WO2012176642A1 - 太陽電池モジュール製造用ダイヤフラムおよび太陽電池モジュールの製造方法 - Google Patents

太陽電池モジュール製造用ダイヤフラムおよび太陽電池モジュールの製造方法 Download PDF

Info

Publication number
WO2012176642A1
WO2012176642A1 PCT/JP2012/064896 JP2012064896W WO2012176642A1 WO 2012176642 A1 WO2012176642 A1 WO 2012176642A1 JP 2012064896 W JP2012064896 W JP 2012064896W WO 2012176642 A1 WO2012176642 A1 WO 2012176642A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
rubber
solar cell
cell module
crosslinking
Prior art date
Application number
PCT/JP2012/064896
Other languages
English (en)
French (fr)
Inventor
信行 毛利
朋彦 高城
充 北村
俊明 土井
隆司 内山
Original Assignee
クレハエラストマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クレハエラストマー株式会社 filed Critical クレハエラストマー株式会社
Priority to JP2013521528A priority Critical patent/JP5998134B2/ja
Priority to CN201280030802.6A priority patent/CN103619564B/zh
Priority to KR1020147001693A priority patent/KR101820564B1/ko
Priority to EP12803320.6A priority patent/EP2724841B1/en
Publication of WO2012176642A1 publication Critical patent/WO2012176642A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/433Casing-in, i.e. enclosing an element between two sheets by an outlined seam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • B29C63/16Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material applied by "rubber" bag or diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7375General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured
    • B29C66/73751General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured the to-be-joined area of at least one of the parts to be joined being uncured, i.e. non cross-linked, non vulcanized
    • B29C66/73752General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured the to-be-joined area of at least one of the parts to be joined being uncured, i.e. non cross-linked, non vulcanized the to-be-joined areas of both parts to be joined being uncured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8122General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the composition of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81264Mechanical properties, e.g. hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81455General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps being a fluid inflatable bag or bladder, a diaphragm or a vacuum bag for applying isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1018Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure using only vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91441Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time
    • B29C66/91443Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile
    • B29C66/91445Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile by steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/007Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a diaphragm for a vacuum press device used when manufacturing a solar cell module and a method for manufacturing the solar cell module.
  • Patent Document 1 As a diaphragm for manufacturing a solar cell module, an example using a halogenated butyl rubber (Patent Document 1), an example using a silicone rubber in which a reinforcing fiber is embedded (Patent Document 2), and the like are known.
  • solar cells are packaged with a heat-resistant glass plate, an adhesive resin sheet such as ethylene vinyl acetate resin (hereinafter referred to as EVA), polyvinyl butyral (PVB), or a moisture-proof sheet such as aluminum foil.
  • EVA ethylene vinyl acetate resin
  • PVB polyvinyl butyral
  • a moisture-proof sheet such as aluminum foil.
  • the manufacturing method there is a method in which an EVA sheet, a solar battery cell, an EVA sheet, and a moisture-proof sheet are stacked in this order on a heat-resistant glass plate, and the EVA sheet is crosslinked and bonded while heating under vacuum.
  • a vacuum press method which is a method in which a bonding member is sandwiched and laminated between a lower heater panel and an upper diaphragm.
  • the diaphragm is formed from the upper part. Press to apply pressure to the laminate. At this time, the EVA sheet must be maintained at a temperature and a time region where the EVA sheet is crosslinked.
  • crosslinking conditions for example, primary crosslinking was conventionally performed at 135 to 155 ° C. for about 5 minutes, and secondary crosslinking was performed at 150 to 160 ° C. for about 15 to 20 minutes.
  • the primary cross-linking is performed by a hot press method, and the durability of the rubber sheet of the diaphragm attached to the press machine is greatly influenced by the conditions of the primary cross-linking.
  • Secondary crosslinking is often performed in an oven system for the purpose of complete crosslinking of the EVA sheet.
  • a manufacturing method has been adopted in which the EVA sheet is crosslinked only by primary crosslinking at a temperature exceeding 145 ° C. and secondary crosslinking is omitted, thereby shortening the total crosslinking time.
  • a diaphragm made of silicone rubber that can withstand the number of presses of 5000 times or more is used with the primary cross-linking process as one press.
  • the silicone rubber used in the silicone rubber diaphragm is a millable silicone rubber.
  • a conventional silicone rubber diaphragm is used in the manufacturing method for shortening the total crosslinking time, there is a problem that the silicone rubber diaphragm is broken after about 1000 times of pressing.
  • butyl rubber is used as the diaphragm, there is a problem that the butyl rubber is softened and is bonded to the laminate including the EVA sheet and the solar battery cell.
  • the present invention has been made in order to cope with such problems.
  • An object of the present invention is to provide a rubber diaphragm having excellent durability and a method for producing a solar cell module using the diaphragm.
  • the diaphragm for manufacturing a solar cell module of the present invention is a rubber diaphragm for a vacuum press device used when manufacturing a solar cell module
  • the rubber diaphragm is a sheet of a crosslinked rubber composition used for laminating a solar battery cell with a resin sheet by hot pressing using the vacuum press device
  • the crosslinked rubber composition is an EPDM crosslinked rubber composition
  • the crosslinked rubber composition is obtained by crosslinking a rubber composition containing the EPDM, a crosslinking agent, and at least one selected from a vulcanization accelerator and a vulcanization acceleration aid.
  • it is the rubber-made diaphragm by which the surface which contact
  • the diaphragm for manufacturing a solar cell module is characterized in that, in particular, the resin sheet is an EVA sheet, and the crosslinked rubber composition is a crosslinked rubber composition that can be used under hot press conditions for crosslinking the EVA sheet.
  • the hot pressing condition is a condition for crosslinking the EVA sheet by primary crosslinking.
  • the primary crosslinking means that the EVA sheet is crosslinked under one crosslinking condition (crosslinking temperature and crosslinking time).
  • the EPDM is characterized in that it is an EPDM polymerized using a single site catalyst such as a metallocene catalyst. The ratio of the EPDM is 10% by mass or more based on the total amount of rubber.
  • butyl rubber is blended in EPDM, and EPDM is blended in an amount of less than 75 parts by mass with respect to 100 parts by mass of the total amount of EPDM and butyl rubber.
  • the heat press refers to press-bonding with a diaphragm from the upper surface while being heated from a lower surface hot platen in a diaphragm type vacuum press apparatus.
  • the method for producing a solar cell module of the present invention is a method for producing a solar cell module in which solar cells are laminated with an EVA sheet,
  • the solar battery cell has a step of laminating the EVA sheet by cross-linking by hot press with a vacuum press apparatus using the diaphragm made of the cross-linked rubber composition of the present invention.
  • the step of cross-linking by hot pressing and laminating is a step of cross-linking the EVA sheet by primary cross-linking.
  • the EVA sheet is crosslinked only by primary crosslinking by hot pressing, so that the productivity of the solar cell module is improved.
  • FIG. Fig.1 (a) is a figure which shows the state before a vacuum press start
  • FIG.1 (b) is a figure which shows the state at the time of a vacuum press.
  • the vacuum press apparatus 1 is a double vacuum type apparatus in which a first chamber 3 and a second chamber 4 are separated by a diaphragm 2.
  • the solar battery cell 5 is placed on one surface of the entire structural support 6 via an EVA sheet 7b, and the EVA sheet 7a is placed on the surface of the solar battery cell 5 so as to be placed in the vacuum press apparatus 1 (FIG. 1 (a). )).
  • the first chamber 3 and the second chamber 4 are each set to a degree of vacuum of about 0.002 Pa, and the solar battery cell 5 surrounded by the EVA sheet 7 is heated.
  • the heating reaches a predetermined temperature
  • the first chamber 3 is returned to atmospheric pressure (FIG. 1B).
  • the EVA sheet 7 is vacuum bonded to the solar battery cell 5 together with the diaphragm 2.
  • the crosslinking reaction of the EVA sheet 7 proceeds and the solar cells 5 are sealed with the EVA sheet 7.
  • the pressing process is completed by returning the second chamber 4 to atmospheric pressure.
  • the diaphragm 2 is used while being applied with mechanical and thermal stresses by vacuum pressing and heating, and is replaced after each of a plurality of pressing processes. For this reason, the durability of the diaphragm 2 directly affects the productivity of solar cell modules and the like.
  • the temperature at which EVA melts is about 85 ° C.
  • the temperature at which the crosslinking reaction starts is said to be about 130 ° C.
  • a two-stage process in which primary crosslinking is performed using a heat press at 135 to 155 ° C. for about 5 minutes and then secondary crosslinking is performed using an oven or the like at about 150 to 160 ° C. for about 15 to 20 minutes.
  • the crosslinking conditions were adopted.
  • the reason why the primary cross-linking is about 5 minutes is to suppress foaming and yellowing of the EVA sheet.
  • the secondary cross-linking is about 150 to 160 ° C. for about 15 to 20 minutes because of the temperature change in the outdoors. This is because the EVA sheet is sufficiently crosslinked so that the EVA sheet does not cause a softening phenomenon.
  • the present invention employs a manufacturing method in which the EVA sheet is crosslinked by hot pressing alone using the vacuum press apparatus 1 as the EVA sheet crosslinking condition. That is, the EVA sheet is crosslinked only by conventional primary crosslinking. That is, the crosslinking is carried out once under the conditions of one crosslinking temperature and crosslinking time. Therefore, a press temperature of 135 ° C. to 180 ° C. and a press time of 10 to 20 minutes are adopted as the hot press conditions.
  • the conventional silicone rubber diaphragm 2 became unusable in a very short time when the press temperature exceeded 155 ° C. Specifically, the number of times that it can be used without replacement has decreased to about 1/5.
  • the diaphragm 2 is a plan view of the silicone rubber diaphragm 2 that has become unusable after about 1000 presses under conditions of a press temperature of 135 ° C. to 180 ° C. and a press time of 10 to 20 minutes.
  • the diaphragm 2 has cracks 8 and cracks in the stress application direction, that is, in the direction in which expansion and contraction occurs, at a location where the mechanical stress is repeatedly applied. It has been found that minute crazing 9 or the like that is not reached easily enters and breaks easily.
  • the rubber hardness (IRHD) is an international rubber hardness, which is a hardness scale with the hardness of a material with zero Young's modulus being "0" and the hardness of a material having an infinite Young's modulus being "100". This is a value indicated by the indentation depth when the surface of the rubber sample in which the occurrence of the indentation occurs is a spherical surface and perpendicularly pushed with a constant force.
  • the value in () in the rubber hardness value is the ratio to the unused product.
  • the EVA sheet is crosslinked at a primary temperature of 135 ° C. to 180 ° C. and a press time of 10 to 20 minutes. It has been found that a rubber diaphragm having excellent durability can be obtained even under the condition of only crosslinking. It was also found that the change in rubber hardness is a measure of durability in the diaphragm for solar cell modules.
  • Silicone rubber diaphragms change the rubber hardness due to the peroxide contained in the EVA sheet, reducing the durability of the diaphragm. Therefore, a rubber composition having a small change in rubber hardness other than silicone rubber is important for the diaphragm.
  • the rubber composition that can be used in the present invention is a crosslinked EPDM composition.
  • This crosslinked EPDM composition was found to be a rubber composition having excellent durability as a diaphragm and having a small change in rubber hardness.
  • a diaphragm was prepared using the crosslinked EPDM composition shown in Example 17 described later, and an actual machine test was performed under the conditions of a press temperature of 160 ° C. and a press time of 18 minutes. As a result, cracks did not occur even when the number of presses was 5000 times or more. After the lapse of 5000 times, the actual machine test was further continued, and the rubber hardness of the cracked portion was measured. The rubber hardness was 80. Since the rubber hardness of the diaphragm at the start of the test was 58, the hardness magnification was 1.38. Thus, it was found that the diaphragm using the crosslinked EPDM composition was excellent in durability.
  • EPDM is a rubber in which a small amount of a third component is introduced into an ethylene-propylene rubber, which is a copolymer of ethylene and propylene, and a double bond is provided in the main chain.
  • the third component include dienes such as ethylidene norbornene, 1,4-hexadiene, dicyclopentadiene, 5-methylene-2-norbornene, dicyclooctadiene, 5-ethylidene-2-norbornene.
  • EPDM that can be preferably used in the present invention is preferably EPDM having an ethylene content of 50 to 75% by mass, a diene as a third component of 4.5 to 8.5% by mass, and the remainder being propylene.
  • Mitsui Chemicals Mitsui EPT, Sumitomo Chemical Co., Ltd .: Esprene, JSR, trade names: JSR EP, DSM, trade names: Keltan Product names manufactured by DuPont: NORDEL, Copolymer Rubber and Chemical Corporation, product names: Epsyn, and Polyrs Rubber Corporation, product names: POLYSAR .
  • NORDEL a trade name manufactured by DuPont Dow Elastomer, is an EPDM polymerized using a single site catalyst.
  • EPDM that can be particularly preferably used in the present invention is EPDM polymerized using a single site catalyst such as a metallocene catalyst.
  • This EPDM has a relatively low crystallinity because the whole molecular weight distribution is narrow and there is no molecular weight distribution of ethylene distribution. As a result, it is suitable for the present invention because of its excellent low temperature characteristics, low embrittlement temperature, and moderate stress relaxation.
  • a metallocene catalyst can be mentioned. This metallocene catalyst is a combination of zirconocene dichloride and methylaluminoxane, and has a high polymerization activity with respect to ethylene, and has a feature that the active sites are uniform. .
  • Examples of other catalysts having a uniform active site include olefin polymerization catalysts positioned as post-metallocene catalysts, such as phenoxyimine catalysts (FI catalysts) and pyrrolimine catalysts (PI catalysts).
  • FI catalysts phenoxyimine catalysts
  • PI catalysts pyrrolimine catalysts
  • conventional catalysts such as Ziegler-Natta catalysts are called multi-site catalysts that contain many active site structures in the catalyst.
  • Single-site catalysts are characterized in that EPDM is obtained in which the molecular weight distribution is narrow and the comonomer content of each molecule is almost equal.
  • the above EPDM can be used alone as a rubber component. Further, two or more kinds of EPDM can be appropriately blended for the purpose of adjusting Mooney viscosity, propylene content, vulcanization speed, oil amount, and the like.
  • the EPDM polymerized using a single site catalyst as the EPDM component is preferably 10% by mass or more based on the total amount of EPDM.
  • the EPDM polymerized using a single site catalyst as the EPDM component is preferably 75% by mass or less based on the total amount of EPDM. More preferably, it is 10 to 75% by mass, particularly preferably 25 to 75% by mass, and further preferably 30 to 50% by mass.
  • the proportion of EPDM polymerized using a single site catalyst is less than 10% by mass, the proportion of EPDM polymerized using a single site catalyst tends to be hardened compared to 50% by mass.
  • butyl rubber is preferred as the rubber that can be blended with EPDM. It has been found that blending butyl rubber can suppress an increase in rubber hardness of EPDM. In particular, when the butyl rubber was less than 75 parts by mass, preferably 50 parts by mass or less, with respect to 100 parts by mass of the total amount of EPDM and butyl rubber, an increase in rubber hardness could be suppressed.
  • the butyl rubber that can be used is isobutylene / isoprene copolymer rubber, and any of uncrosslinked regular butyl rubber, chlorinated butyl rubber and brominated butyl rubber, and partially crosslinked partially crosslinked butyl rubber can be used.
  • Examples of commercial products of butyl rubber include JSR Corporation brand names: JSR BUTYL series, CHLOROBUTYL series, BROMOBUTYL series, Polycer Rubber Corporation brand names: PORYSAR BUTYL series, CHLOROBUTYL series, BROMOBUTYL series, and the like.
  • the said compounding agent can use the compounding agent currently used as a compounding agent of EPDM or a butyl rubber. A preferable compounding agent will be described below particularly as a diaphragm for manufacturing a solar cell module.
  • ⁇ Fillers include calcium carbonate, clay and talc.
  • the blending ratio is 0 to 100 parts by mass of filler with respect to 100 parts by mass of raw rubber. When it exceeds 100 parts by mass, the rubber strength is greatly lowered, and the durability of the diaphragm is lowered.
  • Reinforcing agents include various carbon blacks and white carbons such as silica.
  • the blending ratio is 30 to 150 parts by mass of the reinforcing agent with respect to 100 parts by mass of raw rubber. If it is less than 30 parts by mass, the strength is small, and if it exceeds 150 parts by mass, the elongation of the rubber becomes small and the durability of the diaphragm decreases.
  • Softeners include process oils such as naphthenic process oil, paraffinic process oil, hydrogenated process oil, and semi-synthetic process oil.
  • the blending ratio is 0 to 90 parts by mass of the softening agent with respect to 100 parts by mass of raw rubber. When it exceeds 90 parts by mass, the softening agent bleeds out and contaminates the surface of the solar cell module.
  • crosslinking agent examples include sulfur and organic peroxides.
  • the blending ratio is 0.5 to 10 parts by mass of the crosslinking agent with respect to 100 parts by mass of raw rubber. If the amount is less than 0.5 parts by mass, the crosslinking is insufficient and the strength is insufficient, and if the amount exceeds 10 parts by mass, the elongation becomes small and the durability of the diaphragm decreases.
  • organic peroxides examples include 2,5-dimethyl-2,5-di-t-butyl-peroxyhexane-3, di-t-butyl peroxide, 2,5-dimethyl-2,5-di- -T-butyl-peroxyhexane, t-butylcumyl peroxide, 1,3-bis (t-butylperoxy-isopropyl) benzene, dicumyl peroxide, 4,4-di-t-butylperoxy-butyl Valerate, 2,2-di-t-butylperoxy-butane, 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane, di-benzoyl peroxide, bis (o-methyl) Benzoyl) peroxide, bis (p-methylbenzoyl) peroxide and the like.
  • a known co-crosslinking agent may be used in combination.
  • the co-crosslinking agent include sulfur, TAIC (triallyl isocyanurate), TAC (triallyl cyanurate), bismaleimide, quinone dioxime, and the like.
  • known vulcanization accelerators and vulcanization acceleration assistants can be blended.
  • a vulcanization acceleration aid can be blended for the purpose of improving the crosslinking efficiency of organic peroxide crosslinking.
  • the vulcanization acceleration aid is preferably zinc oxide.
  • anti-aging agent known anti-aging agents can be used. Examples include amine-based anti-aging agents, phenol-based anti-aging agents, and sulfur-based anti-aging agents.
  • the crosslinked EPDM composition can be obtained by forming the above-mentioned blended uncrosslinked EPDM composition into a sheet or diaphragm and then crosslinking.
  • the vulcanizable uncrosslinked EPDM composition adjusted by kneading is molded by various molding methods such as extrusion molding machine, calender roll, press, injection molding machine, transfer molding machine, etc.
  • the molded article is introduced into a vulcanizing tank and vulcanized to obtain a target crosslinked EPDM molded article. In molding, a mold may be used, or continuous vulcanization may be performed without using a mold.
  • the uncrosslinked EPDM composition When the uncrosslinked EPDM composition is crosslinked, it is preferable that at least one surface of the sheet-like or diaphragm-like front and back surfaces is processed to be uneven. In particular, it is preferable to process the surface in contact with the resin sheet.
  • the concavo-convex process include a textured process, a textured process, a matte film process, and a brush process. Among these, a textured process excellent in releasability is preferable.
  • the textured process is a process of making the texture irregularities on the surface, and is obtained by attaching a detachable cloth having a predetermined weave pattern to a sheet-like or diaphragm-like surface and vulcanizing it.
  • the fabric having this pattern is peeled off.
  • a diaphragm using the crosslinked EPDM composition of the present invention or a blend composition with butyl rubber is a diaphragm for a solar cell module, and is not subjected to secondary crosslinking under conditions of a hot press temperature of 135 to 180 ° C. and a press time of 10 to 20 minutes. It can be used as a diaphragm for vacuum press equipment.
  • FIG. 3 is a view showing a cross-sectional structure of the solar cell module 10 before pressing.
  • the solar cell module 10 is a solar cell between the transparent cover glass 11 disposed on the lower side and the transparent back surface material 12 such as polyethylene resin disposed on the upper side via EVA sheets 7a and 7b. 5 is sandwiched.
  • the solar battery cell 5 has a configuration in which a plurality of solar battery cells 5 are arranged between the electrodes 13 and 14 and connected by lead wires 15.
  • the solar cell module 10 is laminated by using the vacuum press apparatus 1 while superposing the above constituent members and heating them in a vacuum state. As a result, the solar cell module is manufactured by adhering the EVA sheets 7a and 7b in a state where only the primary cross-linking is performed and the constituent members are superposed on each other.
  • Examples 1 to 6 and Comparative Examples 1 to 4 A rubber composition kneaded with the formulation shown in Table 2 was formed into a 3 mm-thick sheet using a calender and crosslinked at 170 ° C. for 30 minutes. In addition, the unit of a compounding ratio is a mass part, The crosslinking conditions of the silicone rubber of the comparative example 1 were performed by primary crosslinking 170 degreeC * 30 minutes and secondary crosslinking 200 degreeC * 4 hours.
  • EPDM1 has an ethylene content of 51% by mass, a propylene content of 40.9% by mass, and a 5-ethylidene-2-norbornene content as dienes of 8.1% by mass.
  • EPDM2 has an ethylene content of 70% by weight, a propylene content of 25.1% by weight, and a 5-ethylidene-2-norbornene content as diene of 4.9% by weight
  • EPDM3 has an ethylene content The amount is 56% by mass, the propylene content is 39.3% by mass, and the content of 5-ethylidene-2-norbornene as dienes is 4.7% by mass.
  • Butyl rubber is chlorinated butyl rubber, ethylene propylene rubber (hereinafter abbreviated as EPM) has an ethylene content of 52% by mass and a propylene content of 48% by mass; silicone rubber is mainly composed of silicone raw rubber and silica. A high tear silicone compound was used.
  • the processing aid used was a fatty acid amide system.
  • the softener was process oil, and the reinforcing agent was carbon black.
  • Crosslinker 1 is an organic peroxide and crosslinker 2 is sulfur.
  • the co-crosslinking agent used was a trifunctional methacrylate type
  • the vulcanization accelerator used was a sulfenamide type and a thiazole type
  • the vulcanization acceleration aid used a zinc oxide type
  • the antiaging agent used an amine type.
  • a 50 mm ⁇ 50 mm test piece was prepared from the obtained crosslinked rubber sheet, and the curing accompanying thermal degradation of the crosslinked rubber sheet was evaluated. Since rubber has higher rubber hardness as the crosslinking density increases, as an accelerated test, a peroxide was applied to the surface of the crosslinked rubber sheet, and the cure accompanying thermal degradation was measured.
  • the peroxide-coated surface includes thermal degradation as well as curing by the peroxide (change in hardness).
  • the back surface to which the peroxide is not applied represents a change in hardness due to simple thermal deterioration. The reason for measuring both is that it can be confirmed whether the factor of the hardness change is the influence of peroxide degradation or thermal degradation.
  • the hardness change is small on both the front surface and the back surface. It is important that the hardness change of the surface is small as a countermeasure against peroxide generated from EVA under hot press conditions. When the rubber hardness is increased, cracks are likely to occur in the diaphragm, and when the rubber hardness is decreased, the rubber is softened.
  • the evaluation method is shown below.
  • (1) Prepare a stock solution of 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (trade name, perhexa 25B) as a peroxide.
  • This current solution is applied twice to one side of the test piece (measured location in Table 2, indicated by “Table”) using a brush having a brush length of 15 mm.
  • (2) The effect of heating alone is performed by comparing the hardness of one side of the test piece to which the peroxide present solution is not applied (in Table 2, the measurement location, indicated by “back”).
  • the change in rubber hardness was smaller than that of the conventional silicone rubber diaphragm in the accelerated test. Moreover, the rubber curing phenomenon was suppressed by blending butyl rubber with EPDM.
  • the crosslinked EPM composition (Comparative Example 2) and the crosslinked EPDM composition (Comparative Example 3) in which 75 parts by mass of butyl rubber were blended showed softening of rubber.
  • the composition of the crosslinked butyl rubber alone (Comparative Example 4) showed a phenomenon that the rubber dissolved in the brush adhered when the number of treatments exceeded 20 times.
  • Example 1 The respective diaphragms obtained in Example 1 and Comparative Example 1 were attached to the press device 1 shown in FIG. 1, and the solar cell module 10 shown in FIG.
  • the diaphragm of Example 1 compared to the diaphragm of Comparative Example 1 was 1.56 times as many times as the number of presses in the hot press condition A (155 ° C. ⁇ 20 minutes), and the hot press condition B (165 ° C. ⁇ 15 minutes). ), The number of presses of 6.8 times was obtained as the number of times until it became unusable.
  • the frequency of replacing the diaphragm is reduced, so that the productivity of the solar cell module is improved.
  • the solar cell module manufactured using the diaphragm of the present invention showed no significant difference in the performance as a solar cell module between the product in the initial stage and the latter stage.
  • Examples 7 to 16 The rubber composition kneaded with the formulation shown in Table 3 was formed into a 3 mm-thick sheet using a calendar and crosslinked at 170 ° C. for 30 minutes. The unit of the mixing ratio is part by mass.
  • EPDM4 has an ethylene content of 52 mass% and a diene content of 8.1 mass%
  • EPDM5 has an ethylene content of 54 mass% and a diene content.
  • EPDM6 has an ethylene content of 56% by mass and a diene content of 8% by mass
  • EPDM7 has an ethylene content of 59% by mass and a diene content of 9% by mass
  • EPDM8 has an ethylene content of 45% by mass and a diene content of 7.6% by mass
  • EPDM9 has an ethylene content of 70% by mass and a diene content of 4.9% by mass
  • EPDM10 has an ethylene content of 55% by mass and a diene content of 5% by mass
  • EPDM11 has an ethylene content of 55% by mass and a diene content of 2.3% by mass .
  • EPDM 1 and EPDM 3 to EPDM 6 are EPDMs using a vanadium-based catalyst that is a multi-site catalyst
  • EPDM 7 to EPDM 11 are polymerized using a single site catalyst such as a metallocene catalyst. It is.
  • EPDM1 is Mitsui Chemicals trade name “Mitsui EPT4021”
  • EPDM2 and EPDM9 are DuPont Dow Elastomers trade name “Nodel IP4725P”
  • EPDM3 is Mitsui Chemicals trade name “Mitsui EPT3045”.
  • EPDM4 is the JSR company name “JSREP33”
  • EPDM5 is the Mitsui Chemicals company name “Mitsui EPT4045”
  • EPDM6 is the Mitsui Chemicals company name “Mitsui EPT4070”
  • EPDM7 is the DuPont Dow Elastomer company name “Nodel IP5565”
  • EPDM8 is Mitsui Chemicals 'trade name “Mitsui EPT4045M”
  • EPDM10 is DuPont Dow Elastomers trade name “Nodel IP4640”
  • EPDM11 is Mitsui Chemicals' trade name “Mitsui EP”. It is a 2060M ".
  • the processing aids shown in Table 3 used fatty acid amides and fatty acid salts.
  • the softener was process oil, and the reinforcing agent was carbon black.
  • the crosslinking agent was an organic peroxide, the co-crosslinking agent was trifunctional methacrylate, the vulcanization accelerator was zinc oxide, and the antioxidant was amine.
  • test piece of 50 mm ⁇ 50 mm was prepared from the obtained crosslinked rubber sheet, and the curing accompanying thermal degradation of the crosslinked rubber sheet was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • the change rate of EPDM polymerized using a single site catalyst (Examples 12 to 16) is 0.97 to 1.08, and the change rate of EPDM polymerized using a multisite catalyst (Examples 7 to 11) The rate was 1.03 to 1.16. From this value, EPDM polymerized using a single-site catalyst showed superior rubber hardness durability than EPDM polymerized using a multi-site catalyst.
  • Example 17 Using EPDM1 polymerized using a multi-site catalyst and EPDM10 polymerized using a single-site catalyst, a rubber composition kneaded with the composition shown in Table 4 is formed into a 3 mm thick sheet using a calendar. And crosslinked at 170 ° C. for 30 minutes. The unit of the mixing ratio is part by mass.
  • Example 17 has the same composition as Example 7, and Example 23 has the same composition as Example 15, but the sheet preparation time and evaluation time are different.
  • Example 23 in which 50 masses of EPDM 10 were blended, the initial rubber hardness of the front and back surfaces of the test piece was higher than in Example 17. This tendency is consistent with the fact that the rubber hardness of the initial value of Example 15 is higher than that of Example 7.
  • a test piece of 50 mm ⁇ 50 mm was prepared from the obtained crosslinked rubber sheet, and the curing accompanying thermal degradation of the crosslinked rubber sheet was evaluated in the same manner as in Example 1. The results are shown in Table 4.
  • FIG. 4 shows the results of evaluating the number of treatments up to 150 for Example 17 and Example 23.
  • FIG. 4 is a diagram showing the relationship between rubber hardness and the number of treatments.
  • the measurement point of rubber hardness is “Table”, and the actual measurement value is shown simultaneously on the right side of the graph.
  • the rubber hardness and the number of treatments show a first-order high correlation, and the rubber hardness increases linearly as the number of treatments increases.
  • the inclination of the straight line the inclination of the embodiment 23 is smaller than the inclination of the embodiment 17. That is, in the acceleration test, the rubber hardness did not increase and the initial state was maintained.
  • the productivity of the solar cell module can be improved and the solar cell module can be stably produced. Therefore, it can be used for mass production of solar cell modules in the future.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Fluid Mechanics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

 容易に破損しない耐久性に優れた架橋エチレンプロピレンジエンゴム製ダイヤフラムであって、そのダイヤフラムは、太陽電池セル5をエチレンビニルアセテート樹脂シート7によりラミネートして太陽電池モジュールを製造する際に、真空プレス装置1を用いた熱プレスでエチレンビニルアセテート樹脂シートを架橋させるプレス条件に使用される架橋エチレンプロピレンジエンゴム製ダイヤフラム2は、架橋ゴム組成物がエチレンプロピレンジエンゴム単独、特にシングルサイト触媒を用いて重合されたエチレンプロピレンジエンゴムであるか、またはエチレンプロピレンジエンゴムにブチルゴムが、エチレンプロピレンジエンゴムおよびブチルゴムの合計量100質量部に対して、75質量部未満ブレンドされた架橋ゴム組成物である。

Description

太陽電池モジュール製造用ダイヤフラムおよび太陽電池モジュールの製造方法
 本発明は、太陽電池モジュールを製造する際に使用される真空プレス装置用のダイヤフラムおよび太陽電池モジュールの製造方法に関する。
 太陽電池モジュール製造用ダイヤフラムとしては、ハロゲン化ブチルゴムを使用する例(特許文献1)、補強繊維を埋入させたシリコーンゴムを使用する例(特許文献2)等が知られている。
 太陽電池モジュールは、太陽電池セルを耐熱ガラス板、エチレンビニルアセテート樹脂(以下、EVAという)、ポリビニルブチラール(PVB)などの接着樹脂シート、アルミ箔などの防湿シート等のラミネート材によりパッケージングして製造される。製造方法の一例として、耐熱ガラス板の上に、EVAシート、太陽電池セル、EVAシート、防湿シートの順に重ね、真空下で加熱しながらEVAシートを架橋させて接着貼り合わせる方法がある。この貼り合わせを行なう方法として、真空プレス方式があり、これは貼り合わせ部材を下方のヒータ盤と上方のダイヤフラムとの間で挟圧してラミネートする方法である。
 上記EVAシートを用いた太陽電池パネルの貼合せ工程においては、EVAシート、太陽電池セルを含む積層体をEVAシートが架橋する温度に設定されたヒータ盤の上にセットした後、上部よりダイヤフラムにて加圧し、積層体を圧着する。この際にEVAシートが架橋する温度および時間領域に保持しなければならない。この架橋条件として、例えば、従来135~155℃、5分程度で一次架橋を施し、150~160℃、15~20分程度で二次架橋を行なっていた。一次架橋は熱プレス方式でなされており、プレス機に付属しているダイヤフラムのゴムシートの耐久性は、この一次架橋の条件に大きく影響される。二次架橋はEVAシートの完全架橋を目的にオーブン方式でなされる場合が多い。
 しかしながら、近年145℃を超える温度でEVAシートの架橋を一次架橋のみで行ない二次架橋を省略することで、全架橋時間を短縮する製造方法が採用されるようになっている。
 貼合せ工程で使用される従来のダイヤフラムは、一次架橋工程を1回のプレス回数として、5000回以上のプレス回数に耐えるシリコーンゴム製ダイヤフラムが使用されている。このシリコーンゴム製ダイヤフラムに使用されているシリコーンゴムはミラブル型シリコーンゴムが使用されている。
 しかし、上記全架橋時間を短縮する製造方法に従来のシリコーンゴム製ダイヤフラムを使用すると、約1000回程度のプレス回数でシリコーンゴム製ダイヤフラムが破損する問題が生じた。
 また、ダイヤフラムとして、ブチルゴムを使用すると、ブチルゴムが軟化して、EVAシート、太陽電池セルを含む積層体と癒着してしまうという問題がある。
特許第4308769号 特開2004-281834号
 本発明は、このような問題に対処するためになされたもので、比較的高温短時間でEVAシートを一回の熱プレスで架橋させることで全架橋時間を短縮する製造方法において、容易に破損しない耐久性に優れたゴム製ダイヤフラムおよびそのダイヤフラムを用いた太陽電池モジュールの製造方法の提供を目的とする。
 本発明の太陽電池モジュール製造用ダイヤフラムは、太陽電池モジュールを製造する際に使用される真空プレス装置用のゴム製ダイヤフラムであって、
 該ゴム製ダイヤフラムは、上記真空プレス装置を用いた熱プレスで太陽電池セルを樹脂シートによりラミネートするために使用される架橋ゴム組成物のシートであり、
 上記架橋ゴム組成物がEPDMの架橋ゴム組成物であり、
 該架橋ゴム組成物は、上記EPDMと、架橋剤と、加硫促進剤および加硫促進助剤から選ばれた少なくとも1つとを含むゴム組成物を架橋させてなることを特徴とする。
 また、上記熱プレスを行なうときに、少なくとも上記樹脂シートに接する面が凹凸加工されているゴム製ダイヤフラムであることを特徴とする。
 太陽電池モジュール製造用ダイヤフラムは、特に、上記樹脂シートがEVAシートであり、上記架橋ゴム組成物が上記EVAシートを架橋させる熱プレス条件で使用できる架橋ゴム組成物であることを特徴とする。特に、上記熱プレス条件が上記EVAシートを一次架橋で架橋させる条件であることを特徴とする。ここで一次架橋とはEVAシートを一度の架橋条件(架橋温度および架橋時間)で架橋させることをいう。
 また、EPDMがメタロセン触媒などのシングルサイト触媒を用いて重合されたEPDMであることを特徴とする。そのEPDMの割合がゴム全体量に対して10質量%以上であることを特徴とする。
 また、EPDMにブチルゴムが配合され、EPDMおよびブチルゴムの合計量100質量部に対して、75質量部未満ブレンドされたEPDMであることを特徴とする。
 ここで熱プレスとは、ダイヤフラム式の真空プレス装置において、下面の熱盤より加熱されながら、上面よりダイヤフラムにて圧着することをいう。
 本発明の太陽電池モジュールの製造方法は、太陽電池セルをEVAシートによりラミネートする太陽電池モジュールの製造方法であって、
 上記太陽電池セルは、上記EVAシートを本発明の架橋ゴム組成物製ダイヤフラムを用いた真空プレス装置により熱プレスで架橋させてラミネートする工程を有することを特徴とする。また、熱プレスで架橋させてラミネートする工程が上記EVAシートを一次架橋で架橋させる工程であることを特徴とする。
 本発明の架橋ゴム組成物製ダイヤフラムを用いることで、EVAシートの架橋が熱プレスによる一次架橋のみでなされるので、太陽電池モジュールの生産性が向上する。
架橋ゴム組成物製ダイヤフラムの使用状態を示す図である。 使用不可能になったダイヤフラムの平面図である。 太陽電池モジュールの断面構造を示す図である。 ゴム硬度と処理回数との関係を示す図である。
 以下図面を参照して、本発明の架橋ゴム組成物製ダイヤフラムを説明する。太陽電池モジュール等を製造する際に使用される真空プレス装置の断面図を図1に示す。図1(a)は真空プレス開始前の状態を示す図であり、図1(b)は真空プレス時の状態を示す図である。
 真空プレス装置1は、第1の室3と第2の室4とがダイヤフラム2により分離されている二重真空方式の装置である。
 太陽電池セル5は、全体の構造的支持体6の片面に、EVAシート7bを介して載置され、その表面にEVAシート7aを被せて真空プレス装置1内に配置される(図1(a))。
 プレス工程として、例えば、第1の室3と第2の室4とをそれぞれ0.002Pa程度の真空度にして、EVAシート7で囲まれた太陽電池セル5を加熱する。加熱が所定の温度に達したら第1の室3を大気圧に戻す(図1(b))。第1の室3を大気圧に戻すことで、ダイヤフラム2とともに、EVAシート7が太陽電池セル5に真空圧着される。
 この状態を所定時間維持することで、EVAシート7の架橋反応が進むとともに太陽電池セル5をEVAシート7にて封止する。
 真空プレス装置1を冷却後、第2の室4を大気圧に戻すことでプレス工程が終了する。プレス工程において、ダイヤフラム2は、真空圧着および加熱により機械的および熱的応力を印加されながら使用され、複数回のプレス工程後毎に交換される。このため、ダイヤフラム2の耐久性は直接太陽電池モジュール等の生産性に影響を与える。
 一般に、EVAが溶融する温度は約85℃であり、架橋反応が開始する温度は約130℃と言われている。このため、従来は、135~155℃、5分程度で熱プレスを用いて一次架橋を施し、その後、150~160℃、15~20分程度で二次架橋をオーブン等を用いて行なう二段階の架橋条件を採用していた。一次架橋を5分程度とするのは、EVAシートの発泡や黄変を抑えるためであり、二次架橋を150~160℃、15~20分程度にするのは、屋外での温度変化に対しEVAシートが軟化現象等を起こすことがないように、EVAシートの架橋反応を十分にするためである。
 一方、太陽電池モジュール等の生産性の向上を図るため、本発明においては、EVAシートの架橋条件として真空プレス装置1を用いた熱プレス単独でEVAシートを架橋させる製造方法を採用する。すなわち、従来の一次架橋のみでEVAシートを架橋する。すなわち、一つの架橋温度および架橋時間の条件で一回で架橋する。そのため、プレス温度135℃~180℃、プレス時間10~20分が熱プレスの条件として採用される。従来のシリコーンゴム製ダイヤフラム2は、プレス温度が155℃を超えると極めて短時間に使用不可能になった。具体的には取り替えないで使用できる回数が約1/5程度まで低下した。
 図2は、プレス温度135℃~180℃、プレス時間10~20分の条件下において、約1000回のプレス回数で使用不可能になったシリコーンゴム製ダイヤフラム2の平面図である。図2に示すように、太陽電池セル5の貼り合わせ工程において、ダイヤフラム2は、その機械的応力が繰り返し印加される箇所において、応力印加方向、すなわち伸び縮みが発生する方向にクラック8やクラックに至らない微小なクレージング9などが入りやすくなり、破壊しやすくなることが判明した。
 破壊が生じた従来のシリコーンゴム製ダイヤフラムの劣化が生じていない部分(クラックが全く見られない未劣化部分で図中A部分)、クラックに至らない微小なクレージング9などの僅かな劣化が生じている劣化が少ない部分(図中B部分)、大きなクラックが生じている劣化が大きい部分(図中C部分)に関し、未使用の従来シリコーンゴム製ダイヤフラムと比較して調査した。結果を表1に示す。調査項目は、密度(g/cm3)、ゴム硬度(IRHD)、アセトン抽出量(質量%)、IR分光分析、ラマン分光分析である。
 なお、ゴム硬度(IRHD)は、国際ゴム硬さを表し、ヤング率ゼロの材料の硬さを「0」、ヤング率無限大の材料の硬さを「100」とした硬さスケールで、劣化が生じているゴム試料表面を球面で垂直に一定の力で押込んだときの押込み深さで示される値である。また、表1中、ゴム硬度の値における( )内は未使用品との比である。
 調査の結果、IR分光分析およびラマン分光分析においてはシリコーン成分以外の吸収は見られなかった。その他の調査結果について、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、密度は、劣化が進むにつれて僅かに大きくなり、アセトン抽出量は劣化が大きい部分が少なくなる傾向を示した。
 顕著な変化を示したのは、ゴムの硬さであり、劣化が進むにつれて硬くなり、最も劣化が進んだ部分(図2中C部分)では、未使用品の1.60倍までゴム硬度が増加した。僅かに劣化が進んだ部分(図2中B部分)においても、ゴム硬度は未使用品の1.28倍の値を示した。
 使用後であってもダイヤフラムの劣化が見られない部分(図2中A部分)でのゴム硬度は未使用品の1.17倍であった。このため、シリコーンゴム製ダイヤフラムであってもゴム硬度が未使用ダイヤフラムの約1.2倍以下であれば、EVAシートの架橋条件がプレス温度135℃~180℃、プレス時間10~20分の一次架橋のみの条件下においても耐久性に優れたゴム製ダイヤフラムが得られることが判明した。
 また、太陽電池モジュール用ダイヤフラムにおいてゴム硬度の変化が耐久性の尺度になることが判明した。
 シリコーンゴム製ダイヤフラムはEVAシートに含まれる過酸化物により、ゴム硬度が変化しダイヤフラムの耐久性を低下させる。そのため、シリコーンゴム以外でゴム硬度変化の小さいゴム組成物がダイヤフラム用として重要となる。
 本発明で使用できるゴム組成物は、架橋EPDM組成物である。この架橋EPDM組成物は、ダイヤフラム用としての耐久性に優れ、ゴム硬度変化の小さいゴム組成物であることが分かった。
 後述する実施例17に示す架橋EPDM組成物を用いてダイヤフラムを作製し、プレス温度160℃、プレス時間18分の条件にて実機試験を行なった。その結果、5000回以上のプレス回数でも亀裂が発生しなかった。5000回経過後、更に実機試験を継続して、亀裂の発生した部分のゴム硬度を測定したところ、ゴム硬度80であった。試験開始時のダイヤフラムのゴム硬度は58であったので、硬さの倍率は1.38である。このように、架橋EPDM組成物を用いたダイヤフラムは耐久性に優れていることが分かった。
 EPDMは、エチレンとプロピレンとの共重合体であるエチレン-プロピレンゴムに、少量の第3成分を導入し、主鎖中に二重結合をもたせたゴムである。第3成分の例としては、エチリデンノルボルネン、1,4-ヘキサジエン、ジシクロペンタジエン、5-メチレン-2-ノルボルネン、ジシクロオクタジエン、5-エチリデン-2-ノルボルネンなどのジエン類が挙げられる。
 本発明に好ましく使用できるEPDMとしては、エチレン含有量が50~75質量%、第3成分としてのジエン類が4.5~8.5質量%、残りがプロピレンであるEPDMが好ましい。
 EPDMの市販品としては、三井化学社製の商品名:三井EPT系、住友化学工業社製の商品名:エスプレン系、JSR社製の商品名:JSR EP系、DSM社製の商品名:ケルタン系、デュポン社製の商品名:ノーデル(NORDEL)系、コポリマー・ラバー・アンド・ケミカル・コーポレーション社製の商品名:Epsyn系、ポリサー・ラバー・コーポレーション社製の商品名:POLYSAR系などが挙げられる。ここで、デュポン ダウ エラストマー社製の商品名であるノーデル(NORDEL)はシングルサイト触媒を用いて重合されたEPDMである。
 本発明に特に好ましく使用できるEPDMは、メタロセン触媒などのシングルサイト触媒を用いて重合されたEPDMである。このEPDMは全体の分子量分布が狭く、エチレン分布の分子量分布性がないため、結晶性が相対的に少ない。その結果、低温特性に優れ、脆化温度が低く、応力緩和が穏やかなため、本発明に好適である。
 シングルサイト触媒としては、メタロセン触媒が挙げられ、このメタロセン触媒は、二塩化ジルコノセンとメチルアルミノキサンを組み合わせたもので、エチレンに対して高い重合活性を示し、さらに活性点が均一であるという特徴を持つ。活性点が均一な他の触媒としてはポストメタロセン系触媒に位置づけられるオレフィン重合用触媒、例えば、フェノキシイミン触媒(FI触媒)、ピロールイミン触媒(PI触媒)等が挙げられる。これらのシングルサイト触媒に対して、チーグラーナッタ触媒などの従来の触媒は、触媒の中に多くの活性点構造を含むマルチサイト触媒と呼ばれる。シングルサイト触媒は分子量分布が狭く、各分子のコモノマー含量がほぼ等しくなるEPDMが得られる特徴がある。
 シングルサイト触媒を用いて重合されたEPDMとしては、三井化学社製の商品名:三井4045M、三井2060M、デュポン ダウ エラストマー社製の商品名:ノーデルIP5565、ノーデルIP4725P、ノーデルIP4640などが挙げられる。
 本発明では、上記EPDMをゴム成分として単独で用いることができる。また、ムーニー粘度やプロピレン含有量、加硫速度、オイル量等の調整目的で2種類以上のEPDMを適宜にブレンドすることができる。
 EPDM成分として、シングルサイト触媒を用いて重合されたEPDMは、EPDMの全体量に対して10質量%以上であることが好ましい。また、EPDM成分として、シングルサイト触媒を用いて重合されたEPDMは、EPDMの全体量に対して75質量%以下であることが好ましい。より好ましくは10~75質量%、特に好ましくは25~75質量%、更に好ましくは30~50質量%、である。シングルサイト触媒を用いて重合されたEPDMの割合が10質量%未満であると、シングルサイト触媒を用いて重合されたEPDMの割合が50質量%に比較して、硬化しやすくなる傾向になる。
 また、上記EPDMゴム成分に、EPDM以外の他の種類のゴムをブレンドすることができる。
 EPDMにブレンドできるゴムとしてはブチルゴムが好ましい。ブチルゴムをブレンドすることにより、EPDMのゴム硬度の上昇が抑えられることが分かった。特に、ブチルゴムがEPDMおよびブチルゴムの合計量100質量部に対して75質量部未満、好ましくは50質量部以下であると、ゴム硬度の上昇を抑えることができた。
 使用できるブチルゴムは、イソブチレン・イソプレン共重合体ゴムであり、未架橋状態のレギュラー型ブチルゴム、塩素化ブチルゴムおよび臭素化ブチルゴム、部分架橋状態の部分架橋型ブチルゴムのいずれでも使用できる。
 ブチルゴムの市販品としては、JSR社製の商品名:JSR BUTYL系、CHLOROBUTYL系、BROMOBUTYL系、ポリサー・ラバー・コーポレーション社製の商品名:PORYSAR BUTYL系、CHLOROBUTYL系、BROMOBUTYL系などが挙げられる。
 本発明に使用できる架橋EPDM組成物は、上記EPDMまたはEPDMとブチルゴムとのブレンドゴムに、充填剤、補強剤、加工助剤、軟化剤、架橋剤、共架橋剤、加硫促進剤、加硫促進助剤、老化防止剤などを配合して混練、成形、架橋させることで得られる。
 上記配合剤は、EPDMまたはブチルゴムの配合剤として使用されている配合剤を使用できる。特に太陽電池モジュール製造用ダイヤフラムとして、好ましい配合剤について以下説明する。
 充填剤としては、炭酸カルシウム、クレー、タルクなどが挙げられる。配合割合は、生ゴム100質量部に対して、充填剤が0~100質量部である。100質量部をこえるとゴム強度の低下が大きくダイヤフラムの耐久性が低下する。
 補強剤としては、各種カーボンブラック、シリカなどのホワイトカーボンなどが挙げられる。配合割合は、生ゴム100質量部に対して、補強剤が30~150質量部である。30質量部未満では強度が小さく、150質量部をこえるとゴムの伸びが小さくなりダイヤフラムの耐久性が低下する。
 軟化剤としては、ナフテン系プロセスオイル、パラフィン系プロセスオイル、水素化プロセスオイル、半合成プロセスオイルなどのプロセスオイルが挙げられる。配合割合は、生ゴム100質量部に対して、軟化剤が0~90質量部である。90質量部をこえると、軟化剤がブリードアウトして、太陽電池モジュールの表面を汚染する。
 架橋剤としては、硫黄、有機過酸化物が挙げられる。配合割合は、生ゴム100質量部に対して、架橋剤が0.5~10質量部である。0.5質量部未満では、架橋が不充分で強度不足となり、10質量部をこえると、伸びが小さくなりダイヤフラムの耐久性が低下する。
 有機過酸化物としては、例えば、2,5‐ジメチル‐2,5‐ジ‐t‐ブチル‐パーオキシヘキサン‐3、ジ‐t‐ブチルパーオキサイド、2,5‐ジメチル‐2,5‐ジ‐t‐ブチル‐パーオキシヘキサン、t‐ブチルクミルパーオキサイド、1,3‐ビス(t-ブチルパーオキシ‐イソプロピル)ベンゼン、ジクミルパーオキサイド、4,4‐ジ‐t‐ブチルパーオキシ‐ブチルバレレート、2,2‐ジ‐t‐ブチルパーオキシ‐ブタン、1,1‐ジ‐t‐ブチルパーオキシ‐3,3,5-トリメチルシクロヘキサンや、ジ‐ベンゾイルパーオキサイド、ビス(o-メチルベンゾイル)パーオキサイド、ビス(p-メチルベンゾイル)パーオキサイドなどが挙げられる。
 上記有機過酸化物による架橋効率を向上させる目的で、公知の共架橋剤を併用してもよい。共架橋剤としては、例えば、硫黄、TAIC(トリアリルイソシアヌレート)、TAC(トリアリルシアヌレート)、ビスマレイミド、キノンジオキシムなどが挙げられる。
 硫黄加硫の架橋効率を向上させる目的で、公知の加硫促進剤、加硫促進助剤を配合できる。また、有機過酸化物架橋の架橋効率を向上させる目的で、加硫促進助剤を配合できる。
 特に、有機過酸化物と共架橋剤と加硫促進助剤とを併用することが好ましい。加硫促進助剤は酸化亜鉛が好ましい。
 老化防止剤は、公知の老化防止剤が使用できる。アミン系老化防止剤や、フェノール系老化防止剤、硫黄系老化防止剤等が例示できる。
 架橋EPDM組成物は、上記配合された未架橋のEPDM組成物をシート状、またはダイヤフラム状に成形した後、架橋することにより得られる。
 例えば、先ずバンバリーミキサー、ニーダー、インターミックス、インターナルミキサ、ロール等の混合機により、EPDM、EPDMおよびブチルゴムのブレンドゴムと、架橋剤と、他の配合剤を配合したゴム組成物を適当な温度下で数分~数十分混練した後、分出しすることで調整できる。
 混練にて調節された加硫可能な未架橋のEPDM組成物は、押出成形機、カレンダーロール、プレス、インジェクション成形機、トランスファー成形機など種々の成形法より成形され、成形と同時に、または成形後に成型物を加硫槽内に導入して、加硫することで目的とする架橋EPDM成形体を得る。なお、成形に際しては、金型を用いてもよいし、用いないで連続加硫することもできる。
 未架橋のEPDM組成物を架橋するときに、シート状またはダイヤフラム状の表面および裏面の少なくとも一面を凹凸加工することが好ましい。特に樹脂シートに接する面を凹凸加工することが好ましい。
 凹凸加工としては、布目付き加工、紙目付き加工、マット処理フィルム加工、ブラシ加工等が挙げられる。これらの中で離型性に優れる布目付き加工が好ましい。布目付き加工は表面に布目の凹凸を付ける加工であり、所定の織り模様を有する剥離性のある布をシート状またはダイヤフラム状の表面に付着させて加硫することにより得られる。加硫後この模様を有する布は剥離される。本発明においては、少なくとも樹脂シートに接するダイヤフラム面が布目付き加工されていることが好ましい。布目付き加工により、太陽電池モジュール製造時の離型性が向上する。
 本発明の架橋EPDM組成物、またはブチルゴムとのブレンド組成物を用いたダイヤフラムは、太陽電池モジュール用ダイヤフラムとして、熱プレス温度135~180℃、プレス時間10~20分の条件で二次架橋なしの真空プレス装置用ダイヤフラムとして使用できる。
 上述した真空プレス装置1を用いて製造される太陽電池モジュールを図3に示す。図3は太陽電池モジュール10のプレス前の断面構造を示す図である。
 太陽電池モジュール10は、下側に配置された透明なカバーガラス11と、上側に配置された例えばポリエチレン樹脂などの透明な裏面材12との間に、EVAシート7a、7bを介して太陽電池セル5をサンドイッチした構成を有する。太陽電池セル5は、電極13、14の間に太陽電池セル5を複数個配置しリード線15で接続した構成である。
 太陽電池モジュール10は真空プレス装置1を用いて、上記構成部材を重ね合わせて真空状態で加熱しながら、ラミネートする。その結果、一次架橋のみの条件下において、EVAシート7a、7bが架橋されて各構成部材が重ね合わされた状態で接着されることで、太陽電池モジュールが製造される。
実施例1~実施例6、比較例1~比較例4
 表2に示す配合で混練したゴム組成物をカレンダーを用いて3mm厚のシート状に形成して、170℃×30分間架橋した。なお、配合割合の単位は質量部であり、比較例1のシリコーンゴムの架橋条件は一次架橋170℃×30分、二次架橋200℃×4時間で行なった。
 表2に示すゴムの中で、EPDM1は、エチレン含有量が51質量%、プロピレン含有量が40.9質量%、ジエン類としての5-エチリデン-2-ノルボルネン含有量が8.1質量%であり;EPDM2は、エチレン含有量が70質量%、プロピレン含有量が25.1質量%、ジエン類としての5-エチリデン-2-ノルボルネン含有量が4.9質量%であり;EPDM3は、エチレン含有量が56質量%、プロピレン含有量が39.3質量%、ジエン類としての5-エチリデン-2-ノルボルネン含有量が4.7質量%である。
 また、ブチルゴムは塩素化ブチルゴムを、エチレンプロピレンゴム(以下、EPMと略称する)はエチレン含有量が52質量%、プロピレン含有量が48質量%であり;シリコーンゴムはシリコーン生ゴムとシリカとを主成分とする高引裂シリコーンコンパウンドを用いた。
 加工助剤は脂肪酸アミド系を用いた。軟化剤はプロセスオイルであり、補強剤はカーボンブラックを用いた。架橋剤1は有機過酸化物であり、架橋剤2は硫黄である。共架橋剤は三官能型のメタクリレート系を、加硫促進剤はスルフェンアミド系およびチアゾール系を、加硫促進助剤は酸化亜鉛系を、老化防止剤はアミン系をそれぞれ用いた。
 得られた架橋ゴムシートより50mm×50mmの試験片を作製し、架橋ゴムシートの熱劣化に伴う硬化を評価した。ゴムは架橋密度の増加に伴いゴム硬度が高くなるので、促進試験として架橋ゴムシート表面に過酸化物を塗布して熱劣化に伴う硬化を測定した。
 過酸化物塗布表面では、過酸化物による硬化(硬度変化)と同時に熱劣化も含んでいる。また、過酸化物を塗布しない裏面は、単純な熱劣化による硬度変化を表している。両者を測定する理由は、硬度変化の要因が過酸化物劣化、熱劣化のどちらの影響が大きいかを確認できるためである。太陽電池モジュール製造用ダイヤフラムとしては、表面および裏面のいずれにおいても硬度変化が少ないことが好ましい。熱プレス条件下において、特にEVAから発生する過酸化物対策としては、表面の硬度変化が少ないことが重要である。ゴム硬度が大きくなるとダイヤフラムに亀裂が発生し易くなり、小さくなるとゴムが軟化する。
 評価方法を以下に示す。
(1)過酸化物として、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(商品名、パーヘキサ25B)の原液を準備する。この現液を試験片の片面(表2中、測定箇所、「表」で示す)に、刷毛長さ15mmの刷毛を用いて、2回塗布する。
(2)加熱のみによる影響は過酸化物現液を塗布しない試験片の片面(表2中、測定箇所、「裏」で示す)の硬さの比較により行なう。
(3)加熱条件として、150℃×15分を1回の加熱条件にした。パーヘキサ25B塗布-150℃×15分加熱-室温まで冷却を1サイクルとして、このサイクルを40回繰り返した。処理回数10回目毎に試験片の表面および裏面のゴム硬度(IRHD)を測定した。ゴム硬度(IRHD)はウォーレス硬度計により測定した。結果を表2に示す。また、[40回目後の硬さ/初期値(処理回数、0の値)の硬さ]の比の値を変化率として表2に示す。
Figure JPOXMLDOC01-appb-T000002
 各実施例は、促進試験においても従来のシリコーンゴム製ダイヤフラムよりもゴム硬度の変化が少なかった。また、EPDMにブチルゴムをブレンドすることでゴム硬化現象が抑えられた。なお、架橋EPM組成物(比較例2)、ブチルゴムが75質量部ブレンドされた架橋EPDM組成物(比較例3)はゴムの軟化がみられた。架橋ブチルゴム単独の組成物(比較例4)は処理回数が20回をこえると刷毛に溶解したゴムが付着する現象がみられた。
 実施例1および比較例1で得られたそれぞれのダイヤフラムを図1に示すプレス装置1に取り付けて、図3に示す太陽電池モジュール10を一次架橋のみで行なう方式で製造した。
 その結果、比較例1のダイヤフラムに対して実施例1のダイヤフラムは、熱プレス条件A(155℃×20分)においては1.56倍のプレス回数に、熱プレス条件B(165℃×15分)においては6.8倍のプレス回数が使用不能になるまでの回数としてそれぞれ得られた。
 本発明のダイヤフラムは、ダイヤフラムを交換する頻度が少なくなるので、太陽電池モジュールの生産性が向上する。
 また、本発明のダイヤフラムを用いて製造した太陽電池モジュールは、太陽電池モジュールとしての性能が製造初期と後期との製品に有意差が認められなかった。
実施例7~実施例16
 表3に示す配合で混練したゴム組成物をカレンダーを用いて3mm厚のシート状に形成して、170℃×30分間架橋した。配合割合の単位は質量部である。
 表3に示すゴムの中で、EPDM4は、エチレン含有量が52質量%、ジエン類の含有量が8.1質量%であり;EPDM5は、エチレン含有量が54質量%、ジエン類の含有量が8質量%であり;EPDM6は、エチレン含有量が56質量%、ジエン類の含有量が8質量%であり;EPDM7は、エチレン含有量が59質量%、ジエン類の含有量が9質量%であり;EPDM8は、エチレン含有量が45質量%、ジエン類の含有量が7.6質量%であり;EPDM9は、エチレン含有量が70質量%、ジエン類の含有量が4.9質量%であり;EPDM10は、エチレン含有量が55質量%、ジエン類の含有量が5質量%であり;EPDM11は、エチレン含有量が55質量%、ジエン類の含有量が2.3質量%である。
 また、表3に示すEPDMの中で、EPDM1およびEPDM3~EPDM6がマルチサイト触媒であるバナジウム系触媒を用いたEPDMであり、EPDM7~EPDM11がメタロセン触媒などのシングルサイト触媒を用いて重合されたEPDMである。
 表2および表3において、EPDM1は三井化学社商品名「三井EPT4021」であり、EPDM2およびEPDM9はデュポン ダウ エラストマー社商品名「ノーデルIP4725P」であり、EPDM3は三井化学社商品名「三井EPT3045」であり、EPDM4はJSR社商品名「JSREP33」であり、EPDM5は三井化学社商品名「三井EPT4045」であり、EPDM6は三井化学社商品名「三井EPT4070」であり、EPDM7はデュポン ダウ エラストマー社商品名「ノーデルIP5565」であり、EPDM8は三井化学社商品名「三井EPT4045M」であり、EPDM10はデュポン ダウ エラストマー社商品名「ノーデルIP4640」であり、EPDM11は三井化学社商品名「三井EPT2060M」である。
 表3に示す加工助剤は脂肪酸アミド系、脂肪酸塩系を用いた。軟化剤はプロセスオイルであり、補強剤はカーボンブラックを用いた。架橋剤は有機過酸化物であり、共架橋剤は三官能型のメタクリレート系を、加硫促進助剤は酸化亜鉛系を、老化防止剤はアミン系をそれぞれ用いた。
 得られた架橋ゴムシートより50mm×50mmの試験片を作製し、架橋ゴムシートの熱劣化に伴う硬化を実施例1と同様にして評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 シングルサイト触媒を用いて重合されたEPDM(実施例12~16)の変化率は0.97~1.08であり、マルチサイト触媒を用いて重合されたEPDM(実施例7~11)の変化率は1.03~1.16であった。この値より、シングルサイト触媒を用いて重合されたEPDMは、マルチサイト触媒を用いて重合されたEPDMよりも、優れたゴム硬度の耐久性を示した。
実施例17~実施例25
 マルチサイト触媒を用いて重合されたEPDM1と、シングルサイト触媒を用いて重合されたEPDM10とを用いて、表4に示す配合で混練したゴム組成物をカレンダーを用いて3mm厚のシート状に形成して、170℃×30分間架橋した。配合割合の単位は質量部である。なお、実施例17は実施例7と同一配合であり、実施例23は実施例15と同一配合であるが、シート作製時期および評価時期はそれぞれ異なる。EPDM10を50質量配合した実施例23は、実施例17よりも、試験片の表面および裏面の初期値のゴム硬度が高くなっている。この傾向は実施例7よりも実施例15の初期値のゴム硬度が高いことと一致している。
 得られた架橋ゴムシートより50mm×50mmの試験片を作製し、架橋ゴムシートの熱劣化に伴う硬化を実施例1と同様にして評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 シングルサイト触媒を用いて重合されたEPDM10の割合が高くなると過酸化物によるゴム硬度が低下して、そのゴム硬度の変化率が低下する傾向が見られた。
 上記実施例17および実施例23について、処理回数を150回まで評価した結果を図4に示す。図4はゴム硬度と処理回数との関係を示す図である。ゴム硬度の測定箇所は「表」であり、実測値をグラフの右側に同時に示す。
 図4において、ゴム硬度と処理回数とは1次の高い相関関係を示し、ゴム硬度は処理回数が増えるに従い直線的に大きくなる。また、その直線の傾きは、実施例23の傾きが実施例17傾きよりも小さくなっている。すなわち、加速試験において、ゴム硬度が大きくならず初期状態を維持した。
 上記結果より、ダイヤフラムとして、マルチサイト触媒を用いて重合されたEPDMに比較して、シングルサイト触媒を用いて重合されたEPDMは耐久性に優れている。
 実施例17および実施例23について、両者を同一条件で実機試験を行なった結果、実施例17のダイヤフラムは5400回、実施例23のダイヤフラムは7400回で、それぞれ亀裂が発生した。亀裂が発生したときの倍率(=7400回/5400回)は1.37倍である。また、そのときのゴム硬度は80であった。
 図4より、ゴム硬度80に達する処理回数を求めると、実施例17は130回、実施例23は180回となり、その倍率(=180回/130回)は1.38倍となる。このことより、本加速試験により太陽電池モジュール製造用ダイヤフラムの促進評価ができ、EPDMを用いたものが耐久性に優れ、その中でもマルチサイト触媒を用いて重合されたEPDMに比較して、シングルサイト触媒を用いて重合されたEPDMが耐久性に優れた太陽電池モジュール製造用ダイヤフラムとなることが分かる。
 本願発明の架橋EPDM製ダイヤフラムを使用することで、太陽電池モジュールの生産性が向上し、かつ安定して太陽電池モジュールを生産できるので、今後の太陽電池モジュールの量産化に利用できる。
 1 真空プレス装置
 2 ダイヤフラム
 3 第1の室
 4 第2の室
 5 太陽電池セル
 6 構造的支持体
 7 EVAシート
 8 クラック
 9 クレージング
10 太陽電池モジュール
11 カバーガラス
12 裏面材
13 電極
14 電極
15 リード線

Claims (9)

  1.  太陽電池モジュールを製造する際に使用される真空プレス装置用のゴム製ダイヤフラムであって、
     該ゴム製ダイヤフラムは、前記真空プレス装置を用いた熱プレスで太陽電池セルを樹脂シートによりラミネートするために使用される架橋ゴム組成物のシートであり、
     前記架橋ゴム組成物がエチレンプロピレンジエンゴムの架橋ゴム組成物であり、
     該架橋ゴム組成物は、前記エチレンプロピレンジエンゴムと、架橋剤と、加硫促進剤および加硫促進助剤から選ばれた少なくとも1つとを含むゴム組成物を架橋させてなることを特徴とする太陽電池モジュール製造用ダイヤフラム。
  2.  前記熱プレスを行なうときに、少なくとも前記樹脂シートに接する面が凹凸加工されていることを特徴とする請求項1記載の太陽電池モジュール製造用ダイヤフラム。
  3.  前記樹脂シートがエチレンビニルアセテート樹脂シートであり、前記架橋ゴム組成物が前記エチレンビニルアセテート樹脂シートを架橋させる熱プレス条件で使用される架橋ゴム組成物であることを特徴とする請求項1または請求項2記載の太陽電池モジュール製造用ダイヤフラム。
  4.  前記熱プレス条件が前記エチレンビニルアセテート樹脂シートを一次架橋で架橋させる条件であることを特徴とする請求項3記載の太陽電池モジュールの製造用ダイヤフラム。
  5.  前記エチレンプロピレンジエンゴムがシングルサイト触媒を用いて重合されたエチレンプロピレンジエンゴムであることを特徴とする請求項1ないし請求項4のいずれか1項記載の太陽電池モジュール製造用ダイヤフラム。
  6.  前記シングルサイト触媒を用いて重合されたエチレンプロピレンジエンゴムの割合がエチレンプロピレンジエンゴム全体量に対して10質量%以上であることを特徴とする請求項1ないし請求項5のいずれか1項記載の太陽電池モジュール製造用ダイヤフラム。
  7.  前記エチレンプロピレンジエンゴムに、更にブチルゴムが、エチレンプロピレンジエンゴムおよびブチルゴムの合計量100質量部に対して、75質量部未満ブレンドされたエチレンプロピレンジエンゴムであることを特徴とする請求項1ないし請求項6のいずれか1項記載の太陽電池モジュール製造用ダイヤフラム。
  8.  太陽電池セルをエチレンビニルアセテート樹脂シートによりラミネートする太陽電池モジュールの製造方法であって、
     前記太陽電池セルは、前記エチレンビニルアセテート樹脂シートを架橋ゴム組成物製ダイヤフラムを用いた真空プレス装置により熱プレスで架橋させてラミネートする工程を有し、
     前記架橋ゴム組成物製ダイヤフラムが請求項1ないし請求項7のいずれか1項記載の太陽電池モジュール製造用ダイヤフラムであることを特徴とする太陽電池モジュールの製造方法。
  9.  前記熱プレスで架橋させてラミネートする工程が前記エチレンビニルアセテート樹脂シートを一次架橋で架橋させる工程であることを特徴とする請求項8記載の太陽電池モジュールの製造方法。
PCT/JP2012/064896 2011-06-22 2012-06-11 太陽電池モジュール製造用ダイヤフラムおよび太陽電池モジュールの製造方法 WO2012176642A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013521528A JP5998134B2 (ja) 2011-06-22 2012-06-11 太陽電池モジュール製造用ダイヤフラムおよび太陽電池モジュールの製造方法
CN201280030802.6A CN103619564B (zh) 2011-06-22 2012-06-11 太阳能电池组件制造用隔膜及太阳能电池组件的制造方法
KR1020147001693A KR101820564B1 (ko) 2011-06-22 2012-06-11 태양전지 모듈 제조용 다이어프램 및 태양전지 모듈의 제조방법
EP12803320.6A EP2724841B1 (en) 2011-06-22 2012-06-11 Diaphragm for producing solar cell module and method for producing solar cell module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-138763 2011-06-22
JP2011138763 2011-06-22
JP2012021823 2012-02-03
JP2012-021823 2012-02-03

Publications (1)

Publication Number Publication Date
WO2012176642A1 true WO2012176642A1 (ja) 2012-12-27

Family

ID=47422482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064896 WO2012176642A1 (ja) 2011-06-22 2012-06-11 太陽電池モジュール製造用ダイヤフラムおよび太陽電池モジュールの製造方法

Country Status (6)

Country Link
EP (1) EP2724841B1 (ja)
JP (1) JP5998134B2 (ja)
KR (1) KR101820564B1 (ja)
CN (1) CN103619564B (ja)
TW (1) TWI557932B (ja)
WO (1) WO2012176642A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10399321B2 (en) 2016-09-23 2019-09-03 Samsung Display Co., Ltd. Apparatus for manufacturing a display device and a method using the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005742A1 (ja) * 2011-07-04 2013-01-10 日清紡ホールディングス株式会社 ダイアフラムシート、ダイアフラムシートを用いた太陽電池モジュール製造方法、太陽電池モジュール製造用のラミネート装置を用いたラミネート方法
TWI558091B (zh) * 2014-09-29 2016-11-11 全能科技股份有限公司 兼具發電及熱交換功能的太陽能複合模組及其製造方法
FR3043841B1 (fr) * 2015-11-16 2018-09-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaique leger comportant une couche avant en verre ou polymere et une couche arriere en relief
WO2017179898A1 (ko) * 2016-04-15 2017-10-19 주식회사 엘지화학 이차 전지용 파우치 외장재 성형 장치 및 방법
KR101866132B1 (ko) 2016-04-15 2018-07-13 주식회사 엘지화학 이차 전지용 파우치 외장재 성형 장치 및 방법
US11390734B2 (en) 2017-12-08 2022-07-19 Exxonmobil Chemical Patents Inc. Elastomeric terpolymer compositions for corner molding applications
EP3768734A1 (en) 2018-03-19 2021-01-27 ExxonMobil Chemical Patents Inc. Elastomeric propylene-alpha-olefin-diene terpolymer compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951114A (ja) * 1995-08-10 1997-02-18 Canon Inc 真空ラミネート装置および真空ラミネート方法
WO2004030900A1 (ja) * 2002-10-02 2004-04-15 Npc Incorporated ラミネート装置
JP2004281834A (ja) 2003-03-18 2004-10-07 Tigers Polymer Corp 太陽電池モジュール製造用ダイヤフラム
WO2011105623A1 (ja) * 2010-02-25 2011-09-01 日清紡メカトロニクス株式会社 ダイアフラムシート

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10316774B4 (de) * 2003-04-11 2010-08-19 Metzeler Technical Rubber Systems Gmbh Membrane für Laminatoren zur Produktion von photovoltaischen Zellen
DE112010001988B4 (de) * 2009-05-13 2021-05-06 Dow-Mitsui Polychemicals Co.,Ltd. Folie für SolarzelleneinkapselungsmateriaI und Solarzellenmodul
WO2010140343A1 (ja) * 2009-06-01 2010-12-09 三井化学株式会社 エチレン系樹脂組成物、太陽電池封止材およびそれを用いた太陽電池モジュール
US20110076462A1 (en) * 2009-08-04 2011-03-31 Jette Steven R Edge reinforced elastomeric membranes
CN101847667A (zh) * 2010-01-06 2010-09-29 湖南寰球太阳能技术开发有限公司 太阳能电池专用背封膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951114A (ja) * 1995-08-10 1997-02-18 Canon Inc 真空ラミネート装置および真空ラミネート方法
WO2004030900A1 (ja) * 2002-10-02 2004-04-15 Npc Incorporated ラミネート装置
JP4308769B2 (ja) 2002-10-02 2009-08-05 株式会社エヌ・ピー・シー ラミネート装置
JP2004281834A (ja) 2003-03-18 2004-10-07 Tigers Polymer Corp 太陽電池モジュール製造用ダイヤフラム
WO2011105623A1 (ja) * 2010-02-25 2011-09-01 日清紡メカトロニクス株式会社 ダイアフラムシート

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10399321B2 (en) 2016-09-23 2019-09-03 Samsung Display Co., Ltd. Apparatus for manufacturing a display device and a method using the same

Also Published As

Publication number Publication date
EP2724841A4 (en) 2015-08-26
KR20140047085A (ko) 2014-04-21
CN103619564B (zh) 2016-08-17
TW201306296A (zh) 2013-02-01
JPWO2012176642A1 (ja) 2015-02-23
CN103619564A (zh) 2014-03-05
EP2724841B1 (en) 2017-11-01
KR101820564B1 (ko) 2018-01-19
JP5998134B2 (ja) 2016-09-28
EP2724841A1 (en) 2014-04-30
TWI557932B (zh) 2016-11-11

Similar Documents

Publication Publication Date Title
JP5998134B2 (ja) 太陽電池モジュール製造用ダイヤフラムおよび太陽電池モジュールの製造方法
US7863364B2 (en) Process for making dynamically-loaded articles comprising propylene-based elastomers, composition for use in such processes, and article made using such processes
JP7118450B2 (ja) ゴム組成物および加工方法、並びにそれを用いたゴムベルト、ゴムローラおよび製造方法
EP3822312A1 (en) Anti-aging polar rubber composition, processing method therefor and application thereof
JP5291840B2 (ja) ダイアフラムシート、ダイアフラムシートを用いた太陽電池モジュール製造方法、太陽電池モジュール製造用のラミネート装置を用いたラミネート方法
CN1898338A (zh) 聚合物的热逆变交联
EP2621703B1 (en) Method for manufacturing flexible multilayer electrical articles with improved layer adhesion
JP2015186876A (ja) ダイアフラムシートの製造方法
EP2541621A1 (en) Diaphragm sheet
JP2009013296A (ja) 電解槽用ガスケット材料
WO2017221583A1 (ja) 接合体及びその製造方法
CN111867829A (zh) 层叠体及其用途
US20190074394A1 (en) Thermoplastic Vulcanizate Compositions for Photovoltaic Cell Applications
CN109104881B (zh) 用于光伏电池应用的热塑性硫化橡胶组合物
EP2544245A1 (en) Crosslink density measurement sheet
JP6772581B2 (ja) 接合体の製造方法
US11965085B2 (en) Ethylene propylene copolymer compounds for use in layered articles
CN114785243A (zh) 包含热塑性硫化橡胶组合物的光伏模块背板
JPH07227936A (ja) ゴム積層品及びその製造方法
JP2024073268A (ja) 積層体およびその用途
JP2004143255A (ja) 耐熱ゴム用ゴム組成物
JP2014004757A (ja) ゴム成形品の製造方法及び電気部品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521528

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012803320

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147001693

Country of ref document: KR

Kind code of ref document: A