WO2013001585A1 - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
WO2013001585A1
WO2013001585A1 PCT/JP2011/007173 JP2011007173W WO2013001585A1 WO 2013001585 A1 WO2013001585 A1 WO 2013001585A1 JP 2011007173 W JP2011007173 W JP 2011007173W WO 2013001585 A1 WO2013001585 A1 WO 2013001585A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
transfer member
heat transfer
battery
unit cells
Prior art date
Application number
PCT/JP2011/007173
Other languages
French (fr)
Japanese (ja)
Inventor
俊樹 糸井
永山 雅敏
安井 俊介
大輔 岸井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013001585A1 publication Critical patent/WO2013001585A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/623Portable devices, e.g. mobile telephones, cameras or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module, and more particularly to a battery module in which a plurality of batteries are stored in a storage container and electrically connected in parallel to each other.
  • lithium ion secondary batteries are characterized by high electromotive force and high energy density while being lightweight. For this reason, the demand for lithium ion secondary batteries as driving power sources for many types of mobile communication devices and portable electronic devices such as mobile phones, digital cameras, video cameras, and notebook computers is increasing.
  • the battery pack is configured by mounting a plurality of battery modules including one or more batteries.
  • Patent Document 1 discloses a configuration having a pattern wiring in which the batteries are connected to each other and wiring for detecting the voltage or temperature of each battery is formed on a printed circuit board. Yes. With such a configuration, it is not necessary to newly provide a lead wire or the like for detecting a voltage or the like connected to each battery, so that the size can be reduced.
  • Patent Document 2 discloses a battery pack in which a plurality of power supply modules are housed in a holder case and connected via an end plate. In Patent Document 2, it is said that the connection failure can be reduced and the size can be reduced by providing the end plate with a sensor lead and a power supply lead for connecting the power supply modules.
  • a battery is provided with a vent mechanism or a safety valve for venting gas to release internal gas. At this time, the exhausted gas may react with oxygen and burn, which has a problem in reliability and safety.
  • the battery module shown in Patent Document 3 is provided with an opening on the partition wall of the case so as to face the safety valve of the battery, and the ejected gas is discharged outside without filling the battery chamber.
  • the discharge of the ejected gas is described, there is no disclosure or suggestion of preventing combustion due to the reaction between oxygen and gas. For this reason, when combustion of gas occurs, it is unclear how to prevent combustion in the partition wall.
  • a combustion prevention device or the like is arranged, there arises a problem that the battery module cannot be reduced in size.
  • the present invention has been made in view of the above-mentioned problems, and its main purpose is to realize miniaturization and thinning, and to minimize the influence on the surrounding batteries due to the malfunction of the defective battery.
  • An object of the present invention is to provide a battery module capable of satisfying the requirements.
  • the battery module of the present invention includes a plurality of unit cells each having an open part for discharging gas generated inside the battery, and a plurality of cylindrical storage units for storing the plurality of unit cells.
  • a ventilation path parallel to the axial direction of the storage section is provided between the plurality of storage sections, and one end side of the ventilation path communicates with the internal space and the other end side communicates with the outside.
  • the battery module of the present invention further includes an electrode connection body that electrically connects the electrode portions of the plurality of unit cells, and the electrode connection body is provided so as to be in close contact with the plurality of unit cells, and includes a plurality of storage units. Each of these is preferably sealed.
  • This configuration can prevent an abnormal battery from affecting the surrounding batteries.
  • the battery module of the present invention it is possible to prevent the high temperature gas from being ejected from the battery module even when a situation in which the high temperature gas is ejected from the battery occurs while suppressing an increase in the size and weight of the battery module.
  • a high battery module can be obtained.
  • FIG. 1 is a cross-sectional view showing a unit cell used in a battery module according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing the configuration of the battery module according to the embodiment of the present invention.
  • FIG. 3 is a perspective view showing a battery module according to an embodiment of the present invention.
  • FIG. 4A is a perspective view showing an example of a heat transfer member of a battery module according to an embodiment of the present invention
  • FIG. 4B is a perspective view showing an example of a heat transfer member in which a unit cell is accommodated. It is.
  • FIG. 5A is a perspective view showing another example of the heat transfer member of the battery module according to the embodiment of the present invention, and FIG.
  • FIG. 5B is another example of the heat transfer member in which the unit cell is accommodated.
  • FIG. FIG. 6A is a plan view showing a heat transfer member in which a unit cell of the battery module according to the embodiment of the present invention is housed, and FIG. 6B shows a positive electrode on the heat transfer member of FIG. It is a top view which shows the structure in which the connection body for operation was provided.
  • FIG. 7 is a cross-sectional view showing a battery module according to an embodiment of the present invention.
  • FIG. 8 is a schematic view showing a temperature lowering mechanism of the battery module according to one embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a unit cell used in a battery module according to an embodiment of the present invention.
  • the battery module of the present embodiment is configured as an assembly including a plurality of unit cells arranged and a plurality of unit cells and a heat transfer member for storing the unit cells.
  • a cylindrical lithium ion secondary battery can be adopted as the unit cell constituting the battery module according to the present embodiment.
  • This lithium ion secondary battery may be a general-purpose battery used as a power source for portable electronic devices such as notebook computers.
  • a high-performance general-purpose battery can be used as a unit cell of the battery module, it is possible to easily improve the performance and cost of the battery module.
  • the unit cell is provided with a safety mechanism that releases gas to the outside of the battery when the pressure in the battery increases due to an internal short circuit or the like.
  • the unit cell used in the present embodiment is not limited to the shape and type described above, and may be, for example, a square battery or the like, or a nickel hydrogen battery or the like.
  • the unit cell 100 which comprises the battery module which concerns on this embodiment has the electrode group 4 by which the positive electrode plate 1 and the negative electrode plate 2 were wound through the separator 3 with a non-aqueous electrolyte.
  • the battery case 7 is housed. Insulating plates 9, 10 are arranged above and below the electrode group 4, the positive electrode plate 1 is joined to the filter 12 via the positive electrode lead 5, and the negative electrode plate 2 serves as the negative electrode terminal via the negative electrode lead 6. It is joined to the bottom of the case 7.
  • the filter 12 is connected to an inner cap 13, and the protrusion of the inner cap 13 is joined to a metal valve body 14. Further, the valve body 14 is connected to a terminal plate 8 that also serves as a positive electrode terminal, and the terminal plate 8 has an open portion 8a.
  • the terminal plate 8, the valve body 14, the inner cap 13 and the filter 12 are integrated, and the opening of the battery case 7 is sealed via the gasket 11.
  • valve body 14 When an internal short circuit or the like occurs in the unit cell 100 and the pressure in the unit cell 100 increases, the valve body 14 swells toward the terminal plate 8 and the inner cap 13 and the valve body 14 are disconnected from each other. Is cut off. When the pressure in the unit cell 100 further increases, the valve body 14 is broken. Thereby, the gas generated in the unit cell 100 is discharged to the outside through the through hole 12 a of the filter 12, the through hole 13 a of the inner cap 13, the tear of the valve body 14, and the opening 8 a of the terminal plate 8.
  • safety mechanism for discharging the gas generated in the unit cell 100 to the outside as described above is not limited to the structure shown in FIG. 1, but may be another structure.
  • FIG. 2 is an exploded perspective view showing the configuration of the battery module according to one embodiment of the present invention
  • FIG. 3 is a perspective view showing the configuration of the battery module according to one embodiment of the present invention.
  • the battery module 200 includes a plurality (20 in FIG. 2) of unit cells 100, a heat transfer member 220, a positive electrode side holder 250, a negative electrode side holder 260, and a positive electrode.
  • the connecting member (electrode connecting member) 230, the negative electrode connecting member 240, and the lid 270 are configured.
  • the plurality of unit cells 100 are housed in the housing portion 222 of the heat transfer member 220 so that the open portion 8a of the terminal plate 8, that is, the positive electrode faces the same direction (upward in FIG. 2).
  • the negative electrode connector 240 is welded to the negative electrodes of the plurality of unit cells 100 with the negative electrode side holder 260 sandwiched between the negative electrodes of the unit cells 100.
  • the positive electrode connection body 230 is welded to the positive electrodes of the plurality of unit cells 100 across the positive electrode side holder 250 on the positive electrode side of the unit cell 100, and the unit cell 100 that is exposed from the storage unit 222 by the lid 270 is opened.
  • the internal space (exhaust chamber) is formed between the positive electrode connection body 230 and the lid body 270 so as to cover the portion 8 a and the positive electrode connection body 230.
  • the positive electrode side holder 250 and the negative electrode side holder 260 are fixed with screws 280 from above and below the battery module 200.
  • a battery module 200 in which all the components are combined is obtained.
  • the unit cells 100 are not visible from the outside.
  • the positive electrode output terminal 232 at the end of the positive electrode connection body 230 and the negative electrode output terminal 242 at the end of the negative electrode connection body 240 are exposed to the outside of the battery module 200 in order to take out current from the battery module 200. It has a structure.
  • FIG. 4A is a perspective view showing an example of a heat transfer member of a battery module according to an embodiment of the present invention
  • FIG. 4B is a perspective view showing an example of a heat transfer member in which a unit cell is accommodated.
  • FIG. 5 (a) is a perspective view showing another example of the heat transfer member of the battery module according to the embodiment of the present invention
  • FIG. 5 (b) shows another heat transfer member in which the unit cell is housed.
  • FIG.6 (a) is a top view which shows the heat-transfer member in which the unit cell of the battery module which concerns on one Embodiment of this invention was accommodated
  • FIG.6 (b) is the heat-transfer member of Fig.6 (a). It is a top view which shows the structure by which the connection body for positive electrodes was provided.
  • FIG. 7 is a cross-sectional view showing a battery module according to an embodiment of the present invention.
  • the heat transfer member 220 is formed with a plurality of cylindrical storage portions 222 that store the unit cells 100.
  • the “cylindrical shape” refers to a shape having a hollow portion in the axial direction, and its cross-sectional shape is not particularly limited, and includes, for example, a circle, an ellipse, a quadrangle, and the like. That is, the shape of the storage portion 222 can be determined as appropriate according to the shape of the unit cell 100 to be stored.
  • the cylindrical storage unit 222 is used because the cylindrical unit cell 100 is used. The shape is not limited to this, and any shape that can accommodate the unit cell 100 may be used.
  • the storage unit 222 has an inner diameter that is about 0.2 mm larger than the outer diameter of the unit cell 100 in order to store the cylindrical unit cell 100, and is arranged in a hexagonal close-packed lattice shape. Furthermore, the heat transfer member 220 is formed with a ventilation path 221 that is a through hole parallel to the axial direction of the storage portion 222. The air passage 221 is disposed at the center of gravity of the three storage portions 222 adjacent to each other.
  • the unit cell 100 is a battery having a size of, for example, “18650” (the outer diameter is 18.2 mm at the maximum and the height is 65 mm)
  • the storage unit 222 has a length of 55 mm.
  • the inner diameter of 222 is 18.4 mm.
  • the heat transfer member 220 has a structure in which the housing portion 222 and the air passage 221 passing through the block made of metal or the like are formed.
  • a heat transfer member 225 having a structure in which the side surfaces of the plurality of cylindrical members 226 are connected by welding or the like may be used.
  • the unit cell 100 is stored in each of the storage portions 227 that are cavities of the plurality of cylindrical members 226.
  • the heat transfer member 225 has, for example, 20 cylindrical members 226 each having a plate thickness of 0.4 mm, an inner diameter of 18.4 mm, and a height of 55 mm arranged in a hexagonal close-packed lattice.
  • the heat transfer member 225 can have the ventilation path 228 in the gravity center of the three cylindrical members 226 (housing part 227) adjacent to each other.
  • the air passage 221 is arranged around the unit cell 100 at intervals of 60 °.
  • the unit cell 100 surrounded by six other unit cells 100 has a structure in which six air passages 221 are arranged around the unit cell 100.
  • the positive electrode connector 230 is connected to the positive electrode side via the positive electrode side holder 250 with respect to the heat transfer member 220 containing the plurality of unit cells 100.
  • the negative electrode connector 240 is combined with the negative electrode side holder 260 on the side.
  • a lid 270 is provided so as to cover the positive electrode connection body 230, and an internal space 271 surrounded by the positive electrode connection body 230 and the lid body 270 is formed.
  • the positive electrode side holder 250, the positive electrode connection body 230, the negative electrode side holder 260, and the negative electrode connection body 240 are combined with the heat transfer member 220 at the same position as the air passage 221, and through holes 254, 233 having the same size. 262 and 243, respectively. For this reason, the battery module 200 has a hole communicating from the positive electrode connector 230 to the negative electrode connector 240.
  • the positive electrode side holder 250 and the negative electrode side holder 260 when combined with the heat transfer member 220, have a concave portion having the same size and the same size at the same position as the housing portion 222, and a slightly smaller opening at the bottom of the concave portion. Has a part.
  • the positive electrode connection body 230 and the negative electrode connection body 240 are electrically connected to the unit cell 100 by disposing the positive electrode connection terminal 231 and the negative electrode connection terminal 241 at the same position as the housing portion 222.
  • the positive electrode connection body 230 has an opening 234 that communicates with the open portion 8 a of the unit cell 100 around the positive electrode connection terminal 231.
  • the open part 8 a of the unit cell 100 communicates with the internal space 271 through the opening 234, and the high temperature gas from the open part 8 a is released into the internal space 271.
  • the positive electrode connection body 230 is provided so as to be in close contact with each of the unit cells 100 via the positive electrode side holder 250, and seals the storage portion 222.
  • the sealing here does not necessarily mean a completely sealed state, but includes a state in which a gas that does not affect the unit cell 100 enters the storage unit 222.
  • the positive electrode connection body 230 made of a conductor is used, the insulating positive electrode side is provided so that the positive electrode connection body 230 and the negative electrode (battery case 7) of the unit cell 100 are not short-circuited.
  • the positive electrode connector 230 is in close contact with the unit cell 100 through the holder 250.
  • the configuration is not limited to this as long as the positive electrode connector 230 and the negative electrode (battery case 7) of the unit cell 100 can prevent a short circuit.
  • the positive electrode connection body 230 may be formed by forming a wiring pattern for connecting the positive electrodes of the plurality of unit cells 100 in parallel on an insulating wiring board.
  • the positive electrode side holder 250 is not provided. It doesn't matter.
  • the storage unit 222 is hermetically sealed, so that the high-temperature gas released from the abnormal unit cell 100 does not enter the surrounding normal unit cell 100 and the normal unit cell 100 generates heat or the like. Can be prevented.
  • the unit cell 100 since the unit cell 100 has the open part 8a that discharges the high-temperature gas only on the positive electrode side, there is no need to provide an opening in the negative electrode connector 240, but the positive electrode connector 230 and the negative electrode It is also possible to use the connecting member 240 for the same part.
  • FIG. 8 is a schematic view showing a temperature lowering mechanism of the battery module according to this embodiment.
  • a high temperature gas of 700 ° C. to 1000 ° C. is discharged from the open portion 8a in the terminal plate 8 on the positive electrode side of the unit cell 100x.
  • the high-temperature gas discharged from the open portion 8 a passes through the opening 234 of the positive electrode connection body 230 and is discharged into the internal space 271 surrounded by the positive electrode connection body 230 and the lid body 270. Since the volume of the internal space 271 does not allow all of the released high temperature gas to enter, the high temperature gas released to the internal space 271 passes through the communicating passage 221 and the through holes 233, 254, 262, 243, respectively. Then, it is pushed out from the negative electrode connector 240 side (downward in the figure). In FIG. 8, the direction in which the hot gas flows is indicated by an arrow.
  • the air passage 221 and the through holes 233, 254, 262, and 243 do not have an opening area sufficient to discharge the discharge amount of the high-temperature gas discharged from the unit cell 100x per unit time, so that quick discharge is possible. Can not. For this reason, the hot gas is discharged while contacting the inner wall of the air passage 221 of the heat transfer member 220.
  • the heat transfer member 220 absorbs heat of the high temperature gas at 700 ° C. to 1000 ° C.
  • the internal space 271 has a pressure higher than the atmospheric pressure, and air does not flow in from the outside. No heat is generated by combustion.
  • the air passage 221 does not have an opening area sufficient to discharge the discharge amount of the hot gas per unit time, the hot gas gradually moves to the atmospheric pressure as it flows through the discharge passage such as the air passage 221. The pressure will drop. At this time, the temperature of the hot gas decreases due to adiabatic expansion. For these reasons, the hot gas is cooled to about 300 ° C. when discharged from the through hole 243 of the negative electrode connector 240 to the outside.
  • the temperature of the high temperature gas decreases to about 300 ° C. while passing through the air passage 221.
  • the positive electrode connector 230 is provided so as to be in close contact with the plurality of unit cells 100 and the plurality of storage units 222 are sealed, so that the high temperature gas is introduced from the unit cell 100x in which an abnormality has occurred. Even if released into the space 271, the hot gas can be prevented from entering the other normal unit cell 100, and the normal unit cell 100 can be prevented from being affected by heat generation or the like.
  • the air passage 221 of the heat transfer member 220 has a long and narrow shape in order to lower the temperature while allowing the generated high temperature gas to pass therethrough.
  • the length of the air passage 221 is desirably 20 times or more the shortest distance from the center point of the opening cross section of the air passage 221 to the inner wall.
  • the “center point” means a point farthest from the inner wall of the air passage 221 and is a point where heat is most difficult to be transmitted to the heat transfer member 220. In this way, the high temperature gas released from the unit cell 100 is sufficiently absorbed by the heat transfer member 220 when passing through the air passage 221, and the temperature at the center point where heat is most difficult to transfer is released to the outside at 300 ° C. or less.
  • the ventilation path 221 has a length of, for example, 20 mm to 200 mm, an opening area of 0.5 mm 2 to 50 mm 2 , and when the unit cell 100 is a battery having a size of “18650”, for example, The length is 55 mm, and the inner diameter of the air passage 221 is 3 mm.
  • the heat transfer member 220 is a metal having a thermal conductivity of 200 W / (m ⁇ K) or more in order to quickly dissipate the heat to the outside of the battery module when any of the unit cells 100 abnormally generates heat. Or it is comprised with the ceramic material.
  • aluminum having a thermal conductivity of 236 W / (m ⁇ K) is used for the heat transfer member 220.
  • the heat transfer member has a through hole substantially parallel to the storage portion between the plurality of storage portions, so that the unit cell can be exhausted in an abnormal state without hindering downsizing. Since the hot gas to be cooled is cooled when passing through the air passage and the through hole, the temperature of the hot gas can be lowered.
  • the positive electrode connection body 230 and the negative electrode connection body 240 in this embodiment connect the positive electrode and the negative electrode of the several unit cell 100 in parallel, respectively, the form will not be ask
  • the positive electrode connection body 230 and the negative electrode connection body 240 may be formed of bus bars made of a metal material.
  • a negative electrode connection body is turned to a negative electrode upwards.
  • the high temperature gas may be discharged to the outside from the negative electrode side.
  • the wiring pattern which connects the positive electrode and negative electrode of the several unit cell 100 in parallel may be formed on the insulating wiring board.
  • the wiring board may be disposed on the positive electrode side of the unit cell 100, and wiring patterns for connecting the positive electrode and the negative electrode in parallel may be formed on the wiring board. At this time, it is not necessary to provide a wiring board on the negative electrode side of the unit cell 100.
  • the present invention is useful as a battery module storing a battery or the like that is required to be safe and small in size and weight, as well as an electronic device including the battery module and an electronic device including a storage portion.

Abstract

A battery module (200) comprises: a plurality of unit cells respectively further comprising discharge units which eject gas which is emitted within the cells; a heat transmission member (220) further comprising a plurality of cylindrical housing units which house the plurality of unit cells; and a lid body (270) which covers the discharge units of the plurality of unit cells and forms an internal space with the heat transmission member (220). The discharge units communicate with the internal space. The heat transmission member (220) further comprises a ventilation path between the plurality of housing units which is parallel to the axial direction of the housing units. One end side of the ventilation path communicates with the internal space, and the other end side thereof communicates with the outside.

Description

電池モジュールBattery module
 本発明は、電池モジュールに関し、特に、複数の電池が収納容器内に収納され、互いに電気的に並列接続された電池モジュールに関する。 The present invention relates to a battery module, and more particularly to a battery module in which a plurality of batteries are stored in a storage container and electrically connected in parallel to each other.
 近年、省資源及び省エネルギーの観点から、繰り返し使用できるニッケル水素、ニッケルカドミウム及びリチウムイオン等の二次電池の需要が高まっている。中でもリチウムイオン二次電池は、軽量でありながら、起電力が高く、高エネルギー密度であるという特徴を有している。このため、リチウムイオン二次電池は、携帯電話、デジタルカメラ、ビデオカメラ及びノート型パソコン等の多くの種類の移動体通信機器及び携帯型電子機器の駆動用電源としての需要が拡大している。 In recent years, demands for secondary batteries such as nickel metal hydride, nickel cadmium, and lithium ion that can be used repeatedly are increasing from the viewpoint of resource saving and energy saving. Among these, lithium ion secondary batteries are characterized by high electromotive force and high energy density while being lightweight. For this reason, the demand for lithium ion secondary batteries as driving power sources for many types of mobile communication devices and portable electronic devices such as mobile phones, digital cameras, video cameras, and notebook computers is increasing.
 一方、化石燃料の使用量を低減し、COの排出量を削減するために、自動車等のモータ駆動用の電源として、リチウムイオン二次電池の電池パックに対する期待が大きくなっている。この電池パックは、所望の電圧及び容量を得るために、1つ以上の電池からなる電池モジュールを複数個搭載して構成されている。 On the other hand, in order to reduce the amount of fossil fuel used and reduce the amount of CO 2 emitted, there is an increasing expectation for a battery pack of a lithium ion secondary battery as a power source for driving a motor such as an automobile. In order to obtain a desired voltage and capacity, the battery pack is configured by mounting a plurality of battery modules including one or more batteries.
 そのような電池モジュールの開発において、自動車等の限られた空間に、所定の電力を蓄積する電池モジュールを収納するために、電池モジュールの小型化が要請されている。 In the development of such a battery module, it is required to reduce the size of the battery module in order to store the battery module that stores predetermined power in a limited space such as an automobile.
 そこで、複数の電池からなる電池モジュールにおいて、各電池間を接続し、各電池の電圧又は温度等を検出する配線をプリント基板に形成したパターン配線を有する構成が、例えば特許文献1に提示されている。このような構成により、各電池と接続する電圧等の検出用のリード線等を新たに設ける必要が無くなるため、小型化を図ることを可能としている。同様に、複数の電源モジュールをホルダーケースに収納し、エンドプレートを介して連結する電池パックが、例えば特許文献2に提示されている。特許文献2では、エンドプレートに、各電源モジュール間を接続するセンサーリード及び電源リードを設けることにより、接続不良の低減と小型化が図れるとしている。 Therefore, in a battery module composed of a plurality of batteries, for example, Patent Document 1 discloses a configuration having a pattern wiring in which the batteries are connected to each other and wiring for detecting the voltage or temperature of each battery is formed on a printed circuit board. Yes. With such a configuration, it is not necessary to newly provide a lead wire or the like for detecting a voltage or the like connected to each battery, so that the size can be reduced. Similarly, for example, Patent Document 2 discloses a battery pack in which a plurality of power supply modules are housed in a holder case and connected via an end plate. In Patent Document 2, it is said that the connection failure can be reduced and the size can be reduced by providing the end plate with a sensor lead and a power supply lead for connecting the power supply modules.
 また、電池モジュールに収納する電池の高容量化が進むに伴って、利用の形態によっては、電池自身が発熱して高温になる場合がある。このため、電池自体の安全性と共に、それらを集合した電池モジュールの安全性がより重要となっている。すなわち、電池は、過充電、過放電、内部短絡又は外部短絡により発生するガスによって内圧の上昇を生じ、場合によっては、電池の外装ケースが棄損する可能性がある。そこで、一般に、電池には、ガス抜きのためのベント機構又は安全弁等が設けられ、内部のガスを放出している。このとき、排出されるガスが酸素と反応して燃焼するおそれがあり、信頼性及び安全性に問題があった。 Also, as the capacity of the battery stored in the battery module increases, the battery itself may generate heat and become high temperature depending on the form of use. For this reason, not only the safety of the battery itself, but also the safety of the battery module assembled with them is becoming more important. That is, in the battery, the internal pressure increases due to gas generated by overcharge, overdischarge, internal short circuit, or external short circuit, and in some cases, the battery outer case may be lost. Therefore, generally, a battery is provided with a vent mechanism or a safety valve for venting gas to release internal gas. At this time, the exhausted gas may react with oxygen and burn, which has a problem in reliability and safety.
 そこで、複数の電池をケース内の電池室に収納し、各電池の安全弁と対向する区画壁に開口部を設けることにより、異常状態時に電池から噴射されるガスを排気室を介して排出口から外部に排出する構成の電源装置(電池モジュール)が、例えば特許文献3に提示されている。 Therefore, by storing a plurality of batteries in the battery chamber in the case and providing an opening in the partition wall facing the safety valve of each battery, the gas injected from the battery in an abnormal state is discharged from the discharge port through the exhaust chamber. A power supply device (battery module) configured to be discharged to the outside is presented in Patent Document 3, for example.
特開2000-208118号公報JP 2000-208118 A 特開2000-223166号公報JP 2000-223166 A 特開2007-27011号公報JP 2007-27011 A
 しかしながら、特許文献1及び特許文献2に示す電池モジュールは、1個の電池が異常に発熱し安全弁が作動した場合、発熱した電池の熱量、及び噴出するガスの燃焼による周囲電池への影響を抑制できず、連鎖的に各電池が発熱するという問題がある。すなわち、複数の電池を搭載する電池モジュールにおいては、異常を生じた電池の影響を、いかに周囲の電池への拡大を抑制して最小限に留めるかが重要となっている。 However, in the battery modules shown in Patent Document 1 and Patent Document 2, when one battery abnormally generates heat and the safety valve operates, the amount of heat of the generated battery and the influence of surrounding gas due to the combustion of the ejected gas are suppressed. There is a problem that the batteries generate heat in a chain. That is, in a battery module equipped with a plurality of batteries, it is important how to suppress the influence of an abnormal battery to a minimum by suppressing expansion to surrounding batteries.
 また、特許文献3に示す電池モジュールは、ケースの区画壁に電池の安全弁に対向して開口部を設け、噴出したガスを電池室内に充満させずに外部に排出するものである。しかしながら、噴出したガスの排出については記載されているが、酸素とガスとの反応による燃焼を防ぐこと等は、何ら開示も示唆もされていない。このため、ガスの燃焼が生じた場合、区画壁内でどのように燃焼を防止するかが不明である。また、燃焼防止装置等を配置すると電池モジュールを小型化できないという問題が生じる。 Also, the battery module shown in Patent Document 3 is provided with an opening on the partition wall of the case so as to face the safety valve of the battery, and the ejected gas is discharged outside without filling the battery chamber. However, although the discharge of the ejected gas is described, there is no disclosure or suggestion of preventing combustion due to the reaction between oxygen and gas. For this reason, when combustion of gas occurs, it is unclear how to prevent combustion in the partition wall. Moreover, when a combustion prevention device or the like is arranged, there arises a problem that the battery module cannot be reduced in size.
 本発明は前記の問題に鑑みてなされたもので、その主な目的は、小型化及び薄型化を実現すると共に、不具合を生じた電池の異常による周囲の電池への影響を最小限にすることが可能な電池モジュールを提供することにある。 The present invention has been made in view of the above-mentioned problems, and its main purpose is to realize miniaturization and thinning, and to minimize the influence on the surrounding batteries due to the malfunction of the defective battery. An object of the present invention is to provide a battery module capable of satisfying the requirements.
 前記の目的を達成するために、本発明の電池モジュールは、電池内部で発生したガスを排出する開放部をそれぞれ有する複数の素電池と、複数の素電池を収納する複数の筒状の収納部を有する伝熱部材と、複数の素電池の開放部を覆い、伝熱部材との間に内部空間を形成する蓋体とを備え、開放部は、内部空間と連通し、伝熱部材は、複数の収納部同士の間に収納部の軸方向に並行な通気路を有し、通気路の一端側は前記内部空間と連通し、他端側は外部と連通している構成である。 In order to achieve the above object, the battery module of the present invention includes a plurality of unit cells each having an open part for discharging gas generated inside the battery, and a plurality of cylindrical storage units for storing the plurality of unit cells. A heat transfer member, and a cover that covers the open portions of the plurality of unit cells and forms an internal space between the heat transfer members, the open portion communicates with the internal space, and the heat transfer member is A ventilation path parallel to the axial direction of the storage section is provided between the plurality of storage sections, and one end side of the ventilation path communicates with the internal space and the other end side communicates with the outside.
 この構成により、電池から高温ガスが噴出するような事態が発生したとしても、噴出した高温ガスが伝熱部材に設けられた通気路を通過するときに降温できる。また、伝熱部材の電池を収納する複数の収納部の間の領域に通気路を設けているので電池モジュールの小型化を妨げることがない。 With this configuration, even if a situation occurs in which high temperature gas is ejected from the battery, the temperature can be lowered when the ejected high temperature gas passes through the air passage provided in the heat transfer member. Moreover, since the ventilation path is provided in the area | region between the some accommodating parts which accommodates the battery of a heat-transfer member, size reduction of a battery module is not prevented.
 本発明の電池モジュールは、複数の素電池の電極部同士をそれぞれ電気的に接続する電極接続体をさらに備え、電極接続体は、複数の素電池に密着するように設けられ、複数の収納部のそれぞれを密閉することが好ましい。 The battery module of the present invention further includes an electrode connection body that electrically connects the electrode portions of the plurality of unit cells, and the electrode connection body is provided so as to be in close contact with the plurality of unit cells, and includes a plurality of storage units. Each of these is preferably sealed.
 この構成により、異常が生じた電池がその周囲の電池に影響を与えることを防ぐことができる。 This configuration can prevent an abnormal battery from affecting the surrounding batteries.
 本発明の電池モジュールによると、電池モジュールのサイズ及び重量の増大を抑制しながら、電池から高温ガスが噴出するような事態が発生した場合でも、電池モジュールから高温ガスの噴出を防止できる安全性が高い電池モジュールを得ることができる。 According to the battery module of the present invention, it is possible to prevent the high temperature gas from being ejected from the battery module even when a situation in which the high temperature gas is ejected from the battery occurs while suppressing an increase in the size and weight of the battery module. A high battery module can be obtained.
図1は本発明の一実施形態に係る電池モジュールに用いられる素電池を示す断面図である。FIG. 1 is a cross-sectional view showing a unit cell used in a battery module according to an embodiment of the present invention. 図2は本発明の一実施形態に係る電池モジュールの構成を示す分解斜視図である。FIG. 2 is an exploded perspective view showing the configuration of the battery module according to the embodiment of the present invention. 図3は本発明の一実施形態に係る電池モジュールを示す斜視図である。FIG. 3 is a perspective view showing a battery module according to an embodiment of the present invention. 図4(a)は本発明の一実施形態に係る電池モジュールの伝熱部材の一例を示す斜視図であり、図4(b)は素電池が収納された伝熱部材の一例を示す斜視図である。FIG. 4A is a perspective view showing an example of a heat transfer member of a battery module according to an embodiment of the present invention, and FIG. 4B is a perspective view showing an example of a heat transfer member in which a unit cell is accommodated. It is. 図5(a)は本発明の一実施形態に係る電池モジュールの伝熱部材の他の例を示す斜視図であり、図5(b)は素電池が収納された伝熱部材の他の例を示す斜視図である。FIG. 5A is a perspective view showing another example of the heat transfer member of the battery module according to the embodiment of the present invention, and FIG. 5B is another example of the heat transfer member in which the unit cell is accommodated. FIG. 図6(a)は本発明の一実施形態に係る電池モジュールの素電池が収納された伝熱部材を示す平面図であり、図6(b)は図6(a)の伝熱部材に正極用接続体が設けられた構成を示す平面図である。FIG. 6A is a plan view showing a heat transfer member in which a unit cell of the battery module according to the embodiment of the present invention is housed, and FIG. 6B shows a positive electrode on the heat transfer member of FIG. It is a top view which shows the structure in which the connection body for operation was provided. 図7は本発明の一実施形態に係る電池モジュールを示す断面図である。FIG. 7 is a cross-sectional view showing a battery module according to an embodiment of the present invention. 図8は本発明の一実施形態に係る電池モジュールの降温メカニズムを示す概要図である。FIG. 8 is a schematic view showing a temperature lowering mechanism of the battery module according to one embodiment of the present invention.
 以下、本発明を実施するための形態について、図面を参照しながら説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. Moreover, it can change suitably in the range which does not deviate from the range which has the effect of this invention.
 本発明の一実施形態に係る電池モジュールに用いられる素電池について図1を参照しながら説明する。図1は本発明の一実施形態に係る電池モジュールに用いられる素電池を示す断面図である。なお、本実施形態の電池モジュールは、複数の素電池が配列され、複数の素電池と素電池を収納する伝熱部材等を含めた集合体として構成される。 A unit cell used in a battery module according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing a unit cell used in a battery module according to an embodiment of the present invention. Note that the battery module of the present embodiment is configured as an assembly including a plurality of unit cells arranged and a plurality of unit cells and a heat transfer member for storing the unit cells.
 本実施形態に係る電池モジュールを構成する素電池は、例えば、円筒形のリチウムイオン二次電池を採用することができる。このリチウムイオン二次電池は、ノート型パソコン等の携帯用電子機器の電源として使用される汎用電池であってもよい。この場合、高性能の汎用電池を、電池モジュールの素電池として使用することができるため、電池モジュールの高性能化及び低コスト化をより容易に図ることができる。また、素電池は、内部短絡等の発生により電池内の圧力が上昇したとき、ガスを電池外に放出する安全機構を備えている。また、本実施形態に用いられる素電池は、上記の形状及び種類に限らず、例えば、角形電池等であってもよく、ニッケル水素電池等であってもよい。 For example, a cylindrical lithium ion secondary battery can be adopted as the unit cell constituting the battery module according to the present embodiment. This lithium ion secondary battery may be a general-purpose battery used as a power source for portable electronic devices such as notebook computers. In this case, since a high-performance general-purpose battery can be used as a unit cell of the battery module, it is possible to easily improve the performance and cost of the battery module. Moreover, the unit cell is provided with a safety mechanism that releases gas to the outside of the battery when the pressure in the battery increases due to an internal short circuit or the like. In addition, the unit cell used in the present embodiment is not limited to the shape and type described above, and may be, for example, a square battery or the like, or a nickel hydrogen battery or the like.
 図1に示すように、本実施形態に係る電池モジュールを構成する素電池100は、正極板1と負極板2とがセパレータ3を介して捲回された電極群4が、非水電解液とともに、電池ケース7に収容されている。電極群4の上下には、絶縁板9、10が配され、正極板1は、正極リード5を介してフィルタ12に接合され、負極板2は、負極リード6を介して負極端子を兼ねる電池ケース7の底部に接合されている。 As shown in FIG. 1, the unit cell 100 which comprises the battery module which concerns on this embodiment has the electrode group 4 by which the positive electrode plate 1 and the negative electrode plate 2 were wound through the separator 3 with a non-aqueous electrolyte. The battery case 7 is housed. Insulating plates 9, 10 are arranged above and below the electrode group 4, the positive electrode plate 1 is joined to the filter 12 via the positive electrode lead 5, and the negative electrode plate 2 serves as the negative electrode terminal via the negative electrode lead 6. It is joined to the bottom of the case 7.
 フィルタ12は、インナーキャップ13に接続され、インナーキャップ13の突起部は、金属製の弁体14に接合されている。さらに、弁体14は、正極端子を兼ねる端子板8に接続されており、この端子板8は開放部8aを有している。端子板8、弁体14、インナーキャップ13及びフィルタ12が一体となって、ガスケット11を介して、電池ケース7の開口部が封口されている。 The filter 12 is connected to an inner cap 13, and the protrusion of the inner cap 13 is joined to a metal valve body 14. Further, the valve body 14 is connected to a terminal plate 8 that also serves as a positive electrode terminal, and the terminal plate 8 has an open portion 8a. The terminal plate 8, the valve body 14, the inner cap 13 and the filter 12 are integrated, and the opening of the battery case 7 is sealed via the gasket 11.
 素電池100に内部短絡等が発生して、素電池100内の圧力が上昇すると、弁体14が端子板8に向かって膨れ、インナーキャップ13と弁体14との接合がはずれると、電流経路が遮断される。さらに素電池100内の圧力が上昇すると、弁体14が破断する。これによって、素電池100内に発生したガスは、フィルタ12の貫通孔12a、インナーキャップ13の貫通孔13a、弁体14の裂け目、及び端子板8の開放部8aを介して、外部へ排出される。 When an internal short circuit or the like occurs in the unit cell 100 and the pressure in the unit cell 100 increases, the valve body 14 swells toward the terminal plate 8 and the inner cap 13 and the valve body 14 are disconnected from each other. Is cut off. When the pressure in the unit cell 100 further increases, the valve body 14 is broken. Thereby, the gas generated in the unit cell 100 is discharged to the outside through the through hole 12 a of the filter 12, the through hole 13 a of the inner cap 13, the tear of the valve body 14, and the opening 8 a of the terminal plate 8. The
 なお、上記のような素電池100内に発生したガスを外部に排出する安全機構は、図1に示した構造に限定されず、他の構造であってもよい。 Note that the safety mechanism for discharging the gas generated in the unit cell 100 to the outside as described above is not limited to the structure shown in FIG. 1, but may be another structure.
 次に、本発明の一実施形態に係る電池モジュールについて図2及び図3を参照しながら説明する。図2は本発明の一実施形態に係る電池モジュールの構成を示す分解斜視図であり、図3は本発明の一実施形態に係る電池モジュールの構成を示す斜視図である。 Next, a battery module according to an embodiment of the present invention will be described with reference to FIGS. FIG. 2 is an exploded perspective view showing the configuration of the battery module according to one embodiment of the present invention, and FIG. 3 is a perspective view showing the configuration of the battery module according to one embodiment of the present invention.
 図2に示すように、本実施形態に係る電池モジュール200は、複数(図2では20個)の素電池100と、伝熱部材220と、正極側ホルダー250と、負極側ホルダー260と、正極用接続体(電極接続体)230と、負極用接続体240と、蓋体270とにより構成されている。 As shown in FIG. 2, the battery module 200 according to the present embodiment includes a plurality (20 in FIG. 2) of unit cells 100, a heat transfer member 220, a positive electrode side holder 250, a negative electrode side holder 260, and a positive electrode. The connecting member (electrode connecting member) 230, the negative electrode connecting member 240, and the lid 270 are configured.
 複数の素電池100を、伝熱部材220の収納部222に端子板8の開放部8a、すなわち、正極が同じ方向(図2では上方)を向くように収納する。そして、素電池100の負極側には負極側ホルダー260を挟んで負極用接続体240を複数の素電池100の負極に溶接する。また、素電池100の正極側には正極側ホルダー250を挟んで正極用接続体230を複数の素電池100の正極に溶接し、蓋体270により収納部222から出ている素電池100の開放部8a及び正極用接続体230を覆い、正極用接続体230と蓋体270との間に内部空間(排気室)を形成する。最後に、電池モジュール200の上及び下方向からネジ280により正極側ホルダー250及び負極側ホルダー260の固定を行う。これにより、図3に示すように、全ての構成部品が結合した電池モジュール200となる。なお、図3では、複数の素電池100は覆われているため、外部から素電池100は見えない。また、正極用接続体230の端部の正極出力端子232と、負極用接続体240の端部の負極出力端子242とは、電池モジュール200から電流を取り出すために、電池モジュール200の外部に露出した構造となっている。 The plurality of unit cells 100 are housed in the housing portion 222 of the heat transfer member 220 so that the open portion 8a of the terminal plate 8, that is, the positive electrode faces the same direction (upward in FIG. 2). Then, the negative electrode connector 240 is welded to the negative electrodes of the plurality of unit cells 100 with the negative electrode side holder 260 sandwiched between the negative electrodes of the unit cells 100. In addition, the positive electrode connection body 230 is welded to the positive electrodes of the plurality of unit cells 100 across the positive electrode side holder 250 on the positive electrode side of the unit cell 100, and the unit cell 100 that is exposed from the storage unit 222 by the lid 270 is opened. The internal space (exhaust chamber) is formed between the positive electrode connection body 230 and the lid body 270 so as to cover the portion 8 a and the positive electrode connection body 230. Finally, the positive electrode side holder 250 and the negative electrode side holder 260 are fixed with screws 280 from above and below the battery module 200. As a result, as shown in FIG. 3, a battery module 200 in which all the components are combined is obtained. In FIG. 3, since the plurality of unit cells 100 are covered, the unit cells 100 are not visible from the outside. Further, the positive electrode output terminal 232 at the end of the positive electrode connection body 230 and the negative electrode output terminal 242 at the end of the negative electrode connection body 240 are exposed to the outside of the battery module 200 in order to take out current from the battery module 200. It has a structure.
 次に、本発明の一実施形態に係る電池モジュールの詳細について、図4~図7を参照しながら説明する。図4(a)は本発明の一実施形態に係る電池モジュールの伝熱部材の一例を示す斜視図であり、図4(b)は素電池が収納された伝熱部材の一例を示す斜視図である。また、図5(a)は本発明の一実施形態に係る電池モジュールの伝熱部材の他の例を示す斜視図であり、図5(b)は素電池が収納された伝熱部材の他の例を示す斜視図である。また、図6(a)は本発明の一実施形態に係る電池モジュールの素電池が収納された伝熱部材を示す平面図であり、図6(b)は図6(a)の伝熱部材に正極用接続体が設けられた構成を示す平面図である。図7は本発明の一実施形態に係る電池モジュールを示す断面図である。 Next, details of the battery module according to the embodiment of the present invention will be described with reference to FIGS. FIG. 4A is a perspective view showing an example of a heat transfer member of a battery module according to an embodiment of the present invention, and FIG. 4B is a perspective view showing an example of a heat transfer member in which a unit cell is accommodated. It is. FIG. 5 (a) is a perspective view showing another example of the heat transfer member of the battery module according to the embodiment of the present invention, and FIG. 5 (b) shows another heat transfer member in which the unit cell is housed. FIG. Moreover, Fig.6 (a) is a top view which shows the heat-transfer member in which the unit cell of the battery module which concerns on one Embodiment of this invention was accommodated, FIG.6 (b) is the heat-transfer member of Fig.6 (a). It is a top view which shows the structure by which the connection body for positive electrodes was provided. FIG. 7 is a cross-sectional view showing a battery module according to an embodiment of the present invention.
 図4(a)及び(b)に示すように、伝熱部材220には素電池100を収納する複数の筒状の収納部222が形成されている。ここで、「筒状」とは、軸方向に中空部を備えた形状をいい、その断面形状は特に限定されず、例えば円形、楕円形及び四角形等を含む。すなわち、収納部222の形状は、収納する素電池100の形状に応じて適宜決定でき、本実施形態では円筒状の素電池100を用いているため円筒状の収納部222を用いているが、これに限らず、素電池100を収納できる形状であればよい。 As shown in FIGS. 4A and 4B, the heat transfer member 220 is formed with a plurality of cylindrical storage portions 222 that store the unit cells 100. Here, the “cylindrical shape” refers to a shape having a hollow portion in the axial direction, and its cross-sectional shape is not particularly limited, and includes, for example, a circle, an ellipse, a quadrangle, and the like. That is, the shape of the storage portion 222 can be determined as appropriate according to the shape of the unit cell 100 to be stored. In the present embodiment, the cylindrical storage unit 222 is used because the cylindrical unit cell 100 is used. The shape is not limited to this, and any shape that can accommodate the unit cell 100 may be used.
 収納部222は、円筒状の素電池100を収納するために素電池100の外径よりも0.2mm程度大きい内径を有し、六方最密格子状に配置されている。さらに、伝熱部材220には、収納部222の軸方向に並行な貫通孔である通気路221が形成されている。通気路221は、互いに隣接する3つの収納部222の重心に配置されている。素電池100に、例えば「18650」のサイズの電池(外径が最大18.2mmであり、高さが65mmである。)を用いた場合、収納部222の長さは55mmであり、収納部222の内径は18.4mmである。 The storage unit 222 has an inner diameter that is about 0.2 mm larger than the outer diameter of the unit cell 100 in order to store the cylindrical unit cell 100, and is arranged in a hexagonal close-packed lattice shape. Furthermore, the heat transfer member 220 is formed with a ventilation path 221 that is a through hole parallel to the axial direction of the storage portion 222. The air passage 221 is disposed at the center of gravity of the three storage portions 222 adjacent to each other. When the unit cell 100 is a battery having a size of, for example, “18650” (the outer diameter is 18.2 mm at the maximum and the height is 65 mm), the storage unit 222 has a length of 55 mm. The inner diameter of 222 is 18.4 mm.
 本実施形態では、伝熱部材220を金属等からなるブロックにこれを貫通する収納部222及び通気路221が形成されている構造としたが、図5(a)及び(b)に示すように、複数の筒状部材226の側面が溶接等により接続された構造の伝熱部材225を用いてもよい。このような伝熱部材225では、複数の筒状部材226の空洞である収納部227のそれぞれに素電池100が収納される。伝熱部材225は、例えば板厚が0.4mmであり、内径が18.4mmであり、高さが55mmである筒状部材226をそれぞれ六方最密格子状に20個配置されている。これにより、伝熱部材225は、互いに隣接する3つの筒状部材226(収納部227)の重心に、通気路228を有することができる。 In the present embodiment, the heat transfer member 220 has a structure in which the housing portion 222 and the air passage 221 passing through the block made of metal or the like are formed. However, as shown in FIGS. A heat transfer member 225 having a structure in which the side surfaces of the plurality of cylindrical members 226 are connected by welding or the like may be used. In such a heat transfer member 225, the unit cell 100 is stored in each of the storage portions 227 that are cavities of the plurality of cylindrical members 226. The heat transfer member 225 has, for example, 20 cylindrical members 226 each having a plate thickness of 0.4 mm, an inner diameter of 18.4 mm, and a height of 55 mm arranged in a hexagonal close-packed lattice. Thereby, the heat transfer member 225 can have the ventilation path 228 in the gravity center of the three cylindrical members 226 (housing part 227) adjacent to each other.
 伝熱部材220に素電池100を収納したとき、図6(a)に示すように、素電池100の周りを60°間隔で通気路221が配置された構造となる。特に、伝熱部材220の中央付近において、6個の他の素電池100に周りを囲まれた素電池100は、6個の通気路221が周りに配置された構造となっている。 When the unit cell 100 is accommodated in the heat transfer member 220, as shown in FIG. 6A, the air passage 221 is arranged around the unit cell 100 at intervals of 60 °. In particular, in the vicinity of the center of the heat transfer member 220, the unit cell 100 surrounded by six other unit cells 100 has a structure in which six air passages 221 are arranged around the unit cell 100.
 さらに、図6(b)及び図7に示すように、複数の素電池100を収納した伝熱部材220に対して、正極側に正極側ホルダー250を介して正極用接続体230が、また負極側に負極側ホルダー260を介して負極用接続体240が組合せられる。また、正極用接続体230を覆うように蓋体270が設けられ、正極用接続体230と蓋体270とに囲まれた内部空間271が形成される。正極側ホルダー250、正極用接続体230、負極側ホルダー260及び負極用接続体240は、伝熱部材220と組合せたとき、通気路221と同じ位置に、同じ大きさの貫通孔254、233、262、243を各々有している。このため、電池モジュール200は正極用接続体230から負極用接続体240まで連通した孔を有することとなる。 Further, as shown in FIGS. 6B and 7, the positive electrode connector 230 is connected to the positive electrode side via the positive electrode side holder 250 with respect to the heat transfer member 220 containing the plurality of unit cells 100. The negative electrode connector 240 is combined with the negative electrode side holder 260 on the side. Also, a lid 270 is provided so as to cover the positive electrode connection body 230, and an internal space 271 surrounded by the positive electrode connection body 230 and the lid body 270 is formed. The positive electrode side holder 250, the positive electrode connection body 230, the negative electrode side holder 260, and the negative electrode connection body 240 are combined with the heat transfer member 220 at the same position as the air passage 221, and through holes 254, 233 having the same size. 262 and 243, respectively. For this reason, the battery module 200 has a hole communicating from the positive electrode connector 230 to the negative electrode connector 240.
 さらに、正極側ホルダー250及び負極側ホルダー260は、伝熱部材220と組合せたとき、収納部222と同じ位置に、同じ大きさで且つ同じ寸法の凹部を有し、凹部の底部に少し小さい開口部を有している。そして、正極用接続体230及び負極用接続体240は、収納部222と同じ位置に、正極用接続端子231及び負極用接続端子241を配置し、素電池100と電気的に接続される。正極用接続体230は、正極用接続端子231の周りに、素電池100の開放部8aと連通する開口部234を有している。すなわち、素電池100の開放部8aは開口部234を介して内部空間271と連通しており、開放部8aからの高温ガスは内部空間271に放出される。また、正極用接続体230は、正極側ホルダー250を介して素電池100のそれぞれと密着するように設けられ、収納部222を密閉している。なお、ここでいう密閉は、必ずしも完全に密閉された状態を意味するものでなく、素電池100に影響を与えない程度のガスが、収納部222に浸入するような状態の密閉を含む。また、本実施形態では、導電体からなる正極用接続体230を用いているため、正極用接続体230と素電池100の負極(電池ケース7)とが短絡しないように、絶縁性の正極側ホルダー250を介して素電池100に正極用接続体230を密着させている。しかしながら、正極用接続体230と素電池100の負極(電池ケース7)とが短絡を防ぐことができる構成であれば、これに限られない。例えば、正極用接続体230として、絶縁性の配線基板上に、複数の素電池100の正極を並列接続する配線パターンを形成したものを用いてもよく、この場合、正極側ホルダー250を設けなくても構わない。このようにすると、収納部222が密閉されているため異常が生じた素電池100から放出された高温ガスが周りの正常な素電池100内に浸入することなく、正常な素電池100に発熱等の影響を与えることを防止できる。 Furthermore, when combined with the heat transfer member 220, the positive electrode side holder 250 and the negative electrode side holder 260 have a concave portion having the same size and the same size at the same position as the housing portion 222, and a slightly smaller opening at the bottom of the concave portion. Has a part. The positive electrode connection body 230 and the negative electrode connection body 240 are electrically connected to the unit cell 100 by disposing the positive electrode connection terminal 231 and the negative electrode connection terminal 241 at the same position as the housing portion 222. The positive electrode connection body 230 has an opening 234 that communicates with the open portion 8 a of the unit cell 100 around the positive electrode connection terminal 231. That is, the open part 8 a of the unit cell 100 communicates with the internal space 271 through the opening 234, and the high temperature gas from the open part 8 a is released into the internal space 271. Further, the positive electrode connection body 230 is provided so as to be in close contact with each of the unit cells 100 via the positive electrode side holder 250, and seals the storage portion 222. In addition, the sealing here does not necessarily mean a completely sealed state, but includes a state in which a gas that does not affect the unit cell 100 enters the storage unit 222. Further, in this embodiment, since the positive electrode connection body 230 made of a conductor is used, the insulating positive electrode side is provided so that the positive electrode connection body 230 and the negative electrode (battery case 7) of the unit cell 100 are not short-circuited. The positive electrode connector 230 is in close contact with the unit cell 100 through the holder 250. However, the configuration is not limited to this as long as the positive electrode connector 230 and the negative electrode (battery case 7) of the unit cell 100 can prevent a short circuit. For example, the positive electrode connection body 230 may be formed by forming a wiring pattern for connecting the positive electrodes of the plurality of unit cells 100 in parallel on an insulating wiring board. In this case, the positive electrode side holder 250 is not provided. It doesn't matter. In this way, the storage unit 222 is hermetically sealed, so that the high-temperature gas released from the abnormal unit cell 100 does not enter the surrounding normal unit cell 100 and the normal unit cell 100 generates heat or the like. Can be prevented.
 本実施形態では、素電池100が正極側にのみ高温ガスを放出する開放部8aを有しているため、負極用接続体240に開口部を設ける必要はないが、正極用接続体230と負極用接続体240とを同一の部品として使用することも可能である。 In this embodiment, since the unit cell 100 has the open part 8a that discharges the high-temperature gas only on the positive electrode side, there is no need to provide an opening in the negative electrode connector 240, but the positive electrode connector 230 and the negative electrode It is also possible to use the connecting member 240 for the same part.
 次に、本実施形態に係る電池モジュールの降温メカニズムについて図8を参照しながら説明する。図8は本実施形態に係る電池モジュールの降温メカニズムを示す概要図である。 Next, the temperature lowering mechanism of the battery module according to this embodiment will be described with reference to FIG. FIG. 8 is a schematic view showing a temperature lowering mechanism of the battery module according to this embodiment.
 図8に示すように、素電池100xが異常状態になって発熱したとき、素電池100xの正極側の端子板8にある開放部8aから700℃~1000℃の高温ガスが排出される。開放部8aから排出された高温ガスは正極用接続体230の開口部234を通って、正極用接続体230と蓋体270とに囲まれた内部空間271に放出される。内部空間271の体積は、放出された高温ガスの全てが入りきらないため、内部空間271に放出された高温ガスは、それぞれ連通する通気路221及び貫通孔233、254、262、243を通って、負極用接続体240側(図では下方)から外部へ押し出される。図8では高温ガスが流れる方向を矢印で示している。 As shown in FIG. 8, when the unit cell 100x is in an abnormal state and generates heat, a high temperature gas of 700 ° C. to 1000 ° C. is discharged from the open portion 8a in the terminal plate 8 on the positive electrode side of the unit cell 100x. The high-temperature gas discharged from the open portion 8 a passes through the opening 234 of the positive electrode connection body 230 and is discharged into the internal space 271 surrounded by the positive electrode connection body 230 and the lid body 270. Since the volume of the internal space 271 does not allow all of the released high temperature gas to enter, the high temperature gas released to the internal space 271 passes through the communicating passage 221 and the through holes 233, 254, 262, 243, respectively. Then, it is pushed out from the negative electrode connector 240 side (downward in the figure). In FIG. 8, the direction in which the hot gas flows is indicated by an arrow.
 通気路221及び貫通孔233、254、262、243は、素電池100xから排出される高温ガスの単位時間に対する排出量を放出するのに充分な開口面積を有していないため、早急な排出ができない。このため、伝熱部材220の通気路221の内壁に高温ガスが接触しながら排出される。高温ガスが通気路221の内壁に接触することにより、700℃~1000℃の高温ガスの熱を伝熱部材220が吸収する。さらに、高温ガスが通気路221を通じて排出される間は、内部空間271は大気圧よりも高圧となり外部から空気が流入してこないため、内部空間271に酸素が継続的に供給されず、新たな燃焼による熱は発生しない。 The air passage 221 and the through holes 233, 254, 262, and 243 do not have an opening area sufficient to discharge the discharge amount of the high-temperature gas discharged from the unit cell 100x per unit time, so that quick discharge is possible. Can not. For this reason, the hot gas is discharged while contacting the inner wall of the air passage 221 of the heat transfer member 220. When the high temperature gas contacts the inner wall of the ventilation path 221, the heat transfer member 220 absorbs heat of the high temperature gas at 700 ° C. to 1000 ° C. Further, while the high temperature gas is exhausted through the air passage 221, the internal space 271 has a pressure higher than the atmospheric pressure, and air does not flow in from the outside. No heat is generated by combustion.
 また、通気路221は高温ガスの単位時間に対する排出量を放出するのに充分な開口面積を有していないため、高温ガスは通気路221等の排出経路を流れるに従って、徐々に大気圧に向かって圧力が下がることになる。このとき、断熱膨張により高温ガスの温度が下がることになる。これらの理由により、高温ガスは、負極用接続体240の貫通孔243から外部に排出される際には、300℃程度まで冷却される。 Further, since the air passage 221 does not have an opening area sufficient to discharge the discharge amount of the hot gas per unit time, the hot gas gradually moves to the atmospheric pressure as it flows through the discharge passage such as the air passage 221. The pressure will drop. At this time, the temperature of the hot gas decreases due to adiabatic expansion. For these reasons, the hot gas is cooled to about 300 ° C. when discharged from the through hole 243 of the negative electrode connector 240 to the outside.
 このように、700℃~1000℃高温ガスが生じた場合であっても、通気路221を通過する間に、高温ガスの温度が300℃程度まで下がる。また、本実施形態では、正極用接続体230が複数の素電池100に密着するように設けられ、複数の収納部222を密閉しているため、異常が生じた素電池100xから高温ガスが内部空間271に放出されても、高温ガスが他の正常な素電池100内に浸入することを防ぎ、正常な素電池100に発熱等の影響を与えることを防止できる。 As described above, even when a high temperature gas of 700 ° C. to 1000 ° C. is generated, the temperature of the high temperature gas decreases to about 300 ° C. while passing through the air passage 221. Further, in the present embodiment, the positive electrode connector 230 is provided so as to be in close contact with the plurality of unit cells 100 and the plurality of storage units 222 are sealed, so that the high temperature gas is introduced from the unit cell 100x in which an abnormality has occurred. Even if released into the space 271, the hot gas can be prevented from entering the other normal unit cell 100, and the normal unit cell 100 can be prevented from being affected by heat generation or the like.
 伝熱部材220の通気路221は、上記の通り、発生した高温ガスを通過させながら降温させるため、長細い形状である。通気路221の長さは、通気路221の開口断面の中心点から内壁までの最短距離の20倍以上であることが望ましい。ここで、「中心点」とは、通気路221の内壁から最も遠い点をいい、伝熱部材220に最も熱を伝え難い点である。このようにすると、素電池100から放出された高温ガスが通気路221を通る際に伝熱部材220に十分に吸熱されて、最も熱を伝え難い中心点の温度も300℃以下で外部に放出されることが可能となる。通気路221は、例えば長さが20mm~200mmであり、開口面積が0.5mm~50mmであり、素電池100に、例えば「18650」のサイズの電池を用いた場合、通気路221の長さは55mmであり、通気路221の内径は3mmである。 As described above, the air passage 221 of the heat transfer member 220 has a long and narrow shape in order to lower the temperature while allowing the generated high temperature gas to pass therethrough. The length of the air passage 221 is desirably 20 times or more the shortest distance from the center point of the opening cross section of the air passage 221 to the inner wall. Here, the “center point” means a point farthest from the inner wall of the air passage 221 and is a point where heat is most difficult to be transmitted to the heat transfer member 220. In this way, the high temperature gas released from the unit cell 100 is sufficiently absorbed by the heat transfer member 220 when passing through the air passage 221, and the temperature at the center point where heat is most difficult to transfer is released to the outside at 300 ° C. or less. Can be done. The ventilation path 221 has a length of, for example, 20 mm to 200 mm, an opening area of 0.5 mm 2 to 50 mm 2 , and when the unit cell 100 is a battery having a size of “18650”, for example, The length is 55 mm, and the inner diameter of the air passage 221 is 3 mm.
 また、伝熱部材220は、素電池100のいずれかが異常に発熱したときに、速やかにその熱を電池モジュールの外部へ放熱すべく、熱伝導率が200W/(m・K)以上の金属又はセラミック材料により構成されている。例えば、本実施形態では、伝熱部材220に熱伝導率が236W/(m・K)のアルミニウムを用いている。 Further, the heat transfer member 220 is a metal having a thermal conductivity of 200 W / (m · K) or more in order to quickly dissipate the heat to the outside of the battery module when any of the unit cells 100 abnormally generates heat. Or it is comprised with the ceramic material. For example, in the present embodiment, aluminum having a thermal conductivity of 236 W / (m · K) is used for the heat transfer member 220.
 本発明の一実施形態に係る電池モジュールによると、伝熱部材に複数の収納部の間に収納部と略並行な貫通孔を有することにより、小型化を妨げることなく、素電池が異常時に排気する高温ガスが通気路及び貫通孔を通過する際に冷却されるので、高温ガスの温度を低下することができる。 According to the battery module of one embodiment of the present invention, the heat transfer member has a through hole substantially parallel to the storage portion between the plurality of storage portions, so that the unit cell can be exhausted in an abnormal state without hindering downsizing. Since the hot gas to be cooled is cooled when passing through the air passage and the through hole, the temperature of the hot gas can be lowered.
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。例えば、本実施形態における正極用接続体230及び負極用接続体240は、それぞれ複数の素電池100の正極及び負極を並列接続するものであれば、その形態は問わない。例えば、正極用接続体230及び負極用接続体240を、金属材料からなるバスバーで構成してもよい。また、上記実施形態においては、正極を上方に向け正極側から電極接続体である正極用接続体を介して高温ガスを外部に排出する構成としたが、負極を上方に向け負極用接続体を介して負極側から高温ガスを外部に排出する構成としても構わない。また、絶縁性の配線基板上に、複数の素電池100の正極及び負極を並列接続する配線パターンを形成したものであってもよい。なお、この場合、配線基板を素電池100の正極側に配設し、この配線基板上に正極及び負極を並列接続する配線パターンをそれぞれ形成してもよい。このとき、素電池100の負極側には、配線基板を設ける必要はない。 As mentioned above, although this invention has been demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible. For example, as long as the positive electrode connection body 230 and the negative electrode connection body 240 in this embodiment connect the positive electrode and the negative electrode of the several unit cell 100 in parallel, respectively, the form will not be ask | required. For example, the positive electrode connection body 230 and the negative electrode connection body 240 may be formed of bus bars made of a metal material. Moreover, in the said embodiment, although it was set as the structure which discharges high temperature gas outside through the positive electrode connection body which is an electrode connection body from the positive electrode side facing a positive electrode upwards, a negative electrode connection body is turned to a negative electrode upwards. The high temperature gas may be discharged to the outside from the negative electrode side. Moreover, the wiring pattern which connects the positive electrode and negative electrode of the several unit cell 100 in parallel may be formed on the insulating wiring board. In this case, the wiring board may be disposed on the positive electrode side of the unit cell 100, and wiring patterns for connecting the positive electrode and the negative electrode in parallel may be formed on the wiring board. At this time, it is not necessary to provide a wiring board on the negative electrode side of the unit cell 100.
 本発明は、小型化及び軽量化と共に安全性が要求される電池等を収納した電池モジュール、並びに電池モジュールを備えた電子機器及び収納部を備えた電子機器として有用である。 The present invention is useful as a battery module storing a battery or the like that is required to be safe and small in size and weight, as well as an electronic device including the battery module and an electronic device including a storage portion.
100 素電池
200 電池モジュール
220 伝熱部材
221 通気路
222 収納部
225 伝熱部材
226 筒状部材
227 収納部
228 通気路
230 正極用接続体
231 正極用接続端子
232 正極出力端子
233 貫通孔
234 開口部
240 負極用接続体
241 負極用接続端子
242 負極出力端子
243 貫通孔
250 正極側ホルダー
254 貫通孔
260 負極側ホルダー
262 貫通孔
270 蓋体
271 内部空間
280 ネジ
100 unit cell 200 battery module 220 heat transfer member 221 air passage 222 storage portion 225 heat transfer member 226 cylindrical member 227 storage portion 228 air passage 230 positive electrode connection body 231 positive electrode connection terminal 232 positive electrode output terminal 233 through hole 234 opening 240 Negative electrode connection body 241 Negative electrode connection terminal 242 Negative electrode output terminal 243 Through hole 250 Positive electrode side holder 254 Through hole 260 Negative electrode side holder 262 Through hole 270 Lid 271 Internal space 280 Screw

Claims (8)

  1.  電池内部で発生したガスを排出する開放部をそれぞれ有する複数の素電池と、
     前記複数の素電池を収納する複数の筒状の収納部を有する伝熱部材と、
     前記複数の素電池の開放部を覆い、前記伝熱部材との間に内部空間を形成する蓋体とを備え、
     前記開放部は、前記内部空間と連通し、
     前記伝熱部材は、前記複数の収納部同士の間に前記収納部の軸方向に並行な通気路を有し、
     前記通気路の一端側は前記内部空間と連通し、他端側は外部と連通している電池モジュール。
    A plurality of unit cells each having an open portion for discharging gas generated inside the battery;
    A heat transfer member having a plurality of cylindrical storage portions for storing the plurality of unit cells;
    A cover that covers the open portions of the plurality of unit cells and forms an internal space with the heat transfer member;
    The open portion communicates with the internal space;
    The heat transfer member has a ventilation path parallel to the axial direction of the storage portion between the plurality of storage portions,
    One end side of the air passage communicates with the internal space, and the other end side communicates with the outside.
  2.  請求項1において、
     前記複数の素電池の電極部同士をそれぞれ電気的に接続する電極接続体をさらに備え、
     前記電極接続体は、前記複数の素電池に密着するように設けられ、前記複数の収納部のそれぞれを密閉する電池モジュール。
    In claim 1,
    Further comprising an electrode connection body for electrically connecting the electrode parts of the plurality of unit cells,
    The electrode connector is a battery module that is provided in close contact with the plurality of unit cells and seals each of the plurality of storage units.
  3.  請求項2において、
     前記開放部は、前記電極部に形成され、前記電極接続体に形成された開口部を介して前記内部空間と連通している電池モジュール。
    In claim 2,
    The open part is formed in the electrode part, and is in communication with the internal space through an opening part formed in the electrode connector.
  4.  請求項1~3のいずれか1項において、
     前記通気路の長さは、前記通気路の開口断面の中心点から内壁までの最短距離の20倍以上である電池モジュール。
    In any one of claims 1 to 3,
    The length of the air passage is a battery module that is 20 times or more the shortest distance from the center point of the opening cross section of the air passage to the inner wall.
  5.  請求項4において、
     前記通気路は、その長さが20mm以上且つ200mm以下であり、その開口面積が0.5mm以上且つ50mm以下である電池モジュール。
    In claim 4,
    The battery module has a length of 20 mm or more and 200 mm or less and an opening area of 0.5 mm 2 or more and 50 mm 2 or less.
  6.  請求項1において、
     前記収納部は円筒形状であり、前記伝熱部材に六方最密格子状に配置され、
     前記通気路は、互いに隣接する3つの前記収納部の重心に配置されている電池モジュール。
    In claim 1,
    The storage portion has a cylindrical shape, and is arranged in a hexagonal close-packed lattice shape on the heat transfer member,
    The air passage is a battery module arranged at the center of gravity of the three storage units adjacent to each other.
  7.  請求項1において、
     前記伝熱部材は、複数の筒状部材の側面が互いに接続されて構成されている電池モジュール。
    In claim 1,
    The heat transfer member is a battery module configured such that side surfaces of a plurality of cylindrical members are connected to each other.
  8.  請求項1において、
     前記伝熱部材は、熱伝導率が200W/(m・K)以上の金属又はセラミック材料からなる電池モジュール。
    In claim 1,
    The heat transfer member is a battery module made of a metal or ceramic material having a thermal conductivity of 200 W / (m · K) or more.
PCT/JP2011/007173 2011-06-28 2011-12-21 Battery module WO2013001585A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011142566A JP2014170613A (en) 2011-06-28 2011-06-28 Battery module
JP2011-142566 2011-06-28

Publications (1)

Publication Number Publication Date
WO2013001585A1 true WO2013001585A1 (en) 2013-01-03

Family

ID=47423531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007173 WO2013001585A1 (en) 2011-06-28 2011-12-21 Battery module

Country Status (2)

Country Link
JP (1) JP2014170613A (en)
WO (1) WO2013001585A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130263442A1 (en) * 2012-04-06 2013-10-10 Ferrari S.P.A. Method for implementing a system for the storage of electric energy for a vehicle with electric propulsion and having cylindrical chemical batteries arranged in a plastic support matrix
WO2016013150A1 (en) * 2014-07-22 2016-01-28 パナソニックIpマネジメント株式会社 Battery module
EP3273501A1 (en) * 2016-07-22 2018-01-24 Temsa Global Sanayi ve Ticaret Anonim Sirketi A rechargeable battery module
WO2021020003A1 (en) * 2019-07-29 2021-02-04 三洋電機株式会社 Battery pack
EP3783734A1 (en) * 2019-07-26 2021-02-24 Contemporary Amperex Technology Co., Limited Battery assembly, battery pack and vehicle
CN112652835A (en) * 2020-12-10 2021-04-13 深圳供电局有限公司 Battery module temperature control box
GB2588391A (en) * 2019-10-18 2021-04-28 Xerotech Ltd A battery pack and method for removing at least one cell from a battery pack
WO2022003716A1 (en) * 2020-06-29 2022-01-06 Tvs Motor Company Limited Exhaust system of a battery module
CN114072963A (en) * 2019-08-01 2022-02-18 三洋电机株式会社 Assembled battery
WO2022084000A1 (en) * 2020-10-20 2022-04-28 Bayerische Motoren Werke Aktiengesellschaft Robust battery device and motor vehicle
WO2023114924A3 (en) * 2021-12-16 2023-08-10 Underwriters Laboratories Inc. Container for holding electrochemical cells or batteries

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9614210B2 (en) 2014-09-30 2017-04-04 Johnson Controls Technology Company Battery module vent system and method
GB2563272B (en) 2017-06-09 2020-01-01 Ge Aviat Systems Ltd Battery pack
JP6991748B2 (en) * 2017-06-27 2022-02-03 三洋電機株式会社 Battery module
KR102444124B1 (en) 2017-10-16 2022-09-16 주식회사 엘지에너지솔루션 Battery module and battery pack having the same
KR102288405B1 (en) 2017-12-26 2021-08-09 주식회사 엘지에너지솔루션 Cylindrical battery cell assembly improved in space utilization and safety and battery module including the same
CN109768201A (en) * 2019-01-02 2019-05-17 南京金龙客车制造有限公司 A kind of battery modules of included energy release channel function
DE102020205930A1 (en) 2020-05-12 2021-11-18 Mahle International Gmbh accumulator
WO2022025186A1 (en) 2020-07-30 2022-02-03 パナソニックIpマネジメント株式会社 Power storage device and power storage module
JPWO2022070974A1 (en) 2020-09-30 2022-04-07
WO2022091919A1 (en) 2020-10-30 2022-05-05 パナソニックIpマネジメント株式会社 Electric power storage module
CN116420272A (en) 2020-10-30 2023-07-11 松下知识产权经营株式会社 Power storage module
WO2023008445A1 (en) 2021-07-30 2023-02-02 パナソニックIpマネジメント株式会社 Electric power storage module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266012A (en) * 1996-03-29 1997-10-07 Nikkiso Co Ltd Nonaqueous electrolyte secondary battery and battery assembly
JP2005285455A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Power supply apparatus
JP2007027011A (en) * 2005-07-20 2007-02-01 Sanyo Electric Co Ltd Power source device
JP2011065906A (en) * 2009-09-18 2011-03-31 Panasonic Corp Battery module
JP2011070871A (en) * 2009-09-25 2011-04-07 Panasonic Corp Battery module, and battery pack using the same
WO2011064956A1 (en) * 2009-11-25 2011-06-03 パナソニック株式会社 Battery module
WO2011092773A1 (en) * 2010-01-29 2011-08-04 パナソニック株式会社 Cell module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266012A (en) * 1996-03-29 1997-10-07 Nikkiso Co Ltd Nonaqueous electrolyte secondary battery and battery assembly
JP2005285455A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Power supply apparatus
JP2007027011A (en) * 2005-07-20 2007-02-01 Sanyo Electric Co Ltd Power source device
JP2011065906A (en) * 2009-09-18 2011-03-31 Panasonic Corp Battery module
JP2011070871A (en) * 2009-09-25 2011-04-07 Panasonic Corp Battery module, and battery pack using the same
WO2011064956A1 (en) * 2009-11-25 2011-06-03 パナソニック株式会社 Battery module
WO2011092773A1 (en) * 2010-01-29 2011-08-04 パナソニック株式会社 Cell module

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130263442A1 (en) * 2012-04-06 2013-10-10 Ferrari S.P.A. Method for implementing a system for the storage of electric energy for a vehicle with electric propulsion and having cylindrical chemical batteries arranged in a plastic support matrix
WO2016013150A1 (en) * 2014-07-22 2016-01-28 パナソニックIpマネジメント株式会社 Battery module
EP3273501A1 (en) * 2016-07-22 2018-01-24 Temsa Global Sanayi ve Ticaret Anonim Sirketi A rechargeable battery module
US11923559B2 (en) 2019-07-26 2024-03-05 Contemporary Amperex Technology Co., Limited Battery assembly, battery pack and vehicle
EP3783734A1 (en) * 2019-07-26 2021-02-24 Contemporary Amperex Technology Co., Limited Battery assembly, battery pack and vehicle
US11417932B2 (en) 2019-07-26 2022-08-16 Contemporary Amperex Technology Co., Limited Battery assembly, battery pack and vehicle
CN114080717A (en) * 2019-07-29 2022-02-22 三洋电机株式会社 Battery pack
CN114080717B (en) * 2019-07-29 2023-09-26 松下新能源株式会社 Battery pack
WO2021020003A1 (en) * 2019-07-29 2021-02-04 三洋電機株式会社 Battery pack
CN114072963A (en) * 2019-08-01 2022-02-18 三洋电机株式会社 Assembled battery
GB2588391A (en) * 2019-10-18 2021-04-28 Xerotech Ltd A battery pack and method for removing at least one cell from a battery pack
WO2022003716A1 (en) * 2020-06-29 2022-01-06 Tvs Motor Company Limited Exhaust system of a battery module
WO2022084000A1 (en) * 2020-10-20 2022-04-28 Bayerische Motoren Werke Aktiengesellschaft Robust battery device and motor vehicle
CN112652835A (en) * 2020-12-10 2021-04-13 深圳供电局有限公司 Battery module temperature control box
WO2023114924A3 (en) * 2021-12-16 2023-08-10 Underwriters Laboratories Inc. Container for holding electrochemical cells or batteries

Also Published As

Publication number Publication date
JP2014170613A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
WO2013001585A1 (en) Battery module
JP4749513B2 (en) Battery module and battery pack using the same
WO2013018151A1 (en) Battery module
JP4815026B2 (en) Battery module and battery pack using the same
US9437854B2 (en) Battery pack
US8956747B2 (en) Battery module
WO2012017586A1 (en) Cell module
JP4900534B2 (en) Battery module and battery module assembly using the same
WO2012014398A1 (en) Battery module and battery pack using same
JP6004282B2 (en) Battery module
JP4935802B2 (en) Battery module and assembled battery module using the same
JP5507173B2 (en) Battery module and battery pack using the same
JP2013030384A (en) Battery block and battery pack
US20140178723A1 (en) Battery block and battery module comprising same
US20120225335A1 (en) Battery module
JP2012199186A (en) Battery module
JP2012212558A (en) Battery module
KR20220102642A (en) Batteries and related devices, manufacturing methods and manufacturing devices
WO2013018305A1 (en) Battery block

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP