WO2012176581A1 - Heat-dissipating unit - Google Patents

Heat-dissipating unit Download PDF

Info

Publication number
WO2012176581A1
WO2012176581A1 PCT/JP2012/063601 JP2012063601W WO2012176581A1 WO 2012176581 A1 WO2012176581 A1 WO 2012176581A1 JP 2012063601 W JP2012063601 W JP 2012063601W WO 2012176581 A1 WO2012176581 A1 WO 2012176581A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
intermediate body
heating element
heat dissipation
dissipation unit
Prior art date
Application number
PCT/JP2012/063601
Other languages
French (fr)
Japanese (ja)
Inventor
祝迫 恭
光芳 永野
洋志 南澤
祐貢 上野
Original Assignee
日本タングステン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本タングステン株式会社 filed Critical 日本タングステン株式会社
Publication of WO2012176581A1 publication Critical patent/WO2012176581A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention is flexibly applied to devices and devices having heating elements such as electronic parts and mechanical parts such as lighting equipment, electronic equipment, transportation equipment, and manufacturing equipment, and efficiently conducts heat from the heating elements to the heat radiating section.
  • the present invention relates to a heat radiating unit including an intermediate layer with little use deterioration.
  • Lighting equipment, electronic equipment, transportation equipment, manufacturing equipment, etc. have various electronic parts and mechanical parts, and these electronic parts and mechanical parts are likely to generate high heat as performance improves and functions expand. It has become. That is, lighting equipment, electronic equipment, transportation equipment, manufacturing equipment, and the like are in a state of having a heating element.
  • lighting equipment, electronic equipment, transportation equipment, manufacturing equipment, and the like are in a state of having a heating element.
  • LEDs light-emitting diodes
  • the unit heat generation amount of the LED is small, since one lighting device mounts many LEDs with high density, the heat generation amount of the entire heating element included in the lighting device is large.
  • the LED can increase the amount of light emitted as the applied current value increases, but naturally, the greater the applied current value, the greater the amount of heat generated. However, a large amount of light is required for the LED.
  • Heat generated by a heating element may have adverse effects such as performance deterioration and failure of lighting equipment, electronic equipment, transportation equipment, and manufacturing equipment. give. For this reason, a heat radiating unit or a heat radiating device for radiating heat generated from the heating element is used.
  • the heat radiating unit and the heat radiating device include a heat sink or a heat radiating plate that radiates heat conducted from the heat generating element to the outside, and radiates heat from the heat generating element.
  • the heat sink and heat sink can finally release the heat conducted from the heating element to the outside.
  • an electronic component or a mechanical component that becomes a heating element needs to be mounted on a circuit board or a circuit layer, it is difficult to directly mount the heating element on a heat sink or a heat sink.
  • a heat sink and a heat sink are metals, such as copper and aluminum, from the height of heat conductivity.
  • an insulating layer must be provided between the heat sink and heat sink and the circuit board and circuit layers. . This insulating layer is required to have an insulating function and efficiently conduct heat of the heating element to a heat sink or a heat sink.
  • a heat dissipation unit having an intermediate body interposed between the heat sink and the heatsink and the heating element is used. It was.
  • An LED package having a heat sink has been proposed (for example, see Patent Document 1), or an intermediate technique has been proposed (for example, see Patent Document 2).
  • Patent Document 1 discloses a technique for releasing heat from a semiconductor laser chip by thermally connecting the structure of the semiconductor laser chip to a heat sink.
  • Patent Document 1 has a complicated semiconductor laser chip and peripheral structure, and is not suitable for heat dissipation of a device on which many heating elements are mounted.
  • Patent Document 2 discloses a heat dissipating heat dissipating component in which an intermediate (thermal bonding agent) mainly composed of a resin is interposed between a heat generating element and a heat dissipating plate.
  • an intermediate body interposed between a heating element (for exchanging electrical signals such as electronic components and circuit layers) and a heat radiating plate (including a heat sink) is mainly composed of resin.
  • a heating element for exchanging electrical signals such as electronic components and circuit layers
  • a heat radiating plate including a heat sink
  • thermal bonding agents mainly composed of resins have been used and proposed in various ways as intermediates. This is because the resin is a suitable material that achieves both insulation and thermal conductivity.
  • making the insulating property and thermal conductivity compatible is a necessary condition for heat conduction from the heating element to the heat radiating plate and the like, and there are the following two solutions.
  • a thermal bonding agent mainly composed of a resin is used as an intermediate body interposed between a heating element and a heat radiating plate.
  • a heat sink or heat sink is formed of a material that has both insulating properties and thermal conductivity.
  • AlN-based ceramics are known as materials that can form a heat sink while achieving both insulation and thermal conductivity.
  • the thermal conductivity of this AlN-based ceramic is 180 to 250 W / m ⁇ K, and is sufficiently practical as a heat sink or a heat sink in terms of thermal conductivity.
  • AlN ceramics have an extremely high electrical resistance of 10 14 ( ⁇ ⁇ cm) and excellent insulating properties.
  • AlN-based ceramics are very expensive compared to metals such as copper and aluminum, and are difficult to apply to lighting equipment and electronic equipment that have strict cost requirements.
  • an intermediate body that achieves both insulation and thermal conductivity between a heat sink and a heat sink formed of a metal having high thermal conductivity and a heating element is required for lighting equipment and electronic equipment.
  • the intermediate must also be able to be coupled to a heat sink or heat sink.
  • the present invention provides a heat dissipation unit that has a low-cost intermediate that is resistant to deterioration and that can efficiently dissipate the heat of a heating element while achieving both thermal conductivity and insulation. Objective.
  • the heat dissipating unit of the present invention includes a heat dissipating part that releases heat conducted from the heating element, and an intermediate that conducts heat from the heating element to the heat dissipating part, and the intermediate is an inorganic particle.
  • an inorganic binder phase disposed around the phase of the inorganic particles, the inorganic binder phase comprising an inorganic material formed by hydrolysis and dehydration polymerization of a metal alkoxide, and forming a metal alkoxide
  • the element is one or more selected from the group consisting of Al, Mg, Si, Ti, Zr, and Be, and the intermediate is bonded to the surface of the heat dissipation portion.
  • the heat dissipating unit of the present invention uses an inorganic intermediate formed by hydrolysis and dehydration polymerization of metal alkoxide between the heat generating element and the heat dissipating part. Heat from the body can be conducted to the heat dissipation part. In addition, since it is an intermediate of an inorganic material, it does not deteriorate like a resin. By preventing the intermediate body from being deteriorated, the heat radiating unit itself is prevented from being deteriorated and the performance is lowered. Also, the cost is low.
  • the intermediate of the inorganic material formed by hydrolysis and dehydration polymerization of the metal alkoxide can be applied to the surface of the metal heat radiating part, and in particular, the inorganic material formed by hydrolysis and dehydration polymerization of the metal alkoxide.
  • This intermediate body can be reliably bonded to the surface of the metal heat dissipating part. As a result, the thermal resistance between the heating element and the heat radiating portion is lowered, and the heat of the heating element can be efficiently released.
  • the intermediate body has sufficient elastic characteristics (characteristic that does not cause peeling or damage following the thermal expansion of the bonded heat dissipation part or circuit layer). The body is not destroyed or peeled off from the heat dissipation part.
  • the intermediate can include inorganic particles, it can exhibit characteristics based on the characteristics of the inorganic particles. For this reason, it has the flexibility of application according to an application.
  • Embodiment 1 of this invention It is a side view of the thermal radiation unit in Embodiment 1 of this invention. It is a side view of the thermal radiation unit with which LED in Embodiment 1 of this invention was mounted. It is a schematic diagram which shows the structure of the intermediate body in Embodiment 1 of this invention. It is a front view of the intermediate body in Embodiment 1 of this invention. It is a side view which shows the mounting state of the thermal radiation unit in Embodiment 1 of this invention. It is a side view which shows the mounting state of the thermal radiation unit in Embodiment 1 of this invention. It is a side view of the thermal radiation part which has a fin in Embodiment 1 of this invention. It is a block diagram of the illuminating device in Embodiment 2 of this invention. It is a bottom view of the illuminating device in Embodiment 2 of this invention. It is a block diagram of the Example of this invention.
  • a heat dissipation unit includes a heat dissipating part that releases heat conducted from a heating element, and an intermediate that conducts heat from the heating element to the heat dissipating part.
  • the metal element is one or more selected from the group consisting of Al, Mg, Si, Ti, Zr, and Be, and the intermediate is bonded to the surface of the heat dissipation portion.
  • the intermediate can achieve both the sufficient elastic properties, binding properties, and insulating properties that the inorganic binder phase generates, and the thermal conductivity that the inorganic particle phase generates. Since this intermediate body can efficiently conduct the heat of the heat generating element to the heat radiating portion, the heat radiating unit can efficiently release the heat of the heat generating element.
  • the inorganic particles are at least one selected from the group consisting of AlN, cBN, hBN, Al 2 O 3 , MgO, diamond and graphite. It is.
  • This configuration allows the intermediate to have high thermal conductivity while maintaining sufficient elastic properties.
  • the inorganic particles are 40% by volume or more, preferably 50% by volume or more, with respect to the intermediate, More preferably, it is 70 volume% or more.
  • the intermediate can reliably have the thermal conductivity generated by the inorganic particles.
  • the inorganic particles have a surface length in the intermediate body that is longer than a vertical length in the intermediate body. long.
  • the intermediate body has high thermal conductivity in the plane direction, and heat can be diffused in the plane direction (in some cases, in the vertical direction) inside the intermediate body.
  • Ability builds up.
  • the intermediate is formed by being heat-treated at 100 to 300 ° C. after being applied to the surface of the heat dissipating part. Is done.
  • This configuration ensures that the intermediate is joined to the heat dissipation part.
  • the intermediate body has a shear bonding strength of 100 kPa or more and 1000 times or less of the shear bonding strength of 100 kPa or more. It has the rigidity of and is joined to the heat dissipation part. With this configuration, the intermediate body exhibits sufficient elastic characteristics even when stress is applied, and can prevent peeling and damage.
  • At least one surface of the intermediate body and the heat radiating portion has a circuit board electrically connected to the heat generating body, and At least one of the circuit layers is provided.
  • This configuration allows the heat dissipation unit to handle even when the heating element requires an electrical signal.
  • Embodiment 1 will be described.
  • the present invention proposes a heat radiating unit with a new approach of an intermediate that does not use a resin, in contrast to the conventional technology of a heat radiating unit that conducts heat of a heat generating element to a heat radiating portion by an intermediate composed mainly of a resin.
  • the heating element and the heat radiating part are interposed by an intermediate body mainly composed of a resin in order to achieve both insulation and thermal conductivity.
  • Resin is an easy-to-use material, but there are problems with durability and deterioration resistance, and it is difficult to cope with recent heating elements.
  • the performance of the resin is mainly improved and the intermediate is not separated from the resin as the main component.
  • the present invention is a new heat radiating unit that is completely different from the conventional approach, centering on an intermediate body that interposes a heat generating element and a heat radiating part without using resin as a main component, and having both insulation and heat conductivity. suggest.
  • FIG. 1 is a side view of a heat dissipation unit according to Embodiment 1 of the present invention.
  • FIG. 1 shows a state in which a heat radiating unit 1 and electronic components using the heat radiating unit 1 are mounted.
  • the heat dissipation unit 1 includes a heat dissipation portion 5 and an intermediate body 4.
  • the heat radiating part 5 releases the heat conducted from the heating element 2 to the outside. For example, when the heat radiating part 5 is exposed to the outside air, the heat radiating part 5 releases the conducted heat to the outside air. Or when the thermal radiation part 5 is combined with another cooling member (for example, a liquid cooling jacket, a cold wind fan, etc.), it discharge
  • a metal or alloy heat sink or heat dissipating plate is preferably used as the heat dissipating part 5.
  • the intermediate body 4 conducts heat generated by the heating element 2 to the heat radiating portion 5.
  • This intermediate 4 does not contain a resin, which is the mainstream of the prior art, as a main component.
  • the intermediate body 4 has a structure in which an inorganic particle phase and an inorganic binder phase disposed around the inorganic particle phase are combined. Since it is a combination of a phase of inorganic particles and a surrounding inorganic binder phase, it naturally has an insulating property. Further, the phase of the inorganic particles generates high thermal conductivity based on the characteristics of the inorganic particles. For this reason, the intermediate body 4 can achieve both insulation and thermal conductivity.
  • the intermediate body 4 since it is a combination of inorganic particles and an inorganic binder phase, the intermediate body 4 has high heat resistance unlike the resin, and the heat generating body 2 is less deteriorated by heat.
  • the intermediate body 4 having the combination of the phase of the inorganic particles and the inorganic binder phase disposed around the intermediate particle efficiently eliminates the problems of the prior art and efficiently transfers the heat of the heating element 2 to the heat radiating portion 5.
  • the heat radiating unit 1 can mount a heating element 2 such as an electronic component or a mechanical component. Since the heating element 2 operates by exchanging electrical signals, it is mounted on the necessary circuit layer 3.
  • the circuit layer 3 may be a circuit board or a circuit pattern.
  • the heating element 2 operates by exchanging electrical signals, and generates heat by this operation.
  • the generated heat is conducted from the circuit layer 3 to the intermediate body 4. Since the intermediate body 4 has high thermal conductivity based on the properties of the inorganic particles, the heat of the heating element 2 is conducted to the heat radiating portion 5.
  • the heat radiating part 5 can release the conducted heat to the outside air and other cooling members.
  • the heat dissipating part 5 is formed of a metal or an alloy, so that the received heat can be conducted three-dimensionally and released from the surface to the outside.
  • the intermediate body 4 needs to prevent leakage of electric signals of the heating element 2 and the circuit layer 3 with respect to the heat radiating portion 5 made of metal or alloy, but the intermediate body 4 has an insulating property. Electric signal leakage can be prevented.
  • FIG. 2 is a side view of the heat dissipation unit on which the LED according to Embodiment 1 of the present invention is mounted.
  • the heating element 2 a plurality of LEDs 21 are mounted on the circuit layer 3.
  • positive and negative electrodes and control signals are connected to the circuit layer 3 by terminals 6 (for example, bumps and grid arrays), thereby performing a light emitting operation. When this light emitting operation is performed, the LED 21 generates heat.
  • lighting devices and electronic devices often have a plurality of LEDs 21 mounted thereon, and each of the plurality of LEDs generates heat. For this reason, when the heat generation of the plurality of LEDs is integrated, the heat is very large.
  • a high voltage is applied to the LEDs in order to increase the illuminance. As a result, heat generation is concentrated in a narrow area where a small number of LEDs are mounted.
  • the heat dissipation unit 1 is also suitable for heat dissipation in such a narrow region.
  • the heat from the plurality of LEDs 21 (heat is also generated from the circuit layer 3) reaches the intermediate body 4, and the intermediate body 4 conducts this heat to the heat radiating portion 5. At this time, the intermediate body 4 does not conduct the electrical signals of the LED 21 and the circuit layer 3 to the heat dissipation portion 5.
  • the heat dissipating unit 5 releases the conducted heat to the outside air and other cooling members. By repeating the conduction through the intermediate body 4 and the heat radiation by the heat radiating unit 5, the heat of the LED is released to the outside, and the performance deterioration and failure of the lighting equipment and the electronic equipment can be prevented.
  • the intermediate body 4 has an inorganic particle phase and an inorganic binder phase disposed around the inorganic particle phase.
  • This inorganic binder phase is formed by hydrolysis and dehydration polymerization of a metal alkoxide.
  • the metal element forming the metal alkoxide is at least one selected from the group consisting of Al, Mg, Si, Ti, Zr, and Be.
  • the inorganic binder phase has sufficient elastic properties.
  • the sufficient elastic property means that when the intermediate body 4 is joined to the heat radiating part 5 or the circuit layer 3, the intermediate body 4 can be sufficiently separated from the thermal expansion of the heat radiating part 5 or the circuit layer 3 and peeled off. A characteristic that does not cause damage. By having such a sufficient elastic characteristic, the intermediate body 4 can maintain the role of heat conduction following the thermal expansion and contraction of the heat radiating portion 5 and the like to be joined.
  • the inorganic binder phase obtained by hydrolysis and dehydration polymerization of metal alkoxide has the following characteristics: (1) sufficient elastic properties, (2) bondability with metal (bondability with heat radiating part 5), and (3) insulation properties. Have everything.
  • the intermediate 4 includes inorganic particles in the inorganic binder phase, but the inorganic binder phase is arranged around the phase of the inorganic particles, so that the characteristics of (1) to (3) are maintained. . That is, the inorganic binder phase obtained by hydrolysis and dehydration polymerization of the metal alkoxide that is the first element of the intermediate 4 gives the intermediate 4 the characteristics (1) to (3).
  • the intermediate 4 further has a phase of inorganic particles, and the phase of the inorganic particles is surrounded by an inorganic binder phase.
  • the inorganic particles are at least one selected from the group consisting of AlN, cBN, hBN, Al 2 O 3 , MgO, diamond and graphite.
  • the inorganic binder phase obtained by hydrolysis and dehydration polymerization of the metal alkoxide produces the characteristics (1) to (3) as described above.
  • the intermediate body 4 needs to conduct heat of at least one of the heating element 2 and the circuit layer 3 to the heat radiating portion 5.
  • this inorganic binder phase does not have thermal conductivity, the inorganic particles impart high thermal conductivity to the intermediate body 4 based on the characteristics inherent to the material.
  • the inorganic particles also include ceramic particles.
  • FIG. 3 is a schematic diagram showing the structure of the intermediate in Embodiment 1 of the present invention.
  • a solid line is connected to the periphery of the inorganic particles via the O element.
  • This solid line is the phase of the inorganic particles arranged around the inorganic particles. Since the phase of the inorganic particles is bonded to the inorganic bonded phase, the intermediate 4 causes the properties of the inorganic particles.
  • the inorganic binder phase is arranged around the inorganic particles, the above characteristics (1) to (3) generated by the inorganic binder phase are also maintained.
  • Inorganic particles that are at least one selected from the group consisting of AlN, cBN, hBN, Al 2 O 3 , MgO, diamond, and graphite have a property of exhibiting high thermal conductivity. Since these inorganic particles constitute the intermediate body 4 as shown in FIG. 3, the intermediate body 4 exhibits high thermal conductivity. As a result, the intermediate body 4 can efficiently conduct heat of at least one of the heating element 2 and the circuit layer 3 to the heat radiating portion 5.
  • the heat of the circuit layer 3 includes heat generated by the circuit layer 4 itself and heat conducted from the heating element 2. Since the heat of the heating element 2 is efficiently conducted to the heat radiating portion 5, the heat radiating portion 5 can effectively exhibit its ability and can release heat to the outside.
  • the inorganic particles that are at least one selected from the group consisting of AlN, cBN, hBN, Al 2 O 3 , MgO, diamond, and graphite have high thermal conductivity as their characteristics. Therefore, these are preferably selected. Each of these inorganic particles has high thermal conductivity characteristics as shown below. Since each of the inorganic particles has a different thermal conductivity, the inorganic particles may be selected in consideration of ease of production, cost, and the like.
  • the intermediate 4 is a combination of an inorganic binder phase obtained by hydrolysis and dehydration polymerization of a metal alkoxide and a phase of inorganic particles, the cost is small. For example, the cost can be reduced as compared with the case where the heat radiation portion is formed of AlN ceramics in the prior art.
  • the intermediate body 4 has heat resistance and sufficient elastic properties, so that deterioration due to heat and aging hardly occurs. This is because the intermediate body 4 has light resistance deterioration characteristics that do not deteriorate against heat resistance and light based on the characteristics of the material.
  • the heat dissipation unit 1 can efficiently release the heat of the heating element 2.
  • the inorganic particles are preferably 40% by volume or more with respect to the intermediate 4. It is because the characteristic of an inorganic particle can be produced with respect to the intermediate body 4 because it is 40 volume% or more. On the other hand, when the inorganic particles are less than 40% by volume with respect to the intermediate body 4, the properties of the inorganic particles can hardly be exhibited, and the intermediate body 4 cannot exhibit high thermal conductivity.
  • the inorganic particles are 50% by volume or more with respect to the intermediate 4. More preferably, the inorganic particles are 70% by volume or more with respect to the intermediate 4. This is because the thermal conductivity of the inorganic particles contributes strongly to the intermediate body 4 and the thermal conductivity of the intermediate body 4 is increased by having such a ratio.
  • FIG. 4 is a front view of the intermediate body according to Embodiment 1 of the present invention.
  • FIG. 4 shows the intermediate body 4 as viewed from above. That is, the surface of FIG. 4 shows the planar direction of the intermediate body 4, and the direction passing through FIG. 4 shows the vertical direction of the intermediate body 4.
  • the internal structure of the intermediate body 4 is shown as being visible.
  • Intermediate 4 has inorganic particles 42.
  • the elliptical inorganic particles 42 are shown, but the present invention is not limited to the elliptical shape. Further, FIG. 4 shows the inorganic particles 42 large for easy grasping, but it is not necessary to have such a size.
  • the inorganic particles 42 have a longer length in the plane direction in the intermediate body 4 than a length in the vertical direction in the intermediate body 4.
  • the heat conductivity in the plane direction of the inorganic particle 42 increases because the length in the plane direction is long. That is, the intermediate body 4 produces high thermal conductivity in the plane direction.
  • the intermediate body 4 has an inorganic bonding phase obtained by hydrolysis and dehydration polymerization of a metal alkoxide and a phase of inorganic particles.
  • the intermediate body 4 is liquid or gel-like. That is, in the intermediate body 4, a liquid or gel material just after the production is applied to the surface of the heat radiating portion 5. Alternatively, the liquid or gel-like material immediately after manufacture may be applied to the surface (bottom surface) of the circuit layer 3. After the liquid or gel material is applied, heat treatment is performed at 100 ° C. to 300 ° C. to form the intermediate 4.
  • the material for forming the intermediate body 4 is liquid or gel immediately after production and is solidified by heating and drying, so that it can be joined to the heat radiating part 5 and the circuit layer 3. When joined, the intermediate body 4 is connected to the heat radiating portion 5 with sufficient strength, so that the entire configuration of the heat radiating unit 1 is formed with high strength.
  • Heating equipment such as a heater is used for heating and drying.
  • the intermediate body 4 formed by coating and heating has high strength and is bonded to the heat radiating portion 5 and the circuit layer 3 and has sufficient elastic properties, so that the intermediate body 4 is subject to peeling or destruction due to thermal expansion or the addition of other stresses. Less.
  • the intermediate body 4 has a shear bonding strength of 100 kPa or more and a rigidity of 1000 times or less of a shear bonding strength of 100 kPa or more.
  • the intermediate body 4 bonded to the heat radiation part 5 or the circuit layer 3 is peeled or broken. This is because it is less likely to cause damage.
  • the shear strength of the intermediate body 4 is smaller than 100 kPa and the rigidity is 1000 times or more of the shear bonding strength of 100 kPa or more, the shear strength becomes insufficient, and is being manufactured, transported, or used. Problems such as peeling or destruction of the intermediate 4 may occur due to heat and external stress. For this reason, it is preferable that the shear strength of the intermediate body 4 is 100 kPa or more and 1000 times or less of the shear bonding strength of 100 kPa or more.
  • the intermediate body 4 is disposed between the heat generating element 2 (and the circuit layer 3) that generates heat and the heat dissipating part 5 that dissipates heat. That is, it is necessary to take care between the generation of heat and the release of heat, and not only the basic performance such as insulation and thermal conductivity, but also the member to which the intermediate body 4 such as shear strength and rigidity is joined (such as the heat radiating portion 5). Sufficient elastic characteristics that can follow the thermal expansion and contraction of the resin are also required.
  • the intermediate body 4 needs to be processed, manufactured, applied, and bonded so as to ensure these performances. The mixing ratio of the inorganic particles, the coating thickness, the heat treatment temperature and time may be adjusted as necessary.
  • the intermediate body 4 is a combination of an inorganic binder phase and an inorganic particle phase, unlike a conventional thermal bonding agent mainly composed of a resin (for example, grease).
  • a resin for example, grease
  • the intermediate body 4 is configured to conduct the heat from the heat generating element 2 to the heat radiating unit 5, the heat radiating unit 1 can efficiently radiate the heat generating element 2.
  • the heating element 2 is various such as an electronic component, a mechanical component, and a semiconductor integrated circuit, the heat dissipation unit 1 can be suitably applied to various fields such as an electronic device and a transportation device.
  • the intermediate body 4 includes inorganic particles in addition to the basic functions of sufficient elastic properties, insulating properties, and metal binding properties generated by the inorganic binder phase obtained by hydrolysis and dehydration polymerization of the metal alkoxide. It has the additional function of high thermal conductivity caused by the phase of By appropriately mixing these two phases, the intermediate body 4 can serve as a member capable of conducting the heat of the heating element 2 to the heat radiating portion 5 without causing deterioration like a resin.
  • the heating element 2 is a member that generates heat by self-operation or energy supply from others. Includes various electrical parts, electronic parts, mechanical parts, chemical parts, etc.
  • the heating element 2 includes at least one of a light emitting element, a discrete element, an electronic component, a semiconductor integrated circuit, and a power device. That is, it includes elements used for at least one of lighting equipment, electronic equipment, transportation equipment, and manufacturing equipment.
  • Light emitting elements, discrete elements, electronic components, etc. operate upon receiving power supply. This operation generates heat. In recent years, lighting devices and electronic devices are mounted with many light emitting elements. For this reason, each light-emitting element such as an LED generates a large amount of heat when many light-emitting elements are gathered even if heat generation and power consumption are small. Alternatively, a discrete element, a semiconductor integrated circuit, and a power device have a higher calorific value due to an improvement in integration degree and performance.
  • the heat dissipating unit 1 can release the heat of the heat generating element 2 having such a large calorific value through the heat dissipating part 5.
  • the heat radiating unit 1 may be arranged so as to correspond to each of the plurality of heat generating elements 2, or the heat radiating unit 1 may be arranged so as to correspond to the plurality of heat generating elements 2.
  • FIG. 5 is a side view showing a mounted state of the heat dissipation unit according to Embodiment 1 of the present invention.
  • FIG. 5 shows a state in which a heat dissipation unit is arranged so as to correspond to each of the former plurality of heating elements.
  • the lighting device and the electronic device have a plurality of heating elements 2A to 2D (for convenience of illustration, of course, more heating elements may be provided).
  • the circuit layers 3 corresponding to the heating elements 2A to 2D are common, but of course may be individual.
  • Each of the heat radiating units 1A to 1D is mounted corresponding to each of the heat generating elements 2A to 2D.
  • the heat radiating unit 1A has an intermediate body 4A and a heat radiating portion 5A
  • the heat radiating unit 1B has an intermediate body 4B and a heat radiating portion 5B.
  • the heat dissipation unit 1A mainly releases the heat of the heating element 2A
  • the heat dissipation unit 1B mainly releases the heat of the heating element 2B
  • the heat dissipation unit 1C mainly releases the heat of the heating element 2C
  • the heat dissipation unit 1D mainly releases the heat of the heating element 2D.
  • the heat is released.
  • FIG. 6 is a side view showing a mounted state of the heat dissipation unit according to the first embodiment of the present invention. Unlike FIG. 5, FIG. 6 is mounted corresponding to the entire plurality of heating elements 2. For this reason, the intermediate body 4 and the heat radiating portion 5 are provided corresponding to all of the heat generating elements 2A to 2D. The intermediate body 4 conducts heat from the whole of the plurality of heating elements 2A to 2D to the heat radiating section 5. The heat dissipating part 5 emits heat from the plurality of conducted heat generating elements 2A to 2D. Since the heat radiating unit 1 is provided so as to correspond to the plurality of heat generating bodies 2, the heat radiating unit 1 can efficiently radiate heat from the entire heat generating body 2 at a time. Of course, the cost for mounting can also be reduced.
  • the heating element 2 is densely mounted according to the type and specification of the device to be mounted, or is mounted with a moderate gap. Alternatively, there are a case where all of the plurality of heating elements 2 generate heat uniformly and a case where the heating element 2 which generates heat and the heating element 2 which does not generate heat are switched depending on time and operation. Depending on these differences, the heat dissipating unit 1 is mounted on each heating element 2 as shown in FIG. 5 or mounted so as to correspond to the entirety of the plurality of heating elements 2.
  • the circuit layer 3 is provided for exchanging electrical signals with the heating element 2 such as an electronic component or a light emitting element.
  • the circuit layer 3 may be a printed board on which wiring for exchanging electrical signals with the heating element 2 is printed, or may be a circuit board on which electrodes and conductive wires are mounted.
  • electrodes and wiring are formed by patterning a metal component by an ink jet format or screen printing. Or metal foil may be vapor-deposited and an electrode and wiring may be formed. Or an electrode and wiring may be formed by plating.
  • the circuit layer 3 forms electrodes and wirings for exchanging electrical signals in this way, and electrically connects the electrodes and wirings to the heating element 2. Further, the circuit layer 3 is connected to the heating element 2 by a wire as necessary.
  • the wire is formed of a highly conductive material such as gold, platinum, copper, or aluminum.
  • the circuit layer 3 may be provided at a position facing the heating element 2 or may be provided at a position other than the position facing the heating element 2. This is because the circuit layer 3 is intended to supply an electric signal to the heating element 2 and therefore does not necessarily have to be provided at a position facing the heating element 2.
  • At least one surface of the intermediate body 4 and the heat radiating portion 5 is provided with at least one of the circuit layer 3 and the circuit board that are electrically connected to the heating element 2.
  • the circuit layer 3 may or may not be necessary on the bottom surface of the heating element 2.
  • a region laminated on the surface of the heat radiating part 5 may occur.
  • the heat radiating part 5 releases the heat of at least one of the heating element 2 and the circuit layer 3 conducted from the intermediate body 4.
  • the heat source is the heating element 2, but the circuit layer 3 itself may also generate heat, or the heat of the heating element 2 may be received by the circuit layer 3.
  • the intermediate body 4 conducts the heat of the heating element 2 and the circuit layer 3.
  • This conducted heat can include a case where the heat is derived from the heating element 2 and a case where the heat is derived from the circuit layer 3.
  • the heat dissipating part 5 is made of a material having high thermal conductivity such as metal or alloy, and releases the heat conducted by the intermediate body 4 to the outside.
  • a material having high thermal conductivity copper or aluminum is preferably employed. This is because these materials have not only high thermal conductivity, but also low cost and high workability.
  • the heat dissipating part 5 has a plate material or a three-dimensional shape, diffuses the conducted heat in a planar direction or a vertical direction, and releases the heat from the surface to the outside. In order to increase the surface area of the heat radiating portion 5, it is also preferable that the heat radiating portion 5 has a plate shape or has irregularities on the surface.
  • the heat dissipating unit 5 may include various elements such as a heat dissipating plate and a heat sink.
  • FIG. 7 is a side view of the heat dissipating part having fins in the first embodiment of the present invention.
  • the heat dissipating unit 5 includes a base 51 and fins 52.
  • a large number of fins 52 are attached to the front surface (back surface) of the base 51.
  • the surface area of the entire heat dissipating part 5 increases, and the heat dissipating ability of the heat dissipating part 5 increases.
  • the fin 52 forms a narrow space between the adjacent fins 52. The space surrounded by the fins 52 causes air convection due to heat from the base 51.
  • the heat dissipating part 5 includes a large number of fins 52, so that the heat dissipating ability of the heat dissipating part 5 is further enhanced.
  • the heat radiating unit 5 may be not only exposed to the outside air and releasing heat to the outside air but also thermally connecting to the liquid cooling jacket and releasing the heat through the liquid cooling jacket. Or the thermal radiation part 5 may discharge
  • the heat dissipating unit 5 is not limited to the various configurations listed here, and may have a heat dissipating structure or system known as a known technique. By providing such a heat radiating part 5, the heat radiating unit 1 can efficiently release the heat of the heating element 2. Of course, since the intermediate body 4 which is not a resin is provided in the heat radiating portion 5 and conducts heat, the heat from the heat generating body 2 efficiently reaches the heat radiating portion 5, so the heat radiating portion 5 regrets its heat radiating performance. It will be able to demonstrate without.
  • the intermediate body 4 described in the first embodiment can realize heat conduction by adding a certain inorganic particle phase to an inorganic binder phase based on a metal alkoxide. In addition to this heat conduction, it has sufficient elastic properties, insulating properties, high bondability with metals, and excellent durability. By realizing such an intermediate body 4, it is possible to realize the heat radiating unit 1 that releases the heat of various heat generating elements 2.
  • the intermediate body 4 may be distributed or used as a single body.
  • the heating element to which the heat radiating unit 1 wants to radiate heat is at least one of a light emitting element, a discrete element, an electronic component, a semiconductor integrated circuit, a mechanical component, a power device, and a chemical product.
  • a light emitting element e.g., a laser beam
  • a discrete element e
  • FIG. 8 is a block diagram of the lighting device according to the second embodiment of the present invention. From the viewpoint of energy saving and environmental protection, a large number of lighting devices 10 on which a large number of LEDs 21 are mounted are used. When a large number of LEDs 21 are mounted, since the individual heat generation is summed, considerable heat is generated. Moreover, in order to make the light emission of LED21 strong, it is necessary to give a big electric current, and also in this case, the heat_generation
  • the lighting device 10 has the heat dissipation unit 1 mounted on a plurality of LEDs 21. Moreover, the heat dissipation unit 1 is mounted on each of the plurality of LEDs 21. Of course, the heat radiating unit 1 may be mounted in a form in which the plurality of LEDs 21 are collected.
  • the lighting device 10 includes a housing 11 that stores the LEDs 21 and the like, a control unit 6 that controls the circuit layer 3 (the circuit board is the same), and a power supply 7 that supplies power.
  • the power source 7 supplies power from an external power source (AC power source or the like) to the control unit 6 or the like, or supplies power stored by itself to the control unit 6 or the like.
  • the control unit 6 generates a control signal for controlling the light emission pattern and the light emission amount of the plurality of LEDs 21 and outputs the control signal to the circuit layer 3.
  • the circuit layer 3 gives necessary electric signals to the plurality of LEDs 21 based on this control signal.
  • the plurality of LEDs 21 that have received the electrical signal emit light or turn off according to the characteristics of the electrical signal.
  • Each of the plurality of LEDs 21A to 21D is provided with heat radiation units 1A to 1D.
  • the heat radiating unit 1A has an intermediate body 4A and a heat radiating portion 5A, and releases the heat of the LED 21A.
  • the heat radiating unit 1B includes an intermediate body 4B and a heat radiating portion 5B, and releases the heat of the LED 21B. The same applies to the heat dissipation units 1C and 1D.
  • the lighting device 10 can suppress heat generation and can prevent performance deterioration and failure.
  • the heat of the LED 21 serving as a heating element is conducted to the heat radiating portion 5 by the intermediate body 4 including an inorganic binder phase obtained by hydrolysis and dehydration polymerization of a metal alkoxide and a phase of inorganic particles.
  • the intermediate body 4 is resistant to light degradation and has good heat conduction. For this reason, the intermediate body 4 conducts the heat of the LED 21 to the heat radiating portion 5 reliably and efficiently.
  • the intermediate body 4 is not easily peeled off or damaged by applied heat or stress due to its sufficient elastic properties. For this reason, even when lighting and extinguishing are repeated as in the lighting device 10, deterioration of the heat dissipation unit 1 is reduced.
  • FIG. 9 is a bottom view of the lighting apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 shows a state in which the illumination device 10 is seen through from the bottom side.
  • the lighting device 10 includes LEDs 21 arranged in a matrix.
  • the heat dissipation unit 1 is provided in each row of the matrix-like LEDs.
  • the heat radiating unit 1A releases the heat of the plurality of LEDs 21 mounted in the uppermost row.
  • the heat radiating unit 1A includes an intermediate body 4 and a heat radiating portion 5.
  • the intermediate body 4 conducts heat of the plurality of LEDs 21 mounted in the uppermost row to the heat radiating portion 5, and the heat radiating portion 5 Release heat to the outside.
  • the heat dissipation unit 1 is applied not only to the lighting device 10 but also to various electronic devices.
  • the heat dissipation unit 1 is suitably applied to an electronic device in which a heating element 2 that is at least one of a discrete element, an electronic component, a semiconductor integrated circuit, and a power device is mounted.
  • Electronic devices include, for example, personal computers, server devices, notebook computers, liquid crystal imaging devices, measuring devices, and other devices on which the above-described elements that can become heating elements are mounted.
  • the heating element often generates high heat depending on the specification state. Even when a heat radiating member such as a heat sink is provided, the heat from the heating element is often not efficiently conducted to the heat radiating member.
  • the heat dissipation unit 1 described in the first embodiment is mounted on such an electronic device, the heat of the heating element is conducted to the heat dissipation portion 5 by the intermediate body 4 and released. Since the electronic device also repeatedly generates heat in the same manner as the lighting device 10, the intermediate body 4 that conducts heat from the heating element is greatly stressed.
  • the intermediate body 4 described in the first embodiment has sufficient elastic characteristics and high durability against stress application, it can conduct heat without causing damage or the like. As a result, heat generation of the entire electronic device can be suppressed. Naturally, it is possible to prevent performance deterioration and failure of the electronic device.
  • the heat dissipation unit 1 can be applied not only to electronic equipment but also to transportation equipment such as aircraft, automobiles and large vehicles. These transportation devices are mounted with various heating elements that generate heat, such as engines and lights. The heat dissipation unit 1 is applied to these heating elements. Also in this case, the intermediate body 4 can efficiently conduct heat to the heat radiating portion 5 without deterioration or the like with high sufficient elastic characteristics. That is, the heat dissipation unit 1 can release the heat of the heating element with high durability. As a result, it is possible to prevent the performance deterioration and failure of the transportation equipment.
  • the heat dissipation unit 1 is also preferably applied to manufacturing equipment and manufacturing equipment. Some manufacturing equipment and manufacturing equipment use heat. For example, an arc device or an annealing device applies heat to a material to be processed. For this reason, the arc device and the annealing device include a housing. The inside of the housing has heat. The heat dissipating unit 1 is provided on the inner wall of the casing, and can release the internal heat to the outside of the casing or a specific discharge path.
  • lighting equipment, electronic equipment, transportation equipment, and manufacturing equipment including the heat dissipation unit 1 can prevent performance deterioration and failure due to heat.
  • FIG. 10 is a block diagram of an embodiment of the present invention.
  • FIG. 10 shows the LED heat dissipation unit 100 in a transparent state from the bottom. For this reason, in FIG. 10, the intermediate body 4 and the thermal radiation part 5 have overlapped.
  • the heating element is one or a plurality of LEDs 29.
  • the present invention is optimally applied to a state where a small number of LEDs that tend to generate large heat in a narrow region are mounted in the narrow region.
  • the circuit layer 3 is a metal pattern 33 that gives an electric signal to the LED.
  • the intermediate body 4 has an inorganic particle phase and an inorganic binder phase arranged around the inorganic particle phase.
  • the inorganic binder phase is a Si—O network obtained by hydrolysis and dehydration polymerization of a metal alkoxide. By this Si—O network, the inorganic binder phase and the intermediate 4 including the inorganic binder phase have sufficient elastic properties, bondability with metal, and insulation.
  • the inorganic particles are mainly diamond particles having a particle diameter in the range of 0.01 to 10 ⁇ m. Due to the diamond particles falling within the range of 0.01 to 10 ⁇ m, the intermediate 4 including the particles has high thermal conductivity.
  • the thermal conductivity of the intermediate body 4 is 8 W / m ⁇ K.
  • the thermal conductivity of the intermediate body 4 is 25 W / m ⁇ K.
  • the thermal conductivity of the intermediate body 4 is 400 W / m ⁇ K.
  • the intermediate body 4 in which diamond particles are used as inorganic particles exhibits high thermal conductivity.
  • the heat radiating portion 5 is a heat sink formed of a copper alloy.
  • the shape of the heat sink cannot be clearly shown for the sake of convenience from the bottom, but it may be a commercially available plate shape or a general heat sink provided with fins.
  • the intermediate body 4 is reliably couple
  • the LED heat radiating unit 100 conducts heat generated by the LED 29 that is a heating element to the heat radiating part 5 through the intermediate body 4.
  • the heat radiating unit 5 releases the conducted heat to the outside.
  • the intermediate body 4 has high thermal conductivity and characteristics such as sufficient elastic characteristics.
  • the heat of the LED 29 can be efficiently conducted to the heat radiating portion 5.
  • the intermediate body 4 does not peel off or be damaged from the heat radiating portion 5 because it has sufficient elastic properties and metal binding properties.
  • the LED heat dissipation unit 100 can efficiently release the heat of the mounted LED 29.
  • the heat radiating unit 1 of the present invention is practically used in the LED heat radiating unit 100 and the like in this way.
  • the heat radiating unit described in the first and second embodiments is an example for explaining the gist of the present invention, and includes modifications and alterations without departing from the gist of the present invention.

Abstract

[Problem] To provide a heat-dissipating unit that utilizes a highly deterioration-resistant low-cost intermediary body and is capable of effectively dissipating heat from a heat-generating body while achieving both heat conductivity and insulation. [Solution] This heat-dissipating unit (1) is provided with a heat-dissipating section (5) for dissipating heat conducted from a heat-generating body (2) and an intermediary body (4) for conducting the heat from the heat-generating body (2) to the heat-dissipating section (5). The intermediary body (4) has inorganic particulate phases and inorganic bonded phases arranged around the inorganic particulate phases. The inorganic bonded phases contain an inorganic material that is formed by means of hydrolysis and dehydrogenative polymerization of a metal alkoxide. The metal alkoxide comprises one or more metal elements selected from a group consisting of Al, Mg, Si, Ti, Zr, and Be. The intermediary body (4) is bonded to a surface of the heat-dissipating section (5).

Description

放熱ユニットHeat dissipation unit
 本発明は、照明機器、電子機器、輸送機器および製造機器など、電子部品や機械部品などの発熱体を備える機器や装置にフレキシブルに適用され、発熱体からの熱を放熱部に効率的に伝導しつつ使用劣化の少ない中間層を備える放熱ユニットに関する。 The present invention is flexibly applied to devices and devices having heating elements such as electronic parts and mechanical parts such as lighting equipment, electronic equipment, transportation equipment, and manufacturing equipment, and efficiently conducts heat from the heating elements to the heat radiating section. However, the present invention relates to a heat radiating unit including an intermediate layer with little use deterioration.
 照明機器、電子機器、輸送機器および製造機器などは、様々な電子部品や機械部品を有しており、これら電子部品や機械部品は、性能の向上や機能の拡張に伴って高い発熱を生ずるようになっている。すなわち、照明機器、電子機器、輸送機器および製造機器などは、発熱体を備えている状態である。例えば、近年の照明機器は、省エネや長寿命などを目的として、発光ダイオード(以下、「LED」という)を用いるようになっている。LEDの単位発熱量は小さいが、一つの照明機器は、多くのLEDを高密度に実装するので、照明機器が備える発熱体全体の発熱量は大きくなっている。また、LEDは、付与される電流値が大きいほどに、その発光する光量を大きくできるが、付与される電流値が大きければ、当然に発熱量も大きくなる。しかしながら、大きな光量がLEDに対して求められている。 Lighting equipment, electronic equipment, transportation equipment, manufacturing equipment, etc. have various electronic parts and mechanical parts, and these electronic parts and mechanical parts are likely to generate high heat as performance improves and functions expand. It has become. That is, lighting equipment, electronic equipment, transportation equipment, manufacturing equipment, and the like are in a state of having a heating element. For example, recent lighting devices use light-emitting diodes (hereinafter referred to as “LEDs”) for the purpose of energy saving and long life. Although the unit heat generation amount of the LED is small, since one lighting device mounts many LEDs with high density, the heat generation amount of the entire heating element included in the lighting device is large. In addition, the LED can increase the amount of light emitted as the applied current value increases, but naturally, the greater the applied current value, the greater the amount of heat generated. However, a large amount of light is required for the LED.
 また、半導体集積回路の集積度の増加、パワーデバイスの普及によって、電子機器、輸送機器なども、大きな発熱量を生じさせる発熱体を備えるようになっている。製造機器は、製造する対象物によっては高い熱を発生させる必要があり、製造機器内部に、高い発熱を生じさせなくてはならない。 Also, with the increase in the degree of integration of semiconductor integrated circuits and the widespread use of power devices, electronic equipment, transportation equipment, and the like are equipped with heating elements that generate a large amount of heat. The manufacturing equipment needs to generate high heat depending on the object to be manufactured, and must generate high heat generation in the manufacturing equipment.
 このような大きな発熱量を生じさせる発熱体(単数の発熱体および発熱体の集合体を含む)による発熱は、照明機器、電子機器、輸送機器および製造機器などの性能劣化、故障などの悪影響を与える。このため、発熱体から生じる熱を放熱する放熱ユニットや放熱機器が用いられている。この放熱ユニットや放熱機器は、発熱体から伝導された熱を外部に放出するヒートシンクや放熱板などを備えて、発熱体の熱を放出する。 Heat generated by a heating element (including a single heating element and a collection of heating elements) that generates such a large amount of heat generation may have adverse effects such as performance deterioration and failure of lighting equipment, electronic equipment, transportation equipment, and manufacturing equipment. give. For this reason, a heat radiating unit or a heat radiating device for radiating heat generated from the heating element is used. The heat radiating unit and the heat radiating device include a heat sink or a heat radiating plate that radiates heat conducted from the heat generating element to the outside, and radiates heat from the heat generating element.
 ヒートシンクや放熱板は、発熱体から伝導された熱を、最終的に外部へ放出できる。ここで、発熱体となる電子部品や機械部品は、回路基板や回路層に実装される必要があるため、発熱体をヒートシンクや放熱板に直接実装することは難しい。また、ヒートシンクや放熱板は、熱伝導性の高さから銅やアルミニウムなどの金属であることが好ましい。しかし、ヒートシンクや放熱板の表面に電子部品、回路基板、回路層が実装される必要があるので、ヒートシンクや放熱板と回路基板や回路層との間には、絶縁層が設けられる必要がある。この絶縁層は、絶縁機能を有すると共に発熱体の熱をヒートシンクや放熱板に効率的に伝導することが求められる。 The heat sink and heat sink can finally release the heat conducted from the heating element to the outside. Here, since an electronic component or a mechanical component that becomes a heating element needs to be mounted on a circuit board or a circuit layer, it is difficult to directly mount the heating element on a heat sink or a heat sink. Moreover, it is preferable that a heat sink and a heat sink are metals, such as copper and aluminum, from the height of heat conductivity. However, since it is necessary to mount electronic components, circuit boards, and circuit layers on the surface of the heat sink and heat sink, an insulating layer must be provided between the heat sink and heat sink and the circuit board and circuit layers. . This insulating layer is required to have an insulating function and efficiently conduct heat of the heating element to a heat sink or a heat sink.
 このように、発熱体となる電子部品や機械部品を備える照明機器、電子機器、輸送機器および製造機器では、ヒートシンクや放熱板と発熱体との間に介在する中間体を有する放熱ユニットを用いていた。ヒートシンクを備えるLEDパッケージが提案されたり(例えば、特許文献1参照)、中間体の技術が提案されたりしている(例えば、特許文献2参照)。 Thus, in lighting equipment, electronic equipment, transportation equipment, and manufacturing equipment including electronic parts and mechanical parts that serve as heating elements, a heat dissipation unit having an intermediate body interposed between the heat sink and the heatsink and the heating element is used. It was. An LED package having a heat sink has been proposed (for example, see Patent Document 1), or an intermediate technique has been proposed (for example, see Patent Document 2).
特表平11-346029号公報Japanese National Patent Publication No. 11-346029 特開2009-212495号公報JP 2009-212495 A
 特許文献1は、半導体レーザーチップの構造をヒートシンクと熱的に接続することで、半導体レーザーチップからの熱を放出する技術を開示する。しかしながら、特許文献1は、半導体レーザーチップと周辺構造が複雑になり、多くの発熱体を実装する機器の放熱には適さない。 Patent Document 1 discloses a technique for releasing heat from a semiconductor laser chip by thermally connecting the structure of the semiconductor laser chip to a heat sink. However, Patent Document 1 has a complicated semiconductor laser chip and peripheral structure, and is not suitable for heat dissipation of a device on which many heating elements are mounted.
 特許文献2は、樹脂を主成分とする中間体(熱的接合剤)を発熱体と放熱板との間に介在させる放熱可能な放熱部品を開示する。 Patent Document 2 discloses a heat dissipating heat dissipating component in which an intermediate (thermal bonding agent) mainly composed of a resin is interposed between a heat generating element and a heat dissipating plate.
 この特許文献2に開示される技術のように、発熱体(電子部品や回路層など、電気信号をやり取りする)と放熱板(ヒートシンク含む)との間に介在する中間体は、樹脂が主成分となることが多い。現在では、樹脂を主成分とする熱的接合剤が中間体として様々に利用され提案されている。樹脂は、絶縁性と熱伝導性を両立させる適当な素材だからである。このように、絶縁性と熱伝導性とを両立させることは、発熱体から放熱板等への熱伝導に必要な条件であり、次の2つの解決方向がある。 As in the technique disclosed in Patent Document 2, an intermediate body interposed between a heating element (for exchanging electrical signals such as electronic components and circuit layers) and a heat radiating plate (including a heat sink) is mainly composed of resin. Often. At present, thermal bonding agents mainly composed of resins have been used and proposed in various ways as intermediates. This is because the resin is a suitable material that achieves both insulation and thermal conductivity. Thus, making the insulating property and thermal conductivity compatible is a necessary condition for heat conduction from the heating element to the heat radiating plate and the like, and there are the following two solutions.
 (方向1)樹脂を主成分とする熱的接合剤を、発熱体と放熱板等との間に介在させる中間体として用いる。 (Direction 1) A thermal bonding agent mainly composed of a resin is used as an intermediate body interposed between a heating element and a heat radiating plate.
 (方向2)絶縁性と熱伝導性を両立する素材で放熱板やヒートシンクを形成する。 (Direction 2) A heat sink or heat sink is formed of a material that has both insulating properties and thermal conductivity.
 方向1にあるように、中間体に樹脂を主成分とする熱的接合剤を用いる場合には、発熱体の熱(当然ながら放熱板からの熱も)によって劣化しやすい問題がある。樹脂はその特性上熱に弱く、LEDのように100℃を超えるような発熱体からの発熱を繰り返し受けることで、樹脂が劣化する。劣化が進むと当然ながら破損することになり、発熱体からの熱を十分にヒートシンクや放熱板に伝導できなくなって、機器そのものの劣化、性能低減、故障などが引き起こされる問題がある。 As in direction 1, when a thermal bonding agent mainly composed of a resin is used as an intermediate, there is a problem that it is easily deteriorated by the heat of the heating element (of course, the heat from the heat radiating plate). Resin is vulnerable to heat due to its characteristics, and the resin deteriorates by repeatedly receiving heat from a heating element exceeding 100 ° C. like LED. Naturally, as the deterioration progresses, it will be damaged, and heat from the heating element cannot be sufficiently conducted to the heat sink or the heat sink, causing problems such as deterioration of the device itself, performance reduction, failure, etc.
 一方、方向2にあるように、絶縁性と熱伝導率とを両立してヒートシンクなどを形成できる素材としては、AlN系セラミックスが知られているが、このAlN系セラミックス以外で実用用途のあるものはほとんど見つかっていない。このAlN系セラミックスの熱伝導率は180~250W/m・Kであり、熱伝導率の点ではヒートシンクや放熱板として十分に実用可能である。また、AlN系セラミックスは、電気抵抗が1014(Ω・cm)と非常に高く絶縁性に優れている。しかしながら、AlN系セラミックスは、銅やアルミニウムといった金属に比べて非常に高価であり、コスト要請の厳しい照明機器や電子機器には適用が困難である。 On the other hand, as shown in direction 2, AlN-based ceramics are known as materials that can form a heat sink while achieving both insulation and thermal conductivity. However, there are practical applications other than AlN-based ceramics. Is hardly found. The thermal conductivity of this AlN-based ceramic is 180 to 250 W / m · K, and is sufficiently practical as a heat sink or a heat sink in terms of thermal conductivity. In addition, AlN ceramics have an extremely high electrical resistance of 10 14 (Ω · cm) and excellent insulating properties. However, AlN-based ceramics are very expensive compared to metals such as copper and aluminum, and are difficult to apply to lighting equipment and electronic equipment that have strict cost requirements.
 以上より、熱伝導率の高い金属で形成されたヒートシンクや放熱板と発熱体との間を、絶縁性および熱伝導性を両立させる中間体が照明機器や電子機器には必要となっている。当然ながら中間体は、ヒートシンクや放熱板に結合可能であることも必要である。 As described above, an intermediate body that achieves both insulation and thermal conductivity between a heat sink and a heat sink formed of a metal having high thermal conductivity and a heating element is required for lighting equipment and electronic equipment. Of course, the intermediate must also be able to be coupled to a heat sink or heat sink.
 また、ヒートシンクや放熱板の熱膨張係数と中間体の熱膨張係数との相違が大きいと、中間体が剥離したりクラックを生じさせたりする問題がある。以上の問題を考慮して、次の要件を充足する中間体を備えた放熱ユニットが求められている。 Also, if the difference between the thermal expansion coefficient of the heat sink or the heat sink and the thermal expansion coefficient of the intermediate body is large, there is a problem that the intermediate body peels off or causes cracks. In view of the above problems, there is a demand for a heat dissipation unit including an intermediate that satisfies the following requirements.
 (要件1)高い熱伝導率を有すること。
 (要件2)適用箇所の必要性に応じて絶縁性を有すること。
 (要件3)金属面と確実に結合すること。
 (要件4)十分な弾性特性を有すること。
 (要件5)コストが低く、劣化に強いこと。
(Requirement 1) High thermal conductivity.
(Requirement 2) Have insulation according to the necessity of the application location.
(Requirement 3) Securely bond to the metal surface.
(Requirement 4) Sufficient elastic characteristics.
(Requirement 5) Cost is low and resistance to deterioration.
 すなわち、従来技術の樹脂やAlN系セラミックスとは異なるアプローチで、これら要件1~要件5を充足する中間体を備える放熱ユニットが求められている。 That is, there is a demand for a heat dissipation unit including an intermediate that satisfies these requirements 1 to 5 by an approach different from that of conventional resin and AlN ceramics.
 本発明は、上記課題に鑑み、熱伝導率と絶縁性とを両立させつつ、劣化に強く低コストの中間体を有し、発熱体の熱を効率的に放熱できる放熱ユニットを提供することを目的とする。 In view of the above problems, the present invention provides a heat dissipation unit that has a low-cost intermediate that is resistant to deterioration and that can efficiently dissipate the heat of a heating element while achieving both thermal conductivity and insulation. Objective.
 上記課題に鑑み、本発明の放熱ユニットは、発熱体から伝導される熱を放出する放熱部と、発熱体からの熱を放熱部に伝導する中間体と、を備え、中間体は、無機物粒子の相と、該無機物粒子の相の周囲に配せられる無機結合相を有し、無機結合相は、金属アルコキシドが加水分解および脱水重合されて形成される無機材質を含み、金属アルコキシドをなす金属元素は、Al、Mg,Si、Ti、Zr、Beの群から選択される1以上であり、中間体は、放熱部の表面に接合している。 In view of the above problems, the heat dissipating unit of the present invention includes a heat dissipating part that releases heat conducted from the heating element, and an intermediate that conducts heat from the heating element to the heat dissipating part, and the intermediate is an inorganic particle. And an inorganic binder phase disposed around the phase of the inorganic particles, the inorganic binder phase comprising an inorganic material formed by hydrolysis and dehydration polymerization of a metal alkoxide, and forming a metal alkoxide The element is one or more selected from the group consisting of Al, Mg, Si, Ti, Zr, and Be, and the intermediate is bonded to the surface of the heat dissipation portion.
 本発明の放熱ユニットは、発熱体と放熱部との間に、金属アルコキシドの加水分解および脱水重合により形成された無機材質の中間体を用いるので、絶縁性と熱伝導性を両立させて、発熱体からの熱を放熱部に伝導できる。加えて、無機材質の中間体であることで、樹脂のような劣化を生じることもない。中間体の劣化が生じないことで、放熱ユニットそのものの劣化や性能低下も防止される。また、コストも低い。 The heat dissipating unit of the present invention uses an inorganic intermediate formed by hydrolysis and dehydration polymerization of metal alkoxide between the heat generating element and the heat dissipating part. Heat from the body can be conducted to the heat dissipation part. In addition, since it is an intermediate of an inorganic material, it does not deteriorate like a resin. By preventing the intermediate body from being deteriorated, the heat radiating unit itself is prevented from being deteriorated and the performance is lowered. Also, the cost is low.
 また、金属アルコキシドの加水分解および脱水重合により形成された無機材質の中間体は、金属製の放熱部の表面に塗布可能であり、特に、金属アルコキシドの加水分解および脱水重合により形成された無機材質の中間体は、金属製の放熱部の表面と確実に結合できる。この結果、発熱体と放熱部との間の熱抵抗が下がり、発熱体の熱が効率的に放出できる。 Moreover, the intermediate of the inorganic material formed by hydrolysis and dehydration polymerization of the metal alkoxide can be applied to the surface of the metal heat radiating part, and in particular, the inorganic material formed by hydrolysis and dehydration polymerization of the metal alkoxide. This intermediate body can be reliably bonded to the surface of the metal heat dissipating part. As a result, the thermal resistance between the heating element and the heat radiating portion is lowered, and the heat of the heating element can be efficiently released.
 また、中間体は、十分な弾性特性(接合している放熱部や回路層の熱膨張に追従して、剥離や損傷を生じさせない特性)を有しているので、放熱部の熱膨張によって中間体が破壊されたり放熱部と剥離したりすることもない。加えて、中間体は、無機物粒子を含むことができるので、無機物粒子の特性に基づいた特性を発揮することができる。このため、適用用途に応じた適用のフレキシビリティをも有する。 In addition, the intermediate body has sufficient elastic characteristics (characteristic that does not cause peeling or damage following the thermal expansion of the bonded heat dissipation part or circuit layer). The body is not destroyed or peeled off from the heat dissipation part. In addition, since the intermediate can include inorganic particles, it can exhibit characteristics based on the characteristics of the inorganic particles. For this reason, it has the flexibility of application according to an application.
本発明の実施の形態1における放熱ユニットの側面図である。It is a side view of the thermal radiation unit in Embodiment 1 of this invention. 本発明の実施の形態1におけるLEDが実装された放熱ユニットの側面図である。It is a side view of the thermal radiation unit with which LED in Embodiment 1 of this invention was mounted. 本発明の実施の形態1における中間体の構造を示す模式図である。It is a schematic diagram which shows the structure of the intermediate body in Embodiment 1 of this invention. 本発明の実施の形態1における中間体の正面図である。It is a front view of the intermediate body in Embodiment 1 of this invention. 本発明の実施の形態1における放熱ユニットの実装状態を示す側面図である。It is a side view which shows the mounting state of the thermal radiation unit in Embodiment 1 of this invention. 本発明の実施の形態1における放熱ユニットの実装状態を示す側面図である。It is a side view which shows the mounting state of the thermal radiation unit in Embodiment 1 of this invention. 本発明の実施の形態1におけるフィンを有する放熱部の側面図である。It is a side view of the thermal radiation part which has a fin in Embodiment 1 of this invention. 本発明の実施の形態2における照明機器のブロック図である。It is a block diagram of the illuminating device in Embodiment 2 of this invention. 本発明の実施の形態2における照明機器の底面図である。It is a bottom view of the illuminating device in Embodiment 2 of this invention. 本発明の実施例のブロック図である。It is a block diagram of the Example of this invention.
 本発明の第1の発明に係る放熱ユニットは、発熱体から伝導される熱を放出する放熱部と、発熱体からの熱を放熱部に伝導する中間体と、を備え、中間体は、無機物粒子の相と、該無機物粒子の相の周囲に配せられる無機結合相を有し、無機結合相は、金属アルコキシドが加水分解および脱水重合されて形成される無機材質を含み、金属アルコキシドをなす金属元素は、Al、Mg,Si、Ti、Zr、Beの群から選択される1以上であり、中間体は、放熱部の表面に接合している。 A heat dissipation unit according to a first aspect of the present invention includes a heat dissipating part that releases heat conducted from a heating element, and an intermediate that conducts heat from the heating element to the heat dissipating part. A phase of particles and an inorganic binder phase disposed around the phase of the inorganic particles, the inorganic binder phase including an inorganic material formed by hydrolysis and dehydration polymerization of a metal alkoxide, and forming a metal alkoxide The metal element is one or more selected from the group consisting of Al, Mg, Si, Ti, Zr, and Be, and the intermediate is bonded to the surface of the heat dissipation portion.
 この構成により、中間体は、無機結合相が生じさせる十分な弾性特性、結合性、絶縁性に加えて、無機物粒子の相が生じさせる熱伝導性とを、両立できる。この中間体は、効率的に発熱体の熱を放熱部に伝導できるので、放熱ユニットは、発熱体の熱を効率よく放出できる。 With this configuration, the intermediate can achieve both the sufficient elastic properties, binding properties, and insulating properties that the inorganic binder phase generates, and the thermal conductivity that the inorganic particle phase generates. Since this intermediate body can efficiently conduct the heat of the heat generating element to the heat radiating portion, the heat radiating unit can efficiently release the heat of the heat generating element.
 本発明の第2の発明に係る放熱ユニットでは、第1の発明に加えて、無機物粒子は、AlN、cBN、hBN、Al、MgO,ダイヤモンドおよびグラファイトの群から選択される少なくとも一つである。 In the heat dissipation unit according to the second aspect of the present invention, in addition to the first aspect, the inorganic particles are at least one selected from the group consisting of AlN, cBN, hBN, Al 2 O 3 , MgO, diamond and graphite. It is.
 この構成により、中間体は、十分な弾性特性を維持しつつ、高い熱伝導性を有することができる。 This configuration allows the intermediate to have high thermal conductivity while maintaining sufficient elastic properties.
 本発明の第3の発明に係る放熱ユニットでは、第1又は第2の発明に加えて、無機物粒子は、中間体に対して、40体積%以上であり、好ましくは50体積%以上であり、更に好ましくは70体積%以上である。 In the heat dissipation unit according to the third invention of the present invention, in addition to the first or second invention, the inorganic particles are 40% by volume or more, preferably 50% by volume or more, with respect to the intermediate, More preferably, it is 70 volume% or more.
 この構成により、中間体は、無機物粒子の生じさせる熱伝導性を確実に有することができる。 With this configuration, the intermediate can reliably have the thermal conductivity generated by the inorganic particles.
 本発明の第4の発明に係る放熱ユニットでは、第1から第3のいずれかの発明に加えて、無機物粒子は、中間体における面方向の長さが、中間体における垂直方向の長さよりも長い。 In the heat dissipation unit according to the fourth aspect of the present invention, in addition to any of the first to third aspects of the invention, the inorganic particles have a surface length in the intermediate body that is longer than a vertical length in the intermediate body. long.
 この構成により、中間体は、平面方向に対する高い熱伝導性を生じさせるようになり、中間体内部で熱を平面方向(場合によっては垂直方向)に熱を拡散できるので、放熱部5を通じた放熱能力がたかまる。 With this configuration, the intermediate body has high thermal conductivity in the plane direction, and heat can be diffused in the plane direction (in some cases, in the vertical direction) inside the intermediate body. Ability builds up.
 本発明の第5の発明に係る放熱ユニットでは、第1から第4のいずれかの発明に加えて、中間体は、放熱部の表面に塗布された後、100~300℃で熱処理されて形成される。 In the heat dissipating unit according to the fifth aspect of the present invention, in addition to any of the first to fourth aspects of the invention, the intermediate is formed by being heat-treated at 100 to 300 ° C. after being applied to the surface of the heat dissipating part. Is done.
 この構成により、中間体は、確実に放熱部に接合される。 This configuration ensures that the intermediate is joined to the heat dissipation part.
 本発明の第6の発明に係る放熱ユニットでは、第1から第5のいずれかの発明に加えて、中間体は、100kPa以上のせん断接合強度を有すると共に100kPa以上のせん断接合強度の1000倍以下の剛性率を有して、放熱部に接合している。
 この構成により、中間体は、ストレス負荷があっても、十分な弾性特性を発揮して、剥離や損傷を防止できる。
In the heat dissipation unit according to the sixth aspect of the present invention, in addition to any of the first to fifth aspects, the intermediate body has a shear bonding strength of 100 kPa or more and 1000 times or less of the shear bonding strength of 100 kPa or more. It has the rigidity of and is joined to the heat dissipation part.
With this configuration, the intermediate body exhibits sufficient elastic characteristics even when stress is applied, and can prevent peeling and damage.
 本発明の第7の発明に係る放熱ユニットでは、第1から第6のいずれかの発明に加えて、中間体および放熱部の少なくとも一方の表面は、発熱体と電気的に接続する回路基板および回路層の少なくとも一つを設ける。 In the heat radiating unit according to the seventh aspect of the present invention, in addition to any one of the first to sixth aspects, at least one surface of the intermediate body and the heat radiating portion has a circuit board electrically connected to the heat generating body, and At least one of the circuit layers is provided.
 この構成により、発熱体が電気信号を必要とする場合にも、放熱ユニットは対応できる。 This configuration allows the heat dissipation unit to handle even when the heating element requires an electrical signal.
 以下、図面を用いながら実施の形態について説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 (実施の形態1) (Embodiment 1)
 実施の形態1について説明する。 Embodiment 1 will be described.
 本発明は、樹脂を主成分とする中間体によって発熱体の熱を放熱部に伝導する放熱ユニットの従来の技術に対して、樹脂を用いない中間体の新しいアプローチでの放熱ユニットを提案する。発熱体と放熱部とは、絶縁性と熱伝導性の両立のために、樹脂を主成分とする中間体で介在されていた。樹脂は、使いやすい素材であるが、耐久性や耐劣化に問題があり、近年の発熱体に対応することが難しい。しかし、現在の技術開発においては、樹脂の性能改善が主として行われ、中間体において樹脂を主成分とすることから離れていない問題がある。 The present invention proposes a heat radiating unit with a new approach of an intermediate that does not use a resin, in contrast to the conventional technology of a heat radiating unit that conducts heat of a heat generating element to a heat radiating portion by an intermediate composed mainly of a resin. The heating element and the heat radiating part are interposed by an intermediate body mainly composed of a resin in order to achieve both insulation and thermal conductivity. Resin is an easy-to-use material, but there are problems with durability and deterioration resistance, and it is difficult to cope with recent heating elements. However, in the current technical development, there is a problem that the performance of the resin is mainly improved and the intermediate is not separated from the resin as the main component.
 本発明は、樹脂を主成分とせずに、絶縁性と熱伝導性を両立させて、発熱体と放熱部とを介在する中間体を軸とした、今までのアプローチと全く異なる新しい放熱ユニットを提案する。 The present invention is a new heat radiating unit that is completely different from the conventional approach, centering on an intermediate body that interposes a heat generating element and a heat radiating part without using resin as a main component, and having both insulation and heat conductivity. suggest.
  (全体概要)
 図1を用いて、実施の形態1の放熱ユニットの全体概要を説明する。図1は、本発明の実施の形態1における放熱ユニットの側面図である。図1は、放熱ユニット1と、放熱ユニット1が用いられる電子部品が実装されている状態を示している。
(Overview)
An overall outline of the heat dissipation unit of the first embodiment will be described with reference to FIG. 1 is a side view of a heat dissipation unit according to Embodiment 1 of the present invention. FIG. 1 shows a state in which a heat radiating unit 1 and electronic components using the heat radiating unit 1 are mounted.
 放熱ユニット1は、放熱部5と中間体4を備える。放熱部5は、発熱体2から伝導される熱を外部に放出する。例えば、放熱部5が外気に露出している場合には、放熱部5は、伝導された熱を外気に放出する。あるいは、放熱部5が他の冷却部材(例えば液冷ジャケットや冷風ファンなど)と組み合わされている場合には、この組み合わされる冷却部材に対して熱を放出する。放熱部5は、金属や合金製のヒートシンクや放熱板が好適に用いられる。 The heat dissipation unit 1 includes a heat dissipation portion 5 and an intermediate body 4. The heat radiating part 5 releases the heat conducted from the heating element 2 to the outside. For example, when the heat radiating part 5 is exposed to the outside air, the heat radiating part 5 releases the conducted heat to the outside air. Or when the thermal radiation part 5 is combined with another cooling member (for example, a liquid cooling jacket, a cold wind fan, etc.), it discharge | releases heat with respect to this combined cooling member. As the heat dissipating part 5, a metal or alloy heat sink or heat dissipating plate is preferably used.
 中間体4は、発熱体2が生じる熱を放熱部5に伝導する。この中間体4は、従来技術の主流である樹脂を主成分としない。中間体4は、無機物粒子の相と、無機物粒子の相の周囲に配せられる無機結合相とが組み合わされた構造を有している。無機物粒子の相とこの周囲の無機結合相の組み合わせであるので、当然ながら絶縁性を有している。また、無機物粒子の相は、その無機物粒子の特性に基づいて、高い熱伝導性を生じさせる。このため、中間体4は、絶縁性と熱伝導性とを両立できる。また、無機物粒子と無機結合相の組み合わせであるので、中間体4は、樹脂と異なり耐熱性が高く、発熱体2の熱による劣化も少ない。このように、無機物粒子の相と、この周囲に配せられる無機結合相の組み合わせを有する中間体4は、従来技術の問題を解消しつつ、発熱体2の熱を効率的に放熱部5に伝導する。 The intermediate body 4 conducts heat generated by the heating element 2 to the heat radiating portion 5. This intermediate 4 does not contain a resin, which is the mainstream of the prior art, as a main component. The intermediate body 4 has a structure in which an inorganic particle phase and an inorganic binder phase disposed around the inorganic particle phase are combined. Since it is a combination of a phase of inorganic particles and a surrounding inorganic binder phase, it naturally has an insulating property. Further, the phase of the inorganic particles generates high thermal conductivity based on the characteristics of the inorganic particles. For this reason, the intermediate body 4 can achieve both insulation and thermal conductivity. Moreover, since it is a combination of inorganic particles and an inorganic binder phase, the intermediate body 4 has high heat resistance unlike the resin, and the heat generating body 2 is less deteriorated by heat. Thus, the intermediate body 4 having the combination of the phase of the inorganic particles and the inorganic binder phase disposed around the intermediate particle efficiently eliminates the problems of the prior art and efficiently transfers the heat of the heating element 2 to the heat radiating portion 5. Conduct.
   (放熱ユニットの動作)
 放熱ユニット1は、電子部品や機械部品などの発熱体2を実装できる。発熱体2は、電気信号のやり取りによって動作するので、必要な回路層3に実装される。回路層3は、回路基板や回路パターンであってもよい。発熱体2は、電気信号のやり取りによって動作し、この動作によって、熱を生じる。発生した熱は、回路層3から中間体4に伝導する。中間体4は、無機物粒子の特性に基づいて高い熱伝導性を有するので、発熱体2の熱を放熱部5に伝導する。放熱部5は、外気や他の冷却部材に対して、伝導された熱を放出できる。特に、放熱部5は、金属や合金で形成されているので、受け取った熱を3次元的に伝導して、その表面から外部に放出できる。
(Operation of heat dissipation unit)
The heat radiating unit 1 can mount a heating element 2 such as an electronic component or a mechanical component. Since the heating element 2 operates by exchanging electrical signals, it is mounted on the necessary circuit layer 3. The circuit layer 3 may be a circuit board or a circuit pattern. The heating element 2 operates by exchanging electrical signals, and generates heat by this operation. The generated heat is conducted from the circuit layer 3 to the intermediate body 4. Since the intermediate body 4 has high thermal conductivity based on the properties of the inorganic particles, the heat of the heating element 2 is conducted to the heat radiating portion 5. The heat radiating part 5 can release the conducted heat to the outside air and other cooling members. In particular, the heat dissipating part 5 is formed of a metal or an alloy, so that the received heat can be conducted three-dimensionally and released from the surface to the outside.
 中間体4は、金属や合金製の放熱部5に対して発熱体2や回路層3の電気信号の漏洩を防止する必要があるが、中間体4は、絶縁性を有しているので、電気信号の漏洩を防止できる。 The intermediate body 4 needs to prevent leakage of electric signals of the heating element 2 and the circuit layer 3 with respect to the heat radiating portion 5 made of metal or alloy, but the intermediate body 4 has an insulating property. Electric signal leakage can be prevented.
 図2を用いて、発熱体2の一例として、LEDが実装される照明機器や電子機器に、放熱ユニット1が組み込まれる場合について説明する。図2は、本発明の実施の形態1におけるLEDが実装された放熱ユニットの側面図である。発熱体2の例として、複数のLED21が回路層3に実装されている。LED21では、正負の電極および制御信号が、端子6(例えばバンプやグリッドアレイ)で回路層3と接続されることで、発光動作を行う。この発光動作を行う際に、LED21は、熱を生じる。また、照明機器や電子機器は、複数のLED21を実装していることが多く、複数のLEDのそれぞれが熱を発生させる。このため、複数のLEDの発熱が積算されると、非常に大きな熱になってしまう。また、少数のLEDが実装される照明機器や電子機器は、照度を上げるために、高い電圧がLEDに与えられる。この結果、少数のLEDの実装領域である狭い領域に、発熱が集中してしまう。放熱ユニット1は、このような狭い領域での放熱にも適している。 Referring to FIG. 2, a case where the heat dissipation unit 1 is incorporated in a lighting device or an electronic device on which an LED is mounted will be described as an example of the heating element 2. FIG. 2 is a side view of the heat dissipation unit on which the LED according to Embodiment 1 of the present invention is mounted. As an example of the heating element 2, a plurality of LEDs 21 are mounted on the circuit layer 3. In the LED 21, positive and negative electrodes and control signals are connected to the circuit layer 3 by terminals 6 (for example, bumps and grid arrays), thereby performing a light emitting operation. When this light emitting operation is performed, the LED 21 generates heat. In addition, lighting devices and electronic devices often have a plurality of LEDs 21 mounted thereon, and each of the plurality of LEDs generates heat. For this reason, when the heat generation of the plurality of LEDs is integrated, the heat is very large. In addition, in lighting devices and electronic devices in which a small number of LEDs are mounted, a high voltage is applied to the LEDs in order to increase the illuminance. As a result, heat generation is concentrated in a narrow area where a small number of LEDs are mounted. The heat dissipation unit 1 is also suitable for heat dissipation in such a narrow region.
 複数のLED21からの熱(回路層3からも熱は発生する)は、中間体4に到達し、中間体4は、この熱を放熱部5に伝導する。このとき、中間体4は、LED21や回路層3の電気信号を、放熱部5に導電させることはない。放熱部5は、伝導された熱を外気や他の冷却部材に放出する。このような、中間体4を介した伝導と放熱部5による放熱の繰り返しによって、LEDの熱が外部に放出されて、照明機器や電子機器の性能劣化や故障が防止できる。 The heat from the plurality of LEDs 21 (heat is also generated from the circuit layer 3) reaches the intermediate body 4, and the intermediate body 4 conducts this heat to the heat radiating portion 5. At this time, the intermediate body 4 does not conduct the electrical signals of the LED 21 and the circuit layer 3 to the heat dissipation portion 5. The heat dissipating unit 5 releases the conducted heat to the outside air and other cooling members. By repeating the conduction through the intermediate body 4 and the heat radiation by the heat radiating unit 5, the heat of the LED is released to the outside, and the performance deterioration and failure of the lighting equipment and the electronic equipment can be prevented.
 次に各部の詳細について説明する。 Next, the details of each part will be described.
   (中間体)
 中間体4は、無機物粒子の相と、無機物粒子の相の周囲に配せられる無機結合相を有する。この無機結合相は、金属アルコキシドが加水分解および脱水重合されて形成される。金属アルコキシドをなす金属元素は、Al,Mg、Si、Ti、Zr、Beの群から選択される1以上である。無機結合相は、十分な弾性特性を有している。ここで、十分な弾性特性とは、中間体4が放熱部5や回路層3に接合される場合に、放熱部5や回路層3の熱膨張に十分に追従でき、中間体4が剥離したり損傷したりすることの無い特性を言う。このような十分な弾性特性を有することで、中間体4は、接合される放熱部5などの熱膨張や熱収縮に追従して、熱伝導の役割を維持できる。
(Intermediate)
The intermediate body 4 has an inorganic particle phase and an inorganic binder phase disposed around the inorganic particle phase. This inorganic binder phase is formed by hydrolysis and dehydration polymerization of a metal alkoxide. The metal element forming the metal alkoxide is at least one selected from the group consisting of Al, Mg, Si, Ti, Zr, and Be. The inorganic binder phase has sufficient elastic properties. Here, the sufficient elastic property means that when the intermediate body 4 is joined to the heat radiating part 5 or the circuit layer 3, the intermediate body 4 can be sufficiently separated from the thermal expansion of the heat radiating part 5 or the circuit layer 3 and peeled off. A characteristic that does not cause damage. By having such a sufficient elastic characteristic, the intermediate body 4 can maintain the role of heat conduction following the thermal expansion and contraction of the heat radiating portion 5 and the like to be joined.
 この無機結合相に無機物粒子の相が組み合わさった場合でも、無機結合相の原子結合の十分な弾性特性は維持されるので、中間体4は、十分な弾性特性を有することになる。また、中間体4は、乾燥して固化するまでは、液状であるので、放熱部5の表面に塗布が可能である。 Even when an inorganic particle phase is combined with this inorganic binder phase, sufficient elastic properties of the atomic bonds of the inorganic binder phase are maintained, so that the intermediate 4 has sufficient elastic properties. Moreover, since the intermediate body 4 is liquid until it is dried and solidified, it can be applied to the surface of the heat radiating portion 5.
 金属アルコキシドが加水分解・脱水重合されて得られる無機結合相は、(1)十分な弾性特性、(2)金属との結合性(放熱部5との結合性)、(3)絶縁性、の全てを有している。中間体4は、この無機結合相に無機物粒子を含んでいるが、無機物粒子の相の周囲に無機結合相が配せられるので、これら(1)~(3)の特性を維持したままである。すなわち、中間体4の第1要素である金属アルコキシドが加水分解・脱水重合されて得られる無機結合相は、中間体4に対して、(1)~(3)の特性を生じさせる。 The inorganic binder phase obtained by hydrolysis and dehydration polymerization of metal alkoxide has the following characteristics: (1) sufficient elastic properties, (2) bondability with metal (bondability with heat radiating part 5), and (3) insulation properties. Have everything. The intermediate 4 includes inorganic particles in the inorganic binder phase, but the inorganic binder phase is arranged around the phase of the inorganic particles, so that the characteristics of (1) to (3) are maintained. . That is, the inorganic binder phase obtained by hydrolysis and dehydration polymerization of the metal alkoxide that is the first element of the intermediate 4 gives the intermediate 4 the characteristics (1) to (3).
 中間体4は、更に無機物粒子の相を有しており、この無機物粒子の相は、その周囲を無機結合相によって囲まれている。 The intermediate 4 further has a phase of inorganic particles, and the phase of the inorganic particles is surrounded by an inorganic binder phase.
 無機物粒子は、AlN、cBN、hBN、Al、MgO,ダイヤモンドおよびグラファイトの群から選択される少なくとも一つである。中間体において、金属アルコキシドが加水分解・脱水重合されて得られる無機結合相は、上述の通り、(1)~(3)の特性を生じさせる。中間体4は、発熱体2および回路層3の少なくとも一方の熱を放熱部5に伝導する必要がある。この無機結合相は、熱伝導性を有していないわけではないが、無機物粒子は、その素材が本来的に有している特性に基づいて、中間体4に高い熱伝導性を与える。当然ながら、無機物粒子は、セラミックス粒子も含む。 The inorganic particles are at least one selected from the group consisting of AlN, cBN, hBN, Al 2 O 3 , MgO, diamond and graphite. In the intermediate, the inorganic binder phase obtained by hydrolysis and dehydration polymerization of the metal alkoxide produces the characteristics (1) to (3) as described above. The intermediate body 4 needs to conduct heat of at least one of the heating element 2 and the circuit layer 3 to the heat radiating portion 5. Although this inorganic binder phase does not have thermal conductivity, the inorganic particles impart high thermal conductivity to the intermediate body 4 based on the characteristics inherent to the material. Of course, the inorganic particles also include ceramic particles.
 図3は、本発明の実施の形態1における中間体の構造を示す模式図である。図3においては、無機物粒子の周囲に、O元素を介して実線が繋がっている。この実線は、無機物粒子の周囲に配せられる無機粒子の相である。無機物粒子の相は、無機結合相と結合しているので、中間体4は、この無機物粒子の特性を生じさせるようになる。加えて、無機物粒子の周囲を無機結合相が配されているので、無機結合相によって生じる上述の(1)~(3)の特性も維持される。 FIG. 3 is a schematic diagram showing the structure of the intermediate in Embodiment 1 of the present invention. In FIG. 3, a solid line is connected to the periphery of the inorganic particles via the O element. This solid line is the phase of the inorganic particles arranged around the inorganic particles. Since the phase of the inorganic particles is bonded to the inorganic bonded phase, the intermediate 4 causes the properties of the inorganic particles. In addition, since the inorganic binder phase is arranged around the inorganic particles, the above characteristics (1) to (3) generated by the inorganic binder phase are also maintained.
 AlN、cBN、hBN、Al、MgO,ダイヤモンド、グラファイト、の群から選択される少なくとも一つである無機物粒子は、高い熱伝導性を示す特性を有している。図3の結合のように、これらの無機物粒子が中間体4を構成しているので、中間体4は、高い熱伝導性を示すようになる。この結果、中間体4は、発熱体2および回路層3の少なくとも一方の熱を、効率的に放熱部5に伝導できる。なお、回路層3の熱は、回路層4そのものが生じさせる熱および発熱体2から伝導される熱を含む。発熱体2の熱は、効率的に放熱部5に伝導されるので、放熱部5はその能力を効果的に発揮でき、外部に熱を放出できる。 Inorganic particles that are at least one selected from the group consisting of AlN, cBN, hBN, Al 2 O 3 , MgO, diamond, and graphite have a property of exhibiting high thermal conductivity. Since these inorganic particles constitute the intermediate body 4 as shown in FIG. 3, the intermediate body 4 exhibits high thermal conductivity. As a result, the intermediate body 4 can efficiently conduct heat of at least one of the heating element 2 and the circuit layer 3 to the heat radiating portion 5. The heat of the circuit layer 3 includes heat generated by the circuit layer 4 itself and heat conducted from the heating element 2. Since the heat of the heating element 2 is efficiently conducted to the heat radiating portion 5, the heat radiating portion 5 can effectively exhibit its ability and can release heat to the outside.
 また、上述のAlN、cBN、hBN、Al、MgO,ダイヤモンド、グラファイトの群から選択される少なくとも一つである無機物粒子は、いずれも高い熱伝導性を、その特性として有しているので、これらが好適に選択される。
 これらの無機物粒子のそれぞれは、次に示すように、高い熱伝導性の特性を有している。無機物粒子のそれぞれは、異なる熱伝導率を有するので、製造の容易性、コストなどを考慮して、無機物粒子が選択されればよい。
  AlN : 170~250W/(m・K)
  cBN : 1300W/(m・K)
  hBN : 60W/(m・K)
  Al : 36W/(m・K)
  MgO : 42W/(m・K)
  ダイヤモンド : 2300W/(m・K)
  グラファイト : 230W/(m・K)
In addition, the inorganic particles that are at least one selected from the group consisting of AlN, cBN, hBN, Al 2 O 3 , MgO, diamond, and graphite have high thermal conductivity as their characteristics. Therefore, these are preferably selected.
Each of these inorganic particles has high thermal conductivity characteristics as shown below. Since each of the inorganic particles has a different thermal conductivity, the inorganic particles may be selected in consideration of ease of production, cost, and the like.
AlN: 170 to 250 W / (m 2 · K)
cBN: 1300W / (m 2 · K)
hBN: 60W / (m 2 · K)
Al 2 O 3 : 36 W / (m 2 · K)
MgO: 42 W / (m 2 · K)
Diamond: 2300W / (m 2 · K)
Graphite: 230W / (m 2 · K)
 当然ながら、中間体4は、金属アルコキシドが加水分解・脱水重合されて得られる無機結合相と無機物粒子の相との結合体であるので、コストは小さい。例えば従来技術にあるAlN系セラミックスによって放熱部を形成するのに比較すればコストは小さくなる。また、中間体4は、従来技術の樹脂とは異なり、耐熱性や十分な弾性特性を有しているので、熱や経年による劣化が生じにくい。これは、中間体4が、その素材の特性に基づいて、耐熱性や光に対して劣化しない耐光劣化特性を有するからである。 Of course, since the intermediate 4 is a combination of an inorganic binder phase obtained by hydrolysis and dehydration polymerization of a metal alkoxide and a phase of inorganic particles, the cost is small. For example, the cost can be reduced as compared with the case where the heat radiation portion is formed of AlN ceramics in the prior art. In addition, unlike the resin of the prior art, the intermediate body 4 has heat resistance and sufficient elastic properties, so that deterioration due to heat and aging hardly occurs. This is because the intermediate body 4 has light resistance deterioration characteristics that do not deteriorate against heat resistance and light based on the characteristics of the material.
 このように、金属アルコキシドが加水分解・脱水重合されて得られる無機結合相と無機物粒子の相との結合による中間体4が導入されることで、放熱部5の性能が十分に引き出されて、放熱ユニット1は、発熱体2の熱を、効率的に放出できる。 Thus, by introducing the intermediate 4 due to the bond between the inorganic binder phase obtained by hydrolysis and dehydration polymerization of the metal alkoxide and the phase of the inorganic particles, the performance of the heat radiating part 5 is sufficiently extracted, The heat dissipation unit 1 can efficiently release the heat of the heating element 2.
 また、無機物粒子は、中間体4に対して、40体積%以上であることが好適である。40体積%以上であることで、中間体4に対して無機物粒子の特性を生じさせることができるようになるからである。逆に無機物粒子が、中間体4に対して40体積%未満であると、無機物粒子の特性がほとんど発揮できず、中間体4は、高い熱伝導性を発揮できなくなる。 Further, the inorganic particles are preferably 40% by volume or more with respect to the intermediate 4. It is because the characteristic of an inorganic particle can be produced with respect to the intermediate body 4 because it is 40 volume% or more. On the other hand, when the inorganic particles are less than 40% by volume with respect to the intermediate body 4, the properties of the inorganic particles can hardly be exhibited, and the intermediate body 4 cannot exhibit high thermal conductivity.
 また好ましくは、無機物粒子は、中間体4に対して50体積%以上であることが好適である。更に好ましくは、無機物粒子は、中間体4に対して70体積%以上であることが好ましい。このような比率であることで、無機物粒子の有する熱伝導性が、中間体4に強く寄与することになり、中間体4の熱伝導性が高まるからである。 It is also preferable that the inorganic particles are 50% by volume or more with respect to the intermediate 4. More preferably, the inorganic particles are 70% by volume or more with respect to the intermediate 4. This is because the thermal conductivity of the inorganic particles contributes strongly to the intermediate body 4 and the thermal conductivity of the intermediate body 4 is increased by having such a ratio.
 また、無機物粒子は、中間体4における面方向の長さが、中間体4における垂直方向の長さよりも長いことが好適である。図4は、本発明の実施の形態1における中間体の正面図である。図4は、中間体4を上方から見た状態である。すなわち、図4の面は、中間体4の平面方向を示しており、図4を貫く方向は、中間体4の垂直方向を示している。また、中間体4の内部構造が可視状態であるとして示している。 In addition, it is preferable that the inorganic particles have a longer length in the surface direction in the intermediate body 4 than a length in the vertical direction in the intermediate body 4. FIG. 4 is a front view of the intermediate body according to Embodiment 1 of the present invention. FIG. 4 shows the intermediate body 4 as viewed from above. That is, the surface of FIG. 4 shows the planar direction of the intermediate body 4, and the direction passing through FIG. 4 shows the vertical direction of the intermediate body 4. In addition, the internal structure of the intermediate body 4 is shown as being visible.
 中間体4は、無機物粒子42を有している。図4では、楕円形の無機物粒子42が示されているが、楕円形に限られるものではない。また、図4は、把握を容易にするために、無機物粒子42を大きく表しているが、このような大きさである必要はない。 Intermediate 4 has inorganic particles 42. In FIG. 4, the elliptical inorganic particles 42 are shown, but the present invention is not limited to the elliptical shape. Further, FIG. 4 shows the inorganic particles 42 large for easy grasping, but it is not necessary to have such a size.
 図4に示されるとおり、無機物粒子42は、中間体4における平面方向の長さが、中間体4における垂直方向の長さよりも長いことも好適である。このように平面方向における長さが長いことで、無機物粒子42の平面方向における熱伝導性が高まる。すなわち、中間体4は、平面方向に高い熱伝導性を生じさせることになる。 4, it is also preferable that the inorganic particles 42 have a longer length in the plane direction in the intermediate body 4 than a length in the vertical direction in the intermediate body 4. Thus, the heat conductivity in the plane direction of the inorganic particle 42 increases because the length in the plane direction is long. That is, the intermediate body 4 produces high thermal conductivity in the plane direction.
   (中間体の他の特性)
 中間体4は、金属アルコキシドが加水分解および脱水重合されて得られる無機接合相と無機物粒子の相を有しており、形成された際には、液状もしくはジェル状である。すなわち、中間体4は、この製造直後の液状もしくはジェル状の素材が放熱部5の表面に塗布される。あるいは、製造直後の液状もしくはジェル状の素材は、回路層3の表面(底面)に塗布されても良い。液状もしくはジェル状の素材が塗布された後、100℃~300℃で熱処理されて、中間体4が形成される。中間体4を形成する素材は、製造直後は液状もしくはジェル状であって加熱および乾燥によって固化するので、放熱部5や回路層3に接合させることができる。接合すると、中間体4は、放熱部5に十分な強度をもって接続するので、放熱ユニット1の全体構成が、高い強度で形成されるようになる。
(Other properties of intermediates)
The intermediate body 4 has an inorganic bonding phase obtained by hydrolysis and dehydration polymerization of a metal alkoxide and a phase of inorganic particles. When formed, the intermediate body 4 is liquid or gel-like. That is, in the intermediate body 4, a liquid or gel material just after the production is applied to the surface of the heat radiating portion 5. Alternatively, the liquid or gel-like material immediately after manufacture may be applied to the surface (bottom surface) of the circuit layer 3. After the liquid or gel material is applied, heat treatment is performed at 100 ° C. to 300 ° C. to form the intermediate 4. The material for forming the intermediate body 4 is liquid or gel immediately after production and is solidified by heating and drying, so that it can be joined to the heat radiating part 5 and the circuit layer 3. When joined, the intermediate body 4 is connected to the heat radiating portion 5 with sufficient strength, so that the entire configuration of the heat radiating unit 1 is formed with high strength.
 加熱や乾燥においては、ヒーターなどの加熱機器が用いられる。塗布、加熱を経て形成された中間体4は、高い強度で放熱部5や回路層3と接合すると共に十分な弾性特性を有するので、熱膨張や他のストレスの付加による剥離や破壊を受けることが少なくなる。 Heating equipment such as a heater is used for heating and drying. The intermediate body 4 formed by coating and heating has high strength and is bonded to the heat radiating portion 5 and the circuit layer 3 and has sufficient elastic properties, so that the intermediate body 4 is subject to peeling or destruction due to thermal expansion or the addition of other stresses. Less.
 中間体4は、100kPa以上のせん断接合強度を有すると共に100kPa以上のせん断接合強度の1000倍以下の剛性率を有することが好ましい。中間体4のせん断強度が、100kPa以上であって100kPa以上のせん断接合強度の1000倍以下の剛性率を有すると、放熱部5や回路層3に接合されている中間体4が、剥離や破壊などの損傷を生じさせることが少なくなるからである。中間体4のせん断強度が、100kPaよりも小さく、剛性率が100kPa以上のせん断接合強度の1000倍以上の剛性率である場合には、せん断強度が不十分となり、製造中、運搬中、使用中における熱や外部からのストレスによって、中間体4が剥離や破壊されるなどの問題が生じうる。このため、中間体4のせん断強度が、100kPa以上であって、100kPa以上のせん断接合強度の1000倍以下の剛性率を有することが好ましい。 It is preferable that the intermediate body 4 has a shear bonding strength of 100 kPa or more and a rigidity of 1000 times or less of a shear bonding strength of 100 kPa or more. When the intermediate body 4 has a shear strength of 100 kPa or more and a rigidity of 1000 times or less of a shear bonding strength of 100 kPa or more, the intermediate body 4 bonded to the heat radiation part 5 or the circuit layer 3 is peeled or broken. This is because it is less likely to cause damage. When the shear strength of the intermediate body 4 is smaller than 100 kPa and the rigidity is 1000 times or more of the shear bonding strength of 100 kPa or more, the shear strength becomes insufficient, and is being manufactured, transported, or used. Problems such as peeling or destruction of the intermediate 4 may occur due to heat and external stress. For this reason, it is preferable that the shear strength of the intermediate body 4 is 100 kPa or more and 1000 times or less of the shear bonding strength of 100 kPa or more.
 中間体4は、発熱をする発熱体2(および回路層3)と放熱を行う放熱部5の中間に配置される。すなわち、熱の発生と熱の放出の間を取り持つ必要があり、絶縁性や熱伝導性といった基本性能だけでなく、せん断強度や剛性率など中間体4が接合される部材(放熱部5など)の熱膨張や熱収縮に対して追従できる十分な弾性特性も求められる。中間体4は、これらの性能を確保できるように、加工、製造、塗布、接合される必要がある。必要に応じて、無機物粒子の混合比率、塗布の厚み、熱処理の温度や時間が調整されれば良い。 The intermediate body 4 is disposed between the heat generating element 2 (and the circuit layer 3) that generates heat and the heat dissipating part 5 that dissipates heat. That is, it is necessary to take care between the generation of heat and the release of heat, and not only the basic performance such as insulation and thermal conductivity, but also the member to which the intermediate body 4 such as shear strength and rigidity is joined (such as the heat radiating portion 5). Sufficient elastic characteristics that can follow the thermal expansion and contraction of the resin are also required. The intermediate body 4 needs to be processed, manufactured, applied, and bonded so as to ensure these performances. The mixing ratio of the inorganic particles, the coating thickness, the heat treatment temperature and time may be adjusted as necessary.
 中間体4は、従来の樹脂(例えばグリースなど)を主成分とする熱的接合剤と異なり、無機結合相と無機物粒子の相の結合であることで、十分な弾性特性、結合性、絶縁性、熱伝導性のそれぞれを実現しつつ、劣化や損傷も生じさせにくい。このような中間体4が、発熱体2からの熱を放熱部5に伝導するように構成されることで、放熱ユニット1は、発熱体2の放熱を効率的に行える。特に、発熱体2は、電子部品、機械部品、半導体集積回路など様々であるので、放熱ユニット1は、電子機器や輸送機器など様々な分野に好適に適用できる。 The intermediate body 4 is a combination of an inorganic binder phase and an inorganic particle phase, unlike a conventional thermal bonding agent mainly composed of a resin (for example, grease). In addition, while realizing each of the thermal conductivity, it is difficult to cause deterioration and damage. Since the intermediate body 4 is configured to conduct the heat from the heat generating element 2 to the heat radiating unit 5, the heat radiating unit 1 can efficiently radiate the heat generating element 2. In particular, since the heating element 2 is various such as an electronic component, a mechanical component, and a semiconductor integrated circuit, the heat dissipation unit 1 can be suitably applied to various fields such as an electronic device and a transportation device.
 以上のように、中間体4は、金属アルコキシドが加水分解および脱水重合されて得られる無機結合相によって生じる十分な弾性特性、絶縁性、金属との結合性というベーシックな機能に加えて、無機物粒子の相によって生じる高い熱伝導性という付加的な機能を有する。これら2つの相の適切な混合によって、中間体4は、樹脂のような劣化を生じさせることもなく、発熱体2の熱を放熱部5に伝導できる部材としての役割を果たせる。 As described above, the intermediate body 4 includes inorganic particles in addition to the basic functions of sufficient elastic properties, insulating properties, and metal binding properties generated by the inorganic binder phase obtained by hydrolysis and dehydration polymerization of the metal alkoxide. It has the additional function of high thermal conductivity caused by the phase of By appropriately mixing these two phases, the intermediate body 4 can serve as a member capable of conducting the heat of the heating element 2 to the heat radiating portion 5 without causing deterioration like a resin.
  (発熱体)
 発熱体2は、自己動作や他からのエネルギー供給によって、熱を発生させる部材である。様々な電気部品、電子部品、機械部品、化学部品などを含む。一例として、発熱体2は、発光素子、ディスクリート素子、電子部品、半導体集積回路およびパワーデバイスの少なくとも一つを含む。すなわち、照明機器、電子機器、輸送機器および製造機器の少なくとも一つに用いられる要素を含んでいる。
(Heating element)
The heating element 2 is a member that generates heat by self-operation or energy supply from others. Includes various electrical parts, electronic parts, mechanical parts, chemical parts, etc. As an example, the heating element 2 includes at least one of a light emitting element, a discrete element, an electronic component, a semiconductor integrated circuit, and a power device. That is, it includes elements used for at least one of lighting equipment, electronic equipment, transportation equipment, and manufacturing equipment.
 発光素子、ディスクリート素子、電子部品などは、電力の供給を受けて動作する。この動作によって、発熱が生じる。近年の照明機器や電子機器は、多くの発光素子を実装している。このため、LEDのような発光素子の一つ一つは、発熱や消費電力が小さくても、多くの発光素子が集まると大きな熱を発生させてしまう。あるいは、ディスクリート素子、半導体集積回路、パワーデバイスは、集積度の向上や性能の向上によって発熱量が高まっている。 発 光 Light emitting elements, discrete elements, electronic components, etc. operate upon receiving power supply. This operation generates heat. In recent years, lighting devices and electronic devices are mounted with many light emitting elements. For this reason, each light-emitting element such as an LED generates a large amount of heat when many light-emitting elements are gathered even if heat generation and power consumption are small. Alternatively, a discrete element, a semiconductor integrated circuit, and a power device have a higher calorific value due to an improvement in integration degree and performance.
 放熱ユニット1は、このような発熱量の高い発熱体2の熱を、放熱部5を通じて放出できる。このとき、複数の発熱体2の一つ一つに対応するように放熱ユニット1が配置されても良いし、複数の発熱体2に対応するように放熱ユニット1が配置されても良い。 The heat dissipating unit 1 can release the heat of the heat generating element 2 having such a large calorific value through the heat dissipating part 5. At this time, the heat radiating unit 1 may be arranged so as to correspond to each of the plurality of heat generating elements 2, or the heat radiating unit 1 may be arranged so as to correspond to the plurality of heat generating elements 2.
 図5は、本発明の実施の形態1における放熱ユニットの実装状態を示す側面図である。図5は、上記前者の複数の発熱体の一つ一つに対応するように、放熱ユニットが配置された状態を示している。図5では、照明機器や電子機器が複数の発熱体2A~2Dを有している(図示の都合であっても、もちろん、更に多くの発熱体を備えていても良い)。発熱体2A~2Dに対応する回路層3は、共通であるが、もちろん個々でも良い。放熱ユニット1A~1Dのそれぞれは、発熱体2A~2Dのそれぞれに対応して実装される。放熱ユニット1Aは、中間体4Aと放熱部5Aを有しており、放熱ユニット1Bは、中間体4Bと放熱部5Bを有している。 FIG. 5 is a side view showing a mounted state of the heat dissipation unit according to Embodiment 1 of the present invention. FIG. 5 shows a state in which a heat dissipation unit is arranged so as to correspond to each of the former plurality of heating elements. In FIG. 5, the lighting device and the electronic device have a plurality of heating elements 2A to 2D (for convenience of illustration, of course, more heating elements may be provided). The circuit layers 3 corresponding to the heating elements 2A to 2D are common, but of course may be individual. Each of the heat radiating units 1A to 1D is mounted corresponding to each of the heat generating elements 2A to 2D. The heat radiating unit 1A has an intermediate body 4A and a heat radiating portion 5A, and the heat radiating unit 1B has an intermediate body 4B and a heat radiating portion 5B.
 放熱ユニット1Aは主として発熱体2Aの熱を放出し、放熱ユニット1Bは主として発熱体2Bの熱を放出し、放熱ユニット1Cは主として発熱体2Cの熱を放出し、放熱ユニット1Dは主として発熱体2Dの熱を放出する。複数の発熱体2のそれぞれに対応する放熱ユニット1が設けられることで、発熱体2全体の放熱効果が高まるメリットがある。 The heat dissipation unit 1A mainly releases the heat of the heating element 2A, the heat dissipation unit 1B mainly releases the heat of the heating element 2B, the heat dissipation unit 1C mainly releases the heat of the heating element 2C, and the heat dissipation unit 1D mainly releases the heat of the heating element 2D. The heat is released. By providing the heat dissipation unit 1 corresponding to each of the plurality of heating elements 2, there is an advantage that the heat dissipation effect of the entire heating element 2 is enhanced.
 図6は、本発明の実施の形態1における放熱ユニットの実装状態を示す側面図である。図6は、図5と異なり、複数の発熱体2全体に対応して実装される。このため、発熱体2A~2Dの全てに対応して、中間体4と放熱部5が設けられている。中間体4は、複数の発熱体2A~2D全体からの熱を放熱部5に伝導する。放熱部5は、伝導された複数の発熱体2A~2Dの熱を放出する。放熱ユニット1が複数の発熱体2に対応するように設けられることで、放熱ユニット1は、発熱体2全体を一度に放熱できて効率的である。もちろん、実装に関するコストも低減できる。 FIG. 6 is a side view showing a mounted state of the heat dissipation unit according to the first embodiment of the present invention. Unlike FIG. 5, FIG. 6 is mounted corresponding to the entire plurality of heating elements 2. For this reason, the intermediate body 4 and the heat radiating portion 5 are provided corresponding to all of the heat generating elements 2A to 2D. The intermediate body 4 conducts heat from the whole of the plurality of heating elements 2A to 2D to the heat radiating section 5. The heat dissipating part 5 emits heat from the plurality of conducted heat generating elements 2A to 2D. Since the heat radiating unit 1 is provided so as to correspond to the plurality of heat generating bodies 2, the heat radiating unit 1 can efficiently radiate heat from the entire heat generating body 2 at a time. Of course, the cost for mounting can also be reduced.
 発熱体2は、実装される機器の種類や仕様に応じて密集して実装されたり、緩やかな隙間をもって実装されたりする。あるいは、複数の発熱体2の全てが一様に発熱する場合と、発熱する発熱体2と発熱しない発熱体2とが、時間や動作によって入れ替わる場合とがある。放熱ユニット1は、これらの違いに応じて、図5のように個々の発熱体2に実装されたり、複数の発熱体2の全体に対応するように実装されたりする。 The heating element 2 is densely mounted according to the type and specification of the device to be mounted, or is mounted with a moderate gap. Alternatively, there are a case where all of the plurality of heating elements 2 generate heat uniformly and a case where the heating element 2 which generates heat and the heating element 2 which does not generate heat are switched depending on time and operation. Depending on these differences, the heat dissipating unit 1 is mounted on each heating element 2 as shown in FIG. 5 or mounted so as to correspond to the entirety of the plurality of heating elements 2.
  (回路層)
 回路層3は、電子部品や発光素子などの発熱体2との電気信号のやり取りのために設けられる。回路層3は、発熱体2との電気信号のやり取りを行う配線がプリントされたプリント基板でもよいし、電極と導電線とが実装された回路基板であってもよい。プリント基板である場合には、インクジェット形式やスクリーン印刷によって金属成分をパターニングすることで、電極や配線が形成される。あるいは金属箔が蒸着されて電極や配線が形成されても良い。あるいはめっきによって電極や配線が形成されても良い。
(Circuit layer)
The circuit layer 3 is provided for exchanging electrical signals with the heating element 2 such as an electronic component or a light emitting element. The circuit layer 3 may be a printed board on which wiring for exchanging electrical signals with the heating element 2 is printed, or may be a circuit board on which electrodes and conductive wires are mounted. In the case of a printed circuit board, electrodes and wiring are formed by patterning a metal component by an ink jet format or screen printing. Or metal foil may be vapor-deposited and an electrode and wiring may be formed. Or an electrode and wiring may be formed by plating.
 回路層3は、このように電気信号をやり取りする電極や配線を形成し、この電極や配線と発熱体2とを電気的に接続する。また、回路層3は、必要に応じて発熱体2とワイヤーで接続される。ワイヤーは、金、白金、銅、アルミニウムなど、導電性の高い素材で形成される。 The circuit layer 3 forms electrodes and wirings for exchanging electrical signals in this way, and electrically connects the electrodes and wirings to the heating element 2. Further, the circuit layer 3 is connected to the heating element 2 by a wire as necessary. The wire is formed of a highly conductive material such as gold, platinum, copper, or aluminum.
 回路層3は、発熱体2と対向する位置に設けられてもよいし、発熱体2と対向する位置以外において設けられても良い。回路層3は、発熱体2への電気信号の供給を目的としているので、発熱体2と対向する位置に必ずしも設けられなくても良いからである。 The circuit layer 3 may be provided at a position facing the heating element 2 or may be provided at a position other than the position facing the heating element 2. This is because the circuit layer 3 is intended to supply an electric signal to the heating element 2 and therefore does not necessarily have to be provided at a position facing the heating element 2.
 すなわち、中間体4おおよび放熱部5の少なくとも一方の表面は、発熱体2と電気的に接続する回路層3および回路基板の少なくとも一方を備えることになる。発熱体2や発熱体2に電気信号を与える場合に、回路層3が発熱体2の底面に必要な場合とそうでない場合があるので、回路層3は、中間体4に積層される領域と放熱部5の表面に積層される領域とが生じうる。 That is, at least one surface of the intermediate body 4 and the heat radiating portion 5 is provided with at least one of the circuit layer 3 and the circuit board that are electrically connected to the heating element 2. When an electric signal is applied to the heating element 2 or the heating element 2, the circuit layer 3 may or may not be necessary on the bottom surface of the heating element 2. A region laminated on the surface of the heat radiating part 5 may occur.
  (放熱部)
 放熱部5は、中間体4から伝導された発熱体2および回路層3の少なくとも一方の熱を放出する。ここで、熱源は、発熱体2であるが、回路層3そのものも発熱することもありえるし、発熱体2の熱を回路層3が受けることもありえる。このため、中間体4は、発熱体2および回路層3の熱を伝導する。この伝導される熱は、発熱体2由来である場合と回路層3由来である場合とを含みうる。
(Heat dissipation part)
The heat radiating part 5 releases the heat of at least one of the heating element 2 and the circuit layer 3 conducted from the intermediate body 4. Here, the heat source is the heating element 2, but the circuit layer 3 itself may also generate heat, or the heat of the heating element 2 may be received by the circuit layer 3. For this reason, the intermediate body 4 conducts the heat of the heating element 2 and the circuit layer 3. This conducted heat can include a case where the heat is derived from the heating element 2 and a case where the heat is derived from the circuit layer 3.
 放熱部5は、金属や合金などの熱伝導率の高い素材で形成されており、中間体4によって伝導された熱を外部に放出する。熱伝導率の高い素材の例として、銅やアルミニウムが好適に採用される。これらの素材は、熱伝導率が高いだけでなく、コストも低く加工性も高いからである。 The heat dissipating part 5 is made of a material having high thermal conductivity such as metal or alloy, and releases the heat conducted by the intermediate body 4 to the outside. As an example of a material having high thermal conductivity, copper or aluminum is preferably employed. This is because these materials have not only high thermal conductivity, but also low cost and high workability.
 放熱部5は、板材や立体形状を有しており、伝導された熱をその内部を平面方向や垂直方向に拡散し、その表面から外部に放出する。放熱部5は、その表面積を大きくするために、板状であったり、表面に凹凸を有していたりすることも好適である。放熱部5は、放熱板やヒートシンクなど、様々な要素を備えても良い。 The heat dissipating part 5 has a plate material or a three-dimensional shape, diffuses the conducted heat in a planar direction or a vertical direction, and releases the heat from the surface to the outside. In order to increase the surface area of the heat radiating portion 5, it is also preferable that the heat radiating portion 5 has a plate shape or has irregularities on the surface. The heat dissipating unit 5 may include various elements such as a heat dissipating plate and a heat sink.
 また、表面に多数のフィンが設けられていても良い。図7は、本発明の実施の形態1におけるフィンを有する放熱部の側面図である。放熱部5は、基体51とフィン52を備えている。基体51の表面(裏面)に多数のフィン52が取り付けられている。多数のフィン52が備わっていると、放熱部5全体の表面積が大きくなり、放熱部5の放熱能力が高まる。また、フィン52は、隣接するフィン52との間に狭小な空間を形成する。このフィン52同士に囲まれる空間は、基体51からの熱によって空気の対流を生じさせる。この空気対流によって、基体51やフィン52に伝導された熱が外部へ放出される。このように、放熱部5が多数のフィン52を備えていることで、放熱部5の放熱能力は更に高まる。 Also, a large number of fins may be provided on the surface. FIG. 7 is a side view of the heat dissipating part having fins in the first embodiment of the present invention. The heat dissipating unit 5 includes a base 51 and fins 52. A large number of fins 52 are attached to the front surface (back surface) of the base 51. When many fins 52 are provided, the surface area of the entire heat dissipating part 5 increases, and the heat dissipating ability of the heat dissipating part 5 increases. Further, the fin 52 forms a narrow space between the adjacent fins 52. The space surrounded by the fins 52 causes air convection due to heat from the base 51. By this air convection, heat conducted to the base 51 and the fins 52 is released to the outside. As described above, the heat dissipating part 5 includes a large number of fins 52, so that the heat dissipating ability of the heat dissipating part 5 is further enhanced.
 また、放熱部5は、外気にさらされて外気へ熱を放出するだけでなく、液冷ジャケットに熱的に接続して、液冷ジャケットを通じて熱を放出することでも良い。あるいは、液体の冷却シートに放熱部5が熱的に接続することで、放熱部5は、伝導された熱を放出しても良い。更には、放熱部5は、別の部材を用いて熱を更なる別の場所に移動させて、移動させた位置において放出することもよい。放熱部5に対して冷却風を吹き付ける冷却ファンが設けられても良い。 Further, the heat radiating unit 5 may be not only exposed to the outside air and releasing heat to the outside air but also thermally connecting to the liquid cooling jacket and releasing the heat through the liquid cooling jacket. Or the thermal radiation part 5 may discharge | release the conducted heat by thermally connecting the thermal radiation part 5 to the liquid cooling sheet. Furthermore, the heat radiating unit 5 may move the heat to another place using another member and release it at the moved position. A cooling fan for blowing cooling air to the heat radiating unit 5 may be provided.
 放熱部5は、ここに列挙した様々な構成に限られず、公知技術として知られている放熱の構造やシステムを備えていれば良い。このような放熱部5が備わることによって、放熱ユニット1は、発熱体2の熱を効率的に放出できる。当然ながら、樹脂ではない中間体4が放熱部5に備わって熱を伝導することで、発熱体2からの熱が効率的に放熱部5に到達するので、放熱部5はその放熱性能を遺憾なく発揮できるようになる。 The heat dissipating unit 5 is not limited to the various configurations listed here, and may have a heat dissipating structure or system known as a known technique. By providing such a heat radiating part 5, the heat radiating unit 1 can efficiently release the heat of the heating element 2. Of course, since the intermediate body 4 which is not a resin is provided in the heat radiating portion 5 and conducts heat, the heat from the heat generating body 2 efficiently reaches the heat radiating portion 5, so the heat radiating portion 5 regrets its heat radiating performance. It will be able to demonstrate without.
 実施の形態1で説明した中間体4は、金属アルコキシドに基づく無機結合相にある種の無機物粒子の相が付加されることで、熱伝導を実現できる。この熱伝導に加えて、十分な弾性特性、絶縁性、金属との結合性が高く、耐久性にも優れている。このような中間体4が実現されることで、様々な発熱体2の熱を放出する放熱ユニット1が実現できる。 The intermediate body 4 described in the first embodiment can realize heat conduction by adding a certain inorganic particle phase to an inorganic binder phase based on a metal alkoxide. In addition to this heat conduction, it has sufficient elastic properties, insulating properties, high bondability with metals, and excellent durability. By realizing such an intermediate body 4, it is possible to realize the heat radiating unit 1 that releases the heat of various heat generating elements 2.
 このため、中間体4は、それ単体として流通したり、利用されたりしてもよい。 For this reason, the intermediate body 4 may be distributed or used as a single body.
 (実施の形態2) (Embodiment 2)
 次に実施の形態2について説明する。実施の形態2では、実施の形態1で説明した放熱ユニット1が適用される機器について説明する。 Next, the second embodiment will be described. In the second embodiment, a device to which the heat dissipation unit 1 described in the first embodiment is applied will be described.
 放熱ユニット1が放熱を行いたい対象となる発熱体は、発光素子、ディスクリート素子、電子部品、半導体集積回路、機械部品、パワーデバイスおよび化学品の少なくとも一つである。もちろん、ここに列挙したものに限定されることを意図するのではなく、あくまでも例示である。熱を発生する発熱体であれば、実施の形態1で説明した放熱ユニット1は、様々に適用される。 The heating element to which the heat radiating unit 1 wants to radiate heat is at least one of a light emitting element, a discrete element, an electronic component, a semiconductor integrated circuit, a mechanical component, a power device, and a chemical product. Of course, it is not intended to be limited to those listed here, but is merely exemplary. If it is a heat generating body which generate | occur | produces heat, the thermal radiation unit 1 demonstrated in Embodiment 1 is applied variously.
 図8は、本発明の実施の形態2における照明機器のブロック図である。省エネや環境保護の観点から、多数のLED21が実装された照明機器10が、多く用いられるようになっている。多数のLED21が実装されると、個々の発熱が総計されるので、かなりの熱が発生する。また、LED21の発光を強くするためには、大きな電流を付与する必要があり、この場合にもLED21からの発熱が大きくなる。 FIG. 8 is a block diagram of the lighting device according to the second embodiment of the present invention. From the viewpoint of energy saving and environmental protection, a large number of lighting devices 10 on which a large number of LEDs 21 are mounted are used. When a large number of LEDs 21 are mounted, since the individual heat generation is summed, considerable heat is generated. Moreover, in order to make the light emission of LED21 strong, it is necessary to give a big electric current, and also in this case, the heat_generation | fever from LED21 becomes large.
 照明機器10は、複数のLED21に放熱ユニット1を実装している。また、複数のLED21のそれぞれに放熱ユニット1が実装されている。もちろん、複数のLED21に対してまとめた形態で放熱ユニット1が実装されても良い。また、照明機器10は、LED21などを格納する筐体11と、回路層3(回路基板も同じ)を制御する制御部6と、電力を供給する電源7を備えている。電源7は、外部電源(AC電源など)からの電力を制御部6などに供給したり、自らが蓄電する電力を制御部6などに供給したりする。制御部6は、複数のLED21の発光パターンや発光量を制御する制御信号を生成して、回路層3に出力する。回路層3は、この制御信号に基づいて、必要な電気信号を複数のLED21に付与する。電気信号を受けた複数のLED21は、電気信号の特性に応じて発光したり消灯したりする。 The lighting device 10 has the heat dissipation unit 1 mounted on a plurality of LEDs 21. Moreover, the heat dissipation unit 1 is mounted on each of the plurality of LEDs 21. Of course, the heat radiating unit 1 may be mounted in a form in which the plurality of LEDs 21 are collected. The lighting device 10 includes a housing 11 that stores the LEDs 21 and the like, a control unit 6 that controls the circuit layer 3 (the circuit board is the same), and a power supply 7 that supplies power. The power source 7 supplies power from an external power source (AC power source or the like) to the control unit 6 or the like, or supplies power stored by itself to the control unit 6 or the like. The control unit 6 generates a control signal for controlling the light emission pattern and the light emission amount of the plurality of LEDs 21 and outputs the control signal to the circuit layer 3. The circuit layer 3 gives necessary electric signals to the plurality of LEDs 21 based on this control signal. The plurality of LEDs 21 that have received the electrical signal emit light or turn off according to the characteristics of the electrical signal.
 複数のLED21A~21Dのそれぞれには、放熱ユニット1A~1Dが設けられている。放熱ユニット1Aは、中間体4Aと放熱部5Aを有しており、LED21Aの熱を放出する。同様に放熱ユニット1Bは、中間体4Bと放熱部5Bとを備えており、LED21Bの熱を放出する。放熱ユニット1C、1Dも同様である。 Each of the plurality of LEDs 21A to 21D is provided with heat radiation units 1A to 1D. The heat radiating unit 1A has an intermediate body 4A and a heat radiating portion 5A, and releases the heat of the LED 21A. Similarly, the heat radiating unit 1B includes an intermediate body 4B and a heat radiating portion 5B, and releases the heat of the LED 21B. The same applies to the heat dissipation units 1C and 1D.
 照明機器10が備える複数のLED21に放熱ユニット1が実装されることで、照明機器10は、その発熱を抑えることができ、性能劣化や故障を防止できる。発熱体となるLED21の熱は、金属アルコキシドが加水分解・脱水重合されて得られる無機結合相と無機物粒子の相とを備える中間体4によって放熱部5に伝導される。中間体4は、樹脂と異なり光に対する劣化に強く、熱伝導も良い。このため、中間体4は、LED21の熱を確実かつ効率的に放熱部5に伝導する。中間体4はその十分な弾性特性によって、加わる熱やストレスによって剥離したり損傷したりしにくい。このため、照明機器10のように、点灯と消灯が繰り返される場合でも放熱ユニット1が劣化することが低減される。 Since the heat dissipation unit 1 is mounted on the plurality of LEDs 21 included in the lighting device 10, the lighting device 10 can suppress heat generation and can prevent performance deterioration and failure. The heat of the LED 21 serving as a heating element is conducted to the heat radiating portion 5 by the intermediate body 4 including an inorganic binder phase obtained by hydrolysis and dehydration polymerization of a metal alkoxide and a phase of inorganic particles. Unlike the resin, the intermediate body 4 is resistant to light degradation and has good heat conduction. For this reason, the intermediate body 4 conducts the heat of the LED 21 to the heat radiating portion 5 reliably and efficiently. The intermediate body 4 is not easily peeled off or damaged by applied heat or stress due to its sufficient elastic properties. For this reason, even when lighting and extinguishing are repeated as in the lighting device 10, deterioration of the heat dissipation unit 1 is reduced.
 図8では、LED21A~21Dのそれぞれに放熱ユニット1A~1Dが実装されているが、LED21A~21D全体に一つの放熱ユニット1A~1Dが実装されても良い。あるいは、LED21がマトリクス状に配置されている場合には、列ごとに放熱ユニット1が実装されても良い。図9は、本発明の実施の形態2における照明機器の底面図である。図9は、照明機器10を底面側から内部を透視した状態を示している。 In FIG. 8, the heat radiation units 1A to 1D are mounted on the LEDs 21A to 21D, respectively, but one heat radiation unit 1A to 1D may be mounted on the entire LEDs 21A to 21D. Or when LED21 is arrange | positioned at matrix form, the thermal radiation unit 1 may be mounted for every row | line | column. FIG. 9 is a bottom view of the lighting apparatus according to Embodiment 2 of the present invention. FIG. 9 shows a state in which the illumination device 10 is seen through from the bottom side.
 照明機器10は、マトリクス状に配置されたLED21を備えている。放熱ユニット1は、このマトリクス状のLEDの各列に設けられている。放熱ユニット1Aは最上位列に実装される複数のLED21の熱を放出する。このとき、放熱ユニット1Aは、中間体4と放熱部5を備えており、中間体4が、最上位列に実装される複数のLED21の熱を放熱部5に伝導し、放熱部5がこの熱を外部に放出する。他の列に設けられる放熱ユニット1B~1Dも、同様である。 The lighting device 10 includes LEDs 21 arranged in a matrix. The heat dissipation unit 1 is provided in each row of the matrix-like LEDs. The heat radiating unit 1A releases the heat of the plurality of LEDs 21 mounted in the uppermost row. At this time, the heat radiating unit 1A includes an intermediate body 4 and a heat radiating portion 5. The intermediate body 4 conducts heat of the plurality of LEDs 21 mounted in the uppermost row to the heat radiating portion 5, and the heat radiating portion 5 Release heat to the outside. The same applies to the heat radiation units 1B to 1D provided in the other rows.
 放熱ユニット1は、照明機器10だけではなく、様々な電子機器にも適用される。例えば、ディスクリート素子、電子部品、半導体集積回路およびパワーデバイスの少なくとも一つであるような発熱体2が実装されている電子機器に、放熱ユニット1は、好適に適用される。 The heat dissipation unit 1 is applied not only to the lighting device 10 but also to various electronic devices. For example, the heat dissipation unit 1 is suitably applied to an electronic device in which a heating element 2 that is at least one of a discrete element, an electronic component, a semiconductor integrated circuit, and a power device is mounted.
 電子機器は、例として、パーソナルコンピュータ、サーバー機器、ノートブック型パソコン、液晶画像装置、計測機器など、発熱体となりうる上述の要素が様々に実装されている機器を含む。これらの電子機器は、その仕様状態によって、発熱体が高い熱を発生させることが多い。ヒートシンクなどの放熱部材を備えていても、発熱体からの熱が放熱部材に効率的に伝導されないことも多い。このような電子機器に実施の形態1で説明した放熱ユニット1が実装されると、中間体4によって発熱体の熱が放熱部5に伝導されて放出される。電子機器も、照明機器10と同様に発熱を繰り返すので、発熱体から熱を伝導する中間体4には、ストレス付加が大きい。しかし、実施の形態1で説明した中間体4は、十分な弾性特性があり、ストレス付加に対する耐久性も高いので、損傷等を生じさせること無く熱を伝導できる。この結果、電子機器全体の発熱を抑えることができる。当然ながら、電子機器の性能劣化や故障を防止できる。 Electronic devices include, for example, personal computers, server devices, notebook computers, liquid crystal imaging devices, measuring devices, and other devices on which the above-described elements that can become heating elements are mounted. In these electronic devices, the heating element often generates high heat depending on the specification state. Even when a heat radiating member such as a heat sink is provided, the heat from the heating element is often not efficiently conducted to the heat radiating member. When the heat dissipation unit 1 described in the first embodiment is mounted on such an electronic device, the heat of the heating element is conducted to the heat dissipation portion 5 by the intermediate body 4 and released. Since the electronic device also repeatedly generates heat in the same manner as the lighting device 10, the intermediate body 4 that conducts heat from the heating element is greatly stressed. However, since the intermediate body 4 described in the first embodiment has sufficient elastic characteristics and high durability against stress application, it can conduct heat without causing damage or the like. As a result, heat generation of the entire electronic device can be suppressed. Naturally, it is possible to prevent performance deterioration and failure of the electronic device.
 また、放熱ユニット1は、電子機器だけでなく、航空機、自動車や大型車両などの輸送機器にも適用できる。これらの輸送機器は、エンジンや照明など、発熱を生じさせる発熱体を様々に実装している。放熱ユニット1は、これら発熱体に適用される。この場合にも、中間体4は、高い十分な弾性特性をもって劣化等することなく、効率的に放熱部5に熱を伝導できる。すなわち、放熱ユニット1は、高い耐久性をもって発熱体の熱を放出できる。結果として、輸送機器の性能劣化や故障を防止できる。 Also, the heat dissipation unit 1 can be applied not only to electronic equipment but also to transportation equipment such as aircraft, automobiles and large vehicles. These transportation devices are mounted with various heating elements that generate heat, such as engines and lights. The heat dissipation unit 1 is applied to these heating elements. Also in this case, the intermediate body 4 can efficiently conduct heat to the heat radiating portion 5 without deterioration or the like with high sufficient elastic characteristics. That is, the heat dissipation unit 1 can release the heat of the heating element with high durability. As a result, it is possible to prevent the performance deterioration and failure of the transportation equipment.
 放熱ユニット1は、製造機器や製造装置に適用されることも好適である。製造機器や製造装置は、熱を用いるものがある。例えばアーク装置やアニール装置は、加工する素材へ熱を与える。このため、アーク装置やアニール装置は、筐体を備えている。筐体内部は、熱を有している。放熱ユニット1は、この筐体内壁に設けられて、内部の熱を筐体外部や特定の放出路に放出できる。 The heat dissipation unit 1 is also preferably applied to manufacturing equipment and manufacturing equipment. Some manufacturing equipment and manufacturing equipment use heat. For example, an arc device or an annealing device applies heat to a material to be processed. For this reason, the arc device and the annealing device include a housing. The inside of the housing has heat. The heat dissipating unit 1 is provided on the inner wall of the casing, and can release the internal heat to the outside of the casing or a specific discharge path.
 以上のように、放熱ユニット1を備える照明機器、電子機器、輸送機器および製造機器は、熱による性能劣化や故障を防止できる。 As described above, lighting equipment, electronic equipment, transportation equipment, and manufacturing equipment including the heat dissipation unit 1 can prevent performance deterioration and failure due to heat.
  (実施例)
 LEDが実装されるLED基板に放熱ユニット1が実装される実施例について説明する。この場合、放熱ユニット1は、LEDからの熱を放出するのに適したデバイスである。図10は、本発明の実施例のブロック図である。図10は、LED用放熱ユニット100を底面から透視状態で示している。このため、図10では、中間体4や放熱部5が重なってしまっている。発熱体は、単数または複数のLED29である。ただし、狭い領域に大きな熱が生じやすい少数のLEDが狭い領域に実装されている状態に最適に適用される。
(Example)
An embodiment in which the heat dissipation unit 1 is mounted on the LED substrate on which the LED is mounted will be described. In this case, the heat dissipation unit 1 is a device suitable for releasing heat from the LED. FIG. 10 is a block diagram of an embodiment of the present invention. FIG. 10 shows the LED heat dissipation unit 100 in a transparent state from the bottom. For this reason, in FIG. 10, the intermediate body 4 and the thermal radiation part 5 have overlapped. The heating element is one or a plurality of LEDs 29. However, the present invention is optimally applied to a state where a small number of LEDs that tend to generate large heat in a narrow region are mounted in the narrow region.
 回路層3は、LEDに電気信号を与える金属パターン33である。中間体4は、無機物粒子の相と、該無機物粒子の相の周囲に配せられる無機結合相を有する。ここで、無機結合相は、金属アルコキシドが加水分解および脱水重合されて得られるSi-Oネットワークである。このSi-Oネットワークにより、無機結合相およびこれを含む中間体4は、十分な弾性特性、金属との結合性、絶縁性を有するようになる。 The circuit layer 3 is a metal pattern 33 that gives an electric signal to the LED. The intermediate body 4 has an inorganic particle phase and an inorganic binder phase arranged around the inorganic particle phase. Here, the inorganic binder phase is a Si—O network obtained by hydrolysis and dehydration polymerization of a metal alkoxide. By this Si—O network, the inorganic binder phase and the intermediate 4 including the inorganic binder phase have sufficient elastic properties, bondability with metal, and insulation.
 無機物粒子は、主として粒子径0.01~10μmの範囲に入るダイヤモンド粒子である。この粒子径0.01~10μmの範囲に入るダイヤモンド粒子によって、これを含む中間体4は、高い熱伝導性を有するようになる。このとき、無機物粒子であるダイヤモンド粒子の比率が中間体4に対して55体積%である場合には、中間体4の熱伝導率は、8W/m・Kである。ダイヤモンド粒子の比率が中間体4に対して70体積%である場合には、中間体4の熱伝導率は、25W/m・Kである。ダイヤモンド粒子の比率が中間体4に対して90体積%である場合には、中間体4の熱伝導率は、400W/m・Kである。このように、ダイヤモンド粒子が無機物粒子として用いられる中間体4は、高い熱伝導性を示す。 The inorganic particles are mainly diamond particles having a particle diameter in the range of 0.01 to 10 μm. Due to the diamond particles falling within the range of 0.01 to 10 μm, the intermediate 4 including the particles has high thermal conductivity. At this time, when the ratio of diamond particles that are inorganic particles is 55% by volume with respect to the intermediate body 4, the thermal conductivity of the intermediate body 4 is 8 W / m · K. When the ratio of the diamond particles is 70% by volume with respect to the intermediate body 4, the thermal conductivity of the intermediate body 4 is 25 W / m · K. When the ratio of diamond particles is 90% by volume with respect to the intermediate body 4, the thermal conductivity of the intermediate body 4 is 400 W / m · K. Thus, the intermediate body 4 in which diamond particles are used as inorganic particles exhibits high thermal conductivity.
 また、放熱部5は、銅合金で形成されているヒートシンクである。図10では、底面から示す都合上、ヒートシンクの形状を明示できないが、市販されている板状であったりフィンが設けられている一般的なヒートシンクであったりする。また、中間体4は、金属である放熱部5に確実に結合する。 Further, the heat radiating portion 5 is a heat sink formed of a copper alloy. In FIG. 10, the shape of the heat sink cannot be clearly shown for the sake of convenience from the bottom, but it may be a commercially available plate shape or a general heat sink provided with fins. Moreover, the intermediate body 4 is reliably couple | bonded with the thermal radiation part 5 which is a metal.
 LED放熱ユニット100は、発熱体であるLED29で発生する熱を、中間体4を介して放熱部5に伝導させる。放熱部5は、伝導された熱を、外部に放出する。このとき、中間体4は、高い熱伝導性を有すると共に、十分な弾性特性などの特性も有する。この結果、効率よくLED29の熱を放熱部5に伝導できる。もちろん、十分な弾性特性や金属との結合性を有しているので、中間体4は、放熱部5と剥離したり損傷したりすることもない。このように、LED放熱ユニット100は、実装されているLED29の熱を効率的に放出できる。 The LED heat radiating unit 100 conducts heat generated by the LED 29 that is a heating element to the heat radiating part 5 through the intermediate body 4. The heat radiating unit 5 releases the conducted heat to the outside. At this time, the intermediate body 4 has high thermal conductivity and characteristics such as sufficient elastic characteristics. As a result, the heat of the LED 29 can be efficiently conducted to the heat radiating portion 5. Of course, the intermediate body 4 does not peel off or be damaged from the heat radiating portion 5 because it has sufficient elastic properties and metal binding properties. Thus, the LED heat dissipation unit 100 can efficiently release the heat of the mounted LED 29.
 本発明の放熱ユニット1は、このようにLED放熱ユニット100などにおいて実用される。 The heat radiating unit 1 of the present invention is practically used in the LED heat radiating unit 100 and the like in this way.
 以上、実施の形態1~2で説明された放熱ユニットは、本発明の趣旨を説明する一例であり、本発明の趣旨を逸脱しない範囲での変形や改造を含む。 The heat radiating unit described in the first and second embodiments is an example for explaining the gist of the present invention, and includes modifications and alterations without departing from the gist of the present invention.
 1  放熱ユニット
 2  発熱体
 3  回路層
 4  中間体
 5  放熱部
 6  制御部
 7  電源
 10  照明機器
 11  筐体
DESCRIPTION OF SYMBOLS 1 Heat radiation unit 2 Heat generating body 3 Circuit layer 4 Intermediate body 5 Heat radiation part 6 Control part 7 Power supply 10 Illumination equipment 11 Case

Claims (11)

  1.  発熱体から伝導される熱を放出する放熱部と、
     前記発熱体からの熱を前記放熱部に伝導する中間体と、を備え、
     前記中間体は、無機物粒子の相と、該無機物粒子の相の周囲に配せられる無機結合相を有し、
     前記無機結合相は、金属アルコキシドが加水分解および脱水重合されて形成される無機材質を含み、
     前記金属アルコキシドをなす金属元素は、Al、Mg,Si、Ti、Zr、Beの群から選択される1以上であり、
     前記中間体は、前記放熱部の表面に接合している、放熱ユニット。
    A heat dissipating part that releases heat conducted from the heating element;
    An intermediate that conducts heat from the heating element to the heat radiating portion;
    The intermediate has an inorganic particle phase and an inorganic binder phase disposed around the inorganic particle phase;
    The inorganic binder phase includes an inorganic material formed by hydrolysis and dehydration polymerization of a metal alkoxide,
    The metal element forming the metal alkoxide is at least one selected from the group consisting of Al, Mg, Si, Ti, Zr, and Be,
    The intermediate body is a heat dissipation unit bonded to the surface of the heat dissipation portion.
  2.  前記無機物粒子は、AlN、cBN、hBN、Al、MgO,ダイヤモンドおよびグラファイトの群から選択される少なくとも一つである、請求の範囲第1項記載の放熱ユニット。 The inorganic particles, AlN, cBN, hBN, Al 2 O 3, MgO, at least one selected from the group of diamond and graphite, the heat dissipation unit according claim 1, wherein.
  3.  前記無機物粒子は、前記中間体に対して、40体積%以上であり、好ましくは50体積%以上であり、更に好ましくは70体積%以上である、請求の範囲第1項又は第2項記載の放熱ユニット。 The said inorganic substance particle | grain is 40 volume% or more with respect to the said intermediate body, Preferably it is 50 volume% or more, More preferably, it is 70 volume% or more, Claim 1 or 2 of Claim 1 or 2 Heat dissipation unit.
  4.  前記無機物粒子は、前記中間体における面方向の長さが、前記中間体における垂直方向の長さよりも長い、請求の範囲第1項から第3項のいずれか記載の放熱ユニット。 The heat dissipation unit according to any one of claims 1 to 3, wherein the inorganic particles have a length in a plane direction of the intermediate body that is longer than a length in a vertical direction of the intermediate body.
  5.  前記中間体は、前記放熱部の表面に塗布された後、100~300℃で熱処理されて形成される、請求の範囲第1項から第4項のいずれか記載の放熱ユニット。 The heat radiating unit according to any one of claims 1 to 4, wherein the intermediate body is formed by being heat-treated at 100 to 300 ° C after being applied to a surface of the heat radiating portion.
  6.  前記中間体は、100kPa以上のせん断接合強度を有すると共に100kPa以上のせん断接合強度の1000倍以下の剛性率を有して、前記放熱部に接合している、請求の範囲第1項から第5項のいずれか記載の放熱ユニット。 The intermediate body has a shear bonding strength of 100 kPa or more and a rigidity equal to or less than 1000 times the shear bonding strength of 100 kPa or more, and is bonded to the heat radiating portion. The heat dissipation unit according to any one of the items.
  7.  前記中間体および前記放熱部の少なくとも一方の表面は、前記発熱体と電気的に接続する回路基板および回路層の少なくとも一つを設ける、請求の範囲第1項から第6項のいずれか記載の放熱ユニット。 The at least one surface of the said intermediate body and the said thermal radiation part provides at least one of the circuit board and circuit layer which are electrically connected with the said heat generating body, The range of any one of Claim 1-6 Heat dissipation unit.
  8.  前記発熱体は、発光素子、ディスクリート素子、電子部品、半導体集積回路およびパワーデバイスの少なくとも一つを含む、請求の範囲第1項から第7項のいずれか記載の放熱ユニット。 The heat dissipation unit according to any one of claims 1 to 7, wherein the heating element includes at least one of a light emitting element, a discrete element, an electronic component, a semiconductor integrated circuit, and a power device.
  9.  前記発熱体は、照明機器、電子機器、輸送機器および製造機器の少なくとも一つに用いられる要素を含む、請求の範囲第1項から第8項のいずれか記載の放熱ユニット。 The heat dissipation unit according to any one of claims 1 to 8, wherein the heating element includes an element used for at least one of lighting equipment, electronic equipment, transportation equipment, and manufacturing equipment.
  10.  発熱体と、
     前記発熱体と電気的に接続する回路層と、
     前記回路基板と熱的に接続する請求の範囲第1項から第9項のいずれか記載の放熱ユニットと、
     前記回路基板を制御する制御部と、を備え、
     前記発熱体は、発光素子である照明機器。
    A heating element;
    A circuit layer electrically connected to the heating element;
    The heat dissipation unit according to any one of claims 1 to 9, wherein the heat dissipation unit is thermally connected to the circuit board.
    A control unit for controlling the circuit board,
    The lighting device is a light emitting element.
  11.  発熱体と、
     前記発熱体と電気的に接続する回路層と、
     前記回路基板と熱的に接続する請求の範囲第1項から第9項のいずれか記載の放熱ユニットと、
     前記回路基板を制御する制御部と、を備え、
     前記発熱体は、ディスクリート素子、電子部品、半導体集積回路およびパワーデバイスの少なくとも一つである電子機器。
    A heating element;
    A circuit layer electrically connected to the heating element;
    The heat dissipation unit according to any one of claims 1 to 9, wherein the heat dissipation unit is thermally connected to the circuit board.
    A control unit for controlling the circuit board,
    The heating element is an electronic device that is at least one of a discrete element, an electronic component, a semiconductor integrated circuit, and a power device.
PCT/JP2012/063601 2011-06-18 2012-05-28 Heat-dissipating unit WO2012176581A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-135820 2011-06-18
JP2011135820A JP2013004822A (en) 2011-06-18 2011-06-18 Heat dissipation unit

Publications (1)

Publication Number Publication Date
WO2012176581A1 true WO2012176581A1 (en) 2012-12-27

Family

ID=47422423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063601 WO2012176581A1 (en) 2011-06-18 2012-05-28 Heat-dissipating unit

Country Status (2)

Country Link
JP (1) JP2013004822A (en)
WO (1) WO2012176581A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6395153B2 (en) * 2014-11-04 2018-09-26 日本タングステン株式会社 COATING FILM, ITS MANUFACTURING METHOD, AND COATING FILM FORMING METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317742A (en) * 2004-04-28 2005-11-10 Ceramission Kk Heat radiator for closed structure
JP2009152536A (en) * 2007-08-17 2009-07-09 Shinshu Univ Circuit board of electronic apparatus assuring highly efficient heat radiation, and electronic controller, computer system, electrical home appliance, and industrial apparatus product including the same
JP2010205955A (en) * 2009-03-04 2010-09-16 Micro Coatec Kk Heat conductive electronic circuit board, electronic apparatus using the same, and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288214A (en) * 2004-03-31 2005-10-20 Dainippon Ink & Chem Inc Method of producing hardened film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317742A (en) * 2004-04-28 2005-11-10 Ceramission Kk Heat radiator for closed structure
JP2009152536A (en) * 2007-08-17 2009-07-09 Shinshu Univ Circuit board of electronic apparatus assuring highly efficient heat radiation, and electronic controller, computer system, electrical home appliance, and industrial apparatus product including the same
JP2010205955A (en) * 2009-03-04 2010-09-16 Micro Coatec Kk Heat conductive electronic circuit board, electronic apparatus using the same, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2013004822A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
US8803183B2 (en) LED heat-conducting substrate and its thermal module
TWI322915B (en) Heat dissipation structure of backliht module
KR101934075B1 (en) Film system for led applications
JP4880358B2 (en) Light source substrate and illumination device using the same
JP5082083B2 (en) LED lighting device
US20170038055A1 (en) Roll-to-roll fabricated light sheet and encapsulated semiconductor device
KR20150015900A (en) Led chip-on-board type rigid flexible pcb and rigid flexible heat spreader sheet pad and heat-sink structure using the same
JP2012503306A (en) Light emitting device
JP2010153803A (en) Electronic component mounting module and electrical apparatus
JP3128955U (en) Electric circuit board structure with heat dissipation sheet
KR101010351B1 (en) heatsink using Nanoparticles
WO2012071795A9 (en) Printed circuit board with insulated micro radiator
TWM378614U (en) The ceramic radiator with conductive circuit
US20110001418A1 (en) High heat dissipation electric circuit board and manufacturing method thereof
JP2016539508A (en) Mounting assembly and light emitting device
CN101740678A (en) Solid state light-emitting element and light source module
KR100775449B1 (en) A circuit board having heat sink layer
JP2012231061A (en) Electronic component module and manufacturing method of the same
WO2012176581A1 (en) Heat-dissipating unit
JP2010098128A (en) Heat dissipation structure
JP3158994U (en) Circuit board
WO2011038550A1 (en) Led energy-saving lamp
JP2002278481A (en) Led display unit and method for manufacturing the same
TW201636535A (en) Light emission module
TWI325640B (en) Led device module with high heat dissipation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12801812

Country of ref document: EP

Kind code of ref document: A1