric motor that drives the wheel so that the outer peripheral speed of the abrasive is constant. By controlling the pressing force of the rod, it becomes easy to keep the polishing amount constant even if the wheel is worn.
  • the skew angle is preferably adjusted so that the feed pitch is 5 to 15 mm / rev.
  • the number of rotations of the tube is preferably set so that the rotation peripheral speed of the tube is equal to the peripheral speed of the wheel rotation, and is reverse to the rotation direction of the wheel.
  • the maximum feed pitch (mm / rev) is desirably limited to 70% or less of the outer diameter value.
  • the polishing step has a rough polishing step, an intermediate polishing step, and a finish polishing step, and at least the rough polishing step and the finish polishing step are each configured to polish with a plurality of abrasives.
  • the polishing is performed until the predetermined polishing amount and the surface roughness are achieved by the three-step process in this way, the surface roughness of the outer surface of the tube can be easily adjusted while suppressing the residual stress generated in the tube, and sufficient. Since the polishing amount can be secured, the steam generator heat transfer tube polishing for a nuclear power plant can be efficiently performed. In particular, polishing with 5 or more abrasives is more preferable. However, since the equipment cost increases when the number of polishing heads is increased, the number of polishing heads is preferably 10 or less.
  • the polishing step it is preferable to employ conditions such that the surface roughness of the tube and the polishing amount satisfy the following expression (1).
  • the condition in the first abrasive material has the greatest influence. It defines the surface roughness Ra ( ⁇ m) and the polishing amount ( ⁇ m) after polishing with an abrasive.
  • Ra 1 / OD 1 ⁇ 0.10 (1)
  • the meaning of each symbol in the above formula is as follows.
  • Ra 1 Surface roughness Ra ( ⁇ m) after polishing with the first abrasive OD 1 : Polishing amount after polishing with the first abrasive ( ⁇ m)
  • Ra 1 / OD 1 is less than 0.10, the residual stress of the tube after the polishing step may exceed 138 MPa. Moreover, it is preferable that it is large from a viewpoint of reducing a residual stress. Therefore, it is preferable to adjust the surface roughness Ra and the polishing amount after polishing with the first abrasive so that Ra 1 / OD 1 is 0.10 or more. Ra 1 / OD 1 is more preferably 0.20 or more. On the other hand, if Ra 1 / OD 1 is too large, the initial polishing amount may be insufficient and the final polishing amount may not be achieved. Further, when the number of heads is small, it becomes difficult to achieve the final surface roughness. Therefore, Ra 1 / OD 1 is preferably 0.40 or less.
  • (Ra i -Ra i + 1 ) / (OD i -OD i + 1 ) is too large, the polishing amount during intermediate polishing may be insufficient. Moreover, it becomes difficult to achieve the final surface roughness without improving the surface roughness. Therefore, (Ra i -Ra i + 1 ) / (OD i -OD i + 1 ) is preferably 0.05 or less in the case of a nickel-base alloy and 0.09 or less in the case of a ferritic stainless steel.
  • the upper limit value of (Ra i ⁇ Ra i + 1 ) / (OD i ⁇ OD i + 1 ) may be set to an appropriate value depending on the material.
  • the amount of polishing in each step of the rough polishing step, intermediate polishing step, and finish polishing step is distributed to approximately 0.04 mm, 0.03 mm, and 0.01 mm, and each step of the rough polishing step, intermediate polishing step, and finish polishing step
  • each step of the rough polishing step, intermediate polishing step, and finish polishing step When the tube surface roughness Ra on the outlet side is 2.5, 1.0, and 0.5, respectively, for example, in the rough polishing step, 2 to 4 wheel type abrasives of # 80 are used.
  • the intermediate polishing step can be performed by installing 2 to 6 # 120 wheel type abrasives
  • the finish polishing step can be performed by installing 2 to 4 PVA wheel type abrasives. .
  • the first heat treatment step can be performed under conditions normally employed to achieve solid solution of carbides generated during hot working, removal of internal strain generated in the processing steps, and the like.
  • T ° C. the temperature at which the carbide of the alloy is completely dissolved, undissolved carbide is formed, and the tensile strength, 0.2% proof stress, hardness, etc. are more than necessary.
  • the Cr carbide generated at the grain boundaries in the cooling process after annealing or the reheating and holding process of the next heat treatment may decrease, and the intergranular stress corrosion cracking resistance may be reduced.
  • the holding temperature exceeds (T + 100) ° C.
  • the crystal grain size is remarkably coarsened, the intergranular stress corrosion cracking resistance is lowered, and predetermined properties are also obtained in tensile strength, 0.2% proof stress, hardness, and the like. There is a risk that it will not be obtained.
  • the preferable lower limit of the holding temperature is (T + 20) ° C.
  • the preferable upper limit is (T + 80) ° C.
  • the reason why the holding time is 1 minute or longer is that it is preferable to completely dissolve the carbides precipitated during hot working such as forging.
  • the upper limit of the holding time is about 60 minutes in actual operation.
  • the first heat treatment step After the first heat treatment step, it may be cooled to room temperature by forced cooling and then supplied to the next step.
  • C dissolved in the first heat treatment step is precipitated as Cr carbide (Cr 23 C 6 ) semi-continuously on the grain boundary, and the Cr deficient layer near the Cr carbide is recovered.
  • Cr carbide Cr 23 C 6
  • the processing temperature exceeds 875 ° C., it may fall out of the Cr carbide generation temperature range of the alloy of the present invention and there is a risk that Cr carbide will hardly precipitate, but if it is less than 600 ° C., it must be maintained for more than 100 hours. There is a risk that the production efficiency will deteriorate. Therefore, the holding temperature is preferably in the range of 600 to 875 ° C.
  • the holding time it is preferable to hold for 0.03 hours or more when the temperature is 800 to 875 ° C., and when the temperature is less than 800 ° C., the holding time is increased as the temperature decreases, and a sufficient amount of Cr carbide is precipitated at the grain boundaries. It is preferable to make it.
  • the preferable upper limit of the holding time is 100 hours.
  • the second heat treatment step After the second heat treatment step, it may be cooled to room temperature by forced cooling or the like and then supplied to the next step.
  • Example 1 an experiment was conducted assuming a 10-series polishing apparatus using various count wheels as an abrasive. That is, 10 wheel-type abrasives with various counts were prepared, and nickel-base alloy tubes (60% Ni, 30% Cr, 10% Fe) were polished with each abrasive, and after polishing with each abrasive The surface roughness Ra, the polishing amount and the residual stress were measured. In this experiment, the polishing amount was set to 100 ⁇ m, the surface roughness Ra was set to 0.5 ⁇ m or less, and the residual stress was set to 138 MPa or less. The results are shown in Table 1.
  • ⁇ Ra means “Ra i -Ra i + 1 ” and “ ⁇ OD” means “OD i -OD i + 1 ”.
  • No. Nos. 1 to 3 are rough polishing steps.
  • Nos. 4 to 7 are intermediate polishing steps.
  • 8 to 10 are finish polishing steps.
  • Ra 1 / OD 1 is as high as 0.289, and (Ra i -Ra i + 1 ) / (OD i -OD i + 1 ) is obtained after polishing with any abrasive. It was 0.015 or more, and the residual stress satisfied the target value even after polishing with any abrasive. The target polishing amount and surface roughness were also satisfied.
  • Example 2 an experiment was conducted assuming a polishing apparatus in which five wheels with various counts were used as the abrasive. That is, five wheel-type abrasives with various counts were prepared, and 13% Cr ferritic stainless steel pipes were polished with the respective abrasives, and the surface roughness Ra, the polishing amount, and the residual after polishing with each abrasive Stress was measured. In this experiment, the polishing amount was 90 ⁇ m, the surface roughness Ra was 0.5 ⁇ m or less, and the residual stress was 138 MPa or less. The results are shown in Table 2.
  • Ra 1 / OD 1 is 0.119, and (Ra i ⁇ Ra i + 1 ) / (OD i ⁇ OD i + 1 ) is obtained after polishing with any abrasive. It was 0.015 or more, and the residual stress satisfied the target value even after polishing with any abrasive. The target polishing amount and surface roughness were also satisfied.
  • Example 3 an experiment was performed assuming a polishing apparatus in which five wheels with various counts were used as the abrasive.
  • five wheel-type abrasives with various counts were prepared, and nickel-base alloy tubes (60% Ni, 30% Cr, 10% Fe) were polished with each abrasive, and after polishing with each abrasive
  • the surface roughness Ra, the polishing amount and the residual stress were measured.
  • the polishing amount was 85 ⁇ m
  • the surface roughness Ra was 0.5 ⁇ m or less
  • the residual stress was 138 MPa or less.
  • Table 3 The results are shown in Table 3.
  • Ra 1 / OD 1 is 0.103, and (Ra i ⁇ Ra i + 1 ) / (OD i ⁇ OD i + 1 ) is obtained after polishing with any abrasive. It was 0.015 or more, and the residual stress satisfied the target value even after polishing with any abrasive. The target polishing amount and surface roughness were also satisfied.
  • Example 4 a nickel-base alloy tube (60% Ni, 30% Cr, 10% Fe) was polished (polishing rate: 8 m / min) using a polishing apparatus in which 10 wheels identical to those in Example 1 were arranged. The wheel life and operating rate at that time were investigated.
  • a nickel-base alloy tube (60% Ni, 30% Cr, 10% Fe) was polished using two polishing apparatuses (10 stations in total) in which five belt papers were arranged side by side (polishing rate: 4 m / second). min), the availability factor at that time was investigated. In this experiment, the polishing amount was set to 100 ⁇ m and the surface roughness Ra was set to 0.5 ⁇ m or less. The results are shown in Table 4.
  • the operating rate is “non-operating time / (operating time + non-operating time)” (however, operating time: polishing time of material for polishing equipment (including the operation time for charging the next material), non-operating time: worn polishing It is the total time of the material replacement time and the dummy material polishing time).
  • the polishing ability (polishing amount per unit length) is gradually decreased with polishing.
  • the polishing powder is likely to fall off, and the fluctuation of the polishing ability is particularly large, so that it is difficult to secure a predetermined polishing amount. Therefore, in belt paper polishing, it is common to polish a plurality of dummy materials in advance and polish the product after the fluctuation of the polishing capability becomes small.
  • wheel polishing it is possible to control the load so that the polishing amount becomes constant immediately after the setup change. Therefore, in the wheel polishing, it is not necessary to polish the dummy material in advance, except for the work of checking the polishing quality at the time of setup change or replacement.
  • Examples 5 to 9 an experiment was conducted assuming a polishing apparatus in which three consecutive wheels using various count wheels were used as the abrasive. That is, three wheel type abrasives with various counts were prepared, and nickel-base alloy tubes (60% Ni, 30% Cr, 10% Fe) were polished with each abrasive, and after polishing with each abrasive The surface roughness Ra, the polishing amount and the residual stress were measured. In this experiment, the target after polishing was 80 ⁇ m, the surface roughness Ra was 1.0 ⁇ m or less, and the residual stress was 138 MPa or less. The results of Examples 5 to 9 are shown in Tables 5 to 9, respectively.
  • Comparative Examples 1 to 3 experiments were conducted assuming a polishing apparatus in which two, three, or five consecutive wheels using various count wheels as the abrasive were arranged. Nickel-based alloy tubes (60% Ni, 30% Cr, 10% Fe) were polished with the respective abrasives, and the surface roughness Ra, the polishing amount and the residual stress after polishing with each abrasive were measured. In this experiment, the target after polishing was 80 ⁇ m, the surface roughness Ra was 1.0 ⁇ m or less, and the residual stress was 138 MPa or less. The results of Comparative Examples 1 to 3 are shown in Tables 10 to 12, respectively.
  • Examples 10 to 19 of the present invention experiments were conducted assuming a polishing apparatus in which five consecutive wheels using various count wheels were used as the abrasive.
  • (Ra i -Ra i + 1 ) / (OD i -OD i + 1 ) was mainly changed.
  • Five wheel-type abrasives with various counts were prepared, and nickel-base alloy tubes (60% Ni, 30% Cr, 10% Fe) were polished with each abrasive, and the surface after polishing with each abrasive Roughness Ra, polishing amount and residual stress were measured.
  • the target after polishing was 70 to 90 ⁇ m
  • the surface roughness Ra was 1.0 ⁇ m or less
  • the residual stress was 138 MPa or less.
  • the results of Examples 5 to 9 are shown in Tables 5 to 9, respectively.
  • Ra 1 / OD 1 is within the range specified by the present invention, so that the residual stress and the polishing amount are within the target value range. I was able to.
  • Examples 16 and 17 see Tables 19 and 20, since (Ra i -Ra i + 1 ) / (OD i -OD i + 1 ) was too small, the surface roughness deteriorated.
  • Examples 20 to 23 an experiment was performed assuming a polishing apparatus in which five wheels with various counts were used as the abrasive.
  • a ferritic stainless steel pipe SUS410L was polished, and the surface roughness Ra, the polishing amount and the residual stress after polishing with each abrasive were measured.
  • the target after polishing was 70 to 85 ⁇ m
  • the surface roughness Ra was 1.0 ⁇ m or less
  • the residual stress was 138 MPa or less.
  • Tables 23 to 26 The results are shown in Tables 23 to 26.
  • Ra 1 / OD 1 is in the range specified by the present invention. Therefore, even in the polishing of ferritic stainless steel pipes, the residual stress and the polishing amount was able to be within the range of the target value.
  • the production efficiency of the steam generator heat transfer tube for a nuclear power plant can be improved.

Abstract

【課題】原子力発電プラント用蒸気発生器伝熱管の製造効率を向上させる 【解決手段】管1を焼鈍する焼鈍工程と、管1外面を研磨する研磨工程と、管1を酸化抑制雰囲気の環境下で熱処理を行う熱処理工程とを有し、前記研磨工程が、管1を円周方向(図中矢印A)に回転させた状態で長手方向(図中矢印B)に移送し、管1外面にホイ-ル型の研磨材2を当接させて研磨して、原子力発電プラント用蒸気発生器伝熱管を製造する。

Description

原子力発電プラント用蒸気発生器伝熱管の製造方法および蒸気発生器伝熱管
 本発明は、原子力発電プラントにおいて使用される蒸気発生器伝熱管を製造する方法および蒸気発生器伝熱管に関する。
 原子力発電プラントは、核分裂のエネルギーにより蒸気を発生させ、その蒸気をタービンに吹き付け、回転させることにより発電するものである。原子炉には、核分裂のエネルギーにより発生した蒸気でタービンを回す方式の沸騰水型軽水炉(BWR)、核分裂のエネルギーにより発生させた熱水(一次冷却水)で、別の蒸気(二次冷却水)を発生させ、その蒸気でタービンを回す方式の加圧水型原子炉(PWR)など、様々な種類のものがある。
 加圧水型原子炉において、高圧に加圧された1次冷却水は、沸騰しないまま約300°Cの熱水になって蒸気発生器中に無数に設置された直径2cmほどの蒸気発生器細管(SG管)の中を移送され、SG管の外を流れる二次冷却水を加熱、沸騰させる。二次冷却水に熱を奪われた一次冷却水は、原子炉に戻り、再度加熱され、蒸気になった2次冷却水はタービンを廻したあと、復水器で冷やされ、再び蒸気発生器へ戻り、加熱される。
 蒸気発生器の部材には、機械的性能に優れているとともに、耐食性に優れる、60%Ni-30%Cr-10%Fe合金などのニッケル基合金が使用されている。SG管は、所定の化学組成を有する合金を熱間加工および冷間加工によって所定の製品形状に加工した後、熱間加工時に生じた炭化物の固溶、加工工程で生じた内部の歪み除去などを目的とした熱処理(焼鈍)工程(以下、「第一熱処理工程」という。)と、直線性を調整する矯正工程と、各工程によって生じた傷の補修と表面粗さの調整などを目的とした研磨工程と、第一熱処理工程で固溶させたCをCr炭化物(Cr23)として粒界に半連続状に析出させること、およびCr炭化物近傍のCr欠乏層を回復させることを目的とした熱処理工程(以下、「第二熱処理工程」という。)とを経て製造される。
 出願人は、SG管の製造方法に関して、特許文献1~6に係る発明を開示している。
特開平05-112842号公報 特開平05-195191号公報 特開平7-252564号公報 特開2002-121630号公報 特開2007-224371号公報 特開2007-224372号公報
 原子力発電プラントにおいて使用される蒸気発生器伝熱管の研磨工程は、厳格な研磨代の規制(0.01mm以上)と管表面の応力の残留レベルの規制(138MPa以下)とを満たす必要があり、このような厳格な条件下で研磨するために、従来の研磨工程においては、ベルトペーパー式研磨が採用されていた。例えば、特許文献1の実施例においては、第一熱処理工程と第二熱処理工程との間に実施する研磨工程を「エメリー紙320番」を用いて行っている。しかし、前後の熱処理工程は連続的に行うことができるが、研磨工程は必ず研磨材の交換を要する。特に、ベルトペーパー式研磨は、研磨材が脱落しやすく、研磨量が低下しやすい。このため、研磨紙の交換頻度が高くなってしまうので、SG管の製造効率を下げる原因となっていた。
 研磨方式としては、自駆動により回転するフラップホイルを用いて管表面を研磨する方法(以下、「ホイール式研磨」という。)が様々な分野で用いられている。このホイール式研磨は、研削能力が高いため、高効率の研削には向いているものの、下記の問題がある。
 すなわち、SG管の外面研磨工程においては、研磨量、研磨後の表面粗さおよび残留応力を厳密に管理することが必要であるが、ホイール研磨をそのまま適用すると、過研磨が生じやすいこと、ならびに、研磨量および表面粗さが長さ方向(特に、両管端)において変動しやすいことなどの問題を避けられないと考えられていた。特に、原子力発電プラント用蒸気発生器伝熱管の製造工程における研磨工程は、既に述べたように、第一熱処理工程後に行われるものであるため、研磨工程において残留応力を生じさせる可能性があるホイ-ル式研磨を原子力発電プラント用蒸気発生器伝熱管の研磨工程に採用するのは困難であると考えられており、研磨工程にホイ-ル式研磨を採用した例はない。このため、研磨量の少ないベルトペーパー式研磨が採用されてきた。
 本発明者らは、このような従来技術の問題を解決するべく、研磨工程後における管の表面粗さRaについては1μm以下、好ましくは0.5μm以下、研磨量(研磨前後の外径の差異を示す。)については80μm以上、残留応力については138MPa以下とすることを目標として鋭意研究を重ねた結果、ホイ-ル式研磨であっても、残留応力を付加することなく、研磨できることを見出した。本発明者らは、特に、原子力発電プラント用蒸気発生器伝熱管における研磨工程を、粗研磨工程、中間研磨工程および仕上研磨工程に細分化すること、特に、各工程を複数ヘッドで研磨を行う多段式の研磨工程とした場合に規定値を超える残留応力を付加しないことを見出した。
 本発明は、このような知見に基づいてなされたものであり、製造効率を向上させた原子力発電プラント用蒸気発生器伝熱管の製造方法および蒸気発生器伝熱管を提供することを目的とする。
 本発明は、下記の原子力発電プラント用蒸気発生器伝熱管の製造方法を要旨とする。
 (A)管を焼鈍する焼鈍工程と、管外面を研磨する研磨工程と、管を酸化抑制雰囲気(真空、またはArなどの不活性ガス雰囲気を意味する)環境下で熱処理を行う熱処理工程とを有し、前記研磨工程が、管を円周方向に回転させた状態で長手方向に移送し、該管外面にホイ-ル型の研磨材を当接させて研磨する、原子力発電プラント用蒸気発生器伝熱管の製造方法。
 (B)前記研磨工程が、下記の(1)式を満足する、(A)の原子力発電プラント用蒸気発生器伝熱管の製造方法。
 Ra/OD≧0.10  (1)
 ただし、上記式中の各記号の意味は下記のとおりである。
Ra:最初の研磨材での研磨後の表面粗さRa(μm)
OD:最初の研磨材での研磨後の研磨量(μm)
 (C)前記研磨工程後における管の残留応力が138MPa以下である、(A)または(B)の原子力発電プラント用蒸気発生器伝熱管の製造方法。
 (D)前記研磨工程後における管の表面粗さRaが1.0μm以下であり、前記研磨工程後における研磨量が80μm以上である、(A)~(C)のいずれかの原子力発電プラント用蒸気発生器伝熱管の製造方法。
 (E)前記研磨工程が、5連以上10連以下の研磨材で研磨される、(A)~(D)のいずれかの原子力発電プラント用蒸気発生器伝熱管の製造方法。
 本発明によれば、原子力発電プラント用蒸気発生器伝熱管の製造効率を向上させることができる。
本発明に係る原子力発電プラント用蒸気発生器伝熱管の製造方法を説明する図
 本発明の対象である原子力発電プラント用蒸気発生器伝熱管は、穿孔圧延、延伸圧延、定径圧延などの通常の工程により継目無管を得た後、その管を焼鈍する工程(前掲の第一熱処理工程)、管外面を研磨する研磨工程、酸化抑制雰囲気の環境下で熱処理を行う熱処理工程(前掲の第二熱処理工程)を経て製造される。
 図1に示すように、本発明に係る原子力発電プラント用蒸気発生器伝熱管の製造方法においては、管1を円周方向(図中矢印A)に回転させた状態で長手方向(図中矢印B)に移送して、管1の外面にホイ-ル型の研磨材2を当接させて研磨することを特徴とするものである。このとき、例えば、管1の外面にホイ-ル型の研磨材2をその円周方向(図中矢印C)に回転させた状態にある当接させることで、研磨を実施することができる。
 このようにホイ-ル型の研磨材を用いて管外面の研磨を行えば、従来法で使用されているベルトペーパーに比べて研磨材の機械強度が高い為、研磨時の荷重一定制御が容易であり、ホイール材が摩耗しても、研磨材の外周速を一定とするようにホイールを駆動する電動機の回転数を制御しつつ、負荷電流を一定(荷重一定制御)とするようにホイ-ルの押付け力を制御することで、ホイールが摩耗しても研磨量を一定に保つことが容易となる。
 ホイール研磨では、管を回転させつつスキュー角度を与えて軸方向に送りながら、回転するホイールを当接して研磨するのがよい。このとき、スキュー角度は、送りピッチが5~15mm/revとなるように調整するのがよい。管の回転数は、管の回転周速度をホイール回転の周速度と同等とし、ホイールの回転方向と逆回転とするのがよい。このとき、管が高速で回転するため、大きな軸送りを加えると管端部の振れが大きくなり、自動搬送が困難となる。このため、たとえば最大送りピッチ(mm/rev)は、外径値の70%以下という制限を加えることが望ましい。
 本発明においては、特に、研磨工程が、粗研磨工程、中間研磨工程および仕上研磨工程を有し、少なくとも粗研磨工程および仕上研磨工程が、それぞれ複数の研磨材で研磨する構成となっていることが好ましい。このように三段階の工程によって所定の研磨量および表面粗さになるまで研磨を行えば、管に生じる残留応力を抑制しつつ、管外面の表面粗さの調整を容易に行えるとともに、十分な研磨量を確保できるので、原子力発電プラント用蒸気発生器伝熱管研磨を効率的に行うことができる。特に、5連以上の研磨材で研磨されることがより好ましい。ただし、研磨ヘッド数は、増加させると設備費用が増大するので、10連以下とするのが好ましい。
 研磨工程は、管の表面粗さおよび研磨量が下記の(1)式を満足するような条件を採用するのが好ましい。これは、本発明者らの研究により、原子力発電プラント用蒸気発生器伝熱管(SG管)にホイール研磨を適用する場合には、最初の研磨材における条件が最も大きな影響を与えるため、最初の研磨材での研磨後の表面粗さRa(μm)および研磨量(μm)を規定したものである。
 Ra/OD≧0.10  (1)
 ただし、上記式中の各記号の意味は下記のとおりである。
Ra:最初の研磨材での研磨後の表面粗さRa(μm)
OD:最初の研磨材での研磨後の研磨量(μm)
 これは、Ra/ODが0.10未満では、研磨工程後の管の残留応力が138MPaを超える場合があるからである。また、残留応力を低下させる観点からは大きいことが好ましい。よって、Ra/ODが0.10以上となるように、最初の研磨材での研磨後の表面粗さRaおよび研磨量を調整することが好ましい。Ra/ODは、0.20以上とするのがより好ましい。一方、Ra/ODが大きすぎると、初段の研磨量が不足し、最終的な研磨量を達成できないことがある。また、ヘッド数が少ない場合には、最終的な表面粗さを達成することが困難となる。よって、Ra/ODは、0.40以下とするのが好ましい。
 研磨工程は、管の表面粗さおよび研磨量が下記の(2)式を満足するような条件を採用するのが好ましい。
 (Ra-Rai+1)/(OD-ODi+1)≧0.010  (2)
 ただし、上記式中の各記号の意味は下記のとおりである。
Ra:上流からi番目の研磨材での研磨後の表面粗さRa(μm)
OD:上流からi番目の研磨材での研磨後の研磨量(μm)
 i:正の整数
 (Ra-Rai+1)/(OD-ODi+1)が0.010未満では、研磨工程後の管の残留応力が138MPaを超える場合がある。また、研磨量が多すぎて、過研磨となる恐れがある。よって、いずれの研磨材における研磨後においても、表面粗さRaおよび研磨
量が上記(2)式を満足する範囲とすることが好ましい。(Ra-Rai+1)/(OD-ODi+1)は、残留応力を低下させる観点からは大きいことが好ましく、0.015以上とするのが好ましい。一方、(Ra-Rai+1)/(OD-ODi+1)が大きすぎると、途中研磨の研磨量が不足することがある。また、表面粗さが改善されずに、最終的な表面粗さを達成することが困難となる。よって、(Ra-Rai+1)/(OD-ODi+1)は、ニッケル基合金の場合は0.05以下、フェライト系ステンレス鋼の場合は0.09以下とするのが好ましい。(Ra-Rai+1)/(OD-ODi+1)の上限値は、材質により適正値を設定すれば良い。
 ここで、外径19mm、長さ25mの継目無ステンレス鋼管を、8m/minの速度で研磨し、研磨量が0.08mm以上で、かつ表面粗さRaが0.5μm以下に仕上げる場合を例にとって、粗研磨工程、中間研磨工程および仕上研磨工程の各工程における条件を説明する。
 粗研磨工程、中間研磨工程および仕上研磨工程の各工程の研磨量をおおよそ0.04mm、0.03mmおよび0.01mmに配分し、また、粗研磨工程、中間研磨工程および仕上研磨工程の各工程出側の管表面粗さRaは、それぞれ2.5、1.0および0.5となる条件の場合、例えば、粗研磨工程は、#80のホイ-ル型の研磨材を2~4機設置し、中間研磨工程は、#120のホイ-ル型の研磨材を2~6機設置、仕上研磨工程は、PVAホイ-ル型の研磨材を2~4機設置して行うことができる。
 第一熱処理工程は、熱間加工時に生じた炭化物の固溶、加工工程で生じた内部の歪み除去などを実現するために通常採用される条件で行うことができる。特に、その合金の炭化物の完全固溶温度T℃以上で(T+100)℃以下の温度域で1分以上保持する工程とすることが好ましい。第一熱処理工程の保持温度が、その合金の炭化物が完全に固溶する温度T℃未満の場合、未固溶炭化物が生成し、引張強さ、0.2%耐力、硬さなどが必要以上に大きくなるだけでなく、焼鈍後の冷却過程または次の熱処理の再加熱保持過程で粒界に生成するCr炭化物が減少し、耐粒界応力腐食割れ性が低下する恐れがある。
 一方、保持温度が(T+100)℃を超える場合、結晶粒度が著しく粗大化し、耐粒界応力腐食割れ性が低下するとともに引張強さ、0.2%耐力、硬さなどにおいても所定の特性が得られなくなる恐れがある。保持温度の好ましい下限は、(T+20)℃であり、好ましい上限は(T+80)℃である。なお、保持時間を1分以上とするのは、鍛造等の熱間加工の際に析出した炭化物を完全に固溶させるのに好ましいためである。保持時間の上限は、実操業上60分程度となる。
 第一熱処理工程後は、強制冷却により室温まで冷却した後、次工程に供給すればよい。なお、第一熱処理工程と研磨工程との間に、管の曲りを矯正する矯正工程を設けてもよい。
 第二熱処理工程は、第一熱処理工程で固溶させたCをCr炭化物(Cr23)として粒界に半連続状に析出させること、およびCr炭化物近傍のCr欠乏層を回復させるために通常採用される条件で行うことができる。例えば、処理温度は、875℃を超えると本発明合金のCr炭化物の生成温度域から外れ、Cr炭化物の析出がほとんど起こらなくなる恐れがあるが、600℃未満では100時間を超える保持が必要になり製造効率が悪くなる恐れがある。よって、保持温度は、600~875℃の範囲とするのが好ましい。ただし、熱処理の温度と保持時間に依存し、原理的には高温では短時間でよく、低温では長時間を要する。保持時間については、800~875℃の温度の場合、0.03時間以上保持することが好ましく、800℃未満では温度低下と共に保持時間を長くして、粒界に十分な量のCr炭化物を析出させることが好ましい。ただし、製造効率の観点から、保持時間の好ましい上限は100時間である。
 第二熱処理工程後は、強制冷却などにより室温まで冷却した後、次工程に供給すればよい。
 実施例1では、研磨材として各種番手のホイ-ルを用いた10連研磨装置を想定した実験を行った。すなわち、各種番手の10個のホイ-ル型研磨材を用意し、それぞれの研磨材でニッケル基合金管(60%Ni、30%Cr、10%Fe)を研磨し、各研磨材による研磨後の表面粗さRa、研磨量および残留応力を測定した。なお、この実験では、研磨量は100μm、表面粗さRaは0.5μm以下、残留応力は138MPa以下を目標とした。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、表中の「ΔRa」は、「Ra-Rai+1」を、「ΔOD」は「OD-ODi+1」をそれぞれ意味する。また、No.1~3が粗研磨工程、No.4~7が中間研磨工程、No.8~10が仕上研磨工程である。
 表1に示すように、実施例1では、Ra/ODが0.289と高く、いずれの研磨材における研磨後においても、(Ra-Rai+1)/(OD-ODi+1)が0.015以上であり、残留応力は、いずれの研磨材による研磨後においても目標値を満足していた。また、目標とする研磨量および表面粗さも満足していた。
 実施例2では、研磨材として各種番手のホイ-ルを用いた5連並べた研磨装置を想定した実験を行った。すなわち、各種番手の5個のホイ-ル型研磨材を用意し、それぞれの研磨材で13%Crフェライト系ステンレス鋼管を研磨し、各研磨材による研磨後の表面粗さRa、研磨量および残留応力を測定した。なお、この実験においては、研磨量は90μm、表面粗さRaは0.5μm以下、残留応力は138MPa以下を目標とした。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 なお、表中の「ΔRa」は、「Ra-Rai+1」を、「ΔOD」は「OD-ODi+1」をそれぞれ意味する。また、No.1、2が粗研磨工程、No.3が中間研磨工程、No.4、5が仕上研磨工程である。
 表2に示すように、実施例2では、Ra/ODが0.119であり、いずれの研磨材における研磨後においても、(Ra-Rai+1)/(OD-ODi+1)が0.015以上であり、残留応力は、いずれの研磨材による研磨後においても目標値を満足していた。また、目標とする研磨量および表面粗さも満足していた。
 実施例3では、研磨材として各種番手のホイ-ルを用いた5連並べた研磨装置を想定した実験を行った。すなわち、各種番手の5個のホイ-ル型研磨材を用意し、それぞれの研磨材でニッケル基合金管(60%Ni、30%Cr、10%Fe)を研磨し、各研磨材による研磨後の表面粗さRa、研磨量および残留応力を測定した。なお、この実験においては、研磨量は85μm、表面粗さRaは0.5μm以下、残留応力は138MPa以下を目標とした。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 なお、表中の「ΔRa」は、「Ra-Rai+1」を、「ΔOD」は「OD-ODi+1」をそれぞれ意味する。また、No.1、2が粗研磨工程、No.3が中間研磨工程、No.4、5が仕上研磨工程である。
 表3に示すように、実施例3では、Ra/ODが0.103であり、いずれの研磨材における研磨後においても、(Ra-Rai+1)/(OD-ODi+1)が0.015以上であり、残留応力は、いずれの研磨材による研磨後においても目標値を満足していた。また、目標とする研磨量および表面粗さも満足していた。
 実施例4では、実施例1と同じホイ-ルを10連並べた研磨装置を用いてニッケル基合金管(60%Ni、30%Cr、10%Fe)を研磨し(研磨速度8m/min)、その時のホイール寿命と稼働率を調査した。比較例1として、ベルトペーパーを5連並べた研磨装置2台(合わせて10連)を用いてニッケル基合金管(60%Ni、30%Cr、10%Fe)を研磨し(研磨速度4m/min)、その時の稼働率を調査した。なお、この実験においては、研磨量は100μm、表面粗さRaは0.5μm以下を目標とした。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、比較例1では、ダミー研磨を要するとともに、20本毎に段取り替えをしなければならず、稼働率が70%であるのに対して、実施例4では、ダミー研磨の必要がなく、段取り替えも300本毎でよく、稼働率も90%と高かった。
 なお、稼働率は、「非稼働時間/(稼働時間+非稼働時間)」(ただし、稼働時間:研磨装置の材料研磨時間(次材の投入動作時間を含む)、非稼働時間:摩耗した研磨材の交換時間およびダミー材の研磨時間の合計時間である。)で求められる。
 ここで、ベルトペーパー研磨では、研磨能力(単位長さ当たりの研磨量)が、研磨に伴い順次低下する。特に、段取り替え直後からの複数本では、研磨粉の脱落が生じやすく、研磨能力の変動が特に大きいため、予定された研磨量を確保することが困難である。よって、ベルトペーパー研磨では、予めダミー材を複数本研磨し、研磨能力の変動が小さくなってから製品を研磨するのが一般的である。これに対して、ホイール研磨では、段取り替え直後から研磨量が一定となるように荷重を制御することが可能である。よって、ホイール研磨では、段取り替え時または交換時の研磨品質の確認作業を除けば、予めダミー材を研磨する必要がない。
 なお、ベルトペーパー研磨でも、荷重制御を行うことは可能であるが、ベルト自体が変動を有するため、均一な研磨能力が得られない。また、ベルトペーパー研磨では、摩耗代が小さく20本毎の交換が必要であり、段取り替えのたびに荷重制御のパラメーターを再度調整することは実用的でない。
 実施例5~9では、研磨材として各種番手のホイ-ルを用いた3連並べた研磨装置を想定した実験を行った。すなわち、各種番手の3個のホイ-ル型研磨材を用意し、それぞれの研磨材でニッケル基合金管(60%Ni、30%Cr、10%Fe)を研磨し、各研磨材による研磨後の表面粗さRa、研磨量および残留応力を測定した。なお、この実験においては、研磨後の研磨量は80μm、表面粗さRaは1.0μm以下、残留応力は138MPa以下を目標とした。実施例5~9の結果を表5~9にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表5~9に示すように、実施例5~9は、Ra/ODが本発明で規定される範囲にあるので、残留応力および研磨量を目標値の範囲内にすることができた。また、表面粗さにおいても、Ra/ODが0.42と高い本発明例9を除き、いずれも目標値以下にすることができた。
 比較例1~3では、研磨材として各種番手のホイ-ルを用いた2連、3連または5連並べた研磨装置を想定した実験を行った。それぞれの研磨材でニッケル基合金管(60%Ni、30%Cr、10%Fe)を研磨し、各研磨材による研磨後の表面粗さRa、研磨量および残留応力を測定した。なお、なお、この実験においては、研磨後の研磨量は80μm、表面粗さRaは1.0μm以下、残留応力は138MPa以下を目標とした。比較例1~3の結果を表10~12にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表10~12に示すように、Ra/ODが本発明で規定される範囲を外れる比較例1~3では、研磨装置のヘッド数に関わらず、残留応力および表面粗さを目標値以下にすることができなかった。
 次に、本発明例10~19では、研磨材として各種番手のホイ-ルを用いた5連並べた研磨装置を想定した実験を行った。この実験では、主として、(Ra-Rai+1)/(OD-ODi+1)を変化させた。各種番手の5個のホイ-ル型研磨材を用意し、それぞれの研磨材でニッケル基合金管(60%Ni、30%Cr、10%Fe)を研磨し、各研磨材による研磨後の表面粗さRa、研磨量および残留応力を測定した。なお、この実験においては、研磨後の研磨量は70~90μm、表面粗さRaは1.0μm以下、残留応力は138MPa以下を目標とした。実施例5~9の結果を表5~9にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 表13~22に示すように、実施例10~19においては、いずれもRa/ODが本発明で規定される範囲にあるので、残留応力および研磨量を目標値の範囲内にすることができた。その一方で、実施例16および17(表19および20参照)においては、(Ra-Rai+1)/(OD-ODi+1)が小さすぎるため、表面粗さが劣化した。
 次に、実施例20~23では、研磨材として各種番手のホイ-ルを用いた5連並べた研磨装置を想定した実験を行った。この実験では、フェライト系ステンレス鋼管(SUS410L)を研磨し、各研磨材による研磨後の表面粗さRa、研磨量および残留応力を測定した。なお、この実験においては、研磨後の研磨量は70~85μm、表面粗さRaは1.0μm以下、残留応力は138MPa以下を目標とした。その結果を表23~26に示す。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 表23~26に示すように、実施例20~23においては、いずれもRa/ODが本発明で規定される範囲にあるので、フェライト系ステンレス鋼管の研磨においても、残留応力および研磨量を目標値の範囲内にすることができた。
 本発明によれば、原子力発電プラント用蒸気発生器伝熱管の製造効率を向上させることができる。
1.管
2.研磨材

Claims (5)

  1.  管を焼鈍する焼鈍工程と、管外面を研磨する研磨工程と、管を酸化抑制雰囲気の環境下で熱処理を行う熱処理工程とを有し、
     前記研磨工程が、管を円周方向に回転させた状態で長手方向に移送し、該管外面にホイ-ル型の研磨材を当接させて研磨することを特徴とする原子力発電プラント用蒸気発生器伝熱管の製造方法。
  2.  前記研磨工程が、下記の(1)式を満足することを特徴とする請求項1に記載の原子力発電プラント用蒸気発生器伝熱管の製造方法。
     Ra/OD≧0.10  (1)
     ただし、上記式中の各記号の意味は下記のとおりである。
    Ra:最初の研磨材での研磨後の表面粗さRa(μm)
    OD:最初の研磨材での研磨後の研磨量(μm)
  3.  前記研磨工程後における管の残留応力が138MPa以下であることを特徴とする請求項1または2に記載の原子力発電プラント用蒸気発生器伝熱管の製造方法。
  4.  前記研磨工程後における管の表面粗さRaが1.0μm以下であり、前記研磨工程後における研磨量が80μm以上であることを特徴とする請求項1から3までのいずれかに記載の原子力発電プラント用蒸気発生器伝熱管の製造方法。
  5.  前記研磨工程が、5連以上10連以下の研磨材で研磨されることを特徴とする請求項1から4までのいずれかに記載の原子力発電プラント用蒸気発生器伝熱管の製造方法。
PCT/JP2012/066496 2011-06-29 2012-06-28 原子力発電プラント用蒸気発生器伝熱管の製造方法および蒸気発生器伝熱管 WO2013002314A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2839831A CA2839831C (en) 2011-06-29 2012-06-28 Producing method of heat-exchanger tube for steam generator for use in nuclear power plant and heat-exchanger tube for steam generator
EP12738236.4A EP2728585B1 (en) 2011-06-29 2012-06-28 Method for producing steam generator heat transfer tube for nuclear power plant
CN201280032232.4A CN103635973B (zh) 2011-06-29 2012-06-28 原子能发电厂用蒸气发生器传热管的制造方法及蒸气发生器传热管
KR1020147002251A KR101602710B1 (ko) 2011-06-29 2012-06-28 원자력 발전 플랜트용 증기 발생기 전열관의 제조 방법 및 증기 발생기 전열관
JP2012529829A JP5218704B1 (ja) 2011-06-29 2012-06-28 原子力発電プラント用蒸気発生器伝熱管の製造方法および蒸気発生器伝熱管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011144224 2011-06-29
JP2011-144224 2011-06-29

Publications (1)

Publication Number Publication Date
WO2013002314A1 true WO2013002314A1 (ja) 2013-01-03

Family

ID=46551825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066496 WO2013002314A1 (ja) 2011-06-29 2012-06-28 原子力発電プラント用蒸気発生器伝熱管の製造方法および蒸気発生器伝熱管

Country Status (6)

Country Link
EP (1) EP2728585B1 (ja)
JP (1) JP5218704B1 (ja)
KR (1) KR101602710B1 (ja)
CN (1) CN103635973B (ja)
CA (1) CA2839831C (ja)
WO (1) WO2013002314A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018144197A (ja) * 2017-03-08 2018-09-20 Jfe建材株式会社 パイプ表面研磨方法
JP2019502106A (ja) * 2015-11-24 2019-01-24 フラマトムFramatome 蒸気発生器並びに対応する製造及び使用方法
CN111266986A (zh) * 2020-03-02 2020-06-12 璁稿嘲 一种箱包制造用拉杆表面抛光设备
JP2020144138A (ja) * 2020-05-14 2020-09-10 フラマトムFramatome 蒸気発生器並びに対応する製造及び使用方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111113229A (zh) * 2019-12-13 2020-05-08 马琴英 一种建筑领域用双工位式环保管道外壁除锈设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624557A (ja) * 1985-06-27 1987-01-10 Kobe Steel Ltd 円筒管の偏肉修正方法
JPH0280552A (ja) * 1988-09-14 1990-03-20 Sumitomo Metal Ind Ltd 加熱器管用ステンレス鋼の熱処理方法
JPH05112842A (ja) 1991-10-21 1993-05-07 Sumitomo Metal Ind Ltd 低被曝性で耐アルカリ腐食性の良好なNi−Cr合金
JPH05195191A (ja) 1992-01-17 1993-08-03 Sumitomo Metal Ind Ltd 原子炉用伝熱管の表面処理方法
JPH07252564A (ja) 1994-03-10 1995-10-03 Sumitomo Metal Ind Ltd 耐食性と強度に優れるNi基合金材
JP2002079444A (ja) * 2000-09-07 2002-03-19 Tokuyama Toshiba Ceramics Co Ltd 石英ガラス材の外周面研削方法および石英ガラス材の外周面研削装置並びに石英ガラス材の外周面研削装置の制御方法
JP2002121630A (ja) 2000-08-11 2002-04-26 Sumitomo Metal Ind Ltd Ni基合金製品とその製造方法
JP2007224372A (ja) 2006-02-24 2007-09-06 Sumitomo Metal Ind Ltd 含Crニッケル基合金管の製造方法
JP2007224371A (ja) 2006-02-24 2007-09-06 Sumitomo Metal Ind Ltd 含Crニッケル基合金管の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19855102A1 (de) * 1998-11-28 2000-06-08 Loeser Gmbh Vorrichtung zum Schleifen und Polieren
ITMI20020684A1 (it) * 2002-04-02 2003-10-02 Olimpia 80 Srl Apparecchiatura e procedimento per finitura superficiale di tubi mediante ruote lamellari
FR2874119B1 (fr) * 2004-08-04 2006-11-03 Framatome Anp Sas Procede de fabrication d'un tube de gainage de combustible pour reacteur nucleaire, et tube ainsi obtenu
DE102006035164B4 (de) * 2006-07-29 2009-01-15 Walter Maschinenbau Gmbh Werkzeugmaschine mit verbessertem Rundlauf
CN201023204Y (zh) * 2006-12-15 2008-02-20 中国科学院金属研究所 一种小直径管材、丝材抛磨机
FR2910912B1 (fr) * 2006-12-29 2009-02-13 Areva Np Sas Procede de traitement thermique de desensibilisation a la fissuration assistee par l'environnement d'un alliage a base nickel, et piece realisee en cet alliage ainsi traitee

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624557A (ja) * 1985-06-27 1987-01-10 Kobe Steel Ltd 円筒管の偏肉修正方法
JPH0280552A (ja) * 1988-09-14 1990-03-20 Sumitomo Metal Ind Ltd 加熱器管用ステンレス鋼の熱処理方法
JPH05112842A (ja) 1991-10-21 1993-05-07 Sumitomo Metal Ind Ltd 低被曝性で耐アルカリ腐食性の良好なNi−Cr合金
JPH05195191A (ja) 1992-01-17 1993-08-03 Sumitomo Metal Ind Ltd 原子炉用伝熱管の表面処理方法
JPH07252564A (ja) 1994-03-10 1995-10-03 Sumitomo Metal Ind Ltd 耐食性と強度に優れるNi基合金材
JP2002121630A (ja) 2000-08-11 2002-04-26 Sumitomo Metal Ind Ltd Ni基合金製品とその製造方法
JP2002079444A (ja) * 2000-09-07 2002-03-19 Tokuyama Toshiba Ceramics Co Ltd 石英ガラス材の外周面研削方法および石英ガラス材の外周面研削装置並びに石英ガラス材の外周面研削装置の制御方法
JP2007224372A (ja) 2006-02-24 2007-09-06 Sumitomo Metal Ind Ltd 含Crニッケル基合金管の製造方法
JP2007224371A (ja) 2006-02-24 2007-09-06 Sumitomo Metal Ind Ltd 含Crニッケル基合金管の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2728585A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019502106A (ja) * 2015-11-24 2019-01-24 フラマトムFramatome 蒸気発生器並びに対応する製造及び使用方法
JP2018144197A (ja) * 2017-03-08 2018-09-20 Jfe建材株式会社 パイプ表面研磨方法
JP7028565B2 (ja) 2017-03-08 2022-03-02 Jfe建材株式会社 パイプ表面研磨方法
CN111266986A (zh) * 2020-03-02 2020-06-12 璁稿嘲 一种箱包制造用拉杆表面抛光设备
CN111266986B (zh) * 2020-03-02 2021-02-26 许峰 一种箱包制造用拉杆表面抛光设备
JP2020144138A (ja) * 2020-05-14 2020-09-10 フラマトムFramatome 蒸気発生器並びに対応する製造及び使用方法

Also Published As

Publication number Publication date
CN103635973B (zh) 2016-03-30
CA2839831C (en) 2016-12-13
EP2728585A4 (en) 2015-04-08
JPWO2013002314A1 (ja) 2015-02-23
EP2728585A1 (en) 2014-05-07
JP5218704B1 (ja) 2013-06-26
KR20140028125A (ko) 2014-03-07
KR101602710B1 (ko) 2016-03-21
EP2728585B1 (en) 2016-03-30
CN103635973A (zh) 2014-03-12
CA2839831A1 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
JP5218704B1 (ja) 原子力発電プラント用蒸気発生器伝熱管の製造方法および蒸気発生器伝熱管
EP2728031B1 (en) Austenitic stainless steel tube
JP6244938B2 (ja) オーステナイト系ステンレス鋼溶接継手
EP1361003A2 (en) Method for manufacuturing seamless steel tube
EP2581464A1 (en) Austenitic stainless steel tube having excellent steam oxidation resistance, and method for producing same
CN101956785B (zh) 农耕机减速器零度弧齿锥齿轮及加工方法
CN108356088B (zh) 一种纯钛大规格板材的生产加工方法
CN113913813A (zh) 一种用于修复铬钼合金的纳米强化Inconel718激光涂层性能的方法
CN110756616B (zh) 一种高碳马氏体不锈钢管材减量化的制备方法
CN108103495B (zh) 一种耐高温高熵合金工具钢涂层材料及涂层的制备方法
CN111618112A (zh) 奥氏体耐热不锈钢无缝管的热挤压制造方法
JP6432614B2 (ja) 金属管の冷間圧延方法および製造方法
CN116441862A (zh) 一种延长衬板使用寿命的工艺
CN115595471B (zh) 利用合金粉末提高连续退火炉输送辊寿命的激光加工方法
JP5462202B2 (ja) 曲がり矯正方法
CN110885922A (zh) 高等级耐蚀合金冷轧薄型材料的制造方法
CN115652205B (zh) 一种不易产生裂纹的非调质曲轴用钢及表面质量控制方法
CN111069708A (zh) 一种应用于减速器的弧形齿加工工艺
CN114700698B (zh) 一种镍基耐腐蚀合金带材的加工工艺
CN110355230B (zh) 一种耐高温熔盐腐蚀u型换热管
WO2020260299A1 (en) A laying head pipe
CN104708090A (zh) 一种高速钢轧辊的铣削方法
CN116623024A (zh) 细晶高强度GH4720Li合金小规格棒材的制备方法
CN113134706A (zh) 一种高温超长跨距大扭矩螺旋轴及其加工方法
CN110607428A (zh) 一种面心立方结构金属的耐腐蚀处理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012529829

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201280032232.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12738236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2839831

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012738236

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147002251

Country of ref document: KR

Kind code of ref document: A