WO2007069608A1 - Process for production of probe-immobilizing supports, process for production of dna arrays, and probe-immobilizing supports - Google Patents

Process for production of probe-immobilizing supports, process for production of dna arrays, and probe-immobilizing supports Download PDF

Info

Publication number
WO2007069608A1
WO2007069608A1 PCT/JP2006/324770 JP2006324770W WO2007069608A1 WO 2007069608 A1 WO2007069608 A1 WO 2007069608A1 JP 2006324770 W JP2006324770 W JP 2006324770W WO 2007069608 A1 WO2007069608 A1 WO 2007069608A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
linker
group
compound
solid phase
Prior art date
Application number
PCT/JP2006/324770
Other languages
French (fr)
Japanese (ja)
Inventor
Keisuke Makino
Mitsuru Nonogawa
Yasuko Yoshida
Kazunari Yamada
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to JP2007550180A priority Critical patent/JPWO2007069608A1/en
Publication of WO2007069608A1 publication Critical patent/WO2007069608A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/0061The surface being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/00626Covalent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00637Introduction of reactive groups to the surface by coating it with another layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays

Definitions

  • the present invention relates to a method for producing a probe-immobilizing carrier, a method for producing a DNA array, and a probe-immobilizing carrier.
  • Non-Patent Document 1 describes a method of immobilizing a DNA probe on the surface of a solid phase substrate.
  • the surface treatment of the solid phase substrate such as glass or silica is performed, and as the surface treatment agent, an amino group, an aldehyde group,
  • the use of various silane coupling agents having an epoxy group or the like is described.
  • Non-Patent Document 1 Fumio Kimizuka, Yasuyuki Kato, “Protein Nucleic Acid Enzyme” Vol. 43, No. 13 (1988), p52- 59
  • the remaining hydroxyl group is considered to reduce the reactivity by chemically bonding with the amino group of the silane coupling agent. If the reactivity of the amino group, etc. of the silane coupling agent decreases, a sufficient amount of DNA probe cannot be held on the solid phase substrate, so that the hybrid of the DNA probe and the target labeled with a fluorescent substance is still present. Seesho Even if the process is performed, there is a problem that sufficient fluorescence intensity cannot be obtained.
  • a silane coupling agent is referred to as a linker
  • an amino group or the like that the silane coupling agent has is referred to as a linker partial position.
  • One object of the carrier for immobilizing a probe and the method for producing the same of the present invention is to stably hold a linker that binds to a probe such as a nucleic acid on a solid phase substrate. Another object is to enable the linker on the solid phase substrate to be efficiently bonded to the probe.
  • the present invention employs the following means in order to solve at least one of the above-mentioned objects.
  • the first method for producing a probe-immobilizing carrier of the present invention comprises:
  • step (b) a step of protecting a hydroxyl group remaining on the surface of the solid phase substrate after the step (a) with a caving agent;
  • one or two or more kinds of organosilane compounds for cabbing not having the partial linker position are used as the cabbing agent, and the solid phase substrate after the step (a) And bonding the oxygen atom of the hydroxyl group remaining on the surface of the organic silane compound for the cabbing to the oxygen atom of the hydroxyl group.
  • Cap agent is cap To protect the hydroxyl groups on the solid phase substrate.
  • the cap may be a monomer cap shown in FIG. 3 or a polymer cap shown in FIG. Further, as shown in Fig. 5, a plurality of types of linkers may be mixed.
  • the second method for producing a probe-immobilizing carrier of the present invention comprises:
  • the organic silane compound for cabling may be a compound having an alkoxy group or a halogen group in addition to an alkyl group on a key atom.
  • the alkoxy group or halogen group of the organosilane compound for caving is eliminated, and the silicon atom of the silane compound and the oxygen atom of the solid phase substrate are easily bonded.
  • Such an organosilane compound for caving is not particularly limited, but may be, for example, one or more compounds represented by the formula (1).
  • the alkoxy group is one or two selected from a methoxy group, an ethoxy group, and an n-propoxy group (preferably a methoxy group and an ethoxy group). It may be the above.
  • R is a hydrocarbon group, more preferably a straight chain, which is preferably a straight chain or branched alkyl group having 1 to 20 (preferably 1 to 8) carbon atoms. Examples of such hydrocarbon groups include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-octadecyl group. More specifically, as one or two or more compounds selected from the group consisting of formulas (2) to (8).
  • n and n are each an integer of 1 or more, m + n is 4, X is a halogen atom such as bromine, chlorine, iodine, or an alkoxy group, and m is 2 or more. Sometimes X may be the same or different. R is a hydrocarbon group, and when n is 2 or more, R may be the same or different.
  • the organosilane compound for a linker may have an alkoxy group and a group having a terminal partial position of the linker on a silicon atom.
  • the organosilane compound for a linker is one or more selected from the group consisting of an amino group, a thiol group, an ester group, an aldehyde group, an epoxy group, and a carboxyl group as the linker partial position. It may have a group.
  • the solid phase substrate may be made of glass, plastic or silicon. In addition, it has a hydroxyl group on the surface of the solid phase substrate! / Cunning!
  • FIG. Figure 6 shows a linker with a monomeric organosilane moiety. Two types of linkers are bonded to oxygen atoms on the solid phase substrate, but only one type of linker may be bonded. More than one type of linker may be combined.
  • the linker may be a linear hydrocarbon chain having 1 to 10 carbon atoms having a terminal partial linker position.
  • Figure 7 shows another example of a linker.
  • FIG. 7 shows a linker having an organosiloxane moiety (or an organic polysiloxane moiety).
  • a probe is introduced into the probe solidifying carrier produced by any of the above-described methods for producing a probe immobilizing carrier using the partial position of the linker. To obtain a DNA array. In this way, a DNA array in which a sufficient amount of probes are retained can be obtained, so that sufficient fluorescence intensity is obtained, for example, when hybridization between a probe and a target compound labeled with a fluorescent substance is performed. can get.
  • FIGS. 8 (a) and 8 (b) an example of a DNA array is shown in FIGS. 8 (a) and 8 (b).
  • Fig. 8 (a) is an example when a linker having an organic siloxane moiety or an organic polysiloxane moiety is used
  • Fig. 8 (b) is a monomer and a linker having an organosiloxane moiety or an organic polysiloxane moiety. This is an example in the case of using a mixture of linkers having an organosilane moiety.
  • the target compound is detected by the probe by supplying a test sample containing the target compound that interacts with the probe to the DNA array described above.
  • the method includes a step of detecting the signal that is changed or generated by the interaction between the probe and the target compound by capturing the target compound with the probe. In this way, a target compound or signal can be detected with high sensitivity because a DNA array holding a sufficient amount of probe is used.
  • the first probe-immobilizing carrier of the present invention is produced by any one of the above-described methods for producing a probe fixing rod carrier.
  • the second probe-immobilizing carrier of the present invention has a solid-phase substrate and a linker atom that can bind to the probe, by binding of a key atom to an oxygen atom on the surface of the solid-phase substrate.
  • the third probe-immobilizing carrier of the present invention comprises a solid phase substrate, one or more linkers having a linker partial position that is held on the surface of the solid phase substrate and can bind to the probe, and a hydrocarbon.
  • One or two or more kinds of caps that have a system functional group and are held on the surface of the solid-phase substrate through an oxygen atom and a key atom bond.
  • a sufficient amount of the probe can be retained by reacting with the probe by any of the first to third carriers for probe immobilization according to the present invention.
  • the cap has a hydrogen bond interaction or electrostatic interaction with the linker partial position of the linker that is based on a hydrogen bond interaction or electrostatic interaction between the linker site and a hydroxyl group. It is preferable to have a small functional group. In this way, it is possible to effectively prevent the remaining hydroxyl group from chemically bonding with the partial position of the linker and hindering the reaction with the probe.
  • the organosilane compound for a linker and the organosilane compound for a cabbage are each one or more and three or less hydrolyzable groups X (for example, no, rogen atom or An alkoxy group, etc.).
  • these organosilane compounds each have one hydrolyzable group X, two hydrolyzable groups X, and three hydrolyzable groups X. It may be configured, but these hydrolyzable groups X may be combined in two or more different types.
  • an organosilane compound having one hydrolyzable group X and an organosilane compound having two or more hydrolyzable groups may be combined.
  • an organic silane compound having one hydrolyzable group X and an organic silane compound having the same three may be used in combination, or an organic silane compound having the same and two organic silane compounds. Or two organic silane compounds and three organic silane compounds, or a combination of the same, two, and three organic silane compounds. That's right.
  • the step (a) includes the partial linker position as the organosilane compound for a linker, A first linker-containing organosilane compound having a hydrolyzable group X, and a partial position of the linker;
  • a second organosilane compound for a linker having two or more hydrolyzable groups X may be used.
  • An example of the first and second organosilane compounds for the linker used in this production method is shown in FIG.
  • the second organic organosilane compound for the linker is used together with the first organic organosilane compound for the linker. It is good also as the process of supplying or supplying either one first.
  • the use amount (in moles) of the second organosilane compound for a linker is determined in the step (a). It may be larger than the amount (number of moles) used of one organosilane compound for a linker.
  • the step (a) mainly comprises an organic solvent.
  • the step may be a step of bringing the organosilane compound for a linker into contact with the solid phase substrate.
  • the organic solvent is one or more selected from toluene, methanol, ethanol, acetonitrile, THF, and chloroform. A little.
  • the step (b) includes an organic solvent.
  • the organic silaniy in the main medium preferably only an organic solvent, preferably one, or two or more selected from toluene, methanol, ethanol, acetate nitrile, THF, and chloroform form force. It is good also as a process of making a compound and the above-mentioned solid phase substrate contact.
  • the step (b) As an organic silane compound the interaction or electrostatic interaction between the linker and the linker partial position of the linker is higher than the interaction or electrostatic interaction between the linker partial position and a hydroxyl group.
  • a first organosilane compound for a cabbing having a small functional group and one hydrolyzable group X, and two or more (preferably three) hydrolyzable groups having the functional group.
  • a second organosilane compound for caving with X is a first organosilane compound for a cabbing having a small functional group and one hydrolyzable group X, and two or more (preferably three) hydrolyzable groups having the functional group.
  • a method for producing a probe-immobilizing support has a partial linker position capable of binding to a probe or the like and a single hydrolyzable group with respect to a solid phase substrate having a hydroxyl group on the surface.
  • the interaction by hydrogen bonding with the linker partial position of the first organic linker silane compound and Z or the linker partial position of the second linker organic silane compound and Z or electrostatic And a step of introducing an organic silan compound for a cabbing having a functional group whose interaction is smaller than a hydroxyl group into the surface of the solid phase substrate.
  • a method for producing a probe-immobilizing carrier includes: a first linker-organosilane compound having a partial linker position capable of binding to a probe or the like and having one hydrolyzable group; An organic silane compound having a linker moiety and having two or more hydrolyzable groups and a second organosilane compound for linker polymerization capable of polycondensation, and supplying the first and second A step of introducing an organic silan compound to the surface of the solid phase substrate through a bond between an oxygen atom and a key atom; and after introducing the organosilane compound, a probe is introduced using the partial position of the linker. It is good also as a thing provided with the process to do.
  • This manufacturing method further includes an interaction by hydrogen bonding with the linker partial position of the first organosilane compound for the first linker and Z or the linker partial position of the second organosilane compound for the second linker. And a step of introducing an organosilane compound for cabbing having a functional group such that Z or electrostatic interaction is smaller than that of a hydroxyl group into the surface of the solid phase substrate.
  • the probe is an oligonucleotide or a polynucleotide having a natural or non-natural base, and the interaction is a base constituting the nucleotide. Hybridization based on hydrogen bonds between them may be used.
  • the front of the linker The linker partial position has one or more amino groups and thiol groups selected, or one or more functional groups selected from ester groups, aldehyde groups, epoxy groups and carboxy groups. Also good.
  • the cap may have an alkyl group having steric hindrance as the functional group.
  • the cap may have a monomeric organosilane moiety held on the surface of the solid phase substrate through a bond between an oxygen atom and a key atom.
  • the cap has an organic siloxane moiety or an organic polysiloxane moiety (also referred to as a polymeric organosilane moiety) bonded to the surface of the solid phase substrate through a bond between an oxygen atom and a key atom.
  • the cap compresses at least one or two or more kinds of an organosilane compound for a cabbing having at least one and three or less hydrolyzable groups X having the functional group on the surface of the solid phase substrate. It may be obtained by polymerization.
  • the organosilane compound for the cabbage is composed of one that has one hydrolyzable group X, one that has two hydrolyzable groups X, and one that has three hydrolyzable groups X!
  • an organosilane compound having one hydrolyzable group X and an organosilane compound having two or more hydrolyzable groups may be combined.
  • an organic silane compound having one hydrolyzable group X and an organic silane compound having the same three may be used in combination, or an organic silane compound having the same two and an organic silane compound having the same two may be used.
  • the same two organic silane compounds and the same three organic silane compounds may be used, or the same, two and three organic silane compounds may be used in combination. Good.
  • a monomeric cap can be easily obtained by using an organosilane compound having one hydrolyzable group X, and a polymer cap is an organosilane having two or three hydrolyzable groups X. It can be easily obtained by using at least a compound (preferably having three hydrolyzable groups X). Further, on the surface of the solid phase substrate, the organosilane silane compound for cabling is condensed with a hydroxyl group on the surface of the solid phase substrate (or condensed with the hydroxyl group and condensed with the organic silane compound). )
  • the linker is a linker. It may have a hydrocarbon group terminated with one site (for example, an amino group).
  • the hydrocarbon group also has an alkyl group strength of 1 to 10 carbon atoms, preferably a linear alkyl group having 2 to 8 carbon atoms (ethyl group, propyl group, butyl group). Group, pentyl group, hexyl group, hexyl group and octyl group).
  • the linker may have a monomeric organic silane moiety or an organic polysiloxane moiety that is held on the surface of the solid phase substrate through a bond between an oxygen atom and a silicon atom.
  • the monomeric or polymeric linker is at least one or two or more selected from organic silane compounds having one or more and three or less hydrolyzable groups having the linker partial position. It can be obtained by condensation polymerization on the surface of a solid phase substrate.
  • the organosilane compound for the linker is composed of one that has one hydrolyzable group X, one that has two hydrolyzable groups X, and one that has three hydrolyzable groups X. However, two or more different types of these hydrolyzable groups X may be combined! /. Further, an organosilane compound having one hydrolyzable group X and an organosilane compound having two or more hydrolyzable groups may be combined.
  • an organic silane compound having one hydrolyzable group X and an organic silane compound having the same three may be used in combination, or an organic silane compound having the same number and an organic silane compound having the same number may be used. It is also possible to use the same two organic silane compounds, the same three organic silane compounds, or a combination of the same, two and three organic silane compounds. It may be used.
  • the monomeric linker can be easily obtained by using an organic silane compound having one hydrolyzable group X, and the polymer linker can be obtained by using an organic silane group having two or more hydrolyzable groups X. It can be easily obtained by using a compound.
  • the organosilane compound On the surface of the solid phase substrate, the organosilane compound is subjected to polycondensation with a hydroxyl group on the surface of the solid phase substrate (or polycondensation with the hydroxyl group and polycondensation between organosilane compounds).
  • the probe immobilization carrier is a monomer-like substance held on the solid phase substrate through a bond between a solid phase substrate, a linker part capable of binding to a probe, etc., and an oxygen atom and a key atom.
  • a first linker having an organic silane moiety; a linker moiety capable of binding to a probe; and an organic substance held on the solid phase substrate via a bond between an oxygen atom and a key atom.
  • a second linker having a siloxane moiety or an organic polysiloxane moiety.
  • the probe immobilization carrier includes a first organosilane site having a monomeric organosilane moiety held on the surface of the solid phase substrate via a bond between an oxygen atom and a key atom on the solid phase substrate. It may have a cap and a second cap having a polymer-like organosilane moiety held on the surface of the solid phase substrate through a bond between an oxygen atom and a key atom.
  • the probe immobilization carrier produced by any of the production methods described above or any of the probe immobilization carriers described above, and the probe immobilization carrier And a probe held via the linker partial position.
  • the probe may be an oligonucleotide or a polynucleotide which may have a natural or non-natural base! /.
  • FIG. 1 is a scheme showing an example of a method for producing a probe fixing carrier.
  • FIG. 2 is an explanatory view showing a carrier for immobilizing a probe, where (a) shows an example when the cap is of a type, and (b) shows an example when the cap is of a plurality of types.
  • FIG. 3 is an explanatory view showing an example of a monomeric cap.
  • FIG. 4 is an explanatory view showing an example of a polymer cap.
  • FIG. 5 is an explanatory view showing an example in which the first and second linkers are mixed in the probe fixing carrier.
  • FIG. 6 is an explanatory diagram showing an example in which two types of linkers having a monomeric organosilane moiety are mixed in the probe fixing carrier.
  • FIG. 7 is an explanatory view showing an example of a linker having an organic siloxane moiety (or an organic polysiloxane moiety).
  • FIG. 8 is an explanatory diagram showing a DNA array, where (a) shows an example of using a linker having an organic siloxane moiety (or an organic polysiloxane moiety), and (b) shows an organosiloxane moiety ( Alternatively, an example in which a linker having an organic polysiloxane moiety) and a linker having a monomeric organic silane moiety are used in combination is shown.
  • FIG. 9 is an explanatory view showing an example of a first and second organic silane compound for a linker.
  • FIG. 10 is an explanatory view showing an example of a method for producing a probe-immobilizing carrier using the first and second linker-specific organosilane compounds.
  • FIG. 11 is an explanatory diagram of oxanosin.
  • FIG. 12 is a graph showing the fluorescence intensity measured in Example 1.
  • FIG. 13 is a graph showing the fluorescence intensity measured in Example 2.
  • the solid phase substrate is not particularly limited, and various conventionally known carriers used in the hybridization assembly can be used. Examples thereof include polymers such as glass, ceramics, polyethylene terephthalate, cellulose acetate, polycarbonate, polystyrene, and polymethyl methacrylate, porous glass, porous ceramics, porous silicon, short fibers, and membrane filters.
  • Preferred examples of the solid phase substrate to which the present invention is applied include those in which hydroxyl groups are originally present on the surface, and those in which hydroxyl groups are generated on the surface by performing some kind of treatment on the surface.
  • Solid phase substrate having a silanolic hydroxyl group derived from the material, and a solid phase substrate to which surface hydroxyl groups have been imparted, increased or activated by surface treatment or chemical treatment with plasma or the like.
  • a solid substrate having at least a surface layer of glass, silicone polymer, or silicon.
  • the form of the solid phase substrate is not particularly limited as long as it has a surface (including an inner surface) to which the probe can be immobilized and the target nucleic acid can be supplied.
  • a flat plate shape such as a substrate, a particle shape such as a bead, a fiber shape, a capillary shape with an inner surface as a fixed surface can be employed.
  • the solid phase substrate in the present invention has a linker having a linker site on the surface of the solid phase substrate for fixing the probe.
  • One preferred form of the linker moiety has active hydrogen.
  • the linker partial position contains an amino group or a thiol group.
  • the amino group and the thiol group are the ester group, aldehyde group, and epoxy group provided in the probe.
  • a covalent bond is formed with the carboxy group to immobilize the probe to the solid phase substrate.
  • the amino group may be an unsubstituted amino group or a substituted amino group.
  • One or two substituents in the substituted amino group are each a hydrocarbon group that may be an independent hydrocarbon group, preferably having 1 to 18 carbon atoms, and preferably having 1 to 6 carbon atoms.
  • a chain alkyl group is more preferred.
  • the amino group is preferably a primary amino group considering the reactivity with the linker compound.
  • linker partially include an ester group, an aldehyde group, an epoxy group, and a carboxy group. These functional groups form a covalent bond with an amino group or a thiol group provided in the probe to fix the probe to the solid phase substrate.
  • Such a linker can also be used as various mono-, di- and tri-alkoxy silanes having mono-linkers such as amino groups or mono-, di- and trihalogenated silanes (organic silane compounds for linkers).
  • mono-linkers such as amino groups or mono-, di- and trihalogenated silanes (organic silane compounds for linkers).
  • the silicon atom forms a siloxane bond with the oxygen atom of the silanol group existing on the surface of the glass solid phase substrate.
  • a linker moiety such as an amino group is preferably designed to be provided at the end. It is preferable that an appropriate linking moiety is present between the amino group and the key atom.
  • Such a linking moiety is preferably an alkyl group having 2 to 10 carbon atoms or a form in which some carbon atoms of the alkyl group are substituted with nitrogen atoms or S atoms.
  • the alkyl group can be linear or branched, but is preferably linear.
  • the organosilane compound for a linker is preferably provided with 1 to 3 alkoxy groups and halogen groups as hydrolyzable groups.
  • examples of the alkoxy group of the alkoxysilane in the organic silane compound for a linker include a methoxy group, an ethoxy group, an n propoxy group, an isopropoxy group, an n butoxy group, a sec butoxy group, and a tert butoxy group.
  • the remaining group in alkoxysilane is preferably an alkyl group.
  • an alkyl group having about 1 to 10 carbon atoms is preferably used, and a methyl group, an ethyl group, an n propyl group, an isopropyl group, an n butyl group, a sec butyl group, a tert butyl group, an n-hexyl group. Group, cyclohexyl group, n-octyl group, tert-octyl group and n-decyl group.
  • various other silane compounds can be used without being limited thereto. Examples of silane compounds that can be used for the carrier are shown below.
  • a halogen group may be used instead of an alkoxy group.
  • An alkoxy group and a halogen group are hydrolyzable groups.
  • any kind of cabbing agent may be used for the solid phase substrate for probe immobilization of the present invention.
  • an organosilane compound having a hydrolyzable group and having at least one hydrocarbon group can be used.
  • Such an organic silane compound preferably has a lower alkoxy group such as a methoxy group or an ethoxy group or a hydrolizable group as a hydrolyzable group on a silicon atom.
  • the number of hydrolyzable groups is not particularly limited. However, when an organic silane compound having one hydrolyzable group is used, the organic silane compound is bonded to the surface of the solid phase substrate in the form of a monomer. Get cap It is done.
  • an organosilane compound having two hydrolyzable groups is used, a linear or other polymer-like organic metalloxane moiety or organic polymetalloxane moiety linked to the surface of the solid phase substrate is obtained, and three or more When an organic silane compound for a cabbing having a hydrolyzable group is used, a polymer-like organic metalloxane moiety or an organic polymethyloxane moiety such as a network can be obtained.
  • An organosilane compound having one hydrolyzable group for example, a methyl group or an ethyl group is preferred as a functional group
  • two or more (preferably three or more) hydrolyzable groups preferably propyl
  • nucleic acids ie oligonucleotides or polynucleotides.
  • the nucleic acid may be any nucleic acid that has at least a base pairing region and hybridizes with other nucleic acids through the pairing region. Therefore, nucleic acids include both natural and synthetic nucleotide oligomers (oligonucleotides) and polymers (polynucleotides), as well as genomic DNA, DNA such as cDNA, PCR products, RNA such as mRNA, and peptide nucleic acids. It is a concept.
  • oligonucleotide mainly means a polymer having several to preferably several hundred nucleotides, more preferably about one hundred, and even more preferably several tens of nucleotides. Includes those obtained by synthesis.
  • Polynucleotide mainly means a polymer having a longer chain than an oligonucleotide, and includes PCR products and the like.
  • the probe is preferably an oligodeoxyribonucleotide having polyoxyribose or a polydeoxyribonucleotide.
  • the probe used in the present invention may have a linker unit that can be covalently bonded to a portion of the linker provided on the surface of the solid phase substrate.
  • the linker unit contains an ester group, an aldehyde group, an epoxy group, and a carboxyl group, an ester group, an aldehyde group, an epoxy group, and a force.
  • the linker unit preferably contains an amino group or a thiol group.
  • a linker compound described below is preferably provided as a linker unit. It is preferable that this linker unit be provided in the probe as a nucleotide derivative like other monomer units constituting the probe.
  • the linker compound exemplified here is a compound represented by the formula (9). Further, a preferred form contained in the probe as a linker unit is shown in Formula (10). A may be a hydrogen atom, other substituents, saccharides or derivatives thereof. When A is hydrogen, the compound represented by formula (9) is an oxanine base. Oxanine base is guanosine induced by NO or NO.
  • oxanosin a nucleoside form in which oxanine is bound to ribose or deoxyribose (both are also furanose type)
  • deoxyribonose is referred to as deoxyxanosine.
  • A represents a hydrogen atom, another substituent, a saccharide or a derivative thereof.
  • X represents a hydrogen atom, a hydroxyl group, or a substituent.
  • Oxanine for example, reacts deoxyguanosine with NO and Z or NaNO
  • the reaction solution is neutralized with NaOH, and after appropriately distilling off under reduced pressure as necessary, it can be purified by reverse phase chromatography or the like and dried to obtain deoxyxanosine as a white powder. it can.
  • the mobile phase can be well separated by using a mixture of neutral buffer such as sodium phosphate buffer (400 M, pH 7.4) and organic solvent such as acetonitrile (acetonitrile 10%, etc.).
  • Oxanine can be fractionated by reverse-phase chromatography, etc., based on acid hydrolysis of deoxyxanosine and the reaction solution.
  • a reaction condition of 2 hours at 37 ° C. with an acid such as 1M hydrochloric acid can be employed.
  • the A may be a saccharide such as pentose such as ribose or deoxyribose.
  • saccharides are those having functional groups such as alkoxy, alkoxyalkyloxy, and halogen instead of hydrogen or hydroxyl groups bonded to carbon atoms of saccharides. Can be mentioned.
  • the linker compound of the formula (9) comprises oxanine in any form as long as the reactivity with the amino group is ensured over the carboxy group activated with carpositimide. It's okay.
  • it is in a form bound to pentose such as ribose or deoxyribose.
  • the bonding position between the oxanine base and the pentose is preferably in a form in which the C1′-position carbon atom of the pentose is bonded to the N-position at the 3-position.
  • the linker compound When the pentose is 1 13 ribofuranosyl ribose or ribofuranosyl deoxyribose, the linker compound will take the form of a nucleoside derivative. As already explained, a linker compound in the form of a nucleoside derivative can easily obtain a deoxyguanine or deoxyguanosine force.
  • Such a linker compound in the form of a nucleoside derivative may be subjected to various modifications suitable for obtaining an oligonucleotide by chemical synthesis.
  • the C3, position hydroxyl group or C5, position hydroxyl group of ribose or deoxyribose is appropriately modified.
  • a phosphoramidite group is introduced into the hydroxyl group at the 3-position, and a dimethoxytrityl group or the like is introduced into the hydroxyl group at the 5′-position.
  • known methods can be used as appropriate in the chemical synthesis method of nucleic acids. Examples of linker compounds suitable for chemical synthesis of nucleic acids by the phosphoramidite method are shown below.
  • Such a linker compound can be obtained by applying a known method for synthesizing monomers for nucleic acid synthesis. For example, after adding dimethoxytrityl chloride to a suspension of deoxyxanosin (such as DMF as a solvent), add imidazole and diisopropylethylammum mesylate, and stir the reaction mixture to homogeneity. Then, it is poured into a large amount of water, a precipitate is obtained, and dried to obtain a crude product. This crude product is redissolved in an appropriate solvent such as dichloromethane and then recrystallized in hexane to obtain DMT-deoxyxanosine.
  • an appropriate solvent such as dichloromethane and then recrystallized in hexane to obtain DMT-deoxyxanosine.
  • DMT-deoxyxanosine is dissolved in an appropriate solvent, and then 2-cyanoethyl-N, N, ⁇ ', ⁇ , After adding diisopropylphosphoamide and allowing it to react sufficiently, the reaction is terminated by adding methanol, diisopropylethylamine and ethyl acetate, washing with 10% sodium bicarbonate, and then dehydrating and concentrating the organic phase. did.
  • This concentrate was redissolved in an appropriate solvent such as dichloromethane and separated by normal phase chromatography.
  • such a linker compound preferably takes the form of a phosphate ester to the hydroxyl group bonded to the carbon atom at the 5-position of ribose or deoxyribose.
  • the phosphate ester is preferably a triphosphate ester.
  • the linker compound can be taken in the form of a nucleotide derivative.
  • Such a probe compound can be preferably used for obtaining a nucleic acid such as a long-chain DNA of 100 bases or more by a gene amplification technique such as PCR.
  • An example of a linker compound as a nucleotide derivative is shown in the following formula.
  • oligonucleotide containing a linker unit that is a nucleotide derivative is known.
  • the probe manufacturing method can be applied.
  • deoxyxanosin triphosphate dOTP
  • Oxanine is presumed to form stable base pairings by forming two hydrogen bonds with cytosine thymine (preferably cytosine).
  • cytosine thymine preferably cytosine
  • prepare a desired template and a primer from the 5 'end to the desired position to introduce a linker compound and perform the first extension step in a reaction system containing only dOTP. carry out.
  • the remaining dOTP is removed, and the second and subsequent extension steps are carried out in the presence of the necessary dNTP (N is one or more of A, T, C and G) as usual. . Then, if necessary, an extension step of only dOTP can be carried out to introduce the present linker compound into two or more desired sites.
  • the phosphoamidite derivative of deoxyxanosin described above is prepared, and the desired order of introduction with respect to the oligodeoxynucleotide being synthesized.
  • a chain extension reaction This makes it possible to introduce the present linker compound into one or more desired sites of the probe.
  • this probe functions in the form of a single-stranded nucleic acid in hybridization, it may be in a double-stranded form at the time of acquisition, synthesis, or fixation. Moreover, when taking the form of a single strand, it may have a loop or a hairpin part.
  • the probe may comprise one or more linker units.
  • the linker can be provided at the 5 ′ end, which is a carrier fixing site exclusively selected in the probe, or can be provided at other sites such as the 3 ′ end. For example, it may be provided near the center of the entire length of the probe.
  • a linker cue is provided on the 5, end side or on the 3, end side, and such a probe is fixed to a carrier, a part of the probe containing the linker compound portion is located upstream and downstream. It can also be designed to have a hairpin structure or loop structure.
  • the linker unit takes the form of a nucleotide derivative, the linker can be introduced at an arbitrary site by chemical synthesis or by enzymatic chain extension as already described.
  • the hybridizing region with the target nucleic acid is a linker unit. It is preferably not included. Therefore, when a linker unit is introduced near the center or near the end of the entire length of the probe, it is preferable to form a spacer region not involved in hybridization in the vicinity.
  • such a spacer region is the same even when a linker unit is introduced at the 5th end, etc. of the probe. It is preferable that the region is a hybrid region.
  • a DNA array is a probe immobilized on a probe immobilization carrier.
  • the probe is a linker compound (a compound for binding the probe to a partial position of the linker on the solid phase substrate or a site where the compound is introduced) and a carboxy group activated with calpositimide of oxanine and a carrier surface. It is preferable that the amino group is fixed in a state in which it reacts with an amino group to form an amide bond.
  • the immobilization form of the probe differs depending on the position of the linker compound introduced into the probe.
  • the probe When the linker compound is provided at the 5 'end, the probe will be immobilized in a single strand, If a linker compound is provided near the center of the entire probe length, the probe will be immobilized in a U-shape.
  • a hairpin or loop structure will be adopted in the vicinity of the linker compound introduction site.
  • a liquid containing a probe is prepared, and this liquid is supplied to the surface of the above-mentioned probe fixing carrier, and the linker compound oxanin in the probe and the amino acid provided in the probe fixing carrier are prepared. It can be obtained by reacting with a group or the like.
  • a method for supplying the probe to the probe-immobilized carrier a conventionally known deviation method can be employed. For example, in order to produce an array in which a large number of probe spots are arranged on the surface of a substrate or the like as a DNA array, probe-containing droplets are supplied in the form of spots by a contact type using a pin or an inkjet method.
  • the probe can be supplied to particles such as beads by dipping the beads in the probe-containing solution or spraying the probe-containing solution.
  • Immobilization of the probe can be carried out by such an operation as spotting of the probe solution, which is usually performed, and dating. If the probe solution is supplied to the probe-immobilized carrier having an amino group, the linker compound and the amino group can react rapidly.
  • an organic solvent can be added to the probe solution, and it can be adjusted to neutral or slightly acidic as necessary. The temperature and incubation time may be appropriately set according to the type of probe immobilization carrier or probe.
  • the temperature is set to a predetermined temperature of 30 ° C to 90 ° C, and the reaction time is from several tens of minutes to 1
  • steps such as reno, idling, blocking, denaturing, washing and drying can be carried out.
  • the nucleic acid hybridization method of the present invention prepares the above-described DNA array, supplies the nucleic acid to this DNA array, and hybridizes the probe and the target nucleic acid.
  • this hybridization method except that the probe immobilization carrier of the present invention is used, various target nucleic acids prepared by a conventionally known method may be supplied and hybridized according to a conventional method.
  • a probe-fixing carrier was prepared, and a confirmation test of the cabbing effect was performed.
  • the procedure is described below.
  • a non-coated slide glass for DNA microarray manufactured by Matsunami Glass Industrial Co., Ltd.
  • substrate solid phase substrate
  • APS is an abbreviation for 3-aminobutylpyrutriethoxysilane, and is an example of an organosilane compound for a linker.
  • BMS is an abbreviation for ptyltrimethoxysilane, and is an example of an organosilane compound for caving.
  • the substrate surface was modified. That is, 20 substrates are 10 in 800 mL acetone. After ultrasonic treatment for 5 minutes, it was vacuum dried in a desiccator for 10 minutes at room temperature. Subsequently, 20 of these substrates were added to 1200 mL of parahana solution (840 mL of 90% H 2 SO 4 and 360 mL of
  • APS substrates 20 substrates that have been treated in this manner are immersed in 1290 mL of 2% APS solution (25.8 mL of APS and 126.4.2 mL of toluene) and rocked at 70 rpm in an incubator for 5 hours. Reacted. Then, the substrates are immersed in 800 mL of toluene and treated with ultrasound for 10 minutes, immersed in 800 mL of a 1: 1 mixture of methanol and toluene (volume ratio), treated with ultrasound for 10 minutes, and further treated with 800 mL. The sample was immersed in methanol and treated with ultrasonic waves for 10 minutes, and then dried in a constant temperature dryer at 110 ° C. for 1 hour. The substrates were shielded from light and vacuum-dried in a desiccator at room temperature for 12 hours. Ten substrates out of these treatments were stored as APS-modified substrates (hereinafter referred to as APS substrates).
  • APS substrates Ten substrates out of these
  • the remaining 10 substrates after such treatment were immersed in 1200 mL of 2% BMS (caping agent) solution (24 mL of BMS and 1176 mL of toluene), and in an incubator at 25 ° C and 70 rpm. The reaction was performed for 5 hours while shaking. The substrates are then immersed in 800 mL of toluene and treated with ultrasound for 10 minutes, then immersed in 800 mL of a 1: 1 mixture of methanol and toluene (volume ratio), treated with ultrasound for 10 minutes, and then further treated with 800 mL of toluene.
  • BMS caping agent
  • APS + BMS substrate After immersion in methanol and ultrasonic treatment for 10 minutes, drying at 110 ° C for 1 hour in a constant temperature drier, further drying these substrates in a desiccator and vacuum drying at room temperature, and modifying them with APS in addition to the BMS-capped substrate (hereinafter referred to as APS + BMS substrate)
  • oligo DNA probe was spotted and fixed.
  • Ori As a DNA probe, one having a sequence of Chemical Formula 8 was used. In the sequence, “0” at the 5th end represents oxanosin, “TTT” following it represents a spacer, and the remaining sequence following the spacer, ie “CAG ' ⁇ -ACGJ (dotted line underline) Represents the complementary sequence of the hybridization sample.
  • a succinic anhydride solution was prepared by dissolving 2.5 g of succinic anhydride in 160 mL of 1-methyl-2-pyrrolidinone and adding 17.5 mL of 0.2 M aqueous sodium borate (pH 8.0). Then, the slide rack was soaked in sterilized water and swirled gently 10 times, and then washed twice with 2 X SSC, 0.2% SDS aqueous solution at room temperature for 15 minutes, and boiled. It was immersed in 2 X SSC, 0.2% SDS aqueous solution for 5 minutes.
  • the oligo DNA shown in Chemical formula 9 was used as a hybridization sample, which was dissolved in sterilized water and used.
  • the oligo DNA of ⁇ 9 has a complementary sequence (dotted line underlined part) to the above oligo DNA probe and is labeled with Cy3 at the end.
  • Hybridization was performed according to the following procedure. First, it was prepared Roh, Eve Lida I See Chillon Sanpunore [This 20 X SSC, 10 0/0 SDS mosquitoes ⁇ , a final concentration of 5 X SSC, 0. 5 0/ 0 SDS [Konaru so on. The final concentration of the hybridization sample at this time is InM. Next, 25 ⁇ l of the sample solution was dropped on the substrate, and a cover glass was placed on the substrate and incubated at 42 ° C at 100% relative humidity. Next, shake with 2 X SSC, 0.1% SDS solution at room temperature for 5 minutes, shake with 1 X SSC solution at room temperature for 5 minutes, and shake with 0.1 X SSC solution at room temperature.
  • a probe-fixing carrier was prepared, and a confirmation test of the cabbing effect was performed from a viewpoint different from that in Example 1. The procedure will be described below. Also in this example, the same non-coated slide glass for DNA microarray (manufactured by Matsunami Glass Industrial Co., Ltd.) was used as the substrate.
  • Cy3 Mono -reactive Dye Pack (PA23001, manufactured by GE Healthcare Nanoscience) is used as a probe. used. Spotting and fixing were performed by the following procedure for each APS substrate and APS + BMS substrate. First, Cy3 was spotted at a concentration of 50 pmol Z ⁇ L using a micro ceramic pump type DNA chip production apparatus GENESHOT (manufactured by NGK). Subsequently, incubation was performed at 42 ° C. and a relative humidity of 45%. The substrate was placed in a slide glass rack and immersed in a succinic anhydride solution (described above) for 20 minutes.
  • GENESHOT micro ceramic pump type DNA chip production apparatus
  • the slide rack was soaked in sterilized water and swirled gently 10 times. After 2 times of washing, it was shaken and washed with 2 X SSC, 0.2% SDS aqueous solution at room temperature for 15 minutes and boiled. It was immersed in 2 X SSC, 0.2% SDS aqueous solution for 5 minutes. Then, the slide rack was soaked in sterilized water 10 times, and the operation of gently rocking and washing was repeated 3 times, followed by centrifugal drying at lOOOrpm for 3 minutes. As a result, one APS substrate and one APS + BMS substrate on which Cy3 was fixed were obtained.
  • Pseudohybridization was performed using the APS + BMS substrate and APS substrate to which Cy3 was immobilized (immediately after fixation).
  • the pseudo-hybridization was performed according to the following Tagawa page. First, mix 20 X SSC and 10% SDS, and adjust to a final concentration of 5 X SSC and 0.5% SDS, and add this to the DNA! Pseudohybridization sample. The liquid was used. Next, 25 1 of the sample solution was dropped on the substrate, and the top force was also applied to a cover glass, and incubated at 42 ° C at 100% relative humidity.
  • the fluorescence intensity is significantly increased when the hydroxyl group remaining on the substrate surface after APS treatment is capped with BMS (APS + BMS) and when it is not capped (APS). did.
  • Example 1 the fluorescence intensity of both on the 0th day after immobilization was such that the APS + BMS substrate was slightly increased compared to the APS substrate. The sample is different between Example 1 and Example 2. It seems to be caused by that.
  • Example 2 water remaining on the surface of the substrate after being treated with APS using ETMS, MTPS, ODTES, EMS, MMS (see the above-mentioned Chemical Formula 3) instead of BMS.
  • the acid group was protected, and pseudo-hybridization was performed in the same manner, and the fluorescence signal was measured.
  • the results are shown in FIG. As is clear from FIG. 13, the fluorescence intensity increased for all the substrates protected with the remaining hydroxyl groups compared to the APS substrate.
  • the present invention can be used in bio-related technologies related to the production and use of DNA arrays.

Abstract

A process for the production of probe-immobilizing supports which comprises the step (a) of reacting a solid support having hydroxyl groups on the surface with one or more linker organosilane compounds having linker sites capable of binding to a probe to bond the silicon atoms of the linker organosilane compounds to oxygen atoms of the hydroxyl groups and thereby make the organosilane compounds held on the solid support and the step (b) of protecting the residual hydroxyl groups on the surface of the solid substrate with a capping agent.

Description

明 細 書  Specification
プローブ固定化用担体の製造方法、 DNAアレイの製造方法及びプロ一 ブ固定化用担体  Method for producing probe immobilization carrier, DNA array production method, and probe immobilization carrier
技術分野  Technical field
[0001] 本発明は、プローブ固定ィ匕用担体の製造方法、 DNAアレイの製造方法及びプロ ーブ固定ィ匕用担体に関する。  The present invention relates to a method for producing a probe-immobilizing carrier, a method for producing a DNA array, and a probe-immobilizing carrier.
背景技術  Background art
[0002] 従来、 DNAアレイに関する種々の技術が開発されている。例えば、非特許文献 1 には、固相基体の表面に DNAプローブを固定ィ匕する方法が記載されている。この非 特許文献 1には、固相基体の表面に DNAプローブを固定ィ匕するにあたり、ガラスや シリカなどの固相基体の表面処理を行うこと、その表面処理剤としてアミノ基、アルデ ヒド基、エポキシ基などを有する各種シランカップリング剤を用いることなどが記載さ れている。  Conventionally, various techniques relating to DNA arrays have been developed. For example, Non-Patent Document 1 describes a method of immobilizing a DNA probe on the surface of a solid phase substrate. In this Non-Patent Document 1, in order to immobilize a DNA probe on the surface of a solid phase substrate, the surface treatment of the solid phase substrate such as glass or silica is performed, and as the surface treatment agent, an amino group, an aldehyde group, The use of various silane coupling agents having an epoxy group or the like is described.
非特許文献 1 :君塚房夫,加藤郁之進著, 「蛋白質 核酸 酵素」 Vol. 43, No. 13 ( 1988) , p52- 59  Non-Patent Document 1: Fumio Kimizuka, Yasuyuki Kato, “Protein Nucleic Acid Enzyme” Vol. 43, No. 13 (1988), p52- 59
発明の開示  Disclosure of the invention
[0003] し力しながら、各種シランカップリング剤で固相基体の表面処理を行ったとしても、 固相基体の表面に存在するすべての水酸基がシランカップリング剤と結合するわけ ではなく一部の水酸基が残存するため、その残存する水酸基によって幾つかの問題 が生じる。例えば、固相基体上に残存する水酸基は水分存在下で強酸となるため、 長期保存したあとにはその強酸がシランカップリング剤と固相基体との間を切断して しまうことがある。この場合、 DNAプローブと蛍光物質で標識されたターゲットとのハ イブリダィゼーシヨンを行ったとしても十分な蛍光強度が得られないという問題が生じ る。また、残存する水酸基はシランカップリング剤のアミノ基等と化学結合することによ りその反応性を低下させると考えられる。シランカップリング剤のアミノ基等の反応性 が低下すると、十分な量の DNAプローブを固相基体に保持させることができないた め、やはり DNAプローブと蛍光物質で標識されたターゲットとのハイブリダィゼーショ ンを行ったとしても十分な蛍光強度が得られないという問題が生じる。なお、本明細 書では、このようなシランカップリング剤をリンカ一といい、シランカップリング剤が有す るアミノ基等をリンカ一部位と 、うことにする。 However, even if the surface treatment of the solid phase substrate is performed with various silane coupling agents, not all hydroxyl groups present on the surface of the solid phase substrate are bonded to the silane coupling agent. Since some of the hydroxyl groups remain, some problems arise due to the remaining hydroxyl groups. For example, since the hydroxyl group remaining on the solid phase substrate becomes a strong acid in the presence of moisture, the strong acid may cut between the silane coupling agent and the solid phase substrate after long-term storage. In this case, there is a problem that sufficient fluorescence intensity cannot be obtained even if hybridization is performed between a DNA probe and a target labeled with a fluorescent substance. The remaining hydroxyl group is considered to reduce the reactivity by chemically bonding with the amino group of the silane coupling agent. If the reactivity of the amino group, etc. of the silane coupling agent decreases, a sufficient amount of DNA probe cannot be held on the solid phase substrate, so that the hybrid of the DNA probe and the target labeled with a fluorescent substance is still present. Seesho Even if the process is performed, there is a problem that sufficient fluorescence intensity cannot be obtained. In this specification, such a silane coupling agent is referred to as a linker, and an amino group or the like that the silane coupling agent has is referred to as a linker partial position.
[0004] 本発明のプローブ固定化用担体及びその製造方法は、核酸などのプローブと結合 するリンカ一を安定して固相基体上に保持させることを目的の一つとする。また、固 相基体上のリンカ一が効率よくプローブと結合できるようにすることを目的の一つとす る。  [0004] One object of the carrier for immobilizing a probe and the method for producing the same of the present invention is to stably hold a linker that binds to a probe such as a nucleic acid on a solid phase substrate. Another object is to enable the linker on the solid phase substrate to be efficiently bonded to the probe.
[0005] 本発明は、上述した目的の少なくとも一つを解決するために以下の手段を採用した  The present invention employs the following means in order to solve at least one of the above-mentioned objects.
[0006] 本発明の第 1のプローブ固定化用担体の製造方法は、 [0006] The first method for producing a probe-immobilizing carrier of the present invention comprises:
(a)表面に水酸基を有する固相基体と、プローブと結合可能なリンカ一部位を有する リンカ一用有機シラン化合物の一種又は二種以上とを反応させ、前記水酸基の酸素 原子に前記リンカ一用有機シランィ匕合物のケィ素原子を結合させることにより、前記リ ンカー用有機シランィ匕合物をリンカ一として前記固相基体の表面に保持する工程と、 (a) reacting a solid phase substrate having a hydroxyl group on the surface with one or more types of organosilane compounds for linkers having a partial linker position capable of binding to a probe, and using the linker for oxygen atoms of the hydroxyl groups A step of holding the organosilane compound for a linker on the surface of the solid phase substrate as a linker by bonding a silicon atom of the organosilane compound;
(b)前記 (a)工程後の前記固相基体の表面に残存する水酸基をキヤッビング剤で保 護する工程と、 (b) a step of protecting a hydroxyl group remaining on the surface of the solid phase substrate after the step (a) with a caving agent;
を含むものである。  Is included.
[0007] このプローブ固定化用担体の製造方法によれば、固相基体の表面に水酸基が残 存する可能性が低くなるため、残存する水酸基により固相基体上の水酸基とリンカ一 との結合が切断されたり、固相基体に保持されたリンカ一部位がプローブと反応しに くくなつたりすることが低減される。したがって、得られたプローブ固定化用担体とプロ 一ブとを反応する際に、十分な量のプローブをプローブ固定ィ匕用担体に保持させる ことができる。ここで、前記 (b)工程では、前記キヤッビング剤として前記リンカ一部位 を有さないキヤッビング用有機シランィ匕合物の一種又は二種以上を使用し、前記 (a) 工程後の前記固相基体の表面に残存する水酸基の酸素原子に前記キヤッビング用 有機シランィ匕合物のケィ素原子を結合させてもょ 、。  [0007] According to this method for producing a probe-immobilizing carrier, the possibility that a hydroxyl group remains on the surface of the solid phase substrate is reduced, so that the hydroxyl group on the solid phase substrate is bonded to the linker by the remaining hydroxyl group. It is less likely that the linker is cleaved or the linker part held on the solid phase substrate does not easily react with the probe. Therefore, when the obtained probe immobilization carrier and the probe are reacted, a sufficient amount of the probe can be held on the probe immobilization carrier. Here, in the step (b), one or two or more kinds of organosilane compounds for cabbing not having the partial linker position are used as the cabbing agent, and the solid phase substrate after the step (a) And bonding the oxygen atom of the hydroxyl group remaining on the surface of the organic silane compound for the cabbing to the oxygen atom of the hydroxyl group.
[0008] この製造方法のスキームの一例を図 1に示す。また、この製造方法によって得られ るプローブ固定ィ匕用担体の一例を図 2 (a)及び (b)に示す。キヤッビング剤はキャップ として固相基体上の水酸基を保護する。また、キャップは、図 3に示すモノマー状キヤ ップでもよぐ図 4に示すポリマー状キャップでもよぐ両者が混在していてもよい。更 に、リンカ一は、図 5に示すように、複数種類が混在していてもよい。 An example of this production method scheme is shown in FIG. An example of the probe-fixing carrier obtained by this manufacturing method is shown in FIGS. 2 (a) and 2 (b). Cap agent is cap To protect the hydroxyl groups on the solid phase substrate. The cap may be a monomer cap shown in FIG. 3 or a polymer cap shown in FIG. Further, as shown in Fig. 5, a plurality of types of linkers may be mixed.
[0009] 本発明の第 2のプローブ固定化用担体の製造方法は、 [0009] The second method for producing a probe-immobilizing carrier of the present invention comprises:
(a)表面に水酸基を有する固相基体に対して、プローブと結合可能なリンカ一部位を 有するリンカ一用有機シランィ匕合物の一種又は二種以上を、前記水酸基の酸素原 子と前記リンカ一用有機シランィ匕合物のケィ素原子との結合を介して導入する工程と  (a) One or two or more types of organosilane compounds for a linker having a partial linker position capable of binding to a probe with respect to a solid phase substrate having a hydroxyl group on the surface, the oxygen atom of the hydroxyl group and the linker Introducing the organic silane compound through a bond with a silicon atom;
(b)前記 (a)工程後の前記固相基体に対して、前記リンカ一の前記リンカ一部位との 水素結合による相互作用及び Z又は静電的相互作用が水酸基よりも小さくなるよう な官能基を有する一種又は二種以上のキヤッビング用有機シランィ匕合物を、前記水 酸基の酸素原子と前記リンカ一用有機シランィ匕合物のケィ素原子との結合を介して 導入する工程と、 (b) Functionality such that the interaction of the linker with the partial position of the linker and the Z or electrostatic interaction with the solid phase substrate after the step (a) is smaller than the hydroxyl group. Introducing one or two or more types of organosilane compounds for cabbing having a group through a bond between an oxygen atom of the hydroxyl group and a key atom of the organosilane compound for a linker;
を含むものである。  Is included.
[0010] このプローブ固定ィヒ用担体の製造方法によれば、固相基体の表面に水酸基が残 存する可能性が低くなるため、残存する水酸基により固相基体上の水酸基とリンカ一 との結合が切断されたり、固相基体に保持されたリンカ一部位がプローブと反応しに くくなつたりすることが低減される。したがって、得られたプローブ固定化用担体とプロ 一ブとを反応する際に、十分な量のプローブをプローブ固定ィ匕用担体に保持させる ことができる。  [0010] According to this method for producing a probe-fixing carrier, the possibility that a hydroxyl group remains on the surface of the solid phase substrate is reduced, so that the hydroxyl group on the solid phase substrate binds to the linker by the remaining hydroxyl group. Are less likely to be cleaved or the linker part held on the solid phase substrate is less likely to react with the probe. Therefore, when the obtained probe immobilization carrier and the probe are reacted, a sufficient amount of the probe can be held on the probe immobilization carrier.
[0011] 本発明のプローブ固定ィ匕用担体の製造方法において、前記キヤッビング用有機シ ランィ匕合物は、ケィ素原子上にアルキル基のほかアルコキシ基又はハロゲン基を有 する化合物としてもよい。こうすれば、キヤッビング用有機シランィ匕合物のアルコキシ 基又はハロゲン基が脱離して該シランィ匕合物のケィ素原子と固相基体の酸素原子と が容易に結合する。このようなキヤッビング用有機シランィ匕合物としては、特に限定さ れるものではないが、たとえば式(1)で表される一種又は二種以上の化合物としても よい。 Xがアルコキシ基のときには、そのアルコキシ基は、メトキシ基、エトキシ基及び n—プロポキシ基 (好ましくは、メトキシ基及びエトキシ基)から選択される 1種又は 2種 以上であってもよい。 Rは、炭化水素基であり、炭素数 1〜20 (好ましくは 1〜8)の直 鎖状又は分枝状のアルキル基が好ましぐ直鎖状であることがより好ましい。このよう な炭化水素基としては、メチル基、ェチル基、 n—プロピル基、 n—ブチル基、 n—ォ クタデシル基などが挙げられる。より具体的には、式(2)〜(8)からなる群より選ばれ る一種又は二種以上の化合物としてもょ 、。 [0011] In the method for producing a probe-immobilizing carrier carrier of the present invention, the organic silane compound for cabling may be a compound having an alkoxy group or a halogen group in addition to an alkyl group on a key atom. In this way, the alkoxy group or halogen group of the organosilane compound for caving is eliminated, and the silicon atom of the silane compound and the oxygen atom of the solid phase substrate are easily bonded. Such an organosilane compound for caving is not particularly limited, but may be, for example, one or more compounds represented by the formula (1). When X is an alkoxy group, the alkoxy group is one or two selected from a methoxy group, an ethoxy group, and an n-propoxy group (preferably a methoxy group and an ethoxy group). It may be the above. R is a hydrocarbon group, more preferably a straight chain, which is preferably a straight chain or branched alkyl group having 1 to 20 (preferably 1 to 8) carbon atoms. Examples of such hydrocarbon groups include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-octadecyl group. More specifically, as one or two or more compounds selected from the group consisting of formulas (2) to (8).
[化 1] [Chemical 1]
SiX R SiX R
m n  m n
(式(1)において、 m及び nはそれぞれ 1以上の整数であり、 m+nは 4であり、 Xは、 臭素、塩素、ヨウ素などのハロゲン原子又はアルコキシ基であり、 mが 2以上のときに は Xは同一であっても異なっていてもよぐ Rは、炭化水素基であり、 nが 2以上のとき には Rは同一であっても異なっていてもよい。 )  (In the formula (1), m and n are each an integer of 1 or more, m + n is 4, X is a halogen atom such as bromine, chlorine, iodine, or an alkoxy group, and m is 2 or more. Sometimes X may be the same or different. R is a hydrocarbon group, and when n is 2 or more, R may be the same or different.)
[化 2] [Chemical 2]
Figure imgf000006_0001
Figure imgf000006_0002
Figure imgf000006_0001
Figure imgf000006_0002
BMS BMS
MMS MMS
Figure imgf000006_0003
Figure imgf000006_0003
ODTES  ODTES
■(8)■ (8)
A 0
Figure imgf000006_0004
A 0
Figure imgf000006_0004
ETMS 本発明のプローブ固定ィ匕用担体の製造方法において、前記リンカ一用有機シラン 化合物は、ケィ素原子上にアルコキシ基と前記リンカ一部位を末端に有する基とを有 していてもよい。あるいは、前記リンカ一用有機シランィ匕合物は、前記リンカ一部位と して、アミノ基、チオール基、エステル基、アルデヒド基、エポキシ基及びカルボキシ 基力もなる群より選ばれる一種又は二種以上の基を有していてもよい。また、前記固 相基体は、ガラス製、プラスチック製又はシリコン製としてもよい。なお、固相基体の 表面に水酸基を有して!/ヽな!ヽ場合には、固相基体の材質に応じて処理を施すことに より表面に水酸基を生成させる。 [0013] ここで、リンカ一の一例を図 6に示す。図 6はモノマー状の有機シラン部位を有する リンカ一であり、 2種類のものが固相基体上の酸素原子に結合しているが、 1種類のリ ンカーだけを結合させてもよいし、 3種類以上のリンカ一を結合させてもよい。なお、リ ンカ一は、リンカ一部位を末端に有する炭素数 1〜10の直鎖状の炭化水素鎖として もよい。リンカ一の別の例を図 7に示す。図 7は有機シロキサン部位 (又は有機ポリシ ロキサン部位)を有するリンカ一である。 ETMS In the method for producing a probe-immobilizing carrier carrier of the present invention, the organosilane compound for a linker may have an alkoxy group and a group having a terminal partial position of the linker on a silicon atom. Alternatively, the organosilane compound for a linker is one or more selected from the group consisting of an amino group, a thiol group, an ester group, an aldehyde group, an epoxy group, and a carboxyl group as the linker partial position. It may have a group. The solid phase substrate may be made of glass, plastic or silicon. In addition, it has a hydroxyl group on the surface of the solid phase substrate! / Cunning! In the case of drought, hydroxyl groups are generated on the surface by performing treatment according to the material of the solid phase substrate. Here, an example of a linker is shown in FIG. Figure 6 shows a linker with a monomeric organosilane moiety. Two types of linkers are bonded to oxygen atoms on the solid phase substrate, but only one type of linker may be bonded. More than one type of linker may be combined. The linker may be a linear hydrocarbon chain having 1 to 10 carbon atoms having a terminal partial linker position. Figure 7 shows another example of a linker. FIG. 7 shows a linker having an organosiloxane moiety (or an organic polysiloxane moiety).
[0014] 本発明の DNAアレイの製造方法は、上述したいずれかのプローブ固定化用担体 の製造方法によって製造されたプローブ固体化用担体に、前記リンカ一部位を利用 してプローブを導入することにより DNAアレイを得るものである。こうすれば、十分な 量のプローブが保持された DNAアレイを得ることができるため、たとえばプローブと 蛍光物質で標識された標的化合物とのハイブリダィゼーシヨンを行ったときに十分な 蛍光強度が得られる。  [0014] In the method for producing a DNA array of the present invention, a probe is introduced into the probe solidifying carrier produced by any of the above-described methods for producing a probe immobilizing carrier using the partial position of the linker. To obtain a DNA array. In this way, a DNA array in which a sufficient amount of probes are retained can be obtained, so that sufficient fluorescence intensity is obtained, for example, when hybridization between a probe and a target compound labeled with a fluorescent substance is performed. can get.
[0015] ここで、 DNAアレイの一例を図 8 (a)及び (b)に示す。図 8 (a)は有機シロキサン部 位又は有機ポリシロキサン部位を有するリンカ一を用いた場合の一例であり、図 8 (b) は有機シロキサン部位又は有機ポリシロキサン部位を有するリンカ一とモノマー状の 有機シラン部位を有するリンカ一を混合して用いた場合の一例である。  Here, an example of a DNA array is shown in FIGS. 8 (a) and 8 (b). Fig. 8 (a) is an example when a linker having an organic siloxane moiety or an organic polysiloxane moiety is used, and Fig. 8 (b) is a monomer and a linker having an organosiloxane moiety or an organic polysiloxane moiety. This is an example in the case of using a mixture of linkers having an organosilane moiety.
[0016] 本発明の標的化合物の検出方法は、上述した DNAアレイに対して、前記プローブ と相互作用する標的化合物を含む被験試料を供給することにより、前記プローブによ つて前記標的化合物を検出するか、あるいは、前記プローブによって前記標的化合 物を捕獲して前記プローブと前記標的化合物との相互作用によって変化する又は発 生するシグナルを検出する工程を有するものである。こうすれば、十分な量のプロ一 ブが保持された DNAアレイを用いることから、高感度で標的化合物又はシグナルを 検出することができる。 In the method for detecting a target compound of the present invention, the target compound is detected by the probe by supplying a test sample containing the target compound that interacts with the probe to the DNA array described above. Alternatively, the method includes a step of detecting the signal that is changed or generated by the interaction between the probe and the target compound by capturing the target compound with the probe. In this way, a target compound or signal can be detected with high sensitivity because a DNA array holding a sufficient amount of probe is used.
[0017] 本発明の第 1のプローブ固定化用担体は、上述したいずれかに記載のプローブ固 定ィ匕用担体の製造方法によって製造されたものである。本発明の第 2のプローブ固 定化用担体は、固相基体と、プローブと結合可能なリンカ一部位を有し前記固相基 体の表面上の酸素原子にケィ素原子が結合することにより前記固相基体の表面に 保持されて 、る一種又は二種以上のリンカ一と、前記固相基体の表面上の酸素原子 のうち前記リンカ一が結合していないものを保護するキャップと、を備えるものである。 本発明の第 3のプローブ固定化用担体は、固相基体と、前記固相基体の表面に保 持されプローブと結合可能なリンカ一部位を有する一種又は二種以上のリンカ一と、 炭化水素系官能基を有し酸素原子 ケィ素原子結合を介して前記固相基体の表面 に保持される一種又は二種以上のキャップと、を備えるものである。本発明の第 1〜 第 3のいずれのプローブ固定ィ匕用担体によっても、プローブと反応することにより、十 分な量のプローブを保持することができる。ここで、前記キャップは、前記リンカ一の 前記リンカ一部位との水素結合による相互作用又は静電的相互作用が、前記リンカ 一部位と水酸基との水素結合による相互作用又は静電的相互作用よりも小さい官能 基を有することが好ましい。こうすれば、残存する水酸基がリンカ一部位と化学結合し てプローブとの反応を妨げるのを有効に防止できる。 [0017] The first probe-immobilizing carrier of the present invention is produced by any one of the above-described methods for producing a probe fixing rod carrier. The second probe-immobilizing carrier of the present invention has a solid-phase substrate and a linker atom that can bind to the probe, by binding of a key atom to an oxygen atom on the surface of the solid-phase substrate. One or two or more types of linkers held on the surface of the solid phase substrate and oxygen atoms on the surface of the solid phase substrate And a cap that protects the one to which the linker is not bonded. The third probe-immobilizing carrier of the present invention comprises a solid phase substrate, one or more linkers having a linker partial position that is held on the surface of the solid phase substrate and can bind to the probe, and a hydrocarbon. One or two or more kinds of caps that have a system functional group and are held on the surface of the solid-phase substrate through an oxygen atom and a key atom bond. A sufficient amount of the probe can be retained by reacting with the probe by any of the first to third carriers for probe immobilization according to the present invention. Here, the cap has a hydrogen bond interaction or electrostatic interaction with the linker partial position of the linker that is based on a hydrogen bond interaction or electrostatic interaction between the linker site and a hydroxyl group. It is preferable to have a small functional group. In this way, it is possible to effectively prevent the remaining hydroxyl group from chemically bonding with the partial position of the linker and hindering the reaction with the probe.
[0018] なお、本発明にお 、て、前記リンカ一用有機シラン化合物及び前記キヤッビング用 有機シランィ匕合物は、それぞれ、一個以上三個以下の加水分解性基 X(たとえばノ、 ロゲン原子又はアルコキシ基など)を有することができる。また、これらの有機シランィ匕 合物は、それぞれ、加水分解性基 Xを一個有するもの、加水分解性基 Xを二個有す るもの及び加水分解性基 Xを三個有するものの 、ずれかで構成されて 、てもよ 、が、 これらの加水分解性基 Xの数が異なる二種類以上を組み合わせられて 、てもよ 、。 また、加水分解性基 Xを一個有する有機シラン化合物と加水分解性基を 2個以上有 する有機シラン化合物とを組み合わせてもよい。例えば,加水分解性基 Xを一個有 する有機シラン化合物と同三個有する有機シランィ匕合物とを組み合わせて用いても よいし、同一個有する有機シラン化合物と同二個有する有機シランィ匕合物とを用いて もよいし、同二個有する有機シラン化合物と同三個有する有機シランィ匕合物を用い てもよいし、同一個、二個及び三個有する有機シランィ匕合物を組み合わせて用いて ちょい。  [0018] In the present invention, the organosilane compound for a linker and the organosilane compound for a cabbage are each one or more and three or less hydrolyzable groups X (for example, no, rogen atom or An alkoxy group, etc.). In addition, these organosilane compounds each have one hydrolyzable group X, two hydrolyzable groups X, and three hydrolyzable groups X. It may be configured, but these hydrolyzable groups X may be combined in two or more different types. Further, an organosilane compound having one hydrolyzable group X and an organosilane compound having two or more hydrolyzable groups may be combined. For example, an organic silane compound having one hydrolyzable group X and an organic silane compound having the same three may be used in combination, or an organic silane compound having the same and two organic silane compounds. Or two organic silane compounds and three organic silane compounds, or a combination of the same, two, and three organic silane compounds. That's right.
[0019] 本発明と関連する発明として、以下の構成を採用してもよい。  [0019] As an invention related to the present invention, the following configuration may be adopted.
[0020] (1)上述した本発明のプローブ固定ィ匕用担体の製造方法において、前記 (a)工程 は、前記リンカ一用有機シランィ匕合物として、前記リンカ一部位を有し、一個の加水 分解性基 Xを有する第一のリンカ一用有機シラン化合物と、前記リンカ一部位を有し 、二個以上の加水分解性基 Xを有する第二のリンカ一用有機シラン化合物と、を用 いてもよい。この製造方法で用いる第一及び第二のリンカ一用有機シランィ匕合物の 一例を図 9に示す。 [0020] (1) In the above-described method for producing a probe-immobilizing carrier carrier according to the present invention, the step (a) includes the partial linker position as the organosilane compound for a linker, A first linker-containing organosilane compound having a hydrolyzable group X, and a partial position of the linker; In addition, a second organosilane compound for a linker having two or more hydrolyzable groups X may be used. An example of the first and second organosilane compounds for the linker used in this production method is shown in FIG.
[0021] (2)前記(1)に記載の製造方法において、前記 (a)工程は、前記第一のリンカ一用 有機シランィ匕合物とともに前記第二のリンカ一用有機シランィ匕合物を供給するか又 はいずれか一方を先に供給する工程としてもよい。  [0021] (2) In the manufacturing method according to (1), in the step (a), the second organic organosilane compound for the linker is used together with the first organic organosilane compound for the linker. It is good also as the process of supplying or supplying either one first.
[0022] (3)前記(1)又は(2)に記載の製造方法において、前記 (a)工程は、前記第二のリ ンカー用有機シランィ匕合物の使用量 (モル数)を前記第一のリンカ一用有機シランィ匕 合物の使用量 (モル数)よりも多くしてもよ 、。 [0022] (3) In the production method according to (1) or (2), in the step (a), the use amount (in moles) of the second organosilane compound for a linker is determined in the step (a). It may be larger than the amount (number of moles) used of one organosilane compound for a linker.
[0023] (4)上述した本発明のプローブ固定化用担体の製造方法又は前記(1)〜(3)の 、 ずれかに記載の製造方法において、前記 (a)工程は、有機溶媒を主体とする媒体( 好ましくは有機溶媒 のみである)中で前記リンカ一用有機シランィ匕合物と前記固 相基体とを接触させる工程としてもよい。 [0023] (4) In the above-described method for producing a probe-immobilizing carrier of the present invention or the production method according to any one of (1) to (3), the step (a) mainly comprises an organic solvent. In the medium (preferably only an organic solvent), the step may be a step of bringing the organosilane compound for a linker into contact with the solid phase substrate.
[0024] (5)前記 (4)に記載の製造方法にお!、て、有機溶媒は、トルエン、メタノール、エタ ノール、ァセトニトリル、 THF及びクロ口ホルムから選択される 1種又は 2種以上として ちょい。 (5) In the production method according to (4), the organic solvent is one or more selected from toluene, methanol, ethanol, acetonitrile, THF, and chloroform. A little.
[0025] (6)上述した本発明のプローブ固定ィ匕用担体の製造方法又は前記(1)〜(5)の 、 ずれかに記載の製造方法において、前記 (b)工程は、有機溶媒を主体とする媒体( 好ましくは有機溶媒のみであり、好ましくは、トルエン、メタノール、エタノール、ァセト 二トリル、 THF及びクロ口ホルム力も選択される 1種又は 2種以上である)中で前記有 機シランィ匕合物と前記固相基体とを接触させる工程としてもよい。  [0025] (6) In the above-described method for producing a probe-immobilizing carrier according to the present invention or the production method according to any one of (1) to (5) above, the step (b) includes an organic solvent. The organic silaniy in the main medium (preferably only an organic solvent, preferably one, or two or more selected from toluene, methanol, ethanol, acetate nitrile, THF, and chloroform form force). It is good also as a process of making a compound and the above-mentioned solid phase substrate contact.
[0026] (7)上述した本発明のプローブ固定ィ匕用担体の製造方法又は前記(1)〜(5)の 、 ずれかに記載の製造方法において、前記 (b)工程は、前記キヤッビング用有機シラ ン化合物として、前記リンカ一の前記リンカ一部位との水素結合による相互作用又は 静電的相互作用が、前記リンカ一部位と水酸基との水素結合による相互作用又は静 電的相互作用よりも小さい官能基を有し、一個の加水分解性基 Xを有する第一のキ ャッビング用有機シランィ匕合物と、前記官能基を有し、二個以上 (好ましくは三個)の 加水分解性基 Xを有する第二のキヤッビング用有機シランィ匕合物と、を用いてもょ ヽ [0027] (8)プローブ固定ィ匕用担体の製造方法は、水酸基を表面に有する固相基体に対し て、プローブなどと結合可能なリンカ一部位を有し、一個の加水分解性基を有する第 一のリンカ一用有機シランィ匕合物と、前記リンカ一部位を有し、二個以上の加水分解 性基を有する有機シラン化合物と縮重合可能な第二のリンカ一用有機シラン化合物 と、を供給して、該第一及び第二の有機シランィ匕合物を酸素原子とケィ素原子との結 合を介して前記固相基体の表面に導入する工程、を備えるものとしてもよい。さらに、 前記第一のリンカ一用有機シランィ匕合物のリンカ一部位及び Z又は前記第二のリン カー用有機シランィ匕合物のリンカ一部位との水素結合による相互作用及び Z又は静 電的相互作用が水酸基よりも小さくなるような官能基を有するキヤッビング用有機シラ ン化合物を前記固相基体の表面に導入する工程と、を備えるものとしてもよい。 [0026] (7) In the above-described method for manufacturing a probe-fixing carrier according to the present invention or the manufacturing method according to any one of (1) to (5) above, the step (b) As an organic silane compound, the interaction or electrostatic interaction between the linker and the linker partial position of the linker is higher than the interaction or electrostatic interaction between the linker partial position and a hydroxyl group. A first organosilane compound for a cabbing having a small functional group and one hydrolyzable group X, and two or more (preferably three) hydrolyzable groups having the functional group. And a second organosilane compound for caving with X. [0027] (8) A method for producing a probe-immobilizing support has a partial linker position capable of binding to a probe or the like and a single hydrolyzable group with respect to a solid phase substrate having a hydroxyl group on the surface. A first organic silane compound for a linker, a second organic silane compound for a linker capable of polycondensation with an organic silane compound having a partial position of the linker and having two or more hydrolyzable groups; And introducing the first and second organosilane compounds into the surface of the solid phase substrate through a bond between an oxygen atom and a key atom. Furthermore, the interaction by hydrogen bonding with the linker partial position of the first organic linker silane compound and Z or the linker partial position of the second linker organic silane compound and Z or electrostatic And a step of introducing an organic silan compound for a cabbing having a functional group whose interaction is smaller than a hydroxyl group into the surface of the solid phase substrate.
[0028] (9)プローブ固定化用担体の製造方法は、プローブなどと結合可能なリンカ一部位 を有し、一個の加水分解性基を有する第一のリンカ一用有機シラン化合物と、前記リ ンカー部位を有し、二個以上の加水分解性基を有する有機シラン化合物と縮重合可 能な第二のリンカ一用有機シランィ匕合物と、を供給して、該第一及び第二の有機シラ ン化合物を酸素原子とケィ素原子との結合を介して前記固相基体の表面に導入する 工程と、前記有機シランィ匕合物の導入後に、前記リンカ一部位を利用してプローブを 導入する工程と、を備えるものとしてもよい。この製造方法の一例を図 10に示す。こ の製造方法は、さらに、前記第一のリンカ一用有機シランィ匕合物のリンカ一部位及び Z又は前記第二のリンカ一用有機シランィ匕合物のリンカ一部位との水素結合による 相互作用及び Z又は静電的相互作用が水酸基よりも小さくなるような官能基を有す るキヤッビング用有機シラン化合物を前記固相基体の表面に導入する工程を備えて いてもよい。  [0028] (9) A method for producing a probe-immobilizing carrier includes: a first linker-organosilane compound having a partial linker position capable of binding to a probe or the like and having one hydrolyzable group; An organic silane compound having a linker moiety and having two or more hydrolyzable groups and a second organosilane compound for linker polymerization capable of polycondensation, and supplying the first and second A step of introducing an organic silan compound to the surface of the solid phase substrate through a bond between an oxygen atom and a key atom; and after introducing the organosilane compound, a probe is introduced using the partial position of the linker. It is good also as a thing provided with the process to do. An example of this manufacturing method is shown in FIG. This manufacturing method further includes an interaction by hydrogen bonding with the linker partial position of the first organosilane compound for the first linker and Z or the linker partial position of the second organosilane compound for the second linker. And a step of introducing an organosilane compound for cabbing having a functional group such that Z or electrostatic interaction is smaller than that of a hydroxyl group into the surface of the solid phase substrate.
[0029] (10)上述した本発明の標的化合物の検出方法において、前記プローブは、天然 の又は非天然の塩基を有するオリゴヌクレオチド又はポリヌクレオチドであり、前記相 互作用は、ヌクレオチドを構成する塩基間の水素結合に基づくハイブリダィゼーショ ンであってもよい。  [0029] (10) In the method for detecting a target compound of the present invention described above, the probe is an oligonucleotide or a polynucleotide having a natural or non-natural base, and the interaction is a base constituting the nucleotide. Hybridization based on hydrogen bonds between them may be used.
[0030] (11)上述した本発明のプローブ固定ィ匕用担体において、前記リンカ一における前 記リンカ一部位は、アミノ基及びチオール基力 選択される一種若しくは二種以上又 はエステル基、アルデヒド基、エポキシ基及びカルボキシ基力 選択される一種又は 二種以上の官能基を有していてもよい。あるいは、前記キャップは、前記官能基とし て立体障害を有するアルキル基を有していてもよい。あるいは、前記キャップは、酸 素原子とケィ素原子との結合を介して前記固相基体の表面に保持されるモノマー状 の有機シラン部位を有していてもよい。あるいは、前記キャップは、酸素原子とケィ素 原子との結合を介して前記固相基体の表面に結合している有機シロキサン部位又は 有機ポリシロキサン部位 (ポリマー状の有機シラン部位とも 、う。)を有して 、てもよ ヽ 。あるいは、前記キャップは、少なくとも、前記官能基を有し一個以上三個以下の加 水分解性基 Xを有するキヤッビング用有機シランィ匕合物の一種又は二種以上を前記 固相基体の表面で縮重合させて得られるものであってもよい。なお、キヤッビング用 有機シラン化合物は、加水分解性基 Xを一個有するもの、加水分解性基 Xを二個有 するもの及び加水分解性基 Xを三個有するものの!/、ずれかで構成されて!、てもよ 、 1S これらの加水分解性基 Xの数が異なる二種類以上を組み合わせられて 、てもよ い。また、加水分解性基 Xを一個有する有機シラン化合物と加水分解性基を 2個以 上有する有機シラン化合物とを組み合わせてもよい。例えば,加水分解性基 Xを一 個有する有機シラン化合物と同三個有する有機シラン化合物とを組み合わせて用い てもよいし、同一個有する有機シラン化合物と同二個有する有機シランィ匕合物とを用 いてもよいし、同二個有する有機シランィ匕合物と同三個有する有機シランィ匕合物を 用いてもよいし、同一個、二個及び三個有する有機シラン化合物を組み合わせて用 いてもよい。モノマー状のキャップは、加水分解性基 Xを一個有する有機シラン化合 物を用いることにより容易に得ることができ、ポリマー状のキャップは、二個又は三個 の加水分解性基 Xを有する有機シラン化合物 (好ましくは 3個の加水分解性基 Xを有 する)を少なくとも用いることにより容易に得ることができる。また、前記固相基体の表 面上において、前記キヤッビング用有機シランィ匕合物は、固相基体の表面の水酸基 と縮重合 (又は当該水酸基と縮重合させるとともに有機シランィ匕合物同士で縮重合) させる。 [0030] (11) In the above-described carrier for probe fixation according to the present invention, the front of the linker The linker partial position has one or more amino groups and thiol groups selected, or one or more functional groups selected from ester groups, aldehyde groups, epoxy groups and carboxy groups. Also good. Alternatively, the cap may have an alkyl group having steric hindrance as the functional group. Alternatively, the cap may have a monomeric organosilane moiety held on the surface of the solid phase substrate through a bond between an oxygen atom and a key atom. Alternatively, the cap has an organic siloxane moiety or an organic polysiloxane moiety (also referred to as a polymeric organosilane moiety) bonded to the surface of the solid phase substrate through a bond between an oxygen atom and a key atom. Have it. Alternatively, the cap compresses at least one or two or more kinds of an organosilane compound for a cabbing having at least one and three or less hydrolyzable groups X having the functional group on the surface of the solid phase substrate. It may be obtained by polymerization. In addition, the organosilane compound for the cabbage is composed of one that has one hydrolyzable group X, one that has two hydrolyzable groups X, and one that has three hydrolyzable groups X! !, Or 1S Two or more different hydrolyzable groups X may be combined. Further, an organosilane compound having one hydrolyzable group X and an organosilane compound having two or more hydrolyzable groups may be combined. For example, an organic silane compound having one hydrolyzable group X and an organic silane compound having the same three may be used in combination, or an organic silane compound having the same two and an organic silane compound having the same two may be used. The same two organic silane compounds and the same three organic silane compounds may be used, or the same, two and three organic silane compounds may be used in combination. Good. A monomeric cap can be easily obtained by using an organosilane compound having one hydrolyzable group X, and a polymer cap is an organosilane having two or three hydrolyzable groups X. It can be easily obtained by using at least a compound (preferably having three hydrolyzable groups X). Further, on the surface of the solid phase substrate, the organosilane silane compound for cabling is condensed with a hydroxyl group on the surface of the solid phase substrate (or condensed with the hydroxyl group and condensed with the organic silane compound). )
(12)上述した本発明のプローブ固定ィ匕用担体において、前記リンカ一は、リンカ 一部位 (例えば、アミノ基である。)を末端に有する炭化水素基を有していてもよい。こ こで、前記炭化水素基は、炭素数が 1以上 10個以下のアルキル基力も選択され、好 ましくは、炭素数 2以上 8以下の直鎖状アルキル基 (ェチル基、プロピル基、ブチル基 、ペンチル基、へキシル基、へキシル基及びォクチル基)から選択される。また、前記 リンカ一は、酸素原子とケィ素原子との結合を介して前記固相基体の表面に保持さ れるモノマー状の有機シラン部位又は有機ポリシロキサン部位を有して 、てもよ 、。 なお、モノマー状やポリマー状のリンカ一は、少なくとも、前記リンカ一部位を有し、一 個以上三個以下の加水分解性基を有する有機シラン化合物から選択される一種又 は二種以上を前記固相基体の表面上で縮重合させて得ることができる。また、リンカ 一用の有機シランィ匕合物は、加水分解性基 Xを一個有するもの、加水分解性基 Xを 二個有するもの及び加水分解性基 Xを三個有するものの 、ずれかで構成されて 、て もよ!/、が、これらの加水分解性基 Xの数が異なる二種類以上を組み合わせられて!/ヽ てもよい。また、加水分解性基 Xを一個有する有機シラン化合物と加水分解性基を 2 個以上有する有機シラン化合物とを組み合わせてもよい。例えば,加水分解性基 X を一個有する有機シラン化合物と同三個有する有機シラン化合物とを組み合わせて 用いてもよいし、同一個有する有機シランィ匕合物と同二個有する有機シランィ匕合物と を用いてもよいし、同二個有する有機シランィ匕合物と同三個有する有機シランィ匕合 物を用いてもよいし、同一個、二個及び三個有する有機シランィ匕合物を組み合わせ て用いてもよい。モノマー状のリンカ一は、加水分解性基 Xを一個有する有機シラン 化合物を用いることにより容易に得ることができ、ポリマー状のリンカ一は、二個以上 の加水分解性基 Xを有する有機シランィ匕合物を用いることにより容易に得ることがで きる。前記固相基体の表面上において、前記有機シランィ匕合物は、固相基体の表面 の水酸基と縮重合 (又は当該水酸基と縮重合させるとともに有機シラン化合物同士で 縮重合)させる。 (12) In the above-described probe fixing carrier according to the present invention, the linker is a linker. It may have a hydrocarbon group terminated with one site (for example, an amino group). Here, the hydrocarbon group also has an alkyl group strength of 1 to 10 carbon atoms, preferably a linear alkyl group having 2 to 8 carbon atoms (ethyl group, propyl group, butyl group). Group, pentyl group, hexyl group, hexyl group and octyl group). Further, the linker may have a monomeric organic silane moiety or an organic polysiloxane moiety that is held on the surface of the solid phase substrate through a bond between an oxygen atom and a silicon atom. The monomeric or polymeric linker is at least one or two or more selected from organic silane compounds having one or more and three or less hydrolyzable groups having the linker partial position. It can be obtained by condensation polymerization on the surface of a solid phase substrate. In addition, the organosilane compound for the linker is composed of one that has one hydrolyzable group X, one that has two hydrolyzable groups X, and one that has three hydrolyzable groups X. However, two or more different types of these hydrolyzable groups X may be combined! /. Further, an organosilane compound having one hydrolyzable group X and an organosilane compound having two or more hydrolyzable groups may be combined. For example, an organic silane compound having one hydrolyzable group X and an organic silane compound having the same three may be used in combination, or an organic silane compound having the same number and an organic silane compound having the same number may be used. It is also possible to use the same two organic silane compounds, the same three organic silane compounds, or a combination of the same, two and three organic silane compounds. It may be used. The monomeric linker can be easily obtained by using an organic silane compound having one hydrolyzable group X, and the polymer linker can be obtained by using an organic silane group having two or more hydrolyzable groups X. It can be easily obtained by using a compound. On the surface of the solid phase substrate, the organosilane compound is subjected to polycondensation with a hydroxyl group on the surface of the solid phase substrate (or polycondensation with the hydroxyl group and polycondensation between organosilane compounds).
(13)プローブ固定化用担体は、固相基体と、プローブなどと結合可能なリンカ一部 位と、酸素原子とケィ素原子との結合を介して前記固相基体に保持されるモノマー 状の有機シラン部位と、を有する第一のリンカ一と、プローブなどと結合可能なリンカ 一部位と、酸素原子とケィ素原子との結合を介して前記固相基体に保持される有機 シロキサン部位又は有機ポリシロキサン部位と、を有する第二のリンカ一と、を備えて いてもよい。 (13) The probe immobilization carrier is a monomer-like substance held on the solid phase substrate through a bond between a solid phase substrate, a linker part capable of binding to a probe, etc., and an oxygen atom and a key atom. A first linker having an organic silane moiety; a linker moiety capable of binding to a probe; and an organic substance held on the solid phase substrate via a bond between an oxygen atom and a key atom. And a second linker having a siloxane moiety or an organic polysiloxane moiety.
[0033] (14)プローブ固定化用担体は、固相基体上の酸素原子とケィ素原子と結合を介し て前記固相基体の表面に保持されるモノマー状の有機シラン部位を有する第 1のキ ヤップと、酸素原子とケィ素原子との結合を介して前記固相基体の表面に保持される ポリマー状の有機シラン部位を有する第 2のキャップとを有して 、てもよ 、。  [0033] (14) The probe immobilization carrier includes a first organosilane site having a monomeric organosilane moiety held on the surface of the solid phase substrate via a bond between an oxygen atom and a key atom on the solid phase substrate. It may have a cap and a second cap having a polymer-like organosilane moiety held on the surface of the solid phase substrate through a bond between an oxygen atom and a key atom.
[0034] ( 15) DNAアレイであって、上述したいずれかの製造方法によって製造されたプロ ーブ固定化用担体又は上述したいずれかのプローブ固定化用担体と、該プローブ 固定ィ匕用担体の前記リンカ一部位を介して保持された前記プローブとを有する、 DN Aアレイ。このとき、前記プローブは、天然又は非天然の塩基を有していてもよいオリ ゴヌクレオチド又はポリヌクレオチドとしてもよ!/、。  [0034] (15) A DNA array, the probe immobilization carrier produced by any of the production methods described above or any of the probe immobilization carriers described above, and the probe immobilization carrier And a probe held via the linker partial position. In this case, the probe may be an oligonucleotide or a polynucleotide which may have a natural or non-natural base! /.
図面の簡単な説明  Brief Description of Drawings
[0035] [図 1]プローブ固定ィ匕用担体の製造方法の一例を示すスキームである。 FIG. 1 is a scheme showing an example of a method for producing a probe fixing carrier.
[図 2]プローブ固定化用担体を示す説明図であり、 (a)はキャップがー種類の場合の 一例を示し、 (b)はキャップが複数種類の場合の一例を示す。  FIG. 2 is an explanatory view showing a carrier for immobilizing a probe, where (a) shows an example when the cap is of a type, and (b) shows an example when the cap is of a plurality of types.
[図 3]モノマー状キャップの一例を示す説明図である。  FIG. 3 is an explanatory view showing an example of a monomeric cap.
[図 4]ポリマー状キャップの一例を示す説明図である。  FIG. 4 is an explanatory view showing an example of a polymer cap.
[図 5]プローブ固定ィ匕用担体に第一及び第二リンカ一が混在している一例を示す説 明図である。  FIG. 5 is an explanatory view showing an example in which the first and second linkers are mixed in the probe fixing carrier.
[図 6]プローブ固定ィ匕用担体にモノマー状の有機シラン部位を有する二種類のリンカ 一が混在している一例を示す説明図である。  FIG. 6 is an explanatory diagram showing an example in which two types of linkers having a monomeric organosilane moiety are mixed in the probe fixing carrier.
[図 7]有機シロキサン部位 (又は有機ポリシロキサン部位)を有するリンカ一の一例を 示す説明図である。  FIG. 7 is an explanatory view showing an example of a linker having an organic siloxane moiety (or an organic polysiloxane moiety).
[図 8]DNAアレイを示す説明図であり、 (a)は有機シロキサン部位 (又は有機ポリシ口 キサン部位)を有するリンカ一を用いた場合の一例を示し、 (b)は有機シロキサン部 位 (又は有機ポリシロキサン部位)を有するリンカ一とモノマー状の有機シラン部位を 有するリンカ一を混合して用いた場合の一例を示す。  FIG. 8 is an explanatory diagram showing a DNA array, where (a) shows an example of using a linker having an organic siloxane moiety (or an organic polysiloxane moiety), and (b) shows an organosiloxane moiety ( Alternatively, an example in which a linker having an organic polysiloxane moiety) and a linker having a monomeric organic silane moiety are used in combination is shown.
[図 9]第一及び第二のリンカ一用有機シランィ匕合物の一例を示す説明図である。 [図 10]第一及び第二のリンカ一用有機シラン化合物を用いてプローブ固定化用担体 を製造する方法の一例を示す説明図である。 FIG. 9 is an explanatory view showing an example of a first and second organic silane compound for a linker. FIG. 10 is an explanatory view showing an example of a method for producing a probe-immobilizing carrier using the first and second linker-specific organosilane compounds.
[図 11]ォキサノシンの説明図である。  FIG. 11 is an explanatory diagram of oxanosin.
[図 12]実施例 1で測定した蛍光強度を表すグラフである。  FIG. 12 is a graph showing the fluorescence intensity measured in Example 1.
[図 13]実施例 2で測定した蛍光強度を表すグラフである。  FIG. 13 is a graph showing the fluorescence intensity measured in Example 2.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 上述した本発明のプローブ固定ィ匕用担体の製造方法等について、更にその詳細 を説明する。  [0036] The above-described method for producing the probe-fixing carrier according to the present invention will be described in further detail.
[0037] (固相基体及びリンカ一)  [0037] (Solid phase substrate and linker)
固相基体としては、特に限定しないで、ハイブリダィゼーシヨンアツセィに用いられる 従来公知の各種の担体を用いることができる。例えば、ガラス、セラミックス、ポリェチ レンテレフタレート、酢酸セルロース、ポリカーボネート、ポリスチレン、ポリメチルメタク リレート等のポリマー、多孔質ガラス、多孔質セラミックス、多孔質シリコン、短繊維、メ ンブランフィルタ一等が挙げられる。本発明を適用するのに好ましい固相基体は、も ともと表面に水酸基が存在しているものや、表面に何らかの処理を施すことにより該 表面に水酸基を生成させたもの等が挙げられる。具体的には、材料に由来するシラ ノール性水酸基を有する固相基体や、プラズマ等による表面処理や化学処理によつ て表面水酸基が付与、増加又は活性化された固相基体などが挙げられる。特に好ま しくは、ガラス、シリコーンポリマー、シリコンを少なくとも表層に備えている固相基体 が挙げられる。  The solid phase substrate is not particularly limited, and various conventionally known carriers used in the hybridization assembly can be used. Examples thereof include polymers such as glass, ceramics, polyethylene terephthalate, cellulose acetate, polycarbonate, polystyrene, and polymethyl methacrylate, porous glass, porous ceramics, porous silicon, short fibers, and membrane filters. Preferred examples of the solid phase substrate to which the present invention is applied include those in which hydroxyl groups are originally present on the surface, and those in which hydroxyl groups are generated on the surface by performing some kind of treatment on the surface. Specific examples include a solid phase substrate having a silanolic hydroxyl group derived from the material, and a solid phase substrate to which surface hydroxyl groups have been imparted, increased or activated by surface treatment or chemical treatment with plasma or the like. . Particularly preferred is a solid substrate having at least a surface layer of glass, silicone polymer, or silicon.
[0038] 固相基体の形態も、プローブを固定化可能であってかつターゲット核酸が供給可 能な表面(内表面を含む)を有していれば特に限定しない。例えば、基板などの平板 状、ビーズなどの粒子状、ファイバー状、内表面を固定ィ匕表面とするキヤピラリー状 等を採用することができる。  The form of the solid phase substrate is not particularly limited as long as it has a surface (including an inner surface) to which the probe can be immobilized and the target nucleic acid can be supplied. For example, a flat plate shape such as a substrate, a particle shape such as a bead, a fiber shape, a capillary shape with an inner surface as a fixed surface can be employed.
[0039] 本発明における固相基体は、プローブの固定ィ匕のために固相基体の表面にリンカ 一部位を備えるリンカ一を有している。リンカ一部位の好ましい一つの形態は、活性 水素を有している。例えば、リンカ一部位は、アミノ基ゃチオール基を含んでいる。ァ ミノ基ゃチオール基は、プローブに備えられるエステル基、アルデヒド基、エポキシ基 及びカルボキシ基と共有結合を形成して、プローブを固相基体に固定ィ匕する。ァミノ 基は無置換アミノ基でも置換アミノ基でもよい。置換アミノ基における 1つ又は 2つの 置換基は、それぞれ独立した炭化水素基としてもよぐ炭化水素基としては炭素数が 1以上 18以下のものが好ましぐ炭素数が 1以上 6以下の直鎖アルキル基がより好ま しい。アミノ基は、リンカ一化合物との反応性を考慮すると 1級ァミノ基であることが好 ましい。 [0039] The solid phase substrate in the present invention has a linker having a linker site on the surface of the solid phase substrate for fixing the probe. One preferred form of the linker moiety has active hydrogen. For example, the linker partial position contains an amino group or a thiol group. The amino group and the thiol group are the ester group, aldehyde group, and epoxy group provided in the probe. And a covalent bond is formed with the carboxy group to immobilize the probe to the solid phase substrate. The amino group may be an unsubstituted amino group or a substituted amino group. One or two substituents in the substituted amino group are each a hydrocarbon group that may be an independent hydrocarbon group, preferably having 1 to 18 carbon atoms, and preferably having 1 to 6 carbon atoms. A chain alkyl group is more preferred. The amino group is preferably a primary amino group considering the reactivity with the linker compound.
[0040] リンカ一部位の他の好まし 、形態としては、エステル基、アルデヒド基、エポキシ基 及びカルボキシ基が挙げられる。これらの官能基は、プローブに備えられるアミノ基 ゃチオール基と共有結合を形成してプローブを固相基体に固定ィ匕する。  [0040] Other preferred forms of the linker partially include an ester group, an aldehyde group, an epoxy group, and a carboxy group. These functional groups form a covalent bond with an amino group or a thiol group provided in the probe to fix the probe to the solid phase substrate.
[0041] こうしたリンカ一は、アミノ基などのリンカ一部位を備える各種のモノ一、ジ一、トリ一 アルコキシシランあるいは、モノー、ジー、トリーハロゲン化シラン(リンカ一用有機シラ ン化合物)としてもよぐその場合にはケィ素原子がガラス製の固相基体の表面に存 在するシラノール基の酸素原子とシロキサン結合を形成する。アミノ基などのリンカ一 部位は、好ましくは末端に備えられるように設計される。ァミノ基とケィ素原子との間に は、適当な連結部分を存在させることが好ましい。このような連結部分は、炭素数 2以 上 10以下のアルキル基又は当該アルキル基の一部の炭素原子が窒素原子又は S 原子により置換された形態が好ましい。アルキル基は、直鎖状あるいは分枝状とする ことができるが、好ましくは直鎖状である。なお、リンカ一用有機シランィ匕合物としては 、加水分解性基として 1個以上 3個以下のアルコキシ基やハロゲン基を備えて 、るこ とが好ましい。  [0041] Such a linker can also be used as various mono-, di- and tri-alkoxy silanes having mono-linkers such as amino groups or mono-, di- and trihalogenated silanes (organic silane compounds for linkers). In that case, the silicon atom forms a siloxane bond with the oxygen atom of the silanol group existing on the surface of the glass solid phase substrate. A linker moiety such as an amino group is preferably designed to be provided at the end. It is preferable that an appropriate linking moiety is present between the amino group and the key atom. Such a linking moiety is preferably an alkyl group having 2 to 10 carbon atoms or a form in which some carbon atoms of the alkyl group are substituted with nitrogen atoms or S atoms. The alkyl group can be linear or branched, but is preferably linear. The organosilane compound for a linker is preferably provided with 1 to 3 alkoxy groups and halogen groups as hydrolyzable groups.
[0042] また、リンカ一用有機シラン化合物におけるアルコキシシランのアルコキシ基は、メト キシ基、エトキシ基、 n プロピポキシ基、イソプロポキシ基、 n ブトキシ基、 sec ブ トキシ基、 tert ブトキシ基等が挙げられる。また、アルコキシシランにおける残余の 基 (アルコキシ基及びアミノ基、アルキルアミノ基以外に Siに結合する基)としては、ァ ルキル基であることが好ましい。当該アルキル基としては、炭素数 1〜10程度のアル キル基が好ましく用いられ、メチル基、ェチル基、 n プロピル基、イソプロピル基、 n ブチル基、 sec ブチル基、 tert ブチル基、 n—へキシル基、シクロへキシル基、 n—ォクチル基、 tert—ォクチル基、 n デシル基が挙げられる。なお、固相基体上 の水酸基に導入するアルコキシシランはこれに限定するものではなぐその他各種の シランィ匕合物を用いることができる。なお、担体に使用することのできるシラン化合物 の例を以下に示す。 [0042] Further, examples of the alkoxy group of the alkoxysilane in the organic silane compound for a linker include a methoxy group, an ethoxy group, an n propoxy group, an isopropoxy group, an n butoxy group, a sec butoxy group, and a tert butoxy group. . The remaining group in alkoxysilane (group bonded to Si in addition to alkoxy group, amino group and alkylamino group) is preferably an alkyl group. As the alkyl group, an alkyl group having about 1 to 10 carbon atoms is preferably used, and a methyl group, an ethyl group, an n propyl group, an isopropyl group, an n butyl group, a sec butyl group, a tert butyl group, an n-hexyl group. Group, cyclohexyl group, n-octyl group, tert-octyl group and n-decyl group. In addition, on the solid phase substrate As the alkoxysilane introduced into the hydroxyl group, various other silane compounds can be used without being limited thereto. Examples of silane compounds that can be used for the carrier are shown below.
[化 3]  [Chemical 3]
Figure imgf000016_0001
Figure imgf000016_0001
Figure imgf000016_0002
one
Figure imgf000016_0002
[0043] なお、上記した説明にお!/、て、アルコキシ基の代わりにハロゲン基であってもよぐ アルコキシ基及びハロゲン基は加水分解性基である。 [0043] In the above description, a halogen group may be used instead of an alkoxy group. An alkoxy group and a halogen group are hydrolyzable groups.
[0044] (キャップ)  [0044] (Cap)
本発明のプローブ固定ィ匕用固相基体は、固相基体の表面の水酸基が保護される のであれば、特にどのようなキヤッビング剤を用いてもよい。たとえば、ケィ素原子上 にメチル基、ェチル基、 n—プロピル基、イソブチル基、 n—ブチル基など炭化水素基 を有する有機シランィ匕合物によってキヤッビングされて 、ることが好ま 、。固相基体 の表面の水酸基に対してこうしたキャップを付与するには、加水分解性基を有し、上 記炭化水素基を 1個以上有する有機シランィ匕合物を用いることができる。こうした有 機シラン化合物は、ケィ素原子上にメトキシ基、エトキシ基などの低級アルコキシ基や ノ、ロゲン基などを加水分解性基として有して 、ることが好まし 、。加水分解性基の個 数は特に限定しないが、加水分解性基 1個を有する有機シランィ匕合物を用いれば、 該有機シランィ匕合物がモノマー状に固相基体の表面に結合した形態のキャップが得 られる。加水分解性基が 2個の有機シランィ匕合物を用いれば、固相基体の表面にお いて連結した直鎖状等のポリマー状の有機メタロキサン部位又は有機ポリメタロキサ ン部位が得られ、 3個以上の加水分解性基を有するキヤッビング用有機シランィ匕合 物を用いれば、ネットワーク状等のポリマー状の有機メタロキサン部位又は有機ポリメ タロキサン部位が得られる。 1個の加水分解性基を有する有機シラン化合物 (例えば 、官能基としてメチル基やェチル基が好ましい。)と 2個又は 3個以上 (好ましくは 3個 以上)の加水分解性基 (好ましくはプロピル基や n—ブチル基、より好ましくはブチル 基以上)を有する有機シランィ匕合物を用いることで効率的若しくは高効率に固相基 体の表面の水酸基をキヤッビングし又はプローブを立ち上がらせることができる。 As long as the hydroxyl group on the surface of the solid phase substrate is protected, any kind of cabbing agent may be used for the solid phase substrate for probe immobilization of the present invention. For example, it is preferable to be capped by an organosilane compound having a hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isobutyl group, or an n-butyl group on a silicon atom. In order to give such a cap to the hydroxyl group on the surface of the solid phase substrate, an organosilane compound having a hydrolyzable group and having at least one hydrocarbon group can be used. Such an organic silane compound preferably has a lower alkoxy group such as a methoxy group or an ethoxy group or a hydrolizable group as a hydrolyzable group on a silicon atom. The number of hydrolyzable groups is not particularly limited. However, when an organic silane compound having one hydrolyzable group is used, the organic silane compound is bonded to the surface of the solid phase substrate in the form of a monomer. Get cap It is done. If an organosilane compound having two hydrolyzable groups is used, a linear or other polymer-like organic metalloxane moiety or organic polymetalloxane moiety linked to the surface of the solid phase substrate is obtained, and three or more When an organic silane compound for a cabbing having a hydrolyzable group is used, a polymer-like organic metalloxane moiety or an organic polymethyloxane moiety such as a network can be obtained. An organosilane compound having one hydrolyzable group (for example, a methyl group or an ethyl group is preferred as a functional group) and two or more (preferably three or more) hydrolyzable groups (preferably propyl By using an organic silane compound having a group or an n-butyl group (more preferably a butyl group or more), the surface hydroxyl group of the solid phase substrate can be efficiently or highly efficiently probed. .
[0045] (プローブ) [0045] (probe)
プローブは、核酸、すなわち、オリゴヌクレオチド又はポリヌクレオチドのハイブリダィ ゼーシヨンアツセィのために用いられる。本発明において核酸とは、少なくとも一部に 塩基対合領域を有し、該対合領域によって他の核酸とハイブリダィズするものであれ ばよい。したがって、核酸とは、天然あるいは合成のヌクレオチドのオリゴマー (オリゴ ヌクレオチド)およびポリマー(ポリヌクレオチド)の双方を含み、さらにゲノム DNA、 c DNAなどの DNA、 PCR産物、 mRNAなどの RNA、ペプチド核酸を含む概念であ る。なお、ここで、オリゴヌクレオチドとは、主として、ヌクレオチドが数個から好ましくは 百数十以下、より好ましくは百程度以下、さらに好ましくは数十個以下の重合体を意 味しており、主として化学合成等により得られるものを含んでいる。また、ポリヌクレオ チドとは、主として、オリゴヌクレオチドよりも長鎖の重合体を意味しており、 PCR産物 などを含んでいる。  Probes are used for hybridization of nucleic acids, ie oligonucleotides or polynucleotides. In the present invention, the nucleic acid may be any nucleic acid that has at least a base pairing region and hybridizes with other nucleic acids through the pairing region. Therefore, nucleic acids include both natural and synthetic nucleotide oligomers (oligonucleotides) and polymers (polynucleotides), as well as genomic DNA, DNA such as cDNA, PCR products, RNA such as mRNA, and peptide nucleic acids. It is a concept. Here, the term “oligonucleotide” mainly means a polymer having several to preferably several hundred nucleotides, more preferably about one hundred, and even more preferably several tens of nucleotides. Includes those obtained by synthesis. Polynucleotide mainly means a polymer having a longer chain than an oligonucleotide, and includes PCR products and the like.
[0046] プローブは、好ましくはデォキシリボースを有するオリゴデォキシリボヌクレオチド又 はポリデォキシリボヌクレオチドである。  [0046] The probe is preferably an oligodeoxyribonucleotide having polyoxyribose or a polydeoxyribonucleotide.
[0047] (リンカ一ユニット)  [0047] (Linker unit)
本発明において用いるプローブは、固相基体の表面に備えるリンカ一部位と共有 結合可能なリンカ一ユニットを有して 、てもよ 、。アミノ基ゃチオール基をリンカ一部 位とした場合、リンカ一ユニットにはエステル基、アルデヒド基、エポキシ基及びカル ボキシ基を含んでいることが好ましぐエステル基、アルデヒド基、エポキシ基及び力 ルポキシ基をリンカ一部位とした場合、リンカ一ユニットにはァミノ基ゃチオール基を 含んでいることが好ましい。 The probe used in the present invention may have a linker unit that can be covalently bonded to a portion of the linker provided on the surface of the solid phase substrate. When the amino group or the thiol group is a partial linker, it is preferable that the linker unit contains an ester group, an aldehyde group, an epoxy group, and a carboxyl group, an ester group, an aldehyde group, an epoxy group, and a force. When the lupoxy group is a partial linker position, the linker unit preferably contains an amino group or a thiol group.
[0048] また、例えばアミノ基などの活性水素を有するリンカ一部位に対しては、以下に説 明するリンカ一化合物をリンカ一ユニットとして備えていることが好ましい。なお、このリ ンカーユニットはプローブを構成する他のモノマーユニットと同様にヌクレオチド誘導 体としてプローブに備えられて!/ヽることが好ま ヽ。  [0048] In addition, for a linker partial position having an active hydrogen such as an amino group, for example, a linker compound described below is preferably provided as a linker unit. It is preferable that this linker unit be provided in the probe as a nucleotide derivative like other monomer units constituting the probe.
[0049] 以下、リンカ一化合物について説明する。ここで例示するリンカ一化合物は、式(9) に示される化合物である。また、リンカ一ユニットとしてプローブ中に含まれる好ましい 形態を式(10)に示す。前記 Aとしては、水素原子、その他の置換基又は糖類もしく はその誘導体とすることができる。 Aが水素であるとき、式(9)で表される化合物は、 ォキサニン塩基である。ォキサニン塩基は、グアノシンが NO又は NOにより誘起され [0049] Hereinafter, the linker compound will be described. The linker compound exemplified here is a compound represented by the formula (9). Further, a preferred form contained in the probe as a linker unit is shown in Formula (10). A may be a hydrogen atom, other substituents, saccharides or derivatives thereof. When A is hydrogen, the compound represented by formula (9) is an oxanine base. Oxanine base is guanosine induced by NO or NO.
2  2
る酸ィ匕的脱アミネーシヨンされて形成される損傷塩基の一つである。なお、以下、本 明細書にぉ 、て、ォキサニンがリボース又はデォキシリボース( 、ずれもフラノース型 )と結合したヌクレオシド形態をォキサノシンと称し、特に、デォキシリボースのときは デォキシォキサノシンと称するものとする。  It is one of the damaged bases formed by acid deamination. Hereinafter, in the present specification, a nucleoside form in which oxanine is bound to ribose or deoxyribose (both are also furanose type) is referred to as oxanosin, and in particular, deoxyribonose is referred to as deoxyxanosine. To do.
[化 4]  [Chemical 4]
Figure imgf000018_0001
Figure imgf000018_0001
[式中、 Aは、水素原子、その他の置換基又は糖類若しくはその誘導体を表す。 ] [化 5] [Wherein, A represents a hydrogen atom, another substituent, a saccharide or a derivative thereof. ] [Chemical 5]
Figure imgf000019_0001
Figure imgf000019_0001
[式中、 Xは、水素原子、水酸基、あるいは置換基を表す。 ] [Wherein, X represents a hydrogen atom, a hydroxyl group, or a substituent. ]
[0050] ォキサニンは、例えば、デォキシグアノシンを NO及び Z又は NaNOと反応させる [0050] Oxanine, for example, reacts deoxyguanosine with NO and Z or NaNO
2  2
ことによってデォキシォキサノシンとして得ることができる。例えば、デォキシグアノ- ンに NaNOを酸性下、例えば、酢酸ナトリウム緩衝液(3. 0M、 pH3. 7)を用いて、 3  Can be obtained as deoxyxanosine. For example, NaNO in doxyguanone under acidic conditions, for example, using sodium acetate buffer (3.0 M, pH 3.7), 3
2  2
7°C、 4時間反応させることによって得ることができる。こうした反応後、反応液を NaO Hで中和し、必要に応じ適宜減圧留去した後、逆相クロマトグラフィー等により精製し 、乾燥することでデォキシォキサノシンを白色粉末として得ることができる。移動相とし ては、リン酸ナトリウム緩衝液 (400 M、 pH7. 4)等の中性の緩衝液とァセトニトリル などの有機溶媒との混液 (ァセトニトリル 10%等)とすることで良好に分離できる。ォキ サニンは、デォキシォキサノシンを酸加水分解し、この反応液力ゝら逆相クロマトグラフ ィ一等によって分取することができる。酸加水分解は、例えば、 1M塩酸などの酸とと もに 37°Cで 2時間という反応条件を採用することができる。  It can be obtained by reacting at 7 ° C for 4 hours. After such a reaction, the reaction solution is neutralized with NaOH, and after appropriately distilling off under reduced pressure as necessary, it can be purified by reverse phase chromatography or the like and dried to obtain deoxyxanosine as a white powder. it can. The mobile phase can be well separated by using a mixture of neutral buffer such as sodium phosphate buffer (400 M, pH 7.4) and organic solvent such as acetonitrile (acetonitrile 10%, etc.). Oxanine can be fractionated by reverse-phase chromatography, etc., based on acid hydrolysis of deoxyxanosine and the reaction solution. For the acid hydrolysis, for example, a reaction condition of 2 hours at 37 ° C. with an acid such as 1M hydrochloric acid can be employed.
[0051] 前記 Aは、リボースゃデォキシリボースなどのペントースを始めとする糖類とすること もできる。糖類の誘導体としては、糖類の炭素原子に結合した水素あるいは水酸基 に替えて、アルコキシ、アルコキシアルキルォキシ、ハロゲン等の官能基を備えたも のが挙げられる。 [0051] The A may be a saccharide such as pentose such as ribose or deoxyribose. Derivatives of saccharides are those having functional groups such as alkoxy, alkoxyalkyloxy, and halogen instead of hydrogen or hydroxyl groups bonded to carbon atoms of saccharides. Can be mentioned.
[0052] 式(9)のリンカ一化合物は、カルポジイミドで活性ィ匕されたカルボキシ基にぉ ヽてァ ミノ基との反応性が確保されて 、れば、どのような形態でォキサニンを備えて 、てもよ い。好ましくは、リボース又はデォキシリボースなどのペントースと結合した形態で有 することが好ましい。また、ォキサニン塩基とペントースとの結合位置は、好ましくは、 3位の N原子にペントースの C1 '位炭素原子が結合する形態であることが好ましい。 ペントースが 1 13 リボフラノシルリボース又はリボフラノシルデォキシリボースのと き、リンカ一化合物は、ヌクレオシド誘導体の形態を採ることになる。ヌクレオシド誘導 体の形態のリンカ一化合物は、既に説明したように、デォキシグァニンゃデォキシグ ァノシン力も容易に得ることができる。  [0052] The linker compound of the formula (9) comprises oxanine in any form as long as the reactivity with the amino group is ensured over the carboxy group activated with carpositimide. It's okay. Preferably, it is in a form bound to pentose such as ribose or deoxyribose. Further, the bonding position between the oxanine base and the pentose is preferably in a form in which the C1′-position carbon atom of the pentose is bonded to the N-position at the 3-position. When the pentose is 1 13 ribofuranosyl ribose or ribofuranosyl deoxyribose, the linker compound will take the form of a nucleoside derivative. As already explained, a linker compound in the form of a nucleoside derivative can easily obtain a deoxyguanine or deoxyguanosine force.
[0053] こうしたヌクレオシド誘導体形態のリンカ一化合物は、化学合成によりオリゴヌクレオ チドを取得するのに適した種々の修飾が施されていてもよい。例えば、リボース又は デォキシリボースの C3,位の水酸基や C5,位の水酸基は適宜修飾される。 3,位の水 酸基には、ホスホルアミダイト基が導入され、 5'位の水酸基には、ジメトキシトリチル 基等が導入されていることが好ましい。こうした修飾基としては、核酸の化学合成法に お!、て公知の方法を適宜用いることができる。ホスホアミダイト法による核酸の化学合 成に適したリンカ一化合物の例を以下に示す。  Such a linker compound in the form of a nucleoside derivative may be subjected to various modifications suitable for obtaining an oligonucleotide by chemical synthesis. For example, the C3, position hydroxyl group or C5, position hydroxyl group of ribose or deoxyribose is appropriately modified. It is preferable that a phosphoramidite group is introduced into the hydroxyl group at the 3-position, and a dimethoxytrityl group or the like is introduced into the hydroxyl group at the 5′-position. As such a modifying group, known methods can be used as appropriate in the chemical synthesis method of nucleic acids. Examples of linker compounds suitable for chemical synthesis of nucleic acids by the phosphoramidite method are shown below.
[化 6]  [Chemical 6]
Figure imgf000020_0001
Figure imgf000020_0001
[式中、 R1は 2 シァノエチル、 4 -トロフエ-ルェチル、 2 トリメチルシチルェチ ル、又はメチルを表す] [0054] こうしたリンカ一化合物は、公知の核酸ィ匕学合成用モノマーの合成方法を適用して 取得することができる。例えば、デォキシォキサノシンの懸濁液 (溶媒としては DMF など)にジメトキシトリチルクロライドを添カロして、その後、イミダゾールとジイソプロピル ェチルアンモ-ゥムメシレートを添加し、この反応液を攪拌して均質ィ匕し、次いで、多 量の水に投入し、沈殿を得、乾燥して粗精製物とする。この粗精製物をジクロロメタン などの適当な溶媒に再溶解後、へキサン中で再結晶化することで、 DMT—デォキ シォキサノシンを得ることができる。 [Wherein R 1 represents 2 cyanoethyl, 4-trophenyl-ethyl, 2 trimethylcytylethyl, or methyl] [0054] Such a linker compound can be obtained by applying a known method for synthesizing monomers for nucleic acid synthesis. For example, after adding dimethoxytrityl chloride to a suspension of deoxyxanosin (such as DMF as a solvent), add imidazole and diisopropylethylammum mesylate, and stir the reaction mixture to homogeneity. Then, it is poured into a large amount of water, a precipitate is obtained, and dried to obtain a crude product. This crude product is redissolved in an appropriate solvent such as dichloromethane and then recrystallized in hexane to obtain DMT-deoxyxanosine.
[0055] さらに、 DMT—デォキシォキサノシンをホスホアミダイト化するには、 DMT—デォ キシォキサノシンを適当な溶媒に溶解し、その後、 2—シァノエチル— N, N, Ν' , Ν ,一ジイソプロピルホスホアミドを添カ卩し、十分に反応させた後、メタノール、ジイソプロ ピルェチルァミン及び酢酸ェチルの添加で反応を終了させ、 10%の炭酸水素ナトリ ゥムで洗浄した後、有機相を脱水し濃縮した。この濃縮物をジクロロメタン等の適当な 溶媒に再溶解し順相クロマトグラフィーにて分離した。移動相としては、例えば、酢酸 ェチル:ジクロロメタン:メタノール = 65 : 35 : 0. 33)などを採用することができる。  [0055] Further, in order to phosphoamiditeize DMT-deoxyxanosine, DMT-deoxyxanosine is dissolved in an appropriate solvent, and then 2-cyanoethyl-N, N, Ν ', Ν, After adding diisopropylphosphoamide and allowing it to react sufficiently, the reaction is terminated by adding methanol, diisopropylethylamine and ethyl acetate, washing with 10% sodium bicarbonate, and then dehydrating and concentrating the organic phase. did. This concentrate was redissolved in an appropriate solvent such as dichloromethane and separated by normal phase chromatography. As the mobile phase, for example, ethyl acetate: dichloromethane: methanol = 65: 35: 0.33) can be employed.
[0056] さらに、こうしたリンカ一化合物は、好ましくはリボース又はデォキシリボースの 5位の 炭素原子に結合した水酸基にぉ 、てリン酸エステルの形態を採る。リン酸エステルは 、 3リン酸エステルとすることが好ましぐこの場合、リンカ一化合物は、ヌクレオチド誘 導体の形態と採ることができる。このようなプローブ化合物は、 PCR法等の遺伝子増 幅手法により 100塩基以上の長鎖 DNAなどの核酸を取得するのに好ましく用いるこ とができる。ヌクレオチド誘導体としてのリンカ一化合物の例を以下の式に示す。 [0056] Further, such a linker compound preferably takes the form of a phosphate ester to the hydroxyl group bonded to the carbon atom at the 5-position of ribose or deoxyribose. The phosphate ester is preferably a triphosphate ester. In this case, the linker compound can be taken in the form of a nucleotide derivative. Such a probe compound can be preferably used for obtaining a nucleic acid such as a long-chain DNA of 100 bases or more by a gene amplification technique such as PCR. An example of a linker compound as a nucleotide derivative is shown in the following formula.
[化 7]  [Chemical 7]
Figure imgf000021_0001
なお、ヌクレオチド誘導体であるリンカ一ユニットを含むオリゴヌクレオチドは、公知 のプローブ作製方法を適用して作製することができる。各種の DNAポリメラーゼを用 いた DNA鎖伸長法を用いる場合には、例えば、リンカ一化合物としてデォキシォキ サノシン三リン酸 (dOTP)を準備する。ォキサニンは、シトシンゃチミン (好ましくはシ トシンである。 )とそれぞれ 2つの水素結合を形成して安定な塩基対合を形成すること と推測される。こうした塩基対合を考慮して、所望のテンプレートと 5'末端からリンカ 一化合物を導入しょうとする所望の位置までのプライマーとを準備し、 dOTPのみを 含む反応系で第 1回目の伸長工程を実施する。その後、残存する dOTPを除去して 、通常どおり必要な dNTP (Nは A、 T、 C及び Gのいずれかあるいは 2種類以上であ る。)の存在下で 2回目以降の伸長工程を実施する。その後、必要に応じ、 dOTPの みの伸張工程を実施すれば、 2以上の所望の部位に本リンカ一化合物を導入するこ とがでさる。
Figure imgf000021_0001
An oligonucleotide containing a linker unit that is a nucleotide derivative is known. The probe manufacturing method can be applied. When using a DNA chain extension method using various DNA polymerases, for example, deoxyxanosin triphosphate (dOTP) is prepared as a linker compound. Oxanine is presumed to form stable base pairings by forming two hydrogen bonds with cytosine thymine (preferably cytosine). In consideration of such base pairing, prepare a desired template and a primer from the 5 'end to the desired position to introduce a linker compound, and perform the first extension step in a reaction system containing only dOTP. carry out. Thereafter, the remaining dOTP is removed, and the second and subsequent extension steps are carried out in the presence of the necessary dNTP (N is one or more of A, T, C and G) as usual. . Then, if necessary, an extension step of only dOTP can be carried out to introduce the present linker compound into two or more desired sites.
[0058] また、ホスホアミダイト法による場合には、例えば、既に説明したデォキシォキサノシ ンのホスホアミダイトイ匕誘導体を準備し、合成中のオリゴデォキシヌクレオチドに対し て所望の導入順位において添加して鎖延長反応を行う。こうすること〖こよっても、プロ ーブの 1又は 2以上の所望の部位に本リンカ一化合物を導入できる。  [0058] In addition, in the case of the phosphoamidite method, for example, the phosphoamidite derivative of deoxyxanosin described above is prepared, and the desired order of introduction with respect to the oligodeoxynucleotide being synthesized. To add a chain extension reaction. This makes it possible to introduce the present linker compound into one or more desired sites of the probe.
[0059] 本プローブは、ハイブリダィゼーシヨンにおいては 1本鎖核酸の形態で機能するが 、取得時若しくは合成時又は固定ィ匕時においては、 2本鎖の形態であってもよい。ま た、 1本鎖の形態を採るとき、ループやヘアピン部位を有していてもよい。  [0059] Although this probe functions in the form of a single-stranded nucleic acid in hybridization, it may be in a double-stranded form at the time of acquisition, synthesis, or fixation. Moreover, when taking the form of a single strand, it may have a loop or a hairpin part.
[0060] 本プローブは、 1又は 2以上のリンカ一ユニットを備えることができる。リンカ一ュ-ッ トは、プローブにおいてもっぱら選択される担体固定部位である 5'末端に備えること もできるが 3'末端等それ以外の部位に備えることもできる。例えば、プローブの全長 の中央近傍に備えていてもよい。また、 5,末端側あるいは 3,末端側にリンカ一ュ-ッ トを備えるようにし、このようなプローブを担体に固定したとき、該リンカ一化合物部位 を含むプローブの上流側と下流側で部分的にヘアピン構造やループ構造を採らせ るよう設計することもできる。特にリンカ一ユニットがヌクレオチド誘導体の形態を採る ことにより、既に説明したように化学合成によっても酵素的な鎖延長法によっても任意 の部位にリンカ一を導入することができる。  [0060] The probe may comprise one or more linker units. The linker can be provided at the 5 ′ end, which is a carrier fixing site exclusively selected in the probe, or can be provided at other sites such as the 3 ′ end. For example, it may be provided near the center of the entire length of the probe. In addition, when a linker cue is provided on the 5, end side or on the 3, end side, and such a probe is fixed to a carrier, a part of the probe containing the linker compound portion is located upstream and downstream. It can also be designed to have a hairpin structure or loop structure. In particular, when the linker unit takes the form of a nucleotide derivative, the linker can be introduced at an arbitrary site by chemical synthesis or by enzymatic chain extension as already described.
[0061] 本プローブにおける、ターゲット核酸とのハイブリダィズ領域は、リンカ一ユニットを 含まないことが好ましい。したがって、プローブの全長の中央近傍や末端近傍にリン カーユニットが導入される場合には、その近傍には、ハイブリダィズに関与しないスぺ ーサー領域を形成することが好まし ヽ。 [0061] In this probe, the hybridizing region with the target nucleic acid is a linker unit. It is preferably not included. Therefore, when a linker unit is introduced near the center or near the end of the entire length of the probe, it is preferable to form a spacer region not involved in hybridization in the vicinity.
[0062] また、こうしたスぺーサー領域は、プローブの 5,末端などにリンカ一ユニットが導入 される場合であっても同様であり、この場合、 5,末端側力らリンカ一ユニット一スぺー サー領域 ハイブリダィズ領域とすることが好ましい。  [0062] In addition, such a spacer region is the same even when a linker unit is introduced at the 5th end, etc. of the probe. It is preferable that the region is a hybrid region.
[0063] (DNAアレイ)  [0063] (DNA array)
DNAアレイは、プローブ固定化用担体にプローブが固定化されたものである。ここ で、プローブは、リンカ一化合物(プローブを固相基体のリンカ一部位と結合させるた めの化合物あるいは該化合物が導入された部位)であるォキサニンのカルポジイミド で活性化されたカルボキシ基と担体表面のアミノ基とが反応して、アミド結合を形成し た状態で固定ィ匕されて 、ることが好ま 、。  A DNA array is a probe immobilized on a probe immobilization carrier. Here, the probe is a linker compound (a compound for binding the probe to a partial position of the linker on the solid phase substrate or a site where the compound is introduced) and a carboxy group activated with calpositimide of oxanine and a carrier surface. It is preferable that the amino group is fixed in a state in which it reacts with an amino group to form an amide bond.
[0064] プローブの固定化形態は、プローブにおけるリンカ一化合物の導入位置により異な り、 5'末端にリンカ一化合物を備える場合には、プローブが 1本鎖状に固定化される であろうし、プローブ全長の中央近傍にリンカ一化合物を備える場合には、プローブ は U字等状に固定化されるであろう。また、リンカ一化合物の導入部位近傍に対向し て塩基対合を形成可能な配列等を有する場合には、リンカ一化合物導入部位近傍 でヘアピンやループ構造を採るであろう。  [0064] The immobilization form of the probe differs depending on the position of the linker compound introduced into the probe. When the linker compound is provided at the 5 'end, the probe will be immobilized in a single strand, If a linker compound is provided near the center of the entire probe length, the probe will be immobilized in a U-shape. In addition, in the case of having a sequence that can form base pairing in the vicinity of the vicinity of the linker compound introduction site, a hairpin or loop structure will be adopted in the vicinity of the linker compound introduction site.
[0065] (DNAアレイの製造方法)  [0065] (Method for producing DNA array)
DNAアレイは、プローブを含有する液体を準備し、この液体を上述したプローブ固 定ィ匕担体の表面に供給し、前記プローブにおけるリンカ一化合物のォキサニンとプロ ーブ固定ィ匕担体に備えられるアミノ基等とを反応させることによって得ることができる 。プローブ固定化担体にプローブを供給する方法は従来公知の 、ずれの方法も採 用できる。例えば、 DNAアレイとして、基板等の表面に多数個のプローブスポットを 配列されたアレイを作製するには、ピンによる接触型あるいはインクジェット方式等に よるプローブ含有液滴をスポット状に供給する。また、ビーズ等の粒子にプローブを 供給するには、プローブ含有溶液中にビーズをデイツビングするかプローブ含有溶 液を噴霧するなどによることができる。 [0066] プローブの固定化は、通常行われるこうしたプローブ溶液のスポッティングゃデイツ ビング等の操作にぉ 、て可能である。アミノ基を備えるプローブ固定ィ匕担体へプロ一 ブ溶液が供給されれば、リンカ一化合物とアミノ基は速やかに反応することができる。 なお、プローブ溶液には、有機溶媒を添加することでもきるし、また、必要に応じて、 中性あるいは微酸性に調整することができる。温度やインキュベーション時間は、プ ローブ固定ィ匕担体やプローブの種類等に応じて適宜設定すればよいが、例えば、 3 0°C〜90°Cの所定温度とし、反応時間は数十分から 1時間あるいは数時間程度とす ることができる、プローブ固定ィ匕担体の表面にプローブ溶液を供給した後は、リノ、イド レーシヨン、ブロッキング、変性、洗浄、乾燥等の工程を実施することができる。 In the DNA array, a liquid containing a probe is prepared, and this liquid is supplied to the surface of the above-mentioned probe fixing carrier, and the linker compound oxanin in the probe and the amino acid provided in the probe fixing carrier are prepared. It can be obtained by reacting with a group or the like. As a method for supplying the probe to the probe-immobilized carrier, a conventionally known deviation method can be employed. For example, in order to produce an array in which a large number of probe spots are arranged on the surface of a substrate or the like as a DNA array, probe-containing droplets are supplied in the form of spots by a contact type using a pin or an inkjet method. Further, the probe can be supplied to particles such as beads by dipping the beads in the probe-containing solution or spraying the probe-containing solution. [0066] Immobilization of the probe can be carried out by such an operation as spotting of the probe solution, which is usually performed, and dating. If the probe solution is supplied to the probe-immobilized carrier having an amino group, the linker compound and the amino group can react rapidly. In addition, an organic solvent can be added to the probe solution, and it can be adjusted to neutral or slightly acidic as necessary. The temperature and incubation time may be appropriately set according to the type of probe immobilization carrier or probe. For example, the temperature is set to a predetermined temperature of 30 ° C to 90 ° C, and the reaction time is from several tens of minutes to 1 After supplying the probe solution to the surface of the probe-immobilized carrier, which can be made for several hours or several hours, steps such as reno, idling, blocking, denaturing, washing and drying can be carried out.
[0067] (ハイブリダィズ方法)  [0067] (Hybridization method)
本発明の核酸ハイブリダィズ方法は、上述した DNAアレイを準備し、この DNAァレ ィに対して核酸を供給してプローブとターゲット核酸とをハイブリダィズさせるものであ る。このハイブリダィズ方法では、本発明のプローブ固定化用担体を用いる以外は、 従来公知の方法で調製した各種のターゲット核酸を常法に従い供給しハイブリダィ ズさせればよい。  The nucleic acid hybridization method of the present invention prepares the above-described DNA array, supplies the nucleic acid to this DNA array, and hybridizes the probe and the target nucleic acid. In this hybridization method, except that the probe immobilization carrier of the present invention is used, various target nucleic acids prepared by a conventionally known method may be supplied and hybridized according to a conventional method.
[0068] 本明細書には、 2005年 3月 9日に日本国に特許出願された特願 2005— 065948 を引用することにより、その内容の全てが本明細書に含まれる。また、本出願は、 200 5年 12月 13日に米国に仮出願された 60Z749, 590を優先権主張の基礎としてお り、その内容の全てが引用により本明細書に含まれる。  [0068] This specification includes the entire contents of Japanese Patent Application No. 2005-065948, filed in Japan on March 9, 2005, by reference. This application is based on 60Z749, 590, which was provisionally filed in the United States on December 13, 2005, and claims the priority thereof, the entire contents of which are incorporated herein by reference.
実施例 1  Example 1
[0069] プローブ固定ィ匕担体を作製し、キヤッビング効果の確認試験を行った。その手順を 以下に説明する。ここでは、固相基体 (以下、基板という)として、 DNAマイクロアレイ 用ノンコートスライドガラス (松波硝子工業製)を使用した。なお、 APSは、 3—アミノブ 口ピルトリエトキシシランの略であり、リンカ一用有機シランィ匕合物の一例である。 BM Sは、プチルトリメトキシシランの略であり、キヤッビング用有機シランィ匕合物の一例で ある。  [0069] A probe-fixing carrier was prepared, and a confirmation test of the cabbing effect was performed. The procedure is described below. Here, a non-coated slide glass for DNA microarray (manufactured by Matsunami Glass Industrial Co., Ltd.) was used as a solid phase substrate (hereinafter referred to as substrate). APS is an abbreviation for 3-aminobutylpyrutriethoxysilane, and is an example of an organosilane compound for a linker. BMS is an abbreviation for ptyltrimethoxysilane, and is an example of an organosilane compound for caving.
[0070] (1)基板表面の修飾  [0070] (1) Modification of substrate surface
まず、基板表面の修飾を行った。すなわち、基板 20枚を 800mLのアセトン中で 10 分間超音波で処理したあと、デシケータ中、室温で 10分間真空乾燥した。続いて、 それらの基板 20枚を 1200mLのパラハナ溶液(840mLの 90%H SOと 360mLの First, the substrate surface was modified. That is, 20 substrates are 10 in 800 mL acetone. After ultrasonic treatment for 5 minutes, it was vacuum dried in a desiccator for 10 minutes at room temperature. Subsequently, 20 of these substrates were added to 1200 mL of parahana solution (840 mL of 90% H 2 SO 4 and 360 mL of
2 4  twenty four
30 %H Oと力もなる溶液)に浸して 30分間超音波で処理し、次いで 80mLの蒸留 Soak in 30% H 2 O and a solution that can also be sonicated for 30 minutes, then 80 mL of distilled water
2 2 twenty two
水に浸し 10分間超音波で処理したあと、デシケータ中、室温で 1時間真空乾燥した 。再びそれらの基板を 800mLの蒸留水に浸して 10分間超音波で処理したあと、デ シケータ中、室温で 12時間真空乾燥し、 800mLのメタノールに浸して 10分間超音 波で処理し、 800mLのメタノールとトルエンの 1: 1 (体積比)混合溶液(400mLのメ タノールと 400mLのトルエンの混合溶液)に浸して 10分間超音波で処理し、更に 80 OmLのトルエンに浸して 10分間超音波で処理した。このような処理を終えた基板 20 枚を 1290mLの 2%APS溶液(25. 8mLの APSと 1264. 2mLのトルエンの混合溶 液)に浸し、インキュベータ中、 25°Cで 70rpmで揺らしつつ 5時間反応させた。その 後、それらの基板を 800mLのトルエンに浸して 10分間超音波で処理し、 800mLの メタノールとトルエンの 1: 1 (体積比)混合溶液に浸して 10分間超音波で処理し、更 に 800mLのメタノールに浸して 10分間超音波で処理したあと、定温乾燥機中、 110 °Cで 1時間乾燥し、それらの基板を遮光してデシケータ中、室温で 12時間真空乾燥 した。このような処理を終えた基板のうち 10枚を、 APSの修飾のみを行った基板 (以 下、 APS基板という)として保存した。  After soaking in water and treating with ultrasonic waves for 10 minutes, it was vacuum dried in a desiccator at room temperature for 1 hour. The substrates were again immersed in 800 mL of distilled water and treated with ultrasound for 10 minutes, then vacuum-dried at room temperature for 12 hours in a desiccator, immersed in 800 mL of methanol and treated with ultrasound for 10 minutes, and then treated with 800 mL of Immerse in a 1: 1 (volume ratio) mixture of methanol and toluene (400 mL of methanol and 400 mL of toluene) and treat with ultrasound for 10 minutes, then soak in 80 OmL of toluene for 10 minutes with ultrasound. Processed. 20 substrates that have been treated in this manner are immersed in 1290 mL of 2% APS solution (25.8 mL of APS and 126.4.2 mL of toluene) and rocked at 70 rpm in an incubator for 5 hours. Reacted. Then, the substrates are immersed in 800 mL of toluene and treated with ultrasound for 10 minutes, immersed in 800 mL of a 1: 1 mixture of methanol and toluene (volume ratio), treated with ultrasound for 10 minutes, and further treated with 800 mL. The sample was immersed in methanol and treated with ultrasonic waves for 10 minutes, and then dried in a constant temperature dryer at 110 ° C. for 1 hour. The substrates were shielded from light and vacuum-dried in a desiccator at room temperature for 12 hours. Ten substrates out of these treatments were stored as APS-modified substrates (hereinafter referred to as APS substrates).
[0071] 一方、このような処理を終えた残り 10枚の基板を 1200mLの 2%BMS (キヤッピン グ剤)溶液(24mLの BMSと 1176mLのトルエン)に浸し、インキュベータ中、 25°Cで 70rpmで揺らしつつ 5時間反応させた。その後、それらの基板を 800mLのトルエン に浸して 10分間超音波で処理し、次いで 800mLのメタノールとトルエンの 1: 1 (体積 比)混合溶液に浸して 10分間超音波で処理し、更に 800mLのメタノールに浸して 1 0分間超音波で処理したあと、定温乾燥機中、 110°Cで 1時間乾燥し、更にそれらの 基板を遮光してデシケータ中、室温で真空乾燥し、これらを APSの修飾に加えて B MSによるキヤッビングを行った基板 (以下、 APS + BMS基板という)として保存した [0071] On the other hand, the remaining 10 substrates after such treatment were immersed in 1200 mL of 2% BMS (caping agent) solution (24 mL of BMS and 1176 mL of toluene), and in an incubator at 25 ° C and 70 rpm. The reaction was performed for 5 hours while shaking. The substrates are then immersed in 800 mL of toluene and treated with ultrasound for 10 minutes, then immersed in 800 mL of a 1: 1 mixture of methanol and toluene (volume ratio), treated with ultrasound for 10 minutes, and then further treated with 800 mL of toluene. After immersion in methanol and ultrasonic treatment for 10 minutes, drying at 110 ° C for 1 hour in a constant temperature drier, further drying these substrates in a desiccator and vacuum drying at room temperature, and modifying them with APS In addition to the BMS-capped substrate (hereinafter referred to as APS + BMS substrate)
[0072] (2)プローブのスポッティング及び固定化 [0072] (2) Probe spotting and immobilization
続いて、オリゴ DNAプローブのスポッティング及び固定ィ匕を行った。ここでは、オリ ゴ DNAプローブとして、化 8の配列を持つものを使用した。なお、配列中、 5,末端の 「0」はォキサノシンを表し、それに続く「TTT」はスぺーサを表し、スぺーサに続く残 りの配列つまり「CAG ' · -ACGJ (点線のアンダーラインの部分)はハイブリダィゼー シヨンサンプルの相補配列を表す。 Subsequently, the oligo DNA probe was spotted and fixed. Here, Ori As a DNA probe, one having a sequence of Chemical Formula 8 was used. In the sequence, “0” at the 5th end represents oxanosin, “TTT” following it represents a spacer, and the remaining sequence following the spacer, ie “CAG '· -ACGJ (dotted line underline) Represents the complementary sequence of the hybridization sample.
[化 8]  [Chemical 8]
5' -0 TTT CAGCA CCAAT GTCCT TGGCC ATCTT CAACT TGTTG TCGAA AATGT CAACG- 3' 5 '-0 TTT CAGCA CCAAT GTCCT TGGCC ATCTT CAACT TGTTG TCGAA AATGT CAACG-3'
[0073] スポッティング及び固定化は、 APS基板及び APS + BMS基板のそれぞれについ て 2枚ずつ、以下の手順により行った。まず、オリゴ DNAプローブを PBSに溶解し、 マイクロセラミックポンプ式 DNAチップ製造装置 GENESHOT(日本ガイシ製)を用 いてオリゴ DNAを濃度 50pmolZ μ Lでスポットした。続いて、 42。C、相対湿度 45% で一晩インキュベートし、スライドガラスラックに基板を入れて、無水コハク酸溶液に 2 0分間浸漬した。ここで、無水コハク酸溶液は、 2. 5gの無水コハク酸を 160mLの 1 ーメチルー 2—ピロリジノンに溶解し、 0. 2Mほう酸ナトリウム水溶液(pH8. 0)を 17 . 5mL加えて調製した。その後、滅菌水にスライドラックごと漬け 10回静かに揺動洗 浄する操作を 2回繰り返したあと、 2 X SSC、0. 2%SDS水溶液で室温にて 15分間 振とう洗浄し、沸騰させた 2 X SSC、 0. 2%SDS水溶液中に 5分間浸漬した。その後 、滅菌水にスライドラックごと漬け 10回静かに揺動洗浄する操作を 3回繰り返したあと 、 lOOOrpmで 3分間遠心乾燥した。これにより、オリゴ DNAプローブを固定化した A PS基板及び APS + BMS基板を、それぞれ 2枚ずつ得た。 [0073] Spotting and immobilization were carried out by the following procedure for two APS substrates and two APS + BMS substrates. First, the oligo DNA probe was dissolved in PBS, and the oligo DNA was spotted at a concentration of 50 pmol Z μL using a microceramic pump type DNA chip production apparatus GENESHOT (manufactured by NGK). Next, 42. C, incubated overnight at 45% relative humidity, placed the substrate in a glass rack, and immersed in a succinic anhydride solution for 20 minutes. Here, a succinic anhydride solution was prepared by dissolving 2.5 g of succinic anhydride in 160 mL of 1-methyl-2-pyrrolidinone and adding 17.5 mL of 0.2 M aqueous sodium borate (pH 8.0). Then, the slide rack was soaked in sterilized water and swirled gently 10 times, and then washed twice with 2 X SSC, 0.2% SDS aqueous solution at room temperature for 15 minutes, and boiled. It was immersed in 2 X SSC, 0.2% SDS aqueous solution for 5 minutes. Thereafter, the whole slide rack was immersed in sterile water and the operation of gently rocking and washing 10 times was repeated 3 times, followed by centrifugal drying at lOOOrpm for 3 minutes. As a result, two APS substrates and two APS + BMS substrates each having an oligo DNA probe immobilized thereon were obtained.
[0074] (3)ハイブリダィゼーシヨン  [0074] (3) Hybridization
オリゴ DNAプローブを固定化した 2枚の APS + BMS基板のうち、 1枚はすぐにノヽ イブリダィゼーシヨンを行い(固定ィ匕後 0日)、もう 1枚は 42°C、相対湿度 50%の条件 下に 7日間曝露後、ハイブリダィゼーシヨンを行った(固定ィ匕後 7日)。また、 2枚の AP S基板についても同様にしてハイブリダィゼーシヨンを行った。ハイブリダィゼーシヨン は、化 9に示すオリゴ DNAをノヽイブリダィゼーシヨンサンプルとし、これを滅菌水に溶 解して使用した。ィ匕 9のオリゴ DNAは、前出のオリゴ DNAプローブに相補的な配列( 点線のアンダーラインの部分)を持ち、 5,末端を Cy3で標識したものである。 [化 9] Of the two APS + BMS substrates to which the oligo DNA probe was immobilized, one was immediately subjected to the hybridization (0 days after immobilization), the other one was 42 ° C, relative humidity 50 Hybridization was performed after exposure for 7 days under 7% conditions (7 days after fixation). Also, hybridization was performed in the same manner for the two APS substrates. For the hybridization, the oligo DNA shown in Chemical formula 9 was used as a hybridization sample, which was dissolved in sterilized water and used. The oligo DNA of 匕 9 has a complementary sequence (dotted line underlined part) to the above oligo DNA probe and is labeled with Cy3 at the end. [Chemical 9]
5'Five'
Figure imgf000027_0001
Figure imgf000027_0001
[0075] ハイブリダィゼーシヨンは、以下の手順により行った。まず、ノ、イブリダィゼーシヨン サンプノレ【こ 20 X SSC、 100/0SDSをカ卩免、終濃度 5 X SSC、 0. 50/0SDS【こなるよう に調製した。このときのハイブリダィゼーシヨンサンプルの終濃度は InMである。次い で、基板上にサンプル液を 25 μ 1滴下し、その上カゝら静か〖こカバーガラスをかけ、相 対湿度 100%、 42°Cでー晚インキュベートした。続いて、 2 X SSC、 0. 1% SDS溶 液で室温にて 5分振とうし、 1 X SSC溶液で室温〖こて 5分振とうし、更〖こ 0. 1 X SSC 溶液で室温にて 5分振とうしたあと、 lOOOrpmで 3分間遠心乾燥した。このようにして ノ、イブリダィゼーシヨンを行ったあと、各基板につき蛍光シグナルの数値ィ匕を行った。 Cy3の蛍光シグナルは DNAマイクロアレイスキャナ(G2505A, Agilent Technologies 製)を使用して測定した。また、各スポットの蛍光シグナルは GenePixxPro (Axon Instr ument製)にて数値ィ匕した。その結果を図 12に示す。 [0075] Hybridization was performed according to the following procedure. First, it was prepared Roh, Eve Lida I See Chillon Sanpunore [This 20 X SSC, 10 0/0 SDS mosquitoes卩免, a final concentration of 5 X SSC, 0. 5 0/ 0 SDS [Konaru so on. The final concentration of the hybridization sample at this time is InM. Next, 25 μl of the sample solution was dropped on the substrate, and a cover glass was placed on the substrate and incubated at 42 ° C at 100% relative humidity. Next, shake with 2 X SSC, 0.1% SDS solution at room temperature for 5 minutes, shake with 1 X SSC solution at room temperature for 5 minutes, and shake with 0.1 X SSC solution at room temperature. After 5 minutes of shaking at 100 rpm, it was centrifuged at lOOOrpm for 3 minutes. In this way, after performing hybridization, the numerical value of the fluorescence signal was measured for each substrate. The fluorescence signal of Cy3 was measured using a DNA microarray scanner (G2505A, manufactured by Agilent Technologies). The fluorescence signal of each spot was numerically calculated with GenePixxPro (manufactured by Axon Instrument). The result is shown in FIG.
[0076] 図 12から明らかなように、 APS処理後に基板表面に残存する水酸基を BMSでキ ャッビングした場合 (APS + BMS)には、固定ィ匕後 7日経ったあとの蛍光シグナル強 度は固定ィ匕後 0日とほぼ同等だったのに対して、キヤッビングしな力つた場合 (APS) には、固定ィ匕後 7日経ったあとの蛍光シグナル強度は固定ィ匕後 0日の約 6割程度に 落ち込んだ。  [0076] As is clear from FIG. 12, when the hydroxyl group remaining on the substrate surface after APS treatment was capped with BMS (APS + BMS), the fluorescence signal intensity after 7 days from fixation was In the case of strong force (APS) compared to 0 days after fixation, the fluorescence signal intensity after 7 days after fixation was about 0 days after fixation. Depressed to around 60%.
実施例 2  Example 2
[0077] プローブ固定ィ匕担体を作製し、実施例 1とは異なる観点でキヤッビング効果の確認 試験を行った。その手順を以下に説明する。本実施例でも、基板は実施例 1と同様 の DNAマイクロアレイ用ノンコートスライドガラス (松波硝子工業製)を使用した。  [0077] A probe-fixing carrier was prepared, and a confirmation test of the cabbing effect was performed from a viewpoint different from that in Example 1. The procedure will be described below. Also in this example, the same non-coated slide glass for DNA microarray (manufactured by Matsunami Glass Industrial Co., Ltd.) was used as the substrate.
[0078] (1)基板表面の修飾 [0078] (1) Modification of substrate surface
実施例 1と同様にして行った。  The same operation as in Example 1 was performed.
[0079] (2)プローブのスポッティング及び固定化 [0079] (2) Probe spotting and immobilization
続いて、プローブのスポッティング及び固定化を行った。ここでは、プローブとして、 Cy3 Mono -reactive Dye Pack (PA23001, GEヘルスケア ノィォサイエンス社製)を 使用した。スポッティング及び固定ィ匕は、 APS基板及び APS + BMS基板のそれぞ れについて 1枚ずつ、以下の手順により行った。まず、マイクロセラミックポンプ式 DN Aチップ製造装置 GENESHOT(日本ガイシ製)を用いて Cy3を濃度 50pmolZ μ L でスポットした。続いて、 42°C、相対湿度 45%でー晚インキュベートし、スライドガラス ラックに基板を入れて、無水コハク酸溶液 (前出)に 20分間浸漬した。その後、滅菌 水にスライドラックごと漬け 10回静かに揺動洗浄する操作を 2回繰り返したあと、 2 X SSC、 0. 2%SDS水溶液で室温にて 15分間振とう洗净し、沸騰させた 2 X SSC、 0 . 2%SDS水溶液中に 5分間浸漬した。その後、滅菌水にスライドラックごと漬け 10回 静かに揺動洗浄する操作を 3回繰り返したあと、 lOOOrpmで 3分間遠心乾燥した。こ れにより、 Cy3を固定ィ匕した APS基板及び APS + BMS基板を、 1枚ずつ得た。 Subsequently, the probe was spotted and immobilized. Here, Cy3 Mono -reactive Dye Pack (PA23001, manufactured by GE Healthcare Nanoscience) is used as a probe. used. Spotting and fixing were performed by the following procedure for each APS substrate and APS + BMS substrate. First, Cy3 was spotted at a concentration of 50 pmol Z μL using a micro ceramic pump type DNA chip production apparatus GENESHOT (manufactured by NGK). Subsequently, incubation was performed at 42 ° C. and a relative humidity of 45%. The substrate was placed in a slide glass rack and immersed in a succinic anhydride solution (described above) for 20 minutes. Then, the slide rack was soaked in sterilized water and swirled gently 10 times. After 2 times of washing, it was shaken and washed with 2 X SSC, 0.2% SDS aqueous solution at room temperature for 15 minutes and boiled. It was immersed in 2 X SSC, 0.2% SDS aqueous solution for 5 minutes. Then, the slide rack was soaked in sterilized water 10 times, and the operation of gently rocking and washing was repeated 3 times, followed by centrifugal drying at lOOOrpm for 3 minutes. As a result, one APS substrate and one APS + BMS substrate on which Cy3 was fixed were obtained.
[0080] (3)擬似ハイブリダィゼーシヨン  [0080] (3) Pseudohybridization
Cy3を固定ィ匕した APS + BMS基板及び APS基板をすぐに(固定ィ匕後 0日)用い て、疑似ハイブリダィゼーシヨンを行った。疑似ハイブリダィゼーシヨンは、以下の手 川頁により行った。まず、 20 X SSC、 10%SDSを混合し、終濃度 5 X SSC、 0. 5%SD Sになるように調製し、これを DNAの入って!/ヽな 、疑似ハイブリダィゼーシヨンサンプ ル液とした。次いで、基板上にサンプル液を 25 1滴下し、その上力も静か〖こカバー ガラスをかけ、相対湿度 100%、 42°Cでー晚インキュベートした。続いて、 2 X SSC、 0. 1% SDS溶液で室温にて 5分振とうし、 1 X SSC溶液で室温〖こて 5分振とうし、更 に 0. 1 X SSC溶液で室温〖こて 5分振とうしたあと、 lOOOrpmで 3分間遠心乾燥した。 このようにして疑似ハイブリダィゼーシヨンを行ったあと、各基板につき蛍光シグナル の数値化を行った。 Cy3の蛍光シグナルは DNAマイクロアレイスキャナ(G2505A, A gilent Technologies製)を使用して測定した。また、各スポットの蛍光シグナルは Gene PixxPro (Axon Instrument製)にて数値化した。その結果を図 13に示す。  Pseudohybridization was performed using the APS + BMS substrate and APS substrate to which Cy3 was immobilized (immediately after fixation). The pseudo-hybridization was performed according to the following Tagawa page. First, mix 20 X SSC and 10% SDS, and adjust to a final concentration of 5 X SSC and 0.5% SDS, and add this to the DNA! Pseudohybridization sample. The liquid was used. Next, 25 1 of the sample solution was dropped on the substrate, and the top force was also applied to a cover glass, and incubated at 42 ° C at 100% relative humidity. Next, shake with 2X SSC, 0.1% SDS solution at room temperature for 5 minutes, shake with 1X SSC solution at room temperature for 5 minutes, and further shake with 0.1X SSC solution at room temperature. The mixture was shaken for 5 minutes and then centrifuged and dried at lOOOrpm for 3 minutes. After performing pseudo-hybridization in this way, the fluorescence signal was digitized for each substrate. The fluorescence signal of Cy3 was measured using a DNA microarray scanner (G2505A, manufactured by Agilent Technologies). Moreover, the fluorescence signal of each spot was quantified with Gene PixxPro (manufactured by Axon Instrument). The results are shown in FIG.
[0081] 図 13から明らかなように、 APS処理後に基板表面に残存する水酸基を BMSでキ ャッビングした場合 (APS + BMS)、キヤッビングしなかった場合 (APS)に比べて、 蛍光強度が著しく増大した。なお、実施例 1では、固定化後 0日における両者の蛍光 強度は、 APS + BMS基板の方が APS基板に比べてやや増大している程度であつ た力 これはプローブやハイブリダィゼーシヨンサンプルが実施例 1と実施例 2で異な ることに起因すると思われる。 [0081] As is apparent from FIG. 13, the fluorescence intensity is significantly increased when the hydroxyl group remaining on the substrate surface after APS treatment is capped with BMS (APS + BMS) and when it is not capped (APS). did. In Example 1, the fluorescence intensity of both on the 0th day after immobilization was such that the APS + BMS substrate was slightly increased compared to the APS substrate. The sample is different between Example 1 and Example 2. It seems to be caused by that.
[0082] また、実施例 2において、 BMSの代わりに ETMS, MTPS, ODTES, EMS, M MS (前出の化 3参照)を使用して、 APSで処理した後に基板の表面上に残存する水 酸基を保護し、同様にして疑似ハイブリダィゼーシヨンを行い、蛍光シグナルを測定 した。その結果を図 13に合わせて示す。図 13から明らかなように、残存する水酸基 を保護した基板はいずれも APS基板に比べて蛍光強度が増大した。 [0082] Further, in Example 2, water remaining on the surface of the substrate after being treated with APS using ETMS, MTPS, ODTES, EMS, MMS (see the above-mentioned Chemical Formula 3) instead of BMS. The acid group was protected, and pseudo-hybridization was performed in the same manner, and the fluorescence signal was measured. The results are shown in FIG. As is clear from FIG. 13, the fluorescence intensity increased for all the substrates protected with the remaining hydroxyl groups compared to the APS substrate.
産業上の利用可能性  Industrial applicability
[0083] 本発明は、 DNAアレイの製造や使用に関わるバイオ関連技術に利用可能である。 [0083] The present invention can be used in bio-related technologies related to the production and use of DNA arrays.

Claims

請求の範囲 The scope of the claims
[1] (a)表面に水酸基を有する固相基体と、プローブと結合可能なリンカ一部位を有する リンカ一用有機シラン化合物の一種又は二種以上とを反応させ、前記水酸基の酸素 原子に前記リンカ一用有機シランィ匕合物のケィ素原子を結合させることにより、前記リ ンカー用有機シランィ匕合物をリンカ一として前記固相基体の表面に保持する工程と、 (b)前記 (a)工程後の前記固相基体の表面に残存する水酸基をキヤッビング剤で保 護する工程と、  [1] (a) A solid phase substrate having a hydroxyl group on the surface is reacted with one or more kinds of organosilane compounds for a linker having a partial linker position capable of binding to a probe, and the oxygen atom of the hydroxyl group is A step of holding the organic silane compound for the linker as a linker on the surface of the solid phase substrate by bonding a key atom of the organosilane compound for the linker, and (b) the (a) A step of protecting a hydroxyl group remaining on the surface of the solid phase substrate after the step with a caving agent;
を含むプローブ固定化用担体の製造方法。  A method for producing a probe immobilization carrier comprising:
[2] 前記 (b)工程では、前記キヤッビング剤として前記リンカ一部位を有さな 、キヤツビ ング用有機シランィ匕合物の一種又は二種以上を使用し、前記 (a)工程後の前記固 相基体の表面に残存する水酸基の酸素原子に前記キヤッビング用有機シラン化合 物のケィ素原子を結合させる、  [2] In the step (b), one or two or more kinds of organosilane silane compounds for cabbing that do not have the linker partial position as the cabling agent are used, and the solid after the step (a) is used. Bonding the oxygen atom of the hydroxyl group remaining on the surface of the phase substrate to the silicon atom of the organosilane compound for caving.
請求項 1に記載のプローブ固定化用担体の製造方法。  The method for producing a probe-immobilizing carrier according to claim 1.
[3] (a)表面に水酸基を有する固相基体に対して、プローブと結合可能なリンカ一部位を 有するリンカ一用有機シランィ匕合物の一種又は二種以上を、前記水酸基の酸素原 子と前記リンカ一用有機シランィ匕合物のケィ素原子との結合を介して導入する工程と  [3] (a) One kind or two or more kinds of organic silane compounds for a linker having a partial linker position capable of binding to a probe with respect to a solid phase substrate having a hydroxyl group on the surface are converted into oxygen atoms of the hydroxyl group. And the step of introducing via a bond with a silicon atom of the organosilane compound for the linker,
(b)前記 (a)工程後の前記固相基体に対して、前記リンカ一の前記リンカ一部位との 水素結合による相互作用及び Z又は静電的相互作用が水酸基よりも小さくなるよう な官能基を有する一種又は二種以上のキヤッビング用有機シランィ匕合物を、前記水 酸基の酸素原子と前記リンカ一用有機シランィ匕合物のケィ素原子との結合を介して 導入する工程と、 (b) Functionality such that the interaction of the linker with the partial position of the linker and the Z or electrostatic interaction with the solid phase substrate after the step (a) is smaller than the hydroxyl group. Introducing one or two or more types of organosilane compounds for cabbing having a group through a bond between an oxygen atom of the hydroxyl group and a key atom of the organosilane compound for a linker;
を含むプローブ固定化用担体の製造方法。  A method for producing a probe immobilization carrier comprising:
[4] 前記キヤッビング用有機シランィ匕合物は、ケィ素原子上にアルキル基のほかアルコ キシ基又はハロゲン基を有する化合物である、請求項 2又は 3に記載のプローブ固 定化用担体の製造方法。  [4] The production of the probe-immobilizing support according to claim 2 or 3, wherein the organosilane compound for cabbing is a compound having an alkoxy group or a halogen group in addition to an alkyl group on a key atom. Method.
[5] 前記キヤッビング用有機シランィ匕合物は、以下の式(1)で表される一種又は二種以 上の化合物である、請求項 2〜4のいずれかに記載のプローブ固定ィ匕用担体の製造 方法。 [5] The probe organosilane compound according to any one of [2] to [4], wherein the cabbing organosilane compound is one or more compounds represented by the following formula (1): Production of carrier Method.
SiX R  SiX R
m n  m n
(式(1)において、 m及び nはそれぞれ 1以上の整数であり、 m+nは 4であり、 Xは、 臭素、塩素、ヨウ素などのハロゲン原子又はアルコキシ基であり、 mが 2以上のときに は Xは同一であっても異なっていてもよぐ Rは、炭化水素基であり、 nが 2以上のとき には Rは同一であっても異なっていてもよい。 )  (In the formula (1), m and n are each an integer of 1 or more, m + n is 4, X is a halogen atom such as bromine, chlorine, iodine, or an alkoxy group, and m is 2 or more. Sometimes X may be the same or different. R is a hydrocarbon group, and when n is 2 or more, R may be the same or different.)
前記キヤッビング用有機シランィ匕合物は、以下の式(2)〜(8)からなる群より選ばれ る一種又は二種以上の化合物である、請求項 2〜4のいずれかに記載のプローブ固 定化用担体の製造方法。 The probe organic compound according to any one of claims 2 to 4, wherein the organosilane compound for caving is one or more compounds selected from the group consisting of the following formulas (2) to (8): A method for producing a support for stabilization.
Figure imgf000032_0001
Figure imgf000032_0001
o s o。— I J i \
Figure imgf000032_0002
oso. — IJ i \
Figure imgf000032_0002
BMS  BMS
關 S
Figure imgf000032_0003
關 S
Figure imgf000032_0003
Figure imgf000032_0004
Figure imgf000032_0004
ETMS  ETMS
[7] 前記リンカ一用有機シランィ匕合物は、ケィ素原子上にアルコキシ基と前記リンカ一 部位を末端に有する基とを有している、請求項 1〜6のいずれかに記載のプローブ固 定化用担体の製造方法。 [7] The probe according to any one of [1] to [6], wherein the organosilane compound for a linker has an alkoxy group and a group having the linker moiety at the end on a silicon atom. A method for producing an immobilization carrier.
[8] 前記リンカ一用有機シランィ匕合物は、前記リンカ一部位として、アミノ基、チオール 基、エステル基、アルデヒド基、エポキシ基及びカルボキシ基力 なる群より選ばれる 一種又は二種以上の基を有している、請求項 1〜7のいずれかに記載のプローブ固 定化用担体の製造方法。  [8] The organosilane compound for a linker is one or two or more groups selected from the group consisting of an amino group, a thiol group, an ester group, an aldehyde group, an epoxy group, and a carboxy group as the linker partial position. The method for producing a probe-immobilizing carrier according to claim 1, comprising:
[9] 前記固相基体は、ガラス製、プラスチック製又はシリコン製である、請求項 1〜10の いずれかに記載のプローブ固定ィ匕用担体の製造方法。 [9] The solid phase substrate according to claim 1 to 10, which is made of glass, plastic or silicon. A method for producing a probe fixing carrier according to any one of the above.
[10] 請求項 1〜9のいずれかに記載のプローブ固定ィヒ用担体の製造方法によって製造 されたプローブ固体ィ匕用担体に、前記リンカ一部位を利用してプローブを導入するこ とにより DNAアレイを得る、 DNAアレイの製造方法。  [10] By introducing the probe into the probe solid substrate carrier produced by the method for producing a probe-fixing carrier carrier according to any one of claims 1 to 9, using the partial position of the linker. A method for producing a DNA array, wherein a DNA array is obtained.
[11] 請求項 10に記載の DNAアレイに対して、前記プローブと相互作用する標的化合 物を含む被験試料を供給することにより、前記プローブによって前記標的化合物を 検出するか、あるいは、前記プローブによって前記標的化合物を捕獲して前記プロ ーブと前記標的化合物との相互作用によって変化する又は発生するシグナルを検出 する工程を有する、  [11] The target compound is detected by the probe by supplying a test sample containing a target compound that interacts with the probe to the DNA array according to claim 10, or by the probe Capturing the target compound and detecting a signal that changes or is generated by the interaction between the probe and the target compound.
標的化合物の検出方法。  A method for detecting a target compound.
[12] 請求項 1〜9のいずれかに記載のプローブ固定ィヒ用担体の製造方法によって製造 されたプローブ固定化用担体。  [12] A probe immobilization carrier produced by the method for producing a probe immobilization carrier according to any one of claims 1 to 9.
[13] 固相基体と、  [13] a solid phase substrate;
プローブと結合可能なリンカ一部位を有し前記固相基体の表面上の酸素原子にケ ィ素原子が結合することにより前記固相基体の表面に保持されている一種又は二種 以上のリンカ一と、  One or two or more types of linkers that are held on the surface of the solid-phase substrate by binding a carbon atom to an oxygen atom on the surface of the solid-phase substrate that has a partial linker position that can bind to the probe. When,
前記固相基体の表面上の酸素原子のうち前記リンカ一が結合していないものを保 護するキャップと、  A cap protecting oxygen atoms on the surface of the solid phase substrate to which the linker is not bonded;
を備えるプローブ固定化用担体。  A probe immobilization carrier comprising:
[14] 固相基体と、 [14] a solid phase substrate;
前記固相基体の表面に保持されプローブと結合可能なリンカ一部位を有する一種 又は二種以上のリンカ一と、  One or two or more types of linkers which are held on the surface of the solid phase substrate and have a partial linker position capable of binding to a probe;
炭化水素系官能基を有し酸素原子 ケィ素原子結合を介して前記固相基体の表 面に保持される一種又は二種以上のキャップと、  One or two or more kinds of caps having a hydrocarbon functional group and held on the surface of the solid phase substrate through an oxygen atom and a key atom bond;
を備えるプローブ固定化用担体。  A probe immobilization carrier comprising:
[15] 前記キャップは、前記リンカ一の前記リンカ一部位との水素結合による相互作用又 は静電的相互作用が、前記リンカ一部位と水酸基との水素結合による相互作用又は 静電的相互作用よりも小さい官能基を有する、請求項 14にプローブ固定ィ匕用担体。 [15] The cap has a hydrogen bond interaction or electrostatic interaction with the linker partial position of the linker, or a hydrogen bond interaction or electrostatic interaction between the linker partial position and a hydroxyl group. 15. The probe immobilization carrier according to claim 14, which has a smaller functional group.
PCT/JP2006/324770 2005-12-13 2006-12-12 Process for production of probe-immobilizing supports, process for production of dna arrays, and probe-immobilizing supports WO2007069608A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007550180A JPWO2007069608A1 (en) 2005-12-13 2006-12-12 Probe immobilization carrier production method, DNA array production method and probe immobilization carrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US74959005P 2005-12-13 2005-12-13
US60/749,590 2005-12-13

Publications (1)

Publication Number Publication Date
WO2007069608A1 true WO2007069608A1 (en) 2007-06-21

Family

ID=38162916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324770 WO2007069608A1 (en) 2005-12-13 2006-12-12 Process for production of probe-immobilizing supports, process for production of dna arrays, and probe-immobilizing supports

Country Status (2)

Country Link
JP (1) JPWO2007069608A1 (en)
WO (1) WO2007069608A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515138A (en) * 2005-07-07 2009-04-09 ザ ユニヴァーシティー オブ ニューカッスル Immobilization of biological molecules
WO2013001895A1 (en) * 2011-06-28 2013-01-03 大日本印刷株式会社 Carrier for material immobilization for use in immunoassay
WO2013001894A1 (en) * 2011-06-28 2013-01-03 大日本印刷株式会社 Base material having hydrophilic layer
JP2014006226A (en) * 2012-06-27 2014-01-16 Nippon Telegr & Teleph Corp <Ntt> Biomolecule immobilization carrier and biomolecule immobilization method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAMISETTY N.K. ET AL.: "Development of an efficient amin-functionalized glass platform by additional silanization treatment with alkylsilane", ANAL. BIOANAL. CHEM., vol. 386, September 2006 (2006-09-01), pages 1649 - 1655, XP003014113 *
KAMISETTY N.K. ET AL.: "Fabrication of efficient DNA microarray by additional surface modification and functional probe design", NUCLEIC ACIDS SYMP. SER., vol. 49, September 2005 (2005-09-01), pages 225 - 226, XP003014112 *
KÖHLER J. ET AL.: "Comprehensive characterization of some silica-based stationary phase for high-performance liquid chromatography", J. CHROMATOGR., vol. 352, 1986, pages 275 - 305, XP003014115 *
OH S.J. ET AL.: "Characteristics of DNA Microarrays Fabricated on Various Aminosilane Layers", LANGMUIR, vol. 18, 2002, pages 1764 - 1769, XP003014114 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515138A (en) * 2005-07-07 2009-04-09 ザ ユニヴァーシティー オブ ニューカッスル Immobilization of biological molecules
US8497106B2 (en) 2005-07-07 2013-07-30 The University Of Newcastle Immobilisation of biological molecules
WO2013001895A1 (en) * 2011-06-28 2013-01-03 大日本印刷株式会社 Carrier for material immobilization for use in immunoassay
WO2013001894A1 (en) * 2011-06-28 2013-01-03 大日本印刷株式会社 Base material having hydrophilic layer
JP2013011480A (en) * 2011-06-28 2013-01-17 Dainippon Printing Co Ltd Base material having hydrophilic layer
JP2013011479A (en) * 2011-06-28 2013-01-17 Dainippon Printing Co Ltd Carrier for immobilizing material for use in immunoassay
US10197568B2 (en) 2011-06-28 2019-02-05 Dai Nippon Printing Co., Ltd. Base material comprising hydrophilic layer
JP2014006226A (en) * 2012-06-27 2014-01-16 Nippon Telegr & Teleph Corp <Ntt> Biomolecule immobilization carrier and biomolecule immobilization method

Also Published As

Publication number Publication date
JPWO2007069608A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
US6387631B1 (en) Polymer coated surfaces for microarray applications
EP3020831B1 (en) Methods for helicase based amplification and detection of polynucleotides
EP1692152B1 (en) Improvements in or relating to polynucleotide arrays
US20020028455A1 (en) Methods and reagents for assembling molecules on solid supports
GB2456669A (en) Assay ligates random primers to microarray probes to increase efficiency
JP2007506429A (en) Polymeric nucleic acid hybridization probe
JP2003505109A (en) Attachment of oligonucleotides to solid support by Schiff base-type binding for capture and detection of nucleic acids
AU2003225621A1 (en) Surface modification, linker attachment, and polymerization methods
Uszczyńska et al. Application of click chemistry to the production of DNA microarrays
JP3883539B2 (en) Method for producing hydrogel biochip using radial polyethylene glycol derivative having epoxy group
WO2007069608A1 (en) Process for production of probe-immobilizing supports, process for production of dna arrays, and probe-immobilizing supports
JP4704325B2 (en) Microarray substrate and manufacturing method thereof
US20070190537A1 (en) Solid phase synthesis
WO2005021725A2 (en) Nucleic acid analysis method conducted in small reaction volumes
US7049073B2 (en) Double stranded nucleic acid biochips
Wittmann Immobilisation of DNA on Chips: Immobilization of DNA on Microarrays
JP4635707B2 (en) Detection surface, method for producing the detection surface, and method for controlling the fixed density of the probe substance
KR100450822B1 (en) A method of preparing a hydrogel biochip by using satar-like PEG derivatives
US8313905B2 (en) Detection oligomer and method for controlling quality of biochip using detection oligomer
JP4779147B2 (en) Nucleotide derivatives and uses thereof
JP2007078399A (en) Solid support body, and dna chip
JP3888613B2 (en) Nucleic acid immobilization method, microarray, and gene analysis method using the same
Ratajczak et al. The “clickable” method for oligonucleotide immobilization onto azide-functionalized microarrays
WO2006095830A1 (en) Linker compound, probe, and carrier having probe immobilized thereon
Frydrych-Tomczak et al. Application of epoxy functional silanes in the preparation of DNA microarrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007550180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834525

Country of ref document: EP

Kind code of ref document: A1