WO2012176675A1 - Light-emitting element - Google Patents

Light-emitting element Download PDF

Info

Publication number
WO2012176675A1
WO2012176675A1 PCT/JP2012/065171 JP2012065171W WO2012176675A1 WO 2012176675 A1 WO2012176675 A1 WO 2012176675A1 JP 2012065171 W JP2012065171 W JP 2012065171W WO 2012176675 A1 WO2012176675 A1 WO 2012176675A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
transport layer
light emitting
compound
layer
Prior art date
Application number
PCT/JP2012/065171
Other languages
French (fr)
Japanese (ja)
Inventor
田中 大作
富永 剛
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020137025471A priority Critical patent/KR20140037826A/en
Publication of WO2012176675A1 publication Critical patent/WO2012176675A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/001Pyrene dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to a light emitting element capable of converting electric energy into light. More specifically, the present invention relates to a light emitting element that can be used in fields such as a display element, a flat panel display, a backlight, illumination, interior, a sign, a signboard, an electrophotographic machine, and an optical signal generator.
  • the driving voltage of the element depends greatly on the carrier transport material that transports carriers such as holes and electrons to the light emitting layer.
  • a technique using a material having a triphenylene skeleton as a hole transport material is disclosed (for example, see Patent Documents 1 to 3).
  • a technique of doping a donor compound into a material used as an electron transport layer from the viewpoint of electron injection transport is disclosed (for example, see Patent Documents 4 to 6). Further, from the viewpoint of hole injection and transport, a technique of doping a hole transport material with an acceptor compound is disclosed (for example, Patent Documents 7 and 8).
  • the technique of doping the electron transport layer with a donor compound as known in Patent Documents 4 to 6 has the effect of lowering the driving voltage, but causes a decrease in luminous efficiency and a decrease in durability life. It has been found by examination by the present inventors. The inventor presumed the reason as follows.
  • the electron transport layer doped with an alkali metal has improved conductivity, and when this is used for the electron transport layer, the electron injection property from the cathode is good and the electron transport property is also excellent.
  • the inside of the light-emitting layer becomes excessive in electrons depending on the types of hole transport materials used in combination, and as a result, the above-described problems may occur.
  • the technique of doping the acceptor compound into the hole transport layer as known in Patent Documents 7 and 8 still has the effect of lowering the driving voltage, but depending on the hole transport material to be doped, it is significant. It has been found by the study by the present inventors that the effect of improving the durable life cannot be obtained. The inventor presumed the reason as follows. During driving, a single or doped acceptor compound diffuses in the hole transport layer, and the hole conductivity of the hole transport layer gradually changes during driving. For this reason, it is considered that the carrier balance gradually deviates from that before driving, causing a decrease in light emission efficiency, that is, deterioration.
  • An object of the present invention is to provide an organic thin-film light-emitting element that solves the problems of the prior art and has improved luminous efficiency, driving voltage, and durability life.
  • the present invention was made in consideration of the balance of mobility of electrons and holes in a light emitting device, and found an optimal combination as a material contained in a hole transport layer and an electron transport layer. is there. Further, the present inventors have found an optimum hole transport material for preventing diffusion during driving of the acceptor compound doped in the hole transport layer.
  • one configuration of the present invention is a light-emitting element that includes at least a hole transport layer and an electron transport layer between an anode and a cathode and emits light by electric energy
  • the hole transport layer has the following general formula ( 1)
  • the compound represented by 1) wherein the electron transport layer is an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic substance, an alkaline earth metal, an inorganic salt containing an alkaline earth metal Or a light-emitting element containing a donor compound selected from the group consisting of a complex of an alkaline earth metal and an organic substance.
  • R 1 to R 12 may be the same or different, and are hydrogen, alkyl group, cycloalkyl group, amino group, aryl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl. Selected from the group consisting of a group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether group, a halogen, a cyano group, —P ( ⁇ O) R 13 R 14 and a silyl group.
  • R 13 and R 14 may be the same or different, and are an aryl group or a heteroaryl group.
  • n of R 1 to R 12 is an amino group represented by —NR 15 R 16 .
  • R 15 and R 16 may be the same or different and are selected from the group consisting of an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • n represents an integer of 1 to 6.
  • Another configuration of the present invention is a light emitting device that includes at least a hole transport layer and a hole injection layer between an anode and a cathode, and emits light by electric energy. It is a light emitting device containing a compound represented by the formula (1), wherein the hole injection layer is composed of an acceptor compound alone or contains an acceptor compound.
  • the light emitting device has an effect of being able to be driven at a low voltage and improving luminous efficiency and durability.
  • the light-emitting element according to the first configuration of the present invention is characterized in that a compound having a specific structure is used for each of the hole transport layer and the electron transport layer.
  • the hole transport layer of the light emitting device of the present invention contains a compound represented by the general formula (1).
  • R 1 to R 12 may be the same or different, and are hydrogen, alkyl group, cycloalkyl group, amino group, aryl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl. Selected from the group consisting of a group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether group, a halogen, a cyano group, —P ( ⁇ O) R 13 R 14 and a silyl group.
  • R 13 and R 14 may be the same or different, and are an aryl group or a heteroaryl group.
  • n of R 1 to R 12 is an amino group represented by —NR 15 R 16 .
  • R 15 and R 16 may be the same or different and are selected from the group consisting of an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • n represents an integer of 1 to 6.
  • the alkyl group represents, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group, which is a substituent. It may or may not have.
  • a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group, which is a substituent. It may or may not have.
  • the number of carbon atoms of the alkyl group is not particularly limited, but is usually in the range of 1 to 20 and more preferably 1 to 8 from the viewpoint of easy availability of raw materials and cost. Furthermore, since there exists a possibility that hole transport property may be inhibited when the carbon number of an alkyl group is large, a methyl group and an ethyl group are more preferable.
  • the cycloalkyl group represents, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, an adamantyl group, etc., which may or may not have a substituent. Also good.
  • carbon number of an alkyl group part is not specifically limited, Usually, it is the range of 3-20. Further, when the number of carbon atoms is large, the hole transport property may be inhibited, and therefore, a cyclopropyl, cyclopentyl, or cyclohexyl group is more preferable.
  • the amino group may or may not have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group, and these substituents are further substituted. It may be.
  • the aryl group represents an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a fluorenyl group, an anthracenyl group, a pyrenyl group, or a terphenyl group.
  • the aryl group may or may not further have a substituent. There is no restriction
  • the number of carbon atoms of the aryl group is not particularly limited, but is usually in the range of 6 to 40.
  • the heterocyclic group is, for example, a cycloaliphatic group having atoms other than carbon, such as a pyranyl group, a piperidinyl group, and a cyclic amide group, and a furanyl group, a thiophenyl group, a pyridyl group, a quinolinyl group, a pyrazinyl group, Cyclic aromatic groups (heteroaryl groups) having one or more atoms other than carbon such as naphthyridyl group, benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group in the ring Which may be unsubstituted or substituted.
  • a cycloaliphatic group having atoms other than carbon such as a pyranyl group, a piperidinyl group, and a cyclic amide group, and a furanyl group
  • heteroaryl groups are preferred.
  • an alkyl group, a cycloalkyl group, an aryl group, an alkoxy group, an amino group etc. can be mentioned.
  • the number of carbon atoms of the heterocyclic group is not particularly limited, but is usually in the range of 2-30.
  • alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent.
  • the number of carbon atoms of the alkenyl group is not particularly limited, but is usually in the range of 2-20.
  • the cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, which may have a substituent. You don't have to.
  • the alkynyl group indicates, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
  • the number of carbon atoms of the alkynyl group is not particularly limited, but is usually in the range of 2-20.
  • the alkoxy group refers to, for example, a functional group having an aliphatic hydrocarbon group bonded through an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group may have a substituent. It may not have.
  • carbon number of an alkoxy group is not specifically limited, Usually, it is the range of 1-20. Furthermore, since there exists a possibility that hole transport property may be inhibited when the carbon number of an alkoxy group is large, it is more preferably a methoxy group or an ethoxy group.
  • the alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
  • the hydrocarbon group of the alkylthio group may or may not have a substituent. Although carbon number of an alkylthio group is not specifically limited, Usually, it is the range of 1-20.
  • An aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. Good. Although carbon number of an aryl ether group is not specifically limited, Usually, it is the range of 6-40.
  • the aryl thioether group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted with a sulfur atom.
  • the aromatic hydrocarbon group in the aryl ether group may or may not have a substituent. Although carbon number of an aryl ether group is not specifically limited, Usually, it is the range of 6-40.
  • Halogen means fluorine, chlorine, bromine and iodine.
  • R 13 R 14 In the substituent —P ( ⁇ O) R 13 R 14 , R 13 and R 14 are an aryl group or a heteroaryl group, and in the substituent —P ( ⁇ O) R 13 R 14 , an aryl group or a heteroaryl group Has the same meaning as above.
  • the silyl group refers to, for example, a functional group having a bond to a silicon atom such as a trimethylsilyl group, which may or may not have a substituent.
  • the carbon number of the silyl group is not particularly limited, but is usually in the range of 3-20.
  • the number of silicon is usually 1-6.
  • Adjacent substituents form a ring when any adjacent two substituents (for example, R 1 and R 2 in formula (1)) are bonded to each other to form a conjugated or non-conjugated condensed ring. It means that As a constituent element of the condensed ring, in addition to carbon, nitrogen, oxygen, sulfur, phosphorus and silicon atoms may be contained, or further condensed with another ring.
  • R 1 to R 12 include hydrogen, an alkyl group, an amino group, an alkoxy group, an aryl group, or a heteroaryl group in consideration of the deposition stability (thermal stability) of the material, the synthesis cost, and the availability of raw materials. It is. More preferred are hydrogen, amino group, aryl group or heteroaryl group. In the case of an aryl group or heteroaryl group, an aryl group or heteroaryl group having 6 to 18 carbon atoms is preferable in consideration of vapor deposition stability (thermal stability) of the material. Specifically, a phenyl group, a naphthyl group, or biphenylyl.
  • n of R 1 to R 12 is an amino group represented by —NR 15 R 16
  • R 15 and R 16 are alkyl groups in view of synthesis cost and availability of raw materials.
  • a group, an aryl group or a heteroaryl group is preferred.
  • an aryl group or a heteroaryl group is preferable in consideration of vapor deposition stability (thermal stability), amorphous thin film stability (having a high glass transition temperature), and good hole transport properties.
  • an aryl group or heteroaryl group having 6 to 20 carbon atoms is preferable, and phenyl group, naphthyl group, biphenylyl group, terphenyl group, fluorenyl group, anthracenyl group, phenanthryl group, pyrenyl group, triphenylenyl group, dibenzofuran group.
  • Preferred examples include nyl group, dibenzothiophenyl group, carbazolyl group and the like. These groups may further have a substituent.
  • a phenyl group, a naphthyl group, a biphenylyl group, a terphenyl group, a fluorenyl group, a phenanthryl group, and a triphenylenyl group are more preferable because there is no fear of deactivating the child energy.
  • n as the number of substituents —NR 15 R 16 represents an integer of 1 to 6, but n is preferably 1 to 3 in consideration of deposition stability (thermal stability), and more appropriate 2 or 3 is more preferable from the viewpoint of having a good ionization potential and facilitating injection of holes.
  • R 1 , R 5 and R 9 or R 1 , R 6 and R 9 are preferably —NR 15 R 16 , and an appropriate ionization potential is obtained. From the viewpoint of having R 1 , R 6, and R 9 are more preferably —NR 15 R 16 .
  • R 1 , R 2 , R 5 and R 6 , or R 1 , R 6 , R 8 and R 11 , or R 2 , R 5 , R 8 and R are considered in consideration of the ease of synthesis.
  • 11 is preferably —NR 15 R 16 , and more preferably R 1 , R 6 , R 8 and R 11 are —NR 15 R 16 from the viewpoint of having an appropriate ionization potential.
  • the compound represented by the general formula (1) is not particularly limited, but specific examples include the following compounds.
  • the compound represented by the general formula (1) can be synthesized by combining known methods.
  • n 1, for example, it can be easily synthesized by a coupling reaction using commercially available bromotriphenylene and a desired diarylamine using a palladium catalyst. Note that the synthesis method is not limited to these.
  • the electron transport layer in the light emitting device contains a donor compound.
  • the electron transport layer containing a donor compound the carrier density in the electron transport layer is increased and the electron conductivity is improved as compared with an electron transport layer not containing the donor compound. Therefore, in combination with the conventional hole transporting material, the inside of the light emitting layer becomes excessive in electrons, and as a result, it is considered that the light emitting efficiency is lowered and the durability life is shortened.
  • combining the electron transport layer containing the donor compound and the hole transport layer containing the compound represented by the general formula (1) has the effect of improving the light emission efficiency and the durability life while driving at a low voltage. It was found to be obtained.
  • the hole transport material represented by the general formula (1) has higher hole mobility and better hole injection characteristics than, for example, a well-known arylamine-based hole transport material. Therefore, it is considered that, when combined with the electron transport layer containing a donor compound, the excess of electrons in the light emitting layer is eliminated, and injection of electrons into the hole transport layer can be prevented.
  • the donor compound in the present invention is a compound that facilitates electron injection from the cathode or the electron injection layer to the electron transport layer by improving the electron injection barrier, and further improves the electrical conductivity of the electron transport layer.
  • Preferred examples of the donor compound in the present invention include an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic substance, an alkaline earth metal, an inorganic salt containing an alkaline earth metal, or an alkaline earth metal. And a complex of organic substance.
  • Preferred types of alkali metals and alkaline earth metals include alkaline metals such as lithium, sodium, potassium, rubidium, and cesium that have a large effect of improving the electron transport ability with a low work function, and alkaline earths such as magnesium, calcium, cerium, and barium. A metal is mentioned.
  • the donor compound contained in the electron transport layer is preferably in the form of a complex with an inorganic salt or an organic substance rather than a single metal because it is easy to deposit in a vacuum and is excellent in handling. Furthermore, it is more preferable that it is in the state of a complex with an organic substance in terms of facilitating handling in the air and easy control of the addition concentration.
  • inorganic salts include oxides such as LiO and Li 2 O, nitrides, fluorides such as LiF, NaF, and KF, Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , And carbonates such as Cs 2 CO 3 .
  • alkali metal or alkaline earth metal include lithium and cesium from the viewpoint that a large low-voltage driving effect can be obtained.
  • organic substance when the donor compound is a complex of an alkali metal or an alkaline earth metal and an organic substance include quinolinol, benzoquinolinol, pyridylphenol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, and hydroxytriazole. Etc.
  • the electron transport layer may contain two or more donor compounds.
  • the preferred doping concentration varies depending on the material and the thickness of the doped region.
  • the deposition rate ratio of the electron transport material and the donor compound is 10,000: It is preferable to use an electron transport layer by co-evaporation so as to be in the range of 1 to 2: 1.
  • the deposition rate ratio is more preferably 100: 1 to 5: 1, further preferably 100: 1 to 10: 1.
  • the electron transport layer and the donor compound are co-deposited so that the deposition rate ratio of the electron transport material and the donor compound is in the range of 100: 1 to 1: 100. Is preferred.
  • the deposition rate ratio is more preferably 10: 1 to 1:10, and more preferably 7: 3 to 3: 7.
  • the electron transport material used in combination with the donor compound is not particularly limited, but is a compound having a skeleton in which a plurality of benzene rings are connected, such as biphenyl, terphenyl, and triphenylbenzene, and derivatives thereof, fluorene, fluoranthene, and benzofluoranthene.
  • the electron-accepting nitrogen represents a nitrogen atom that forms a multiple bond with an adjacent atom. Since the nitrogen atom has a high electronegativity, the multiple bond has an electron-accepting property, has an excellent electron transporting ability, and can be used for an electron transporting layer to reduce the driving voltage of the light emitting element. Therefore, heteroaryl rings containing electron-accepting nitrogen have a high electron affinity.
  • heteroaryl ring containing an electron-accepting nitrogen examples include, for example, a pyridine ring, pyrazine ring, pyrimidine ring, triazine ring, quinoline ring, quinoxaline ring, acridine ring, naphthyridine ring, pyrimidopyrimidine ring, benzoquinoline ring, phenanthroline ring, Examples include an imidazole ring, an oxazole ring, an oxadiazole ring, a triazole ring, a thiazole ring, a thiadiazole ring, a benzoxazole ring, a benzothiazole ring, a benzimidazole ring, and a phenanthrimidazole ring.
  • Examples of these compounds having a heteroaryl ring structure include benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, phenanthroline.
  • Derivatives, quinoxaline derivatives, quinoline derivatives, benzoquinoline derivatives, oligopyridine derivatives such as bipyridine and terpyridine, quinoxaline derivatives and naphthyridine derivatives, phenanthroline derivatives and the like are preferable compounds.
  • benzimidazole derivatives considering electrochemical stability, benzimidazole derivatives, pyridine derivatives, bipyridine derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, and oligopyridine derivatives are more preferable. Further, it is more preferable that these derivatives have a condensed polycyclic aromatic skeleton because the glass transition temperature is improved, the electron mobility is increased, and the effect of lowering the voltage of the light emitting element is great.
  • the condensed polycyclic aromatic skeleton is particularly preferably an anthracene skeleton, a phenanthrene skeleton or a pyrene skeleton.
  • the electron transport material may be used alone, but two or more of the electron transport materials may be mixed and used, or one or more of the other electron transport materials may be mixed with the electron transport material.
  • the electron transport material used in combination with the donor compound is preferably a material containing electron-accepting nitrogen as described above, or the addition of a donor compound even if the material does not contain electron-accepting nitrogen. If the conductivity and the electron injecting / transporting property are improved, it is also suitable.
  • the electron transport material used in combination with such a donor compound is not particularly limited, but specific examples include the following.
  • the light-emitting element according to the second configuration of the present invention is characterized in that a compound having a specific structure is used for the hole transport layer and an acceptor compound is used for the hole injection layer.
  • the compound used for the hole transport layer is a compound represented by the general formula (1), and the detailed description thereof is the same as the description of the light-emitting element according to the first configuration. From the viewpoint of preventing the diffusion of the acceptor compound, it is preferable that the glass transition temperature in the amorphous film state is high or the interaction with the acceptor compound is strong. Therefore, at least one of R 15 and R 16 in the general formula (1) Is preferably a polyphenyl group or a condensed aromatic hydrocarbon group.
  • the polyphenyl group represents a substituent in which a plurality of benzene rings such as a biphenyl group and a terphenyl group are connected, and preferred polyphenyl groups are a biphenyl group, a terphenyl group and a quarterphenyl group. Furthermore, a biphenyl group and a terphenyl group are preferable.
  • Preferred examples of the condensed aromatic hydrocarbon group include fluorenyl group, benzofluorenyl group, dibenzofluorenyl group, naphthalenyl group, phenanthrenyl group, triphenylenyl group, anthracenyl group, benzoanthracenyl group, pyrenyl group, chrysenyl group, A dibenzocrisenyl group is mentioned.
  • a fluorenyl group, a naphthalenyl group, a phenanthrenyl group, and a triphenylenyl group are more preferable.
  • the hole injection layer in the light emitting device according to the second configuration of the present invention contains an acceptor compound. More specifically, the hole injection layer is composed of an acceptor compound alone, or the acceptor compound is doped with another hole injection material or a compound represented by the general formula (1). It is used.
  • a hole injection layer having an acceptor compound although there is an effect in driving the device at a low voltage, there is a case where the effect of greatly improving the durability life cannot be obtained depending on the combined hole transport material. This is thought to be due to the fact that single or doped acceptor compounds diffuse into the hole transport layer during driving, and the hole conductivity of the hole injection layer or hole transport layer changes. It is done.
  • the compound represented by the general formula (1) when used for the hole transport layer and the hole injection layer has an acceptor compound, it is found that the effect of driving at a low voltage and improving the durability life can be obtained. It was done. This is considered to be due to the following reason. That is, since the compound represented by the general formula (1) has a glass transition temperature higher than that of the conventional hole transport material, and further has a triphenylene ring that is a large ⁇ -electron plane at the center, the acceptor compound. It is considered that the diffusion during the driving of the acceptor compound can be prevented. For this reason, it is considered that the hole conductivity of the hole injection layer or the hole transport layer does not easily change during driving, and it is difficult to cause a decrease in light emission efficiency due to a change in carrier balance.
  • the acceptor compound is a material that forms a charge transfer complex with a material that forms a hole-injecting layer in contact with a hole-transporting layer when used as a single-layer film, and a material that forms a hole-injecting layer when used as a dope.
  • a material that forms a hole-injecting layer in contact with a hole-transporting layer when used as a single-layer film and a material that forms a hole-injecting layer when used as a dope.
  • the conductivity of the hole injection layer is improved, which contributes to lowering of the driving voltage of the device, and the effects of improving the light emission efficiency and improving the durability life can be obtained.
  • acceptor compounds include metal chlorides such as iron (III) chloride, aluminum chloride, gallium chloride, indium chloride, antimony chloride, metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, ruthenium oxide, A charge transfer complex such as tris (4-bromophenyl) aminium hexachloroantimonate (TBPAH).
  • metal chlorides such as iron (III) chloride, aluminum chloride, gallium chloride, indium chloride, antimony chloride, metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, ruthenium oxide,
  • a charge transfer complex such as tris (4-bromophenyl) aminium hexachloroantimonate (TBPAH).
  • organic compounds having a nitro group, cyano group, halogen or trifluoromethyl group in the molecule quinone compounds, acid anhydride compounds, fullerenes, and the like are also preferably used.
  • these compounds include hexacyanobutadiene, hexacyanobenzene, tetracyanoethylene, tetracyanoquinodimethane (TCNQ), tetrafluorotetracyanoquinodimethane (F4-TCNQ), 2, 3, 6, 7 , 10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HAT-CN6), p-fluoranyl, p-chloranil, p-bromanyl, p-benzoquinone, 2,6-dichlorobenzoquinone 2,5-dichlorobenzoquinone, tetramethylbenzoquinone, 1,2,4,5-tetracyanobenzene, o-dicyanobenzene, p-dicyanobenzene, 1,4-dicyanotetrafluorobenzene, 2,3-dichloro-5 , 6-Dicyanobenzoquinone, p-
  • metal oxides and cyano group-containing compounds are preferable because they are easy to handle and can be easily deposited, so that the above-described effects can be easily obtained.
  • preferred metal oxides include molybdenum oxide, vanadium oxide, or ruthenium oxide.
  • cyano group-containing compounds (a) a compound having at least one electron-accepting nitrogen other than the nitrogen atom of the cyano group in the molecule and further having a cyano group, (b) a halogen and a cyano group in the molecule (C) a compound having both a carbonyl group and a cyano group in the molecule, or (d) an electron-accepting nitrogen other than the nitrogen atom of the cyano group, a halogen and a cyano group.
  • a compound having all is more preferable because it becomes a strong electron acceptor. Specific examples of such a compound include the following compounds.
  • the hole injection layer is composed of an acceptor compound alone or when the hole injection layer is doped with an acceptor compound, the hole injection layer may be a single layer, A plurality of layers may be laminated.
  • the hole injection material used in combination when the acceptor compound is doped is preferably a compound represented by the general formula (1) from the viewpoint that the hole injection barrier to the hole transport layer can be relaxed. More preferably, it is the same compound as the pore transport layer.
  • the material used for the hole injection layer is not particularly limited except that the material represented by the general formula (1) is used as it is.
  • a group of materials called starburst arylamines such as
  • benzidine derivatives and starburst arylamine group materials from the viewpoint of having a shallower HOMO level than the compound represented by the general formula (1) and smoothly injecting and transporting holes from the anode to the hole transport layer.
  • benzidine derivatives and starburst arylamine group materials from the viewpoint of having a shallower HOMO level than the compound represented by the general formula (1) and smoothly injecting and transporting holes from the anode to the hole transport layer.
  • the light-emitting element of the present invention includes an anode, a cathode, and at least a hole transport layer and an electron transport layer or a hole transport layer and a hole injection layer between the anode and the cathode.
  • the layer structure between the anode and the cathode in such a light-emitting element includes a hole injection layer / a hole transport layer / a light emission in addition to a structure composed of a hole transport layer / a light emission layer / an electron transport layer in the first configuration.
  • Examples of the layer structure include layer / electron transport layer, hole transport layer / light emitting layer / electron transport layer / electron injection layer, hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer.
  • Each of the layers may be a single layer or a plurality of layers.
  • hole injection layer / hole transport layer / light emitting layer in addition to the configuration consisting of a hole injection layer / hole transport layer / light emitting layer, a hole injection layer / hole transport layer / light emitting layer / electron transport layer, hole injection layer / hole transport Examples include a layered structure of layer / light emitting layer / electron transport layer / electron injection layer.
  • Each of the above layers may be either a single layer or a plurality of layers.
  • the compound represented by the general formula (1) is contained in the hole transport layer in the light emitting device.
  • the hole transport layer is a layer that transports holes injected from the anode to the light emitting layer.
  • the hole transport layer may be a single layer or may be configured by laminating a plurality of layers. Since the compound represented by the general formula (1) has a high electron blocking performance, the compound represented by the general formula (1) is used from the viewpoint of preventing intrusion of electrons when it is composed of a plurality of layers.
  • the hole transport layer contained is preferably in direct contact with the light emitting layer.
  • the hole transport layer may be composed of only the compound represented by the general formula (1), or may be mixed with other materials as long as the effects of the present invention are not impaired.
  • other materials used for example, 4,4′-bis (N- (3-methylphenyl) -N-phenylamino) biphenyl (TPD), 4,4′-bis (N- (1 -Naphthyl) -N-phenylamino) biphenyl (NPD), 4,4'-bis (N, N-bis (4-biphenylyl) amino) biphenyl (TBDB), bis (N, N'-diphenyl-4-amino) Benzidine derivatives such as phenyl) -N, N-diphenyl-4,4′-diamino-1,1′-biphenyl (TPD232), 4,4 ′, 4 ′′ -tris (3-methylphenyl (phenyl) amino) triphenyl Starburst aryl such as amine (
  • the electron transport layer is a layer that transports electrons injected from the cathode to the light emitting layer.
  • the electron transport layer contains a donor compound, but in the light emitting device according to the second structure, the electron transport also contains a donor compound.
  • the electron transport layer may be a single layer or a plurality of layers may be laminated. In the case where a plurality of layers are stacked and a donor compound is used, any one layer may contain the donor compound.
  • the donor compound is an inorganic material such as an alkali metal, an alkaline earth metal, or oxides, nitrides, fluorides, or carbonates thereof
  • the layer containing these is in direct contact with the light emitting layer, the light emitting layer Therefore, it is preferable that the layer containing the donor compound is not in direct contact with the light emitting layer.
  • the donor compound is a complex with an organic substance, the light emitting layer is not easily quenched, and thus the layer containing the donor compound may be in direct contact with the light emitting layer.
  • the undoped electron transport material and the doped electron transport material may be the same or different.
  • the electron transport layer containing a donor compound in the present invention may be used as a charge generation layer in a tandem structure type element that connects a plurality of light emitting elements.
  • the hole injection layer is a layer inserted between the anode and the hole transport layer.
  • the hole injection layer is composed of an acceptor compound alone, or the acceptor compound is used by doping another hole injection material.
  • the hole injection layer is composed of the acceptor compound alone or the acceptor compound is doped into another hole injection material.
  • the hole injection layer may be either a single layer or a plurality of layers stacked. If a hole injection layer is present between the positive hole transport layer containing the compound represented by the general formula (1) and the anode, it not only operates at a lower voltage and the durability life is improved, but also the carrier of the device.
  • the acceptor compound in the present invention alone may be used, or the hole injection layer containing the acceptor compound may be used as a charge generation layer in a tandem structure type element connecting a plurality of light emitting elements.
  • the anode is not particularly limited as long as it can efficiently inject holes into the organic layer, but it is preferable to use a material having a relatively large work function.
  • the material for the anode include conductive metal oxides such as tin oxide, indium oxide, indium zinc oxide, and indium tin oxide (ITO), metals such as gold, silver, and chromium, copper iodide, and copper sulfide.
  • conductive metal oxides such as tin oxide, indium oxide, indium zinc oxide, and indium tin oxide (ITO)
  • metals such as gold, silver, and chromium, copper iodide, and copper sulfide.
  • examples include inorganic conductive materials, conductive polymers such as polythiophene, polypyrrole, and polyaniline. These electrode materials may be used alone, or a plurality of materials may be laminated or mixed.
  • the resistance of the anode is not limited as long as a current sufficient for light emission of the light emitting element can be supplied, but it is desirable that the resistance is low in terms of power consumption of the light emitting element. For example, if the resistance is 300 ⁇ / ⁇ or less, it functions as an electrode. However, since it is now possible to supply an ITO substrate of about 10 ⁇ / ⁇ , it is possible to use a low resistance product of 100 ⁇ / ⁇ or less. Particularly desirable.
  • the thickness of the anode can be arbitrarily selected according to the resistance value, but is usually used in a range of 100 to 300 nm.
  • the anode In order to maintain the mechanical strength of the light emitting element, it is preferable to form the anode on the substrate.
  • a glass substrate such as soda glass or non-alkali glass is preferably used.
  • the glass material is preferably alkali-free glass because it is better to have less ions eluted from the glass, but soda lime glass with a barrier coat such as SiO 2 is also available on the market. it can.
  • the anode functions stably, the substrate does not have to be glass.
  • the anode may be formed on a plastic substrate.
  • the method for forming the anode is not particularly limited, and for example, an electron beam method, a sputtering method, a chemical reaction method, or the like can be used.
  • the material used for the cathode is not particularly limited as long as it can efficiently inject electrons into the organic layer, but platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium , Cesium, calcium and magnesium, and alloys thereof. Lithium, sodium, potassium, cesium, calcium, magnesium, or alloys containing these low work function metals are effective for increasing the electron injection efficiency and improving device characteristics. However, since these low work function metals are generally unstable in the atmosphere, the organic layer is doped with a small amount of lithium or magnesium (1 nm or less in the thickness gauge display of vacuum deposition) to stabilize the organic layer. A preferred example is a method for obtaining a high electrode.
  • an inorganic salt such as lithium fluoride can be used.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, inorganic substances such as silica, titania and silicon nitride, polyvinyl alcohol, polyvinyl chloride Lamination of organic polymer compounds such as hydrocarbon polymer compounds is a preferred example.
  • the method for forming the cathode is not particularly limited, and for example, resistance heating, electron beam, sputtering, ion plating and coating can be used.
  • the light emitting layer may be either a single layer or a plurality of layers, each formed by a light emitting material (host material, dopant material), which may be a mixture of a host material and a dopant material or a host material alone, Either is acceptable. That is, in the light emitting element of the present invention, only the host material or the dopant material may emit light in each light emitting layer, or both the host material and the dopant material may emit light. From the viewpoint of efficiently using electric energy and obtaining light emission with high color purity, the light emitting layer is preferably composed of a mixture of a host material and a dopant material. Further, the host material and the dopant material may be either one kind or a plurality of combinations, respectively.
  • a light emitting material host material, dopant material
  • the dopant material may be included in the entire host material or may be partially included.
  • the dopant material may be laminated or dispersed.
  • the dopant material can control the emission color.
  • a concentration quenching phenomenon occurs, so that it is preferably used in an amount of 20% by mass or less, more preferably 10% by mass or less based on the host material.
  • the doping method can be formed by a co-evaporation method with a host material, but may be simultaneously deposited after being previously mixed with the host material.
  • the light-emitting material includes condensed ring derivatives such as anthracene and pyrene, which have been known as light emitters, metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum, bisstyrylanthracene derivatives, diesters, and the like.
  • Bisstyryl derivatives such as styrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, thiadiazolopyridine derivatives, dibenzofuran derivatives, carbazole
  • polyphenylene vinylene derivatives, polyparaphenylene derivatives, polythiophene derivatives, etc. can be used, but are not particularly limited. Not shall.
  • the host material contained in the light emitting material is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene, and derivatives thereof, N, Aromatic amine derivatives such as N′-dinaphthyl-N, N′-diphenyl-4,4′-diphenyl-1,1′-diamine, metal chelating oxinoids including tris (8-quinolinato) aluminum (III) Compounds, bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, pyr
  • the dopant material is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, triphenylene, perylene, fluoranthene, fluorene, indene or a derivative thereof (for example, 2- (benzothiazole-2) -Yl) -9,10-diphenylanthracene, 5,6,11,12-tetraphenylnaphthacene), furan, pyrrole, thiophene, silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzo Compounds having heteroaryl rings such as thiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyridine,
  • a phosphorescent material may be included in the light emitting layer.
  • a phosphorescent material is a material that exhibits phosphorescence even at room temperature.
  • As a dopant it is basically necessary to obtain phosphorescence even at room temperature, but it is not particularly limited, and iridium (Ir), ruthenium (Ru), rhodium (Rh), palladium (Pd), platinum (Pt ), Organometallic complex compounds containing at least one metal selected from the group consisting of osmium (Os) and rhenium (Re).
  • an organometallic complex having iridium or platinum is more preferable.
  • Hosts of phosphorescent materials include indole derivatives, carbazole derivatives, indolocarbazole derivatives, pyridine, pyrimidine, nitrogen-containing aromatic compound derivatives having a triazine skeleton, polyarylbenzene derivatives, spirofluorene derivatives, truxene derivatives, triphenylene derivatives, etc.
  • a compound containing a chalcogen element such as an aromatic hydrocarbon compound derivative, a dibenzofuran derivative or a dibenzothiophene derivative, or an organometallic complex such as a beryllium quinolinol complex is preferably used.
  • Two or more triplet light-emitting dopants may be contained, or two or more host materials may be contained. Further, one or more triplet light emitting dopants and one or more fluorescent light emitting dopants may be contained.
  • Preferred phosphorescent dopants are not particularly limited, but specific examples include the following.
  • the preferred host of the phosphorescent light emitting layer is not particularly limited, but specific examples include the following.
  • the compound represented by the general formula (1) has a high triplet level in addition to good hole injection and transport properties and high electron blocking performance. Therefore, when the phosphorescence layer and the hole transport layer containing the compound represented by the general formula (1) are combined, triplet energy transfer from the phosphorescence layer to the hole transport layer is suppressed, Thermal deactivation of phosphorescence energy in the transport layer can be prevented. For this reason, it is possible to prevent a decrease in light emission efficiency and to obtain a light emitting element with low voltage drive and long life, which is preferable.
  • an electron injection layer may be provided between the cathode and the electron transport layer.
  • the electron injection layer is inserted for the purpose of assisting injection of electrons from the cathode to the electron transport layer, but in the case of insertion, the compound having a heteroaryl ring structure containing the electron accepting nitrogen described above is used as it is.
  • a layer containing the above donor compound may be used.
  • An insulator or a semiconductor inorganic substance can also be used for the electron injection layer. Use of these materials is preferable because a short circuit of the light emitting element can be effectively prevented and the electron injection property can be improved.
  • preferred alkali metal chalcogenides include, for example, Li 2 O, Na 2 S, and Na 2 Se
  • preferred alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, BeO, BaS, and CaSe. Is mentioned.
  • preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • a complex of an organic substance and a metal is also preferably used.
  • the organic substance in such a complex of an organic substance and a metal include quinolinol, benzoquinolinol, pyridylphenol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, hydroxytriazole and the like.
  • a complex of an alkali metal and an organic substance is preferable, a complex of lithium and an organic substance is more preferable, and lithium quinolinol is particularly preferable.
  • the light emitting element of the present invention has a function of converting electrical energy into light.
  • a direct current is mainly used as the electric energy, but a pulse current or an alternating current can also be used.
  • the current value and voltage value are not particularly limited, but should be selected so that the maximum luminance can be obtained with as low energy as possible in consideration of the power consumption and lifetime of the device.
  • the light-emitting element of the present invention is suitably used as a display for displaying in a matrix and / or segment system, for example.
  • pixels for display are arranged two-dimensionally such as a lattice shape or a mosaic shape, and characters and images are displayed by a set of pixels.
  • the shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 ⁇ m or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become.
  • monochrome display pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type.
  • the matrix driving method may be either a line sequential driving method or an active matrix. Although the structure of the line sequential drive is simple, the active matrix may be superior in consideration of the operation characteristics, and it is necessary to use it depending on the application.
  • the segment system in the present invention is a system in which a pattern is formed so as to display predetermined information and a region determined by the arrangement of the pattern is caused to emit light.
  • a pattern is formed so as to display predetermined information and a region determined by the arrangement of the pattern is caused to emit light.
  • the time and temperature display in a digital clock or a thermometer the operation state display of an audio device or an electromagnetic cooker, the panel display of an automobile, etc.
  • the matrix display and the segment display may coexist in the same panel.
  • the light-emitting element of the present invention is also preferably used as a backlight for various devices.
  • the backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like.
  • the light-emitting element of the present invention is preferably used for a backlight for a liquid crystal display device, particularly a personal computer for which a reduction in thickness is being considered, and a backlight that is thinner and lighter than conventional ones can be provided.
  • the present invention will be described with reference to examples, but the present invention is not limited to these examples.
  • the number of the compound in each following Example points out the number of the compound described above.
  • the first electron transporting layer is an electron transporting layer in contact with the light emitting layer, and the second electron transporting layer is not in contact with the light emitting layer, and is further laminated on the first electron transporting layer. Refers to the electron transport layer formed.
  • the first electron transport layer is “none”, the electron transport layer is composed of only the second electron transport layer, and the second electron transport layer is in contact with the light emitting layer.
  • Example 1 Light-emitting devices having a compound represented by the general formula (1) in the hole transport layer and a donor compound in the electron transport layer>
  • Example 1 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • HT-1 hole transport layer
  • HT-1 was deposited to 60 nm by a resistance heating method.
  • the compound H-1 was used as the host material
  • the compound D-1 was used as the dopant material
  • the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%.
  • the compound E-1 is used as the electron transport material
  • Liq is used as the donor compound
  • the deposition rate ratio of E-1 and Liq is 1: 1.
  • Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 ⁇ 5 mm square device.
  • the film thickness here is a display value of a crystal oscillation type film thickness monitor.
  • the characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 5.4 V and an external quantum efficiency of 4.1%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time of 20% reduction from the initial luminance was 160 hours.
  • Compounds HT-1, H-1, D-1, E-1, and Liq are the compounds shown below.
  • Example 2 (Examples 2 to 7) Using the materials described in Table 1 as the hole transport layer, the light emitting layer host material, the light emitting layer dopant material, and the second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 1. The results of each example are shown in Table 1.
  • HT-2, HT-3, HT-4, HT-5, HT-6, and HT-7 are the compounds shown below.
  • Example 8 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less. As a hole transport layer, HT-1 was deposited to 60 nm by a resistance heating method.
  • the compound H-1 was used as the host material
  • the compound D-1 was used as the dopant material
  • the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%.
  • E-1 is vapor-deposited as a first electron transport layer at a thickness of 5 nm
  • compound E-1 is used as an electron transport material as a second electron transport layer
  • cesium is used as a donor compound
  • E-1 and cesium are deposited.
  • the layers were laminated to a thickness of 15 nm so that the ratio was 20: 1.
  • the film thickness is a display value of a crystal oscillation type film thickness monitor.
  • the light-emitting element had characteristics of 1000 cd / m 2 and emitted blue light with a driving voltage of 5.2 V and an external quantum efficiency of 4.2%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time of 20% reduction from the initial luminance was 164 hours.
  • Example 9 Using the materials described in Table 1 as the hole transport layer, the light emitting layer host material, the light emitting layer dopant material, the first electron transport layer, and the second electron transport layer, a light emitting device was produced in the same manner as in Example 8. evaluated. The results of each example are shown in Table 1. E-2 is a compound shown below.
  • Example 22 Light-emitting device having a compound represented by the general formula (1) in the hole transport layer and an acceptor compound in the hole injection layer> (Example 22)
  • a glass substrate manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product
  • ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched.
  • the obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water.
  • This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • HAT-CN6 which is an acceptor compound
  • HT-1 was deposited as a hole transport layer by 50 nm.
  • the compound H-1 was used as the host material
  • the compound D-1 was used as the dopant material
  • the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%.
  • Compound E-1 was laminated to an electron transport material to a thickness of 20 nm.
  • Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 ⁇ 5 mm square device.
  • the film thickness here is a display value of a crystal oscillation type film thickness monitor.
  • the characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 5.2 V and an external quantum efficiency of 4.1%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time for a 20% decrease from the initial luminance was 162 hours.
  • HAT-CN6 is a compound shown below.
  • Example 23 Using the materials described in Table 2 as a hole injection layer, a hole transport layer, a light emitting layer host material, a light emitting layer dopant material, and a second electron transport layer, a light emitting device was fabricated and evaluated in the same manner as in Example 22. did. The results of each example are shown in Table 2.
  • Example 29 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • HT-1 was used as a hole injection material as a hole injection layer and F4-TCNQ was used as an acceptor compound by a resistance heating method, and 30 nm was deposited so that the acceptor compound had a doping concentration of 10% by mass.
  • 30 nm of HT-1 was deposited as a hole transport layer.
  • the compound H-1 was used as the host material
  • the compound D-1 was used as the dopant material
  • the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%.
  • Compound E-1 was laminated to an electron transport material to a thickness of 20 nm.
  • Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 ⁇ 5 mm square device.
  • the film thickness here is a display value of a crystal oscillation type film thickness monitor.
  • the characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 5.2 V and an external quantum efficiency of 4.2%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time of 20% reduction from the initial luminance was 159 hours.
  • F4-TCNQ is a compound shown below.
  • Example 30 to 35 Using the materials described in Table 2 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, and second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 29. did. The results of each example are shown in Table 2.
  • Example 36 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • molybdenum oxide MoO 3
  • HT-1 molybdenum oxide
  • the compound H-1 was used as the host material
  • the compound D-1 was used as the dopant material
  • the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%.
  • Compound E-1 was laminated to an electron transport material to a thickness of 20 nm.
  • Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 ⁇ 5 mm square device.
  • the film thickness here is a display value of a crystal oscillation type film thickness monitor.
  • the characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 5.2 V and an external quantum efficiency of 4.2%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time required for a 20% reduction from the initial luminance was 157 hours.
  • Example 37 Using the materials described in Table 2 as a hole injection layer, a hole transport layer, a light emitting layer host material, a light emitting layer dopant material, and a second electron transport layer, a light emitting device was fabricated and evaluated in the same manner as in Example 36. did. The results of each example are shown in Table 2.
  • Example 43 Using the materials described in Table 2 as a hole injection layer, a hole transport layer, a light emitting layer host material, a light emitting layer dopant material, and a second electron transport layer, a light emitting device was fabricated and evaluated in the same manner as in Example 22. did. The results of each example are shown in Table 2.
  • Example 50 to 56 Using the materials described in Table 2 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, and second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 29. did. The results of each example are shown in Table 2.
  • Example 57 to 63 Using the materials described in Table 2 as a hole injection layer, a hole transport layer, a light emitting layer host material, a light emitting layer dopant material, and a second electron transport layer, a light emitting device was fabricated and evaluated in the same manner as in Example 36. did. The results of each example are shown in Table 2.
  • Example 64 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • HT-1 was used as a hole injection material as a hole injection layer and PD-1 was used as an acceptor compound by a resistance heating method, and vapor deposition was performed at 30 nm so that the acceptor compound had a doping concentration of 3 mass%.
  • 30 nm of HT-1 was deposited as a hole transport layer.
  • the compound H-1 was used as the host material
  • the compound D-1 was used as the dopant material
  • the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%.
  • Compound E-1 was laminated to an electron transport material to a thickness of 20 nm.
  • Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 ⁇ 5 mm square device.
  • the film thickness here is a display value of a crystal oscillation type film thickness monitor.
  • the characteristics of this light-emitting element at 1000 cd / m 2 were a driving voltage of 5.1 V and an external quantum efficiency of 4.3%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time to decrease 20% from the initial luminance was 172 hours.
  • PD-1 is a compound shown below.
  • Example 65 (Examples 65 to 77) Using the materials described in Table 3 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, and second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 64. did. The results of each example are shown in Table 3.
  • the hole transport layer has the compound represented by the general formula (1), but the electron transport layer does not have a donor compound and does not have a hole injection layer containing an acceptor compound.
  • Light emitting element> (Comparative Example 1) A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water.
  • This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • HT-1 hole transport layer
  • HT-1 was deposited to 60 nm by a resistance heating method.
  • the compound H-1 was used as the host material
  • the compound D-1 was used as the dopant material
  • the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%.
  • Compound E-1 was laminated to a thickness of 20 nm on the electron transport material.
  • Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 ⁇ 5 mm square device.
  • the film thickness here is a display value of a crystal oscillation type film thickness monitor.
  • the characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 6.6 V and an external quantum efficiency of 3.1%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time of 20% reduction from the initial luminance was 135 hours.
  • ⁇ Comparative Examples 15 to 23 Light-emitting devices having a donor compound in the electron transport layer but not having the compound represented by the general formula (1) in the hole transport layer> (Comparative Examples 15 to 17) Using the materials described in Table 4 as the hole transport layer, light emitting layer host material, light emitting layer dopant material, and second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 1. The results of each comparative example are shown in Table 4. HT-8, HT-9 and HT-10 are the compounds shown below.
  • Example 78 Light-emitting devices having a compound represented by the general formula (1) in the hole transport layer, a donor compound in the electron transport layer, and an acceptor compound in the hole injection layer>
  • a glass substrate manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product
  • ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched.
  • the obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water.
  • This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • HAT-CN6 which is an acceptor compound
  • HT-1 was deposited as a hole transport layer by 50 nm.
  • the compound H-1 was used as the host material
  • the compound D-1 was used as the dopant material
  • the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%.
  • the compound E-1 is used as the electron transport material
  • Liq is used as the donor compound
  • the deposition rate ratio of E-1 and Liq is 1: 1.
  • Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 ⁇ 5 mm square device.
  • the film thickness here is a display value of a crystal oscillation type film thickness monitor.
  • the characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 4.1 V and an external quantum efficiency of 5.5%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time of 20% reduction from the initial luminance was 305 hours.
  • Example 79 to 82 Using the materials described in Table 6 as a hole injection layer, a hole transport layer, a light emitting layer host material, a light emitting layer dopant material, and a second electron transport layer, a light emitting device was fabricated and evaluated in the same manner as in Example 78. did. The results of each example are shown in Table 6.
  • Example 83 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • HT-1 was used as a hole injection material as a hole injection layer and F4-TCNQ was used as an acceptor compound by a resistance heating method, and 30 nm was deposited so that the acceptor compound had a doping concentration of 10% by mass.
  • 30 nm of HT-1 was deposited as a hole transport layer.
  • the compound H-1 was used as the host material
  • the compound D-1 was used as the dopant material
  • the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%.
  • the compound E-1 is used as the electron transport material
  • Liq is used as the donor compound
  • the deposition rate ratio of E-1 and Liq is 1: 1.
  • Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 ⁇ 5 mm square device.
  • the film thickness here is a display value of a crystal oscillation type film thickness monitor.
  • the characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 4.1 V and an external quantum efficiency of 5.3%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time of 20% reduction from the initial luminance was 310 hours.
  • Example 84 to 87 Using the materials described in Table 6 as a hole injection layer, a hole transport layer, a light emitting layer host material, a light emitting layer dopant material, and a second electron transport layer, a light emitting device was fabricated and evaluated in the same manner as in Example 83. did. The results of each example are shown in Table 6.
  • Example 88 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • HAT-CN6 was deposited as a hole injection layer by 10 nm by a resistance heating method, and then HT-1 was deposited as a hole transport layer by 50 nm.
  • the compound H-1 was used as the host material
  • the compound D-1 was used as the dopant material
  • the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%.
  • E-1 is vapor-deposited as a first electron transport layer at a thickness of 5 nm
  • compound E-1 is used as an electron transport material as a second electron transport layer
  • cesium is used as a donor compound
  • E-1 and cesium are deposited.
  • the layers were laminated to a thickness of 15 nm so that the ratio was 20: 1.
  • magnesium and silver were vapor-deposited 1000 nm so that mass ratio might be 1: 1, and it was set as the cathode, and the element of a 5 * 5-mm square was produced.
  • the film thickness here is a display value of a crystal oscillation type film thickness monitor.
  • the characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 4.0 V and an external quantum efficiency of 5.4%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time to decrease 20% from the initial luminance was 313 hours.
  • Example 89 to 92 Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 88. A device was fabricated and evaluated. The results of each example are shown in Table 6.
  • Example 93 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • HT-1 was used as a hole injection material and F4-TCNQ was used as an acceptor compound and 30 nm was deposited by a resistance heating method so that the acceptor compound had a doping concentration of 10% by mass.
  • 30 nm of HT-1 was deposited as a hole transport layer.
  • Compound H-1 was used as the host material
  • Compound D-1 was used as the dopant material
  • vapor deposition was performed to a thickness of 40 nm so that the dopant concentration was 5% by mass.
  • E-1 is vapor-deposited as a first electron transport layer at a thickness of 5 nm
  • compound E-1 is used as an electron transport material as a second electron transport layer
  • cesium is used as a donor compound
  • E-1 and cesium are deposited.
  • the layers were laminated to a thickness of 15 nm so that the ratio was 20: 1.
  • magnesium and silver were vapor-deposited 1000 nm so that mass ratio might be 1: 1, and it was set as the cathode, and the element of a 5 * 5-mm square was produced.
  • the film thickness here is a display value of a crystal oscillation type film thickness monitor.
  • the light-emitting element had characteristics of 1000 cd / m 2 and emitted blue light with a driving voltage of 4.0 V and an external quantum efficiency of 5.5%.
  • this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time of 20% reduction from the initial luminance was 301 hours.
  • Example 94 to 97 Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 93. A device was fabricated and evaluated. The results of each example are shown in Table 6.
  • Example 98 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • molybdenum oxide MoO 3
  • HT-1 molybdenum oxide
  • the compound H-1 was used as the host material
  • the compound D-1 was used as the dopant material
  • the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%.
  • the compound E-1 is used as the electron transport material
  • Liq is used as the donor compound
  • the deposition rate ratio of E-1 and Liq is 1: 1.
  • magnesium and silver were vapor-deposited 1000 nm so that mass ratio might be 1: 1, and it was set as the cathode, and the element of a 5 * 5-mm square was produced.
  • the film thickness here is a display value of a crystal oscillation type film thickness monitor. This property of at 1000 cd / m 2 of the light-emitting element drive voltage 4.2 V, and an external quantum efficiency of 5.4%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time to decrease 20% from the initial luminance was 294 hours.
  • Example 99 Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, and second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 98. did. The results of each example are shown in Table 6.
  • Example 103 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • molybdenum oxide MoO 3
  • HT-1 molybdenum oxide
  • the compound H-1 was used as the host material
  • the compound D-1 was used as the dopant material
  • the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%.
  • E-1 is vapor-deposited as a first electron transport layer at a thickness of 5 nm
  • compound E-1 is used as an electron transport material as a second electron transport layer
  • cesium is used as a donor compound
  • E-1 and cesium are deposited.
  • the layers were laminated to a thickness of 15 nm so that the ratio was 20: 1.
  • magnesium and silver were vapor-deposited 1000 nm so that mass ratio might be 1: 1, and it was set as the cathode, and the element of a 5 * 5-mm square was produced.
  • the film thickness here is a display value of a crystal oscillation type film thickness monitor.
  • the characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 4.0 V and an external quantum efficiency of 5.4%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time of 20% reduction from the initial luminance was 301 hours.
  • Example 104 to 107 Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 103. A device was fabricated and evaluated. The results of each example are shown in Table 6.
  • Example 108 to 112 Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 88. A device was fabricated and evaluated. The results of each example are shown in Table 6.
  • Example 113 to 117 Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 93. A device was fabricated and evaluated. The results of each example are shown in Table 6.
  • Example 118 to 122 Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 103. A device was fabricated and evaluated. The results of each example are shown in Table 6.
  • Example 123 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • HT-3 was used as a hole injection material and PD-1 was used as an acceptor compound by a resistance heating method, and 30 nm was deposited so that the acceptor compound had a doping concentration of 3 mass%.
  • HT-3 was deposited as a hole transport layer by 30 nm.
  • the compound H-1 was used as the host material
  • the compound D-1 was used as the dopant material
  • the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%.
  • the compound E-1 is used as the electron transport material
  • Liq is used as the donor compound
  • the deposition rate ratio of E-1 and Liq is 1: 1.
  • Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 ⁇ 5 mm square device.
  • the film thickness here is a display value of a crystal oscillation type film thickness monitor.
  • the characteristics of this light-emitting element at 1000 cd / m 2 were a driving voltage of 4.0 V and an external quantum efficiency of 5.3%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time required for a 20% decrease from the initial luminance was 364 hours.
  • Example 124 and 125 Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 123. A device was fabricated and evaluated. The results of each example are shown in Table 6.
  • Example 126 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • HT-3 was used as a hole injection material
  • PD-1 was used as an acceptor compound
  • 30 nm was deposited by a resistance heating method so that the acceptor compound had a doping concentration of 3 mass%.
  • 30 nm of HT-3 was deposited as a hole transport layer.
  • Compound H-1 was used as the host material
  • Compound D-1 was used as the dopant material
  • vapor deposition was performed to a thickness of 40 nm so that the dopant concentration was 5% by mass.
  • E-1 is vapor-deposited as a first electron transport layer at a thickness of 5 nm
  • compound E-1 is used as an electron transport material as a second electron transport layer
  • cesium is used as a donor compound
  • E-1 and cesium are deposited.
  • the layers were laminated to a thickness of 15 nm so that the ratio was 20: 1.
  • magnesium and silver were vapor-deposited 1000 nm so that mass ratio might be 1: 1, and it was set as the cathode, and the element of a 5 * 5-mm square was produced.
  • the film thickness here is a display value of a crystal oscillation type film thickness monitor.
  • the light-emitting element had characteristics of 1000 cd / m 2 and emitted blue light with a driving voltage of 3.9 V and an external quantum efficiency of 5.4%.
  • this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time required for a 20% decrease from the initial luminance was 372 hours.
  • Example 127 and 1228 Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 126. A device was fabricated and evaluated. The results of each example are shown in Table 6.
  • Example 129 to 138 Using the materials described in Table 7 as a hole injection layer, a hole transport layer, a light emitting layer host material, a light emitting layer dopant material, and a second electron transport layer, a light emitting device was fabricated and evaluated in the same manner as in Example 78. did. The results of each example are shown in Table 7.
  • HT-11, HT-12, E-3, and E-4 are the compounds shown below.
  • the hole injection layer is composed of an acceptor compound alone or contains an acceptor compound, and the electron transport layer contains a donor compound.
  • Contain Case by using a compound represented by the general formula (1) in the hole transporting layer, a low voltage drive, improvement in luminous efficiency, it can be seen that the effect is seen such a considerable improvement in durability.
  • the light-emitting element according to the present invention is useful in fields that are driven at a low voltage and require high luminous efficiency and durability, and is a display element, flat panel display, backlight, illumination, interior, sign, signboard, and electrophotography. It can be used for a machine and an optical signal generator.

Abstract

Provided is an organic thin-film light-emitting element having improved light-emission efficiency, drive voltage, and durability life. This light-emitting element is characterized by including a compound having a triphenylene skeleton in a hole transport layer, and by either including a donor compound in an electron transport layer or using an acceptor compound in a hole injection layer.

Description

発光素子Light emitting element
 本発明は、電気エネルギーを光に変換できる発光素子に関する。より詳しくは、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機および光信号発生器などの分野に利用可能な発光素子に関するものである。 The present invention relates to a light emitting element capable of converting electric energy into light. More specifically, the present invention relates to a light emitting element that can be used in fields such as a display element, a flat panel display, a backlight, illumination, interior, a sign, a signboard, an electrophotographic machine, and an optical signal generator.
 陰極から注入された電子と陽極から注入された正孔が両極に挟まれた有機蛍光体内で再結合する際に発光するという有機薄膜発光素子の研究が、近年活発に行われている。この発光素子は、薄型でかつ低駆動電圧下での高輝度発光と、蛍光材料を選ぶことによる多色発光が特徴であり、注目を集めている。この研究は、コダック社のC.W.Tangらによって有機薄膜素子が高輝度に発光することが示されて以来、多くの研究機関により検討されている。 In recent years, research on organic thin-film light emitting devices that emit light when electrons injected from a cathode and holes injected from an anode are recombined in an organic phosphor sandwiched between both electrodes has been actively conducted. This light emitting element is characterized by thin light emission with high luminance under a low driving voltage and multicolor light emission by selecting a fluorescent material. This study was conducted by C.D. W. Since Tang et al. Showed that organic thin film devices emit light with high brightness, they have been studied by many research institutions.
 その後、多数の実用化検討がなされた結果、有機薄膜発光素子は、携帯電話のメインディスプレイなどに採用されるなど着実に実用化が進んでいる。しかし、まだ技術的な課題も多く、中でも素子の低電圧駆動化と長寿命化の両立は大きな課題のひとつである。 After that, as a result of many practical studies, organic thin-film light-emitting elements have been steadily put into practical use, such as being used in the main display of mobile phones. However, there are still many technical issues. Above all, it is one of the big issues to achieve both low voltage driving and long life of the device.
 素子の駆動電圧は、正孔や電子といったキャリアを発光層まで輸送するキャリア輸送材料に大きく左右される。このうち正孔輸送材料としてトリフェニレン骨格を有する材料を用いる技術が開示されている(例えば、特許文献1~3参照)。 The driving voltage of the element depends greatly on the carrier transport material that transports carriers such as holes and electrons to the light emitting layer. Among these, a technique using a material having a triphenylene skeleton as a hole transport material is disclosed (for example, see Patent Documents 1 to 3).
 また素子を低電圧化させる技術の一つとして、電子注入輸送の観点では電子輸送層として用いられる材料にドナー性化合物をドープする技術が開示されている(例えば、特許文献4~6参照)。また正孔注入輸送という観点では正孔輸送材料にアクセプター性化合物をドープする技術が開示されている(例えば特許文献7、8)。 Also, as one of the techniques for lowering the voltage of the device, a technique of doping a donor compound into a material used as an electron transport layer from the viewpoint of electron injection transport is disclosed (for example, see Patent Documents 4 to 6). Further, from the viewpoint of hole injection and transport, a technique of doping a hole transport material with an acceptor compound is disclosed (for example, Patent Documents 7 and 8).
特開平11-251063号公報JP-A-11-251063 特開2005-259472号公報JP 2005-259472 A 特開2009-292760号公報JP 2009-292760 A 特開2003-347060号公報JP 2003-347060 A 特開2002-352961号公報JP 2002-352916 A 特開2004-2297号公報Japanese Patent Laid-Open No. 2004-2297 特開2010-100621号公報JP 2010-1000062 A 国際公開第2010/132236号International Publication No. 2010/132236
 しかしながら、従来技術においては、低電圧駆動し、発光効率が高く、さらに耐久寿命も優れた発光素子は見出されていなかった。例えば、従来知られている正孔輸送材料や電子輸送材料は、それ自体は正孔輸送性や電子輸送性に優れていても、組み合わせて用いた場合に発光素子としての性能が向上するとは限らない。 However, in the prior art, a light emitting device that is driven at a low voltage, has high luminous efficiency, and has excellent durability life has not been found. For example, even though conventionally known hole transport materials and electron transport materials are excellent in hole transport properties and electron transport properties themselves, performance as a light emitting device is not necessarily improved when used in combination. Absent.
 中でも、特許文献4~6で知られているようなドナー性化合物を電子輸送層にドープする技術は、駆動電圧を低下させる効果はみられるものの、発光効率の低下、耐久寿命の低下を引き起こす場合があることが、本発明者による検討によりわかった。本発明者はその理由を以下のように推測した。アルカリ金属をドープした電子輸送層は導電性が向上し、これを電子輸送層に用いると陰極からの電子注入性が良好となる他、電子輸送性にも優れる。しかし、その高い性能ゆえ、組み合わせて用いられる正孔輸送材料の種類によっては発光層内が電子過剰となってしまい、その結果、上記のような課題が生じてしまうと考えられる。 In particular, the technique of doping the electron transport layer with a donor compound as known in Patent Documents 4 to 6 has the effect of lowering the driving voltage, but causes a decrease in luminous efficiency and a decrease in durability life. It has been found by examination by the present inventors. The inventor presumed the reason as follows. The electron transport layer doped with an alkali metal has improved conductivity, and when this is used for the electron transport layer, the electron injection property from the cathode is good and the electron transport property is also excellent. However, due to its high performance, the inside of the light-emitting layer becomes excessive in electrons depending on the types of hole transport materials used in combination, and as a result, the above-described problems may occur.
 一方、特許文献7,8で知られているようなアクセプター性化合物を正孔輸送層にドープする技術は、やはり駆動電圧を低下させる効果はみられるが、ドープする正孔輸送材料によっては、大きな耐久寿命の向上の効果が得られないことが本発明者による検討でわかった。本発明者はその理由を以下のように推測した。駆動中に、単独の、もしくはドープしたアクセプター化合物が正孔輸送層内を拡散し、正孔輸送層の正孔伝導度が駆動中に徐々に変化してしまう。そのため、駆動前のキャリアバランスから徐々にずれていき、発光効率の低下、すなわち劣化を引き起こしているものと考えられる。 On the other hand, the technique of doping the acceptor compound into the hole transport layer as known in Patent Documents 7 and 8 still has the effect of lowering the driving voltage, but depending on the hole transport material to be doped, it is significant. It has been found by the study by the present inventors that the effect of improving the durable life cannot be obtained. The inventor presumed the reason as follows. During driving, a single or doped acceptor compound diffuses in the hole transport layer, and the hole conductivity of the hole transport layer gradually changes during driving. For this reason, it is considered that the carrier balance gradually deviates from that before driving, causing a decrease in light emission efficiency, that is, deterioration.
 本発明は、かかる従来技術の問題を解決し、発光効率、駆動電圧、耐久寿命の全てを改善した有機薄膜発光素子を提供することを目的とするものである。 An object of the present invention is to provide an organic thin-film light-emitting element that solves the problems of the prior art and has improved luminous efficiency, driving voltage, and durability life.
 本発明は発光素子内における電子と正孔の移動度のバランスを鑑みて検討された結果なされたものであり、正孔輸送層と電子輸送層に含まれる材料として最適な組み合わせを見出したものである。また正孔輸送層にドープされるアクセプター化合物の駆動中の拡散を防ぐための最適な正孔輸送材料を見出したものである。 The present invention was made in consideration of the balance of mobility of electrons and holes in a light emitting device, and found an optimal combination as a material contained in a hole transport layer and an electron transport layer. is there. Further, the present inventors have found an optimum hole transport material for preventing diffusion during driving of the acceptor compound doped in the hole transport layer.
 すなわち本発明の一の構成は、陽極と陰極との間に少なくとも正孔輸送層と電子輸送層とを備え、電気エネルギーにより発光する発光素子であって、前記正孔輸送層は下記一般式(1)で表される化合物を含有し、前記電子輸送層は、アルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩、またはアルカリ土類金属と有機物との錯体からなる群から選択されるドナー性化合物を含有することを特徴とする発光素子である。 That is, one configuration of the present invention is a light-emitting element that includes at least a hole transport layer and an electron transport layer between an anode and a cathode and emits light by electric energy, and the hole transport layer has the following general formula ( 1) The compound represented by 1), wherein the electron transport layer is an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic substance, an alkaline earth metal, an inorganic salt containing an alkaline earth metal Or a light-emitting element containing a donor compound selected from the group consisting of a complex of an alkaline earth metal and an organic substance.
Figure JPOXMLDOC01-appb-C000003
 一般式(1)中、R~R12は、それぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アミノ基、アリール基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、ハロゲン、シアノ基、-P(=O)R1314およびシリル基からなる群より選ばれる。R13およびR14は、それぞれ同じでも異なっていてもよく、アリール基またはヘテロアリール基である。これらの置換基はさらに置換されていてもよいし、隣り合う置換基同士でさらに環を形成していてもよい。ただし、R~R12のうちn個は、-NR1516で表されるアミノ基である。R15およびR16は、それぞれ同じでも異なっていてもよく、アルキル基、シクロアルキル基、アリール基、およびヘテロアリール基からなる群より選ばれる。nは1~6の整数を表す。
Figure JPOXMLDOC01-appb-C000003
In the general formula (1), R 1 to R 12 may be the same or different, and are hydrogen, alkyl group, cycloalkyl group, amino group, aryl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl. Selected from the group consisting of a group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether group, a halogen, a cyano group, —P (═O) R 13 R 14 and a silyl group. R 13 and R 14 may be the same or different, and are an aryl group or a heteroaryl group. These substituents may be further substituted, and adjacent substituents may further form a ring. However, n of R 1 to R 12 is an amino group represented by —NR 15 R 16 . R 15 and R 16 may be the same or different and are selected from the group consisting of an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group. n represents an integer of 1 to 6.
 また、本発明の別の構成は、陽極と陰極との間に少なくとも正孔輸送層と正孔注入層とを備え、電気エネルギーにより発光する発光素子であって、前記正孔輸送層は上記一般式(1)で表される化合物を含有し、前記正孔注入層は、アクセプター性化合物単独で構成されているか、またはアクセプター性化合物を含有することを特徴とする発光素子である。 Another configuration of the present invention is a light emitting device that includes at least a hole transport layer and a hole injection layer between an anode and a cathode, and emits light by electric energy. It is a light emitting device containing a compound represented by the formula (1), wherein the hole injection layer is composed of an acceptor compound alone or contains an acceptor compound.
 本発明にかかる発光素子は、低電圧駆動を可能とするとともに、発光効率および耐久寿命を向上するという効果を奏する。 The light emitting device according to the present invention has an effect of being able to be driven at a low voltage and improving luminous efficiency and durability.
 <第1の構成に係る発光素子>
 本発明の第1の構成に係る発光素子は正孔輸送層と電子輸送層にそれぞれ特定の構造を有する化合物を用いた点に特徴を有する。
<Light Emitting Element According to First Configuration>
The light-emitting element according to the first configuration of the present invention is characterized in that a compound having a specific structure is used for each of the hole transport layer and the electron transport layer.
 まず、一般式(1)で表される化合物について詳細に説明する。本発明の発光素子の正孔輸送層には一般式(1)で表される化合物が含まれる。 First, the compound represented by the general formula (1) will be described in detail. The hole transport layer of the light emitting device of the present invention contains a compound represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000004
 一般式(1)中、R~R12は、それぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アミノ基、アリール基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、ハロゲン、シアノ基、-P(=O)R1314およびシリル基からなる群より選ばれる。R13およびR14は、それぞれ同じでも異なっていてもよく、アリール基またはヘテロアリール基である。これらの置換基はさらに置換されていてもよいし、隣り合う置換基同士でさらに環を形成していてもよい。ただし、R~R12のうちn個は、-NR1516で表されるアミノ基である。R15およびR16は、それぞれ同じでも異なっていてもよく、アルキル基、シクロアルキル基、アリール基、およびヘテロアリール基からなる群より選ばれる。nは1~6の整数を表す。
Figure JPOXMLDOC01-appb-C000004
In the general formula (1), R 1 to R 12 may be the same or different, and are hydrogen, alkyl group, cycloalkyl group, amino group, aryl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl. Selected from the group consisting of a group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether group, a halogen, a cyano group, —P (═O) R 13 R 14 and a silyl group. R 13 and R 14 may be the same or different, and are an aryl group or a heteroaryl group. These substituents may be further substituted, and adjacent substituents may further form a ring. However, n of R 1 to R 12 is an amino group represented by —NR 15 R 16 . R 15 and R 16 may be the same or different and are selected from the group consisting of an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group. n represents an integer of 1 to 6.
 これらの置換基のうち水素は重水素であってもよい。アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基等を挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は特に限定されないが、原料入手の容易性やコストの点から、通常1以上20以下、より好ましくは1以上8以下の範囲である。さらにアルキル基の炭素数が大きいと正孔輸送性を阻害する恐れがあることから、さらに好ましくはメチル基、エチル基である。 Of these substituents, hydrogen may be deuterium. The alkyl group represents, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group, which is a substituent. It may or may not have. There is no restriction | limiting in particular in the additional substituent in the case of being substituted, For example, an alkyl group, an aryl group, etc. can be mentioned, This point is common also in the following description. The number of carbon atoms of the alkyl group is not particularly limited, but is usually in the range of 1 to 20 and more preferably 1 to 8 from the viewpoint of easy availability of raw materials and cost. Furthermore, since there exists a possibility that hole transport property may be inhibited when the carbon number of an alkyl group is large, a methyl group and an ethyl group are more preferable.
 シクロアルキル基とは、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキル基部分の炭素数は特に限定されないが、通常、3以上20以下の範囲である。また炭素数が大きい場合、正孔輸送性が阻害される恐れがあるのでより好ましくはシクロプロピル、シクロペンチル、シクロヘキシル基である。 The cycloalkyl group represents, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, an adamantyl group, etc., which may or may not have a substituent. Also good. Although carbon number of an alkyl group part is not specifically limited, Usually, it is the range of 3-20. Further, when the number of carbon atoms is large, the hole transport property may be inhibited, and therefore, a cyclopropyl, cyclopentyl, or cyclohexyl group is more preferable.
 アミノ基は置換基を有していても有していなくてもよく、置換基としては例えばアルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが挙げられ、これらの置換基はさらに置換されていてもよい。 The amino group may or may not have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group, and these substituents are further substituted. It may be.
 アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、フルオレニル基、アントラセニル基、ピレニル基、ターフェニル基などの芳香族炭化水素基を示す。アリール基は、さらに置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、シクロアルキル基、ヘテロアリール基、アルコキシ基、アミノ基等を挙げることができる。アリール基の炭素数は特に限定されないが、通常、6~40の範囲である。 The aryl group represents an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a fluorenyl group, an anthracenyl group, a pyrenyl group, or a terphenyl group. The aryl group may or may not further have a substituent. There is no restriction | limiting in particular in the additional substituent in the case of being substituted, For example, an alkyl group, a cycloalkyl group, heteroaryl group, an alkoxy group, an amino group etc. can be mentioned. The number of carbon atoms of the aryl group is not particularly limited, but is usually in the range of 6 to 40.
 複素環基とは、例えば、ピラニル基、ピペリジニル基、環状アミド基、などの炭素以外の原子を環内に有する環状脂肪族基、およびフラニル基、チオフェニル基、ピリジル基、キノリニル基、ピラジニル基、ナフチリジル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基などの炭素以外の原子を一個または複数個環内に有する環状芳香族基(ヘテロアリール基)を示し、これは無置換でも置換されていてもかまわない。複素環基の中では、ヘテロアリール基が好ましい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、シクロアルキル基、アリール基、アルコキシ基、アミノ基等を挙げることができる。複素環基の炭素数は特に限定されないが、通常、2~30の範囲である。 The heterocyclic group is, for example, a cycloaliphatic group having atoms other than carbon, such as a pyranyl group, a piperidinyl group, and a cyclic amide group, and a furanyl group, a thiophenyl group, a pyridyl group, a quinolinyl group, a pyrazinyl group, Cyclic aromatic groups (heteroaryl groups) having one or more atoms other than carbon such as naphthyridyl group, benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group in the ring Which may be unsubstituted or substituted. Of the heterocyclic groups, heteroaryl groups are preferred. There is no restriction | limiting in particular in the additional substituent in the case of being substituted, For example, an alkyl group, a cycloalkyl group, an aryl group, an alkoxy group, an amino group etc. can be mentioned. The number of carbon atoms of the heterocyclic group is not particularly limited, but is usually in the range of 2-30.
 アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルケニル基の炭素数は特に限定されないが、通常、2~20の範囲である。 An alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent. The number of carbon atoms of the alkenyl group is not particularly limited, but is usually in the range of 2-20.
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。 The cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, which may have a substituent. You don't have to.
 アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキニル基の炭素数は特に限定されないが、通常、2~20の範囲である。 The alkynyl group indicates, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent. The number of carbon atoms of the alkynyl group is not particularly limited, but is usually in the range of 2-20.
 アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は置換基を有していても有していなくてもよい。アルコキシ基の炭素数は特に限定されないが、通常、1以上20以下の範囲である。さらにアルコキシ基の炭素数が大きいと正孔輸送性を阻害する恐れがあることから、より好ましくはメトキシ基、エトキシ基である。 The alkoxy group refers to, for example, a functional group having an aliphatic hydrocarbon group bonded through an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group may have a substituent. It may not have. Although carbon number of an alkoxy group is not specifically limited, Usually, it is the range of 1-20. Furthermore, since there exists a possibility that hole transport property may be inhibited when the carbon number of an alkoxy group is large, it is more preferably a methoxy group or an ethoxy group.
 アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は置換基を有していても有していなくてもよい。アルキルチオ基の炭素数は特に限定されないが、通常、1以上20以下の範囲である。 The alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom. The hydrocarbon group of the alkylthio group may or may not have a substituent. Although carbon number of an alkylthio group is not specifically limited, Usually, it is the range of 1-20.
 アリールエーテル基とは、例えば、フェノキシ基など、エーテル結合を介した芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。 An aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. Good. Although carbon number of an aryl ether group is not specifically limited, Usually, it is the range of 6-40.
 アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールエーテル基における芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。 The aryl thioether group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted with a sulfur atom. The aromatic hydrocarbon group in the aryl ether group may or may not have a substituent. Although carbon number of an aryl ether group is not specifically limited, Usually, it is the range of 6-40.
 ハロゲンとは、フッ素、塩素、臭素、ヨウ素を示す。 Halogen means fluorine, chlorine, bromine and iodine.
 置換基-P(=O)R1314において、R13およびR14は、アリール基またはヘテロアリール基であり、置換基-P(=O)R1314において、アリール基またはヘテロアリール基は上記と同様の意味を有する。 In the substituent —P (═O) R 13 R 14 , R 13 and R 14 are an aryl group or a heteroaryl group, and in the substituent —P (═O) R 13 R 14 , an aryl group or a heteroaryl group Has the same meaning as above.
 シリル基とは、例えば、トリメチルシリル基などのケイ素原子への結合を有する官能基を示し、これは置換基を有していても有していなくてもよい。シリル基の炭素数は特に限定されないが、通常、3~20の範囲である。また、ケイ素数は、通常、1~6である。 The silyl group refers to, for example, a functional group having a bond to a silicon atom such as a trimethylsilyl group, which may or may not have a substituent. The carbon number of the silyl group is not particularly limited, but is usually in the range of 3-20. The number of silicon is usually 1-6.
 隣り合う置換基同士で環を形成しているとは、任意の隣接2置換基(例えば一般式(1)のRとR)が互いに結合して共役または非共役の縮合環を形成していることをいう。縮合環の構成元素として、炭素以外にも窒素、酸素、硫黄、リン、ケイ素原子を含んでいてもよいし、さらに別の環と縮合してもよい。 Adjacent substituents form a ring when any adjacent two substituents (for example, R 1 and R 2 in formula (1)) are bonded to each other to form a conjugated or non-conjugated condensed ring. It means that As a constituent element of the condensed ring, in addition to carbon, nitrogen, oxygen, sulfur, phosphorus and silicon atoms may be contained, or further condensed with another ring.
 R~R12の好ましい例としては材料の蒸着安定性(熱安定性)や合成コスト、原料入手の容易さを考慮すると水素、アルキル基、アミノ基、アルコキシ基、アリール基、またはヘテロアリール基である。より好ましくは水素、アミノ基、アリール基またはヘテロアリール基である。アリール基またはヘテロアリール基である場合、材料の蒸着安定性(熱安定性)を考慮すると炭素数が6~18のアリール基またはヘテロアリール基が好ましく、具体的にはフェニル基、ナフチル基、ビフェニリル基、フルオレニル基、アントラセニル基、フェナントリル基、ピレニル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基である。これらの基はさらに置換基を有していてもよい。 Preferred examples of R 1 to R 12 include hydrogen, an alkyl group, an amino group, an alkoxy group, an aryl group, or a heteroaryl group in consideration of the deposition stability (thermal stability) of the material, the synthesis cost, and the availability of raw materials. It is. More preferred are hydrogen, amino group, aryl group or heteroaryl group. In the case of an aryl group or heteroaryl group, an aryl group or heteroaryl group having 6 to 18 carbon atoms is preferable in consideration of vapor deposition stability (thermal stability) of the material. Specifically, a phenyl group, a naphthyl group, or biphenylyl. Group, fluorenyl group, anthracenyl group, phenanthryl group, pyrenyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group. These groups may further have a substituent.
 一般式(1)において、R~R12のうちn個は、-NR1516で表されるアミノ基であり、R15およびR16は合成コスト、原料入手の容易さを考慮するとアルキル基、アリール基またはヘテロアリール基が好ましい。中でも蒸着安定性(熱安定性)やアモルファス薄膜の安定性(高いガラス転移温度を有する)や良好な正孔輸送特性を有することを考慮するとアリール基またはヘテロアリール基が好ましい。具体的には炭素数が6~20のアリール基またはヘテロアリール基が好ましく、フェニル基、ナフチル基、ビフェニリル基、ターフェニル基、フルオレニル基、アントラセニル基、フェナントリル基、ピレニル基、トリフェニレニル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基などが好ましい具体例として挙げられる。これらの基はさらに置換基を有していてもよい。これらの中でも良好なアモルファス薄膜の安定性(高いガラス転移温度)が得られ、より素子を長寿命化できるという観点、またエネルギーギャップ(HOMO-LUMOエネルギーの差)が狭くなっては発光層の励起子エネルギーを失活させてしまう恐れがないことから、フェニル基、ナフチル基、ビフェニリル基、ターフェニル基、フルオレニル基、フェナントリル基、トリフェニレニル基がより好ましい。 In the general formula (1), n of R 1 to R 12 is an amino group represented by —NR 15 R 16 , and R 15 and R 16 are alkyl groups in view of synthesis cost and availability of raw materials. A group, an aryl group or a heteroaryl group is preferred. Among them, an aryl group or a heteroaryl group is preferable in consideration of vapor deposition stability (thermal stability), amorphous thin film stability (having a high glass transition temperature), and good hole transport properties. Specifically, an aryl group or heteroaryl group having 6 to 20 carbon atoms is preferable, and phenyl group, naphthyl group, biphenylyl group, terphenyl group, fluorenyl group, anthracenyl group, phenanthryl group, pyrenyl group, triphenylenyl group, dibenzofuran group. Preferred examples include nyl group, dibenzothiophenyl group, carbazolyl group and the like. These groups may further have a substituent. Among them, excellent amorphous thin film stability (high glass transition temperature) can be obtained, and the lifetime of the device can be extended, and if the energy gap (HOMO-LUMO energy difference) is narrowed, the light emitting layer is excited. A phenyl group, a naphthyl group, a biphenylyl group, a terphenyl group, a fluorenyl group, a phenanthryl group, and a triphenylenyl group are more preferable because there is no fear of deactivating the child energy.
 一般式(1)において、置換基-NR1516の数であるnは1~6の整数を表すが、蒸着安定性(熱安定性)を考慮するとnは1~3が好ましく、さらに適切なイオン化ポテンシャルを有し、正孔がより注入されやすくなるという観点から2または3がより好ましい。n=1の場合は、合成の容易さを考慮するとRが-NR1516であることが好ましい。n=2の場合は、合成の容易さを考慮するとRとR、RとR、またはRとR12とが-NR1516であることが好ましく、さらに適切なイオン化ポテンシャルを有するという観点からはRとRが-NR1516であることがより好ましい。またn=3の場合は、合成の容易さを考慮するとR、RおよびRまたはR、RおよびRが-NR1516であることが好ましく、さらに適切なイオン化ポテンシャルを有するという観点ではR、RおよびRが-NR1516であることがより好ましい。n=4の場合は、合成の容易さを考慮するとR、R、RおよびR、またはR、R、RおよびR11、またはR、R、RおよびR11が-NR1516であることが好ましく、さらに適切なイオン化ポテンシャルを有するという観点ではR、R、RおよびR11が-NR1516であることがより好ましい。 In the general formula (1), n as the number of substituents —NR 15 R 16 represents an integer of 1 to 6, but n is preferably 1 to 3 in consideration of deposition stability (thermal stability), and more appropriate 2 or 3 is more preferable from the viewpoint of having a good ionization potential and facilitating injection of holes. When n = 1, it is preferable that R 1 is —NR 15 R 16 in view of ease of synthesis. In the case of n = 2, considering the ease of synthesis, it is preferable that R 1 and R 6 , R 2 and R 5 , or R 3 and R 12 are —NR 15 R 16 , and further suitable ionization potential From the viewpoint of having R 1 , R 1 and R 6 are more preferably —NR 15 R 16 . In the case of n = 3, considering the ease of synthesis, R 1 , R 5 and R 9 or R 1 , R 6 and R 9 are preferably —NR 15 R 16 , and an appropriate ionization potential is obtained. From the viewpoint of having R 1 , R 6, and R 9 are more preferably —NR 15 R 16 . In the case of n = 4, R 1 , R 2 , R 5 and R 6 , or R 1 , R 6 , R 8 and R 11 , or R 2 , R 5 , R 8 and R are considered in consideration of the ease of synthesis. 11 is preferably —NR 15 R 16 , and more preferably R 1 , R 6 , R 8 and R 11 are —NR 15 R 16 from the viewpoint of having an appropriate ionization potential.
 このような一般式(1)で表される化合物として、特に限定されないが、具体的には以下のような化合物が挙げられる。 The compound represented by the general formula (1) is not particularly limited, but specific examples include the following compounds.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(1)で表される化合物は公知の方法を組み合わせて合成できる。以下にn=2のジアミノタイプの合成例を示す。 The compound represented by the general formula (1) can be synthesized by combining known methods. A synthesis example of diamino type with n = 2 is shown below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 またn=1のモノアミノタイプの合成法としては、例えば市販のブロモトリフェニレンと所望のジアリールアミンとの、パラジウム触媒を用いたカップリング反応で容易に合成できる。なお合成方法はこれらに限定されない。 Also, as a monoamino type synthesis method of n = 1, for example, it can be easily synthesized by a coupling reaction using commercially available bromotriphenylene and a desired diarylamine using a palladium catalyst. Note that the synthesis method is not limited to these.
 本発明の第1の構成に係る発光素子における電子輸送層はドナー性化合物を含有する。ドナー性化合物を含有する電子輸送層は、それを含有しない電子輸送層にくらべ、電子輸送層中のキャリア密度が増加し、電子伝導度が向上する。そのため、従来の正孔輸送材料との組み合わせでは発光層内が電子過剰となってしまい、その結果、発光効率の低下、耐久寿命の低下を引き起こしていたと考えられる。しかしドナー性化合物を含有する電子輸送層と、一般式(1)で表される化合物を含む正孔輸送層とを組み合わせると、低電圧駆動しながら発光効率の向上、耐久寿命の向上といった効果が得られることが見出された。これは、一般式(1)で表される正孔輸送材料が、例えば従来よく知られているアリールアミン系の正孔輸送材料に比べて大きな正孔移動度と良好な正孔注入特性を有していることから、ドナー性化合物含有電子輸送層と組み合わせると、発光層内の電子過剰が解消され、正孔輸送層への電子の注入を防止できるためであると考えられる。 The electron transport layer in the light emitting device according to the first configuration of the present invention contains a donor compound. In the electron transport layer containing a donor compound, the carrier density in the electron transport layer is increased and the electron conductivity is improved as compared with an electron transport layer not containing the donor compound. Therefore, in combination with the conventional hole transporting material, the inside of the light emitting layer becomes excessive in electrons, and as a result, it is considered that the light emitting efficiency is lowered and the durability life is shortened. However, combining the electron transport layer containing the donor compound and the hole transport layer containing the compound represented by the general formula (1) has the effect of improving the light emission efficiency and the durability life while driving at a low voltage. It was found to be obtained. This is because the hole transport material represented by the general formula (1) has higher hole mobility and better hole injection characteristics than, for example, a well-known arylamine-based hole transport material. Therefore, it is considered that, when combined with the electron transport layer containing a donor compound, the excess of electrons in the light emitting layer is eliminated, and injection of electrons into the hole transport layer can be prevented.
 本発明におけるドナー性化合物とは、電子注入障壁の改善により、陰極または電子注入層からの電子輸送層への電子注入を容易にし、さらに電子輸送層の電気伝導性を向上させる化合物である。 The donor compound in the present invention is a compound that facilitates electron injection from the cathode or the electron injection layer to the electron transport layer by improving the electron injection barrier, and further improves the electrical conductivity of the electron transport layer.
 本発明におけるドナー性化合物の好ましい例としては、アルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩またはアルカリ土類金属と有機物との錯体などが挙げられる。アルカリ金属、アルカリ土類金属の好ましい種類としては、低仕事関数で電子輸送能向上の効果が大きいリチウム、ナトリウム、カリウム、ルビジウム、セシウムといったアルカリ金属や、マグネシウム、カルシウム、セリウム、バリウムといったアルカリ土類金属が挙げられる。 Preferred examples of the donor compound in the present invention include an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic substance, an alkaline earth metal, an inorganic salt containing an alkaline earth metal, or an alkaline earth metal. And a complex of organic substance. Preferred types of alkali metals and alkaline earth metals include alkaline metals such as lithium, sodium, potassium, rubidium, and cesium that have a large effect of improving the electron transport ability with a low work function, and alkaline earths such as magnesium, calcium, cerium, and barium. A metal is mentioned.
 また、電子輸送層に含有されるドナー性化合物は、真空中での蒸着が容易で取り扱いに優れることから、金属単体よりも無機塩、あるいは有機物との錯体の状態であることが好ましい。さらに、大気中での取扱を容易にし、添加濃度の制御のし易さの点で、有機物との錯体の状態にあることがより好ましい。無機塩の例としては、LiO、LiO等の酸化物、窒化物、LiF、NaF、KF等のフッ化物、LiCO、NaCO、KCO、RbCO、CsCO等の炭酸塩などが挙げられる。また、アルカリ金属またはアルカリ土類金属の好ましい例としては、大きな低電圧駆動効果が得られるという観点ではリチウム、セシウムが挙げられる。また、ドナー性化合物が、アルカリ金属またはアルカリ土類金属と有機物との錯体である場合における有機物の好ましい例としては、キノリノール、ベンゾキノリノール、ピリジルフェノール、フラボノール、ヒドロキシイミダゾピリジン、ヒドロキシベンズアゾール、ヒドロキシトリアゾールなどが挙げられる。中でも、より発光素子の低電圧化の効果が大きいという観点ではアルカリ金属と有機物との錯体が好ましく、さらに合成のしやすさ、熱安定性という観点からリチウムと有機物との錯体がより好ましく、比較的安価で入手できるリチウムキノリノールが特に好ましい。また電子輸送層は2種以上のドナー性化合物を含んでいてもよい。 In addition, the donor compound contained in the electron transport layer is preferably in the form of a complex with an inorganic salt or an organic substance rather than a single metal because it is easy to deposit in a vacuum and is excellent in handling. Furthermore, it is more preferable that it is in the state of a complex with an organic substance in terms of facilitating handling in the air and easy control of the addition concentration. Examples of inorganic salts include oxides such as LiO and Li 2 O, nitrides, fluorides such as LiF, NaF, and KF, Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , And carbonates such as Cs 2 CO 3 . Further, preferred examples of the alkali metal or alkaline earth metal include lithium and cesium from the viewpoint that a large low-voltage driving effect can be obtained. In addition, preferable examples of the organic substance when the donor compound is a complex of an alkali metal or an alkaline earth metal and an organic substance include quinolinol, benzoquinolinol, pyridylphenol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, and hydroxytriazole. Etc. Among them, a complex of an alkali metal and an organic substance is preferable from the viewpoint that the effect of lowering the voltage of the light emitting device is larger, and a complex of lithium and an organic substance is more preferable from the viewpoint of ease of synthesis and thermal stability, Particularly preferred is lithium quinolinol, which can be obtained at a low cost. The electron transport layer may contain two or more donor compounds.
 好適なドーピング濃度は材料やドーピング領域の膜厚によっても異なるが、例えばドナー性化合物がアルカリ金属、アルカリ土類金属といった無機材料の場合は、電子輸送材料とドナー性化合物の蒸着速度比が10000:1~2:1の範囲となるようにして共蒸着して電子輸送層としたものが好ましい。蒸着速度比は100:1~5:1がより好ましく、100:1~10:1がさらに好ましい。またドナー性化合物が金属と有機物との錯体である場合は、電子輸送材料とドナー性化合物の蒸着速度比が100:1~1:100の範囲となるようにして共蒸着して電子輸送層としたものが好ましい。蒸着速度比は10:1~1:10がより好ましく、7:3~3:7がより好ましい。 The preferred doping concentration varies depending on the material and the thickness of the doped region. For example, when the donor compound is an inorganic material such as an alkali metal or alkaline earth metal, the deposition rate ratio of the electron transport material and the donor compound is 10,000: It is preferable to use an electron transport layer by co-evaporation so as to be in the range of 1 to 2: 1. The deposition rate ratio is more preferably 100: 1 to 5: 1, further preferably 100: 1 to 10: 1. When the donor compound is a complex of a metal and an organic substance, the electron transport layer and the donor compound are co-deposited so that the deposition rate ratio of the electron transport material and the donor compound is in the range of 100: 1 to 1: 100. Is preferred. The deposition rate ratio is more preferably 10: 1 to 1:10, and more preferably 7: 3 to 3: 7.
 次にドナー性化合物と組み合わせて用いられる電子輸送材料について説明する。ドナー性化合物と組み合わせて用いられる電子輸送材料は、特に限定されないが、ビフェニル、ターフェニル、トリフェニルベンゼンなどのベンゼン環が複数連結した骨格を有する化合物およびその誘導体、フルオレン、フルオランテン、ベンゾフルオランテン、ナフタレン、アントラセン、フェナントレン、トリフェニレン、ピレンなどの縮合多環芳香族骨格を有する化合物およびその誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、ペリレン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、カルバゾール誘導体およびインドール誘導体、トリス(8-キノリノラート)アルミニウム(III)などのアルカリ金属およびアルカリ土類金属以外のキノリノール錯体、ヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体が挙げられる。駆動電圧を低減できることから、電子輸送材料は、炭素、水素、窒素、酸素、ケイ素およびリンの中から選ばれる元素で構成され、電子受容性窒素を含むヘテロアリール環構造を有する化合物を用いることが好ましい。 Next, the electron transport material used in combination with the donor compound will be described. The electron transport material used in combination with the donor compound is not particularly limited, but is a compound having a skeleton in which a plurality of benzene rings are connected, such as biphenyl, terphenyl, and triphenylbenzene, and derivatives thereof, fluorene, fluoranthene, and benzofluoranthene. Compounds having a condensed polycyclic aromatic skeleton such as naphthalene, anthracene, phenanthrene, triphenylene, pyrene and derivatives thereof, styryl aromatic ring derivatives represented by 4,4′-bis (diphenylethenyl) biphenyl, perylene derivatives, Perinone derivatives, coumarin derivatives, naphthalimide derivatives, quinone derivatives such as anthraquinone and diphenoquinone, phosphorus oxide derivatives, carbazole derivatives and indole derivatives, tris (8-quinolinolato) aluminum (I I) alkali metal and alkaline earth metal other than quinolinol complexes such as, hydroxyazole complexes such as hydroxyphenyl oxazole complex, azomethine complexes, and tropolone metal complexes and flavonol metal complexes. Since the driving voltage can be reduced, the electron transport material is composed of an element selected from carbon, hydrogen, nitrogen, oxygen, silicon and phosphorus, and a compound having a heteroaryl ring structure containing electron-accepting nitrogen is used. preferable.
 電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。窒素原子が高い電子陰性度を有することから、該多重結合は電子受容的な性質を有し、電子輸送能に優れ、電子輸送層に用いることで発光素子の駆動電圧を低減できる。それゆえ、電子受容性窒素を含むヘテロアリール環は、高い電子親和性を有する。電子受容性窒素を含むヘテロアリール環としては、例えば、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、キノリン環、キノキサリン環、アクリジン環、ナフチリジン環、ピリミドピリミジン環、ベンゾキノリン環、フェナントロリン環、イミダゾール環、オキサゾール環、オキサジアゾール環、トリアゾール環、チアゾール環、チアジアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンズイミダゾール環、フェナンスロイミダゾール環などが挙げられる。 The electron-accepting nitrogen represents a nitrogen atom that forms a multiple bond with an adjacent atom. Since the nitrogen atom has a high electronegativity, the multiple bond has an electron-accepting property, has an excellent electron transporting ability, and can be used for an electron transporting layer to reduce the driving voltage of the light emitting element. Therefore, heteroaryl rings containing electron-accepting nitrogen have a high electron affinity. Examples of the heteroaryl ring containing an electron-accepting nitrogen include, for example, a pyridine ring, pyrazine ring, pyrimidine ring, triazine ring, quinoline ring, quinoxaline ring, acridine ring, naphthyridine ring, pyrimidopyrimidine ring, benzoquinoline ring, phenanthroline ring, Examples include an imidazole ring, an oxazole ring, an oxadiazole ring, a triazole ring, a thiazole ring, a thiadiazole ring, a benzoxazole ring, a benzothiazole ring, a benzimidazole ring, and a phenanthrimidazole ring.
 これらのヘテロアリール環構造を有する化合物としては、例えば、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、ビピリジンやターピリジンなどのオリゴピリジン誘導体、キノキサリン誘導体およびナフチリジン誘導体、フェナントロリン誘導体などが好ましい化合物として挙げられる。これらの誘導体の中でも、電気化学的な安定性も考慮すると、ベンズイミダゾール誘導体、ピリジン誘導体、ビピリジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、オリゴピリジン誘導体がより好ましい。さらにこれらの誘導体が縮合多環芳香族骨格を有していると、ガラス転移温度が向上すると共に、電子移動度も大きくなり発光素子の低電圧化の効果が大きいのでより好ましい。さらに、素子耐久寿命が向上し、合成のし易さ、原料入手が容易であることを考慮すると、縮合多環芳香族骨格はアントラセン骨格、フェナントレン骨格またはピレン骨格であることが特に好ましい。上記電子輸送材料は単独でも用いられるが、上記電子輸送材料の2種以上を混合して用いたり、その他の電子輸送材料の一種以上を上記の電子輸送材料に混合して用いても構わない。 Examples of these compounds having a heteroaryl ring structure include benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, phenanthroline. Derivatives, quinoxaline derivatives, quinoline derivatives, benzoquinoline derivatives, oligopyridine derivatives such as bipyridine and terpyridine, quinoxaline derivatives and naphthyridine derivatives, phenanthroline derivatives and the like are preferable compounds. Among these derivatives, considering electrochemical stability, benzimidazole derivatives, pyridine derivatives, bipyridine derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, and oligopyridine derivatives are more preferable. Further, it is more preferable that these derivatives have a condensed polycyclic aromatic skeleton because the glass transition temperature is improved, the electron mobility is increased, and the effect of lowering the voltage of the light emitting element is great. Furthermore, considering that the device durability life is improved, the synthesis is easy, and the availability of raw materials is easy, the condensed polycyclic aromatic skeleton is particularly preferably an anthracene skeleton, a phenanthrene skeleton or a pyrene skeleton. The electron transport material may be used alone, but two or more of the electron transport materials may be mixed and used, or one or more of the other electron transport materials may be mixed with the electron transport material.
 ドナー性化合物と組み合わせて用いられる電子輸送材料は、上述したような電子受容性窒素を含有する材料が好適である他、電子受容性窒素を含有していない材料であってもドナー性化合物の添加によって導電性や電子注入輸送性が向上するのであれば同様に好適である。 The electron transport material used in combination with the donor compound is preferably a material containing electron-accepting nitrogen as described above, or the addition of a donor compound even if the material does not contain electron-accepting nitrogen. If the conductivity and the electron injecting / transporting property are improved, it is also suitable.
 このようなドナー性化合物と組み合わせて用いられる電子輸送材料としては特に限定されないが、具体的には以下のような例が挙げられる。 The electron transport material used in combination with such a donor compound is not particularly limited, but specific examples include the following.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 なお、発光素子の他の層に係る構成については後述する。 In addition, the structure which concerns on the other layer of a light emitting element is mentioned later.
 <第2の構成に係る発光素子>
 次に、本発明の第2の構成に係る発光素子は正孔輸送層に特定の構造を有する化合物を用い、正孔注入層にアクセプター性化合物を用いた点に特徴を有する。
<Light Emitting Element According to Second Configuration>
Next, the light-emitting element according to the second configuration of the present invention is characterized in that a compound having a specific structure is used for the hole transport layer and an acceptor compound is used for the hole injection layer.
 正孔輸送層に用いられる化合物は上記一般式(1)で表される化合物であり、その詳細な説明は第1の構成に係る発光素子における説明と同様である。アクセプター化合物の拡散を防止するという観点では、アモルファス膜状態のガラス転移温度が高い、あるいはアクセプター化合物との相互作用が強いほうが好ましいため、一般式(1)のR15、R16のうち少なくとも一つはポリフェニル基か、縮合芳香族炭化水素基であることが好ましい。ここでポリフェニル基とは、ビフェニル基、ターフェニル基などのベンゼン環が複数個連結した置換基を表し、好ましいポリフェニル基はビフェニル基、ターフェニル基、クオーターフェニル基である。さらにビフェニル基、ターフェニル基が好ましい。また好ましい縮合芳香族炭化水素基としては、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、ナフタレニル基、フェナントレニル基、トリフェニレニル基、アントラセニル基、ベンゾアントラセニル基、ピレニル基、クリセニル基、ジベンゾクリセニル基が挙げられる。中でもフルオレニル基、ナフタレニル基、フェナントレニル基、トリフェニレニル基がさらに好ましい。 The compound used for the hole transport layer is a compound represented by the general formula (1), and the detailed description thereof is the same as the description of the light-emitting element according to the first configuration. From the viewpoint of preventing the diffusion of the acceptor compound, it is preferable that the glass transition temperature in the amorphous film state is high or the interaction with the acceptor compound is strong. Therefore, at least one of R 15 and R 16 in the general formula (1) Is preferably a polyphenyl group or a condensed aromatic hydrocarbon group. Here, the polyphenyl group represents a substituent in which a plurality of benzene rings such as a biphenyl group and a terphenyl group are connected, and preferred polyphenyl groups are a biphenyl group, a terphenyl group and a quarterphenyl group. Furthermore, a biphenyl group and a terphenyl group are preferable. Preferred examples of the condensed aromatic hydrocarbon group include fluorenyl group, benzofluorenyl group, dibenzofluorenyl group, naphthalenyl group, phenanthrenyl group, triphenylenyl group, anthracenyl group, benzoanthracenyl group, pyrenyl group, chrysenyl group, A dibenzocrisenyl group is mentioned. Of these, a fluorenyl group, a naphthalenyl group, a phenanthrenyl group, and a triphenylenyl group are more preferable.
 また本発明の第2の構成に係る発光素子における正孔注入層は、アクセプター性化合物を含有する。より具体的には、正孔注入層はアクセプター性化合物単独で構成されているか、またはアクセプター性化合物が、別の正孔注入材料か、もしくは一般式(1)で表される化合物にドープして用いられている。アクセプター性化合物を有する正孔注入層が用いられた場合、素子低電圧駆動に効果があるものの、組み合わせる正孔輸送材料によっては大きな耐久寿命向上の効果が得られない場合があった。これは、単独もしくはドープされているアクセプター化合物が駆動中に正孔輸送層にも拡散してしまい、正孔注入層もしくは正孔輸送層の正孔伝導度が変化してしまうことに起因すると考えられる。しかしながら、一般式(1)で表される化合物を正孔輸送層に用いるとともに、正孔注入層にアクセプター性化合物を有する場合、低電圧駆動と、耐久寿命向上の効果が得られることが見出された。これは以下の理由によると考えられる。すなわち、一般式(1)で表される化合物は従来の正孔輸送材料よりも高いガラス転移温度を有していること、さらに大きなπ電子平面であるトリフェニレン環を中心に有することから、アクセプター化合物との相互作用が大きくアクセプター化合物の駆動中の拡散を防止することができると考えられる。このため、駆動中に正孔注入層、もしくは正孔輸送層の正孔伝導度が変化しにくく、キャリアバランス変化に伴う発光効率の低下を引き起こしにくいと考えられる。 In addition, the hole injection layer in the light emitting device according to the second configuration of the present invention contains an acceptor compound. More specifically, the hole injection layer is composed of an acceptor compound alone, or the acceptor compound is doped with another hole injection material or a compound represented by the general formula (1). It is used. When a hole injection layer having an acceptor compound is used, although there is an effect in driving the device at a low voltage, there is a case where the effect of greatly improving the durability life cannot be obtained depending on the combined hole transport material. This is thought to be due to the fact that single or doped acceptor compounds diffuse into the hole transport layer during driving, and the hole conductivity of the hole injection layer or hole transport layer changes. It is done. However, when the compound represented by the general formula (1) is used for the hole transport layer and the hole injection layer has an acceptor compound, it is found that the effect of driving at a low voltage and improving the durability life can be obtained. It was done. This is considered to be due to the following reason. That is, since the compound represented by the general formula (1) has a glass transition temperature higher than that of the conventional hole transport material, and further has a triphenylene ring that is a large π-electron plane at the center, the acceptor compound. It is considered that the diffusion during the driving of the acceptor compound can be prevented. For this reason, it is considered that the hole conductivity of the hole injection layer or the hole transport layer does not easily change during driving, and it is difficult to cause a decrease in light emission efficiency due to a change in carrier balance.
 アクセプター性化合物とは、単層膜として用いる場合は接している正孔輸送層と、ドープして用いる場合は正孔注入層を構成する材料と電荷移動錯体を形成する材料である。このような材料を用いると正孔注入層の導電性が向上し、より素子の駆動電圧低下に寄与し、発光効率の向上、耐久寿命向上といった効果が得られる。 The acceptor compound is a material that forms a charge transfer complex with a material that forms a hole-injecting layer in contact with a hole-transporting layer when used as a single-layer film, and a material that forms a hole-injecting layer when used as a dope. When such a material is used, the conductivity of the hole injection layer is improved, which contributes to lowering of the driving voltage of the device, and the effects of improving the light emission efficiency and improving the durability life can be obtained.
 アクセプター性化合物の例としては、塩化鉄(III)、塩化アルミニウム、塩化ガリウム、塩化インジウム、塩化アンチモンのような金属塩化物、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化ルテニウムのような金属酸化物、トリス(4-ブロモフェニル)アミニウムヘキサクロロアンチモネート(TBPAH)のような電荷移動錯体が挙げられる。また分子内にニトロ基、シアノ基、ハロゲンまたはトリフルオロメチル基を有する有機化合物や、キノン系化合物、酸無水物系化合物、フラーレンなども好適に用いられる。これらの化合物の具体的な例としては、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン(TCNQ)、テトラフルオロテトラシアノキノジメタン(F4-TCNQ)、2,3,6,7,10,11-ヘキサシアノ-1,4,5,8,9,12-ヘキサアザトリフェニレン(HAT-CN6)、p-フルオラニル、p-クロラニル、p-ブロマニル、p-ベンゾキノン、2,6-ジクロロベンゾキノン、2,5-ジクロロベンゾキノン、テトラメチルベンゾキノン、1,2,4,5-テトラシアノベンゼン、o-ジシアノベンゼン、p-ジシアノベンゼン、1,4-ジシアノテトラフルオロベンゼン、2,3-ジクロロ-5,6-ジシアノベンゾキノン、p-ジニトロベンゼン、m-ジニトロベンゼン、o-ジニトロベンゼン、p-シアノニトロベンゼン、m-シアノニトロベンゼン、o-シアノニトロベンゼン、1,4-ナフトキノン、2,3-ジクロロナフトキノン、1-ニトロナフタレン、2-ニトロナフタレン、1,3-ジニトロナフタレン、1,5-ジニトロナフタレン、9-シアノアントラセン、9-ニトロアントラセン、9,10-アントラキノン、1,3,6,8-テトラニトロカルバゾール、2,4,7-トリニトロ-9-フルオレノン、2,3,5,6-テトラシアノピリジン、マレイン酸無水物、フタル酸無水物、C60、およびC70などが挙げられる。 Examples of acceptor compounds include metal chlorides such as iron (III) chloride, aluminum chloride, gallium chloride, indium chloride, antimony chloride, metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, ruthenium oxide, A charge transfer complex such as tris (4-bromophenyl) aminium hexachloroantimonate (TBPAH). In addition, organic compounds having a nitro group, cyano group, halogen or trifluoromethyl group in the molecule, quinone compounds, acid anhydride compounds, fullerenes, and the like are also preferably used. Specific examples of these compounds include hexacyanobutadiene, hexacyanobenzene, tetracyanoethylene, tetracyanoquinodimethane (TCNQ), tetrafluorotetracyanoquinodimethane (F4-TCNQ), 2, 3, 6, 7 , 10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HAT-CN6), p-fluoranyl, p-chloranil, p-bromanyl, p-benzoquinone, 2,6-dichlorobenzoquinone 2,5-dichlorobenzoquinone, tetramethylbenzoquinone, 1,2,4,5-tetracyanobenzene, o-dicyanobenzene, p-dicyanobenzene, 1,4-dicyanotetrafluorobenzene, 2,3-dichloro-5 , 6-Dicyanobenzoquinone, p-dinitrobenzene, m-dini Lobenzene, o-dinitrobenzene, p-cyanonitrobenzene, m-cyanonitrobenzene, o-cyanonitrobenzene, 1,4-naphthoquinone, 2,3-dichloronaphthoquinone, 1-nitronaphthalene, 2-nitronaphthalene, 1,3-dinitro Naphthalene, 1,5-dinitronaphthalene, 9-cyanoanthracene, 9-nitroanthracene, 9,10-anthraquinone, 1,3,6,8-tetranitrocarbazole, 2,4,7-trinitro-9-fluorenone, 2 , 3,5,6-tetracyanopyridine, maleic anhydride, phthalic anhydride, C60, and C70.
 これらの中でも、金属酸化物やシアノ基含有化合物が取り扱いやすく、蒸着もしやすいことから、容易に上述した効果が得られるので好ましい。好ましい金属酸化物の例としては酸化モリブデン、酸化バナジウム、または酸化ルテニウムがあげられる。シアノ基含有化合物の中では、(a)分子内に、シアノ基の窒素原子以外に少なくとも1つの電子受容性窒素を有し、さらにシアノ基を有する化合物、(b)分子内にハロゲンとシアノ基の両方を有している化合物、(c)分子内にカルボニル基とシアノ基の両方を有している化合物、または(d)シアノ基の窒素原子以外の電子受容性窒素、ハロゲンおよびシアノ基のすべてを有する化合物が強い電子アクセプターとなるためより好ましい。このような化合物として具体的には以下のような化合物があげられる。 Among these, metal oxides and cyano group-containing compounds are preferable because they are easy to handle and can be easily deposited, so that the above-described effects can be easily obtained. Examples of preferred metal oxides include molybdenum oxide, vanadium oxide, or ruthenium oxide. Among the cyano group-containing compounds, (a) a compound having at least one electron-accepting nitrogen other than the nitrogen atom of the cyano group in the molecule and further having a cyano group, (b) a halogen and a cyano group in the molecule (C) a compound having both a carbonyl group and a cyano group in the molecule, or (d) an electron-accepting nitrogen other than the nitrogen atom of the cyano group, a halogen and a cyano group. A compound having all is more preferable because it becomes a strong electron acceptor. Specific examples of such a compound include the following compounds.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 正孔注入層がアクセプター性化合物単独で構成される場合、または正孔注入層にアクセプター性化合物がドープされている場合のいずれの場合も、正孔注入層は1層であってもよいし、複数の層が積層されて構成されていてもよい。またアクセプター化合物がドープされている場合に組み合わせて用いる正孔注入材料は、正孔輸送層への正孔注入障壁が緩和できるという観点から、一般式(1)で表される化合物が好ましく、正孔輸送層と同一の化合物であることがより好ましい。 In any case where the hole injection layer is composed of an acceptor compound alone or when the hole injection layer is doped with an acceptor compound, the hole injection layer may be a single layer, A plurality of layers may be laminated. In addition, the hole injection material used in combination when the acceptor compound is doped is preferably a compound represented by the general formula (1) from the viewpoint that the hole injection barrier to the hole transport layer can be relaxed. More preferably, it is the same compound as the pore transport layer.
 正孔注入層にアクセプター性化合物がドープされている場合、他に正孔注入層に用いられる材料は一般式(1)で表される材料がそのまま用いられる他、特に限定されないが、例えば、4,4’-ビス(N-(3-メチルフェニル)-N-フェニルアミノ)ビフェニル(TPD)、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル(NPD)、4,4’-ビス(N,N-ビス(4-ビフェニリル)アミノ)ビフェニル(TBDB),ビス(N,N’-ジフェニル-4-アミノフェニル)-N,N-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニル(TPD232)といったベンジジン誘導体、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミン(m-MTDATA)、4,4’,4”-トリス(1-ナフチル(フェニル)アミノ)トリフェニルアミン(1-TNATA)などのスターバーストアリールアミンと呼ばれる材料群、ビス(N-アリールカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、ベンゾフラン誘導体、チオフェン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾールおよびポリシランなどが用いられる。中でも一般式(1)で表される化合物より浅いHOMO準位を有し、陽極から正孔輸送層へ円滑に正孔を注入輸送するという観点からベンジジン誘導体、スターバーストアリールアミン系材料群がより好ましく用いられる。 When the acceptor compound is doped in the hole injection layer, the material used for the hole injection layer is not particularly limited except that the material represented by the general formula (1) is used as it is. , 4′-bis (N- (3-methylphenyl) -N-phenylamino) biphenyl (TPD), 4,4′-bis (N- (1-naphthyl) -N-phenylamino) biphenyl (NPD), 4,4′-bis (N, N-bis (4-biphenylyl) amino) biphenyl (TBDB), bis (N, N′-diphenyl-4-aminophenyl) -N, N-diphenyl-4,4′- Benzidine derivatives such as diamino-1,1′-biphenyl (TPD232), 4,4 ′, 4 ″ -tris (3-methylphenyl (phenyl) amino) triphenylamine (m-MTDATA) A group of materials called starburst arylamines such as 4,4 ′, 4 ″ -tris (1-naphthyl (phenyl) amino) triphenylamine (1-TNATA), bis (N-arylcarbazole) or bis (N-alkyl) Biscarbazole derivatives such as carbazole), pyrazoline derivatives, stilbene compounds, hydrazone compounds, benzofuran derivatives, thiophene derivatives, oxadiazole derivatives, phthalocyanine derivatives, porphyrin derivatives and other heterocyclic compounds, and polymer systems side by side with the monomers Polycarbonate, styrene derivatives, polythiophene, polyaniline, polyfluorene, polyvinyl carbazole, polysilane, etc. used in the chain are used. Among them, there are more benzidine derivatives and starburst arylamine group materials from the viewpoint of having a shallower HOMO level than the compound represented by the general formula (1) and smoothly injecting and transporting holes from the anode to the hole transport layer. Preferably used.
 次に、本発明における発光素子の実施形態について例をあげて詳細に説明する。なお、以下の説明は特に断らない限り、上記第1の構成および第2の構成に共通して該当する。本発明の発光素子は、陽極、陰極、および該陽極と該陰極との間に、少なくとも正孔輸送層と電子輸送層、または正孔輸送層と正孔注入層とを備える。 Next, an embodiment of the light emitting device in the present invention will be described in detail with an example. The following explanation applies to both the first configuration and the second configuration unless otherwise specified. The light-emitting element of the present invention includes an anode, a cathode, and at least a hole transport layer and an electron transport layer or a hole transport layer and a hole injection layer between the anode and the cathode.
 このような発光素子における陽極と陰極の間の層構成は、第1の構成では正孔輸送層/発光層/電子輸送層からなる構成の他に、正孔注入層/正孔輸送層/発光層/電子輸送層、正孔輸送層/発光層/電子輸送層/電子注入層、正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層といった積層構成が挙げられる。また、上記各層は、それぞれ単一層、複数層のいずれでもよい。また第2の構成では正孔注入層/正孔輸送層/発光層からなる構成の他に、正孔注入層/正孔輸送層/発光層/電子輸送層、正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層といった積層構成が挙げられる。また上記各層はそれぞれ単一層、複数層のいずれでもよい。 The layer structure between the anode and the cathode in such a light-emitting element includes a hole injection layer / a hole transport layer / a light emission in addition to a structure composed of a hole transport layer / a light emission layer / an electron transport layer in the first configuration. Examples of the layer structure include layer / electron transport layer, hole transport layer / light emitting layer / electron transport layer / electron injection layer, hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer. Each of the layers may be a single layer or a plurality of layers. In addition, in the second configuration, in addition to the configuration consisting of a hole injection layer / hole transport layer / light emitting layer, a hole injection layer / hole transport layer / light emitting layer / electron transport layer, hole injection layer / hole transport Examples include a layered structure of layer / light emitting layer / electron transport layer / electron injection layer. Each of the above layers may be either a single layer or a plurality of layers.
 一般式(1)で表される化合物は、発光素子において正孔輸送層に含まれる。正孔輸送層は、陽極から注入された正孔を発光層まで輸送する層である。正孔輸送層は1層であっても複数の層が積層されて構成されていてもどちらでもよい。一般式(1)で表される化合物は高い電子ブロック性能を有しているので、複数層からなる場合は、電子の侵入を防止するという観点から、一般式(1)で表される化合物を含有する正孔輸送層は発光層に直接接している方が好ましい。 The compound represented by the general formula (1) is contained in the hole transport layer in the light emitting device. The hole transport layer is a layer that transports holes injected from the anode to the light emitting layer. The hole transport layer may be a single layer or may be configured by laminating a plurality of layers. Since the compound represented by the general formula (1) has a high electron blocking performance, the compound represented by the general formula (1) is used from the viewpoint of preventing intrusion of electrons when it is composed of a plurality of layers. The hole transport layer contained is preferably in direct contact with the light emitting layer.
 正孔輸送層は一般式(1)で表される化合物のみから構成されていてもよいし、本発明の効果を損なわない範囲で他の材料が混合されていてもよい。この場合、用いられる他の材料としては、例えば、4,4’-ビス(N-(3-メチルフェニル)-N-フェニルアミノ)ビフェニル(TPD)、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル(NPD)、4,4’-ビス(N,N-ビス(4-ビフェニリル)アミノ)ビフェニル(TBDB),ビス(N,N’-ジフェニル-4-アミノフェニル)-N,N-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニル(TPD232)といったベンジジン誘導体、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミン(m-MTDATA)、4,4’,4”-トリス(1-ナフチル(フェニル)アミノ)トリフェニルアミン(1-TNATA)などのスターバーストアリールアミンと呼ばれる材料群、ビス(N-アリールカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、ベンゾフラン誘導体、チオフェン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾールおよびポリシランなどが挙げられる。 The hole transport layer may be composed of only the compound represented by the general formula (1), or may be mixed with other materials as long as the effects of the present invention are not impaired. In this case, as other materials used, for example, 4,4′-bis (N- (3-methylphenyl) -N-phenylamino) biphenyl (TPD), 4,4′-bis (N- (1 -Naphthyl) -N-phenylamino) biphenyl (NPD), 4,4'-bis (N, N-bis (4-biphenylyl) amino) biphenyl (TBDB), bis (N, N'-diphenyl-4-amino) Benzidine derivatives such as phenyl) -N, N-diphenyl-4,4′-diamino-1,1′-biphenyl (TPD232), 4,4 ′, 4 ″ -tris (3-methylphenyl (phenyl) amino) triphenyl Starburst aryl such as amine (m-MTDATA), 4,4 ′, 4 ″ -tris (1-naphthyl (phenyl) amino) triphenylamine (1-TNATA) A group of materials called min, biscarbazole derivatives such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), pyrazoline derivatives, stilbene compounds, hydrazone compounds, benzofuran derivatives, thiophene derivatives, oxadiazole derivatives, phthalocyanines Derivatives, heterocyclic compounds such as porphyrin derivatives, in the case of polymer systems, polycarbonates and styrene derivatives, polythiophene, polyaniline, polyfluorene, polyvinylcarbazole, polysilane and the like having the above-mentioned monomer in the side chain are exemplified.
 次に本発明における電子輸送層について説明する。電子輸送層は、陰極から注入された電子を発光層まで輸送する層である。本発明の第1の構成に係る発光素子においては電子輸送層はドナー性化合物を含有するが、第2の構成に係る発光素子においても同様に、電子輸送がドナー性化合物を含有していることが好ましい。電子輸送層は単層でもよいし、複数層が積層されていてもよい。複数層が積層されている場合であってドナー性化合物が用いられる場合は、いずれか1層にドナー性化合物が含まれていればよい。またドナー性化合物がアルカリ金属、アルカリ土類金属、あるいはそれらの酸化物、窒化物、フッ化物、炭酸塩といった無機材料の場合、これらを含有する層が発光層に直接接していると、発光層が消光作用を受けて発光効率が低下する懸念があるので、ドナー性化合物を含有する層は発光層に直接接していないほうが好ましい。しかしドナー性化合物が、有機物との錯体である場合、発光層が消光作用を受けにくいので、ドナー性化合物を含有する層は発光層に直接接していてもよい。また電子輸送層が複数層積層されている場合、ドープされない電子輸送材料とドープされる電子輸送材料は同じでも異なっていてもよい。また、本発明におけるドナー性化合物を含有する電子輸送層は、複数の発光素子を連結するタンデム構造型素子における電荷発生層として用いられていてもよい。 Next, the electron transport layer in the present invention will be described. The electron transport layer is a layer that transports electrons injected from the cathode to the light emitting layer. In the light emitting device according to the first structure of the present invention, the electron transport layer contains a donor compound, but in the light emitting device according to the second structure, the electron transport also contains a donor compound. Is preferred. The electron transport layer may be a single layer or a plurality of layers may be laminated. In the case where a plurality of layers are stacked and a donor compound is used, any one layer may contain the donor compound. When the donor compound is an inorganic material such as an alkali metal, an alkaline earth metal, or oxides, nitrides, fluorides, or carbonates thereof, if the layer containing these is in direct contact with the light emitting layer, the light emitting layer Therefore, it is preferable that the layer containing the donor compound is not in direct contact with the light emitting layer. However, when the donor compound is a complex with an organic substance, the light emitting layer is not easily quenched, and thus the layer containing the donor compound may be in direct contact with the light emitting layer. When a plurality of electron transport layers are stacked, the undoped electron transport material and the doped electron transport material may be the same or different. In addition, the electron transport layer containing a donor compound in the present invention may be used as a charge generation layer in a tandem structure type element that connects a plurality of light emitting elements.
 正孔注入層は陽極と正孔輸送層の間に挿入される層である。本発明の第2の構成に係る発光素子においては正孔注入層はアクセプター性化合物単独で構成されているか、またはアクセプター性化合物が別の正孔注入材料にドープして用いられているが、第1の構成に係る発光素子においても同様に、正孔注入層がアクセプター性化合物単独で構成されているか、またはアクセプター性化合物が別の正孔注入材料にドープして用いられていることが好ましい。正孔注入層は1層であっても複数の層が積層されていてもどちらでもよい。一般式(1)で表される化合物を含有する正孔輸送層と陽極との間に正孔注入層が存在すると、より低電圧駆動し、耐久寿命も向上するだけでなく、さらに素子のキャリアバランスが向上して発光効率も向上するため好ましい。また、本発明におけるアクセプター性化合物単独で構成されているか、もしくはアクセプター化合物を含有する正孔注入層は、複数の発光素子を連結するタンデム構造型素子における電荷発生層として用いられていてもよい。 The hole injection layer is a layer inserted between the anode and the hole transport layer. In the light emitting device according to the second configuration of the present invention, the hole injection layer is composed of an acceptor compound alone, or the acceptor compound is used by doping another hole injection material. Similarly, in the light-emitting element according to the configuration 1, it is preferable that the hole injection layer is composed of the acceptor compound alone or the acceptor compound is doped into another hole injection material. The hole injection layer may be either a single layer or a plurality of layers stacked. If a hole injection layer is present between the positive hole transport layer containing the compound represented by the general formula (1) and the anode, it not only operates at a lower voltage and the durability life is improved, but also the carrier of the device. This is preferable because the balance is improved and the luminous efficiency is improved. In addition, the acceptor compound in the present invention alone may be used, or the hole injection layer containing the acceptor compound may be used as a charge generation layer in a tandem structure type element connecting a plurality of light emitting elements.
 陽極は、正孔を有機層に効率よく注入できる材料であれば特に限定されないが、比較的仕事関数の大きい材料を用いるのが好ましい。陽極の材料としては、例えば、酸化錫、酸化インジウム、酸化亜鉛インジウム、酸化錫インジウム(ITO)などの導電性金属酸化物、あるいは金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロールおよびポリアニリンなどの導電性ポリマーなどが挙げられる。これらの電極材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。 The anode is not particularly limited as long as it can efficiently inject holes into the organic layer, but it is preferable to use a material having a relatively large work function. Examples of the material for the anode include conductive metal oxides such as tin oxide, indium oxide, indium zinc oxide, and indium tin oxide (ITO), metals such as gold, silver, and chromium, copper iodide, and copper sulfide. Examples include inorganic conductive materials, conductive polymers such as polythiophene, polypyrrole, and polyaniline. These electrode materials may be used alone, or a plurality of materials may be laminated or mixed.
 陽極の抵抗は、発光素子の発光に十分な電流が供給できればよいが、発光素子の消費電力の点からは低抵抗であることが望ましい。例えば、抵抗が300Ω/□以下であれば電極として機能するが、現在では10Ω/□程度のITO基板の供給も可能になっていることから、100Ω/□以下の低抵抗品を使用することが特に望ましい。陽極の厚みは抵抗値に合わせて任意に選ぶことができるが、通常100~300nmの間で用いられることが多い。 The resistance of the anode is not limited as long as a current sufficient for light emission of the light emitting element can be supplied, but it is desirable that the resistance is low in terms of power consumption of the light emitting element. For example, if the resistance is 300Ω / □ or less, it functions as an electrode. However, since it is now possible to supply an ITO substrate of about 10Ω / □, it is possible to use a low resistance product of 100Ω / □ or less. Particularly desirable. The thickness of the anode can be arbitrarily selected according to the resistance value, but is usually used in a range of 100 to 300 nm.
 また、発光素子の機械的強度を保つために、陽極を基板上に形成することが好ましい。基板は、ソーダガラスや無アルカリガラスなどのガラス基板が好適に用いられる。ガラス基板の厚みは、機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することもできる。さらに、陽極が安定に機能するのであれば、基板はガラスである必要はなく、例えば、プラスチック基板上に陽極を形成しても良い。陽極の形成方法は、特に制限されず、例えば、電子線ビーム法、スパッタリング法および化学反応法などを用いることができる。 In order to maintain the mechanical strength of the light emitting element, it is preferable to form the anode on the substrate. As the substrate, a glass substrate such as soda glass or non-alkali glass is preferably used. As the thickness of the glass substrate, it is sufficient that the thickness is sufficient to maintain the mechanical strength. The glass material is preferably alkali-free glass because it is better to have less ions eluted from the glass, but soda lime glass with a barrier coat such as SiO 2 is also available on the market. it can. Furthermore, if the anode functions stably, the substrate does not have to be glass. For example, the anode may be formed on a plastic substrate. The method for forming the anode is not particularly limited, and for example, an electron beam method, a sputtering method, a chemical reaction method, or the like can be used.
 陰極に用いられる材料は、電子を有機層に効率良く注入できる物質であれば特に限定されないが、白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、セシウム、カルシウムおよびマグネシウムならびにこれらの合金などが挙げられる。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は、一般に大気中で不安定であることが多いため、有機層に微量(真空蒸着の膜厚計表示で1nm以下)のリチウムやマグネシウムをドーピングして安定性の高い電極を得る方法が好ましい例として挙げることができる。また、フッ化リチウムのような無機塩の使用も可能である。さらに、電極保護のために白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、シリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、ポリ塩化ビニル、炭化水素系高分子化合物などの有機高分子化合物を積層することが、好ましい例として挙げられる。陰極の形成方法は、特に制限されず、例えば、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなどを用いることができる。 The material used for the cathode is not particularly limited as long as it can efficiently inject electrons into the organic layer, but platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium , Cesium, calcium and magnesium, and alloys thereof. Lithium, sodium, potassium, cesium, calcium, magnesium, or alloys containing these low work function metals are effective for increasing the electron injection efficiency and improving device characteristics. However, since these low work function metals are generally unstable in the atmosphere, the organic layer is doped with a small amount of lithium or magnesium (1 nm or less in the thickness gauge display of vacuum deposition) to stabilize the organic layer. A preferred example is a method for obtaining a high electrode. Also, an inorganic salt such as lithium fluoride can be used. Furthermore, for electrode protection, metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, inorganic substances such as silica, titania and silicon nitride, polyvinyl alcohol, polyvinyl chloride Lamination of organic polymer compounds such as hydrocarbon polymer compounds is a preferred example. The method for forming the cathode is not particularly limited, and for example, resistance heating, electron beam, sputtering, ion plating and coating can be used.
 発光層は単一層、複数層のどちらでもよく、それぞれ発光材料(ホスト材料、ドーパント材料)により形成され、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。すなわち、本発明の発光素子では、各発光層において、ホスト材料もしくはドーパント材料のみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。電気エネルギーを効率よく利用し、高色純度の発光を得るという観点からは、発光層はホスト材料とドーパント材料の混合からなることが好ましい。また、ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれでもよい。ドーパント材料は積層されていても、分散されていても、いずれでもよい。ドーパント材料は発光色の制御ができる。ドーパント材料の量は、多すぎると濃度消光現象が起きるため、ホスト材料に対して20質量%以下で用いることが好ましく、さらに好ましくは10質量%以下である。ドーピング方法は、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。 The light emitting layer may be either a single layer or a plurality of layers, each formed by a light emitting material (host material, dopant material), which may be a mixture of a host material and a dopant material or a host material alone, Either is acceptable. That is, in the light emitting element of the present invention, only the host material or the dopant material may emit light in each light emitting layer, or both the host material and the dopant material may emit light. From the viewpoint of efficiently using electric energy and obtaining light emission with high color purity, the light emitting layer is preferably composed of a mixture of a host material and a dopant material. Further, the host material and the dopant material may be either one kind or a plurality of combinations, respectively. The dopant material may be included in the entire host material or may be partially included. The dopant material may be laminated or dispersed. The dopant material can control the emission color. When the amount of the dopant material is too large, a concentration quenching phenomenon occurs, so that it is preferably used in an amount of 20% by mass or less, more preferably 10% by mass or less based on the host material. The doping method can be formed by a co-evaporation method with a host material, but may be simultaneously deposited after being previously mixed with the host material.
 発光材料は、具体的には、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8-キノリノラト)アルミニウムを始めとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体などが使用できるが特に限定されるものではない。 Specifically, the light-emitting material includes condensed ring derivatives such as anthracene and pyrene, which have been known as light emitters, metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum, bisstyrylanthracene derivatives, diesters, and the like. Bisstyryl derivatives such as styrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, thiadiazolopyridine derivatives, dibenzofuran derivatives, carbazole In derivatives, indolocarbazole derivatives, and polymer systems, polyphenylene vinylene derivatives, polyparaphenylene derivatives, polythiophene derivatives, etc. can be used, but are not particularly limited. Not shall.
 発光材料に含有されるホスト材料は、特に限定されないが、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミンなどの芳香族アミン誘導体、トリス(8-キノリナート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体などが使用できるが特に限定されるものではない。またドーパント材料には、特に限定されないが、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体(例えば2-(ベンゾチアゾール-2-イル)-9,10-ジフェニルアントラセンや5,6,11,12-テトラフェニルナフタセンなど)、フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピリジン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどのヘテロアリール環を有する化合物やその誘導体、ボラン誘導体、ジスチリルベンゼン誘導体、4,4’-ビス(2-(4-ジフェニルアミノフェニル)エテニル)ビフェニル、4,4’-ビス(N-(スチルベン-4-イル)-N-フェニルアミノ)スチルベンなどのアミノスチリル誘導体、芳香族アセチレン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、ピロメテン誘導体、ジケトピロロ[3,4-c]ピロール誘導体、2,3,5,6-1H,4H-テトラヒドロ-9-(2’-ベンゾチアゾリル)キノリジノ[9,9a,1-gh]クマリンなどのクマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体およびN,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミンに代表される芳香族アミン誘導体などを用いることができる。 The host material contained in the light emitting material is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene, and derivatives thereof, N, Aromatic amine derivatives such as N′-dinaphthyl-N, N′-diphenyl-4,4′-diphenyl-1,1′-diamine, metal chelating oxinoids including tris (8-quinolinato) aluminum (III) Compounds, bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, pyrrolopyrrole derivatives For thiadiazolopyridine derivatives, dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives, triazine derivatives, polymer systems, polyphenylene vinylene derivatives, polyparaphenylene derivatives, polyfluorene derivatives, polyvinyl carbazole derivatives, polythiophene derivatives, etc. can be used, but in particular limited It is not done. The dopant material is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, triphenylene, perylene, fluoranthene, fluorene, indene or a derivative thereof (for example, 2- (benzothiazole-2) -Yl) -9,10-diphenylanthracene, 5,6,11,12-tetraphenylnaphthacene), furan, pyrrole, thiophene, silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzo Compounds having heteroaryl rings such as thiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyridine, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, thioxanthene Derivatives thereof, borane derivatives, distyrylbenzene derivatives, 4,4′-bis (2- (4-diphenylaminophenyl) ethenyl) biphenyl, 4,4′-bis (N- (stilben-4-yl) -N— Aminostyryl derivatives such as phenylamino) stilbene, aromatic acetylene derivatives, tetraphenylbutadiene derivatives, stilbene derivatives, aldazine derivatives, pyromethene derivatives, diketopyrrolo [3,4-c] pyrrole derivatives, 2,3,5,6-1H, Coumarin derivatives such as 4H-tetrahydro-9- (2′-benzothiazolyl) quinolidino [9,9a, 1-gh] coumarin, azole derivatives such as imidazole, thiazole, thiadiazole, carbazole, oxazole, oxadiazole and triazole and their metals Complex and N, '- diphenyl -N, etc. N'- di (3-methylphenyl) -4,4'-aromatic amine derivative typified by diphenyl-1,1'-diamine can be used.
 また発光層にリン光発光材料が含まれていてもよい。リン光発光材料とは、室温でもリン光発光を示す材料である。ドーパントとしては基本的に室温でもリン光発光が得られる必要があるが、特に限定されるものではなく、イリジウム(Ir)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、白金(Pt)、オスミウム(Os)、及びレニウム(Re)からなる群から選択される少なくとも一つの金属を含む有機金属錯体化合物が挙げられる。中でも室温でも高いリン光発光収率を有するという観点から、イリジウム、もしくは白金を有する有機金属錯体がより好ましい。リン光発光材料のホストとしては、インドール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ピリジン、ピリミジン、トリアジン骨格を有する含窒素芳香族化合物誘導体、ポリアリールベンゼン誘導体、スピロフルオレン誘導体、トルキセン誘導体、トリフェニレン誘導体といった芳香族炭化水素化合物誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体といったカルコゲン元素を含有する化合物、ベリリウムキノリノール錯体といった有機金属錯体などが好適に用いられるが、基本的に用いるドーパントよりも三重項エネルギーが大きく、電子、正孔がそれぞれの輸送層から円滑に注入され、また輸送するものであればこれらに限定されるものではない。また2種以上の三重項発光ドーパントが含有されていてもよいし、2種以上のホスト材料が含有されていてもよい。さらに1種以上の三重項発光ドーパントと1種以上の蛍光発光ドーパントが含有されていてもよい。 Further, a phosphorescent material may be included in the light emitting layer. A phosphorescent material is a material that exhibits phosphorescence even at room temperature. As a dopant, it is basically necessary to obtain phosphorescence even at room temperature, but it is not particularly limited, and iridium (Ir), ruthenium (Ru), rhodium (Rh), palladium (Pd), platinum (Pt ), Organometallic complex compounds containing at least one metal selected from the group consisting of osmium (Os) and rhenium (Re). Among these, from the viewpoint of having a high phosphorescence emission yield even at room temperature, an organometallic complex having iridium or platinum is more preferable. Hosts of phosphorescent materials include indole derivatives, carbazole derivatives, indolocarbazole derivatives, pyridine, pyrimidine, nitrogen-containing aromatic compound derivatives having a triazine skeleton, polyarylbenzene derivatives, spirofluorene derivatives, truxene derivatives, triphenylene derivatives, etc. A compound containing a chalcogen element such as an aromatic hydrocarbon compound derivative, a dibenzofuran derivative or a dibenzothiophene derivative, or an organometallic complex such as a beryllium quinolinol complex is preferably used. As long as holes are smoothly injected and transported from the respective transport layers, the present invention is not limited thereto. Two or more triplet light-emitting dopants may be contained, or two or more host materials may be contained. Further, one or more triplet light emitting dopants and one or more fluorescent light emitting dopants may be contained.
 好ましいリン光発光性ドーパントとしては、特に限定されるものではないが、具体的には以下のような例が挙げられる。 Preferred phosphorescent dopants are not particularly limited, but specific examples include the following.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 また、好ましいリン光発光層のホストとしては、特に限定されるものではないが、具体的には以下のような例が挙げられる。 In addition, the preferred host of the phosphorescent light emitting layer is not particularly limited, but specific examples include the following.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 一般式(1)で表される化合物は、良好な正孔注入輸送特性、高い電子ブロック性能に加え、高い三重項準位も有している。そのため、リン光発光層と一般式(1)で表される化合物を含有する正孔輸送層を組み合わせた場合、リン光発光層から正孔輸送層への三重項エネルギー移動が抑制され、正孔輸送層でのリン光エネルギーの熱失活を防止することができる。このため発光効率低下を防ぐことができ、なおかつ低電圧駆動、長寿命の発光素子が得られるので好ましい。 The compound represented by the general formula (1) has a high triplet level in addition to good hole injection and transport properties and high electron blocking performance. Therefore, when the phosphorescence layer and the hole transport layer containing the compound represented by the general formula (1) are combined, triplet energy transfer from the phosphorescence layer to the hole transport layer is suppressed, Thermal deactivation of phosphorescence energy in the transport layer can be prevented. For this reason, it is possible to prevent a decrease in light emission efficiency and to obtain a light emitting element with low voltage drive and long life, which is preferable.
 本発明において、陰極と電子輸送層の間に電子注入層を設けてもよい。一般的に電子注入層は陰極から電子輸送層への電子の注入を助ける目的で挿入されるが、挿入する場合は、上述した電子受容性窒素を含むヘテロアリール環構造を有する化合物をそのまま用いてもよいし、上記のドナー性化合物を含有する層を用いてもよい。また電子注入層に絶縁体や半導体の無機物を用いることもできる。これらの材料を用いることで発光素子の短絡を有効に防止して、かつ電子注入性を向上させることができるので好ましい。このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲナイド等で構成されていれば、電子注入性をさらに向上させることができる点でより好ましい。具体的に、好ましいアルカリ金属カルコゲナイドとしては、例えば、LiO、NaS及びNaSeが挙げられ、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、CaO、BaO、SrO、BeO、BaS及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF、BaF、SrF、MgF及びBeF等のフッ化物や、フッ化物以外のハロゲン化物が挙げられる。さらに有機物と金属の錯体も好適に用いられる。電子注入層に絶縁体、半導体の無機物を使用する場合は、膜厚を厚くしすぎると、発光素子が絶縁化してしまう、あるいは駆動電圧が高くなってしまうといった問題が生じることがある。すなわち、電子注入層の膜厚マージンがせまく発光素子作製時の歩留まり低下を招く恐れがあるが、電子注入層に有機物と金属との錯体を用いる場合は膜厚調整が容易であるのでより好ましい。このような有機物と金属との錯体における有機物の好ましい例としては、キノリノール、ベンゾキノリノール、ピリジルフェノール、フラボノール、ヒドロキシイミダゾピリジン、ヒドロキシベンズアゾール、ヒドロキシトリアゾールなどが挙げられる。中でも、アルカリ金属と有機物との錯体が好ましく、リチウムと有機物との錯体がより好ましく、リチウムキノリノールが特に好ましい。 In the present invention, an electron injection layer may be provided between the cathode and the electron transport layer. In general, the electron injection layer is inserted for the purpose of assisting injection of electrons from the cathode to the electron transport layer, but in the case of insertion, the compound having a heteroaryl ring structure containing the electron accepting nitrogen described above is used as it is. Alternatively, a layer containing the above donor compound may be used. An insulator or a semiconductor inorganic substance can also be used for the electron injection layer. Use of these materials is preferable because a short circuit of the light emitting element can be effectively prevented and the electron injection property can be improved. As such an insulator, it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is more preferable because the electron injection property can be further improved. Specifically, preferred alkali metal chalcogenides include, for example, Li 2 O, Na 2 S, and Na 2 Se, and preferred alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, BeO, BaS, and CaSe. Is mentioned. Further, preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl. Examples of preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides. Furthermore, a complex of an organic substance and a metal is also preferably used. When an insulator or a semiconductor inorganic material is used for the electron injection layer, if the film thickness is too large, there may be a problem that the light emitting element is insulated or the driving voltage becomes high. That is, there is a possibility that the film thickness margin of the electron injection layer is reduced, which may lead to a decrease in yield at the time of manufacturing a light-emitting element. Preferable examples of the organic substance in such a complex of an organic substance and a metal include quinolinol, benzoquinolinol, pyridylphenol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, hydroxytriazole and the like. Among these, a complex of an alkali metal and an organic substance is preferable, a complex of lithium and an organic substance is more preferable, and lithium quinolinol is particularly preferable.
 本発明の発光素子は、電気エネルギーを光に変換できる機能を有する。ここで電気エネルギーとしては主に直流電流が使用されるが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はないが、素子の消費電力や寿命を考慮すると、できるだけ低いエネルギーで最大の輝度が得られるよう選ばれるべきである。 The light emitting element of the present invention has a function of converting electrical energy into light. Here, a direct current is mainly used as the electric energy, but a pulse current or an alternating current can also be used. The current value and voltage value are not particularly limited, but should be selected so that the maximum luminance can be obtained with as low energy as possible in consideration of the power consumption and lifetime of the device.
 本発明の発光素子は、例えば、マトリクスおよび/またはセグメント方式で表示するディスプレイとして好適に用いられる。 The light-emitting element of the present invention is suitably used as a display for displaying in a matrix and / or segment system, for example.
 マトリクス方式とは、表示のための画素が格子状やモザイク状など二次元的に配置され、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法は、線順次駆動方法やアクティブマトリクスのどちらでもよい。線順次駆動はその構造が簡単であるが、動作特性を考慮した場合、アクティブマトリクスの方が優れる場合があるので、これも用途によって使い分けることが必要である。 In the matrix method, pixels for display are arranged two-dimensionally such as a lattice shape or a mosaic shape, and characters and images are displayed by a set of pixels. The shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 μm or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become. In monochrome display, pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type. The matrix driving method may be either a line sequential driving method or an active matrix. Although the structure of the line sequential drive is simple, the active matrix may be superior in consideration of the operation characteristics, and it is necessary to use it depending on the application.
 本発明におけるセグメント方式とは、予め決められた情報を表示するようにパターンを形成し、このパターンの配置によって決められた領域を発光させる方式である。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などが挙げられる。そして、前記マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。 The segment system in the present invention is a system in which a pattern is formed so as to display predetermined information and a region determined by the arrangement of the pattern is caused to emit light. For example, the time and temperature display in a digital clock or a thermometer, the operation state display of an audio device or an electromagnetic cooker, the panel display of an automobile, etc. The matrix display and the segment display may coexist in the same panel.
 本発明の発光素子は、各種機器等のバックライトとしても好ましく用いられる。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が検討されているパソコン用途のバックライトに本発明の発光素子は好ましく用いられ、従来のものより薄型で軽量なバックライトを提供できる。 The light-emitting element of the present invention is also preferably used as a backlight for various devices. The backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like. In particular, the light-emitting element of the present invention is preferably used for a backlight for a liquid crystal display device, particularly a personal computer for which a reduction in thickness is being considered, and a backlight that is thinner and lighter than conventional ones can be provided.
 以下、実施例をあげて本発明を説明するが、本発明はこれらの実施例によって限定されるものではない。なお、下記の各実施例にある化合物の番号は上記に記載した化合物の番号を指すものである。また表1~表5中の第1電子輸送層とは発光層に接している電子輸送層であり、第2電子輸送層とは発光層に接しておらず、第1電子輸送層にさらに積層された電子輸送層を指す。ただし第1電子輸送層「なし」の場合、電子輸送層が第2電子輸送層のみで構成されており、第2電子輸送層が発光層に接している。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. In addition, the number of the compound in each following Example points out the number of the compound described above. In Tables 1 to 5, the first electron transporting layer is an electron transporting layer in contact with the light emitting layer, and the second electron transporting layer is not in contact with the light emitting layer, and is further laminated on the first electron transporting layer. Refers to the electron transport layer formed. However, when the first electron transport layer is “none”, the electron transport layer is composed of only the second electron transport layer, and the second electron transport layer is in contact with the light emitting layer.
<実施例1~21:正孔輸送層に一般式(1)で表される化合物を有し、電子輸送層にドナー性化合物を有する発光素子>
(実施例1)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、正孔輸送層として、HT-1を60nm蒸着した。次に、発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が5質量%になるようにして40nmの厚さに蒸着した。次に、第2電子輸送層として、電子輸送材料に化合物E-1を、ドナー性化合物としてLiqを用い、E-1とLiqの蒸着速度比が1:1となるようにして20nmの厚さに積層した。
 次に、電子注入層としてLiqを0.5nm蒸着した後、マグネシウムと銀を質量比1:1となるように1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は駆動電圧5.4V、外部量子効率4.1%であった。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は160時間であった。なお化合物HT-1、H-1、D-1、E-1、Liqは以下に示す化合物である。
<Examples 1 to 21: Light-emitting devices having a compound represented by the general formula (1) in the hole transport layer and a donor compound in the electron transport layer>
Example 1
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. As a hole transport layer, HT-1 was deposited to 60 nm by a resistance heating method. Next, as a light emitting layer, the compound H-1 was used as the host material, the compound D-1 was used as the dopant material, and the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%. Next, as the second electron transport layer, the compound E-1 is used as the electron transport material, Liq is used as the donor compound, and the deposition rate ratio of E-1 and Liq is 1: 1. Laminated.
Next, Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 × 5 mm square device. The film thickness here is a display value of a crystal oscillation type film thickness monitor. The characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 5.4 V and an external quantum efficiency of 4.1%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time of 20% reduction from the initial luminance was 160 hours. Compounds HT-1, H-1, D-1, E-1, and Liq are the compounds shown below.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
(実施例2~7)
 正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表1に記載した材料を用いて、実施例1と同様にして発光素子を作製し、評価した。各実施例の結果は表1に示した。なおHT-2、HT-3、HT-4、HT-5、HT-6、HT-7は以下に示す化合物である。
(Examples 2 to 7)
Using the materials described in Table 1 as the hole transport layer, the light emitting layer host material, the light emitting layer dopant material, and the second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 1. The results of each example are shown in Table 1. HT-2, HT-3, HT-4, HT-5, HT-6, and HT-7 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
(実施例8)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、正孔輸送層として、HT-1を60nm蒸着した。次に、発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が5質量%になるようにして40nmの厚さに蒸着した。次に、第1電子輸送層としてE-1を5nm蒸着し、さらに第2電子輸送層として電子輸送材料に化合物E-1を、ドナー性化合物としてセシウムを用い、E-1とセシウムの蒸着速度比が20:1になるようにして15nmの厚さに積層した。
 次に、マグネシウムと銀を質量比1:1となるように1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は駆動電圧5.2V、外部量子効率4.2%の青色発光が得られた。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は164時間であった。
(Example 8)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. As a hole transport layer, HT-1 was deposited to 60 nm by a resistance heating method. Next, as a light emitting layer, the compound H-1 was used as the host material, the compound D-1 was used as the dopant material, and the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%. Next, E-1 is vapor-deposited as a first electron transport layer at a thickness of 5 nm, compound E-1 is used as an electron transport material as a second electron transport layer, cesium is used as a donor compound, and E-1 and cesium are deposited. The layers were laminated to a thickness of 15 nm so that the ratio was 20: 1.
Next, magnesium and silver were vapor-deposited 1000 nm so that mass ratio might be 1: 1, and it was set as the cathode, and the 5 * 5-mm square element was produced. The film thickness here is a display value of a crystal oscillation type film thickness monitor. The light-emitting element had characteristics of 1000 cd / m 2 and emitted blue light with a driving voltage of 5.2 V and an external quantum efficiency of 4.2%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time of 20% reduction from the initial luminance was 164 hours.
(実施例9~21)
 正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表1に記載した材料を用いて、実施例8と同様にして発光素子を作製し、評価した。各実施例の結果を表1に示した。なおE-2は以下に示す化合物である。
(Examples 9 to 21)
Using the materials described in Table 1 as the hole transport layer, the light emitting layer host material, the light emitting layer dopant material, the first electron transport layer, and the second electron transport layer, a light emitting device was produced in the same manner as in Example 8. evaluated. The results of each example are shown in Table 1. E-2 is a compound shown below.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 <実施例22~77:正孔輸送層に一般式(1)で表される化合物を有し、正孔注入層にアクセプター性化合物を有する発光素子>
(実施例22)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層としてアクセプター性化合物であるHAT-CN6を10nm蒸着し,次に正孔輸送層として、HT-1を50nm蒸着した。次に、発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が5質量%になるようにして40nmの厚さに蒸着した。次に、第2電子輸送層として、電子輸送材料に化合物E-1を20nmの厚さに積層した。
 次に、電子注入層としてLiqを0.5nm蒸着した後、マグネシウムと銀を質量比1:1となるように1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は、駆動電圧5.2V、外部量子効率4.1%であった。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は162時間であった。なおHAT-CN6は以下に示す化合物である。
<Examples 22 to 77: Light-emitting device having a compound represented by the general formula (1) in the hole transport layer and an acceptor compound in the hole injection layer>
(Example 22)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. By the resistance heating method, first, HAT-CN6, which is an acceptor compound, was deposited as a hole injection layer by 10 nm, and then HT-1 was deposited as a hole transport layer by 50 nm. Next, as a light emitting layer, the compound H-1 was used as the host material, the compound D-1 was used as the dopant material, and the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%. Next, as a second electron transport layer, Compound E-1 was laminated to an electron transport material to a thickness of 20 nm.
Next, Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 × 5 mm square device. The film thickness here is a display value of a crystal oscillation type film thickness monitor. The characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 5.2 V and an external quantum efficiency of 4.1%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time for a 20% decrease from the initial luminance was 162 hours. HAT-CN6 is a compound shown below.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
(実施例23~28)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表2に記載した材料を用いて、実施例22と同様にして発光素子を作製し、評価した。各実施例の結果は表2に示した。
(Examples 23 to 28)
Using the materials described in Table 2 as a hole injection layer, a hole transport layer, a light emitting layer host material, a light emitting layer dopant material, and a second electron transport layer, a light emitting device was fabricated and evaluated in the same manner as in Example 22. did. The results of each example are shown in Table 2.
(実施例29)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として正孔注入材料にHT-1を、アクセプター性化合物にF4-TCNQを用い、アクセプター性化合物のドープ濃度が10質量%となるように30nm蒸着した。次に正孔輸送層として、HT-1を30nm蒸着した。次に、発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が5質量%になるようにして40nmの厚さに蒸着した。次に、第2電子輸送層として、電子輸送材料に化合物E-1を20nmの厚さに積層した。
 次に、電子注入層としてLiqを0.5nm蒸着した後、マグネシウムと銀を質量比1:1となるように1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は、駆動電圧5.2V、外部量子効率4.2%であった。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は159時間であった。なおF4-TCNQは以下に示す化合物である。
(Example 29)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, HT-1 was used as a hole injection material as a hole injection layer and F4-TCNQ was used as an acceptor compound by a resistance heating method, and 30 nm was deposited so that the acceptor compound had a doping concentration of 10% by mass. Next, 30 nm of HT-1 was deposited as a hole transport layer. Next, as a light emitting layer, the compound H-1 was used as the host material, the compound D-1 was used as the dopant material, and the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%. Next, as a second electron transport layer, Compound E-1 was laminated to an electron transport material to a thickness of 20 nm.
Next, Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 × 5 mm square device. The film thickness here is a display value of a crystal oscillation type film thickness monitor. The characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 5.2 V and an external quantum efficiency of 4.2%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time of 20% reduction from the initial luminance was 159 hours. F4-TCNQ is a compound shown below.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(実施例30~35)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表2に記載した材料を用いて、実施例29と同様にして発光素子を作製し、評価した。各実施例の結果は表2に示した。
(Examples 30 to 35)
Using the materials described in Table 2 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, and second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 29. did. The results of each example are shown in Table 2.
(実施例36)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、酸化モリブデン(MoO3)を1nm蒸着し、次に正孔輸送層として、HT-1を59nm蒸着した。次に、発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が5質量%になるようにして40nmの厚さに蒸着した。次に、第2電子輸送層として、電子輸送材料に化合物E-1を20nmの厚さに積層した。
 次に、電子注入層としてLiqを0.5nm蒸着した後、マグネシウムと銀を質量比1:1となるように1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は、駆動電圧5.2V、外部量子効率4.2%であった。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は157時間であった。
(Example 36)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. By resistance heating, molybdenum oxide (MoO 3 ) was first deposited as a hole injection layer by 1 nm, and then HT-1 was deposited as a hole transport layer by 59 nm. Next, as a light emitting layer, the compound H-1 was used as the host material, the compound D-1 was used as the dopant material, and the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%. Next, as a second electron transport layer, Compound E-1 was laminated to an electron transport material to a thickness of 20 nm.
Next, Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 × 5 mm square device. The film thickness here is a display value of a crystal oscillation type film thickness monitor. The characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 5.2 V and an external quantum efficiency of 4.2%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time required for a 20% reduction from the initial luminance was 157 hours.
(実施例37~42)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表2に記載した材料を用いて、実施例36と同様にして発光素子を作製し、評価した。各実施例の結果は表2に示した。
(Examples 37 to 42)
Using the materials described in Table 2 as a hole injection layer, a hole transport layer, a light emitting layer host material, a light emitting layer dopant material, and a second electron transport layer, a light emitting device was fabricated and evaluated in the same manner as in Example 36. did. The results of each example are shown in Table 2.
(実施例43~49)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表2に記載した材料を用いて、実施例22と同様にして発光素子を作製し、評価した。各実施例の結果は表2に示した。
(Examples 43 to 49)
Using the materials described in Table 2 as a hole injection layer, a hole transport layer, a light emitting layer host material, a light emitting layer dopant material, and a second electron transport layer, a light emitting device was fabricated and evaluated in the same manner as in Example 22. did. The results of each example are shown in Table 2.
(実施例50~56)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表2に記載した材料を用いて、実施例29と同様にして発光素子を作製し、評価した。各実施例の結果は表2に示した。
(Examples 50 to 56)
Using the materials described in Table 2 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, and second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 29. did. The results of each example are shown in Table 2.
(実施例57~63)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表2に記載した材料を用いて、実施例36と同様にして発光素子を作製し、評価した。各実施例の結果は表2に示した。
(Examples 57 to 63)
Using the materials described in Table 2 as a hole injection layer, a hole transport layer, a light emitting layer host material, a light emitting layer dopant material, and a second electron transport layer, a light emitting device was fabricated and evaluated in the same manner as in Example 36. did. The results of each example are shown in Table 2.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
(実施例64)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として正孔注入材料にHT-1を、アクセプター性化合物にPD-1を用い、アクセプター性化合物のドープ濃度が3質量%となるように30nm蒸着した。次に正孔輸送層として、HT-1を30nm蒸着した。次に、発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が5質量%になるようにして40nmの厚さに蒸着した。次に、第2電子輸送層として、電子輸送材料に化合物E-1を20nmの厚さに積層した。
 次に、電子注入層としてLiqを0.5nm蒸着した後、マグネシウムと銀を質量比1:1となるように1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は、駆動電圧5.1V、外部量子効率4.3%であった。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は172時間であった。なおPD-1は以下に示す化合物である。
(Example 64)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, HT-1 was used as a hole injection material as a hole injection layer and PD-1 was used as an acceptor compound by a resistance heating method, and vapor deposition was performed at 30 nm so that the acceptor compound had a doping concentration of 3 mass%. Next, 30 nm of HT-1 was deposited as a hole transport layer. Next, as a light emitting layer, the compound H-1 was used as the host material, the compound D-1 was used as the dopant material, and the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%. Next, as a second electron transport layer, Compound E-1 was laminated to an electron transport material to a thickness of 20 nm.
Next, Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 × 5 mm square device. The film thickness here is a display value of a crystal oscillation type film thickness monitor. The characteristics of this light-emitting element at 1000 cd / m 2 were a driving voltage of 5.1 V and an external quantum efficiency of 4.3%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time to decrease 20% from the initial luminance was 172 hours. PD-1 is a compound shown below.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
(実施例65~77)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表3に記載した材料を用いて、実施例64と同様にして発光素子を作製し、評価した。各実施例の結果は表3に示した。
(Examples 65 to 77)
Using the materials described in Table 3 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, and second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 64. did. The results of each example are shown in Table 3.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
<比較例1~14:正孔輸送層に一般式(1)で表される化合物を有するが、電子輸送層にドナー性化合物を有さず、アクセプター化合物を含有する正孔注入層も有しない発光素子>
(比較例1)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、正孔輸送層として、HT-1を60nm蒸着した。次に、発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が5質量%になるようにして40nmの厚さに蒸着した。次に、第2電子輸送層として、電子輸送材料に化合物E-1を、20nmの厚さに積層した。
 次に、電子注入層としてLiqを0.5nm蒸着した後、マグネシウムと銀を質量比1:1となるように1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は駆動電圧6.6V、外部量子効率3.1%であった。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は135時間であった。
<Comparative Examples 1 to 14: The hole transport layer has the compound represented by the general formula (1), but the electron transport layer does not have a donor compound and does not have a hole injection layer containing an acceptor compound. Light emitting element>
(Comparative Example 1)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. As a hole transport layer, HT-1 was deposited to 60 nm by a resistance heating method. Next, as a light emitting layer, the compound H-1 was used as the host material, the compound D-1 was used as the dopant material, and the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%. Next, as a second electron transport layer, Compound E-1 was laminated to a thickness of 20 nm on the electron transport material.
Next, Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 × 5 mm square device. The film thickness here is a display value of a crystal oscillation type film thickness monitor. The characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 6.6 V and an external quantum efficiency of 3.1%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time of 20% reduction from the initial luminance was 135 hours.
(比較例2~14)
 正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表3に記載した材料を用いて、比較例1と同様にして発光素子を作製し、評価した。各比較例の結果を表4に示した。
(Comparative Examples 2 to 14)
Using the materials described in Table 3 as the hole transport layer, light emitting layer host material, light emitting layer dopant material, and second electron transport layer, a light emitting device was prepared and evaluated in the same manner as in Comparative Example 1. The results of each comparative example are shown in Table 4.
<比較例15~23:電子輸送層にドナー性化合物を有するが、正孔輸送層に一般式(1)で表される化合物を有しない発光素子>
(比較例15~17)
 正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表4に記載した材料を用いて、実施例1と同様にして発光素子を作製し、評価した。各比較例の結果を表4に示した。なおHT-8、HT-9、HT-10は以下に示す化合物である。
<Comparative Examples 15 to 23: Light-emitting devices having a donor compound in the electron transport layer but not having the compound represented by the general formula (1) in the hole transport layer>
(Comparative Examples 15 to 17)
Using the materials described in Table 4 as the hole transport layer, light emitting layer host material, light emitting layer dopant material, and second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 1. The results of each comparative example are shown in Table 4. HT-8, HT-9 and HT-10 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
(比較例18~23)
 正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表4に記載した材料を用いて、実施例8と同様にして発光素子を作製し、評価した。各比較例の結果を表4に示した。
(Comparative Examples 18 to 23)
Using the materials described in Table 4 as the hole transport layer, the light emitting layer host material, the light emitting layer dopant material, the first electron transport layer, and the second electron transport layer, a light emitting device was produced in the same manner as in Example 8, evaluated. The results of each comparative example are shown in Table 4.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 表1および4より、実施例1~7と比較例1~7、実施例15~21と比較例8~14との対比により、正孔輸送層に一般式(1)で表される化合物を用いる場合に、電子輸送層がドナー性化合物を含有することで低電圧駆動、発光効率の向上、耐久寿命の向上といった効果が見られることがわかる。また、実施例1~7と比較例15~17、実施例8~14と比較例18~20、実施例15~21と比較例21~23との対比により、電子輸送層がドナー性化合物を含有する場合に、正孔輸送層に一般式(1)で表される化合物を用いることで、低電圧駆動、発光効率の向上、耐久寿命の向上といった効果が見られることがわかる。 From Tables 1 and 4, according to the comparison between Examples 1 to 7 and Comparative Examples 1 to 7, and Examples 15 to 21 and Comparative Examples 8 to 14, the compound represented by the general formula (1) was added to the hole transport layer. When used, it can be seen that when the electron transport layer contains a donor compound, effects such as low voltage driving, improved luminous efficiency, and improved durable life can be seen. Further, in comparison with Examples 1 to 7 and Comparative Examples 15 to 17, Examples 8 to 14 and Comparative Examples 18 to 20, and Examples 15 to 21 and Comparative Examples 21 to 23, the electron transport layer contains a donor compound. When it contains, it turns out that the effect of a low voltage drive, the improvement of luminous efficiency, and the improvement of a durable life is seen by using the compound represented by General formula (1) for a positive hole transport layer.
<比較例24~47:正孔注入層にアクセプター性化合物を有するが、正孔輸送層に一般式(1)で表される化合物を有しない発光素子>
(比較例24~26)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表5に記載した材料を用いて、実施例22と同様にして発光素子を作製し、評価した。各実施例の結果は表5に示した。
<Comparative Examples 24 to 47: A light emitting device having an acceptor compound in the hole injection layer but not having the compound represented by the general formula (1) in the hole transport layer>
(Comparative Examples 24-26)
Using the materials described in Table 5 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, and second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 22. did. The results of each example are shown in Table 5.
(比較例27~29)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表5に記載した材料を用いて、実施例29と同様にして発光素子を作製し、評価した。各実施例の結果は表5に示した。
(Comparative Examples 27 to 29)
Using the materials described in Table 5 as the hole injection layer, the hole transport layer, the light emitting layer host material, the light emitting layer dopant material, and the second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 29. did. The results of each example are shown in Table 5.
(比較例30~32)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表5に記載した材料を用いて、実施例36と同様にして発光素子を作製し、評価した。各実施例の結果は表5に示した。
(Comparative Examples 30 to 32)
Using the materials described in Table 5 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, and second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 36. did. The results of each example are shown in Table 5.
(比較例33~35)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表5に記載した材料を用いて、実施例22と同様にして発光素子を作製し、評価した。各実施例の結果は表5に示した。
(Comparative Examples 33 to 35)
Using the materials described in Table 5 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, and second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 22. did. The results of each example are shown in Table 5.
(比較例36~38)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表5に記載した材料を用いて、実施例29と同様にして発光素子を作製し、評価した。各実施例の結果は表5に示した。
(Comparative Examples 36-38)
Using the materials described in Table 5 as the hole injection layer, the hole transport layer, the light emitting layer host material, the light emitting layer dopant material, and the second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 29. did. The results of each example are shown in Table 5.
(比較例39~41)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表5に記載した材料を用いて、実施例36と同様にして発光素子を作製し、評価した。各実施例の結果は表5に示した。
(Comparative Examples 39 to 41)
Using the materials described in Table 5 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, and second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 36. did. The results of each example are shown in Table 5.
(比較例42~47)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表5に記載した材料を用いて、実施例64と同様にして発光素子を作製し、評価した。各実施例の結果は表5に示した。
(Comparative Examples 42 to 47)
Using the materials described in Table 5 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, and second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 64. did. The results of each example are shown in Table 5.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 表2、3および5より、実施例22~28と比較例24~26、実施例29~35と比較例27~29、実施例36~42と比較例30~32、実施例43~49と比較例33~35、実施例50~56と比較例36~38、実施例57~63と比較例39~41、実施例64~70と比較例42~44、実施例71~77と比較例45~47との対比により、正孔注入層がアクセプター性化合物単独で構成されるか、またはアクセプター性化合物を含有する場合に、正孔輸送層に一般式(1)で表される化合物を用いることで、低電圧駆動、発光効率の向上、耐久寿命の向上といった効果が見られることがわかる。 From Tables 2, 3 and 5, Examples 22 to 28 and Comparative Examples 24 to 26, Examples 29 to 35, Comparative Examples 27 to 29, Examples 36 to 42, Comparative Examples 30 to 32, and Examples 43 to 49 Comparative Examples 33 to 35, Examples 50 to 56 and Comparative Examples 36 to 38, Examples 57 to 63 and Comparative Examples 39 to 41, Examples 64 to 70, Comparative Examples 42 to 44, Examples 71 to 77 and Comparative Examples By comparison with 45 to 47, when the hole injection layer is composed of an acceptor compound alone or contains an acceptor compound, the compound represented by the general formula (1) is used for the hole transport layer. Thus, it can be seen that effects such as low voltage driving, improved luminous efficiency, and improved durable life can be seen.
<実施例78~138:正孔輸送層に一般式(1)で表される化合物を有し、電子輸送層にドナー性化合物を有し、正孔注入層にアクセプター化合物を有する発光素子>
(実施例78)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層としてアクセプター性化合物であるHAT-CN6を10nm蒸着し,次に正孔輸送層として、HT-1を50nm蒸着した。次に、発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が5質量%になるようにして40nmの厚さに蒸着した。次に、第2電子輸送層として、電子輸送材料に化合物E-1を、ドナー性化合物としてLiqを用い、E-1とLiqの蒸着速度比が1:1となるようにして20nmの厚さに積層した。
 次に、電子注入層としてLiqを0.5nm蒸着した後、マグネシウムと銀を質量比1:1となるように1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は、駆動電圧4.1V、外部量子効率5.5%であった。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は305時間であった。
<Examples 78 to 138: Light-emitting devices having a compound represented by the general formula (1) in the hole transport layer, a donor compound in the electron transport layer, and an acceptor compound in the hole injection layer>
(Example 78)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. By the resistance heating method, first, HAT-CN6, which is an acceptor compound, was deposited as a hole injection layer by 10 nm, and then HT-1 was deposited as a hole transport layer by 50 nm. Next, as a light emitting layer, the compound H-1 was used as the host material, the compound D-1 was used as the dopant material, and the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%. Next, as the second electron transport layer, the compound E-1 is used as the electron transport material, Liq is used as the donor compound, and the deposition rate ratio of E-1 and Liq is 1: 1. Laminated.
Next, Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 × 5 mm square device. The film thickness here is a display value of a crystal oscillation type film thickness monitor. The characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 4.1 V and an external quantum efficiency of 5.5%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time of 20% reduction from the initial luminance was 305 hours.
(実施例79~82)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表6に記載した材料を用いて、実施例78と同様にして発光素子を作製し、評価した。各実施例の結果を表6に示した。
(Examples 79 to 82)
Using the materials described in Table 6 as a hole injection layer, a hole transport layer, a light emitting layer host material, a light emitting layer dopant material, and a second electron transport layer, a light emitting device was fabricated and evaluated in the same manner as in Example 78. did. The results of each example are shown in Table 6.
(実施例83)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として正孔注入材料にHT-1を、アクセプター性化合物にF4-TCNQを用い、アクセプター性化合物のドープ濃度が10質量%となるように30nm蒸着した。次に正孔輸送層として、HT-1を30nm蒸着した。次に、発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が5質量%になるようにして40nmの厚さに蒸着した。次に、第2電子輸送層として、電子輸送材料に化合物E-1を、ドナー性化合物としてLiqを用い、E-1とLiqの蒸着速度比が1:1となるようにして20nmの厚さに積層した。
 次に、電子注入層としてLiqを0.5nm蒸着した後、マグネシウムと銀を質量比1:1となるように1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は、駆動電圧4.1V、外部量子効率5.3%であった。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は310時間であった。
(Example 83)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, HT-1 was used as a hole injection material as a hole injection layer and F4-TCNQ was used as an acceptor compound by a resistance heating method, and 30 nm was deposited so that the acceptor compound had a doping concentration of 10% by mass. Next, 30 nm of HT-1 was deposited as a hole transport layer. Next, as a light emitting layer, the compound H-1 was used as the host material, the compound D-1 was used as the dopant material, and the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%. Next, as the second electron transport layer, the compound E-1 is used as the electron transport material, Liq is used as the donor compound, and the deposition rate ratio of E-1 and Liq is 1: 1. Laminated.
Next, Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 × 5 mm square device. The film thickness here is a display value of a crystal oscillation type film thickness monitor. The characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 4.1 V and an external quantum efficiency of 5.3%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time of 20% reduction from the initial luminance was 310 hours.
(実施例84~87)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表6に記載した材料を用いて、実施例83と同様にして発光素子を作製し、評価した。各実施例の結果を表6に示した。
(Examples 84 to 87)
Using the materials described in Table 6 as a hole injection layer, a hole transport layer, a light emitting layer host material, a light emitting layer dopant material, and a second electron transport layer, a light emitting device was fabricated and evaluated in the same manner as in Example 83. did. The results of each example are shown in Table 6.
(実施例88)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CN6を10nm蒸着し、次に正孔輸送層として、HT-1を50nm蒸着した。次に、発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が5質量%になるようにして40nmの厚さに蒸着した。次に、第1電子輸送層としてE-1を5nm蒸着し、さらに第2電子輸送層として電子輸送材料に化合物E-1を、ドナー性化合物としてセシウムを用い、E-1とセシウムの蒸着速度比が20:1になるようにして15nmの厚さに積層した。
 次に、マグネシウムと銀を質量比1:1となるように1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は駆動電圧4.0V、外部量子効率5.4%であった。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は313時間であった。
(Example 88)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, HAT-CN6 was deposited as a hole injection layer by 10 nm by a resistance heating method, and then HT-1 was deposited as a hole transport layer by 50 nm. Next, as a light emitting layer, the compound H-1 was used as the host material, the compound D-1 was used as the dopant material, and the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%. Next, E-1 is vapor-deposited as a first electron transport layer at a thickness of 5 nm, compound E-1 is used as an electron transport material as a second electron transport layer, cesium is used as a donor compound, and E-1 and cesium are deposited. The layers were laminated to a thickness of 15 nm so that the ratio was 20: 1.
Next, magnesium and silver were vapor-deposited 1000 nm so that mass ratio might be 1: 1, and it was set as the cathode, and the element of a 5 * 5-mm square was produced. The film thickness here is a display value of a crystal oscillation type film thickness monitor. The characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 4.0 V and an external quantum efficiency of 5.4%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time to decrease 20% from the initial luminance was 313 hours.
(実施例89~92)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表6に記載した材料を用いて、実施例88と同様にして発光素子を作製し、評価した。各実施例の結果を表6に示した。
(Examples 89 to 92)
Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 88. A device was fabricated and evaluated. The results of each example are shown in Table 6.
(実施例93)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、正孔注入材料にHT-1を、アクセプター性化合物にF4-TCNQを用い、アクセプター性化合物のドープ濃度が10質量%となるように30nm蒸着した。次に、正孔輸送層としてHT-1を30nm蒸着した。次に発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が5質量%になるようにして40nmの厚さに蒸着した。次に、第1電子輸送層としてE-1を5nm蒸着し、さらに第2電子輸送層として電子輸送材料に化合物E-1を、ドナー性化合物としてセシウムを用い、E-1とセシウムの蒸着速度比が20:1になるようにして15nmの厚さに積層した。
 次に、マグネシウムと銀を質量比1:1となるように1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は駆動電圧4.0V、外部量子効率5.5%の青色発光が得られた。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は301時間であった。
(Example 93)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, HT-1 was used as a hole injection material and F4-TCNQ was used as an acceptor compound and 30 nm was deposited by a resistance heating method so that the acceptor compound had a doping concentration of 10% by mass. Next, 30 nm of HT-1 was deposited as a hole transport layer. Next, as a light-emitting layer, Compound H-1 was used as the host material, Compound D-1 was used as the dopant material, and vapor deposition was performed to a thickness of 40 nm so that the dopant concentration was 5% by mass. Next, E-1 is vapor-deposited as a first electron transport layer at a thickness of 5 nm, compound E-1 is used as an electron transport material as a second electron transport layer, cesium is used as a donor compound, and E-1 and cesium are deposited. The layers were laminated to a thickness of 15 nm so that the ratio was 20: 1.
Next, magnesium and silver were vapor-deposited 1000 nm so that mass ratio might be 1: 1, and it was set as the cathode, and the element of a 5 * 5-mm square was produced. The film thickness here is a display value of a crystal oscillation type film thickness monitor. The light-emitting element had characteristics of 1000 cd / m 2 and emitted blue light with a driving voltage of 4.0 V and an external quantum efficiency of 5.5%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time of 20% reduction from the initial luminance was 301 hours.
(実施例94~97)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表6に記載した材料を用いて、実施例93と同様にして発光素子を作製し、評価した。各実施例の結果を表6に示した。
(Examples 94 to 97)
Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 93. A device was fabricated and evaluated. The results of each example are shown in Table 6.
(実施例98)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、酸化モリブデン(MoO3)を1nm蒸着し、次に正孔輸送層として、HT-1を59nm蒸着した。次に、発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が5質量%になるようにして40nmの厚さに蒸着した。次に、第2電子輸送層として、電子輸送材料に化合物E-1を、ドナー性化合物としてLiqを用い、E-1とLiqの蒸着速度比が1:1となるようにして20nmの厚さに積層した。
 次に、マグネシウムと銀を質量比1:1となるように1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は駆動電圧4.2V、外部量子効率5.4%であった。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は294時間であった。
(Example 98)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. By resistance heating, molybdenum oxide (MoO 3 ) was first deposited as a hole injection layer by 1 nm, and then HT-1 was deposited as a hole transport layer by 59 nm. Next, as a light emitting layer, the compound H-1 was used as the host material, the compound D-1 was used as the dopant material, and the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%. Next, as the second electron transport layer, the compound E-1 is used as the electron transport material, Liq is used as the donor compound, and the deposition rate ratio of E-1 and Liq is 1: 1. Laminated.
Next, magnesium and silver were vapor-deposited 1000 nm so that mass ratio might be 1: 1, and it was set as the cathode, and the element of a 5 * 5-mm square was produced. The film thickness here is a display value of a crystal oscillation type film thickness monitor. This property of at 1000 cd / m 2 of the light-emitting element drive voltage 4.2 V, and an external quantum efficiency of 5.4%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time to decrease 20% from the initial luminance was 294 hours.
(実施例99~102)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表6に記載した材料を用いて、実施例98と同様にして発光素子を作製し、評価した。各実施例の結果を表6に示した。
(Examples 99 to 102)
Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, and second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 98. did. The results of each example are shown in Table 6.
(実施例103)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、酸化モリブデン(MoO3)を1nm蒸着し、次に正孔輸送層として、HT-1を59nm蒸着した。次に、発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が5質量%になるようにして40nmの厚さに蒸着した。次に、第1電子輸送層としてE-1を5nm蒸着し、さらに第2電子輸送層として電子輸送材料に化合物E-1を、ドナー性化合物としてセシウムを用い、E-1とセシウムの蒸着速度比が20:1になるようにして15nmの厚さに積層した。
 次に、マグネシウムと銀を質量比1:1となるように1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は駆動電圧4.0V、外部量子効率5.4%であった。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は301時間であった。
(Example 103)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. By resistance heating, molybdenum oxide (MoO 3 ) was first deposited as a hole injection layer by 1 nm, and then HT-1 was deposited as a hole transport layer by 59 nm. Next, as a light emitting layer, the compound H-1 was used as the host material, the compound D-1 was used as the dopant material, and the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%. Next, E-1 is vapor-deposited as a first electron transport layer at a thickness of 5 nm, compound E-1 is used as an electron transport material as a second electron transport layer, cesium is used as a donor compound, and E-1 and cesium are deposited. The layers were laminated to a thickness of 15 nm so that the ratio was 20: 1.
Next, magnesium and silver were vapor-deposited 1000 nm so that mass ratio might be 1: 1, and it was set as the cathode, and the element of a 5 * 5-mm square was produced. The film thickness here is a display value of a crystal oscillation type film thickness monitor. The characteristics of this light emitting element at 1000 cd / m 2 were a driving voltage of 4.0 V and an external quantum efficiency of 5.4%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time of 20% reduction from the initial luminance was 301 hours.
(実施例104~107)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表6に記載した材料を用いて、実施例103と同様にして発光素子を作製し、評価した。各実施例の結果を表6に示した。
(Examples 104 to 107)
Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 103. A device was fabricated and evaluated. The results of each example are shown in Table 6.
(実施例108~112)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表6に記載した材料を用いて、実施例88と同様にして発光素子を作製し、評価した。各実施例の結果を表6に示した。
(Examples 108 to 112)
Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 88. A device was fabricated and evaluated. The results of each example are shown in Table 6.
(実施例113~117)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表6に記載した材料を用いて、実施例93と同様にして発光素子を作製し、評価した。各実施例の結果を表6に示した。
(Examples 113 to 117)
Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 93. A device was fabricated and evaluated. The results of each example are shown in Table 6.
(実施例118~122)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表6に記載した材料を用いて、実施例103と同様にして発光素子を作製し、評価した。各実施例の結果を表6に示した。
(Examples 118 to 122)
Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 103. A device was fabricated and evaluated. The results of each example are shown in Table 6.
(実施例123)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として正孔注入材料にHT-3を、アクセプター性化合物にPD-1を用い、アクセプター性化合物のドープ濃度が3質量%となるように30nm蒸着した。次に正孔輸送層として、HT-3を30nm蒸着した。次に、発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が5質量%になるようにして40nmの厚さに蒸着した。次に、第2電子輸送層として、電子輸送材料に化合物E-1を、ドナー性化合物としてLiqを用い、E-1とLiqの蒸着速度比が1:1となるようにして20nmの厚さに積層した。
 次に、電子注入層としてLiqを0.5nm蒸着した後、マグネシウムと銀を質量比1:1となるように1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は、駆動電圧4.0V、外部量子効率5.3%であった。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は364時間であった。
(Example 123)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, HT-3 was used as a hole injection material and PD-1 was used as an acceptor compound by a resistance heating method, and 30 nm was deposited so that the acceptor compound had a doping concentration of 3 mass%. Next, HT-3 was deposited as a hole transport layer by 30 nm. Next, as a light emitting layer, the compound H-1 was used as the host material, the compound D-1 was used as the dopant material, and the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 5 mass%. Next, as the second electron transport layer, the compound E-1 is used as the electron transport material, Liq is used as the donor compound, and the deposition rate ratio of E-1 and Liq is 1: 1. Laminated.
Next, Liq was deposited as an electron injection layer to a thickness of 0.5 nm, and then magnesium and silver were deposited at a thickness of 1000 nm so as to have a mass ratio of 1: 1 to form a cathode, thereby producing a 5 × 5 mm square device. The film thickness here is a display value of a crystal oscillation type film thickness monitor. The characteristics of this light-emitting element at 1000 cd / m 2 were a driving voltage of 4.0 V and an external quantum efficiency of 5.3%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time required for a 20% decrease from the initial luminance was 364 hours.
(実施例124、125)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表6に記載した材料を用いて、実施例123と同様にして発光素子を作製し、評価した。各実施例の結果を表6に示した。
(Examples 124 and 125)
Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 123. A device was fabricated and evaluated. The results of each example are shown in Table 6.
(実施例126)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、正孔注入材料にHT-3を、アクセプター性化合物にPD-1を用い、アクセプター性化合物のドープ濃度が3質量%となるように30nm蒸着した。次に、正孔輸送層としてHT-3を30nm蒸着した。次に発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が5質量%になるようにして40nmの厚さに蒸着した。次に、第1電子輸送層としてE-1を5nm蒸着し、さらに第2電子輸送層として電子輸送材料に化合物E-1を、ドナー性化合物としてセシウムを用い、E-1とセシウムの蒸着速度比が20:1になるようにして15nmの厚さに積層した。
 次に、マグネシウムと銀を質量比1:1となるように1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は駆動電圧3.9V、外部量子効率5.4%の青色発光が得られた。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は372時間であった。
(Example 126)
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, as a hole injection layer, HT-3 was used as a hole injection material, PD-1 was used as an acceptor compound, and 30 nm was deposited by a resistance heating method so that the acceptor compound had a doping concentration of 3 mass%. Next, 30 nm of HT-3 was deposited as a hole transport layer. Next, as a light-emitting layer, Compound H-1 was used as the host material, Compound D-1 was used as the dopant material, and vapor deposition was performed to a thickness of 40 nm so that the dopant concentration was 5% by mass. Next, E-1 is vapor-deposited as a first electron transport layer at a thickness of 5 nm, compound E-1 is used as an electron transport material as a second electron transport layer, cesium is used as a donor compound, and E-1 and cesium are deposited. The layers were laminated to a thickness of 15 nm so that the ratio was 20: 1.
Next, magnesium and silver were vapor-deposited 1000 nm so that mass ratio might be 1: 1, and it was set as the cathode, and the element of a 5 * 5-mm square was produced. The film thickness here is a display value of a crystal oscillation type film thickness monitor. The light-emitting element had characteristics of 1000 cd / m 2 and emitted blue light with a driving voltage of 3.9 V and an external quantum efficiency of 5.4%. When this element was set to an initial luminance of 1000 cd / m 2 and the endurance life was measured, the time required for a 20% decrease from the initial luminance was 372 hours.
(実施例127、128)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表6に記載した材料を用いて、実施例126と同様にして発光素子を作製し、評価した。各実施例の結果を表6に示した。
(Examples 127 and 128)
Using the materials described in Table 6 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 126. A device was fabricated and evaluated. The results of each example are shown in Table 6.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
(実施例129~138)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表7に記載した材料を用いて、実施例78と同様にして発光素子を作製し、評価した。各実施例の結果を表7に示した。なおHT-11、HT-12、E-3,E-4は以下に示す化合物である。
(Examples 129 to 138)
Using the materials described in Table 7 as a hole injection layer, a hole transport layer, a light emitting layer host material, a light emitting layer dopant material, and a second electron transport layer, a light emitting device was fabricated and evaluated in the same manner as in Example 78. did. The results of each example are shown in Table 7. HT-11, HT-12, E-3, and E-4 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
<比較例48~84:電子輸送層にドナー性化合物を有し、正孔注入層にアクセプター化合物を有するが、正孔輸送層に一般式(1)で表される化合物を有しない発光素子>
(比較例48~50)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表8に記載した材料を用いて、実施例78と同様にして発光素子を作製し、評価した。各比較例の結果を表8に示した。
<Comparative Examples 48 to 84: a light emitting device having a donor compound in the electron transport layer and an acceptor compound in the hole injection layer, but not having the compound represented by the general formula (1) in the hole transport layer>
(Comparative Examples 48-50)
Using the materials described in Table 8 as the hole injection layer, the hole transport layer, the light emitting layer host material, the light emitting layer dopant material, and the second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 78. did. The results of each comparative example are shown in Table 8.
(比較例51~53)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表8に記載した材料を用いて、実施例83と同様にして発光素子を作製し、評価した。各比較例の結果を表8に示した。
(Comparative Examples 51-53)
Using the materials described in Table 8 as the hole injection layer, the hole transport layer, the light emitting layer host material, the light emitting layer dopant material, and the second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 83. did. The results of each comparative example are shown in Table 8.
(比較例54~56)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表8に記載した材料を用いて、実施例88と同様にして発光素子を作製し、評価した。各比較例の結果を表8に示した。
(Comparative Examples 54 to 56)
Using the materials described in Table 8 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 88. A device was fabricated and evaluated. The results of each comparative example are shown in Table 8.
(比較例57~59)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表8に記載した材料を用いて、実施例93と同様にして発光素子を作製し、評価した。各比較例の結果を表8に示した。
(Comparative Examples 57-59)
Using the materials described in Table 8 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 93. A device was fabricated and evaluated. The results of each comparative example are shown in Table 8.
(比較例60~62)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表8に記載した材料を用いて、実施例98と同様にして発光素子を作製し、評価した。各比較例の結果を表8に示した。
(Comparative Examples 60 to 62)
Using the materials described in Table 8 as the hole injection layer, the hole transport layer, the light emitting layer host material, the light emitting layer dopant material, and the second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 98. did. The results of each comparative example are shown in Table 8.
(比較例63~65)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表8に記載した材料を用いて、実施例103と同様にして発光素子を作製し、評価した。各比較例の結果を表8に示した。
(Comparative Examples 63 to 65)
Using the materials described in Table 8 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 103. A device was fabricated and evaluated. The results of each comparative example are shown in Table 8.
(比較例66~68)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表8に記載した材料を用いて、実施例88と同様にして発光素子を作製し、評価した。各比較例の結果を表8に示した。
(Comparative Examples 66-68)
Using the materials described in Table 8 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 88. A device was fabricated and evaluated. The results of each comparative example are shown in Table 8.
(比較例69~71)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表8に記載した材料を用いて、実施例93と同様にして発光素子を作製し、評価した。各比較例の結果を表8に示した。
(Comparative Examples 69-71)
Using the materials described in Table 8 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 93. A device was fabricated and evaluated. The results of each comparative example are shown in Table 8.
(比較例72~74)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表8に記載した材料を用いて、実施例103と同様にして発光素子を作製し、評価した。各比較例の結果を表8に示した。
(Comparative Examples 72-74)
Using the materials described in Table 8 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 103. A device was fabricated and evaluated. The results of each comparative example are shown in Table 8.
(比較例75~77)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表8に記載した材料を用いて、実施例123と同様にして発光素子を作製し、評価した。各実施例の結果を表8に示した。
(Comparative Examples 75-77)
Using the materials described in Table 8 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 123. A device was fabricated and evaluated. The results of each example are shown in Table 8.
(比較例78~80)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第1電子輸送層、第2電子輸送層として表8に記載した材料を用いて、実施例126と同様にして発光素子を作製し、評価した。各実施例の結果を表8に示した。
(Comparative Examples 78-80)
Using the materials described in Table 8 as the hole injection layer, hole transport layer, light emitting layer host material, light emitting layer dopant material, first electron transport layer, and second electron transport layer, light emission was performed in the same manner as in Example 126. A device was fabricated and evaluated. The results of each example are shown in Table 8.
(比較例81~90)
 正孔注入層、正孔輸送層、発光層ホスト材料、発光層ドーパント材料、第2電子輸送層として表8に記載した材料を用いて、実施例78と同様にして発光素子を作製し、評価した。各比較例の結果を表8に示した。なおHT-13、HT-14、HT-15は以下に示す化合物である。
(Comparative Examples 81-90)
Using the materials described in Table 8 as the hole injection layer, the hole transport layer, the light emitting layer host material, the light emitting layer dopant material, and the second electron transport layer, a light emitting device was produced and evaluated in the same manner as in Example 78. did. The results of each comparative example are shown in Table 8. HT-13, HT-14, and HT-15 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 表6、7および8より、実施例78~82と比較例48~50、実施例83~87と比較例51~53、実施例88~92と比較例54~56、実施例93~97と比較例57~59、実施例98~102と比較例60~62、実施例103~107と比較例63~65、実施例108~112と比較例66~68、実施例113~117と比較例69~71、実施例118~122と比較例72~74、実施例123~125と比較例75~77、実施例126~128と比較例78~80、実施例129~133と比較例81~85、実施例134~138と比較例86~90との対比により、正孔注入層がアクセプター性化合物単独で構成されるか、またはアクセプター性化合物を含有し、かつ電子輸送層がドナー性化合物を含有する場合に、正孔輸送層に一般式(1)で表される化合物を用いることで、低電圧駆動、発光効率の向上、耐久寿命の大幅な向上といった効果が見られることがわかる。 From Tables 6, 7 and 8, Examples 78 to 82 and Comparative Examples 48 to 50, Examples 83 to 87, Comparative Examples 51 to 53, Examples 88 to 92, Comparative Examples 54 to 56, and Examples 93 to 97 Comparative Examples 57-59, Examples 98-102 and Comparative Examples 60-62, Examples 103-107 and Comparative Examples 63-65, Examples 108-112, Comparative Examples 66-68, Examples 113-117 and Comparative Examples 69-71, Examples 118-122 and Comparative Examples 72-74, Examples 123-125 and Comparative Examples 75-77, Examples 126-128, Comparative Examples 78-80, Examples 129-133 and Comparative Examples 81- 85. By comparing Examples 134 to 138 with Comparative Examples 86 to 90, the hole injection layer is composed of an acceptor compound alone or contains an acceptor compound, and the electron transport layer contains a donor compound. Contain Case, by using a compound represented by the general formula (1) in the hole transporting layer, a low voltage drive, improvement in luminous efficiency, it can be seen that the effect is seen such a considerable improvement in durability.
 本発明にかかる発光素子は、低電圧で駆動され、高い発光効率および耐久寿命が要求される分野に有用であり、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機および光信号発生器などに利用可能である。 The light-emitting element according to the present invention is useful in fields that are driven at a low voltage and require high luminous efficiency and durability, and is a display element, flat panel display, backlight, illumination, interior, sign, signboard, and electrophotography. It can be used for a machine and an optical signal generator.

Claims (5)

  1.  陽極と陰極との間に少なくとも正孔輸送層と電子輸送層とを備え、電気エネルギーにより発光する発光素子であって、
     前記正孔輸送層は、下記一般式(1)で表される化合物を含有し、
     前記電子輸送層は、アルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩、およびアルカリ土類金属と有機物との錯体からなる群から選択されるドナー性化合物を含有することを特徴とする発光素子。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、R~R12は、それぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アミノ基、アリール基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、ハロゲン、シアノ基、-P(=O)R1314およびシリル基からなる群より選ばれる。R13およびR14は、それぞれ同じでも異なっていてもよく、アリール基またはヘテロアリール基である。これらの置換基はさらに置換されていてもよいし、隣り合う置換基同士でさらに環を形成していてもよい。ただし、R~R12のうちn個は、-NR1516で表されるアミノ基である。R15およびR16は、それぞれ同じでも異なっていてもよく、アルキル基、シクロアルキル基、アリール基、およびヘテロアリール基からなる群より選ばれる。nは1~6の整数を表す。)
    A light emitting device comprising at least a hole transport layer and an electron transport layer between an anode and a cathode, and emitting light by electric energy,
    The hole transport layer contains a compound represented by the following general formula (1),
    The electron transport layer includes an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic substance, an alkaline earth metal, an inorganic salt containing an alkaline earth metal, and a complex of an alkaline earth metal and an organic substance. A light emitting device comprising a donor compound selected from the group consisting of:
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), R 1 to R 12 may be the same or different from each other, and hydrogen, alkyl group, cycloalkyl group, amino group, aryl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, a halogen, a cyano group, -P (= O) .R selected from the group consisting of R 13 R 14 and a silyl group 13 and R 14 are each These substituents may be the same or different and are an aryl group or a heteroaryl group, and these substituents may be further substituted, and adjacent substituents may further form a ring, provided that R N of 1 to R 12 is an amino group represented by —NR 15 R 16. R 15 and R 16 may be the same or different. And may be selected from the group consisting of an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group, where n represents an integer of 1 to 6.)
  2.  陽極と陰極との間に少なくとも正孔輸送層および正孔注入層を備え、電気エネルギーにより発光する発光素子であって、
     前記正孔輸送層は、下記一般式(1)で表される化合物を含有し、
     前記正孔注入層は、アクセプター性化合物単独で構成されているか、またはアクセプター性化合物を含有することを特徴とする発光素子。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(1)中、R~R12は、それぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アミノ基、アリール基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、ハロゲン、シアノ基、-P(=O)R1314およびシリル基からなる群より選ばれる。R13およびR14は、それぞれ同じでも異なっていてもよく、アリール基またはヘテロアリール基である。これらの置換基はさらに置換されていてもよいし、隣り合う置換基同士でさらに環を形成していてもよい。ただし、R~R12のうちn個は、-NR1516で表されるアミノ基である。R15およびR16は、それぞれ同じでも異なっていてもよく、アルキル基、シクロアルキル基、アリール基、およびヘテロアリール基からなる群より選ばれる。nは1~6の整数を表す。)
    A light emitting device comprising at least a hole transport layer and a hole injection layer between an anode and a cathode, and emitting light by electric energy,
    The hole transport layer contains a compound represented by the following general formula (1),
    The light-emitting element, wherein the hole injection layer is composed of an acceptor compound alone or contains an acceptor compound.
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (1), R 1 to R 12 may be the same or different from each other, and hydrogen, alkyl group, cycloalkyl group, amino group, aryl group, heterocyclic group, alkenyl group, cycloalkenyl group, An alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether group, a halogen, a cyano group, —P (═O) R 13 R 14 and a silyl group, each selected from R 13 and R 14 These substituents may be the same or different and are an aryl group or a heteroaryl group, and these substituents may be further substituted, and adjacent substituents may further form a ring, provided that R 1 n pieces of ~ R 12 are .R 15 and R 16 is an amino group represented by -NR 15 R 16 are the same or different And may be selected from the group consisting of an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group, where n represents an integer of 1 to 6.)
  3.  前記アクセプター性化合物は、金属酸化物またはシアノ基含有化合物である化合物単独で構成されているか、またはアクセプター性化合物を含有する請求項2に記載の発光素子。 The light-emitting element according to claim 2, wherein the acceptor compound is composed of a compound that is a metal oxide or a cyano group-containing compound alone or contains an acceptor compound.
  4.  前記陽極と前記陰極との間にさらに電子輸送層が存在し、
     前記電子輸送層は、アルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩、およびアルカリ土類金属と有機物との錯体からなる群から選択されるドナー性化合物を含有することを特徴とする請求項2または3記載の発光素子。
    There is a further electron transport layer between the anode and the cathode,
    The electron transport layer includes an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic substance, an alkaline earth metal, an inorganic salt containing an alkaline earth metal, and a complex of an alkaline earth metal and an organic substance. The light emitting device according to claim 2, comprising a donor compound selected from the group consisting of:
  5.  前記電子輸送層は、炭素、水素、窒素、酸素、ケイ素およびリンからなる群より選ばれる一種以上の元素で構成され、かつ電子受容性窒素を含むヘテロアリール環構造を有する化合物を含むことを特徴とする請求項1または4に記載の発光素子。 The electron transport layer is composed of one or more elements selected from the group consisting of carbon, hydrogen, nitrogen, oxygen, silicon, and phosphorus, and includes a compound having a heteroaryl ring structure containing electron-accepting nitrogen. The light emitting device according to claim 1 or 4.
PCT/JP2012/065171 2011-06-23 2012-06-13 Light-emitting element WO2012176675A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137025471A KR20140037826A (en) 2011-06-23 2012-06-13 Light-emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011139278 2011-06-23
JP2011-139278 2011-06-23

Publications (1)

Publication Number Publication Date
WO2012176675A1 true WO2012176675A1 (en) 2012-12-27

Family

ID=47422515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065171 WO2012176675A1 (en) 2011-06-23 2012-06-13 Light-emitting element

Country Status (4)

Country Link
JP (1) JPWO2012176675A1 (en)
KR (1) KR20140037826A (en)
TW (1) TW201308710A (en)
WO (1) WO2012176675A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140146951A (en) * 2013-06-18 2014-12-29 삼성디스플레이 주식회사 Organic light emitting device
JP2015516674A (en) * 2012-03-15 2015-06-11 メルク パテント ゲーエムベーハー Electronic element
KR20170000741A (en) * 2015-06-23 2017-01-03 삼성디스플레이 주식회사 Organic electroluminescence device
JP2017011113A (en) * 2015-06-23 2017-01-12 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Organic electroluminescent element
US9559311B2 (en) 2013-02-22 2017-01-31 Idemitsu Kosan Co., Ltd. Anthracene derivative, organic-electroluminescence-device material, organic electroluminescence device, and electronic equipment
WO2021015266A1 (en) * 2019-07-25 2021-01-28 出光興産株式会社 Mixture, organic electroluminescent element, and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230019061A (en) * 2020-05-29 2023-02-07 이데미쓰 고산 가부시키가이샤 Mixture, organic electroluminescent element, method for manufacturing organic electroluminescent element, and electronic device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265773A (en) * 1997-03-24 1998-10-06 Toyo Ink Mfg Co Ltd Positive hole injection material for organic electroluminescence element and organic electroluminescence element using the same
JPH11251063A (en) * 1997-12-25 1999-09-17 Nec Corp Organic electroluminescence element
JP2001326079A (en) * 2000-05-17 2001-11-22 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
JP2002352961A (en) * 2001-05-25 2002-12-06 Toray Ind Inc Organic electroluminescent device
JP2003347060A (en) * 2002-05-28 2003-12-05 Matsushita Electric Works Ltd Organic electroluminescent element
JP2004002297A (en) * 2002-04-11 2004-01-08 Idemitsu Kosan Co Ltd New nitrogen-containing heterocyclic derivative and organic electroluminescent element using the same
JP2005259472A (en) * 2004-03-10 2005-09-22 Fuji Photo Film Co Ltd Organic electroluminescent element
WO2009107549A1 (en) * 2008-02-27 2009-09-03 東レ株式会社 Luminescent element material and luminescent element
JP2009257176A (en) * 2008-04-16 2009-11-05 Aisan Ind Co Ltd Jet pump
JP2009267244A (en) * 2008-04-28 2009-11-12 Fujifilm Corp Organic electroluminescent element
JP2009267170A (en) * 2008-04-25 2009-11-12 Fujifilm Corp Organic electroluminescent device
WO2010002850A1 (en) * 2008-06-30 2010-01-07 Universal Display Corporation Hole transport materials containing triphenylene
JP2010132638A (en) * 2008-10-13 2010-06-17 Gracel Display Inc New organic electroluminescent compound and organic electroluminescent element by using the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265773A (en) * 1997-03-24 1998-10-06 Toyo Ink Mfg Co Ltd Positive hole injection material for organic electroluminescence element and organic electroluminescence element using the same
JPH11251063A (en) * 1997-12-25 1999-09-17 Nec Corp Organic electroluminescence element
JP2001326079A (en) * 2000-05-17 2001-11-22 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
JP2002352961A (en) * 2001-05-25 2002-12-06 Toray Ind Inc Organic electroluminescent device
JP2004002297A (en) * 2002-04-11 2004-01-08 Idemitsu Kosan Co Ltd New nitrogen-containing heterocyclic derivative and organic electroluminescent element using the same
JP2003347060A (en) * 2002-05-28 2003-12-05 Matsushita Electric Works Ltd Organic electroluminescent element
JP2005259472A (en) * 2004-03-10 2005-09-22 Fuji Photo Film Co Ltd Organic electroluminescent element
WO2009107549A1 (en) * 2008-02-27 2009-09-03 東レ株式会社 Luminescent element material and luminescent element
JP2009257176A (en) * 2008-04-16 2009-11-05 Aisan Ind Co Ltd Jet pump
JP2009267170A (en) * 2008-04-25 2009-11-12 Fujifilm Corp Organic electroluminescent device
JP2009267244A (en) * 2008-04-28 2009-11-12 Fujifilm Corp Organic electroluminescent element
WO2010002850A1 (en) * 2008-06-30 2010-01-07 Universal Display Corporation Hole transport materials containing triphenylene
JP2010132638A (en) * 2008-10-13 2010-06-17 Gracel Display Inc New organic electroluminescent compound and organic electroluminescent element by using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015516674A (en) * 2012-03-15 2015-06-11 メルク パテント ゲーエムベーハー Electronic element
US9559311B2 (en) 2013-02-22 2017-01-31 Idemitsu Kosan Co., Ltd. Anthracene derivative, organic-electroluminescence-device material, organic electroluminescence device, and electronic equipment
US11063220B2 (en) 2013-06-18 2021-07-13 Samsung Display Co., Ltd. Organic light-emitting device
KR102188028B1 (en) * 2013-06-18 2020-12-08 삼성디스플레이 주식회사 Organic light emitting device
KR20140146951A (en) * 2013-06-18 2014-12-29 삼성디스플레이 주식회사 Organic light emitting device
KR20170000741A (en) * 2015-06-23 2017-01-03 삼성디스플레이 주식회사 Organic electroluminescence device
JP2017011113A (en) * 2015-06-23 2017-01-12 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Organic electroluminescent element
KR102556088B1 (en) * 2015-06-23 2023-07-17 삼성디스플레이 주식회사 Organic electroluminescence device
WO2021015266A1 (en) * 2019-07-25 2021-01-28 出光興産株式会社 Mixture, organic electroluminescent element, and electronic device
US11069861B2 (en) 2019-07-25 2021-07-20 Idemitsu Kosan Co., Ltd. Mixture, organic electroluminescence device and electronic equipment
KR102315182B1 (en) 2019-07-25 2021-10-20 이데미쓰 고산 가부시키가이샤 Mixtures, organic electroluminescent devices and electronic devices
US11393986B2 (en) 2019-07-25 2022-07-19 Idemitsu Kosan Co., Ltd. Mixture, organic electroluminescence device and electronic equipment
KR20210024989A (en) * 2019-07-25 2021-03-08 이데미쓰 고산 가부시키가이샤 Mixtures, organic electroluminescent devices and electronic devices

Also Published As

Publication number Publication date
KR20140037826A (en) 2014-03-27
JPWO2012176675A1 (en) 2015-02-23
TW201308710A (en) 2013-02-16

Similar Documents

Publication Publication Date Title
WO2012008281A1 (en) Light emitting element
JP6361138B2 (en) Light emitting element
US9391288B2 (en) Light emitting device material and light emitting device
EP2879196B1 (en) Light emitting element material and light emitting element
JP5397568B1 (en) Light emitting device material and light emitting device
WO2012176674A1 (en) Light-emitting element
EP2688120B1 (en) Light-emitting element material and light-emitting element
KR102028940B1 (en) Material for luminescent element, and luminescent element
WO2016009823A1 (en) Monoamine derivative, luminescent element material comprising same, and luminescent element
JP2013183113A (en) Light-emitting element material and light-emitting element
JP6269060B2 (en) Light emitting device material and light emitting device
WO2012176675A1 (en) Light-emitting element
JP6318617B2 (en) Light emitting device material and light emitting device
JP2013183047A (en) Light-emitting element material and light-emitting element
JP2017084859A (en) Light-emitting element, and display device and lighting device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521538

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137025471

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803388

Country of ref document: EP

Kind code of ref document: A1