WO2013001895A1 - Carrier for material immobilization for use in immunoassay - Google Patents

Carrier for material immobilization for use in immunoassay Download PDF

Info

Publication number
WO2013001895A1
WO2013001895A1 PCT/JP2012/060223 JP2012060223W WO2013001895A1 WO 2013001895 A1 WO2013001895 A1 WO 2013001895A1 JP 2012060223 W JP2012060223 W JP 2012060223W WO 2013001895 A1 WO2013001895 A1 WO 2013001895A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
immobilized
carrier
antibody
group
Prior art date
Application number
PCT/JP2012/060223
Other languages
French (fr)
Japanese (ja)
Inventor
則彦 大河内
弘人 菖蒲
裕一 田中
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2013001895A1 publication Critical patent/WO2013001895A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54353Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent

Definitions

  • the present invention relates to a solid phase carrier for use in an immunoassay.
  • Enzyme-Linked Immunosorbent Assay (hereinafter referred to as ELISA), which is a kind of immunoassay, is used in a wide range of fields including drug discovery, diagnosis, environmental measurement, and food.
  • a typical ELISA includes (1) antibody or antigen immobilization (solid phase), (2) binding of a target substance, (3) binding of an enzyme-labeled antibody, (4) enzymatic reaction, (5) optical detection. It consists of five steps (absorption, fluorescence, luminescence). Horseradish peroxidase or alkaline phosphatase is used as the labeling enzyme.
  • ELISA is particularly sensitive among many immunoassays.
  • Patent Document 1 discloses a method of immobilizing an antibody on a gold surface via a PEG linker. Specifically, a nonionic functional group is introduced on the gold surface, one end of the heterobifunctional PEG is covalently bonded thereto, and the antibody is bonded to another end. It is described that noise in the surface plasmon resonance method is significantly reduced by this method.
  • Patent Document 2 discloses a method of immobilizing nucleic acids and proteins on a glass surface via a PEG linker. Specifically, a silane compound having a PEG linker is synthesized, applied to a glass surface, and then a nucleic acid or protein is bonded to the end of the PEG linker. It is described that this method improves the S / N ratio (sensitivity) of a biochip.
  • Patent Document 3 discloses a method of immobilizing a nucleic acid on a glass surface via a PEG linker. Specifically, an amino group is introduced by applying a silane coupling agent to the glass surface, one end of the homobifunctional PEG is covalently bonded, and a nucleic acid is bonded to another end. . It is described that this method improves the sensitivity of the biosensor.
  • the immobilization substance that is a biological substance is immobilized on the substance immobilization carrier having a PEG linker. It was difficult to immobilize the substance at a high density while maintaining its activity.
  • the present invention has been made in view of such circumstances, and a substance-immobilizing carrier having a PEG linker that realizes high detection sensitivity in an immunoassay such as ELISA, and immobilization of the substance to be immobilized on the carrier It is an object of the present invention to provide a method, and an immunoassay method using the carrier and a kit therefor.
  • the present inventor has found that a high detection sensitivity can be realized when an immunoassay is performed using a support having a hydrophilic polymer layer containing a PEG linker that satisfies specific conditions on the surface as a substance immobilization carrier, The present invention has been completed.
  • the present invention includes the following group of inventions.
  • a substance immobilization carrier for use in an immunoassay A support; At least a hydrophilic polymer layer disposed on the surface of the support, The hydrophilic polymer layer is A polyethylene glycol chain having a number average molecular weight of 176 or more; A substance immobilization carrier comprising an immobilized substance that is an antigen or an antibody that binds to a target substance, or a functional group linked to the polyethylene glycol chain that can form a covalent bond with the immobilized substance that is a target substance. .
  • the functional group includes a functional group containing n nitrogen atoms,
  • the nitrogen concentration in the hydrophilic polymer layer is 0.010 or more and 0.050 ⁇ n or less when the carbon concentration derived from the C—O bond in the hydrophilic polymer layer is 1.
  • the substance immobilizing carrier is 0.010 or more and 0.050 ⁇ n or less when the carbon concentration derived from the C—O bond in the hydrophilic polymer layer is 1.
  • a substance-immobilized carrier for use in an immunoassay A support; A hydrophilic polymer layer disposed on the surface of the support; At least an immobilized substance that is an antigen or an antibody that binds to a target substance or an immobilized substance that is a target substance,
  • the hydrophilic polymer layer includes a polyethylene glycol chain having a number average molecular weight of 176 or more, A substance-immobilized carrier in which the polyethylene glycol chain and the substance to be immobilized are linked via a covalent bond.
  • a method for producing a substance-immobilized carrier according to (4) or (5) A substance immobilization substance contacting step in which the substance immobilization support according to any one of (1) to (3) is brought into contact with a solution in which the substance to be immobilized is dissolved; A dry concentration step of drying and concentrating the solution in contact with the substance immobilization carrier; and Including methods.
  • a method for measuring a target substance by an immunoassay comprising the step of measuring the target substance using the substance-immobilized carrier of (4) or (5).
  • a kit for measuring a target substance by an immunoassay comprising the substance immobilization carrier according to any one of (1) to (3).
  • a kit for measuring a target substance by immunoassay comprising the substance-immobilized carrier according to (4) or (5).
  • the kit according to (13) for use in a sandwich-type immunoassay The substance-immobilized carrier according to (4) or (5), wherein the substance to be immobilized is an antigen or an antibody that binds to a target substance; A detectable antigen or detectable antibody that is a directly or indirectly detectable antigen or antibody that binds to the target substance non-competitively with the immobilized substance; A kit comprising at least
  • kits according to (13) for use in a direct competitive immunoassay The substance-immobilized carrier according to (4) or (5), wherein the substance to be immobilized is an antigen or an antibody that binds to a target substance;
  • a kit comprising at least a detectable target substance, which is a target substance detectable directly or indirectly, which binds to the immobilized substance competitively with a target substance in a sample to be measured.
  • a substance immobilization carrier for use in an immunoassay A support; At least a hydrophilic polymer layer disposed on the surface of the support, The hydrophilic polymer layer is A polyethylene glycol chain; A functional group linked to the polyethylene glycol chain capable of forming a covalent bond with an immobilized substance that is an antigen or an antibody that binds to a target substance or an immobilized substance that is a target substance,
  • the functional group comprises a functional group containing n nitrogen atoms;
  • the nitrogen concentration in the hydrophilic polymer layer is 0.010 or more and 0.050 ⁇ n or less when the carbon concentration derived from the C—O bond in the hydrophilic polymer layer is 1.
  • Substance immobilization carrier is 0.010 or more and 0.050 ⁇ n or less when the carbon concentration derived from the C—O bond in the hydrophilic polymer layer is 1.
  • a kit for measuring a target substance by an immunoassay comprising the substance immobilization carrier according to (17).
  • High detection sensitivity can be realized by performing an immunoassay using the substance immobilization carrier of the present invention.
  • FIG. 1 shows one embodiment of the present invention relating to a substance immobilizing carrier.
  • FIG. 2 shows an embodiment of the present invention relating to a method for producing a substance immobilizing carrier.
  • FIG. 3 shows an embodiment of an ELISA (indirect method) using the substance-immobilized carrier of the present invention.
  • FIG. 4 shows a calibration curve of ELISA (indirect method) using the substance-immobilized carrier of the present invention.
  • FIG. 5 shows an embodiment of an ELISA (sandwich method) using the substance-immobilized carrier of the present invention.
  • FIG. 6 shows a calibration curve of ELISA (sandwich method) using the substance-immobilized carrier of the present invention.
  • FIG. 1 shows one embodiment of the present invention relating to a substance immobilizing carrier.
  • FIG. 2 shows an embodiment of the present invention relating to a method for producing a substance immobilizing carrier.
  • FIG. 3 shows an embodiment of an ELISA (indirect method) using the substance-immobil
  • FIG. 7-1 shows a calibration curve of ELISA (sandwich method) when the trehalose concentration of the immobilized substance solution in Example 7 is 0% (w / v).
  • 7-2 shows the calibration curve of ELISA (sandwich method) when the trehalose concentration of the immobilized substance solution in Example 7 is 0.6% (w / v).
  • FIG. 7-3 shows the calibration curve of ELISA (sandwich method) when the trehalose concentration of the immobilized substance solution in Example 7 is 1.25% (w / v).
  • FIG. 7-4 shows a calibration curve of ELISA (sandwich method) when the trehalose concentration of the immobilized substance solution in Example 7 is 2.5% (w / v).
  • FIG. 7-5 shows an ELISA (sandwich method) calibration curve when the trehalose concentration of the immobilized substance solution in Example 7 is 5% (w / v).
  • FIG. 7-6 shows a calibration curve of ELISA (sandwich method) when the trehalose concentration of the immobilized substance solution in Example 7 is 10% (w / v).
  • FIG. 8 schematically shows an example of a reaction system for sandwich ELISA.
  • FIG. 9 schematically shows an example of a reaction system of a direct competitive ELISA.
  • FIG. 10 schematically shows an example of a reaction system for indirect competitive ELISA.
  • FIG. 11 shows an outline of an example of a method for producing the substance immobilizing carrier of the present invention.
  • FIG. 12 shows an outline of an example of the method for producing the substance-immobilized carrier of the present invention.
  • FIG. 13 schematically shows an example of an embodiment of the substance immobilizing carrier of the present invention.
  • the material and shape of the support in the present invention are not particularly limited as long as the material and shape can be used as a solid phase support in an immunoassay.
  • the material for the support include plastic, glass, quartz, silicon, and metal.
  • Plastic is particularly preferred as a support material for an immunoassay carrier because it is easy to mold and has few problems in transportation and disposal. That is, the support preferably used in the present invention contains plastic in all or at least part thereof.
  • the surface of the support on the side on which the hydrophilic polymer layer described later is formed preferably contains plastic, and more preferably the surface is made of plastic.
  • the plastic include polystyrene, polypropylene, polyvinyl chloride, polyethylene, cyclic polyolefin, acrylic resin, and polyethylene terephthalate.
  • the support surface may be subjected to a hydrophilic treatment such as plasma treatment or corona treatment in advance.
  • the support may be any support that has a surface that can be used as a solid phase in an immunoassay, and the overall shape is not particularly limited.
  • a support in the form of a microwell plate a plate-like body having a plurality of recesses
  • particles, slides, tubes, capillaries, microchannels, or the like can be used.
  • supports in the form of microwell plates, in particular polystyrene microwell plates are useful.
  • a hydrophilic polymer layer is disposed on the surface of the support.
  • the hydrophilic polymer layer includes at least a polyethylene glycol chain (PEG chain).
  • PEG chain polyethylene glycol chain
  • “Polyethylene glycol chain (or PEG chain)” is represented by the following formula: — (CH 2 —CH 2 —O) m — (M is an integer indicating the degree of polymerization) Refers to the structure represented by Surprisingly, the number average molecular weight of the PEG chains in the hydrophilic polymer layer affects the sensitivity of the immunoassay.
  • the number average molecular weight of the PEG chain is preferably 176 or more (m is 4 or more), more preferably 362 or more.
  • m is 4 or more
  • 362 the number average molecular weight of the PEG chain is smaller than the above lower limit, sufficient sensitivity may not be achieved as confirmed in experimental examples.
  • the upper limit of the number average molecular weight of the PEG chain is not particularly limited, but the number average molecular weight of the PEG chain is difficult to handle because the viscosity increases as the number average molecular weight increases and the arrangement of the PEG chains at high density is difficult. Is preferably 25000 or less, more preferably 10,000 or less.
  • the number average molecular weight of the PEG chain is PEG used as a raw material or PEG dissociated from a carrier: HO— (CH 2 —CH 2 —O) m —H (M is an integer indicating the degree of polymerization)
  • M is an integer indicating the degree of polymerization
  • the molecular weight of H 2 O (18.015) can be subtracted from the number average molecular weight of
  • the PEG number average molecular weight is determined by the vapor pressure osmotic pressure method or the membrane osmotic pressure method.
  • the vapor pressure osmotic pressure method can be used when the number average molecular weight of PEG is less than 100,000.
  • the membrane osmotic pressure method can be used when the number average molecular weight of PEG is 10,000 to 1,000,000.
  • At least one functional group capable of forming a covalent bond with the substance to be immobilized is directly or indirectly linked to one end of the PEG chain in the substance immobilization carrier before immobilization.
  • a functional group include (1H-imidazol-1-yl) carbonyl group, succinimidyloxycarbonyl group, epoxy group, aldehyde group, amino group capable of forming a covalent bond with the substance to be immobilized.
  • (1H-imidazol-1-yl) carbonyl group and succinimidyloxycarbonyl group are preferred.
  • These functional groups can react with a functional group such as an amino group of the substance to be immobilized to form a covalent bond.
  • the binding density of the PEG chain also affects the detection sensitivity of the immunoassay.
  • the bond density of PEG chains can be estimated to some extent using X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the ethylene glycol unit (CH 2 —CH 2 —O) gives the C—O component of the C (1s) signal in (XPS), such as (1H-imidazol-1-yl) carbonyl group, succinimidyloxycarbonyl group, etc.
  • This nitrogen atom-containing functional group gives an N (1s) signal in XPS.
  • the element concentration ratio N (1s) / CO has a clear correlation with the bond density of PEG chains.
  • the nitrogen concentration (N (1s) / C—O) obtained by XPS, where the carbon concentration derived from the C—O bond in the hydrophilic polymer layer is 1, is the same as described above. A numerical range is preferred.
  • the hydrophilic polymer layer may further contain a PEG chain to which no functional group is added or another hydrophilic compound.
  • a hydrophilic polymer layer is formed on the surface of the support at a position used as a solid phase in an immunoassay.
  • the hydrophilic polymer layer can be immobilized on the support through a covalent bond with a functional group chemically or physically immobilized on the support surface.
  • the carrier for immobilizing a substance of the present invention is a step S1101 for introducing a functional group onto the surface of a support using a primer layer or a coupling agent, and a PEG chain is linked to the functional group. It can be produced by a method including step S1102 and step S1103 of linking a functional group to the PEG chain end.
  • a primer layer is preferably formed on the surface, and a hydrophilic polymer layer is preferably formed on the surface of the primer layer.
  • the functional group on the side chain of the polysiloxane of the primer layer forms a covalent bond with the PEG chain end.
  • the substance immobilization carrier 10 includes a support 11 containing a plastic on the surface S, a primer layer 12 containing polysiloxane disposed on the surface S, and a hydrophilic material containing PEG chains disposed on the primer layer 12.
  • a functional polymer layer 13 is
  • the PEG chain — (CH 2 —CH 2 —O) m — in the hydrophilic polymer layer 13 is linked to the polysiloxane side chain A constituting the primer layer 12 through a covalent bond.
  • the side chain A is a group derived from R 1 of a silanol compound of formula 1 described later, and the functional group on R 1 or a functional group derived from the functional group is a hydroxyl group at the end of the PEG chain. Refers to a divalent group formed by forming a covalent bond with.
  • the polysiloxane in the primer layer 12 may be linear, or may have a branched or network structure, but preferably has a branched or network structure.
  • X is a bridging group bonded to a silicon atom of another repeating unit (not shown).
  • X as the bridging group includes an ether group (—O—) derived from the hydroxyl group of the silanol compound of Formula 1.
  • X is a monovalent group such as R 1 or R 2 defined in Formula 1, an unreacted hydroxyl group, a group Y defined in Formula 2 remaining without hydrolysis. It is the basis of.
  • a functional group R 3 capable of forming a covalent bond with the substance to be immobilized is directly or, if necessary, via a linker at the end of the PEG chain that is not linked to polysiloxane. Are preferably indirectly connected.
  • Q represents a bond or a linker.
  • the support 11 includes plastic on at least the surface S.
  • the primer layer 12 containing polysiloxane can be bonded to the surface S of the support 11 by physical adsorption. It is believed that physisorption is caused by van der Waals forces or hydrophobic interactions. Since it is not necessary to form a chemical bond such as a covalent bond between the primer layer 12 and the surface S of the support 11, the surface S is made of a plastic that does not contain a reactive functional group such as polystyrene. Even the primer layer 12 can be bonded.
  • the state of the polysiloxane in the primer layer 12 is not necessarily clear, as shown in FIG. 2, the main chain portions of a plurality of polysiloxane molecules are associated with each other, and the organic groups as side chains are formed on the support surface and the hydrophilic layer. There is a possibility that a two-layer structure facing the side is formed. The mechanism by which such a double structure is formed is presumed as follows. First, polysiloxane having increased van der Waals force due to the polymerization of silanol is physically adsorbed on the plastic surface. At this time, the organic group of the silanol compound is oriented to the plastic side by a hydrophobic interaction acting between the plastic surface and the organic group of the silanol compound.
  • the polysiloxane After the first layer of polysiloxane is formed, another polysiloxane is bonded to silanol groups (Si—OH) oriented on the solvent side. At this time, the organic group of the silanol compound is oriented to the solvent side by hydrogen bonding between the silanol groups. As a result, the polysiloxane is considered to have a two-layer structure as shown in FIG. The organic group oriented on the solvent side can form a covalent bond with the hydrophilic layer.
  • silanol groups Si—OH
  • the primer layer can be formed of a layer containing at least polysiloxane.
  • the polysiloxane is a polymer composed of repeating units of siloxane bonds (Si—O—Si) and can be obtained by condensation polymerization of a silanol compound.
  • the condensation of the silanol compound is a reaction that occurs between the molecules of the silanol compound.
  • the plastic molecule on the support surface does not have a reactive functional group, no reaction occurs between the silanol compound and the plastic molecule on the support surface. That is, the silanol compound and the formed polysiloxane are not physically reacted with the plastic molecules on the support surface, but are merely physically adsorbed.
  • silanol compound The silanol compound used in the present invention has an organic group containing a carbon atom directly connected to a silicon atom and having a functional group in addition to a silanol group (Si—OH). This organic group becomes the side chain of the polysiloxane.
  • Silanol compounds typically have a structure represented by Formula 1: (R 1 ) p (R 2 ) 4-pq Si (OH) q ... (Formula 1) (P is 1 or 2, q is 2 or 3, p + q is 3 or 4, and R 1 is an organic group containing a carbon atom directly connected to a silicon atom and having a functional group.
  • R 1 is preferably substituted with a functional group having one or more (preferably one) hydrogen atom through an appropriate linker structure as necessary, and has 1 to 20 carbon atoms, preferably 1 to 15, more preferably 1 to 10, particularly preferably 1 to 6 hydrocarbon groups (provided that all or part of the hydrocarbon groups are vinyl groups, such as the hydrocarbon group itself) If is a functional group, it need not be substituted by a functional group).
  • the hydrocarbon group is a saturated or unsaturated aliphatic hydrocarbon group (an alkyl group, an alkenyl group having 2 or more carbon atoms, or an alkynyl group having 2 or more carbon atoms) having a linear or branched chain or ring structure.
  • It may be a monocyclic or polycyclic aromatic hydrocarbon group having 6 or more carbon atoms, or the aromatic hydrocarbon group substituted by one or more aliphatic hydrocarbon groups.
  • the aliphatic hydrocarbon group may be substituted with one or more aromatic hydrocarbon groups.
  • the carbon-carbon bond may be interrupted by 1 or 2 identical or different atoms selected from oxygen, nitrogen and sulfur.
  • Preferred examples of the hydrocarbon group include a propyl group and an ethyl group.
  • the functional group for substituting one or more hydrogens of the hydrocarbon group in R 1 through an appropriate linker structure as necessary, it can react with a hydroxyl group of PEG to form a covalent bond.
  • the functional group is not particularly limited as long as it is a functional group that can be converted into a functional group that can react with a hydroxyl group of PEG to form a covalent bond, but typically (1H-imidazol-1-yl ) Carbonyl group, succinimidyloxycarbonyl group, glycidyl group, epoxy group, aldehyde group, amino group, thiol group, carboxyl group, azide group, cyano group, active ester group (1H-benzotriazol-1-yloxycarbonyl) Group, pentafluorophenyloxycarbonyl group, paranitrophenyloxycarbonyl group, etc.), halogenated carbonyl group Isocyanate group, a maleimide group, and the like.
  • a glycidyl group or an epoxy group is preferable.
  • the glycidyl group or epoxy group itself can react with the hydroxyl group of PEG to form a covalent bond, but the glycidyl group or epoxy group is converted into an aldehyde group according to the method described in JP-A-2009-156864.
  • the aldehyde group thus formed may be reacted with the hydroxyl group of PEG.
  • These functional groups may be substituted directly on the hydrogen atom of the hydrocarbon group or may be substituted via an appropriate linker structure. Examples of the linker structure include a divalent group having 0 to 3 carbon atoms and 0 to 3 identical or different heteroatoms selected from nitrogen, oxygen and sulfur.
  • R 1 include a 3-glycidoxypropyl group and a 2- (3,4-epoxycyclohexyl) ethyl group.
  • R 2 is preferably a hydrocarbon group similar to that described above for R 1 except that it is not substituted by a substituent (but selected independently of R 1 ), A linear or branched alkyl group having 1 to 6 carbon atoms is preferable, and a methyl group or an ethyl group is particularly preferable.
  • the silanol compound can be produced by hydrolyzing a silicon compound having a group capable of producing a silanol group (Si—OH) by hydrolysis.
  • silicon compounds have a structure represented by Formula 2: (R 1 ) p (R 2 ) 4-pq Si (Y) q ... (Formula 2) (Y is a group that can independently generate a silanol group by hydrolysis, and p, q, R 1 , and R 2 are as defined for the silanol compound).
  • Y is preferably an alkoxy group, a halogen atom, an aryloxy group, an alkoxy group substituted by an alkoxy group or an aryloxy group, an aryloxy group substituted by an alkoxy group or an aryloxy group, an alkylcarbonyloxy group, or the like.
  • Y particularly represents an alkoxy group having 1 to 6 carbon atoms (particularly a methoxy group, ethoxy group, isopropoxy group, tert-butoxy group), an alkoxy group having 1 to 6 carbon atoms substituted by an alkoxy group (for example, methoxyethoxy group). Group), an alkylcarbonyloxy group having 1 to 6 carbon atoms (for example, an acetoxy group), and a chlorine atom are preferable.
  • silicon compound of the formula 2 a commercially available compound as a silane coupling agent can be suitably used, and 3-glycidoxypropyltrimethoxysilane or 3-glycidoxypropyltriethoxysilane is particularly preferable.
  • the primer layer containing polysiloxane can be formed by a method including a step (primer layer forming step) of polymerizing the silanol compound of Formula 1 on the surface of the support.
  • the step preferably comprises hydrolyzing the silicon compound of formula 2 as follows to produce a silanol compound of formula 1 and a solution in which the produced silanol compound and base are dissolved in alcohol. Contacting on the surface of the body. Hydrolysis conditions are not particularly limited, but for example, the following method is possible.
  • dilute hydrochloric acid is added to the silicon compound of formula 2 to hydrolyze the group Y.
  • the pH of dilute hydrochloric acid is desirably adjusted to 2.0 to 3.0.
  • the molar ratio of water molecules to silicon compounds is 2-4.
  • the group Y is converted to a silanol group, and a silanol compound of the formula 1 is formed.
  • a silanol compound is applied to the support surface, and polysiloxane is formed by condensation polymerization.
  • the silanol compound of Formula 1 is soluble in alcohol along with the base.
  • the final concentration of the silanol compound is desirably adjusted within the range of 0.1 to 10% (v / v).
  • the base triethylamine, N, N-diisopropylethylamine, pyridine, 4-dimethylaminopyridine and the like can be used, but not limited thereto. It is desirable to adjust the final concentration of the base in the range of 0.1 to 10% (v / v).
  • This silanol compound solution is brought into contact with the plastic surface of the support and allowed to stand for 10 minutes to 24 hours.
  • the reaction temperature can be set in the range of 4 to 80 ° C, but room temperature (20 to 25 ° C) is particularly preferable.
  • a primer layer containing polysiloxane is formed on the plastic surface by physical adsorption.
  • the coating density of the primer layer can be controlled by the concentration of silanol or base, or the time for which the silanol solution is brought into contact with the plastic surface. The higher the coating density of the primer layer, the higher the binding density of the PEG chain that is covalently bonded in the next step.
  • the functional group from the silanol compound on the side chain of the formed polysiloxane is derivatized and converted to another functional group
  • the functional group from the silanol compound on the side chain of the polysiloxane is subsequently formed after the primer layer is formed.
  • a derivatization step is performed in which is converted to a functional group capable of reacting with the hydroxyl group of PEG to form a covalent bond.
  • the support is a support containing glass, quartz or silicon on the surface, an organic group containing a carbon atom directly bonded to a silicon atom and having a functional group formed on the surface by hydrolysis of a silane coupling agent It is shared with PEG on the surface of the support by linking a silanol compound having a functional group or, if necessary, by derivatization that converts the functional group into another functional group capable of forming a covalent bond with PEG. Functional groups capable of forming bonds can be introduced.
  • the silane coupling agent and the PEG chain of the hydrophilic polymer layer can be linked by a covalent bond by a reaction between the functional group and one end of PEG.
  • silanol compound those similar to the silanol compound of the formula 1 described above with respect to the primer layer can be used.
  • silane coupling agent those similar to the silicon compound of formula 2 described above with respect to the primer layer can be used.
  • a functional group on an organic group derived from a silanol compound or a silane coupling agent or other functional group derived from the functional group introduced on the support surface is covalently bonded to a hydroxyl group at the PEG end.
  • PEG is reacted to form a PEG chain on the surface of the support into which a functional group has been introduced by a primer layer, a silane coupling agent or the like (S1102).
  • a PEG containing a catalytic amount of concentrated sulfuric acid is brought into contact.
  • PEG having a number average molecular weight exceeding 1000 is previously heated and melted.
  • PEG may be diluted with tert-butyl alcohol or the like.
  • the PEG solution is brought into contact with the plastic surface and heated.
  • the heating temperature can be set in the range of 60 to 100 ° C., but considering the heat resistance of the plastic, it is preferably around 80 ° C. (75 ° C.
  • the heating time can be set in the range of 10 minutes to 24 hours, but when the heating temperature is around 80 ° C., 10 to 60 minutes is preferable.
  • the PEG chain is covalently bonded to the primer layer.
  • the binding density of the PEG chain depends on the coating density of the primer layer.
  • At least one functional group capable of forming a covalent bond with the substance to be immobilized is directly or indirectly linked to one end of the PEG chain (S1103).
  • the method for introducing the functional group is not particularly limited.
  • a preferred embodiment of the method for introducing the (1H-imidazol-1-yl) carbonyl group and the succinimidyloxycarbonyl group as a substituent for substituting the hydrogen of the hydroxyl group at the end of the PEG chain is as follows.
  • CDI 1,1′-carbonyldiimidazole
  • DSC di (N-succinimidyl) carbonate
  • the above reaction needs to be carried out in an organic solvent containing almost no moisture. Since plastics generally have low resistance to organic solvents, when the support contains plastics, it is preferable to use acetonitrile, dimethyl sulfoxide, or a mixed solvent obtained by mixing these organic solvents in an appropriate ratio.
  • the water content of these organic solvents is desirably 0.1% by weight or less.
  • the final concentration of CDI or DSC can be set in the range of 0.01 to 1M. However, when the reaction is performed at room temperature or lower, it is preferably 0.1M or higher.
  • the support contains plastic it is desirable to set the reaction temperature in the range of 4 to 25 ° C. in order to avoid damage to the plastic.
  • the reaction time is preferably set in the range of 10 minutes to 24 hours, and preferably 10 minutes to 60 minutes when the CDI concentration is around 0.5 M (0.4 to 0.6 M).
  • an antigen or antibody that binds to a target substance or a target substance is immobilized on the substance immobilization carrier of the present invention, depending on the target immunoassay.
  • these target substances for immobilization are called “substances to be immobilized”.
  • an antigen or antibody that binds to a target substance is an immobilized substance (sandwich method or direct competition method described later)
  • the combination of the immobilized substance and the target substance is specific based on an antigen-antibody reaction.
  • the combination is not particularly limited as long as it is a combination that can be easily combined.
  • the immobilized substance when the target substance is an antigen (including a hapten), can be an antibody (including an antibody fragment), and when the target substance is an antibody (including an antibody fragment)
  • the immobilized substance can be an antigen (including a hapten).
  • the target substance is an immobilized substance (indirect competition method described later)
  • the target substance is an antigen (including a hapten) or an antibody (including an antibody fragment).
  • the antigen as the immobilized substance and / or the target substance is not particularly limited as long as it is a substance exhibiting specific antigen-antibody reactivity with an antibody.
  • Typical antigens include natural antigens such as proteins, peptides, saccharides, nucleic acids (DNA, RNA), lipids, coenzymes, cells, viruses, bacteria, and complexes of these, derivatives of natural antigens, and artificial synthesis. Hapten, artificial antigen and the like.
  • An antibody as an immobilized substance and / or a target substance refers to an immunoglobulin exhibiting specific antigen-antibody reactivity to a certain antigen and a fragment thereof, and may be subjected to chemical modification or the like as necessary. .
  • the substance to be immobilized is not particularly limited as long as it has a functional group capable of reacting with a functional group of the PEG chain to form a covalent bond.
  • Such functional groups typically include amino groups, but also include thiol groups, carboxyl groups, hydroxyl groups, alkoxides, secondary amines, tertiary amines, azide groups, cyano groups, and the like. Even if the substance to be immobilized has no functional group capable of forming a covalent bond by reaction with a functional group linked to the PEG chain, such as an amino group, the amino group is not present in these substances. Etc. can be used for immobilization by artificially introducing the above.
  • the immobilization of the substance to be immobilized is, for example, as shown schematically in FIG. 12, a step S1201 of bringing the substance immobilization carrier of the present invention into contact with a solution in which the substance to be immobilized is dissolved, and drying and concentrating the solution.
  • step S1203 for inactivating the functional group at the end of the PEG chain.
  • the substance to be immobilized is dissolved in a buffer solution.
  • a buffer solution that does not contain an amino group component.
  • a phosphate buffer solution or a carbonate-bicarbonate buffer solution can be used.
  • the final concentration of the substance to be immobilized is preferably adjusted in the range of 0.01 to 10 mg / ml.
  • This solution to be immobilized is brought into contact with a carrier (S1201), and then dried and concentrated as it is (S1202). Dry concentration increases the concentration of the substance to be immobilized in the reaction system, so that immobilization of the substance to be immobilized is significantly promoted.
  • the concentration of the substance to be immobilized in the reaction system can be increased, and the immobilization reaction can be promoted.
  • the substance to be immobilized is a protein such as an antigen or an antibody
  • the protein may be denatured by drying.
  • sugars such as trehalose, sucrose, lactose, and maltose to the immobilized substance solution.
  • trehalose has an appropriate moisture retention, is easy to dry concentrate the solution, and because it is difficult to form coarse crystals during dry concentration, it can be uniformly dried and concentrated. preferable.
  • the final concentration of saccharide may be adjusted in the range of 1 to 20% (w / v), more preferably 1 to 10% (w / v).
  • Triton registered trademark
  • X-100 and Tween registered trademark It is preferred to add a nonionic surfactant such as 20.
  • the substance to be immobilized is thinly spread on the surface of the carrier, so that not only the amount of the substance to be immobilized can be saved, but also the time required for drying and concentration can be shortened.
  • the final concentration of the nonionic surfactant in the solution to be immobilized is preferably adjusted in the range of 0.01 to 0.1% (v / v).
  • a functional group such as an amino group contained in the substance to be immobilized reacts with a functional group linked to the PEG chain, and a covalent bond such as an amide bond or a urethane bond is formed.
  • the reaction temperature is preferably set in the range of 4 to 37 ° C. and the contact time in the range of 5 minutes to 24 hours. As a result, the substance to be immobilized is immobilized on the carrier via the PEG chain.
  • the unreacted functional group linked to the PEG chain is bound to a low molecular compound having an amino group, thereby making the functional group more reactive.
  • the surface of the carrier after reacting the functional group with the low molecular weight compound is desirably hydrophilic. This is because a hydrophilic surface generally has an effect of suppressing nonspecific adsorption of a biological substance.
  • a low molecular compound having an amino group and further having a hydrophilic group in addition to the amino group.
  • examples of such a low molecular weight compound include 2-aminoethanol and 2- (2-aminoethoxy) ethanol, and 2- (2-aminoethoxy) ethanol is particularly preferable.
  • This low molecular weight compound is dissolved in a buffer solution such as PBS so as to have a concentration of 10 to 1000 mM and brought into contact with a carrier on which a desired substance is already immobilized.
  • the reaction temperature is preferably set in the range of 4 to 37 ° C. and the reaction time in the range of 2 minutes to 24 hours.
  • the present invention also relates to an immunoassay comprising a step of measuring a target substance using the substance-immobilized carrier of the present invention.
  • “measuring a target substance” refers to measuring the presence or absence of the target substance in the measurement target sample and / or the amount of the target substance in the measurement target sample.
  • the immunoassay comprises the substance-immobilized carrier of the present invention and the sample to be measured on the substance to be immobilized on the carrier, and an amount of antigen correlated with the amount of the target substance in the sample to be measured.
  • an antibody wherein the antigen or antibody is a target substance in a sample to be measured, a detectable target substance added to the antigen-antibody reaction system as necessary, or a detection added to the antigen-antibody reaction system as needed
  • a step of detecting the antigen or antibody bound to the substance to be immobilized in the step
  • the immunoassay using the substance-immobilized carrier of the present invention can be performed by a known method, and can be in any mode such as a sandwich system, a direct competition system, an indirect competition system, and the like.
  • a substance-immobilized carrier in which an antigen or antibody that binds to a target substance is immobilized as a substance to be immobilized, and a target substance that binds to the target substance in a non-competitive manner are directly used.
  • At least a detectable antigen or detectable antibody that is a detectable or indirectly detectable antigen or antibody is used.
  • a substance-immobilized carrier 101 on which an antibody 102 that specifically binds to a target substance 103 that is an antigen is immobilized, and a labeled antibody 104 that is directly detectable and is labeled with a labeling substance (such as an enzyme).
  • a labeling substance such as an enzyme
  • Sandwich-type immunoassays are typically A primary reaction step (FIG. 8B), in which a measurement target sample is brought into contact with the substance-immobilized carrier, and an antigen-antibody reaction between a target substance and a target substance in the measurement target sample is performed. After the primary reaction step, the substance-immobilized carrier is brought into contact with the detectable antigen or antibody, and the antigen-antibody reaction between the target substance bound to the substance to be immobilized and the detectable antigen or detectable antibody A secondary reaction step (FIG. 8C), After the secondary reaction step, at least a detection step (FIG. 8D) for detecting the detectable antigen or the detectable antibody bound to the substance-immobilized carrier is included.
  • a detection step FIG. 8D
  • the primary reaction step and the secondary reaction step appropriately include a washing step for washing and removing components not immobilized on the carrier after the antigen-antibody reaction.
  • the “detectable antigen or detectable antibody” used in the secondary reaction step binds to the target substance at a position that does not compete with the immobilized substance.
  • the detectable antigen or detectable antibody may be a labeled antigen or labeled antibody (directly detectable antigen or antibody) linked to a detectable labeling substance, or a detectable labeling substance, and It may be an antigen or antibody (an indirectly detectable antigen or antibody) that can be linked and labeled by reaction. Examples of the latter include binding to an antigen or antibody capable of binding to a secondary antibody linked to a detectable labeling substance, or a labeling substance linked to one of the biotin-avidin (or biotin-streptavidin) binding pairs. Examples thereof include an antigen or an antibody linked to the other of the binding pair.
  • At least a detectable target substance, which is a directly or indirectly detectable target substance that binds to is used.
  • a substance-immobilized carrier 111 on which an antibody 112 that specifically binds to a target substance 113 that is an antigen is immobilized, and a labeling substance that binds competitively with the target substance 113 in the sample to be measured and the antibody 112 1 schematically shows an example of an immunoassay by a direct competitive method in which a target substance 114 (labeled antigen) that is directly detected and labeled with an enzyme or the like is used to measure the target substance 113 in a sample to be measured.
  • Immunoassays using a direct competition format typically A sample to be measured, a detectable target substance, and the substance-immobilized carrier are brought into contact with each other, an antigen-antibody reaction between the target substance in the sample to be measured and the immobilized substance, a detectable target substance and the target substance
  • a direct competitive reaction step (FIGS. 9B and 9C) for competitively performing an antigen-antibody reaction with an immobilized substance;
  • a detection step (FIG. 9 (e)) for detecting a detectable target substance bound to the substance-immobilized carrier is included.
  • the direct competitive reaction step appropriately includes a step (FIG. 9 (d)) of washing and removing the target substance not bound to the carrier after the antigen-antibody reaction and the detectable target substance.
  • the target substance is an antigen or antibody
  • the detectable target substance is a corresponding detectable antigen or detectable antibody.
  • the detectable target substance can be detected independently of the target substance in the sample to be measured, in the detectable antigen or detectable antibody described above with respect to the sandwich method, the target substance is the antigen or antibody. The used one can be used.
  • a substance-immobilized carrier in which a target substance is immobilized as an immobilized substance is usually directly coupled to a target substance in the measurement target sample and the immobilized substance.
  • at least a detectable antigen or antibody that is an indirectly detectable antigen or antibody is used.
  • the substance-immobilized carrier 121 on which the same immobilized substance 122 as the target substance 123 that is an antigen is immobilized, and the target substance 123 and the immobilized substance 122 in the sample to be measured are bound competitively.
  • An example of an immunoassay by an indirect competitive method in which a target substance 123 in a measurement target sample is measured using a primary antibody 124 that can be indirectly detected through a labeled secondary antibody 125 is schematically shown.
  • Immunoassays using an indirect competitive format typically A sample to be measured, a detectable antigen or a detectable antibody, and the substance-immobilized carrier are contacted, and an antigen-antibody reaction between the target substance in the sample to be measured and the detectable antigen or the detectable antibody, An indirect competitive reaction step (FIGS. 10 (b) and 10 (c)) for competitively performing an antigen-antibody reaction between the immobilized substance and the detectable antigen or detectable antibody; After the indirect competitive reaction step, at least a detection step (FIGS. 10 (e) and (f)) for detecting the detectable antigen or the detectable antibody bound to the substance-immobilized carrier is included.
  • the indirect competitive reaction step appropriately includes a step (FIG. 10 (d)) of washing and removing the target substance and the detectable antigen or detectable antibody that are not bound to the carrier after the antigen-antibody reaction.
  • detectable antigen or detectable antibody those similar to the detectable antigen or detectable antibody described above for the sandwich method can be used.
  • the means for detecting the antigen or antibody in the immunoassay using the substance-immobilized carrier of the present invention is not particularly limited, and an antigen or antibody labeled directly or indirectly with any labeling substance can be used.
  • an amplified detection signal such as an enzyme (ELISA method), a nucleic acid (immunoPCR), an electrochemiluminescent substance (electrochemiluminescent method), a fluorescent substance, a chemiluminescent substance, or a radioactive substance can be generated.
  • an amplified detection signal such as an enzyme (ELISA method), a nucleic acid (immunoPCR), an electrochemiluminescent substance (electrochemiluminescent method), a fluorescent substance, a chemiluminescent substance, or a radioactive substance can be generated.
  • Possible labeling substances are mentioned.
  • the immunoassay of the present invention is preferably an enzyme-linked immunosorbent assay (ELISA) that uses an enzyme as a labeling substance and performs detection based
  • the enzyme that can be used as the labeling substance is not particularly limited, and examples thereof include peroxidase such as horseradish peroxidase, ⁇ -galactosidase, alkaline phosphatase, and glucose oxidase.
  • detection methods using enzyme activity include detection methods using chemiluminescent substrates that chemiluminescent by enzyme activity, chromogenic substrates that generate color by enzyme activity, chemiluminescent substrates that emit chemical fluorescence by enzyme activity, etc.
  • a detection method using a luminescent substrate is preferred. When a chromogenic substrate is used, the enzyme reaction takes a considerable amount of time. This is because the concentration range of the target substance to be quantified in the present invention is as low as 1 to 2 digits.
  • chemiluminescent substrate Since detection using a chemiluminescent substrate is generally more sensitive than detection using a chromogenic substrate, the time required for the enzyme reaction can be shortened. In particular, if a highly sensitive chemiluminescent substrate used for detection of a trace amount of target substance at the femtogram level is used, a synergistic effect can be obtained in terms of sensitivity.
  • chemiluminescent substrates include ECL TM Advance (GE Healthcare), ECL TM Plus (GE Healthcare), Immunostar (registered trademark) LD (Wako Pure Chemical Industries), CDP-STAR (registered trademark) (Roche Diagnostics).
  • CSPD registered trademark
  • CSPD registered trademark
  • SuperSignal West Femto Maxum Sensitive Substrate enzymes for this purpose include peroxidases such as horseradish peroxidase and alkaline phosphatase. Is mentioned.
  • a detector for detecting chemiluminescence a luminescence plate reader or a CCD imager can be used. These detectors are also advantageous in that they have a wide dynamic range. That is, when the substance-immobilized carrier of the present invention and the chemiluminescent substrate are combined, an ELISA having a wide dynamic range can be achieved quickly, with high sensitivity.
  • the substance immobilization carrier of the present invention can constitute a kit for measuring a target substance by immunoassay.
  • the kit can further comprise components necessary for the immunoassay.
  • a directly or indirectly detectable antigen or antibody that binds to a target substance bound to an immobilized substance by an antigen-antibody reaction depending on the type of immunoassay, by the antigen-antibody reaction
  • examples include directly or indirectly detectable antigens or antibodies (including directly or indirectly detectable target substances) that bind to an immobilized substance by an antigen-antibody reaction.
  • components necessary for the immunoassay include a labeling substance capable of binding to the indirectly detectable antigen or antibody for use in indirect detection, and a detection reagent (for example, when the labeling substance is an enzyme).
  • a labeling substance capable of binding to the indirectly detectable antigen or antibody for use in indirect detection and a detection reagent (for example, when the labeling substance is an enzyme).
  • a chemiluminescent substrate that chemiluminescents by enzyme activity include a chemiluminescent substrate that chemiluminescents by enzyme activity, a chromogenic substrate that develops color by enzyme activity, a chemiluminescent substrate that emits chemical fluorescence by enzyme activity, and the like.
  • “Directly or indirectly detectable antigen or antibody” and “directly or indirectly detectable target substance” can be the same as those described in the above “Immunoassay” column.
  • the kit further includes a reagent used for immobilizing the substance to be immobilized on the substance immobilization carrier (for example, a buffer solution for dissolving the substance to be immobilized, in which sugars and nonionic surfactants are dissolved). ) May be included.
  • a reagent used for immobilizing the substance to be immobilized on the substance immobilization carrier for example, a buffer solution for dissolving the substance to be immobilized, in which sugars and nonionic surfactants are dissolved.
  • the substance-immobilized carrier of the present invention can constitute a kit for measuring a target substance by immunoassay.
  • the kit can further comprise components necessary for the immunoassay. Specific examples of components necessary for the immunoassay are as described above.
  • FIG. 1 shows an embodiment of the present invention relating to a substance immobilizing carrier.
  • a primer layer containing polysiloxane is formed on the surface of a support made of polystyrene.
  • One end of the PEG chain is covalently bonded to the primer layer.
  • the hydrophilic polymer layer has a condition that the number average molecular weight of the PEG chain is 176 to 25000, and a condition that the element concentration ratio N (1s) / CO in XPS is in the range of 0.010 to 0.100. At least one of the conditions is satisfied.
  • Example 2 A substance-immobilizing support was produced by the method shown in FIG. The specific procedure is described below.
  • Silanol was prepared by adding 0.35 ml of dilute hydrochloric acid (pH 2.4) to 1.65 ml of 3-glycidoxypropyltrimethoxysilane (Momentive Performance Materials). This was added to 100 ml of 2-propanol (Pure Chemical). To this, 4 ml of triethylamine (Wako Pure Chemical Industries) was further added. 100 ⁇ l of this silanol solution was dispensed into each well of a 96-well microplate (BD Falcon TM ). It was allowed to stand at room temperature for 75 minutes. Thereafter, the inside of the well was washed with pure water and dried by nitrogen blowing.
  • a primer layer containing polysiloxane and an epoxy group was formed in the well of the microplate.
  • 100 ⁇ l of PEG 4000 containing a catalytic amount of concentrated sulfuric acid (number average molecular weight 2700-3400, Kanto Chemical) was dispensed into each well.
  • the mixture was heated at 90 ° C. for 30 minutes. Thereafter, the inside of the well was washed with pure water and dried by nitrogen blowing.
  • a hydrophilic polymer layer containing PEG was formed on the primer layer.
  • a CDI (Tokyo Kasei) solution with a final concentration of 0.5 M is prepared using an equal weight mixed solvent of dehydrated acetonitrile (Kanto Chemical) and dehydrated dimethyl sulfoxide (Kanto Chemical), and 10 ⁇ l is dispensed into each well. did. It was allowed to stand at room temperature for 20 minutes. Thereafter, the inside of the well was washed with pure water and dried by nitrogen blowing. By this operation, a PEG derivative in which a (1H-imidazol-1-yl) carbonyl group was introduced at the end of PEG contained in the hydrophilic polymer layer was formed.
  • Example 3 Using the substance immobilization carrier (96-well microplate) of Example 2, ELISA (indirect method, antigen-antibody-antibody sandwich method) shown in FIG. 3 was performed. The specific procedure is described below.
  • Triton (registered trademark) Carbonate-bicarbonate buffer (pH 9.6) containing X-100 (Wako Pure Chemical Industries) was used as a solid phase buffer
  • 0.1% Triton (registered trademark) A phosphate buffer (PBS) containing X-100 and 0.5 M NaCl is used as a washing buffer
  • PBS containing 1% BSA is used as a dilution buffer.
  • lysozyme (Wako Pure Chemical Industries) was dissolved in a solid phase buffer to prepare a lysozyme solution having a final concentration of 50 ⁇ g / ml. 5 ⁇ l of this solution was dispensed into each well of the 96-well microplate of Example 2.
  • a carbonate-bicarbonate buffer (pH 9.6) is used as a solid phase buffer, 0.05% Tween (registered trademark).
  • PBS containing 20 is used as a washing buffer
  • PBS containing 1% BSA is used as a blocking buffer and a dilution buffer.
  • lysozyme (Wako Pure Chemical Industries) was dissolved in a solid phase buffer to prepare a lysozyme solution having a final concentration of 5 ⁇ g / ml. 100 ⁇ l of this solution was dispensed into each well of a 96-well microplate. After leaving at room temperature for 2 hours, the inside of the well was washed twice with a washing buffer.
  • Example 4 Using the 96-well microplate obtained in Example 2, the ELISA (antibody-antigen-antibody sandwich method) shown in FIG. 5 was performed. The specific procedure is described below.
  • a carbonate-bicarbonate buffer solution (pH 9.6) containing X-100 (Wako Pure Chemical Industries, Ltd.) is used as a solid phase buffer.
  • Anti-IL-1 ⁇ antibody (Biolegend) was dissolved in an immobilization buffer to prepare an antibody solution having a final concentration of 50 ⁇ g / ml. 5 ⁇ l of this solution was dispensed into each well of the 96-well microplate obtained in Example 2. After leaving at 37 ° C. for 2 hours to dry and concentrate, the well was washed twice with a washing buffer.
  • 0-2500 pg / ml IL-1 ⁇ (Wako Pure Chemical Industries) was prepared using a dilution buffer, and 50 ⁇ l was dispensed into each well. After leaving at room temperature for 60 minutes, the well was washed once with a washing buffer. A biotin-labeled secondary antibody (Biolegend) was diluted 500 times using a dilution buffer, and 50 ⁇ l was dispensed into each well. After leaving at room temperature for 30 minutes, the well was washed once with a washing buffer.
  • HRP-labeled streptavidin (Prozyme) was diluted 4000 times using a dilution buffer (final concentration: 0.25 ⁇ g / ml), and 50 ⁇ l was dispensed into each well. After leaving at room temperature for 10 minutes, the well was washed three times with a washing buffer. 30 ⁇ l of Immunostar LD (Wako Pure Chemical Industries), which is a chemiluminescent substrate, was added, and a chemiluminescent image was acquired using LAS4000mini (GE Healthcare). Finally, chemiluminescence intensity was calculated using dedicated software, and a calibration curve as shown in FIG. 6 (present invention) was created. The sensitivity was 0.15 pg / ml.
  • ELISA antibody-antigen-antibody
  • FIG. 5 ELISA (antibody-antigen-antibody) shown in FIG. 5 using an untreated 96-well microplate (BD Falcon TM ) and a conventional 96-well microplate (polystyrene 96-well microplate hydrophilized by oxygen plasma treatment) Sandwich method) was carried out. The specific procedure is described below.
  • pg / ml IL-1 ⁇ (Wako Pure Chemical Industries) was prepared using a dilution buffer, and 50 ⁇ l was dispensed into each well. After leaving at room temperature for 60 minutes, the well was washed once with a washing buffer. A biotin-labeled secondary antibody (Biolegend) was diluted 500 times using a dilution buffer, and 50 ⁇ l was dispensed into each well. After leaving at room temperature for 30 minutes, the well was washed once with a washing buffer.
  • HRP-labeled streptavidin (Prozyme) was diluted 4000 times using a dilution buffer (final concentration: 0.25 ⁇ g / ml), and 50 ⁇ l was dispensed into each well. After leaving at room temperature for 30 minutes, the well was washed three times with a washing buffer. 30 ⁇ l of Immunostar LD (Wako Pure Chemical Industries), which is a chemiluminescent substrate, was added, and a chemiluminescent image was acquired using LAS4000mini (GE Healthcare). Finally, chemiluminescence intensity was calculated using dedicated software, and a calibration curve as shown in FIG. 6 (unprocessed, conventional product) was created. The sensitivity of the untreated product and the conventional product was 9.8 pg / ml and 2.4 pg / ml, respectively.
  • Example 5 The influence of the silanol treatment time and the number average molecular weight of the PEG chain on the sensitivity of the ELISA (indirect method) was examined. The specific procedure is described below.
  • Silanol was prepared by adding 0.35 ml of dilute hydrochloric acid (pH 2.4) to 1.65 ml of 3-glycidoxypropyltrimethoxysilane (Momentive Performance Materials). This was added to 100 ml of 2-propanol (Pure Chemical). To this, 0.5 ml of triethylamine (Wako Pure Chemical Industries) was added. 100 ⁇ l of this silanol solution was dispensed into each well of a 96-well microplate (BD Falcon TM ). It was allowed to stand at room temperature for 60 to 135 minutes. Thereafter, the inside of the well was washed with pure water and dried by nitrogen blowing.
  • a primer layer containing polysiloxane and an epoxy group was formed in the well of the microplate.
  • 100 ⁇ l of PEG (13 types) containing a catalytic amount of concentrated sulfuric acid was dispensed into each well.
  • the mixture was heated at 80 ° C. for 45 minutes. Thereafter, the inside of the well was washed with pure water and dried by nitrogen blowing.
  • a hydrophilic polymer layer containing PEG was formed on the primer layer.
  • a CDI (Tokyo Kasei) solution with a final concentration of 0.5 M is prepared using an equal weight mixed solvent of dehydrated acetonitrile (Kanto Chemical) and dehydrated dimethyl sulfoxide (Kanto Chemical), and 20 ⁇ l is dispensed into each well. did. It was allowed to stand at room temperature for 30 minutes. Thereafter, the inside of the well was washed with pure water and dried by nitrogen blowing. By this operation, a PEG derivative in which a (1H-imidazol-1-yl) carbonyl group was introduced at the end of PEG contained in the hydrophilic polymer layer was formed.
  • the number average molecular weight of each raw material shown in Table 2 is as follows.
  • Example 6 The XPS analysis of the substance immobilization support obtained in Example 5 was performed.
  • the XPS analysis was performed using an X-ray spectroscopic analyzer “ESCA5600” manufactured by ULVAC-PHI and setting the photoelectron uptake angle to 45 °.
  • ESCA5600 X-ray spectroscopic analyzer manufactured by ULVAC-PHI
  • Table 2 a clear correlation was recognized between the sensitivity of ELISA and N (1s) / CO. That is, it has been found that when the value of N (1s) / CO is in the range of 0.010 to 0.100, a significantly higher sensitivity can be obtained than before.
  • Example 7 As described above, it is important to add trehalose to the buffer for the purpose of preventing protein denaturation due to drying.
  • Example 4 six types of buffers having different trehalose concentrations were prepared, and the trehalose concentration dependency in ELISA was examined. As a result, as shown in FIGS. 7-1 to 7-6, solidification time with 5 to 10% (w / v) trehalose (time from contact of the immobilized substance dissolving solution to completion of the drying concentration step) It was found that the decrease in signal associated with can be prevented.

Abstract

The purpose of the present invention is to provide a carrier for immobilizing a material having a PEG linker that expresses high detection sensitivity in the ELISA. The present invention pertains to a carrier for immobilizing a material for use in an immunoassay, and said carrier for immobilizing a material includes at least a substrate and a hydrophilic polymer layer that is positioned on the surface of the substrate. The hydrophilic polymer layer contains polyethylene glycol chains, and functional groups that are linked to the polyethylene glycol chains, said functional groups being capable of forming covalent bonds with the material being immobilized, which is an antigen or antibody that bonds with a target substance, or which is a target substance. The present invention also pertains to a method for immobilizing a material to be immobilized in said carrier, and a method and kit for carrying out measurements by immunoassays in which said carrier is used.

Description

免疫アッセイに用いるための物質固定化用担体Substance immobilization carrier for use in immunoassay
 本発明は、免疫アッセイに用いるための固相担体に関する。 The present invention relates to a solid phase carrier for use in an immunoassay.
 免疫測定法の一種である酵素結合免疫吸着アッセイ(Enzyme-Linked Immunosorbent Assay、以下ELISA)は、創薬、診断、環境計測、食品を含む幅広い分野で利用されている。典型的なELISAは、(1)抗体または抗原の固定化(固相化)、(2)標的物質の結合、(3)酵素標識抗体の結合、(4)酵素反応、(5)光学的検出(吸収、蛍光、発光)、の5つの工程からなる。標識用酵素としては西洋わさびペルオキシダーゼやアルカリホスファターゼなどが用いられる。ELISAは数ある免疫測定法のなかでも特に感度が高い。しかし、実際には固相担体への生体分子の非特異吸着が原因で期待する感度が得られないことも多い。特に酵素標識抗体のような複合体は固相担体に吸着しやすく、これがELISAにおけるノイズの主な原因となっている。このような非特異吸着を防ぐためにウシ血清アルブミン(BSA)によるブロッキング処理が試みられるが、その効果は限定的と言わざるを得ない。そこで、生体分子の非特異吸着を効果的に防ぐポリエチレングリコール(以下PEG)に注目が集まっている。すなわち、抗体または抗原の固定化を、PEGリンカーを介して行うことによって、固相担体への生体分子の非特異吸着を防ぐ試みがなされている。 Enzyme-Linked Immunosorbent Assay (hereinafter referred to as ELISA), which is a kind of immunoassay, is used in a wide range of fields including drug discovery, diagnosis, environmental measurement, and food. A typical ELISA includes (1) antibody or antigen immobilization (solid phase), (2) binding of a target substance, (3) binding of an enzyme-labeled antibody, (4) enzymatic reaction, (5) optical detection. It consists of five steps (absorption, fluorescence, luminescence). Horseradish peroxidase or alkaline phosphatase is used as the labeling enzyme. ELISA is particularly sensitive among many immunoassays. However, in reality, the expected sensitivity is often not obtained due to nonspecific adsorption of biomolecules to the solid support. In particular, a complex such as an enzyme-labeled antibody is easily adsorbed on a solid support, which is a main cause of noise in ELISA. In order to prevent such non-specific adsorption, blocking treatment with bovine serum albumin (BSA) is attempted, but the effect is limited. Thus, attention has been focused on polyethylene glycol (hereinafter PEG) that effectively prevents non-specific adsorption of biomolecules. That is, attempts have been made to prevent nonspecific adsorption of biomolecules to a solid phase carrier by immobilizing an antibody or antigen via a PEG linker.
 特許文献1には、PEGリンカーを介して抗体を金表面に固定化する方法が開示されている。具体的には、金表面に非イオン性官能基を導入し、ここにヘテロ二官能性PEGの片末端を共有結合させ、別の末端に抗体を結合させる、というものである。この方法によって表面プラズモン共鳴法におけるノイズが有意に低減されることが記載されている。 Patent Document 1 discloses a method of immobilizing an antibody on a gold surface via a PEG linker. Specifically, a nonionic functional group is introduced on the gold surface, one end of the heterobifunctional PEG is covalently bonded thereto, and the antibody is bonded to another end. It is described that noise in the surface plasmon resonance method is significantly reduced by this method.
 特許文献2には、PEGリンカーを介して核酸やタンパク質をガラス表面に固定化する方法が開示されている。具体的には、PEGリンカーを有するシラン化合物を合成し、これをガラス表面に適用した後、PEGリンカーの末端に核酸やタンパク質を結合させる、というものである。この方法によってバイオチップのS/N比(感度)が改善されることが記載されている。 Patent Document 2 discloses a method of immobilizing nucleic acids and proteins on a glass surface via a PEG linker. Specifically, a silane compound having a PEG linker is synthesized, applied to a glass surface, and then a nucleic acid or protein is bonded to the end of the PEG linker. It is described that this method improves the S / N ratio (sensitivity) of a biochip.
 特許文献3には、PEGリンカーを介して核酸をガラス表面に固定化する方法が開示されている。具体的には、シランカップリング剤をガラス表面に適用してアミノ基を導入し、ここにホモ二官能性PEGの片末端を共有結合させ、別の末端に核酸を結合させる、というものである。この方法によってバイオセンサの感度が改善されることが記載されている。 Patent Document 3 discloses a method of immobilizing a nucleic acid on a glass surface via a PEG linker. Specifically, an amino group is introduced by applying a silane coupling agent to the glass surface, one end of the homobifunctional PEG is covalently bonded, and a nucleic acid is bonded to another end. . It is described that this method improves the sensitivity of the biosensor.
特開2005-164348号公報JP 2005-164348 A 特開2006-143715号公報JP 2006-143715 A 特開2006-509201号公報JP 2006-509201 A
 従来、PEGリンカーを介して生体分子を固定化する方法は知られているが、ELISA等の免疫アッセイにおいて高い感度が発揮される、PEGリンカーを介して固定化を行う物質固定化用担体は開示されていない。 Conventionally, a method for immobilizing a biomolecule via a PEG linker is known, but a substance immobilization carrier for immobilization via a PEG linker, which exhibits high sensitivity in an immunoassay such as ELISA, is disclosed. It has not been.
 また、標的物質と特異的に結合する抗体、抗原等の被固定化物質を固相担体に固定化する免疫アッセイにおいて、PEGリンカーを有する物質固定化用担体に、生体関連物質である被固定化物質をその活性を維持したまま高密度に固定化することは困難であった。 In addition, in an immunoassay in which an immobilized substance such as an antibody or an antigen that specifically binds to a target substance is immobilized on a solid phase carrier, the immobilization substance that is a biological substance is immobilized on the substance immobilization carrier having a PEG linker. It was difficult to immobilize the substance at a high density while maintaining its activity.
 本発明はこのような実情に鑑みてなされたものであり、ELISA等の免疫アッセイにおいて高い検出感度を実現する、PEGリンカーを有する物質固定化用担体、該担体への被固定化物質の固定化方法、並びに、該担体を使用した免疫アッセイ法及びそのためのキットを提供することを目的とする。 The present invention has been made in view of such circumstances, and a substance-immobilizing carrier having a PEG linker that realizes high detection sensitivity in an immunoassay such as ELISA, and immobilization of the substance to be immobilized on the carrier It is an object of the present invention to provide a method, and an immunoassay method using the carrier and a kit therefor.
 本発明者は、表面に特定の条件を満足するPEGリンカーを含む親水性ポリマー層を備える支持体を物質固定化用担体として用いて免疫アッセイを行った場合に高い検出感度を実現できることを見出し、本発明を完成させるに至った。本発明は以下の発明群を包含する。 The present inventor has found that a high detection sensitivity can be realized when an immunoassay is performed using a support having a hydrophilic polymer layer containing a PEG linker that satisfies specific conditions on the surface as a substance immobilization carrier, The present invention has been completed. The present invention includes the following group of inventions.
(1)免疫アッセイに用いるための物質固定化用担体であって、
 支持体と、
 前記支持体の表面に配置された親水性ポリマー層と
を少なくとも含み、
 前記親水性ポリマー層が、
 数平均分子量が176以上であるポリエチレングリコール鎖と、
 標的物質と結合する抗原又は抗体である被固定化物質或いは標的物質である被固定化物質と共有結合を形成可能な、前記ポリエチレングリコール鎖に連結された官能基と
を含む、物質固定化用担体。
(1) A substance immobilization carrier for use in an immunoassay,
A support;
At least a hydrophilic polymer layer disposed on the surface of the support,
The hydrophilic polymer layer is
A polyethylene glycol chain having a number average molecular weight of 176 or more;
A substance immobilization carrier comprising an immobilized substance that is an antigen or an antibody that binds to a target substance, or a functional group linked to the polyethylene glycol chain that can form a covalent bond with the immobilized substance that is a target substance. .
(2)前記官能基が、n個の窒素原子を含有する官能基を含み、
 前記親水性ポリマー層中の窒素濃度が、前記親水性ポリマー層中のC-O結合に由来する炭素濃度を1としたとき、0.010以上、0.050×n以下である、
(1)の物質固定化用担体。
(2) The functional group includes a functional group containing n nitrogen atoms,
The nitrogen concentration in the hydrophilic polymer layer is 0.010 or more and 0.050 × n or less when the carbon concentration derived from the C—O bond in the hydrophilic polymer layer is 1.
(1) The substance immobilizing carrier.
(3)前記窒素を含有する官能基が、(1H-イミダゾール-1-イル)カルボニル基又はスクシンイミジルオキシカルボニル基である、(2)の物質固定化用担体。 (3) The substance-immobilizing carrier according to (2), wherein the nitrogen-containing functional group is a (1H-imidazol-1-yl) carbonyl group or a succinimidyloxycarbonyl group.
(4)免疫アッセイに用いるための物質固定化担体であって、
 支持体と、
 前記支持体の表面に配置された親水性ポリマー層と、
 標的物質と結合する抗原又は抗体である被固定化物質或いは標的物質である被固定化物質と
を少なくとも含み、
 前記親水性ポリマー層が、数平均分子量が176以上であるポリエチレングリコール鎖を含み、
 前記ポリエチレングリコール鎖と、前記被固定化物質とが共有結合を介して連結されている、物質固定化担体。
(4) A substance-immobilized carrier for use in an immunoassay,
A support;
A hydrophilic polymer layer disposed on the surface of the support;
At least an immobilized substance that is an antigen or an antibody that binds to a target substance or an immobilized substance that is a target substance,
The hydrophilic polymer layer includes a polyethylene glycol chain having a number average molecular weight of 176 or more,
A substance-immobilized carrier in which the polyethylene glycol chain and the substance to be immobilized are linked via a covalent bond.
(5)(1)~(3)のいずれかの物質固定化用担体と、前記被固定化物質とから、前記官能基と前記被固定化物質とを反応させて共有結合を形成することにより製造されたものである、(4)の物質固定化担体。 (5) By reacting the functional group with the substance to be immobilized from the substance immobilization carrier according to any one of (1) to (3) and the substance to be immobilized, to form a covalent bond The substance-immobilized carrier according to (4), which is manufactured.
(6)(4)又は(5)の物質固定化担体の製造方法であって、
 (1)~(3)のいずれかの物質固定化用担体と、前記被固定化物質を溶解した溶液とを接触させる、被固定化物質接触工程と、
 前記物質固定化用担体に接触させた前記溶液を乾燥濃縮させる、乾燥濃縮工程と、
を含む方法。
(6) A method for producing a substance-immobilized carrier according to (4) or (5),
A substance immobilization substance contacting step in which the substance immobilization support according to any one of (1) to (3) is brought into contact with a solution in which the substance to be immobilized is dissolved;
A dry concentration step of drying and concentrating the solution in contact with the substance immobilization carrier; and
Including methods.
(7)前記溶液が糖類を含む、(6)の方法。 (7) The method according to (6), wherein the solution contains a saccharide.
(8)前記糖類がトレハロースである、(7)の方法。 (8) The method according to (7), wherein the saccharide is trehalose.
(9)前記溶液が非イオン性界面活性剤を含む、(6)~(8)のいずれかの方法。 (9) The method according to any one of (6) to (8), wherein the solution contains a nonionic surfactant.
(10)前記乾燥濃縮工程の後に、前記物質固定化担体とアミノ基を有する低分子化合物とを接触させる工程を更に含む、(6)~(9)のいずれかの方法。 (10) The method according to any one of (6) to (9), further comprising a step of bringing the substance-immobilized carrier into contact with a low molecular compound having an amino group after the drying and concentration step.
(11)(4)又は(5)の物質固定化担体を用いて標的物質を測定する工程を含む、免疫アッセイにより標的物質を測定する方法。 (11) A method for measuring a target substance by an immunoassay, comprising the step of measuring the target substance using the substance-immobilized carrier of (4) or (5).
(12)(1)~(3)のいずれかの物質固定化用担体を含む、免疫アッセイにより標的物質を測定するためのキット。 (12) A kit for measuring a target substance by an immunoassay, comprising the substance immobilization carrier according to any one of (1) to (3).
(13)(4)又は(5)の物質固定化担体を含む、免疫アッセイにより標的物質を測定するためのキット。 (13) A kit for measuring a target substance by immunoassay, comprising the substance-immobilized carrier according to (4) or (5).
(14)サンドイッチ方式の免疫アッセイに用いるための、(13)のキットであって、
 被固定化物質が標的物質と結合する抗原又は抗体である、(4)又は(5)の物質固定化担体と、
 被固定化物質と非競合的に標的物質と結合する、直接的又は間接的に検出可能な抗原又は抗体である、検出可能抗原又は検出可能抗体と、
を少なくとも含むキット。
(14) The kit according to (13) for use in a sandwich-type immunoassay,
The substance-immobilized carrier according to (4) or (5), wherein the substance to be immobilized is an antigen or an antibody that binds to a target substance;
A detectable antigen or detectable antibody that is a directly or indirectly detectable antigen or antibody that binds to the target substance non-competitively with the immobilized substance;
A kit comprising at least
(15)直接競合方式の免疫アッセイに用いるための、(13)のキットであって、
 被固定化物質が標的物質と結合する抗原又は抗体である、(4)又は(5)の物質固定化担体と、
 測定対象試料中の標的物質と競合的に前記被固定化物質と結合する、直接的又は間接的に検出可能な標的物質である、検出可能標的物質と
を少なくとも含むキット。
(15) The kit according to (13) for use in a direct competitive immunoassay,
The substance-immobilized carrier according to (4) or (5), wherein the substance to be immobilized is an antigen or an antibody that binds to a target substance;
A kit comprising at least a detectable target substance, which is a target substance detectable directly or indirectly, which binds to the immobilized substance competitively with a target substance in a sample to be measured.
(16)間接競合方式の免疫アッセイに用いるための、(13)のキットであって、
 被固定化物質が標的物質である、(4)又は(5)の物質固定化担体と、
 測定対象試料中の標的物質と被固定化物質とが競合的に結合する、直接的又は間接的に検出可能な抗原又は抗体である、検出可能抗原又は検出可能抗体と、
を少なくとも含むキット。
(16) The kit according to (13) for use in an indirect competitive immunoassay,
(4) or (5) substance-immobilized carrier, wherein the substance to be immobilized is a target substance;
A detectable antigen or a detectable antibody that is a directly or indirectly detectable antigen or antibody in which the target substance in the sample to be measured and the immobilized substance are bound competitively;
A kit comprising at least
(17)免疫アッセイに用いるための物質固定化用担体であって、
 支持体と、
 前記支持体の表面に配置された親水性ポリマー層と
を少なくとも含み、
 前記親水性ポリマー層が、
 ポリエチレングリコール鎖と、
 標的物質と結合する抗原又は抗体である被固定化物質或いは標的物質である被固定化物質と共有結合を形成可能な、前記ポリエチレングリコール鎖に連結された官能基と
を含み、
 前記官能基が、n個の窒素原子を含有する官能基を含み、
 前記親水性ポリマー層中の窒素濃度が、前記親水性ポリマー層中のC-O結合に由来する炭素濃度を1としたとき、0.010以上、0.050×n以下である、
物質固定化用担体。
(17) A substance immobilization carrier for use in an immunoassay,
A support;
At least a hydrophilic polymer layer disposed on the surface of the support,
The hydrophilic polymer layer is
A polyethylene glycol chain;
A functional group linked to the polyethylene glycol chain capable of forming a covalent bond with an immobilized substance that is an antigen or an antibody that binds to a target substance or an immobilized substance that is a target substance,
The functional group comprises a functional group containing n nitrogen atoms;
The nitrogen concentration in the hydrophilic polymer layer is 0.010 or more and 0.050 × n or less when the carbon concentration derived from the C—O bond in the hydrophilic polymer layer is 1.
Substance immobilization carrier.
(18)(17)の物質固定化用担体を含む、免疫アッセイにより標的物質を測定するためのキット。 (18) A kit for measuring a target substance by an immunoassay, comprising the substance immobilization carrier according to (17).
 本明細書は本願の優先権の基礎である日本国特許出願2011-143258号の明細書および/または図面に記載される内容を包含する。 This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2011-143258 which is the basis of the priority of the present application.
 本発明の物質固定化用担体を用いて免疫アッセイを行うことにより高い検出感度を実現することができる。 High detection sensitivity can be realized by performing an immunoassay using the substance immobilization carrier of the present invention.
図1は、物質固定化用担体に関する本発明の一実施形態を示す。FIG. 1 shows one embodiment of the present invention relating to a substance immobilizing carrier. 図2は、物質固定化用担体の製造方法に関する本発明の一実施形態を示す。FIG. 2 shows an embodiment of the present invention relating to a method for producing a substance immobilizing carrier. 図3は、本発明の物質固定化担体を用いたELISA(間接法)の一実施形態を示す。FIG. 3 shows an embodiment of an ELISA (indirect method) using the substance-immobilized carrier of the present invention. 図4は、本発明の物質固定化担体を用いたELISA(間接法)の検量線を示す。FIG. 4 shows a calibration curve of ELISA (indirect method) using the substance-immobilized carrier of the present invention. 図5は、本発明の物質固定化担体を用いたELISA(サンドイッチ法)の一実施形態を示す。FIG. 5 shows an embodiment of an ELISA (sandwich method) using the substance-immobilized carrier of the present invention. 図6は、本発明の物質固定化担体を用いたELISA(サンドイッチ法)の検量線を示す。FIG. 6 shows a calibration curve of ELISA (sandwich method) using the substance-immobilized carrier of the present invention. 図7-1は、実施例7における被固定化物質溶解液のトレハロース濃度0%(w/v)である場合のELISA(サンドイッチ法)の検量線を示す。FIG. 7-1 shows a calibration curve of ELISA (sandwich method) when the trehalose concentration of the immobilized substance solution in Example 7 is 0% (w / v). 図7-2は、実施例7における被固定化物質溶解液のトレハロース濃度0.6%(w/v)である場合のELISA(サンドイッチ法)の検量線を示す。7-2 shows the calibration curve of ELISA (sandwich method) when the trehalose concentration of the immobilized substance solution in Example 7 is 0.6% (w / v). 図7-3は、実施例7における被固定化物質溶解液のトレハロース濃度1.25%(w/v)である場合のELISA(サンドイッチ法)の検量線を示す。FIG. 7-3 shows the calibration curve of ELISA (sandwich method) when the trehalose concentration of the immobilized substance solution in Example 7 is 1.25% (w / v). 図7-4は、実施例7における被固定化物質溶解液のトレハロース濃度2.5%(w/v)である場合のELISA(サンドイッチ法)の検量線を示す。FIG. 7-4 shows a calibration curve of ELISA (sandwich method) when the trehalose concentration of the immobilized substance solution in Example 7 is 2.5% (w / v). 図7-5は、実施例7における被固定化物質溶解液のトレハロース濃度5%(w/v)である場合のELISA(サンドイッチ法)の検量線を示す。FIG. 7-5 shows an ELISA (sandwich method) calibration curve when the trehalose concentration of the immobilized substance solution in Example 7 is 5% (w / v). 図7-6は、実施例7における被固定化物質溶解液のトレハロース濃度10%(w/v)である場合のELISA(サンドイッチ法)の検量線を示す。FIG. 7-6 shows a calibration curve of ELISA (sandwich method) when the trehalose concentration of the immobilized substance solution in Example 7 is 10% (w / v). 図8は、サンドイッチELISAの反応系の一例を模式的に示す。FIG. 8 schematically shows an example of a reaction system for sandwich ELISA. 図9は、直接競合ELISAの反応系の一例を模式的に示す。FIG. 9 schematically shows an example of a reaction system of a direct competitive ELISA. 図10は、間接競合ELISAの反応系の一例を模式的に示す。FIG. 10 schematically shows an example of a reaction system for indirect competitive ELISA. 図11は、本発明の物質固定化用担体の製造方法の一例の概略を示す。FIG. 11 shows an outline of an example of a method for producing the substance immobilizing carrier of the present invention. 図12は、本発明の物質固定化担体の製造方法の一例の概略を示す。FIG. 12 shows an outline of an example of the method for producing the substance-immobilized carrier of the present invention. 図13は、本発明の物質固定化用担体の実施形態の一例を模式的に示す。FIG. 13 schematically shows an example of an embodiment of the substance immobilizing carrier of the present invention.
(支持体)
 本発明における支持体の材料及び形状は、免疫アッセイにおける固相の支持体として利用可能な材料及び形状であれば特に限定されない。支持体の材料としてはプラスチック、ガラス、石英、シリコン、金属等が挙げられる。プラスチックは成型が容易であること、輸送及び廃棄における問題が小さいことから免疫アッセイ用担体の支持体の材料として特に好ましい。すなわち本発明において好ましい支持体は、その全部又は少なくとも一部にプラスチックを含む。支持体の、後述する親水性ポリマー層が形成される側の表面がプラスチックを含むことが好ましく、該表面がプラスチックからなることがより好ましい。プラスチックの具体例としては、ポリスチレン、ポリプロピレン、ポリ塩化ビニル、ポリエチレン、環状ポリオレフィン、アクリル樹脂、ポリエチレンテレフタラートなどが挙げられる。予め支持体表面にプラズマ処理やコロナ処理などの親水化処理が施されていてもよい。支持体は、免疫アッセイにおける固相として利用可能な表面を有している支持体であればよく、全体の形状は特に限定されない。例えばマイクロウェルプレート(複数の凹部が形成された板状体)、粒子、スライド、チューブ、キャピラリー、マイクロ流路などの形態の支持体を用いることができる。特にマイクロウェルプレート、とりわけポリスチレン製のマイクロウェルプレートの形態の支持体は有用である。
(Support)
The material and shape of the support in the present invention are not particularly limited as long as the material and shape can be used as a solid phase support in an immunoassay. Examples of the material for the support include plastic, glass, quartz, silicon, and metal. Plastic is particularly preferred as a support material for an immunoassay carrier because it is easy to mold and has few problems in transportation and disposal. That is, the support preferably used in the present invention contains plastic in all or at least part thereof. The surface of the support on the side on which the hydrophilic polymer layer described later is formed preferably contains plastic, and more preferably the surface is made of plastic. Specific examples of the plastic include polystyrene, polypropylene, polyvinyl chloride, polyethylene, cyclic polyolefin, acrylic resin, and polyethylene terephthalate. The support surface may be subjected to a hydrophilic treatment such as plasma treatment or corona treatment in advance. The support may be any support that has a surface that can be used as a solid phase in an immunoassay, and the overall shape is not particularly limited. For example, a support in the form of a microwell plate (a plate-like body having a plurality of recesses), particles, slides, tubes, capillaries, microchannels, or the like can be used. In particular, supports in the form of microwell plates, in particular polystyrene microwell plates, are useful.
(親水性ポリマー層)
 支持体の表面には、親水性ポリマー層が配置される。親水性ポリマー層はポリエチレングリコール鎖(PEG鎖)を少なくとも含む。「ポリエチレングリコール鎖(又はPEG鎖)」とは次式:
-(CH-CH-O)
(mは重合度を示す整数である)
で表される構造を指す。驚くべきことに、親水性ポリマー層におけるPEG鎖の数平均分子量が免疫アッセイの感度に影響を与える。十分に高感度の免疫アッセイを行うためにはPEG鎖の数平均分子量は176以上(mが4以上)であることが好ましく、より好ましくは362以上である。PEG鎖の数平均分子量が上記の下限よりも小さい場合には実験例で確認されている通り十分な感度が達成できない場合がある。PEG鎖の数平均分子量の上限は特に限定されないが、数平均分子量が大きくなるほど粘度が増すため取扱いが難しいこと、及び、PEG鎖の高密度での配置が難しいことから、PEG鎖の数平均分子量は25000以下であることが好ましく、10000以下であることがより好ましい。
(Hydrophilic polymer layer)
A hydrophilic polymer layer is disposed on the surface of the support. The hydrophilic polymer layer includes at least a polyethylene glycol chain (PEG chain). “Polyethylene glycol chain (or PEG chain)” is represented by the following formula:
— (CH 2 —CH 2 —O) m
(M is an integer indicating the degree of polymerization)
Refers to the structure represented by Surprisingly, the number average molecular weight of the PEG chains in the hydrophilic polymer layer affects the sensitivity of the immunoassay. In order to perform a sufficiently sensitive immunoassay, the number average molecular weight of the PEG chain is preferably 176 or more (m is 4 or more), more preferably 362 or more. When the number average molecular weight of the PEG chain is smaller than the above lower limit, sufficient sensitivity may not be achieved as confirmed in experimental examples. The upper limit of the number average molecular weight of the PEG chain is not particularly limited, but the number average molecular weight of the PEG chain is difficult to handle because the viscosity increases as the number average molecular weight increases and the arrangement of the PEG chains at high density is difficult. Is preferably 25000 or less, more preferably 10,000 or less.
 PEG鎖の数平均分子量は、原料として用いられるPEG又は担体から解離させたPEG:
HO-(CH-CH-O)-H
(mは重合度を示す整数である)
の数平均分子量からHOの分子量(18.015)を控除することにより求めることができる。PEG数平均分子量は蒸気圧浸透圧法または膜浸透圧法によって求められる。蒸気圧浸透圧法はPEGの数平均分子量が100,000未満のときに使用することができる。膜浸透圧法はPEGの数平均分子量が10,000~1,000,000のときに使用することができる。
The number average molecular weight of the PEG chain is PEG used as a raw material or PEG dissociated from a carrier:
HO— (CH 2 —CH 2 —O) m —H
(M is an integer indicating the degree of polymerization)
The molecular weight of H 2 O (18.015) can be subtracted from the number average molecular weight of The PEG number average molecular weight is determined by the vapor pressure osmotic pressure method or the membrane osmotic pressure method. The vapor pressure osmotic pressure method can be used when the number average molecular weight of PEG is less than 100,000. The membrane osmotic pressure method can be used when the number average molecular weight of PEG is 10,000 to 1,000,000.
 固定化前の物質固定化用担体におけるPEG鎖の一端には、被固定化物質との共有結合を形成することが可能な、少なくとも1つの官能基が直接的又は間接的に連結されていることが好ましい。このような官能基としては、被固定化物質と共有結合を形成することが可能な、(1H-イミダゾール-1-イル)カルボニル基、スクシンイミジルオキシカルボニル基、エポキシ基、アルデヒド基、アミノ基、チオール基、カルボキシル基、アジド基、シアノ基、活性エステル基(1H-ベンゾトリアゾール-1-イルオキシカルボニル基、ペンタフルオロフェニルオキシカルボニル基、パラニトロフェニルオキシカルボニル基等)、ハロゲン化カルボニル基(塩化カルボニル基、フッ化カルボニル基、臭化カルボニル基、ヨウ化カルボニル基)等が挙げられる。これらの官能基は、PEG鎖の末端のヒドロキシル基の水素を置換する置換基として、PEG鎖に直接的に連結されていてもよいし、PEG鎖の末端に結合したリンカー構造に結合した官能基として、PEG鎖に間接的に連結されていてもよい。被固定化物質への反応性と、保存安定性のバランスを考慮すると、(1H-イミダゾール-1-イル)カルボニル基及びスクシンイミジルオキシカルボニル基が好ましい。これらの官能基は被固定化物質が有するアミノ基等の官能基と反応して共有結合を形成することができる。 At least one functional group capable of forming a covalent bond with the substance to be immobilized is directly or indirectly linked to one end of the PEG chain in the substance immobilization carrier before immobilization. Is preferred. Examples of such a functional group include (1H-imidazol-1-yl) carbonyl group, succinimidyloxycarbonyl group, epoxy group, aldehyde group, amino group capable of forming a covalent bond with the substance to be immobilized. Group, thiol group, carboxyl group, azide group, cyano group, active ester group (1H-benzotriazol-1-yloxycarbonyl group, pentafluorophenyloxycarbonyl group, paranitrophenyloxycarbonyl group, etc.), halogenated carbonyl group (Carbonyl chloride group, carbonyl fluoride group, carbonyl bromide group, carbonyl iodide group) and the like. These functional groups may be directly linked to the PEG chain as a substituent that replaces the hydrogen of the hydroxyl group at the end of the PEG chain, or may be a functional group bonded to a linker structure bonded to the end of the PEG chain. As such, it may be indirectly linked to the PEG chain. In consideration of the balance between the reactivity to the substance to be immobilized and the storage stability, (1H-imidazol-1-yl) carbonyl group and succinimidyloxycarbonyl group are preferred. These functional groups can react with a functional group such as an amino group of the substance to be immobilized to form a covalent bond.
 PEG鎖の結合密度も免疫アッセイの検出感度に影響する。PEG鎖の結合密度はX線光電子分光法(XPS)を用いてある程度推定することができる。エチレングリコール単位(CH-CH-O)は(XPS)においてC(1s)シグナルのC-O成分を与え、(1H-イミダゾール-1-イル)カルボニル基、スクシンイミジルオキシカルボニル基等の窒素原子含有官能基はXPSにおいてN(1s)シグナルを与える。元素濃度比N(1s)/C-OはPEG鎖の結合密度と明確な相関がある。免疫アッセイでの高い検出感度を実現するためには、官能基がn個の窒素原子を含有する場合、元素濃度比N(1s)/C-Oが0.010以上、0.050×n以下であることが好ましい。「0.010以上、0.050×n以下」とは、例えば、n=1の場合は「0.010以上、0.050以下」を意味し、n=2の場合は「0.010以上、0.100以下」を意味し、n=3の場合は「0.010以上、0.150以下」を意味し、n=4の場合は「0.010以上、0.200以下」を意味する。本発明におけるXPSは、アルバック・ファイ社製のX線分光分析装置「ESCA5600」を用い、光電子取り込み角度を45°に設定して測定される。n個の窒素原子を含有する官能基としては、(1H-イミダゾール-1-イル)カルボニル基(n=2)及びスクシンイミジルオキシカルボニル基(n=1)以外にイソシアネート基(n=1)、アジドカルボニル基(n=3)、カルボジイミド基(n=2)、マレイミジル基(n=1)、アジリジン-2-イル基(n=1)、1H-ベンゾトリアゾール-1-イルオキシカルボニル基(n=3)、1H-7-アザベンゾトリアゾール-1-イルオキシカルボニル基(n=4)が挙げられる。これらの官能基についても、XPSにより求められる、親水性ポリマー層中のC-O結合に由来する炭素濃度を1としたときの窒素濃度(N(1s)/C-O)が上記と同様の数値範囲であることが好ましい。 The binding density of the PEG chain also affects the detection sensitivity of the immunoassay. The bond density of PEG chains can be estimated to some extent using X-ray photoelectron spectroscopy (XPS). The ethylene glycol unit (CH 2 —CH 2 —O) gives the C—O component of the C (1s) signal in (XPS), such as (1H-imidazol-1-yl) carbonyl group, succinimidyloxycarbonyl group, etc. This nitrogen atom-containing functional group gives an N (1s) signal in XPS. The element concentration ratio N (1s) / CO has a clear correlation with the bond density of PEG chains. In order to realize high detection sensitivity in an immunoassay, when the functional group contains n nitrogen atoms, the element concentration ratio N (1s) / CO is 0.010 or more and 0.050 × n or less. It is preferable that “0.010 or more and 0.050 × n or less” means “0.010 or more and 0.050 or less” when n = 1, and “0.010 or more when n = 2”. , 0.100 or less ”, n = 3 means“ 0.010 or more and 0.150 or less ”, and n = 4 means“ 0.010 or more and 0.200 or less ”. To do. XPS in the present invention is measured using an X-ray spectroscopic analyzer “ESCA5600” manufactured by ULVAC-PHI, Inc. and setting the photoelectron uptake angle to 45 °. Functional groups containing n nitrogen atoms include isocyanate groups (n = 1) in addition to (1H-imidazol-1-yl) carbonyl group (n = 2) and succinimidyloxycarbonyl group (n = 1). ), Azidocarbonyl group (n = 3), carbodiimide group (n = 2), maleimidyl group (n = 1), aziridin-2-yl group (n = 1), 1H-benzotriazol-1-yloxycarbonyl group (N = 3), 1H-7-azabenzotriazol-1-yloxycarbonyl group (n = 4). For these functional groups, the nitrogen concentration (N (1s) / C—O) obtained by XPS, where the carbon concentration derived from the C—O bond in the hydrophilic polymer layer is 1, is the same as described above. A numerical range is preferred.
 親水性ポリマー層には官能基が付加されていないPEG鎖や、他の親水性化合物が更に含まれていてもよい。 The hydrophilic polymer layer may further contain a PEG chain to which no functional group is added or another hydrophilic compound.
(親水性ポリマー層の形成方法)
 支持体の、免疫アッセイにおける固相として利用される位置の表面に親水性ポリマー層が形成される。親水性ポリマー層は、支持体表面に化学的又は物理的に固定された官能基との共有結合により支持体に固定化されることができる。
(Method for forming hydrophilic polymer layer)
A hydrophilic polymer layer is formed on the surface of the support at a position used as a solid phase in an immunoassay. The hydrophilic polymer layer can be immobilized on the support through a covalent bond with a functional group chemically or physically immobilized on the support surface.
 本発明の物質固定化用担体は、図11に概略を示すとおり、プライマー層又はカップリング剤を用いて支持体の表面に官能基を導入する工程S1101と、前記官能基にPEG鎖を連結させる工程S1102と、PEG鎖末端へ官能基を連結する工程S1103とを含む方法により製造することができる。 As shown schematically in FIG. 11, the carrier for immobilizing a substance of the present invention is a step S1101 for introducing a functional group onto the surface of a support using a primer layer or a coupling agent, and a PEG chain is linked to the functional group. It can be produced by a method including step S1102 and step S1103 of linking a functional group to the PEG chain end.
(プライマー層による官能基の導入)
 支持体が表面にプラスチックを含む支持体である場合、該表面にはプライマー層が形成され、該プライマー層の表面に親水性ポリマー層が形成されていることが好ましい。このとき、プライマー層のポリシロキサンの側鎖上の官能基が、PEG鎖末端と共有結合を形成される。この場合の、本発明の物質固定化用担体の実施形態の概要を図13を参照して説明する。
(Introduction of functional group by primer layer)
When the support is a support containing a plastic on the surface, a primer layer is preferably formed on the surface, and a hydrophilic polymer layer is preferably formed on the surface of the primer layer. At this time, the functional group on the side chain of the polysiloxane of the primer layer forms a covalent bond with the PEG chain end. An outline of an embodiment of the substance immobilizing carrier of the present invention in this case will be described with reference to FIG.
 物質固定化用担体10は、表面Sにプラスチックを含む支持体11と、表面S上に配置された、ポリシロキサンを含むプライマー層12と、プライマー層12上に配置された、PEG鎖を含む親水性ポリマー層13とを備える。 The substance immobilization carrier 10 includes a support 11 containing a plastic on the surface S, a primer layer 12 containing polysiloxane disposed on the surface S, and a hydrophilic material containing PEG chains disposed on the primer layer 12. A functional polymer layer 13.
 親水性ポリマー層13のPEG鎖-(CH-CH-O)-はプライマー層12を構成するポリシロキサンの側鎖Aと共有結合を介して連結されている。ここで側鎖Aは、後述する式1のシラノール化合物が有する、Rに由来する基であり、R上の官能基又は該官能基から誘導された官能基がPEG鎖の末端のヒドロキシル基と共有結合を形成して形成された二価の基を指す。ケイ素原子に結合する基Xは式1のシラノール化合物のR(p=2の場合)、R(p+q=3の場合)、又はヒドロキシル基(q=3の場合)に由来する基である。プライマー層12中のポリシロキサンは直鎖状であってもよいし、分岐鎖状又は網目状の構造を有していてもよいが、好ましくは分岐鎖状又は網目状の構造を有する。ポリシロキサンが分岐鎖状又は網目状の構造を有するとき、Xは、他の繰り返し単位(図示していない)のケイ素原子と結合する架橋基である。架橋基としてのXとしては、式1のシラノール化合物のヒドロキシル基に由来するエーテル基(-O-)が挙げられる。ポリシロキサンが直鎖状の構造を有するとき、Xは、式1に定義するR又はR、未反応のヒドロキシル基、加水分解されずに残存した式2に定義する基Y等の一価の基である。PEG鎖の両端のうち、ポリシロキサンと連結されていない側の端部には、被固定化物質と共有結合を形成可能な官能基Rが、直接的に、或いは必要に応じてリンカーを介して間接的に連結されていることが好ましい。図13においてQは結合、又はリンカーを示す。 The PEG chain — (CH 2 —CH 2 —O) m — in the hydrophilic polymer layer 13 is linked to the polysiloxane side chain A constituting the primer layer 12 through a covalent bond. Here, the side chain A is a group derived from R 1 of a silanol compound of formula 1 described later, and the functional group on R 1 or a functional group derived from the functional group is a hydroxyl group at the end of the PEG chain. Refers to a divalent group formed by forming a covalent bond with. The group X bonded to the silicon atom is a group derived from R 1 (when p = 2), R 2 (when p + q = 3) or hydroxyl group (when q = 3) of the silanol compound of formula 1. . The polysiloxane in the primer layer 12 may be linear, or may have a branched or network structure, but preferably has a branched or network structure. When the polysiloxane has a branched or network structure, X is a bridging group bonded to a silicon atom of another repeating unit (not shown). X as the bridging group includes an ether group (—O—) derived from the hydroxyl group of the silanol compound of Formula 1. When the polysiloxane has a linear structure, X is a monovalent group such as R 1 or R 2 defined in Formula 1, an unreacted hydroxyl group, a group Y defined in Formula 2 remaining without hydrolysis. It is the basis of. A functional group R 3 capable of forming a covalent bond with the substance to be immobilized is directly or, if necessary, via a linker at the end of the PEG chain that is not linked to polysiloxane. Are preferably indirectly connected. In FIG. 13, Q represents a bond or a linker.
 図13に示す本実施形態において、支持体11は、少なくとも表面Sにプラスチックを含む。ポリシロキサンを含むプライマー層12は支持体11の表面Sに物理吸着により結合することができる。物理吸着はファンデルワールス力または疎水性相互作用により生じると考えられる。プライマー層12と支持体11の表面Sとの間には共有結合等の化学結合が形成される必要はないため、表面Sがポリスチレン等の、反応性官能基を含まないプラスチックからなる場合であっても、プライマー層12を結合させることができる。 In the present embodiment shown in FIG. 13, the support 11 includes plastic on at least the surface S. The primer layer 12 containing polysiloxane can be bonded to the surface S of the support 11 by physical adsorption. It is believed that physisorption is caused by van der Waals forces or hydrophobic interactions. Since it is not necessary to form a chemical bond such as a covalent bond between the primer layer 12 and the surface S of the support 11, the surface S is made of a plastic that does not contain a reactive functional group such as polystyrene. Even the primer layer 12 can be bonded.
 プライマー層12中におけるポリシロキサンの状態は必ずしも明らかではないが、図2に示すように複数のポリシロキサン分子の主鎖部分同士が会合し、側鎖である有機基が支持体表面及び親水性層の側に面した二層構造を形成している可能性がある。このような二重構造が形成される機構は以下のように推定される。まず、シラノールのポリマー化によってファンデルワールス力が増大したポリシロキサンがプラスチック表面に物理吸着する。このとき、プラスチック表面とシラノール化合物の有機基との間に働く疎水性相互作用によりシラノール化合物の有機基はプラスチック側に配向する。ポリシロキサンの一層目が形成された後、溶媒側に配向したシラノール基(Si-OH)に別のポリシロキサンが結合する。このとき、シラノール基同士の水素結合によりシラノール化合物の有機基は溶媒側に配向する。その結果、ポリシロキサンは図2に示すような二層構造となると考えられる。溶媒側に配向した有機基は親水性層との共有結合を形成することができる。 Although the state of the polysiloxane in the primer layer 12 is not necessarily clear, as shown in FIG. 2, the main chain portions of a plurality of polysiloxane molecules are associated with each other, and the organic groups as side chains are formed on the support surface and the hydrophilic layer. There is a possibility that a two-layer structure facing the side is formed. The mechanism by which such a double structure is formed is presumed as follows. First, polysiloxane having increased van der Waals force due to the polymerization of silanol is physically adsorbed on the plastic surface. At this time, the organic group of the silanol compound is oriented to the plastic side by a hydrophobic interaction acting between the plastic surface and the organic group of the silanol compound. After the first layer of polysiloxane is formed, another polysiloxane is bonded to silanol groups (Si—OH) oriented on the solvent side. At this time, the organic group of the silanol compound is oriented to the solvent side by hydrogen bonding between the silanol groups. As a result, the polysiloxane is considered to have a two-layer structure as shown in FIG. The organic group oriented on the solvent side can form a covalent bond with the hydrophilic layer.
 プライマー層は、少なくともポリシロキサンを含む層により形成することができる。ここで、ポリシロキサンとはシロキサン結合(Si-O-Si)の繰り返し単位からなるポリマーであり、シラノール化合物の縮合重合によって得ることができる。シラノール化合物の縮合はシラノール化合物の分子間で起こる反応である。支持体表面のプラスチック分子が反応性の官能基を有してない場合には、シラノール化合物と支持体表面のプラスチック分子との間では反応は起こらない。すなわち、シラノール化合物及び形成されたポリシロキサンは支持体表面のプラスチック分子とは化学的に反応せずに、単に物理的に吸着しているだけである。この点は、ガラスを支持体とする場合とは大きく異なる。このようなシラノール化合物のプラスチック表面への物理吸着力は、モノマーでは極めて弱いが、ある程度縮合が進み、ポリマー(ポリシロキサン)となれば強くなる。シラノール化合物を適度に縮合することによって、プラスチック表面にポリシロキサンを含むプライマー層が形成される。 The primer layer can be formed of a layer containing at least polysiloxane. Here, the polysiloxane is a polymer composed of repeating units of siloxane bonds (Si—O—Si) and can be obtained by condensation polymerization of a silanol compound. The condensation of the silanol compound is a reaction that occurs between the molecules of the silanol compound. When the plastic molecule on the support surface does not have a reactive functional group, no reaction occurs between the silanol compound and the plastic molecule on the support surface. That is, the silanol compound and the formed polysiloxane are not physically reacted with the plastic molecules on the support surface, but are merely physically adsorbed. This point is greatly different from the case of using glass as a support. The physical adsorption power of such a silanol compound to the plastic surface is extremely weak with a monomer, but becomes stronger when condensation proceeds to some extent and becomes a polymer (polysiloxane). A primer layer containing polysiloxane is formed on the plastic surface by appropriately condensing the silanol compound.
(シラノール化合物)
 本発明で用いられるシラノール化合物は、シラノール基(Si-OH)に加えて、ケイ素原子に直結した炭素原子を含み且つ官能基を有する有機基を有する。この有機基はポリシロキサンの側鎖となる。シラノール化合物は典型的には式1で表される構造を有する:
(R(R4-p-qSi(OH) ・・・・(式1)
(pは1又は2であり、qは2又は3であり、p+qは3又は4であり、Rは、独立に、ケイ素原子に直結した炭素原子を含み且つ官能基を有する有機基であり、Rはケイ素原子に直結した炭素原子を含む有機基である)。p=1かつq=2又は3であることが好ましく、p=1かつq=3であることがより好ましい。p+q=4である場合、Rは存在しない。
(Silanol compound)
The silanol compound used in the present invention has an organic group containing a carbon atom directly connected to a silicon atom and having a functional group in addition to a silanol group (Si—OH). This organic group becomes the side chain of the polysiloxane. Silanol compounds typically have a structure represented by Formula 1:
(R 1 ) p (R 2 ) 4-pq Si (OH) q ... (Formula 1)
(P is 1 or 2, q is 2 or 3, p + q is 3 or 4, and R 1 is an organic group containing a carbon atom directly connected to a silicon atom and having a functional group. R 2 is an organic group containing a carbon atom directly connected to a silicon atom). It is preferable that p = 1 and q = 2 or 3, and it is more preferable that p = 1 and q = 3. When p + q = 4, R 2 is not present.
 Rは、好ましくは、水素原子が1つ以上(好ましくは1つ)の官能基により、必要に応じて適当なリンカー構造を介して、置換されている、炭素数が1~20、好ましくは1~15、より好ましくは1~10、特に好ましくは1~6の炭化水素基である(ただし、前記炭化水素基の全部又は一部がビニル基である場合のように、前記炭化水素基自体が官能基である場合は官能基により置換されている必要はない)。前記炭化水素基は、直鎖又は分岐鎖或いは環構造を有する、飽和又は不飽和の脂肪族炭化水素基(アルキル基、炭素数2以上のアルケニル基、又は炭素数2以上のアルキニル基)であってもよいし、単環又は多環の炭素数6以上の芳香族炭化水素基であってもよいし、1つ以上の前記脂肪族炭化水素基によって置換された前記芳香族炭化水素基であってもよいし、1つ以上の前記芳香族炭化水素基によって置換され前記脂肪族炭化水素基であってもよい。前記炭化水素基では、炭素-炭素結合が、1又は2個の、酸素、窒素及び硫黄から選択される同一又は異なる原子により中断されていてもよい。炭化水素基の例としては好ましくはプロピル基、エチル基が挙げられる。 R 1 is preferably substituted with a functional group having one or more (preferably one) hydrogen atom through an appropriate linker structure as necessary, and has 1 to 20 carbon atoms, preferably 1 to 15, more preferably 1 to 10, particularly preferably 1 to 6 hydrocarbon groups (provided that all or part of the hydrocarbon groups are vinyl groups, such as the hydrocarbon group itself) If is a functional group, it need not be substituted by a functional group). The hydrocarbon group is a saturated or unsaturated aliphatic hydrocarbon group (an alkyl group, an alkenyl group having 2 or more carbon atoms, or an alkynyl group having 2 or more carbon atoms) having a linear or branched chain or ring structure. It may be a monocyclic or polycyclic aromatic hydrocarbon group having 6 or more carbon atoms, or the aromatic hydrocarbon group substituted by one or more aliphatic hydrocarbon groups. The aliphatic hydrocarbon group may be substituted with one or more aromatic hydrocarbon groups. In the hydrocarbon group, the carbon-carbon bond may be interrupted by 1 or 2 identical or different atoms selected from oxygen, nitrogen and sulfur. Preferred examples of the hydrocarbon group include a propyl group and an ethyl group.
 Rにおける、前記炭化水素基の1つ以上の水素を、必要に応じて適当なリンカー構造を介して、置換する官能基としては、PEGのヒドロキシル基と反応して共有結合を形成することができる官能基、又はPEGのヒドロキシル基と反応して共有結合を形成することができる官能基に変換可能な官能基であれば特に限定されないが、典型的には、(1H-イミダゾール-1-イル)カルボニル基、スクシンイミジルオキシカルボニル基、グリシジル基、エポキシ基、アルデヒド基、アミノ基、チオール基、カルボキシル基、アジド基、シアノ基、活性エステル基(1H-ベンゾトリアゾール-1-イルオキシカルボニル基、ペンタフルオロフェニルオキシカルボニル基、パラニトロフェニルオキシカルボニル基等)、ハロゲン化カルボニル基、イソシアネート基、マレイミド基等が挙げられ、なかでも、グリシジル基又はエポキシ基が好ましい。グリシジル基又はエポキシ基は、それ自体がPEGのヒドロキシル基と反応して共有結合を形成可能であるが、特開2009-156864号公報に記載されている方法に従って、グリシジル基又はエポキシ基をアルデヒド基に変換し、形成されたアルデヒド基と、PEGが有するヒドロキシル基とを反応させてもよい。これらの官能基は、前記炭化水素基の水素原子を直接置換してもよいし、適切なリンカー構造を介して置換してもよい。リンカー構造としては、例えば炭素の数が0~3個、窒素、酸素及び硫黄から選択される同一又は異なるヘテロ原子の数が0~3個である二価の基が挙げられ、例えば、炭化水素基が左側に、官能基が右側にそれぞれ結合するとしたとき、-O-、-S-、-NH-、-(C=O)O-、-O(C=O)-、-NH(C=O)-、-(C=O)NH-、-(C=O)S-、-S(C=O)-、-NH(C=S)-、-(C=S)NH-、-(N=C=N)-、-CH=N-、-N=CH-、-O-O-、-S-S-、-(O=S=O)-で表される構造が挙げられる。 As a functional group for substituting one or more hydrogens of the hydrocarbon group in R 1 through an appropriate linker structure as necessary, it can react with a hydroxyl group of PEG to form a covalent bond. The functional group is not particularly limited as long as it is a functional group that can be converted into a functional group that can react with a hydroxyl group of PEG to form a covalent bond, but typically (1H-imidazol-1-yl ) Carbonyl group, succinimidyloxycarbonyl group, glycidyl group, epoxy group, aldehyde group, amino group, thiol group, carboxyl group, azide group, cyano group, active ester group (1H-benzotriazol-1-yloxycarbonyl) Group, pentafluorophenyloxycarbonyl group, paranitrophenyloxycarbonyl group, etc.), halogenated carbonyl group Isocyanate group, a maleimide group, and the like. Among them, a glycidyl group or an epoxy group is preferable. The glycidyl group or epoxy group itself can react with the hydroxyl group of PEG to form a covalent bond, but the glycidyl group or epoxy group is converted into an aldehyde group according to the method described in JP-A-2009-156864. The aldehyde group thus formed may be reacted with the hydroxyl group of PEG. These functional groups may be substituted directly on the hydrogen atom of the hydrocarbon group or may be substituted via an appropriate linker structure. Examples of the linker structure include a divalent group having 0 to 3 carbon atoms and 0 to 3 identical or different heteroatoms selected from nitrogen, oxygen and sulfur. When the group is bonded to the left side and the functional group is bonded to the right side, —O—, —S—, —NH—, — (C═O) O—, —O (C═O) —, —NH (C ═O) —, — (C═O) NH—, — (C═O) S—, —S (C═O) —, —NH (C═S) —, — (C═S) NH—, Examples include structures represented by — (N═C═N) —, —CH═N—, —N═CH—, —O—O—, —S—S—, — (O═S═O) —. It is done.
 Rの特に好ましい態様としては3-グリシドキシプロピル基、2-(3,4-エポキシシクロヘキシル)エチル基が挙げられる。 Particularly preferred embodiments of R 1 include a 3-glycidoxypropyl group and a 2- (3,4-epoxycyclohexyl) ethyl group.
 Rは、好ましくは、置換基により置換されていないという点を除いてRについて上述したものと同様の(ただしRとは独立して選択される)炭化水素基であり、なかでも、炭素数が1~6の直鎖又は分岐鎖のアルキル基が好ましく、メチル基又はエチル基が特に好ましい。 R 2 is preferably a hydrocarbon group similar to that described above for R 1 except that it is not substituted by a substituent (but selected independently of R 1 ), A linear or branched alkyl group having 1 to 6 carbon atoms is preferable, and a methyl group or an ethyl group is particularly preferable.
(加水分解によりシラノール化合物を生成するケイ素化合物)
 前記シラノール化合物は、加水分解によりシラノール基(Si-OH)を生成可能な基を有するケイ素化合物を、加水分解することにより生成することができる。このようなケイ素化合物は式2で表される構造を有する:
(R(R4-p-qSi(Y) ・・・・(式2)
(Yは、独立に、加水分解によりシラノール基を生成可能な基であり、p、q、R、Rはそれぞれシラノール化合物に関して定義したとおりである)。
(Silicon compounds that produce silanol compounds by hydrolysis)
The silanol compound can be produced by hydrolyzing a silicon compound having a group capable of producing a silanol group (Si—OH) by hydrolysis. Such silicon compounds have a structure represented by Formula 2:
(R 1 ) p (R 2 ) 4-pq Si (Y) q ... (Formula 2)
(Y is a group that can independently generate a silanol group by hydrolysis, and p, q, R 1 , and R 2 are as defined for the silanol compound).
 Yとしては、アルコキシ基、ハロゲン原子、アリールオキシ基、アルコキシ基又はアリールオキシ基により置換されたアルコキシ基、アルコキシ基又はアリールオキシ基により置換されたアリールオキシ基、アルキルカルボニルオキシ基等が好ましい。Yとしては特に、炭素数1~6のアルコキシ基(特にメトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基)、炭素数1~6の、アルコキシ基により置換されたアルコキシ基(例えばメトキシエトキシ基)、炭素数1~6のアルキルカルボニルオキシ基(例えばアセトキシ基)、塩素原子が好ましい。 Y is preferably an alkoxy group, a halogen atom, an aryloxy group, an alkoxy group substituted by an alkoxy group or an aryloxy group, an aryloxy group substituted by an alkoxy group or an aryloxy group, an alkylcarbonyloxy group, or the like. Y particularly represents an alkoxy group having 1 to 6 carbon atoms (particularly a methoxy group, ethoxy group, isopropoxy group, tert-butoxy group), an alkoxy group having 1 to 6 carbon atoms substituted by an alkoxy group (for example, methoxyethoxy group). Group), an alkylcarbonyloxy group having 1 to 6 carbon atoms (for example, an acetoxy group), and a chlorine atom are preferable.
 式2のケイ素化合物としては、シランカップリング剤として市販されている化合物を好適に使用することができ、3-グリシドキシプロピルトリメトキシシラン又は3-グリシドキシプロピルトリエトキシシランが特に好ましい。 As the silicon compound of the formula 2, a commercially available compound as a silane coupling agent can be suitably used, and 3-glycidoxypropyltrimethoxysilane or 3-glycidoxypropyltriethoxysilane is particularly preferable.
(プライマー層の形成方法)
 ポリシロキサンを含むプライマー層は、支持体の表面上において式1のシラノール化合物を重合させる工程(プライマー層形成工程)を含む方法により形成可能である。該工程は、好ましくは、式2のケイ素化合物を以下のように加水分解し、式1のシラノール化合物を生成する工程と、生成したシラノール化合物と塩基とがアルコール中に溶解された溶液を前記支持体の表面上に接触させる工程とを含む。加水分解の条件は特に限定されないが、例えば次の方法が可能である。まず、式2のケイ素化合物に希塩酸を添加し、基Yを加水分解する。希塩酸のpHは2.0~3.0に調整するのが望ましい。ケイ素化合物に対する水分子のモル比は2~4とする。この操作によって基Yはシラノール基へ変換され、式1のシラノール化合物が生成する。
(Method for forming primer layer)
The primer layer containing polysiloxane can be formed by a method including a step (primer layer forming step) of polymerizing the silanol compound of Formula 1 on the surface of the support. The step preferably comprises hydrolyzing the silicon compound of formula 2 as follows to produce a silanol compound of formula 1 and a solution in which the produced silanol compound and base are dissolved in alcohol. Contacting on the surface of the body. Hydrolysis conditions are not particularly limited, but for example, the following method is possible. First, dilute hydrochloric acid is added to the silicon compound of formula 2 to hydrolyze the group Y. The pH of dilute hydrochloric acid is desirably adjusted to 2.0 to 3.0. The molar ratio of water molecules to silicon compounds is 2-4. By this operation, the group Y is converted to a silanol group, and a silanol compound of the formula 1 is formed.
 次いでシラノール化合物を支持体表面に適用し、縮合重合によりポリシロキサンを形成する。式1のシラノール化合物は、塩基とともにアルコールに溶解する。シラノール化合物の終濃度は0.1~10%(v/v)の範囲で調整することが望ましい。塩基はトリエチルアミン、N,N-ジイソプロピルエチルアミン、ピリジン、4-ジメチルアミノピリジンなどを用いることができるが、これらに限定されない。塩基の終濃度は0.1~10%(v/v)の範囲で調整することが望ましい。アルコールはエタノール、2-プロパノール、tert-ブチルアルコール等を用いることができるが、これらに限定されない。このシラノール化合物溶液を支持体のプラスチック表面に接触させ、10分~24時間放置する。反応温度は4~80℃の範囲で設定できるが、特に室温(20~25℃)が好ましい。以上の操作によって、プラスチック表面にポリシロキサンを含むプライマー層が物理吸着によって形成される。プライマー層の被覆密度は、シラノールや塩基の濃度、あるいはシラノール溶液をプラスチック表面に接触させる時間によって制御可能である。プライマー層の被覆密度が高ければ高いほど、次の工程で共有結合させるPEG鎖の結合密度も高くなる。 Next, a silanol compound is applied to the support surface, and polysiloxane is formed by condensation polymerization. The silanol compound of Formula 1 is soluble in alcohol along with the base. The final concentration of the silanol compound is desirably adjusted within the range of 0.1 to 10% (v / v). As the base, triethylamine, N, N-diisopropylethylamine, pyridine, 4-dimethylaminopyridine and the like can be used, but not limited thereto. It is desirable to adjust the final concentration of the base in the range of 0.1 to 10% (v / v). As the alcohol, ethanol, 2-propanol, tert-butyl alcohol and the like can be used, but the alcohol is not limited thereto. This silanol compound solution is brought into contact with the plastic surface of the support and allowed to stand for 10 minutes to 24 hours. The reaction temperature can be set in the range of 4 to 80 ° C, but room temperature (20 to 25 ° C) is particularly preferable. By the above operation, a primer layer containing polysiloxane is formed on the plastic surface by physical adsorption. The coating density of the primer layer can be controlled by the concentration of silanol or base, or the time for which the silanol solution is brought into contact with the plastic surface. The higher the coating density of the primer layer, the higher the binding density of the PEG chain that is covalently bonded in the next step.
 形成されたポリシロキサンの側鎖上のシラノール化合物からの官能基を誘導体化して他の官能基に変換する場合には、プライマー層形成後に引き続き、ポリシロキサンの側鎖上のシラノール化合物からの官能基を、PEGのヒドロキシル基と反応して共有結合を形成することができる官能基に変換する誘導体化工程を行う。 When the functional group from the silanol compound on the side chain of the formed polysiloxane is derivatized and converted to another functional group, the functional group from the silanol compound on the side chain of the polysiloxane is subsequently formed after the primer layer is formed. A derivatization step is performed in which is converted to a functional group capable of reacting with the hydroxyl group of PEG to form a covalent bond.
(シランカップリング剤による官能基の導入)
 支持体が表面にガラス、石英またはシリコンを含む支持体である場合、該表面に、シランカップリング剤の加水分解により生成される、ケイ素原子に直結した炭素原子を含み且つ官能基を有する有機基を有するシラノール化合物を結合させることにより、或いは、更に、必要に応じて該官能基をPEGと共有結合を形成することができる他の官能基に変換する誘導体化により、支持体表面にPEGと共有結合を形成することができる官能基を導入することができる。該官能基とPEGの一端との反応によりシランカップリング剤と親水性ポリマー層のPEG鎖とを共有結合により連結することができる。
(Introduction of functional group by silane coupling agent)
When the support is a support containing glass, quartz or silicon on the surface, an organic group containing a carbon atom directly bonded to a silicon atom and having a functional group formed on the surface by hydrolysis of a silane coupling agent It is shared with PEG on the surface of the support by linking a silanol compound having a functional group or, if necessary, by derivatization that converts the functional group into another functional group capable of forming a covalent bond with PEG. Functional groups capable of forming bonds can be introduced. The silane coupling agent and the PEG chain of the hydrophilic polymer layer can be linked by a covalent bond by a reaction between the functional group and one end of PEG.
 シラノール化合物としては、プライマー層に関して上述した式1のシラノール化合物と同様のものを使用することができる。 As the silanol compound, those similar to the silanol compound of the formula 1 described above with respect to the primer layer can be used.
 シランカップリング剤としては、プライマー層に関して上述した式2のケイ素化合物と同様のものを使用することができる。 As the silane coupling agent, those similar to the silicon compound of formula 2 described above with respect to the primer layer can be used.
 この実施形態では、支持体表面に導入された、シラノール化合物又はシランカップリング剤に由来する有機基上の官能基又は該官能基から誘導された他の官能基がPEG末端のヒドロキシル基と共有結合を形成するために用いられる。 In this embodiment, a functional group on an organic group derived from a silanol compound or a silane coupling agent or other functional group derived from the functional group introduced on the support surface is covalently bonded to a hydroxyl group at the PEG end. Is used to form
(親水性ポリマー層の形成)
 プライマー層、シランカップリング剤等により官能基が導入された支持体表面に、PEGを反応させてPEG鎖を形成する(S1102)。このとき触媒量の濃硫酸を含むPEGを接触させる。ここで、数平均分子量が1000を超えるPEGはあらかじめ加熱融解しておく。必要に応じて、PEGをtert-ブチルアルコールなどで希釈して用いてもよい。このPEG溶液をプラスチック表面に接触させ、加熱する。加熱温度は60~100℃の範囲で設定できるが、プラスチックの耐熱性を加味すると80℃前後(75℃~85℃)が好ましい。加熱時間は10分間~24時間の範囲で設定できるが、加熱温度が80℃前後の場合は10~60分間が好ましい。以上の操作によって、プライマー層にPEG鎖が共有結合する。このとき、PEG鎖の結合密度はプライマー層の被覆密度に依存する。
(Formation of hydrophilic polymer layer)
PEG is reacted to form a PEG chain on the surface of the support into which a functional group has been introduced by a primer layer, a silane coupling agent or the like (S1102). At this time, a PEG containing a catalytic amount of concentrated sulfuric acid is brought into contact. Here, PEG having a number average molecular weight exceeding 1000 is previously heated and melted. If necessary, PEG may be diluted with tert-butyl alcohol or the like. The PEG solution is brought into contact with the plastic surface and heated. The heating temperature can be set in the range of 60 to 100 ° C., but considering the heat resistance of the plastic, it is preferably around 80 ° C. (75 ° C. to 85 ° C.). The heating time can be set in the range of 10 minutes to 24 hours, but when the heating temperature is around 80 ° C., 10 to 60 minutes is preferable. Through the above operation, the PEG chain is covalently bonded to the primer layer. At this time, the binding density of the PEG chain depends on the coating density of the primer layer.
 最後に、PEG鎖の一端に、被固定化物質との共有結合を形成することが可能な、少なくとも1つの官能基を直接的又は間接的に連結させる(S1103)。官能基の導入方法は特に限定されない。(1H-イミダゾール-1-イル)カルボニル基及びスクシンイミジルオキシカルボニル基を、PEG鎖の末端のヒドロキシル基の水素を置換する置換基として導入する方法の好ましい実施形態は次の通りである。一端がプライマー層、シランカップリング剤等を介して支持体表面に固定されたPEG鎖の他端に、1,1’-カルボニルジイミダゾール(以下CDI)または炭酸ジ(N-スクシンイミジル)(以下DSC)を以下のように反応させる。
Figure JPOXMLDOC01-appb-C000001
Finally, at least one functional group capable of forming a covalent bond with the substance to be immobilized is directly or indirectly linked to one end of the PEG chain (S1103). The method for introducing the functional group is not particularly limited. A preferred embodiment of the method for introducing the (1H-imidazol-1-yl) carbonyl group and the succinimidyloxycarbonyl group as a substituent for substituting the hydrogen of the hydroxyl group at the end of the PEG chain is as follows. 1,1′-carbonyldiimidazole (hereinafter CDI) or di (N-succinimidyl) carbonate (hereinafter DSC) is attached to the other end of the PEG chain, one end of which is fixed to the support surface via a primer layer, a silane coupling agent, or the like. ) Is reacted as follows.
Figure JPOXMLDOC01-appb-C000001
 上記の反応は、水分をほとんど含まない有機溶媒中で実施される必要がある。一般にプラスチックは有機溶剤に対する耐性が低いため、支持体がプラスチックを含む場合には、アセトニトリル、ジメチルスルホキシド、又はこれらの有機溶媒を適当な割合で混合した混合溶媒を利用することが好ましい。これらの有機溶剤の水分含有率は0.1重量%以下であることが望ましい。CDIまたはDSCの終濃度は0.01~1Mの範囲で設定できるが、室温以下で反応させる場合は0.1M以上であることが望ましい。支持体がプラスチックを含む場合には、プラスチックへのダメージを避けるために反応温度を4~25℃の範囲で設定することが望ましい。反応時間は10分間~24時間の範囲で設定することが好ましく、CDI濃度が0.5M前後(0.4~0.6M)のときは10分間~60分間が好ましい。以上の操作によって、官能基が共有結合されたPEG鎖を含む親水性ポリマー層が形成される。 The above reaction needs to be carried out in an organic solvent containing almost no moisture. Since plastics generally have low resistance to organic solvents, when the support contains plastics, it is preferable to use acetonitrile, dimethyl sulfoxide, or a mixed solvent obtained by mixing these organic solvents in an appropriate ratio. The water content of these organic solvents is desirably 0.1% by weight or less. The final concentration of CDI or DSC can be set in the range of 0.01 to 1M. However, when the reaction is performed at room temperature or lower, it is preferably 0.1M or higher. When the support contains plastic, it is desirable to set the reaction temperature in the range of 4 to 25 ° C. in order to avoid damage to the plastic. The reaction time is preferably set in the range of 10 minutes to 24 hours, and preferably 10 minutes to 60 minutes when the CDI concentration is around 0.5 M (0.4 to 0.6 M). By the above operation, a hydrophilic polymer layer containing a PEG chain having a functional group covalently bonded thereto is formed.
(被固定化物質)
 本発明の物質固定化用担体には、目的とする免疫アッセイの態様に応じて、標的物質と結合する抗原又は抗体や、標的物質が固定化される。本発明ではこれらの固定化の対象物質を「被固定化物質」と呼ぶ。「標的物質と結合する抗原又は抗体」が被固定化物質である実施形態(後述するサンドイッチ法又は直接競合法)において、被固定化物質と標的物質との組合せは、抗原抗体反応に基づく特異的な結合が可能な組合せであれば特に限定されない。例えば、標的物質が抗原(ハプテンを含む)である場合には、被固定化物質は抗体(抗体断片を含む)であることができ、標的物質が抗体(抗体断片を含む)である場合には、被固定化物質は抗原(ハプテンを含む)であることができる。「標的物質」が被固定化物質である実施形態(後述する間接競合法)では、標的物質は抗原(ハプテンを含む)又は抗体(抗体断片を含む)である。
(Immobilized substance)
An antigen or antibody that binds to a target substance or a target substance is immobilized on the substance immobilization carrier of the present invention, depending on the target immunoassay. In the present invention, these target substances for immobilization are called “substances to be immobilized”. In an embodiment in which “an antigen or antibody that binds to a target substance” is an immobilized substance (sandwich method or direct competition method described later), the combination of the immobilized substance and the target substance is specific based on an antigen-antibody reaction. The combination is not particularly limited as long as it is a combination that can be easily combined. For example, when the target substance is an antigen (including a hapten), the immobilized substance can be an antibody (including an antibody fragment), and when the target substance is an antibody (including an antibody fragment) The immobilized substance can be an antigen (including a hapten). In an embodiment where the “target substance” is an immobilized substance (indirect competition method described later), the target substance is an antigen (including a hapten) or an antibody (including an antibody fragment).
 被固定化物質及び/又は標的物質としての抗原は、抗体との特異的な抗原抗体反応性を示す物質であれば特に限定されない。代表的な抗原として、タンパク質、ペプチド、糖類、核酸(DNA、RNA)、脂質、補酵素、細胞、ウイルス、細菌、これらの複合体等の天然抗原や、天然抗原の誘導体や、人為的に合成されたハプテン、人工抗原等が挙げられる。 The antigen as the immobilized substance and / or the target substance is not particularly limited as long as it is a substance exhibiting specific antigen-antibody reactivity with an antibody. Typical antigens include natural antigens such as proteins, peptides, saccharides, nucleic acids (DNA, RNA), lipids, coenzymes, cells, viruses, bacteria, and complexes of these, derivatives of natural antigens, and artificial synthesis. Hapten, artificial antigen and the like.
 被固定化物質及び/又は標的物質としての抗体は、ある抗原に対して特異的な抗原抗体反応性を示す免疫グロブリン及びその断片を指し、必要に応じて化学修飾等が施されていてもよい。 An antibody as an immobilized substance and / or a target substance refers to an immunoglobulin exhibiting specific antigen-antibody reactivity to a certain antigen and a fragment thereof, and may be subjected to chemical modification or the like as necessary. .
 被固定化物質は、PEG鎖が有する官能基と反応して共有結合を形成可能な官能基を有する物質であれば特に限定されない。このような官能基としては代表的にはアミノ基が挙げられるが、チオール基、カルボキシル基、ヒドロキシル基、アルコキシド、2級アミン、3級アミン、アジド基、シアノ基等も包含される。なお、固定化しようとする物質に、アミノ基等の、PEG鎖に連結された官能基との反応で共有結合を形成可能な官能基が存在しない場合であっても、これらの物質にアミノ基等を人為的に導入することにより固定化に供することができる。 The substance to be immobilized is not particularly limited as long as it has a functional group capable of reacting with a functional group of the PEG chain to form a covalent bond. Such functional groups typically include amino groups, but also include thiol groups, carboxyl groups, hydroxyl groups, alkoxides, secondary amines, tertiary amines, azide groups, cyano groups, and the like. Even if the substance to be immobilized has no functional group capable of forming a covalent bond by reaction with a functional group linked to the PEG chain, such as an amino group, the amino group is not present in these substances. Etc. can be used for immobilization by artificially introducing the above.
(被固定化物質の固定化)
 被固定化物質の固定化は例えば、図12に概略を示すように、本発明の物質固定化用担体と、被固定化物質を溶解した溶液とを接触させる工程S1201と、該溶液を乾燥濃縮して被固定化物質を物質固定化用担体のPEG鎖末端に共有結合させる工程S1202とを少なくとも含み、必要に応じてさらに、未反応のPEG鎖末端の官能基と、アミノ基含有低分子化合物とを接触させ、PEG鎖末端の官能基を不活性化する工程S1203とを含む方法により行うことができる。
(Immobilization of substances to be immobilized)
The immobilization of the substance to be immobilized is, for example, as shown schematically in FIG. 12, a step S1201 of bringing the substance immobilization carrier of the present invention into contact with a solution in which the substance to be immobilized is dissolved, and drying and concentrating the solution. Step S1202 for covalently bonding the substance to be immobilized to the PEG chain end of the substance immobilizing carrier, and if necessary, a functional group of the unreacted PEG chain end and an amino group-containing low molecular weight compound And step S1203 for inactivating the functional group at the end of the PEG chain.
 まず、被固定化物質を緩衝液に溶解する。ここで、アミノ基成分を含まない緩衝液を用いることが好ましい。例えば、リン酸緩衝液や炭酸-重炭酸緩衝液などを用いることができる。緩衝液のpHは7.0~10.0の範囲で調整することが望ましい。被固定化物質の終濃度は0.01~10mg/mlの範囲で調整するとよい。この被固定化物質溶解液を担体と接触させ(S1201)、そのまま乾燥濃縮させる(S1202)。乾燥濃縮によって、被固定化物質の反応系中での濃度が高まるため被固定化物質の固定化が著しく促進される。被固定化物質が少量しか準備できない場合は溶液中の被固定化物質の濃度を高めることは困難であるが、このような場合でも、比較的低濃度の被固定化物質溶解液を物質固定化用担体に接触させ、次いで乾燥濃縮することにより、被固定化物質の反応系中での濃度を高めることができ、固定化反応を促進することができる。被固定化物質が抗原、抗体等のタンパク質である場合は、乾燥によってタンパク質が変性することがある。乾燥に伴うタンパク質の変性を防ぐためには、被固定化物質溶解液にトレハロース、スクロース、ラクトース、マルトース等の糖類を添加することが好ましい。糖類のなかでもトレハロースは、適度な保湿性を有していること、溶液の乾燥濃縮が容易であること、並びに、乾燥濃縮時に粗大な結晶が形成されにくく均質な乾燥濃縮が可能であることから好ましい。糖類の終濃度は1~20%(w/v)、より好ましくは1~10%(w/v)の範囲で調整すると良い。被固定化物質溶解液を担体の広範囲に渡って接触させたい場合は、被固定化物質溶解液にTriton(登録商標) X-100やTween(登録商標) 20などの非イオン性界面活性剤を添加することが好ましい。非イオン性界面活性剤の使用により、被固定化物質溶解液が担体表面に薄く濡れ広がるため、被固定化物質の使用量を節約できるだけでなく、乾燥濃縮に要する時間を短縮することができる。被固定化物質溶解液中の非イオン性界面活性剤の終濃度は0.01~0.1%(v/v)の範囲で調整するとよい。 First, the substance to be immobilized is dissolved in a buffer solution. Here, it is preferable to use a buffer solution that does not contain an amino group component. For example, a phosphate buffer solution or a carbonate-bicarbonate buffer solution can be used. It is desirable to adjust the pH of the buffer in the range of 7.0 to 10.0. The final concentration of the substance to be immobilized is preferably adjusted in the range of 0.01 to 10 mg / ml. This solution to be immobilized is brought into contact with a carrier (S1201), and then dried and concentrated as it is (S1202). Dry concentration increases the concentration of the substance to be immobilized in the reaction system, so that immobilization of the substance to be immobilized is significantly promoted. If only a small amount of substance to be immobilized can be prepared, it is difficult to increase the concentration of the substance to be immobilized in the solution. By bringing into contact with the carrier for support and then drying and concentrating, the concentration of the substance to be immobilized in the reaction system can be increased, and the immobilization reaction can be promoted. When the substance to be immobilized is a protein such as an antigen or an antibody, the protein may be denatured by drying. In order to prevent protein denaturation due to drying, it is preferable to add sugars such as trehalose, sucrose, lactose, and maltose to the immobilized substance solution. Among the saccharides, trehalose has an appropriate moisture retention, is easy to dry concentrate the solution, and because it is difficult to form coarse crystals during dry concentration, it can be uniformly dried and concentrated. preferable. The final concentration of saccharide may be adjusted in the range of 1 to 20% (w / v), more preferably 1 to 10% (w / v). When it is desired to contact the immobilized substance solution over a wide range of the carrier, Triton (registered trademark) is added to the immobilized substance solution.   X-100 and Tween (registered trademark)   It is preferred to add a nonionic surfactant such as 20. By using a nonionic surfactant, the substance to be immobilized is thinly spread on the surface of the carrier, so that not only the amount of the substance to be immobilized can be saved, but also the time required for drying and concentration can be shortened. The final concentration of the nonionic surfactant in the solution to be immobilized is preferably adjusted in the range of 0.01 to 0.1% (v / v).
 乾燥濃縮が進行すると、被固定化物質に含まれるアミノ基等の官能基がPEG鎖に連結された官能基と反応し、アミド結合、ウレタン結合等の共有結合が形成される。ここで、反応温度は4~37℃、接触時間は5分~24時間の範囲で設定するとよい。その結果、被固定化物質はPEG鎖を介して担体に固定化される。 As the drying and concentration proceeds, a functional group such as an amino group contained in the substance to be immobilized reacts with a functional group linked to the PEG chain, and a covalent bond such as an amide bond or a urethane bond is formed. Here, the reaction temperature is preferably set in the range of 4 to 37 ° C. and the contact time in the range of 5 minutes to 24 hours. As a result, the substance to be immobilized is immobilized on the carrier via the PEG chain.
 所望の被固定化物質をPEG鎖に結合させた後は、PEG鎖に連結された未反応の官能基を、アミノ基を有する低分子化合物と結合させることにより、当該官能基を反応性のより低い官能基に変換してもよい(S1203)。これによって、免疫アッセイに関与する物質が不本意に担体表面に固定化されるのを防ぐことができる。この操作は、当該官能基の反応性が高い場合に特に必要性が高い。ただし、官能基を前記低分子化合物と反応させた後の担体表面は、親水性であることが望ましい。なぜなら、親水性の表面は一般に生体関連物質の非特異吸着を抑制する効果をもつからである。このためにはアミノ基を含有する低分子化合物として、アミノ基以外に親水性基を更に有する低分子化合物を使用することが好ましい。このような低分子化合物の例としては、2-アミノエタノールや2-(2-アミノエトキシ)エタノールなどが挙げられるが、特に2-(2-アミノエトキシ)エタノールが好ましい。この低分子化合物をPBSなどの緩衝液に10~1000mMとなるように溶解し、既に所望の物質を固定化した担体と接触させる。反応温度は4~37℃、反応時間は2分~24時間の範囲で設定するとよい。 After the desired substance to be immobilized is bound to the PEG chain, the unreacted functional group linked to the PEG chain is bound to a low molecular compound having an amino group, thereby making the functional group more reactive. You may convert into a low functional group (S1203). This can prevent the substance involved in the immunoassay from being improperly immobilized on the surface of the carrier. This operation is particularly necessary when the reactivity of the functional group is high. However, the surface of the carrier after reacting the functional group with the low molecular weight compound is desirably hydrophilic. This is because a hydrophilic surface generally has an effect of suppressing nonspecific adsorption of a biological substance. For this purpose, it is preferable to use a low molecular compound having an amino group and further having a hydrophilic group in addition to the amino group. Examples of such a low molecular weight compound include 2-aminoethanol and 2- (2-aminoethoxy) ethanol, and 2- (2-aminoethoxy) ethanol is particularly preferable. This low molecular weight compound is dissolved in a buffer solution such as PBS so as to have a concentration of 10 to 1000 mM and brought into contact with a carrier on which a desired substance is already immobilized. The reaction temperature is preferably set in the range of 4 to 37 ° C. and the reaction time in the range of 2 minutes to 24 hours.
(免疫アッセイ)
 本発明はまた、本発明の物質固定化担体を用いて標的物質を測定する工程を含む免疫アッセイに関する。本発明において「標的物質を測定する」とは、測定対象試料中の標的物質の存在の有無、及び/又は、測定対象試料中の標的物質の量を測定することを指す。免疫アッセイは、具体的には、本発明の物質固定化担体と、測定対象試料とを、該担体上の被固定化物質に、該測定対象試料中の標的物質の量に相関した量の抗原又は抗体(ここで該抗原又は抗体とは、測定対象試料中の標的物質、必要に応じて抗原抗体反応系に添加された検出可能標的物質、必要に応じて抗原抗体反応系に添加された検出可能抗原又は検出可能抗体等を指す)が抗原抗体反応により結合する条件において接触させる工程と、前記工程において被固定化物質に結合した抗原又は抗体を検出する工程とを含む。
(Immunoassay)
The present invention also relates to an immunoassay comprising a step of measuring a target substance using the substance-immobilized carrier of the present invention. In the present invention, “measuring a target substance” refers to measuring the presence or absence of the target substance in the measurement target sample and / or the amount of the target substance in the measurement target sample. Specifically, the immunoassay comprises the substance-immobilized carrier of the present invention and the sample to be measured on the substance to be immobilized on the carrier, and an amount of antigen correlated with the amount of the target substance in the sample to be measured. Or an antibody (wherein the antigen or antibody is a target substance in a sample to be measured, a detectable target substance added to the antigen-antibody reaction system as necessary, or a detection added to the antigen-antibody reaction system as needed) And a step of detecting the antigen or antibody bound to the substance to be immobilized in the step.
 本発明の物質固定化担体を用いた免疫アッセイは公知の方法で実施することができ、サンドイッチ方式、直接競合方式、間接競合方式等の任意の態様とすることができる。 The immunoassay using the substance-immobilized carrier of the present invention can be performed by a known method, and can be in any mode such as a sandwich system, a direct competition system, an indirect competition system, and the like.
 サンドイッチ方式の免疫アッセイでは、通常、標的物質と結合する抗原又は抗体が被固定化物質として固定化された物質固定化担体と、該被固定化物質と非競合的に標的物質と結合する、直接的又は間接的に検出可能な抗原又は抗体である、検出可能抗原又は検出可能抗体とが少なくとも用いられる。図8では、抗原である標的物質103と特異的に結合する抗体102が固定化された物質固定化担体101と、標識物質(酵素など)により標識された、直接的に検出可能な標識抗体104とを用いて測定対象試料中の標的物質103を測定するサンドイッチ方式の免疫アッセイの一例を模式的に示す。 In a sandwich type immunoassay, a substance-immobilized carrier in which an antigen or antibody that binds to a target substance is immobilized as a substance to be immobilized, and a target substance that binds to the target substance in a non-competitive manner are directly used. At least a detectable antigen or detectable antibody that is a detectable or indirectly detectable antigen or antibody is used. In FIG. 8, a substance-immobilized carrier 101 on which an antibody 102 that specifically binds to a target substance 103 that is an antigen is immobilized, and a labeled antibody 104 that is directly detectable and is labeled with a labeling substance (such as an enzyme). An example of a sandwich-type immunoassay that measures the target substance 103 in the sample to be measured using the above is schematically shown.
 サンドイッチ方式の免疫アッセイは、典型的には、
 測定対象試料と、前記物質固定化担体とを接触させ、測定対象試料中の標的物質と被固定化物質との抗原抗体反応を行う、一次反応工程(図8(b))と、
 一次反応工程の後に、前記物質固定化担体と、前記検出可能抗原又は検出可能抗体とを接触させ、被固定化物質に結合した標的物質と、前記検出可能抗原又は検出可能抗体との抗原抗体反応を行う、二次反応工程(図8(c))と、
 二次反応工程の後に、前記物質固定化担体に結合した前記検出可能抗原又は検出可能抗体を検出する、検出工程(図8(d))と
を少なくとも含む。
Sandwich-type immunoassays are typically
A primary reaction step (FIG. 8B), in which a measurement target sample is brought into contact with the substance-immobilized carrier, and an antigen-antibody reaction between a target substance and a target substance in the measurement target sample is performed.
After the primary reaction step, the substance-immobilized carrier is brought into contact with the detectable antigen or antibody, and the antigen-antibody reaction between the target substance bound to the substance to be immobilized and the detectable antigen or detectable antibody A secondary reaction step (FIG. 8C),
After the secondary reaction step, at least a detection step (FIG. 8D) for detecting the detectable antigen or the detectable antibody bound to the substance-immobilized carrier is included.
 一次反応工程及び二次反応工程では、抗原抗体反応後に、担体に固定化されていない成分を洗浄除去する洗浄工程を適宜含む。 The primary reaction step and the secondary reaction step appropriately include a washing step for washing and removing components not immobilized on the carrier after the antigen-antibody reaction.
 二次反応工程に用いられる「検出可能抗原又は検出可能抗体」は、被固定化物質と競合しない位置において標的物質と結合する。検出可能抗原又は検出可能抗体は、検出可能な標識物質と連結された標識抗原又は標識抗体(直接的に検出可能な抗原又は抗体)であってもよいし、検出可能な標識物質と、更なる反応によって連結されて標識されうる抗原又は抗体(間接的に検出可能な抗原又は抗体)であってもよい。後者の例としては、検出可能な標識物質と連結された二次抗体と結合可能な抗原又は抗体や、ビオチン-アビジン(又はビオチン-ストレプトアビジン)結合対の一方と連結された標識物質と結合可能な、前記結合対の他方と連結された抗原又は抗体等が挙げられる。 The “detectable antigen or detectable antibody” used in the secondary reaction step binds to the target substance at a position that does not compete with the immobilized substance. The detectable antigen or detectable antibody may be a labeled antigen or labeled antibody (directly detectable antigen or antibody) linked to a detectable labeling substance, or a detectable labeling substance, and It may be an antigen or antibody (an indirectly detectable antigen or antibody) that can be linked and labeled by reaction. Examples of the latter include binding to an antigen or antibody capable of binding to a secondary antibody linked to a detectable labeling substance, or a labeling substance linked to one of the biotin-avidin (or biotin-streptavidin) binding pairs. Examples thereof include an antigen or an antibody linked to the other of the binding pair.
 直接競合方式による免疫アッセイでは、通常、標的物質と結合する抗原又は抗体が被固定化物質として固定化された物質固定化担体と、測定対象試料中の標的物質と競合的に前記被固定化物質と結合する、直接的又は間接的に検出可能な標的物質である、検出可能標的物質とが少なくとも用いられる。図9では、抗原である標的物質113と特異的に結合する抗体112が固定化された物質固定化担体111と、測定対象試料中の標的物質113と競合的に抗体112と結合する、標識物質(酵素など)により標識された、直接的に検出可能な標的物質114(標識抗原)とを用いて測定対象試料中の標的物質113を測定する直接競合方式による免疫アッセイの一例を模式的に示す。 In an immunoassay based on a direct competition method, a substance-immobilized carrier in which an antigen or antibody that binds to a target substance is immobilized as an immobilized substance, and the immobilized substance competitively with the target substance in the sample to be measured. At least a detectable target substance, which is a directly or indirectly detectable target substance that binds to is used. In FIG. 9, a substance-immobilized carrier 111 on which an antibody 112 that specifically binds to a target substance 113 that is an antigen is immobilized, and a labeling substance that binds competitively with the target substance 113 in the sample to be measured and the antibody 112 1 schematically shows an example of an immunoassay by a direct competitive method in which a target substance 114 (labeled antigen) that is directly detected and labeled with an enzyme or the like is used to measure the target substance 113 in a sample to be measured. .
 直接競合方式による免疫アッセイは、典型的には、
 測定対象試料と、検出可能標的物質と、前記物質固定化担体とを接触させ、測定対象試料中の標的物質と前記被固定化物質との間の抗原抗体反応と、検出可能標的物質と前記被固定化物質との間の抗原抗体反応とを競合的に行う、直接競合反応工程(図9(b),(c))と、
 直接競合反応工程の後に、前記物質固定化担体に結合した検出可能標的物質を検出する、検出工程(図9(e))と
を少なくとも含む。
Immunoassays using a direct competition format typically
A sample to be measured, a detectable target substance, and the substance-immobilized carrier are brought into contact with each other, an antigen-antibody reaction between the target substance in the sample to be measured and the immobilized substance, a detectable target substance and the target substance A direct competitive reaction step (FIGS. 9B and 9C) for competitively performing an antigen-antibody reaction with an immobilized substance;
After the direct competitive reaction step, at least a detection step (FIG. 9 (e)) for detecting a detectable target substance bound to the substance-immobilized carrier is included.
 直接競合反応工程では、抗原抗体反応後に担体に結合していない標的物質と検出可能標的物質とを洗浄除去する工程(図9(d))が適宜含まれる。 The direct competitive reaction step appropriately includes a step (FIG. 9 (d)) of washing and removing the target substance not bound to the carrier after the antigen-antibody reaction and the detectable target substance.
 直接競合方式による免疫アッセイにおいて、標的物質は抗原又は抗体であり、検出可能標的物質は対応する検出可能抗原又は検出可能抗体である。検出可能標的物質としては、測定対象試料中の標的物質とは独立して検出することができるものである限り、サンドイッチ法に関して上述した検出可能抗原又は検出可能抗体において、抗原又は抗体として標的物質が用いられたものが使用可能である。 In the immunoassay by the direct competition method, the target substance is an antigen or antibody, and the detectable target substance is a corresponding detectable antigen or detectable antibody. As long as the detectable target substance can be detected independently of the target substance in the sample to be measured, in the detectable antigen or detectable antibody described above with respect to the sandwich method, the target substance is the antigen or antibody. The used one can be used.
 間接競合方式による免疫アッセイでは、通常、標的物質が被固定化物質として固定化された物質固定化担体と、測定対象試料中の標的物質と被固定化物質とが競合的に結合する、直接的又は間接的に検出可能な抗原又は抗体である、検出可能抗原又は検出可能抗体とが少なくとも用いられる。図10では、抗原である標的物質123と同一の被固定化物質122が固定化された物質固定化担体121と、測定対象試料中の標的物質123と被固定化物質122とが競合的に結合する、標識された二次抗体125を介して間接的に検出可能な一次抗体124とを用いて測定対象試料中の標的物質123を測定する間接競合方式による免疫アッセイの一例を模式的に示す。 In an indirect competitive immunoassay, a substance-immobilized carrier in which a target substance is immobilized as an immobilized substance is usually directly coupled to a target substance in the measurement target sample and the immobilized substance. Alternatively, at least a detectable antigen or antibody that is an indirectly detectable antigen or antibody is used. In FIG. 10, the substance-immobilized carrier 121 on which the same immobilized substance 122 as the target substance 123 that is an antigen is immobilized, and the target substance 123 and the immobilized substance 122 in the sample to be measured are bound competitively. An example of an immunoassay by an indirect competitive method in which a target substance 123 in a measurement target sample is measured using a primary antibody 124 that can be indirectly detected through a labeled secondary antibody 125 is schematically shown.
 間接競合方式による免疫アッセイは、典型的には、
 測定対象試料と、検出可能抗原又は検出可能抗体と、前記物質固定化担体とを接触させ、測定対象試料中の標的物質と前記検出可能抗原又は検出可能抗体との間の抗原抗体反応と、前記被固定化物質と前記検出可能抗原又は検出可能抗体との間の抗原抗体反応とを競合的に行う、間接競合反応工程(図10(b),(c))と、
 間接競合反応工程の後に、前記物質固定化担体に結合した前記検出可能抗原又は検出可能抗体を検出する、検出工程(図10(e),(f))と
を少なくとも含む。
Immunoassays using an indirect competitive format typically
A sample to be measured, a detectable antigen or a detectable antibody, and the substance-immobilized carrier are contacted, and an antigen-antibody reaction between the target substance in the sample to be measured and the detectable antigen or the detectable antibody, An indirect competitive reaction step (FIGS. 10 (b) and 10 (c)) for competitively performing an antigen-antibody reaction between the immobilized substance and the detectable antigen or detectable antibody;
After the indirect competitive reaction step, at least a detection step (FIGS. 10 (e) and (f)) for detecting the detectable antigen or the detectable antibody bound to the substance-immobilized carrier is included.
 間接競合反応工程では、抗原抗体反応後に担体に結合していない標的物質と検出可能抗原又は検出可能抗体とを洗浄除去する工程(図10(d))が適宜含まれる。 The indirect competitive reaction step appropriately includes a step (FIG. 10 (d)) of washing and removing the target substance and the detectable antigen or detectable antibody that are not bound to the carrier after the antigen-antibody reaction.
 検出可能抗原又は検出可能抗体としては、サンドイッチ法に関して上述した検出可能抗原又は検出可能抗体と同様のものが使用できる。 As the detectable antigen or detectable antibody, those similar to the detectable antigen or detectable antibody described above for the sandwich method can be used.
 本発明の物質固定化担体を用いた免疫アッセイにおいて抗原又は抗体を検出する手段は特に限定されず、任意の標識物質により直接的又は間接的に標識された抗原又は抗体を用いることができる。標識物質としては、酵素(ELISA法)、核酸(イムノPCR)、電気化学発光物質(電気化学発光法)、蛍光物質、化学発光物質、放射性物質等の、増幅された検出シグナルを生成することができる標識物質が挙げられる。本発明の免疫アッセイは、安全性及び簡便性を考慮すると、標識物質として酵素を用いる、酵素活性に基づいて検出を行う酵素結合免疫吸着アッセイ(ELISA)であることが好ましい。標識物質として用いることができる酵素は特に限定されないが、例えば西洋わさびペルオキシダーゼ等のペルオキシダーゼ、β-ガラクトシダーゼ、アルカリフォスファターゼ、グルコースオキシダーゼが挙げられる。酵素活性による検出の方法としては、酵素活性により化学発光する化学発光基質、酵素活性により発色する発色基質、酵素活性により化学蛍光を発する化学蛍光基質等を用いた検出方法が挙げられ、なかでも化学発光基質を用いた検出方法が好ましい。発色基質を用いると酵素反応にかなりの時間がかかる。これは、本発明において定量しようとする標的物質の濃度領域が従来の1~2桁も低いためである。化学発光基質を用いた検出は、一般に、発色基質を用いた検出よりも感度が高いため、酵素反応に要する時間を短縮することができる。特に、フェムトグラムのレベルの微量な標的物質の検出に使用される高感度な化学発光基質を用いれば、感度の点で相乗効果を得ることができる。このような化学発光基質としてはECLTMAdvance(GEヘルスケア)、ECLTMPlus(GEヘルスケア)、イムノスター(登録商標)LD(和光純薬)、CDP-STAR(登録商標)(ロシュ・ダイアグノスティックス)、CSPD(登録商標)(ロシュ・ダイアグノスティックス)、SuperSignal West Femto Maxmum Sensitivity Substrate(サーモフィッシャーサイエンティフィック)が挙げられ、そのための酵素としては西洋わさびペルオキシダーゼ等のペルオキシダーゼ、アルカリフォスファターゼが挙げられる。化学発光を検出するための検出器としては、発光プレートリーダーやCCDイメージャーを用いることができる。これらの検出器はダイナミックレンジが広いという点でも都合がよい。すなわち、本発明の物質固定化担体と化学発光基質とを組み合わせれば、迅速かつ高感度でダイナミックレンジの広いELISAを達成できる。 The means for detecting the antigen or antibody in the immunoassay using the substance-immobilized carrier of the present invention is not particularly limited, and an antigen or antibody labeled directly or indirectly with any labeling substance can be used. As a labeling substance, an amplified detection signal such as an enzyme (ELISA method), a nucleic acid (immunoPCR), an electrochemiluminescent substance (electrochemiluminescent method), a fluorescent substance, a chemiluminescent substance, or a radioactive substance can be generated. Possible labeling substances are mentioned. In view of safety and simplicity, the immunoassay of the present invention is preferably an enzyme-linked immunosorbent assay (ELISA) that uses an enzyme as a labeling substance and performs detection based on enzyme activity. The enzyme that can be used as the labeling substance is not particularly limited, and examples thereof include peroxidase such as horseradish peroxidase, β-galactosidase, alkaline phosphatase, and glucose oxidase. Examples of detection methods using enzyme activity include detection methods using chemiluminescent substrates that chemiluminescent by enzyme activity, chromogenic substrates that generate color by enzyme activity, chemiluminescent substrates that emit chemical fluorescence by enzyme activity, etc. A detection method using a luminescent substrate is preferred. When a chromogenic substrate is used, the enzyme reaction takes a considerable amount of time. This is because the concentration range of the target substance to be quantified in the present invention is as low as 1 to 2 digits. Since detection using a chemiluminescent substrate is generally more sensitive than detection using a chromogenic substrate, the time required for the enzyme reaction can be shortened. In particular, if a highly sensitive chemiluminescent substrate used for detection of a trace amount of target substance at the femtogram level is used, a synergistic effect can be obtained in terms of sensitivity. Such chemiluminescent substrates include ECL Advance (GE Healthcare), ECL Plus (GE Healthcare), Immunostar (registered trademark) LD (Wako Pure Chemical Industries), CDP-STAR (registered trademark) (Roche Diagnostics). Nostics), CSPD (registered trademark) (Roche Diagnostics), SuperSignal West Femto Maxum Sensitive Substrate, and enzymes for this purpose include peroxidases such as horseradish peroxidase and alkaline phosphatase. Is mentioned. As a detector for detecting chemiluminescence, a luminescence plate reader or a CCD imager can be used. These detectors are also advantageous in that they have a wide dynamic range. That is, when the substance-immobilized carrier of the present invention and the chemiluminescent substrate are combined, an ELISA having a wide dynamic range can be achieved quickly, with high sensitivity.
(免疫アッセイ用キット)
 本発明の物質固定化用担体は、免疫アッセイにより標的物質を測定するためのキットを構成することができる。該キットは更に免疫アッセイに必要な成分を含むことができる。免疫アッセイに必要な成分としては、免疫アッセイの種類に応じて、被固定化物質に抗原抗体反応により結合した標的物質と抗原抗体反応により結合する、直接的又は間接的に検出可能な抗原又は抗体や、被固定化物質と抗原抗体反応により結合する、直接的又は間接的に検出可能な抗原又は抗体(直接的又は間接的に検出可能な標的物質を含む)が例示できる。更に、免疫アッセイに必要な成分としては、間接的な検出に用いるための、前記間接的に検出可能な抗原又は抗体と結合可能な標識物質や、検出用試薬(例えば標識物質が酵素である場合には酵素活性により化学発光する化学発光基質、酵素活性により発色する発色基質、酵素活性により化学蛍光を発する化学蛍光基質等)が挙げられる。「直接的又は間接的に検出可能な抗原又は抗体」及び「直接的又は間接的に検出可能な標的物質」は上記「免疫アッセイ」の欄にて説明したのと同様のものが使用できる。該キットは更に、被固定化物質を物質固定化用担体に固定化するために用いられる試薬(例えば糖類や非イオン性界面活性剤が溶解された、被固定化物質を溶解するための緩衝液)を含んでもよい。
(Immunoassay kit)
The substance immobilization carrier of the present invention can constitute a kit for measuring a target substance by immunoassay. The kit can further comprise components necessary for the immunoassay. As a component necessary for an immunoassay, a directly or indirectly detectable antigen or antibody that binds to a target substance bound to an immobilized substance by an antigen-antibody reaction, depending on the type of immunoassay, by the antigen-antibody reaction Further, examples include directly or indirectly detectable antigens or antibodies (including directly or indirectly detectable target substances) that bind to an immobilized substance by an antigen-antibody reaction. Furthermore, components necessary for the immunoassay include a labeling substance capable of binding to the indirectly detectable antigen or antibody for use in indirect detection, and a detection reagent (for example, when the labeling substance is an enzyme). Include a chemiluminescent substrate that chemiluminescents by enzyme activity, a chromogenic substrate that develops color by enzyme activity, a chemiluminescent substrate that emits chemical fluorescence by enzyme activity, and the like. “Directly or indirectly detectable antigen or antibody” and “directly or indirectly detectable target substance” can be the same as those described in the above “Immunoassay” column. The kit further includes a reagent used for immobilizing the substance to be immobilized on the substance immobilization carrier (for example, a buffer solution for dissolving the substance to be immobilized, in which sugars and nonionic surfactants are dissolved). ) May be included.
 本発明の物質固定化担体は、免疫アッセイにより標的物質を測定するためのキットを構成することができる。該キットは更に免疫アッセイに必要な成分を含むことができる。免疫アッセイに必要な成分の具体例は上記の通りである。 The substance-immobilized carrier of the present invention can constitute a kit for measuring a target substance by immunoassay. The kit can further comprise components necessary for the immunoassay. Specific examples of components necessary for the immunoassay are as described above.
 以下、図面と具体的な実施例を用いて本発明を説明する。 Hereinafter, the present invention will be described with reference to the drawings and specific examples.
[実施例1]
 図1は物質固定化用担体に関する本発明の一実施形態を表す。ポリスチレンからなる支持体表面にポリシロキサンを含むプライマー層が形成されている。プライマー層にはPEG鎖の片末端が共有結合している。PEG鎖の別の片末端には(1H-イミダゾール-1-イル)カルボニル基が存在する。親水性ポリマー層は、PEG鎖の数平均分子量が176~25000であるという条件、XPSにおける元素濃度比N(1s)/C-Oが0.010~0.100の範囲にあるという条件、のうち少なくとも1つの条件を満足する。
[Example 1]
FIG. 1 shows an embodiment of the present invention relating to a substance immobilizing carrier. A primer layer containing polysiloxane is formed on the surface of a support made of polystyrene. One end of the PEG chain is covalently bonded to the primer layer. There is a (1H-imidazol-1-yl) carbonyl group at the other end of the PEG chain. The hydrophilic polymer layer has a condition that the number average molecular weight of the PEG chain is 176 to 25000, and a condition that the element concentration ratio N (1s) / CO in XPS is in the range of 0.010 to 0.100. At least one of the conditions is satisfied.
[実施例2]
 図2に示した方法で物質固定化用担体を製造した。具体的な手順を以下に記す。
[Example 2]
A substance-immobilizing support was produced by the method shown in FIG. The specific procedure is described below.
 1.65mlの3-グリシドキシプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ)に0.35mlの希塩酸(pH2.4)を添加してシラノールを調製した。これを100mlの2-プロパノール(純正化学)に添加した。ここに、さらに4mlのトリエチルアミン(和光純薬)を添加した。このシラノール溶液を96穴マイクロプレート(BD FalconTM)の各ウェルに100μlずつ分注した。そのまま室温で75分間放置した。その後、ウェル内を純水で洗浄し、窒素ブローで乾燥させた。この操作によってマイクロプレートのウェル内にポリシロキサンとエポキシ基を含むプライマー層が形成された。次に、触媒量の濃硫酸を含んだPEG4000(数平均分子量2700~3400、関東化学)を各ウェルに100μlずつ分注した。そのまま90℃で30分間加熱した。その後、ウェル内を純水で洗浄し、窒素ブローで乾燥させた。この操作によってプライマー層上にPEGを含む親水性ポリマー層が形成された。次に、脱水アセトニトリル(関東化学)と脱水ジメチルスルホキシド(関東化学)の等重量混合溶媒を用いて終濃度0.5MのCDI(東京化成)溶液を調製し、これを各ウェルに10μlずつ分注した。そのまま室温で20分間放置した。その後、ウェル内を純水で洗浄し、窒素ブローで乾燥させた。この操作によって親水性ポリマー層に含まれるPEGの末端に(1H-イミダゾール-1-イル)カルボニル基が導入されたPEG誘導体が形成された。 Silanol was prepared by adding 0.35 ml of dilute hydrochloric acid (pH 2.4) to 1.65 ml of 3-glycidoxypropyltrimethoxysilane (Momentive Performance Materials). This was added to 100 ml of 2-propanol (Pure Chemical). To this, 4 ml of triethylamine (Wako Pure Chemical Industries) was further added. 100 μl of this silanol solution was dispensed into each well of a 96-well microplate (BD Falcon ). It was allowed to stand at room temperature for 75 minutes. Thereafter, the inside of the well was washed with pure water and dried by nitrogen blowing. By this operation, a primer layer containing polysiloxane and an epoxy group was formed in the well of the microplate. Next, 100 μl of PEG 4000 containing a catalytic amount of concentrated sulfuric acid (number average molecular weight 2700-3400, Kanto Chemical) was dispensed into each well. The mixture was heated at 90 ° C. for 30 minutes. Thereafter, the inside of the well was washed with pure water and dried by nitrogen blowing. By this operation, a hydrophilic polymer layer containing PEG was formed on the primer layer. Next, a CDI (Tokyo Kasei) solution with a final concentration of 0.5 M is prepared using an equal weight mixed solvent of dehydrated acetonitrile (Kanto Chemical) and dehydrated dimethyl sulfoxide (Kanto Chemical), and 10 μl is dispensed into each well. did. It was allowed to stand at room temperature for 20 minutes. Thereafter, the inside of the well was washed with pure water and dried by nitrogen blowing. By this operation, a PEG derivative in which a (1H-imidazol-1-yl) carbonyl group was introduced at the end of PEG contained in the hydrophilic polymer layer was formed.
[実施例3]
 実施例2の物質固定化用担体(96穴マイクロプレート)を用いて図3に示すELISA(間接法、抗原-抗体-抗体サンドイッチ法)を実施した。具体的な手順を以下に記す。
[Example 3]
Using the substance immobilization carrier (96-well microplate) of Example 2, ELISA (indirect method, antigen-antibody-antibody sandwich method) shown in FIG. 3 was performed. The specific procedure is described below.
 以下、0.025%Triton(登録商標) X-100(和光純薬)を含む炭酸-重炭酸緩衝液(pH9.6)を固相化バッファー、0.1%Triton(登録商標) X-100および0.5MのNaClを含むリン酸緩衝液(PBS)を洗浄バッファー、1%BSAを含むPBSを希釈バッファーとする。まず、リゾチーム(和光純薬)を固相化バッファーに溶解し、終濃度50μg/mlのリゾチーム溶液を調製した。この溶液を実施例2の96穴マイクロプレートの各ウェルに5μlずつ分注した。37℃で10分間放置して乾燥濃縮させた後、ウェル内を洗浄バッファーで2回洗浄した。次に、希釈バッファーを用いて0~500ng/mlの抗リゾチーム抗体(Rockland)を調製し、各ウェルに50μlずつ分注した。室温で30分間放置した後、ウェル内を洗浄バッファーで1回洗浄した。希釈バッファーを用いてHRP標識2次抗体(Nordic Immunological Laboratories)を4000倍希釈し(終濃度0.5μg/ml)、これを各ウェルに50μlずつ分注した。室温で30分間放置した後、ウェル内を洗浄バッファーで3回洗浄した。各ウェルに化学発光基質であるイムノスターLD(和光純薬)を30μl添加し、LAS4000mini(GEヘルスケア)を用いて化学発光画像を取得した。最後に、専用のソフトウェアを用いて化学発光強度を算出し、図4(本発明)のような検量線を作成した。感度は0.03ng/mlであった。 0.025% Triton (registered trademark)   Carbonate-bicarbonate buffer (pH 9.6) containing X-100 (Wako Pure Chemical Industries) was used as a solid phase buffer, 0.1% Triton (registered trademark)   A phosphate buffer (PBS) containing X-100 and 0.5 M NaCl is used as a washing buffer, and PBS containing 1% BSA is used as a dilution buffer. First, lysozyme (Wako Pure Chemical Industries) was dissolved in a solid phase buffer to prepare a lysozyme solution having a final concentration of 50 μg / ml. 5 μl of this solution was dispensed into each well of the 96-well microplate of Example 2. After standing at 37 ° C. for 10 minutes to dry and concentrate, the well was washed twice with a washing buffer. Next, 0-500 ng / ml anti-lysozyme antibody (Rockland) was prepared using dilution buffer, and 50 μl was dispensed into each well. After leaving at room temperature for 30 minutes, the well was washed once with a washing buffer. A dilution buffer was used to dilute the HRP-labeled secondary antibody (Nordic Immunological Laboratories) 4000 times (final concentration 0.5 μg / ml) and dispense 50 μl into each well. After leaving at room temperature for 30 minutes, the well was washed three times with a washing buffer. 30 μl of Immunostar LD (Wako Pure Chemical Industries), which is a chemiluminescent substrate, was added to each well, and chemiluminescent images were acquired using LAS4000mini (GE Healthcare). Finally, chemiluminescence intensity was calculated using dedicated software, and a calibration curve as shown in FIG. 4 (invention) was created. The sensitivity was 0.03 ng / ml.
(比較例1)
 未処理の96穴マイクロプレート(BD FalconTM)および従来品の96穴マイクロプレート(酸素プラズマ処理によって親水化されたポリスチレン製96穴マイクロプレート)を用いて図3に示すELISA(間接法)を実施した。具体的な手順を以下に記す。
(Comparative Example 1)
The ELISA (indirect method) shown in FIG. 3 was performed using an untreated 96-well microplate (BD Falcon ) and a conventional 96-well microplate (polystyrene 96-well microplate hydrophilized by oxygen plasma treatment). did. The specific procedure is described below.
 以下、炭酸-重炭酸緩衝液(pH9.6)を固相化バッファー、0.05%Tween(登録商標) 20を含むPBSを洗浄バッファー、1%BSAを含むPBSをブロッキングバッファーおよび希釈バッファーとする。まず、リゾチーム(和光純薬)を固相化バッファーに溶解し、終濃度5μg/mlのリゾチーム溶液を調製した。この溶液を96穴マイクロプレートの各ウェルに100μlずつ分注した。室温で2時間放置した後、ウェル内を洗浄バッファーで2回洗浄した。次に、ブロッキングバッファーを各ウェルに200μlずつ分注した。室温で60分間放置した後、ウェル内を洗浄バッファーで2回洗浄した。希釈バッファーを用いて0~500ng/mlの抗リゾチーム抗体(Rockland)を調製し、各ウェルに100μlずつ分注した。室温で60分間放置した後、ウェル内を洗浄バッファーで1回洗浄した。希釈バッファーを用いてHRP標識2次抗体(Nordic Immunological Laboratories)を4000倍希釈し(終濃度0.5μg/ml)、これを各ウェルに100μlずつ分注した。室温で30分間放置した後、ウェル内を洗浄バッファーで3回洗浄した。各ウェルに化学発光基質であるイムノスターLD(和光純薬)を30μl添加し、LAS4000mini(GEヘルスケア)を用いて化学発光画像を取得した。最後に、専用のソフトウェアを用いて化学発光強度を算出し、図4(未処理、従来品)のような検量線を作成した。未処理品と従来品の感度はいずれも3.9ng/mlであった。 Hereinafter, a carbonate-bicarbonate buffer (pH 9.6) is used as a solid phase buffer, 0.05% Tween (registered trademark).   PBS containing 20 is used as a washing buffer, and PBS containing 1% BSA is used as a blocking buffer and a dilution buffer. First, lysozyme (Wako Pure Chemical Industries) was dissolved in a solid phase buffer to prepare a lysozyme solution having a final concentration of 5 μg / ml. 100 μl of this solution was dispensed into each well of a 96-well microplate. After leaving at room temperature for 2 hours, the inside of the well was washed twice with a washing buffer. Next, 200 μl of blocking buffer was dispensed into each well. After leaving at room temperature for 60 minutes, the well was washed twice with a washing buffer. 0-500 ng / ml anti-lysozyme antibody (Rockland) was prepared using a dilution buffer, and 100 μl was dispensed into each well. After leaving at room temperature for 60 minutes, the well was washed once with a washing buffer. A dilution buffer was used to dilute the HRP-labeled secondary antibody (Nordic Immunological Laboratories) 4000 times (final concentration 0.5 μg / ml), and 100 μl was dispensed into each well. After leaving at room temperature for 30 minutes, the well was washed three times with a washing buffer. 30 μl of Immunostar LD (Wako Pure Chemical Industries), which is a chemiluminescent substrate, was added to each well, and chemiluminescent images were acquired using LAS4000mini (GE Healthcare). Finally, chemiluminescence intensity was calculated using dedicated software, and a calibration curve as shown in FIG. 4 (untreated, conventional product) was created. The sensitivity of the untreated product and the conventional product was 3.9 ng / ml.
[実施例4]
 実施例2で得られた96穴マイクロプレートを用いて図5に示すELISA(抗体-抗原-抗体サンドイッチ法)を実施した。具体的な手順を以下に記す。
[Example 4]
Using the 96-well microplate obtained in Example 2, the ELISA (antibody-antigen-antibody sandwich method) shown in FIG. 5 was performed. The specific procedure is described below.
 5%トレハロース(和光純薬)及び0.025%Triton(登録商標) X-100(和光純薬)を含む炭酸-重炭酸緩衝液(pH9.6)を固相化バッファーとする。抗IL-1β抗体(Biolegend)を固相化バッファーに溶解し、終濃度50μg/mlの抗体溶液を調製した。この溶液を実施例2で得られた96穴マイクロプレートの各ウェルに5μlずつ分注した。37℃で2時間放置して乾燥濃縮させた後、ウェル内を洗浄バッファーで2回洗浄した。次に、希釈バッファーを用いて0~2500pg/mlのIL-1β(和光純薬)を調製し、各ウェルに50μlずつ分注した。室温で60分間放置した後、ウェル内を洗浄バッファーで1回洗浄した。希釈バッファーを用いてビオチン標識2次抗体(Biolegend)を500倍希釈し、これを各ウェルに50μlずつ分注した。室温で30分間放置した後、ウェル内を洗浄バッファーで1回洗浄した。次に、希釈バッファーを用いてHRP標識ストレプトアビジン(Prozyme)を4000倍希釈し(終濃度0.25μg/ml)、これを各ウェルに50μlずつ分注した。室温で10分間放置した後、ウェル内を洗浄バッファーで3回洗浄した。化学発光基質であるイムノスターLD(和光純薬)を30μl添加し、LAS4000mini(GEヘルスケア)を用いて化学発光画像を取得した。最後に、専用のソフトウェアを用いて化学発光強度を算出、図6(本発明)のような検量線を作成した。感度は0.15pg/mlであった。 5% trehalose (Wako Pure Chemical Industries) and 0.025% Triton (registered trademark)   A carbonate-bicarbonate buffer solution (pH 9.6) containing X-100 (Wako Pure Chemical Industries, Ltd.) is used as a solid phase buffer. Anti-IL-1β antibody (Biolegend) was dissolved in an immobilization buffer to prepare an antibody solution having a final concentration of 50 μg / ml. 5 μl of this solution was dispensed into each well of the 96-well microplate obtained in Example 2. After leaving at 37 ° C. for 2 hours to dry and concentrate, the well was washed twice with a washing buffer. Next, 0-2500 pg / ml IL-1β (Wako Pure Chemical Industries) was prepared using a dilution buffer, and 50 μl was dispensed into each well. After leaving at room temperature for 60 minutes, the well was washed once with a washing buffer. A biotin-labeled secondary antibody (Biolegend) was diluted 500 times using a dilution buffer, and 50 μl was dispensed into each well. After leaving at room temperature for 30 minutes, the well was washed once with a washing buffer. Next, HRP-labeled streptavidin (Prozyme) was diluted 4000 times using a dilution buffer (final concentration: 0.25 μg / ml), and 50 μl was dispensed into each well. After leaving at room temperature for 10 minutes, the well was washed three times with a washing buffer. 30 μl of Immunostar LD (Wako Pure Chemical Industries), which is a chemiluminescent substrate, was added, and a chemiluminescent image was acquired using LAS4000mini (GE Healthcare). Finally, chemiluminescence intensity was calculated using dedicated software, and a calibration curve as shown in FIG. 6 (present invention) was created. The sensitivity was 0.15 pg / ml.
(比較例2)
 未処理の96穴マイクロプレート(BD FalconTM)および従来品の96穴マイクロプレート(酸素プラズマ処理によって親水化されたポリスチレン製96穴マイクロプレート)を用いて図5に示すELISA(抗体-抗原-抗体サンドイッチ法)を実施した。具体的な手順を以下に記す。
(Comparative Example 2)
ELISA (antibody-antigen-antibody) shown in FIG. 5 using an untreated 96-well microplate (BD Falcon ) and a conventional 96-well microplate (polystyrene 96-well microplate hydrophilized by oxygen plasma treatment) Sandwich method) was carried out. The specific procedure is described below.
 比較例1と同様の各種バッファーを用いた。抗IL-1β抗体(Biolegend)を固相化バッファーに溶解し、終濃度5μg/mlの抗体溶液を調製した。この溶液を96穴マイクロプレートの各ウェルに50μlずつ分注した。室温で2時間放置した後、ウェル内を洗浄バッファーで2回洗浄した。次に、ブロッキングバッファーを各ウェルに100μlずつ分注した。室温で60分間放置した後、ウェル内を洗浄バッファーで2回洗浄した。希釈バッファーを用いて0~2500pg/mlのIL-1β(和光純薬)を調製し、各ウェルに50μlずつ分注した。室温で60分間放置した後、ウェル内を洗浄バッファーで1回洗浄した。希釈バッファーを用いてビオチン標識2次抗体(Biolegend)を500倍希釈し、これを各ウェルに50μlずつ分注した。室温で30分間放置した後、ウェル内を洗浄バッファーで1回洗浄した。次に、希釈バッファーを用いてHRP標識ストレプトアビジン(Prozyme)を4000倍希釈し(終濃度0.25μg/ml)、これを各ウェルに50μlずつ分注した。室温で30分間放置した後、ウェル内を洗浄バッファーで3回洗浄した。化学発光基質であるイムノスターLD(和光純薬)を30μl添加し、LAS4000mini(GEヘルスケア)を用いて化学発光画像を取得した。最後に、専用のソフトウェアを用いて化学発光強度を算出、図6(未処理、従来品)のような検量線を作成した。未処理品と従来品の感度はそれぞれ9.8pg/mlと2.4pg/mlであった。
Figure JPOXMLDOC01-appb-T000002
Various buffers similar to Comparative Example 1 were used. Anti-IL-1β antibody (Biolegend) was dissolved in a solid phase buffer to prepare an antibody solution having a final concentration of 5 μg / ml. 50 μl of this solution was dispensed into each well of a 96-well microplate. After leaving at room temperature for 2 hours, the inside of the well was washed twice with a washing buffer. Next, 100 μl of blocking buffer was dispensed into each well. After leaving at room temperature for 60 minutes, the well was washed twice with a washing buffer. From 0 to 2500 pg / ml IL-1β (Wako Pure Chemical Industries) was prepared using a dilution buffer, and 50 μl was dispensed into each well. After leaving at room temperature for 60 minutes, the well was washed once with a washing buffer. A biotin-labeled secondary antibody (Biolegend) was diluted 500 times using a dilution buffer, and 50 μl was dispensed into each well. After leaving at room temperature for 30 minutes, the well was washed once with a washing buffer. Next, HRP-labeled streptavidin (Prozyme) was diluted 4000 times using a dilution buffer (final concentration: 0.25 μg / ml), and 50 μl was dispensed into each well. After leaving at room temperature for 30 minutes, the well was washed three times with a washing buffer. 30 μl of Immunostar LD (Wako Pure Chemical Industries), which is a chemiluminescent substrate, was added, and a chemiluminescent image was acquired using LAS4000mini (GE Healthcare). Finally, chemiluminescence intensity was calculated using dedicated software, and a calibration curve as shown in FIG. 6 (unprocessed, conventional product) was created. The sensitivity of the untreated product and the conventional product was 9.8 pg / ml and 2.4 pg / ml, respectively.
Figure JPOXMLDOC01-appb-T000002
[実施例5]
 シラノール処理時間およびPEG鎖の数平均分子量がELISA(間接法)の感度に及ぼす影響を調べた。具体的な手順を以下に記す。
[Example 5]
The influence of the silanol treatment time and the number average molecular weight of the PEG chain on the sensitivity of the ELISA (indirect method) was examined. The specific procedure is described below.
 1.65mlの3-グリシドキシプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ)に0.35mlの希塩酸(pH2.4)を添加してシラノールを調製した。これを100mlの2-プロパノール(純正化学)に添加した。ここに、さらに0.5mlのトリエチルアミン(和光純薬)を添加した。このシラノール溶液を96穴マイクロプレート(BD FalconTM)の各ウェルに100μlずつ分注した。そのまま室温で60~135分間放置した。その後、ウェル内を純水で洗浄し、窒素ブローで乾燥させた。この操作によってマイクロプレートのウェル内にポリシロキサンとエポキシ基を含むプライマー層が形成された。次に、触媒量の濃硫酸を含んだPEG(13種)を各ウェルに100μlずつ分注した。そのまま80℃で45分間加熱した。その後、ウェル内を純水で洗浄し、窒素ブローで乾燥させた。この操作によってプライマー層上にPEGを含む親水性ポリマー層が形成された。次に、脱水アセトニトリル(関東化学)と脱水ジメチルスルホキシド(関東化学)の等重量混合溶媒を用いて終濃度0.5MのCDI(東京化成)溶液を調製し、これを各ウェルに20μlずつ分注した。そのまま室温で30分間放置した。その後、ウェル内を純水で洗浄し、窒素ブローで乾燥させた。この操作によって親水性ポリマー層に含まれるPEGの末端に(1H-イミダゾール-1-イル)カルボニル基が導入されたPEG誘導体が形成された。以上の操作により、PEG鎖の結合密度やPEG鎖の数平均分子量の異なる物質固定化用担体が得られた。これらの物質固定化用担体を用いて実施例3に記載の方法でELISAの感度を測定した。その結果、表2に示すようにPEG鎖の数平均分子量が176以上で従来よりも顕著に高い感度が得られることがわかった。また、PEG鎖の分子量が大きい場合は比較的低密度であっても高い感度が実現できることがわかった。
Figure JPOXMLDOC01-appb-T000003
Silanol was prepared by adding 0.35 ml of dilute hydrochloric acid (pH 2.4) to 1.65 ml of 3-glycidoxypropyltrimethoxysilane (Momentive Performance Materials). This was added to 100 ml of 2-propanol (Pure Chemical). To this, 0.5 ml of triethylamine (Wako Pure Chemical Industries) was added. 100 μl of this silanol solution was dispensed into each well of a 96-well microplate (BD Falcon ). It was allowed to stand at room temperature for 60 to 135 minutes. Thereafter, the inside of the well was washed with pure water and dried by nitrogen blowing. By this operation, a primer layer containing polysiloxane and an epoxy group was formed in the well of the microplate. Next, 100 μl of PEG (13 types) containing a catalytic amount of concentrated sulfuric acid was dispensed into each well. The mixture was heated at 80 ° C. for 45 minutes. Thereafter, the inside of the well was washed with pure water and dried by nitrogen blowing. By this operation, a hydrophilic polymer layer containing PEG was formed on the primer layer. Next, a CDI (Tokyo Kasei) solution with a final concentration of 0.5 M is prepared using an equal weight mixed solvent of dehydrated acetonitrile (Kanto Chemical) and dehydrated dimethyl sulfoxide (Kanto Chemical), and 20 μl is dispensed into each well. did. It was allowed to stand at room temperature for 30 minutes. Thereafter, the inside of the well was washed with pure water and dried by nitrogen blowing. By this operation, a PEG derivative in which a (1H-imidazol-1-yl) carbonyl group was introduced at the end of PEG contained in the hydrophilic polymer layer was formed. By the above operations, substances for immobilizing carriers having different PEG chain bond densities and PEG chain number average molecular weights were obtained. The sensitivity of ELISA was measured by the method described in Example 3 using these substances immobilizing carriers. As a result, as shown in Table 2, it was found that the number average molecular weight of the PEG chain was 176 or more, and a significantly higher sensitivity than before was obtained. Further, it was found that when the molecular weight of the PEG chain is large, high sensitivity can be realized even at a relatively low density.
Figure JPOXMLDOC01-appb-T000003
 表2に示す各原料の数平均分子量は以下の通りである。
Figure JPOXMLDOC01-appb-T000004
The number average molecular weight of each raw material shown in Table 2 is as follows.
Figure JPOXMLDOC01-appb-T000004
[実施例6]
 実施例5で得られた物質固定化用担体のXPS分析を行った。XPS分析は、アルバック・ファイ社製のX線分光分析装置「ESCA5600」を用い、光電子取り込み角度を45°に設定して行った。その結果、表2に示すようにELISAの感度とN(1s)/C-Oとの間に明確な相関が認められた。すなわち、N(1s)/C-Oの値が0.010~0.100の範囲にあるときに従来よりも顕著に高い感度が得られることがわかった。
[Example 6]
The XPS analysis of the substance immobilization support obtained in Example 5 was performed. The XPS analysis was performed using an X-ray spectroscopic analyzer “ESCA5600” manufactured by ULVAC-PHI and setting the photoelectron uptake angle to 45 °. As a result, as shown in Table 2, a clear correlation was recognized between the sensitivity of ELISA and N (1s) / CO. That is, it has been found that when the value of N (1s) / CO is in the range of 0.010 to 0.100, a significantly higher sensitivity can be obtained than before.
[実施例7]
 前述のように、乾燥に伴うタンパク質の変性を防ぐ目的で、緩衝液にトレハロースを添加することが重要である。実施例4において、トレハロース濃度の異なる緩衝液を6種類用意し、ELISAにおけるトレハロース濃度依存性を検討した。その結果、図7-1~7-6に示すように、5~10%(w/v)のトレハロースで固相化時間(被固定化物質溶解溶液の接触から乾燥濃縮工程完了までの時間)に伴うシグナルの低下を防ぐことができることがわかった。
[Example 7]
As described above, it is important to add trehalose to the buffer for the purpose of preventing protein denaturation due to drying. In Example 4, six types of buffers having different trehalose concentrations were prepared, and the trehalose concentration dependency in ELISA was examined. As a result, as shown in FIGS. 7-1 to 7-6, solidification time with 5 to 10% (w / v) trehalose (time from contact of the immobilized substance dissolving solution to completion of the drying concentration step) It was found that the decrease in signal associated with can be prevented.
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。 All publications, patents and patent applications cited in this specification shall be incorporated into the present specification as they are.

Claims (18)

  1.  免疫アッセイに用いるための物質固定化用担体であって、
     支持体と、
     前記支持体の表面に配置された親水性ポリマー層と
    を少なくとも含み、
     前記親水性ポリマー層が、
     数平均分子量が176以上であるポリエチレングリコール鎖と、
     標的物質と結合する抗原又は抗体である被固定化物質或いは標的物質である被固定化物質と共有結合を形成可能な、前記ポリエチレングリコール鎖に連結された官能基と
    を含む、物質固定化用担体。
    A carrier for immobilizing a substance for use in an immunoassay,
    A support;
    At least a hydrophilic polymer layer disposed on the surface of the support,
    The hydrophilic polymer layer is
    A polyethylene glycol chain having a number average molecular weight of 176 or more;
    A substance immobilization carrier comprising an immobilized substance that is an antigen or an antibody that binds to a target substance, or a functional group linked to the polyethylene glycol chain that can form a covalent bond with the immobilized substance that is a target substance. .
  2.  前記官能基が、n個の窒素原子を含有する官能基を含み、
     前記親水性ポリマー層中の窒素濃度が、前記親水性ポリマー層中のC-O結合に由来する炭素濃度を1としたとき、0.010以上、0.050×n以下である、
    請求項1の物質固定化用担体。
    The functional group comprises a functional group containing n nitrogen atoms;
    The nitrogen concentration in the hydrophilic polymer layer is 0.010 or more and 0.050 × n or less when the carbon concentration derived from the C—O bond in the hydrophilic polymer layer is 1.
    The carrier for immobilizing a substance according to claim 1.
  3.  前記窒素を含有する官能基が、(1H-イミダゾール-1-イル)カルボニル基又はスクシンイミジルオキシカルボニル基である、請求項2の物質固定化用担体。 The substance-immobilizing carrier according to claim 2, wherein the nitrogen-containing functional group is a (1H-imidazol-1-yl) carbonyl group or a succinimidyloxycarbonyl group.
  4.  免疫アッセイに用いるための物質固定化担体であって、
     支持体と、
     前記支持体の表面に配置された親水性ポリマー層と、
     標的物質と結合する抗原又は抗体である被固定化物質或いは標的物質である被固定化物質と
    を少なくとも含み、
     前記親水性ポリマー層が、数平均分子量が176以上であるポリエチレングリコール鎖を含み、
     前記ポリエチレングリコール鎖と、前記被固定化物質とが共有結合を介して連結されている、物質固定化担体。
    A substance-immobilized carrier for use in an immunoassay,
    A support;
    A hydrophilic polymer layer disposed on the surface of the support;
    At least an immobilized substance that is an antigen or an antibody that binds to a target substance or an immobilized substance that is a target substance,
    The hydrophilic polymer layer includes a polyethylene glycol chain having a number average molecular weight of 176 or more,
    A substance-immobilized carrier in which the polyethylene glycol chain and the substance to be immobilized are linked via a covalent bond.
  5.  請求項1~3のいずれか1項の物質固定化用担体と、前記被固定化物質とから、前記官能基と前記被固定化物質とを反応させて共有結合を形成することにより製造されたものである、請求項4の物質固定化担体。 A substance immobilization carrier according to any one of claims 1 to 3 and the substance to be immobilized are produced by reacting the functional group and the substance to be immobilized to form a covalent bond. The substance-immobilized carrier according to claim 4, wherein the substance is immobilized.
  6.  請求項4又は5の物質固定化担体の製造方法であって、
     請求項1~3のいずれか1項の物質固定化用担体と、前記被固定化物質を溶解した溶液とを接触させる、被固定化物質接触工程と、
     前記物質固定化用担体に接触させた前記溶液を乾燥濃縮させる、乾燥濃縮工程と、
    を含む方法。
    A method for producing a substance-immobilized carrier according to claim 4 or 5,
    A substance immobilization substance contact step, wherein the substance immobilization support according to any one of claims 1 to 3 is contacted with a solution in which the substance to be immobilized is dissolved;
    A dry concentration step of drying and concentrating the solution in contact with the substance immobilization carrier; and
    Including methods.
  7.  前記溶液が糖類を含む、請求項6の方法。 The method of claim 6, wherein the solution comprises a saccharide.
  8.  前記糖類がトレハロースである、請求項7の方法。 The method of claim 7, wherein the saccharide is trehalose.
  9.  前記溶液が非イオン性界面活性剤を含む、請求項6~8のいずれか1項の方法。 The method according to any one of claims 6 to 8, wherein the solution contains a nonionic surfactant.
  10.  前記乾燥濃縮工程の後に、前記物質固定化担体とアミノ基を有する低分子化合物とを接触させる工程を更に含む、請求項6~9のいずれか1項の方法。 The method according to any one of claims 6 to 9, further comprising a step of bringing the substance-immobilized carrier into contact with a low molecular compound having an amino group after the drying and concentration step.
  11.  請求項4又は5の物質固定化担体を用いて標的物質を測定する工程を含む、免疫アッセイにより標的物質を測定する方法。 A method for measuring a target substance by an immunoassay, comprising the step of measuring the target substance using the substance-immobilized carrier according to claim 4 or 5.
  12.  請求項1~3のいずれか1項の物質固定化用担体を含む、免疫アッセイにより標的物質を測定するためのキット。 A kit for measuring a target substance by an immunoassay comprising the substance immobilizing carrier according to any one of claims 1 to 3.
  13.  請求項4又は5の物質固定化担体を含む、免疫アッセイにより標的物質を測定するためのキット。 A kit for measuring a target substance by immunoassay, comprising the substance-immobilized carrier according to claim 4 or 5.
  14.  サンドイッチ方式の免疫アッセイに用いるための、請求項13のキットであって、
     被固定化物質が標的物質と結合する抗原又は抗体である、請求項4又は5の物質固定化担体と、
     被固定化物質と非競合的に標的物質と結合する、直接的又は間接的に検出可能な抗原又は抗体である、検出可能抗原又は検出可能抗体と、
    を少なくとも含むキット。
    14. The kit of claim 13, for use in a sandwich type immunoassay,
    The substance-immobilized carrier according to claim 4 or 5, wherein the substance to be immobilized is an antigen or an antibody that binds to a target substance,
    A detectable antigen or detectable antibody that is a directly or indirectly detectable antigen or antibody that binds to the target substance non-competitively with the immobilized substance;
    A kit comprising at least
  15.  直接競合方式の免疫アッセイに用いるための、請求項13のキットであって、
     被固定化物質が標的物質と結合する抗原又は抗体である、請求項4又は5の物質固定化担体と、
     測定対象試料中の標的物質と競合的に前記被固定化物質と結合する、直接的又は間接的に検出可能な標的物質である、検出可能標的物質と
    を少なくとも含むキット。
    14. The kit of claim 13, for use in a direct competitive immunoassay comprising:
    The substance-immobilized carrier according to claim 4 or 5, wherein the substance to be immobilized is an antigen or an antibody that binds to a target substance,
    A kit comprising at least a detectable target substance, which is a target substance detectable directly or indirectly, which binds to the immobilized substance competitively with a target substance in a sample to be measured.
  16.  間接競合方式の免疫アッセイに用いるための、請求項13のキットであって、
     被固定化物質が標的物質である、請求項4又は5の物質固定化担体と、
     測定対象試料中の標的物質と被固定化物質とが競合的に結合する、直接的又は間接的に検出可能な抗原又は抗体である、検出可能抗原又は検出可能抗体と、
    を少なくとも含むキット。
    14. The kit of claim 13 for use in an indirect competitive immunoassay comprising:
    The substance-immobilized carrier according to claim 4 or 5, wherein the substance to be immobilized is a target substance,
    A detectable antigen or a detectable antibody that is a directly or indirectly detectable antigen or antibody in which the target substance in the sample to be measured and the immobilized substance are bound competitively;
    A kit comprising at least
  17.  免疫アッセイに用いるための物質固定化用担体であって、
     支持体と、
     前記支持体の表面に配置された親水性ポリマー層と
    を少なくとも含み、
     前記親水性ポリマー層が、
     ポリエチレングリコール鎖と、
     標的物質と結合する抗原又は抗体である被固定化物質或いは標的物質である被固定化物質と共有結合を形成可能な、前記ポリエチレングリコール鎖に連結された官能基と
    を含み、
     前記官能基が、n個の窒素原子を含有する官能基を含み、
     前記親水性ポリマー層中の窒素濃度が、前記親水性ポリマー層中のC-O結合に由来する炭素濃度を1としたとき、0.010以上、0.050×n以下である、
    物質固定化用担体。
    A carrier for immobilizing a substance for use in an immunoassay,
    A support;
    At least a hydrophilic polymer layer disposed on the surface of the support,
    The hydrophilic polymer layer is
    A polyethylene glycol chain;
    A functional group linked to the polyethylene glycol chain capable of forming a covalent bond with an immobilized substance that is an antigen or an antibody that binds to a target substance or an immobilized substance that is a target substance,
    The functional group comprises a functional group containing n nitrogen atoms;
    The nitrogen concentration in the hydrophilic polymer layer is 0.010 or more and 0.050 × n or less when the carbon concentration derived from the C—O bond in the hydrophilic polymer layer is 1.
    Substance immobilization carrier.
  18.  請求項17の物質固定化用担体を含む、免疫アッセイにより標的物質を測定するためのキット。 A kit for measuring a target substance by an immunoassay comprising the substance immobilization carrier according to claim 17.
PCT/JP2012/060223 2011-06-28 2012-04-16 Carrier for material immobilization for use in immunoassay WO2013001895A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011143258A JP5252035B2 (en) 2011-06-28 2011-06-28 Substance immobilization carrier for use in immunoassay
JP2011-143258 2011-06-28

Publications (1)

Publication Number Publication Date
WO2013001895A1 true WO2013001895A1 (en) 2013-01-03

Family

ID=47423801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060223 WO2013001895A1 (en) 2011-06-28 2012-04-16 Carrier for material immobilization for use in immunoassay

Country Status (2)

Country Link
JP (1) JP5252035B2 (en)
WO (1) WO2013001895A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119288A1 (en) * 2014-02-10 2015-08-13 Jsr株式会社 Method for capturing target substance, solid-phase carrier for capturing target substance, and method for producing solid-phase carrier
US20210023522A1 (en) * 2017-09-07 2021-01-28 Mitsubishi Gas Chemical Company, Inc. Substrate for biochip, biochip, method for manufacturing biochip, and method for preserving biochip
WO2023027184A1 (en) * 2021-08-27 2023-03-02 国立大学法人神戸大学 Core-shell template molecule/particle for technique for high-yield formation of pores on substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264027A (en) * 2003-01-15 2004-09-24 Toyobo Co Ltd Bio-molecule interaction measuring method
JP2007127630A (en) * 2005-10-07 2007-05-24 Canon Inc Structure with bonding functional group on substrate for use in bonding acquisition molecule for acquiring target substance
WO2007069608A1 (en) * 2005-12-13 2007-06-21 Ngk Insulators, Ltd. Process for production of probe-immobilizing supports, process for production of dna arrays, and probe-immobilizing supports
JP2010122002A (en) * 2008-11-18 2010-06-03 Sysmex Corp Antibody detecting method and reagent kit used therein
JP2010237086A (en) * 2009-03-31 2010-10-21 Univ Of Tokyo Device for assaying selectively-binding substance and agent for immobilizing polypeptide
JP4648944B2 (en) * 2004-05-06 2011-03-09 ナノスフェアー インコーポレイテッド Method and substrate for producing a substrate with immobilized molecules
JP2011095085A (en) * 2009-10-29 2011-05-12 Hipep Laboratories Measurement method of prion

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015560A (en) * 1983-07-07 1985-01-26 Sumitomo Bakelite Co Ltd Immunological measuring molded article and preparation thereof
JP2506234B2 (en) * 1990-12-25 1996-06-12 松下電器産業株式会社 Method for manufacturing translucent substrate
JP3506703B2 (en) * 1992-07-31 2004-03-15 サーモ バイオスター インコーポレイテッド Apparatus and method for detecting an object to be analyzed by optical interference
JP2006177754A (en) * 2004-12-22 2006-07-06 Toyobo Co Ltd Optical interaction measuring method
JP4850855B2 (en) * 2007-03-22 2012-01-11 信越化学工業株式会社 Manufacturing method of substrate for producing microarray

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264027A (en) * 2003-01-15 2004-09-24 Toyobo Co Ltd Bio-molecule interaction measuring method
JP4648944B2 (en) * 2004-05-06 2011-03-09 ナノスフェアー インコーポレイテッド Method and substrate for producing a substrate with immobilized molecules
JP2007127630A (en) * 2005-10-07 2007-05-24 Canon Inc Structure with bonding functional group on substrate for use in bonding acquisition molecule for acquiring target substance
WO2007069608A1 (en) * 2005-12-13 2007-06-21 Ngk Insulators, Ltd. Process for production of probe-immobilizing supports, process for production of dna arrays, and probe-immobilizing supports
JP2010122002A (en) * 2008-11-18 2010-06-03 Sysmex Corp Antibody detecting method and reagent kit used therein
JP2010237086A (en) * 2009-03-31 2010-10-21 Univ Of Tokyo Device for assaying selectively-binding substance and agent for immobilizing polypeptide
JP2011095085A (en) * 2009-10-29 2011-05-12 Hipep Laboratories Measurement method of prion

Also Published As

Publication number Publication date
JP2013011479A (en) 2013-01-17
JP5252035B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
KR101039629B1 (en) Detection method of bio material, fabrication method of chip for detection of bio material, and chip for detection of bio material
Horak et al. Polymer-modified microfluidic immunochip for enhanced electrochemical detection of troponin I
Sung et al. Toward immunoassay chips: Facile immobilization of antibodies on cyclic olefin copolymer substrates through pre-activated polymer adlayers
JPH11211727A (en) Polyethylene glycol derived biomolecule and its use in heterogeneity detection method
Escorihuela et al. Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors
Yang et al. Characterization of three amino-functionalized surfaces and evaluation of antibody immobilization for the multiplex detection of tumor markers involved in colorectal cancer
EP2205641A1 (en) Method for preparing antibody monolayers which have controlled orientation using peptide hybrid
JP5252035B2 (en) Substance immobilization carrier for use in immunoassay
JP4996579B2 (en) Methods for biomolecule immobilization
JP2013205159A (en) Method for producing substance immobilizing carrier having hydrophilic polymer layer
JP2006275769A (en) Solid-phase carrier for immobilizing peptide and usage method thereof
JP5252036B2 (en) Substrate having a hydrophilic layer
JP2013532821A5 (en)
JP2004198402A (en) Microarray and its manufacturing method
Shirai et al. Fast and Single-step Fluorescence-based Competitive Bioassay Microdevice Combined PDMS Microchannel Arrays Separately Immobilizing Graphene Oxide–Analyte Conjugates and Fluorescently-labelled Receptor Proteins
JP2014224710A (en) Immunoassay carrier having fine rugged surface
CN1018675B (en) Method of determining immunologable detecting substances and adapted reactive vessel thereof
JP6948486B2 (en) Surface fixation of analyte recognition molecules
JP2006258585A (en) Method of detecting protein and method of detecting peptide
US7674529B2 (en) Functional group-introduced polyamide solid phase
JP2014513797A (en) Biochip manufacturing sol-gel kit and biochip manufacturing method using the same
JPS6015560A (en) Immunological measuring molded article and preparation thereof
JP2002228660A (en) Method of detecting dioxins
JP2013186070A (en) Substrate having recoverable hydrophilic layer
JP2013186057A (en) Manufacturing method of substrate having hydrophilic layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804363

Country of ref document: EP

Kind code of ref document: A1