WO2012176558A1 - Reactor, and manufacturing method therefor - Google Patents

Reactor, and manufacturing method therefor Download PDF

Info

Publication number
WO2012176558A1
WO2012176558A1 PCT/JP2012/062313 JP2012062313W WO2012176558A1 WO 2012176558 A1 WO2012176558 A1 WO 2012176558A1 JP 2012062313 W JP2012062313 W JP 2012062313W WO 2012176558 A1 WO2012176558 A1 WO 2012176558A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
core
adhesive
case
gap plate
Prior art date
Application number
PCT/JP2012/062313
Other languages
French (fr)
Japanese (ja)
Inventor
康 野村
睦 伊藤
秀男 俵
鬼塚 孝浩
大石 明典
松谷 佳昭
Original Assignee
住友電気工業株式会社
住友電装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電装株式会社 filed Critical 住友電気工業株式会社
Publication of WO2012176558A1 publication Critical patent/WO2012176558A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • H01F27/325Coil bobbins

Definitions

  • the present invention relates to a reactor used for a component of a power conversion device such as an in-vehicle DC-DC converter mounted on a hybrid vehicle, and a manufacturing method thereof.
  • Patent Document 1 discloses a reactor used for a converter mounted on a vehicle such as a hybrid vehicle.
  • This reactor includes a combination formed by combining a coil member having a pair of coils connected in parallel and an annular magnetic core that is fitted into these coils so as to penetrate the inside of both coils.
  • the magnetic core constituting the reactor assembly is usually a combination of a plurality of core pieces and a gap plate interposed between the core pieces.
  • an epoxy resin adhesive or a urethane resin adhesive is used for bonding the core piece and the gap plate (see, for example, paragraph 0041 of Patent Document 1).
  • the present invention has been made in view of the above circumstances, and one of the objects of the present invention is to provide a reactor manufacturing method capable of manufacturing a reactor more easily than before, and a reactor obtained by the manufacturing method. It is to provide.
  • the inventors focused on the method of bonding the core piece and the gap plate.
  • a thermosetting material has been used in consideration of heat resistance. Therefore, in the manufacturing process of the reactor, a curing process for curing the thermosetting adhesive is required.
  • the curing process requires heating equipment such as a batch furnace, and also requires heating time. Therefore, the present inventors have studied using a room temperature curable adhesive for bonding the core piece and the gap plate, and have completed the present invention.
  • the manufacturing method of the reactor of this invention is a manufacturing method of the reactor which produces the reactor provided with the coil member which has a pair of coils connected in the parallel state, and the cyclic
  • a plurality of core pieces to be combined with each other and a gap plate interposed between the core pieces are prepared, and the core piece and the gap plate are bonded to each other at room temperature.
  • the magnetic core is produced by bonding with an agent.
  • the manufacturing method of the reactor of the present invention since a room temperature curable adhesive is used for bonding the core piece and the gap plate, it is necessary to perform a curing process as in the case of using a thermosetting adhesive. Disappear. Accordingly, the reactor manufacturing process can be simplified and the productivity of the reactor can be improved.
  • the reactor of the present invention is a reactor including a combination of a coil member having a pair of coils connected in parallel and an annular magnetic core penetrating the inside of both coils.
  • the magnetic core provided in the reactor of the present invention is formed by combining a plurality of core pieces and a gap plate interposed between the core pieces, and a room temperature curable adhesive is bonded between the core piece and the gap plate.
  • An adhesive layer made of an agent is provided.
  • the reactor of the present invention is a reactor manufactured with higher productivity than before. It uses a room-temperature curable adhesive instead of a thermosetting adhesive for the production of the magnetic core provided in the reactor. Because.
  • the reactor of the present invention can be configured to include a case that houses the assembly.
  • the case is formed on the side wall portion surrounding the assembly, the bottom plate portion which is a member different from the side wall portion, and the case inner surface side of the bottom plate portion, and the heat dissipation interposed between the bottom plate portion and the coil. And a layer.
  • this invention reactor does not make a case essential, it can protect a combination from the physical impact from the outside by setting it as a structure provided with a case, and can also improve the heat dissipation of a combination. . Particularly, by arranging the side wall portion and the bottom plate portion separately, it is easy to arrange the assembly (including alignment) in the case. Moreover, the heat dissipation of a reactor can be improved by interposing a thermal radiation layer between a baseplate part and a coil.
  • reactor provided with the case which has the said side wall part, a baseplate part, and a thermal radiation layer, it is provided with the contact bonding layer which consists of a normal temperature curable adhesive between a baseplate part and the magnetic core exposed from a coil. Is preferred.
  • the case and the combined body can be integrated by fixing the combined body to the case.
  • a normal temperature curable adhesive is used for the integration, it is not necessary to perform a curing process unlike a thermosetting adhesive.
  • the Shore hardness of the adhesive layer is preferably D70 to D100.
  • the Shore hardness of the adhesive layer made of the cured room temperature curable adhesive is within the above range, it becomes like a rigid body in which the core piece and the gap plate joined by this adhesive are almost integrated. That is, the whole magnetic core formed by combining the core piece and the gap can be made into one rigid body. Further, in the reactor including the case, if the Shore hardness of the adhesive layer between the case and the combined body is within the above range, the entire reactor including the case can be made into one rigid body. Thus, if a reactor including a magnetic core and a case becomes one rigid body, the vibration of the reactor accompanying use of a reactor can be suppressed.
  • the glass transition point of the adhesive layer is preferably 70 ° C. to 180 ° C.
  • the glass transition point of the cured adhesive layer composed of a normal temperature curable adhesive is within the above range, the adhesive layer will not be softened at the use temperature of the reactor. Therefore, the rigidity of the entire magnetic core formed by combining the core piece and the gap plate can be maintained while the reactor is used. As a result, it is possible to suppress the vibration of the reactor accompanying the use of the reactor. If an adhesive layer having a glass transition point in the above range is also used for adhesion between the case and the assembly, the rigidity of the entire reactor including the case can be maintained.
  • a room temperature curable instantaneous adhesive is applied to the core piece, and a primer (an undercoat which improves the adhesive strength of the adhesive) is applied to the gap plate.
  • a primer an undercoat which improves the adhesive strength of the adhesive
  • the adhesive can be prevented from curing before the core piece and the gap plate are stacked. Further, by applying the instantaneous adhesive on the core piece side and the primer on the gap plate side, it is possible to prevent the adhesive from directly touching the gap plate and eroding the gap plate.
  • FIG. 1 is an exploded perspective view showing an outline of a reactor described in Embodiment 1.
  • FIG. It is a disassembled perspective view which shows the outline of the combination body of the reactor shown in FIG.
  • a reactor 1 shown in FIG. 1 includes a combined body 10 formed by combining a coil member 2 and a magnetic core 3, and a case 4 that houses the combined body 10.
  • the case 4 is a box that is open on one side, and the combined body 10 arranged in the case 4 is embedded in a sealing resin (not shown) except for the end of the winding 2 w that forms the coil member 2. Is done.
  • the most characteristic feature of the reactor 1 is that the magnetic core 3 is formed by combining a plurality of core pieces (outer core portions 33 and 34, split cores 31m) and a gap plate 31g as shown in FIG. This is because the room temperature curable adhesive is used for joining the core pieces 33, 34, 31m and the gap plate 31g.
  • each structure of the reactor 1 is demonstrated in detail, and the manufacturing method of the said reactor 1 is demonstrated then.
  • the coil member 2 constituting the combined body 10 will be described with reference to FIGS.
  • the coil member 2 includes a pair of coils 2a and 2b and a coil connecting portion 2r that connects both the coils 2a and 2b.
  • the coils 2a and 2b are formed in a hollow rectangular tube shape with the same number of turns and the same winding direction, and are arranged side by side so that the axial directions are parallel to each other.
  • the connecting portion 2r is a portion bent in a U shape that connects the coils 2a and 2b on the other end side of the coil member 2 (the right side in FIG. 1 and FIG. 2).
  • the coil member 2 in this embodiment is composed of a single winding 2w provided with an insulating coating (typically polyimide amide) on the outer periphery of a flat conductor such as copper or aluminum, and the portions of the coils 2a and 2b are windings. It is formed in a rectangular tube shape by winding 2w spirally edgewise.
  • the cross section of the winding 2w is not limited to a rectangular shape, and may be a circular shape, an elliptical shape, a polygonal shape, or the like, and the winding shape may be an elliptical cylindrical shape.
  • the coil members may be manufactured by manufacturing the coils 2a and 2b with separate windings and joining the ends of the windings forming the coils 2a and 2b by welding or the like.
  • Both ends of the winding 2w forming the coil member 2 are appropriately extended from the turn forming portion on one end side of the coil member 2 (on the left side in FIG. 1 and FIG. 2) and pulled out of the case 4.
  • the insulating coating is peeled off at both ends of the drawn winding 2w, and a conductive terminal fitting (not shown) is connected to the conductor portion exposed from the insulating coating.
  • An external device such as a power source for supplying power is connected to the coil member 2 through the terminal fitting.
  • the magnetic core 3 has a pair of inner core portions 31 and 32 disposed inside the coils 2 a and 2 b and a pair of outer core portions 33 and 34 exposed from the coil member 2.
  • Each inner core part 31 and 32 is a rectangular parallelepiped shape
  • each outer core part 33 and 34 is a columnar body which has a dome-shaped surface, for example.
  • One end (the left side of the drawing) of the inner core portions 31 and 32 that are spaced apart is connected via one outer core portion 33, and the other end (the right side of the drawing) of the core portions 31 and 32 is the other outside. It is connected via the core part 34.
  • the annular magnetic core 3 is formed by the inner core portions 31 and 32 and the outer core portions 33 and 34.
  • the inner core portion 31 (32) is a laminate formed by alternately laminating divided cores (core pieces) 31m made of a substantially rectangular parallelepiped magnetic material and gap plates 31g having a lower magnetic permeability than the divided core 31m.
  • the outer core portions 33 and 34 are columnar core pieces having a dome-shaped bottom surface and top surface. As each core piece, a molded body using magnetic powder or a laminated body in which a plurality of magnetic thin plates (for example, electromagnetic steel sheets) having an insulating coating are laminated can be used.
  • the split core 31m constituting the inner core portions 31 and 32 and the outer core portions 33 and 34 may have different magnetic characteristics by using different magnetic materials.
  • the molded body constituting the core piece is, for example, an iron group metal such as Fe, Co, or Ni, or an Fe group such as Fe—Si, Fe—Ni, Fe—Al, Fe—Co, Fe—Cr, or Fe—Si—Al.
  • a ferrite core which is a sintered body of a metal oxide can be mentioned.
  • the molded body can easily form magnetic cores having various three-dimensional shapes.
  • the gap plate 31g may be made of a nonmagnetic material such as alumina, glass epoxy resin, or unsaturated polyester, or a soft magnetic material may be dispersed in these nonmagnetic materials. In any case, the gap plate 31g has a lower magnetic permeability than the core piece.
  • a room temperature curable adhesive is used for bonding the core pieces 31m, 33, 34 and the gap plate 31g.
  • the cured room temperature curable adhesive remains as an adhesive layer 7 between the core pieces 31m, 33, 34 and the gap plate 31g.
  • FIG. 2 in the exploded view of the inner core portion 31, one of the plurality of adhesive layers 7 is illustrated by cross-hatching. Is formed.
  • the room temperature curable adhesive used preferably uses an adhesive having a Shore hardness of D70 to D100 when the adhesive layer 7 is cured to become the adhesive layer 7. It is also preferable to use a room temperature curable adhesive in which the glass transition point of the adhesive layer 7 is in the range of 70 ° C. to 180 ° C.
  • the room temperature curable adhesive satisfying such properties include acrylic acid esters which are acrylic polymers, silyl group-containing special polymers, and the like.
  • the combined body 10 of the present embodiment includes a bobbin 5 for enhancing insulation between the coil member 2 and the magnetic core 3.
  • a bobbin constituent material an insulating material such as polyphenylene sulfide (PPS) resin, polytetrafluoroethylene (PTFE) resin, or liquid crystal polymer (LCP) can be used.
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • LCP liquid crystal polymer
  • the bobbin 5 is a pair of frame-shaped bobbins that are in contact with the inner bobbin 51 (52) disposed on the outer periphery of the inner core portion 31 (32) and the end surface of the coil member 2 (the surface where the coil turns appear to be annular).
  • the structure provided with 53 and 54 is mentioned.
  • the inner bobbin 51 is composed of a pair of bobbin pieces 51a and 51b made of an insulating material having a cross section] (the inner bobbin 52 has the same configuration).
  • the bobbin piece 51a (51b) is configured to cover the entire upper surface (the entire lower surface) of the inner core portion 31, and part of the left and right surfaces. Therefore, both the bobbin pieces 51a and 51b attached to the inner core portion 31 are not in contact with each other.
  • the material of the inner side bobbin 51 (52) can be reduced, and the contact area of the inner core part 31 (32) and sealing resin can be enlarged.
  • the inner bobbin 51 may be a cylindrical body that is disposed along the entire circumference of the outer peripheral surface of the inner core portion 31 when attached to the inner core portion 31.
  • the frame bobbins 53 and 54 are flat and have a pair of openings through which the respective inner core portions 31 and 32 are inserted, so that the inner core portions 31 and 32 can be easily introduced.
  • a short cylindrical portion projecting on the side of 31 and 32 is provided.
  • the frame-shaped bobbin 54 is provided with a flange portion 54f on which the coil connecting portion 2r is placed and insulates between the coil connecting portion 2r and the outer core portion 32.
  • the case 4 will be described with reference to FIG.
  • the case 4 in which the assembly 10 is accommodated includes a flat bottom plate portion 40 and a frame-like side wall portion 41 standing on the bottom plate portion 40, and the bottom plate portion 40 and the side wall portion 41 are configured as separate members. Has been.
  • the bottom plate portion 40 is a rectangular plate member that is fixed to the fixed object when the reactor 1 is installed on the fixed object such as a cooling base.
  • the bottom plate portion 40 is formed with a heat radiation layer 42 on one surface arranged on the inner side.
  • the bottom plate portion 40 has flange portions 400 protruding from the four corners, and bolt portions (not shown) for fixing the case 4 to the fixing object are inserted into the flange portions 400, respectively.
  • 400h is provided.
  • the bolt hole 400h is provided so as to be continuous with a bolt hole 411h of the side wall 41 described later. As the bolt holes 400h and 411h, any of through holes that are not threaded and screw holes that are threaded can be used, and the number and the like can be appropriately selected.
  • the bottom plate portion 40 includes a heat radiation layer 42 at a location where the coil installation surface of the coil member 2 contacts.
  • the heat dissipation layer 42 may be formed over a portion corresponding to the core installation surface of the outer core portions 33 and 34.
  • the heat radiation layer 42 is preferably made of an insulating material having a thermal conductivity of more than 2 W / m ⁇ K.
  • the heat conductivity of the heat radiation layer 42 is preferably as high as possible, and is made of an insulating material of 3 W / m ⁇ K or more, especially 10 W / m ⁇ K, more preferably 20 W / m ⁇ K, especially 30 W / m ⁇ K or more. Is preferred.
  • Examples of the constituent material of the heat dissipation layer 42 satisfying such thermal characteristics include non-metallic inorganic materials such as ceramics such as a metal element or a kind of material selected from Si oxides, carbides, and nitrides.
  • Examples of the ceramic include silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), aluminum nitride (AlN), boron nitride (BN), and silicon carbide (SiC).
  • the heat dissipation layer 42 is formed from the ceramics, for example, a vapor deposition method such as a PVD method or a CVD method can be used.
  • the heat dissipation layer 42 may be formed by bonding the ceramic sintered plate to the bottom plate portion 40 with an appropriate adhesive.
  • the heat radiation layer 42 may be made of an insulating resin (for example, an epoxy resin or an acrylic resin) containing a filler made of the ceramics. If the insulating resin containing filler is used, the heat dissipation layer 42 having excellent heat dissipation and electrical insulation can be formed.
  • Such a heat dissipation layer 42 can be formed by applying an insulating resin containing a filler to the bottom plate portion 40 or screen printing.
  • the heat dissipation layer 42 is an adhesive, the adhesion between the coil 2 and the heat dissipation layer 42 can be improved.
  • the heat radiating layer 42 and the outer core part 33 are formed by the room temperature curable adhesive used for bonding the core pieces 31m, 33 and 34 and the gap plate 31g. , 34 are preferably bonded together.
  • an adhesive layer made of a room temperature curable adhesive is also formed between the heat dissipation layer 42 and the outer core portions 33, 34, and the entire reactor 1 including the case 4 can be integrated.
  • the side wall 41 is a cylindrical frame, and when the case 4 is assembled by closing one opening with the bottom plate 40, the side wall 41 is disposed so as to surround the assembly 10 and the other opening is open. Is done.
  • region used as the installation side when the reactor 1 is installed in fixation object is a rectangular shape along the external shape of the said baseplate part 40, and the area
  • the side wall 41 may be provided with a terminal block (not shown) that can fix the terminal fitting.
  • a terminal block (not shown) that can fix the terminal fitting.
  • the installation side region of the side wall portion 41 is formed with attachment locations including flange portions 411 protruding from the four corners, and each flange portion 411 is provided with a bolt hole 411h.
  • the bolt hole 411h may be formed only from the constituent material of the side wall 41.
  • a metal cylinder may be insert-molded at the position of the flange portion 411, and the metal cylinder may be used as the bolt hole 411h. In that case, creep deformation of the flange portion 411 can be suppressed.
  • an appropriate adhesive may be used as a method for connecting the bottom plate portion 40 and the side wall portion 41 other than the bolt.
  • an adhesive When an adhesive is used, a convex portion is formed on one of the bottom plate portion 40 and the side wall portion 41, and a concave portion that fits the convex portion is formed on the other side, and the position of the side wall portion 41 with respect to the bottom plate portion 40 is determined. It is preferable to be determined uniquely. In this case, it is preferable to fix the reactor 1 to the fixing target by bolting the bottom plate part 40 to the fixing target without forming the bolt hole 411h in the side wall 41.
  • the bottom plate portion 40 is made of a metal material and the side wall portion 41 is made of a resin material as will be described later, creep deformation of the resin material due to bolting can be suppressed, and the fixed state of the reactor 1 with respect to the fixing object is loosened. This can be suppressed.
  • the constituent material of the case 4 can be a metal material, for example. Since the metal material generally has excellent thermal conductivity, the case 4 having excellent heat dissipation can be produced. Specific metal materials that can be used include, for example, aluminum, magnesium, copper, silver, alloys thereof, and stainless steel. In particular, if aluminum or an alloy thereof is used, the case 4 that is lightweight and excellent in corrosion resistance can be produced. When the case 4 is formed of a metal material, it can be formed by plastic working such as press working in addition to casting such as die casting.
  • a non-metallic material such as polybutylene terephthalate (PBT) resin, urethane resin, polyphenylene sulfide (PPS) resin, acrylonitrile-butadiene-styrene (ABS) resin can be used. Since many of these resin materials are excellent in electrical insulation, the insulation between the assembly 10 and the case 4 can be enhanced. When the resin material is mixed with a filler made of ceramics (see a sealing resin filler described later), the heat dissipation can be improved. When forming case 4 with resin, injection molding can be used suitably.
  • PBT polybutylene terephthalate
  • PPS polyphenylene sulfide
  • ABS acrylonitrile-butadiene-styrene
  • the constituent material of the bottom plate portion 40 and the constituent material of the side wall portion 41 constituting the case 4 can be appropriately selected.
  • the bottom plate portion 40 and the side wall portion 41 may be made of the same kind of constituent material or different kinds of constituent materials.
  • the bottom plate portion 40 is preferably made of a metal material such as aluminum and the side wall portion 41 is made of a resin material such as PBT resin.
  • the case 4 is filled with a sealing resin made of an insulating resin. At that time, the end of the winding 2 w is pulled out of the case 4 and exposed from the sealing resin.
  • the sealing resin include an epoxy resin, a urethane resin, and a silicone resin.
  • This sealing resin contains a filler excellent in insulation and thermal conductivity, for example, a filler made of at least one ceramic selected from silicon nitride, alumina, aluminum nitride, boron nitride, mullite, and silicon carbide. It is preferable to improve the heat dissipation of the sealing resin.
  • the packing 6 in the present embodiment is an annular body having a size that can be engaged with the outer periphery of the combined body 10 of the coil member 2 and the magnetic core 3, and is made of synthetic rubber. Any suitable material can be used.
  • the reactor 1 described above can be used in power conversion devices such as electric vehicles and hybrid vehicles.
  • the energization conditions of the reactor for such use are maximum current (DC): about 100 A to 1000 A, average voltage: about 100 V to 1000 V, and operating frequency: about 5 kHz to 100 kHz.
  • the reactor 1 provided with the said structure can be manufactured as follows.
  • the combined body 10 is formed by combining the coil member 2 and the magnetic core 3.
  • the inner core portion 31 (32) is formed by bonding the split core 31m and the gap plate 31g with a room temperature curable instantaneous adhesive.
  • the instantaneous adhesive for example, ThreeBond 1757 of Three Bond Co., Ltd., LOCTITE I 4212 of Henkel Japan Co., Ltd., or the like can be used.
  • the inner core part 31 (32) is inserted into each coil 2a (2b) in a state where the inner bobbin 51 (52) is disposed on the outer periphery of the produced inner core part 31 (32). And while arrange
  • the outer core part 34 is arrange
  • the end surface of the inner core portion 31 (32) is exposed from the opening of the frame-shaped bobbin 53 (54) and contacts the inner end surface of the outer core portion 33 (34).
  • the instant adhesive and primer may be used for bonding the inner core portion 31 (32) and the outer core portion 33 (34). In that case, it is preferable to apply an instantaneous adhesive to the outer core portion 33 (34) and apply a primer to the gap plate 31g exposed on the end face of the inner core portion 31 (32).
  • an aluminum plate is punched into a predetermined shape to form a bottom plate portion 40, and a heat radiation layer 42 that also serves as an adhesive of a predetermined shape is formed on one surface by screen printing. Then, the combined body 10 assembled as described above is placed on the heat radiation layer 42, thereby fixing the combined body 10 to the bottom plate portion 40.
  • a room temperature curable instantaneous adhesive is applied to the core installation surfaces of the outer core portions 33 and 34, and a primer is applied to a portion of the heat dissipation layer 42 that contacts the core installation surface.
  • the side wall 41 configured in a predetermined shape by injection molding or the like is covered from above the combined body 10 so as to surround the outer periphery of the combined body 10.
  • the packing 6 is disposed along the outer edge portion of the bottom plate portion 40.
  • the baseplate part 40 and the side wall part 41 are integrated by the bolt (not shown) prepared separately.
  • the reactor 1 is completed by filling the case 4 with the sealing resin and curing the sealing resin.
  • the reactor 1 provided with the structure demonstrated above can be produced easily and in a short time. This is because, when the magnetic core 3 is assembled, a room temperature curable adhesive is used to join the core pieces 31m, 33, 34 and the gap plate 31g. If a room temperature curable adhesive is used, the curing process required in the case of joining the core pieces 31m, 33, 34 and the gap plate 31g using thermosetting adhesion can be omitted, and the curing process is performed. Therefore, the manufacturing process of the reactor 1 can be shortened.
  • the reactor of the present invention can be suitably used for components of power conversion devices such as in-vehicle converters such as hybrid vehicles, electric vehicles, and fuel cell vehicles.
  • Reactor 2 Coil members 2a, 2b: Coil 2r: Coil connecting portion 2w: Winding 3: Magnetic core 31, 32: Inner core portion 31m: Divided core (core piece) 31g: Gap plate 33, 34: Outer core Part (core piece) 4: Case 40: Bottom plate part 400: Flange part 400h: Heat release layer 41: Side wall part 411: Flange part 411h: Bolt hole 5: Bobbin 51, 52: Inner bobbin 51a, 51b: Bobbin piece 53, 54: Frame 54b: flange portion 6: packing 7: adhesive layer 10: combination

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Dc-Dc Converters (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

The present invention provides: a method for manufacturing reactors, which enables reactors to be more easily manufactured compared to the prior art; and a reactor that is obtained according to the manufacturing method. In this manufacturing method, a reactor (1) equipped with a combined body (10), which is a combination of a coil member (2) and a magnetic core (3), is manufactured. The magnetic core (3) is made of a combination of a plurality of core pieces (outer core sections (33, 34), and a split core (31m)), and a gap plate (31g). An adhesive that cures at room temperature is used to join the core pieces (31m, 33, 34) and the gap plate (31g). Thus, the curing process that was carried out when using a thermosetting adhesive as per the prior art, can be omitted. In the completed reactor (1), an adhesive layer (7) is formed between the core pieces (31m, 33, 34) and the gap plate (31g).

Description

リアクトル、およびその製造方法Reactor and manufacturing method thereof
 本発明は、ハイブリッド自動車の車両に搭載される車載用DC-DCコンバータといった電力変換装置の構成部品などに利用されるリアクトル、およびその製造方法に関するものである。 The present invention relates to a reactor used for a component of a power conversion device such as an in-vehicle DC-DC converter mounted on a hybrid vehicle, and a manufacturing method thereof.
 電圧の昇圧動作や降圧動作を行う回路の部品の1つに、リアクトルがある。例えば、特許文献1は、ハイブリッド自動車などの車両に載置されるコンバータに利用されるリアクトルを開示している。このリアクトルは、並列した状態で連結される一対のコイルを有するコイル部材と、両コイルの内部を貫通するようにこれらコイルに嵌め込まれる環状の磁性コアとを組み合わせてなる組合体を備える。また、この組合体をケースに収納し、樹脂で封止した構成を備えるリアクトルもある。 Reactor is one of the circuit components that perform voltage step-up and step-down operations. For example, Patent Document 1 discloses a reactor used for a converter mounted on a vehicle such as a hybrid vehicle. This reactor includes a combination formed by combining a coil member having a pair of coils connected in parallel and an annular magnetic core that is fitted into these coils so as to penetrate the inside of both coils. There is also a reactor having a configuration in which this combination is housed in a case and sealed with resin.
 上記リアクトルの組合体を構成する磁性コアは、通常、複数のコア片と、コア片の間に介在されるギャップ板とを組み合わせてなる。その組み合わせの際、コア片とギャップ板との接着にはエポキシ樹脂系の接着剤やウレタン樹脂系の接着剤が用いられている(例えば、特許文献1の段落0041参照)。 The magnetic core constituting the reactor assembly is usually a combination of a plurality of core pieces and a gap plate interposed between the core pieces. In the combination, an epoxy resin adhesive or a urethane resin adhesive is used for bonding the core piece and the gap plate (see, for example, paragraph 0041 of Patent Document 1).
特開2008 -21688号公報Japanese Patent Laid-Open No. 2008-21688
 しかし、近年では、ハイブリッド自動車などの需要が高まる中、生産コストや生産スピードを含むリアクトルの生産性を向上させることが望まれており、リアクトルの製造方法を見直すことが検討されている。 However, in recent years, with increasing demand for hybrid vehicles and the like, it is desired to improve the productivity of the reactor including the production cost and the production speed, and the manufacturing method of the reactor is being reviewed.
 本発明は上記事情に鑑みてなされたものであり、本発明の目的の一つは、従来よりも容易にリアクトルを製造することができるリアクトルの製造方法、およびその製造方法により得られたリアクトルを提供することにある。 The present invention has been made in view of the above circumstances, and one of the objects of the present invention is to provide a reactor manufacturing method capable of manufacturing a reactor more easily than before, and a reactor obtained by the manufacturing method. It is to provide.
 本発明者らは、リアクトルの製造方法を見直す過程で、コア片とギャップ板との接着方法に着目した。従来、コア片とギャップ板との接着に用いられるエポキシ樹脂系やウレタン樹脂系の接着剤には、耐熱性を考慮して熱硬化性のものが用いられていた。そのため、リアクトルの製造工程において、熱硬化性接着剤を硬化させるための硬化処理が必要となる。その硬化処理には、バッチ炉などの加熱設備が必要であるし、加熱の時間も必要になる。そこで、本発明者らは、コア片とギャップ板との接着にあたり常温硬化性接着剤を利用することを検討し、本発明を完成するに至った。 In the course of reviewing the reactor manufacturing method, the inventors focused on the method of bonding the core piece and the gap plate. Conventionally, as the epoxy resin-based or urethane resin-based adhesive used for bonding the core piece and the gap plate, a thermosetting material has been used in consideration of heat resistance. Therefore, in the manufacturing process of the reactor, a curing process for curing the thermosetting adhesive is required. The curing process requires heating equipment such as a batch furnace, and also requires heating time. Therefore, the present inventors have studied using a room temperature curable adhesive for bonding the core piece and the gap plate, and have completed the present invention.
 本発明リアクトルの製造方法は、並列した状態で連結される一対のコイルを有するコイル部材と、両コイルの内部を貫通する環状の磁性コアと、の組合体を備えるリアクトルを作製するリアクトルの製造方法である。この本発明リアクトルの製造方法では、組み合わせることで前記磁性コアとなる複数のコア片と、コア片の間に介在されるギャップ板とを用意し、そのコア片とギャップ板とを常温硬化性接着剤により接着することで、前記磁性コアを作製することを特徴とする。 The manufacturing method of the reactor of this invention is a manufacturing method of the reactor which produces the reactor provided with the coil member which has a pair of coils connected in the parallel state, and the cyclic | annular magnetic core which penetrates the inside of both coils. It is. In the method of manufacturing a reactor according to the present invention, a plurality of core pieces to be combined with each other and a gap plate interposed between the core pieces are prepared, and the core piece and the gap plate are bonded to each other at room temperature. The magnetic core is produced by bonding with an agent.
 上記本発明リアクトルの製造方法によれば、コア片とギャップ板との接着に常温硬化性接着剤を利用しているため、熱硬化性接着剤を用いたときのような硬化処理を行う必要がなくなる。その分だけ、リアクトルの製造工程を簡素化することができ、リアクトルの生産性を向上させることができる。 According to the manufacturing method of the reactor of the present invention, since a room temperature curable adhesive is used for bonding the core piece and the gap plate, it is necessary to perform a curing process as in the case of using a thermosetting adhesive. Disappear. Accordingly, the reactor manufacturing process can be simplified and the productivity of the reactor can be improved.
 本発明リアクトルは、並列した状態で連結される一対のコイルを有するコイル部材と、両コイルの内部を貫通する環状の磁性コアと、の組合体を備えるリアクトルである。この本発明リアクトルに備わる磁性コアは、複数のコア片と、コア片の間に介在されるギャップ板とを組み合わせることで形成されており、コア片とギャップ板との間に、常温硬化性接着剤からなる接着層を備えることを特徴とする。 The reactor of the present invention is a reactor including a combination of a coil member having a pair of coils connected in parallel and an annular magnetic core penetrating the inside of both coils. The magnetic core provided in the reactor of the present invention is formed by combining a plurality of core pieces and a gap plate interposed between the core pieces, and a room temperature curable adhesive is bonded between the core piece and the gap plate. An adhesive layer made of an agent is provided.
 本発明リアクトルは、従来よりも生産性良く製造されたリアクトルである。それは、リアクトルに備わる磁性コアの作製にあたり熱硬化性接着剤ではなく常温硬化性接着剤を利用しているため、従来必要であった熱硬化性接着剤の硬化処理を行うことなく作製されたリアクトルであるからである。 The reactor of the present invention is a reactor manufactured with higher productivity than before. It uses a room-temperature curable adhesive instead of a thermosetting adhesive for the production of the magnetic core provided in the reactor. Because.
 以下、本発明リアクトルとその製造方法の好ましい形態について詳細に説明する。 Hereinafter, preferred embodiments of the reactor of the present invention and the manufacturing method thereof will be described in detail.
 本発明リアクトルの一形態として、本発明リアクトルは、組合体を内部に収納するケースを備える構成とすることができる。その場合のケースは、組合体の周囲を囲む側壁部と、側壁部とは別部材の底板部と、底板部のケース内面側に形成され、当該底板部とコイルとの間に介在される放熱層と、を備えることが好ましい。 As an embodiment of the reactor of the present invention, the reactor of the present invention can be configured to include a case that houses the assembly. In this case, the case is formed on the side wall portion surrounding the assembly, the bottom plate portion which is a member different from the side wall portion, and the case inner surface side of the bottom plate portion, and the heat dissipation interposed between the bottom plate portion and the coil. And a layer.
 本発明リアクトルは、ケースを必須としないが、ケースを備える構成とすることで、外部からの物理的な衝撃から組合体を保護することができるし、組合体の放熱性を向上させることもできる。特に、側壁部と底板部とを分けた構成とすることで、ケース内への組合体の配置(位置合わせも含む)が容易になる。また、底板部とコイルとの間に放熱層を介在させることで、リアクトルの放熱性を向上させることができる。 Although this invention reactor does not make a case essential, it can protect a combination from the physical impact from the outside by setting it as a structure provided with a case, and can also improve the heat dissipation of a combination. . Particularly, by arranging the side wall portion and the bottom plate portion separately, it is easy to arrange the assembly (including alignment) in the case. Moreover, the heat dissipation of a reactor can be improved by interposing a thermal radiation layer between a baseplate part and a coil.
 上記側壁部と底板部と放熱層とを有するケースを備える本発明リアクトルの一形態として、底板部と、コイルから露出する磁性コアとの間に、常温硬化性接着剤からなる接着層を備えることが好ましい。 As one form of this invention reactor provided with the case which has the said side wall part, a baseplate part, and a thermal radiation layer, it is provided with the contact bonding layer which consists of a normal temperature curable adhesive between a baseplate part and the magnetic core exposed from a coil. Is preferred.
 ケースを備えるリアクトルにおいて、ケースに対して組合体を固定することで、ケースと組合体とを一体化することができる。また、その一体化にあたって常温硬化性接着剤を用いれば、熱硬化性接着剤のように硬化処理を行う必要がない。 In a reactor including a case, the case and the combined body can be integrated by fixing the combined body to the case. In addition, when a normal temperature curable adhesive is used for the integration, it is not necessary to perform a curing process unlike a thermosetting adhesive.
 本発明リアクトルの一形態として、接着層のショア硬度は、D70~D100であることが好ましい。 As one form of the reactor of the present invention, the Shore hardness of the adhesive layer is preferably D70 to D100.
 硬化した常温硬化性接着剤からなる接着層のショア硬度が上記範囲にあれば、この接着剤により接合されるコア片とギャップ板とがほぼ一体となった剛性体のようになる。つまり、コア片とギャップとを組み合わせてなる磁性コア全体を一つの剛性体のようにすることができる。また、ケースを備えるリアクトルにおいて、ケースと組合体との間の接着層の上記ショア硬度を上記範囲とすれば、ケースを含めたリアクトル全体を一つの剛性体のようにすることができる。このように、磁性コアや、ケースを含めたリアクトルが一つの剛性体のようになれば、リアクトルの使用に伴うリアクトルの振動を抑制することができる。 If the Shore hardness of the adhesive layer made of the cured room temperature curable adhesive is within the above range, it becomes like a rigid body in which the core piece and the gap plate joined by this adhesive are almost integrated. That is, the whole magnetic core formed by combining the core piece and the gap can be made into one rigid body. Further, in the reactor including the case, if the Shore hardness of the adhesive layer between the case and the combined body is within the above range, the entire reactor including the case can be made into one rigid body. Thus, if a reactor including a magnetic core and a case becomes one rigid body, the vibration of the reactor accompanying use of a reactor can be suppressed.
 本発明リアクトルの一形態として、接着層のガラス転移点は、70℃ ~180℃ であることが好ましい。 As one form of the reactor of the present invention, the glass transition point of the adhesive layer is preferably 70 ° C. to 180 ° C.
 硬化した常温硬化性接着剤からなる接着層のガラス転移点が上記範囲にあれば、リアクトルの使用温度において接着層が軟化することがない。そのため、リアクトルを使用している間中、コア片とギャップ板とを組み合わせてなる磁性コア全体の剛性を維持することができる。その結果、リアクトルの使用に伴うリアクトルの振動を抑制することができる。ケースと組合体との接着にも上記範囲のガラス転移点を有する接着層を用いれば、ケースを含めたリアクトル全体の剛性を維持することができる。 If the glass transition point of the cured adhesive layer composed of a normal temperature curable adhesive is within the above range, the adhesive layer will not be softened at the use temperature of the reactor. Therefore, the rigidity of the entire magnetic core formed by combining the core piece and the gap plate can be maintained while the reactor is used. As a result, it is possible to suppress the vibration of the reactor accompanying the use of the reactor. If an adhesive layer having a glass transition point in the above range is also used for adhesion between the case and the assembly, the rigidity of the entire reactor including the case can be maintained.
 一方、本発明リアクトルの製造方法の一形態として、コア片とギャップ板とを接着する際、コア片に常温硬化性の瞬間接着剤を、ギャップ板にプライマー(接着剤の接着力を向上させる下塗り剤) を塗布し、コア片とギャップ板とを接着することが好ましい。 On the other hand, as one form of the manufacturing method of the reactor of the present invention, when the core piece and the gap plate are bonded, a room temperature curable instantaneous adhesive is applied to the core piece, and a primer (an undercoat which improves the adhesive strength of the adhesive) is applied to the gap plate. Agent) It is preferable to apply a ridge and bond the core piece and the gap plate.
 瞬間接着剤を利用すれば、コア片とギャップ板とを重ねる前に接着剤が硬化することを抑制できる。また、その瞬間接着剤をコア片の側に、プライマーをギャップ板の側に塗布することで、接着剤が直接ギャップ板に触れて、ギャップ板が侵食されることを防止できる。 If an instantaneous adhesive is used, the adhesive can be prevented from curing before the core piece and the gap plate are stacked. Further, by applying the instantaneous adhesive on the core piece side and the primer on the gap plate side, it is possible to prevent the adhesive from directly touching the gap plate and eroding the gap plate.
 本発明リアクトルの構成によれば、簡単かつ短時間で作製できるリアクトルとすることができる。 According to the configuration of the reactor of the present invention, a reactor that can be manufactured easily and in a short time can be obtained.
実施形態1に記載されるリアクトルの概略を示す分解斜視図である。1 is an exploded perspective view showing an outline of a reactor described in Embodiment 1. FIG. 図1 に示すリアクトルの組合体の概略を示す分解斜視図である。It is a disassembled perspective view which shows the outline of the combination body of the reactor shown in FIG.
 以下、本発明の実施の形態を図面に基づいて説明する。図中の同一符号は同一名称物を示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the figure indicate the same names.
<実施形態1>
 ≪全体構成≫
 図1に示すリアクトル1は、コイル部材2と磁性コア3とを組み合わせてなる組合体10と、組合体10を収納するケース4と、を備える。ケース4は一面が開口した箱体であり、このケース4内に配置された組合体10は、コイル部材2を形成する巻線2wの端部を除いて封止樹脂(図示せず)に埋設される。このリアクトル1の最も特徴とするところは、後述する図2に示すように、磁性コア3を、複数のコア片(外側コア部33,34、分割コア31m)とギャップ板31gとを組み合わせてなる構成とすると共に、コア片33,34,31mとギャップ板31gとの接合に常温硬化性接着剤を用いたことにある。以下、リアクトル1の各構成を詳細に説明し、次いで当該リアクトル1の製造方法を説明する。
<Embodiment 1>
≪Overall structure≫
A reactor 1 shown in FIG. 1 includes a combined body 10 formed by combining a coil member 2 and a magnetic core 3, and a case 4 that houses the combined body 10. The case 4 is a box that is open on one side, and the combined body 10 arranged in the case 4 is embedded in a sealing resin (not shown) except for the end of the winding 2 w that forms the coil member 2. Is done. The most characteristic feature of the reactor 1 is that the magnetic core 3 is formed by combining a plurality of core pieces ( outer core portions 33 and 34, split cores 31m) and a gap plate 31g as shown in FIG. This is because the room temperature curable adhesive is used for joining the core pieces 33, 34, 31m and the gap plate 31g. Hereinafter, each structure of the reactor 1 is demonstrated in detail, and the manufacturing method of the said reactor 1 is demonstrated then.
 ≪組合体≫
 [コイル部材]
 組合体10を構成するコイル部材2は、図1,2を適宜参照して説明する。コイル部材2は、一対のコイル2a,2bと、両コイル2a,2bを連結するコイル連結部2rとを備える。各コイル2a,2bは、互いに同一の巻数、同一の巻回方向で、中空の角筒状に形成され、各軸方向が平行するように横並びに並列されている。また、連結部2rは、コイル部材2の他端側(図1,2において紙面右側)において両コイル2a,2bを繋ぐU字状に屈曲された部分である。
≪Union body≫
[Coil member]
The coil member 2 constituting the combined body 10 will be described with reference to FIGS. The coil member 2 includes a pair of coils 2a and 2b and a coil connecting portion 2r that connects both the coils 2a and 2b. The coils 2a and 2b are formed in a hollow rectangular tube shape with the same number of turns and the same winding direction, and are arranged side by side so that the axial directions are parallel to each other. The connecting portion 2r is a portion bent in a U shape that connects the coils 2a and 2b on the other end side of the coil member 2 (the right side in FIG. 1 and FIG. 2).
 本実施形態におけるコイル部材2は、銅やアルミニウムなどの平角導体の外周に絶縁被覆(代表的にポリイミドアミド)を備える1本の巻線2wからなっており、コイル2a,2bの部分は巻線2wを螺旋状にエッジワイズ巻きすることで角筒状に形成されている。もちろん、巻線2wの断面は平角状に限定されるわけではなく、円形状や、楕円形状、多角形状などであっても良いし、巻回形状も楕円筒状であっても良い。なお、各コイル2a,2bを別々の巻線により作製し、各コイル2a,2bを形成する巻線の端部を溶接などにより接合することでコイル部材を作製しても良い。 The coil member 2 in this embodiment is composed of a single winding 2w provided with an insulating coating (typically polyimide amide) on the outer periphery of a flat conductor such as copper or aluminum, and the portions of the coils 2a and 2b are windings. It is formed in a rectangular tube shape by winding 2w spirally edgewise. Of course, the cross section of the winding 2w is not limited to a rectangular shape, and may be a circular shape, an elliptical shape, a polygonal shape, or the like, and the winding shape may be an elliptical cylindrical shape. In addition, the coil members may be manufactured by manufacturing the coils 2a and 2b with separate windings and joining the ends of the windings forming the coils 2a and 2b by welding or the like.
 コイル部材2を形成する巻線2wの両端部は、コイル部材2の一端側(図1,2において紙面左側)においてターン形成部分から適宜引き延ばされてケース4の外部に引き出される。引き出された巻線2wの両端部では絶縁被覆が剥がされ、その絶縁被覆から露出した導体部分には、導電性の端子金具(図示せず)が接続される。この端子金具を介して、コイル部材2に電力供給を行う電源などの外部装置(図示せず)が接続される。 Both ends of the winding 2w forming the coil member 2 are appropriately extended from the turn forming portion on one end side of the coil member 2 (on the left side in FIG. 1 and FIG. 2) and pulled out of the case 4. The insulating coating is peeled off at both ends of the drawn winding 2w, and a conductive terminal fitting (not shown) is connected to the conductor portion exposed from the insulating coating. An external device (not shown) such as a power source for supplying power is connected to the coil member 2 through the terminal fitting.
 [磁性コア]
 磁性コア3の説明は、図2を参照して行う。磁性コア3は、各コイル2a,2bの内部に配置される一対の内側コア部31,32と、コイル部材2から露出されている一対の外側コア部33,34とを有する。各内側コア部31,32はそれぞれ直方体状であり、各外側コア部33,34は例えばドーム状面を有する柱状体である。離隔して配置される内側コア部31,32の一端(紙面左側)同士は、一方の外側コア部33を介して繋がり、コア部31,32の他端(紙面右側)同士は、他方の外側コア部34を介して繋がっている。その結果、内側コア部31,32と外側コア部33,34とで環状の磁性コア3が形成される。
[Magnetic core]
The magnetic core 3 will be described with reference to FIG. The magnetic core 3 has a pair of inner core portions 31 and 32 disposed inside the coils 2 a and 2 b and a pair of outer core portions 33 and 34 exposed from the coil member 2. Each inner core part 31 and 32 is a rectangular parallelepiped shape, and each outer core part 33 and 34 is a columnar body which has a dome-shaped surface, for example. One end (the left side of the drawing) of the inner core portions 31 and 32 that are spaced apart is connected via one outer core portion 33, and the other end (the right side of the drawing) of the core portions 31 and 32 is the other outside. It is connected via the core part 34. As a result, the annular magnetic core 3 is formed by the inner core portions 31 and 32 and the outer core portions 33 and 34.
 内側コア部31(32)は、略直方体状の磁性材料からなる分割コア(コア片)31mと、分割コア31mよりも低透磁率のギャップ板31gとを交互に積層して構成された積層体であり、外側コア部33,34は、底面と上面とがドーム状面の柱状のコア片である。各コア片は、磁性粉末を用いた成形体や、絶縁被膜を有する磁性薄板(例えば、電磁鋼板)を複数積層した積層体が利用できる。なお、内側コア部31,32を構成する分割コア31mと、外側コア部33,34とは、使用する磁性材料を異ならせることで、磁気特性を異ならせても良い。 The inner core portion 31 (32) is a laminate formed by alternately laminating divided cores (core pieces) 31m made of a substantially rectangular parallelepiped magnetic material and gap plates 31g having a lower magnetic permeability than the divided core 31m. The outer core portions 33 and 34 are columnar core pieces having a dome-shaped bottom surface and top surface. As each core piece, a molded body using magnetic powder or a laminated body in which a plurality of magnetic thin plates (for example, electromagnetic steel sheets) having an insulating coating are laminated can be used. The split core 31m constituting the inner core portions 31 and 32 and the outer core portions 33 and 34 may have different magnetic characteristics by using different magnetic materials.
 コア片を構成する成形体は、例えば、Fe,Co,Niといった鉄族金属、Fe-Si,Fe-Ni,Fe-Al,Fe-Co,Fe-Cr,Fe-Si-AlなどのFe基合金、希土類金属やアモルファス磁性体といった軟磁性材料からなる粉末を用いた圧粉成形体、上記粉末をプレス成形後に焼結した焼結体、上記粉末と樹脂との混合体を射出成形や注型成型などした成形硬化体が挙げられる。その他、コア片として、金属酸化物の焼結体であるフェライトコアを使用することなどが挙げられる。成形体は特に、種々の立体形状の磁性コアを容易に形成することができる。 The molded body constituting the core piece is, for example, an iron group metal such as Fe, Co, or Ni, or an Fe group such as Fe—Si, Fe—Ni, Fe—Al, Fe—Co, Fe—Cr, or Fe—Si—Al. Powder compacts using powders made of soft magnetic materials such as alloys, rare earth metals and amorphous magnetic bodies, sintered bodies obtained by sintering the above powders after press molding, and mixtures of the above powders and resins by injection molding or casting Examples thereof include molded hardened bodies that have been molded. In addition, as the core piece, use of a ferrite core which is a sintered body of a metal oxide can be mentioned. In particular, the molded body can easily form magnetic cores having various three-dimensional shapes.
 一方、ギャップ板31gは、アルミナやガラスエポキシ樹脂、不飽和ポリエステルといった非磁性材料から構成しても良いし、これら非磁性材料中に軟磁性材料を分散させた構成としても良い。いずれにせよ、ギャップ板31gは、コア片よりも低透磁率となるようにする。 On the other hand, the gap plate 31g may be made of a nonmagnetic material such as alumina, glass epoxy resin, or unsaturated polyester, or a soft magnetic material may be dispersed in these nonmagnetic materials. In any case, the gap plate 31g has a lower magnetic permeability than the core piece.
 コア片31m,33,34とギャップ板31gとの接着には、常温硬化性接着剤を利用する。硬化した常温硬化性接着剤は、コア片31m,33,34とギャップ板31gとの間に接着層7として残存する。なお、図2では、内側コア部31の分解図において、複数ある接着層7の一つをクロスハッチングにより例示しているが、実際は、コア片とギャップ板31gとの間の全てに接着層7が形成されている。 For bonding the core pieces 31m, 33, 34 and the gap plate 31g, a room temperature curable adhesive is used. The cured room temperature curable adhesive remains as an adhesive layer 7 between the core pieces 31m, 33, 34 and the gap plate 31g. In FIG. 2, in the exploded view of the inner core portion 31, one of the plurality of adhesive layers 7 is illustrated by cross-hatching. Is formed.
 使用する常温硬化性接着剤は、硬化して接着層7となったときに、当該接着層7のショア硬度がD70~D100となる接着剤を利用することが好ましい。また、当該接着層7のガラス転移点が70℃~180℃の範囲となる常温硬化性接着剤を利用することも好ましい。このような特性を満たす常温硬化性接着剤としては、例えばアクリル系ポリマーであるアクリル酸エステルや、シリル基含有特殊ポリマーなどを挙げることができる。 The room temperature curable adhesive used preferably uses an adhesive having a Shore hardness of D70 to D100 when the adhesive layer 7 is cured to become the adhesive layer 7. It is also preferable to use a room temperature curable adhesive in which the glass transition point of the adhesive layer 7 is in the range of 70 ° C. to 180 ° C. Examples of the room temperature curable adhesive satisfying such properties include acrylic acid esters which are acrylic polymers, silyl group-containing special polymers, and the like.
 [ボビン]
 本実施形態の組合体10は、コイル部材2と磁性コア3との間の絶縁性を高めるためのボビン5を備えている。ボビンの構成材料には、ポリフェニレンサルファイド(PPS)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、液晶ポリマー(LCP)などの絶縁性材料が利用できる。ボビン5は、内側コア部31(32)の外周に配置される内側ボビン51(52)と、コイル部材2の端面(コイルのターンが環状に見える面)に当接される一対の枠状ボビン53 , 54 とを備えた構成が挙げられる。
[Bobbin]
The combined body 10 of the present embodiment includes a bobbin 5 for enhancing insulation between the coil member 2 and the magnetic core 3. As the bobbin constituent material, an insulating material such as polyphenylene sulfide (PPS) resin, polytetrafluoroethylene (PTFE) resin, or liquid crystal polymer (LCP) can be used. The bobbin 5 is a pair of frame-shaped bobbins that are in contact with the inner bobbin 51 (52) disposed on the outer periphery of the inner core portion 31 (32) and the end surface of the coil member 2 (the surface where the coil turns appear to be annular). The structure provided with 53 and 54 is mentioned.
 内側ボビン51は、断面]状の絶縁材料から構成される一対のボビン片51a,51bからなる(内側ボビン52も同様の構成)。ボビン片51a(51b)は、内側コア部31の上面全体(下面全体)と、左面および右面の一部を覆う構成である。そのため、内側コア部31に取り付けた両ボビン片51a,51bは互いに接触しないようになっている。このような構成とすることで、内側ボビン51(52)の材料を低減できるし、内側コア部31(32)と封止樹脂との接触面積を大きくできる。なお、内側ボビン51は、内側コア部31に取り付けたときに、内側コア部31の外周面の全周に沿って配置される筒状体としても良い。 The inner bobbin 51 is composed of a pair of bobbin pieces 51a and 51b made of an insulating material having a cross section] (the inner bobbin 52 has the same configuration). The bobbin piece 51a (51b) is configured to cover the entire upper surface (the entire lower surface) of the inner core portion 31, and part of the left and right surfaces. Therefore, both the bobbin pieces 51a and 51b attached to the inner core portion 31 are not in contact with each other. By setting it as such a structure, the material of the inner side bobbin 51 (52) can be reduced, and the contact area of the inner core part 31 (32) and sealing resin can be enlarged. The inner bobbin 51 may be a cylindrical body that is disposed along the entire circumference of the outer peripheral surface of the inner core portion 31 when attached to the inner core portion 31.
 枠状ボビン53,54は、平板状で、各内側コア部31,32がそれぞれ挿通される一対の開口部を有しており、内側コア部31,32を導入し易いように、内側コア部31,32の側に突出する短い筒状部を備える。また、枠状ボビン54には、コイル連結部2rが載置され、コイル連結部2rと外側コア部32との間を絶縁するためのフランジ部54fを備える。 The frame bobbins 53 and 54 are flat and have a pair of openings through which the respective inner core portions 31 and 32 are inserted, so that the inner core portions 31 and 32 can be easily introduced. A short cylindrical portion projecting on the side of 31 and 32 is provided. Further, the frame-shaped bobbin 54 is provided with a flange portion 54f on which the coil connecting portion 2r is placed and insulates between the coil connecting portion 2r and the outer core portion 32.
 ≪ケース≫
 ケース4の説明は、図1を参照して行う。上記組合体10が収納されるケース4は、平板状の底板部40と、底板部40に立設する枠状の側壁部41とを備え、底板部40と側壁部41とが別部材で構成されている。
≪Case≫
The case 4 will be described with reference to FIG. The case 4 in which the assembly 10 is accommodated includes a flat bottom plate portion 40 and a frame-like side wall portion 41 standing on the bottom plate portion 40, and the bottom plate portion 40 and the side wall portion 41 are configured as separate members. Has been.
 [底板部及び側壁部]
 (底板部)
 底板部40は、リアクトル1が冷却ベースなどの固定対象に設置されるときに固定対象に固定される矩形板の部材である。この底板部40は、ケース4を組み立てたとき、内側に配置される一面に放熱層42が形成されている。また、底板部40は、四隅のそれぞれから突出したフランジ部400を有しており、各フランジ部400にはそれぞれ、固定対象にケース4を固定するボルト(図示せず)が挿通されるボルト孔400hが設けられている。ボルト孔400hは、後述する側壁部41のボルト孔411hに連続するように設けられている。ボルト孔400h,411hは、ネジ加工が成されていない貫通孔、ネジ加工がされたネジ孔のいずれも利用でき、個数なども適宜選択することができる。
[Bottom plate and side wall]
(Bottom plate)
The bottom plate portion 40 is a rectangular plate member that is fixed to the fixed object when the reactor 1 is installed on the fixed object such as a cooling base. When the case 4 is assembled, the bottom plate portion 40 is formed with a heat radiation layer 42 on one surface arranged on the inner side. The bottom plate portion 40 has flange portions 400 protruding from the four corners, and bolt portions (not shown) for fixing the case 4 to the fixing object are inserted into the flange portions 400, respectively. 400h is provided. The bolt hole 400h is provided so as to be continuous with a bolt hole 411h of the side wall 41 described later. As the bolt holes 400h and 411h, any of through holes that are not threaded and screw holes that are threaded can be used, and the number and the like can be appropriately selected.
 ≪放熱層≫
 底板部40は、図1に示すように、コイル部材2のコイル設置面が接触する箇所に放熱層42を備える。放熱層42は、外側コア部33,34のコア設置面に対応する箇所に亘って形成されていても良い。この放熱層42は、熱伝導率が2W/m・K超の絶縁性材料により構成されていることが好ましい。放熱層42の熱伝導率は高いほど好ましく、3W/m・K以上、特に10W/m・K、更に20W/m・K、とりわけ30W/m・K以上の絶縁性材料により構成されていることが好ましい。このような熱特性を満たす放熱層42の構成材料としては、例えば、金属元素、又はSiの酸化物、炭化物、及び窒化物から選択される一種の材料といったセラミックスなどの非金属無機材料が挙げられる。セラミックスとしては、例えば、窒化珪素(Si34)、アルミナ(Al23)、窒化アルミニウム(AlN)、窒化ほう素(BN)、炭化珪素(SiC)などを挙げられる。
≪Heat dissipation layer≫
As shown in FIG. 1, the bottom plate portion 40 includes a heat radiation layer 42 at a location where the coil installation surface of the coil member 2 contacts. The heat dissipation layer 42 may be formed over a portion corresponding to the core installation surface of the outer core portions 33 and 34. The heat radiation layer 42 is preferably made of an insulating material having a thermal conductivity of more than 2 W / m · K. The heat conductivity of the heat radiation layer 42 is preferably as high as possible, and is made of an insulating material of 3 W / m · K or more, especially 10 W / m · K, more preferably 20 W / m · K, especially 30 W / m · K or more. Is preferred. Examples of the constituent material of the heat dissipation layer 42 satisfying such thermal characteristics include non-metallic inorganic materials such as ceramics such as a metal element or a kind of material selected from Si oxides, carbides, and nitrides. . Examples of the ceramic include silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), aluminum nitride (AlN), boron nitride (BN), and silicon carbide (SiC).
 上記セラミックスにより放熱層42を形成する場合、例えば、PVD法やCVD法といった蒸着法を利用することができる。あるいは、上記セラミックの焼結板を適宜な接着剤で底板部40に接合することで放熱層42を形成しても良い。その他、放熱層42は、上記セラミックスからなるフィラーを含有する絶縁性樹脂(例えば、エポキシ樹脂やアクリル樹脂)で構成しても良い。絶縁性樹脂にフィラーを含有させたものを利用すれば、放熱性と電気絶縁性に優れた放熱層42を形成することができる。このような放熱層42は、フィラーを含有する絶縁性樹脂を底板部40に塗布したり、スクリーン印刷することで形成できる。特に、放熱層42が接着剤であれば、コイル2と放熱層42との密着性を向上させることができる。 When the heat dissipation layer 42 is formed from the ceramics, for example, a vapor deposition method such as a PVD method or a CVD method can be used. Alternatively, the heat dissipation layer 42 may be formed by bonding the ceramic sintered plate to the bottom plate portion 40 with an appropriate adhesive. In addition, the heat radiation layer 42 may be made of an insulating resin (for example, an epoxy resin or an acrylic resin) containing a filler made of the ceramics. If the insulating resin containing filler is used, the heat dissipation layer 42 having excellent heat dissipation and electrical insulation can be formed. Such a heat dissipation layer 42 can be formed by applying an insulating resin containing a filler to the bottom plate portion 40 or screen printing. In particular, if the heat dissipation layer 42 is an adhesive, the adhesion between the coil 2 and the heat dissipation layer 42 can be improved.
 ここで、放熱層42における外側コア部33,34と接触する部分では、コア片31m,33,34とギャップ板31gとの接着に用いた常温硬化性接着剤により放熱層42と外側コア部33,34とを接着させておくことが好ましい。そうすることで、放熱層42と外側コア部33,34との間にも常温硬化性接着剤からなる接着層が形成され、ケース4を含めたリアクトル1全体を一体化することができる。 Here, in the part which contacts the outer core parts 33 and 34 in the heat radiating layer 42, the heat radiating layer 42 and the outer core part 33 are formed by the room temperature curable adhesive used for bonding the core pieces 31m, 33 and 34 and the gap plate 31g. , 34 are preferably bonded together. By doing so, an adhesive layer made of a room temperature curable adhesive is also formed between the heat dissipation layer 42 and the outer core portions 33, 34, and the entire reactor 1 including the case 4 can be integrated.
 (側壁部)
 側壁部41は、筒状の枠体であり、一方の開口部を底板部40により塞いでケース4を組み立てたとき、上記組合体10の周囲を囲むように配置され、他方の開口部が開放される。ここでは、側壁部41は、リアクトル1を固定対象に設置したときに設置側となる領域が上記底板部40の外形に沿った矩形状であり、開放された開口側の領域が組合体10の外周面に沿った曲面形状である。
(Sidewall)
The side wall 41 is a cylindrical frame, and when the case 4 is assembled by closing one opening with the bottom plate 40, the side wall 41 is disposed so as to surround the assembly 10 and the other opening is open. Is done. Here, as for the side wall part 41, the area | region used as the installation side when the reactor 1 is installed in fixation object is a rectangular shape along the external shape of the said baseplate part 40, and the area | region of the open opening side is the assembly 10's. It is a curved surface shape along the outer peripheral surface.
 その他、側壁部41には、端子金具を固定できる端子台(図示せず)を設けても良い。例えば、図1に示すケース4の上部開口部で、外側コア部33の略台形状面を覆うように庇状部を設け、その庇状部の上面を端子台として利用すると良い。 In addition, the side wall 41 may be provided with a terminal block (not shown) that can fix the terminal fitting. For example, it is preferable to provide a hook-shaped portion so as to cover the substantially trapezoidal surface of the outer core portion 33 at the upper opening of the case 4 shown in FIG. 1, and use the upper surface of the hook-shaped portion as a terminal block.
 (取り付け箇所)
 側壁部41の設置側の領域は、底板部40と同様に、四隅のそれぞれから突出するフランジ部411を備える取り付け箇所が形成され、各フランジ部411には、ボルト孔411hが設けられている。ボルト孔411hは、側壁部41の構成材料のみにより形成すれば良い。その他、フランジ部411の位置に金属筒をインサート成形し、当該金属筒をボルト孔411hとして利用しても良い。その場合、フランジ部411のクリープ変形を抑制できる。
(Installation point)
As in the case of the bottom plate portion 40, the installation side region of the side wall portion 41 is formed with attachment locations including flange portions 411 protruding from the four corners, and each flange portion 411 is provided with a bolt hole 411h. The bolt hole 411h may be formed only from the constituent material of the side wall 41. In addition, a metal cylinder may be insert-molded at the position of the flange portion 411, and the metal cylinder may be used as the bolt hole 411h. In that case, creep deformation of the flange portion 411 can be suppressed.
 ボルト以外の底板部40と側壁部41との連結方法として、適宜な接着剤を利用しても良い。接着剤を利用する場合、底板部40と側壁部41のいずれか一方に凸部を形成し、他方には当該凸部に嵌合する凹部を形成し、底板部40に対する側壁部41の位置を一義的に決められるようにしておくことが好ましい。この場合、側壁部41にはボルト孔411hを形成せずに、固定対象に対するリアクトル1の固定は、底板部40を固定対象にボルト締めすることで行なうと良い。そうすることで、後述するように底板部40を金属材料で、側壁部41を樹脂材料で形成する場合、ボルト締めによる樹脂材料のクリープ変形を抑制でき、固定対象に対するリアクトル1の固定状態がゆるむことを抑制できる。 As a method for connecting the bottom plate portion 40 and the side wall portion 41 other than the bolt, an appropriate adhesive may be used. When an adhesive is used, a convex portion is formed on one of the bottom plate portion 40 and the side wall portion 41, and a concave portion that fits the convex portion is formed on the other side, and the position of the side wall portion 41 with respect to the bottom plate portion 40 is determined. It is preferable to be determined uniquely. In this case, it is preferable to fix the reactor 1 to the fixing target by bolting the bottom plate part 40 to the fixing target without forming the bolt hole 411h in the side wall 41. By doing so, when the bottom plate portion 40 is made of a metal material and the side wall portion 41 is made of a resin material as will be described later, creep deformation of the resin material due to bolting can be suppressed, and the fixed state of the reactor 1 with respect to the fixing object is loosened. This can be suppressed.
 (材質)
 ケース4の構成材料は、例えば、金属材料とすることができる。金属材料は一般に、優れた熱伝導性を有するため、放熱性に優れたケース4を作製することができる。具体的な金属材料としては、例えば、アルミニウム、マグネシウム、銅、銀や、それらの合金、あるいはステンレスなどを利用することができる。特に、アルミニウムやその合金であれば、軽量で耐食性に優れたケース4を作製することができる。金属材料によりケース4を形成する場合、ダイキャストといった鋳造の他、プレス加工などの塑性加工により形成することができる。
(Material)
The constituent material of the case 4 can be a metal material, for example. Since the metal material generally has excellent thermal conductivity, the case 4 having excellent heat dissipation can be produced. Specific metal materials that can be used include, for example, aluminum, magnesium, copper, silver, alloys thereof, and stainless steel. In particular, if aluminum or an alloy thereof is used, the case 4 that is lightweight and excellent in corrosion resistance can be produced. When the case 4 is formed of a metal material, it can be formed by plastic working such as press working in addition to casting such as die casting.
 また、ケース4の構成材料として、ポリブチレンテレフタレート(PBT)樹脂、ウレタン樹脂、ポリフェニレンスルフィド(PPS)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂など非金属材料を利用することもできる。これらの樹脂材料は、電気絶縁性に優れるものが多いことから、組合体10とケース4との間の絶縁性を高められる。これら樹脂材料にセラミックスからなるフィラー(後述する封止樹脂のフィラーを参照)を混合した形態とすると、放熱性を向上することができる。樹脂によりケース4を形成する場合、射出成形を好適に利用することができる。 Further, as the constituent material of the case 4, a non-metallic material such as polybutylene terephthalate (PBT) resin, urethane resin, polyphenylene sulfide (PPS) resin, acrylonitrile-butadiene-styrene (ABS) resin can be used. Since many of these resin materials are excellent in electrical insulation, the insulation between the assembly 10 and the case 4 can be enhanced. When the resin material is mixed with a filler made of ceramics (see a sealing resin filler described later), the heat dissipation can be improved. When forming case 4 with resin, injection molding can be used suitably.
 ここで、ケース4を構成する底板部40の構成材料と側壁部41の構成材料は、適宜選択することができる。底板部40と側壁部41とを同種の構成材料で作製しても良いし、異種の構成材料で作製しても良い。特に、底板部40をアルミニウムなどの金属材料、側壁部41をPBT樹脂などの樹脂材料で構成することが好ましい。そうすることで、底板部40を介して組合体10の熱を速やかに冷却ベース(リアクトル1が取り付けられる固定対象)に放熱でき、かつ、側壁部41により組合体10を外部から効果的に絶縁することができる。 Here, the constituent material of the bottom plate portion 40 and the constituent material of the side wall portion 41 constituting the case 4 can be appropriately selected. The bottom plate portion 40 and the side wall portion 41 may be made of the same kind of constituent material or different kinds of constituent materials. In particular, the bottom plate portion 40 is preferably made of a metal material such as aluminum and the side wall portion 41 is made of a resin material such as PBT resin. By doing so, the heat of the combined body 10 can be quickly radiated to the cooling base (fixed object to which the reactor 1 is attached) via the bottom plate portion 40, and the combined body 10 is effectively insulated from the outside by the side wall portion 41. can do.
 [封止樹脂]
 ケース4内には、絶縁性樹脂からなる封止樹脂を充填する。その際、巻線2wの端部は、ケース4の外部に引き出して、封止樹脂から露出させる。封止樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂などを挙げることができる。この封止樹脂には、絶縁性および熱伝導性に優れるフィラー、例えば、窒化珪素、アルミナ、窒化アルミニウム、窒化ほう素、ムライト、及び炭化珪素から選択される少なくとも1種のセラミックスからなるフィラーを含有させ、封止樹脂の放熱性を向上させておくことが好ましい。
[Sealing resin]
The case 4 is filled with a sealing resin made of an insulating resin. At that time, the end of the winding 2 w is pulled out of the case 4 and exposed from the sealing resin. Examples of the sealing resin include an epoxy resin, a urethane resin, and a silicone resin. This sealing resin contains a filler excellent in insulation and thermal conductivity, for example, a filler made of at least one ceramic selected from silicon nitride, alumina, aluminum nitride, boron nitride, mullite, and silicon carbide. It is preferable to improve the heat dissipation of the sealing resin.
 ケース4内に封止樹脂を充填する場合、未硬化の樹脂が底板部40と側壁部41との隙間から漏れることを防止するために、パッキン6を配置することが好ましい。本実施形態におけるパッキン6は、コイル部材2と磁性コア3との組合体10の外周に係合可能な大きさを有する環状体であり、合成ゴムから構成されるものを利用しているが、適宜な材質のものが利用できる。 When the case 4 is filled with the sealing resin, it is preferable to arrange the packing 6 in order to prevent uncured resin from leaking through the gap between the bottom plate portion 40 and the side wall portion 41. The packing 6 in the present embodiment is an annular body having a size that can be engaged with the outer periphery of the combined body 10 of the coil member 2 and the magnetic core 3, and is made of synthetic rubber. Any suitable material can be used.
 以上説明したリアクトル1は、電気自動車やハイブリッド自動車などの電力変換装置に使用できる。このような用途のリアクトルの通電条件は、最大電流(直流):100A~1000A程度、平均電圧:100V~1000V程度、使用周波数:5kHz~100kHz程度である。 The reactor 1 described above can be used in power conversion devices such as electric vehicles and hybrid vehicles. The energization conditions of the reactor for such use are maximum current (DC): about 100 A to 1000 A, average voltage: about 100 V to 1000 V, and operating frequency: about 5 kHz to 100 kHz.
 ≪リアクトルの製造≫
 上記構成を備えるリアクトル1は、以下のようにして製造することができる。
≪Manufacture of reactors≫
The reactor 1 provided with the said structure can be manufactured as follows.
 まず、コイル部材2と磁性コア3とを組み合わせることで組合体10を形成する。具体的には、図2に示すように分割コア31mとギャップ板31gとを常温硬化性の瞬間接着剤で接着することで内側コア部31(32)を形成する。瞬間接着剤としては、例えば、株式会社スリーボンドのThreeBond 1757や、ヘンケルジャパン株式会社のLOCTITE 4212などを利用できる。 First, the combined body 10 is formed by combining the coil member 2 and the magnetic core 3. Specifically, as shown in FIG. 2, the inner core portion 31 (32) is formed by bonding the split core 31m and the gap plate 31g with a room temperature curable instantaneous adhesive. As the instantaneous adhesive, for example, ThreeBond 1757 of Three Bond Co., Ltd., LOCTITE I 4212 of Henkel Japan Co., Ltd., or the like can be used.
 次に、作製した内側コア部31(32)の外周に内側ボビン51(52)を配置させた状態で、内側コア部31(32)を各コイル2a(2b)に挿入する。そして、枠状ボビン53を介して、内側コア部31,32の一端同士を繋ぐように外側コア部33を配置すると共に、枠状ボビン54を介して、内側コア部31,32の他端同士を繋ぐように外側コア部34を配置して、組合体10を形成する。内側コア部31(32)の端面は、枠状ボビン53(54)の開口部から露出されて外側コア部33(34)の内側の端面に接触する。内側コア部31(32)と外側コア部33(34)との接着にも、上記瞬間接着剤とプライマーを利用すると良い。その場合、外側コア部33(34)に瞬間接着剤を塗布し、内側コア部31(32)の端面に露出するギャップ板31gにプライマーを塗布すると良い。 Next, the inner core part 31 (32) is inserted into each coil 2a (2b) in a state where the inner bobbin 51 (52) is disposed on the outer periphery of the produced inner core part 31 (32). And while arrange | positioning the outer core part 33 so that the ends of the inner core parts 31 and 32 may be connected via the frame-shaped bobbin 53, the other ends of the inner core parts 31 and 32 are connected via the frame-shaped bobbin 54 The outer core part 34 is arrange | positioned so that may be connected, and the assembly 10 is formed. The end surface of the inner core portion 31 (32) is exposed from the opening of the frame-shaped bobbin 53 (54) and contacts the inner end surface of the outer core portion 33 (34). The instant adhesive and primer may be used for bonding the inner core portion 31 (32) and the outer core portion 33 (34). In that case, it is preferable to apply an instantaneous adhesive to the outer core portion 33 (34) and apply a primer to the gap plate 31g exposed on the end face of the inner core portion 31 (32).
 一方、図1に示すようにアルミニウム板を所定の形状に打ち抜いて底板部40を形成し、一面に所定の形状の接着剤を兼ねる放熱層42をスクリーン印刷により形成する。そして、この放熱層42の上に、上述のようにして組み立てた組合体10を載置することで、組合体10を底板部40に固定する。ここで、外側コア部33,34のコア設置面には常温硬化性の瞬間接着剤を塗布しておき、放熱層42のうち、コア設置面と接触する部分にはプライマーを塗布しておく。 On the other hand, as shown in FIG. 1, an aluminum plate is punched into a predetermined shape to form a bottom plate portion 40, and a heat radiation layer 42 that also serves as an adhesive of a predetermined shape is formed on one surface by screen printing. Then, the combined body 10 assembled as described above is placed on the heat radiation layer 42, thereby fixing the combined body 10 to the bottom plate portion 40. Here, a room temperature curable instantaneous adhesive is applied to the core installation surfaces of the outer core portions 33 and 34, and a primer is applied to a portion of the heat dissipation layer 42 that contacts the core installation surface.
 他方、射出成形などにより所定の形状に構成した側壁部41を、上記組合体10の外周を囲むように組合体10の上方から被せる。その際、底板部40の外縁部に沿うようにパッキン6を配置しておく。そして、別途用意したボルト(図示せず)により、底板部40と側壁部41とを一体化する。この工程により、箱状のケース4が組み立てられると共に、ケース4内に組合体10が収納された状態とすることができる。 On the other hand, the side wall 41 configured in a predetermined shape by injection molding or the like is covered from above the combined body 10 so as to surround the outer periphery of the combined body 10. At that time, the packing 6 is disposed along the outer edge portion of the bottom plate portion 40. And the baseplate part 40 and the side wall part 41 are integrated by the bolt (not shown) prepared separately. By this step, the box-shaped case 4 can be assembled and the combined body 10 can be stored in the case 4.
 最後に、ケース4内に封止樹脂を充填して、封止樹脂を硬化させることで、リアクトル1を完成させる。 Finally, the reactor 1 is completed by filling the case 4 with the sealing resin and curing the sealing resin.
 ≪効果≫
 以上説明した構成を備えるリアクトル1は、簡単かつ短時間で作製することができる。それは、磁性コア3の組み立ての際、コア片31m,33,34とギャップ板31gとの接合に常温硬化性接着剤を利用しているためである。常温硬化性接着剤を利用すれば、熱硬化性接着を使用してコア片31m,33,34とギャップ板31gとを接合する際に場合に必要であった硬化処理を省略でき、その硬化処理の分だけ、リアクトル1の作製工程を短縮できる。
≪Effect≫
The reactor 1 provided with the structure demonstrated above can be produced easily and in a short time. This is because, when the magnetic core 3 is assembled, a room temperature curable adhesive is used to join the core pieces 31m, 33, 34 and the gap plate 31g. If a room temperature curable adhesive is used, the curing process required in the case of joining the core pieces 31m, 33, 34 and the gap plate 31g using thermosetting adhesion can be omitted, and the curing process is performed. Therefore, the manufacturing process of the reactor 1 can be shortened.
 なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、上述した実施形態では、ケース4を備えるリアクトル1を説明したが、ケース4を用いなくてもかまわない。 It should be noted that the above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, in the embodiment described above, the reactor 1 including the case 4 has been described, but the case 4 may not be used.
 本発明リアクトルは、ハイブリッド自動車や電気自動車、燃料電池自動車などの車載用コンバータといった電力変換装置の構成部品に好適に利用することができる。 The reactor of the present invention can be suitably used for components of power conversion devices such as in-vehicle converters such as hybrid vehicles, electric vehicles, and fuel cell vehicles.
1:リアクトル
2:コイル部材 2a,2b:コイル 2r:コイル連結部 2w:巻線
3:磁性コア
 31,32:内側コア部 31m:分割コア(コア片) 31g:ギャップ板
 33,34:外側コア部( コア片)
4:ケース
 40:底板部 400:フランジ部 400h:ボルト孔
 42 放熱層
 41:側壁部 411:フランジ部 411h:ボルト孔
5:ボビン
 51,52:内側ボビン 51a,51b:ボビン片
 53,54:枠状ボビン 54f:フランジ部
6:パッキン
7:接着層
10:組合体
1: Reactor 2: Coil members 2a, 2b: Coil 2r: Coil connecting portion 2w: Winding 3: Magnetic core 31, 32: Inner core portion 31m: Divided core (core piece) 31g: Gap plate 33, 34: Outer core Part (core piece)
4: Case 40: Bottom plate part 400: Flange part 400h: Heat release layer 41: Side wall part 411: Flange part 411h: Bolt hole 5: Bobbin 51, 52: Inner bobbin 51a, 51b: Bobbin piece 53, 54: Frame 54b: flange portion 6: packing 7: adhesive layer 10: combination

Claims (7)

  1.  並列した状態で連結される一対のコイルを有するコイル部材と、両コイルの内部を貫通する環状の磁性コアと、の組合体を備えるリアクトルであって、
     前記磁性コアは、複数のコア片と、コア片の間に介在されるギャップ板とを組み合わせることで形成されており、
     前記コア片とギャップ板との間に、常温硬化性接着剤からなる接着層を備えることを特徴とするリアクトル。
    A reactor comprising a combination of a coil member having a pair of coils connected in parallel and an annular magnetic core penetrating the inside of both coils,
    The magnetic core is formed by combining a plurality of core pieces and a gap plate interposed between the core pieces,
    A reactor comprising an adhesive layer made of a room temperature curable adhesive between the core piece and the gap plate.
  2.  前記組合体を内部に収納するケースを備え、
     前記ケースは、
      前記組合体の周囲を囲む側壁部と、
      前記側壁部とは別部材の底板部と、
      前記底板部のケース内面側に形成され、当該底板部と前記コイルとの間に介在される放熱層と、
     を備えることを特徴とする請求項1 に記載のリアクトル。
    A case for storing the combined body therein;
    The case is
    A side wall surrounding the periphery of the combination;
    A bottom plate that is a separate member from the side wall;
    Formed on the case inner surface side of the bottom plate portion, and a heat dissipation layer interposed between the bottom plate portion and the coil,
    The reactor according to claim 1, comprising:
  3.  前記底板部と、前記コイルから露出する磁性コアとの間に、常温硬化性接着剤からなる接着層を備えることを特徴とする請求項2 に記載のリアクトル。 The reactor according to claim 2, further comprising an adhesive layer made of a room temperature curable adhesive between the bottom plate portion and the magnetic core exposed from the coil.
  4.  前記接着層のショア硬度は、D70~D100であることを特徴とする請求項1~3のいずれか一項に記載のリアクトル。 The reactor according to any one of claims 1 to 3, wherein the Shore hardness of the adhesive layer is D70 to D100.
  5.  前記接着層のガラス転移点は、70℃~180℃であることを特徴とする請求項1~4のいずれか一項に記載のリアクトル。 The reactor according to any one of claims 1 to 4, wherein the glass transition point of the adhesive layer is 70 ° C to 180 ° C.
  6.  並列した状態で連結される一対のコイルを有するコイル部材と、両コイルの内部を貫通する環状の磁性コアと、の組合体を備えるリアクトルを作製するリアクトルの製造方法であって、
     組み合わせることで前記磁性コアとなる複数のコア片と、コア片の間に介在されるギャップ板とを用意し、
     前記コア片とギャップ板とを常温硬化性接着剤により接着することで、前記磁性コアを作製することを特徴とするリアクトルの製造方法。
    A reactor manufacturing method for producing a reactor including a combination of a coil member having a pair of coils connected in parallel and an annular magnetic core penetrating the inside of both coils,
    Prepare a plurality of core pieces to be the magnetic core by combining, and a gap plate interposed between the core pieces,
    A method of manufacturing a reactor, wherein the magnetic core is manufactured by bonding the core piece and a gap plate with a room temperature curable adhesive.
  7.  前記コア片とギャップ板とを接着する際、コア片に常温硬化性の瞬間接着剤を、ギャップ板にプライマーを塗布し、コア片とギャップ板とを接着することを特徴とする請求項6に記載のリアクトルの製造方法。 7. When the core piece and the gap plate are bonded, a normal temperature curable instantaneous adhesive is applied to the core piece, a primer is applied to the gap plate, and the core piece and the gap plate are bonded to each other. The manufacturing method of the reactor of description.
PCT/JP2012/062313 2011-06-21 2012-05-14 Reactor, and manufacturing method therefor WO2012176558A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-137847 2011-06-21
JP2011137847A JP2013004932A (en) 2011-06-21 2011-06-21 Reactor and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2012176558A1 true WO2012176558A1 (en) 2012-12-27

Family

ID=47422402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062313 WO2012176558A1 (en) 2011-06-21 2012-05-14 Reactor, and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2013004932A (en)
WO (1) WO2012176558A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3089178A1 (en) * 2015-04-28 2016-11-02 Kitagawa Industries Co., Ltd. Magnetic core
CN107924754A (en) * 2015-09-11 2018-04-17 株式会社自动网络技术研究所 Reactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352243B (en) * 2016-03-30 2020-12-04 积水化学工业株式会社 Adhesive for inductor and inductor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629115U (en) * 1992-09-14 1994-04-15 株式会社村田製作所 Transformer core
JPH09270340A (en) * 1996-03-29 1997-10-14 Nkk Corp Wound core excellent in rigidity
JP2005056934A (en) * 2003-08-07 2005-03-03 Tdk Corp Common mode filter and its manufacturing method
JP2006135018A (en) * 2004-11-04 2006-05-25 Toyota Motor Corp Core of reactor
JP2009099596A (en) * 2007-10-12 2009-05-07 Sumitomo Electric Ind Ltd Reactor and method of manufacturing the same
JP2010165857A (en) * 2009-01-15 2010-07-29 Canon Inc Transformer, switching power supply device, and dc-dc converter device
JP2011082412A (en) * 2009-10-09 2011-04-21 Jfe Steel Corp Iron core component for reactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629115U (en) * 1992-09-14 1994-04-15 株式会社村田製作所 Transformer core
JPH09270340A (en) * 1996-03-29 1997-10-14 Nkk Corp Wound core excellent in rigidity
JP2005056934A (en) * 2003-08-07 2005-03-03 Tdk Corp Common mode filter and its manufacturing method
JP2006135018A (en) * 2004-11-04 2006-05-25 Toyota Motor Corp Core of reactor
JP2009099596A (en) * 2007-10-12 2009-05-07 Sumitomo Electric Ind Ltd Reactor and method of manufacturing the same
JP2010165857A (en) * 2009-01-15 2010-07-29 Canon Inc Transformer, switching power supply device, and dc-dc converter device
JP2011082412A (en) * 2009-10-09 2011-04-21 Jfe Steel Corp Iron core component for reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3089178A1 (en) * 2015-04-28 2016-11-02 Kitagawa Industries Co., Ltd. Magnetic core
CN107924754A (en) * 2015-09-11 2018-04-17 株式会社自动网络技术研究所 Reactor
CN107924754B (en) * 2015-09-11 2020-03-10 株式会社自动网络技术研究所 Electric reactor

Also Published As

Publication number Publication date
JP2013004932A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP5597106B2 (en) Reactor
JP5465151B2 (en) Reactor
JP6176516B2 (en) Reactor, converter, and power converter
JP4947503B1 (en) Reactor, converter, and power converter
JP6034012B2 (en) Reactor manufacturing method
WO2012111499A1 (en) Reactor, method for the manufacture thereof, and reactor component
JP4947504B1 (en) Reactor, converter, and power converter
JP2012209333A (en) Reactor and manufacturing method of the same
JP2013004931A (en) Reactor and method for manufacturing the same
JP2012209328A (en) Reactor structure
WO2012176558A1 (en) Reactor, and manufacturing method therefor
WO2014017150A1 (en) Reactor, converter, and electric-power conversion device
JP2013145850A (en) Reactor
JP2013179186A (en) Reactor, component for reactor, converter, and power conversion device
JP2013004933A (en) Reactor and method for manufacturing the same
JP2013179184A (en) Reactor, converter, and power conversion device
WO2014073380A1 (en) Reactor, converter, power conversion apparatus, and reactor manufacturing method
JP2012238659A (en) Reactor and manufacturing method of the same
JP2012209341A (en) Reactor
JP2014027025A (en) Reactor, converter and electrical power conversion apparatus
JP2013026418A (en) Reactor
JP5614652B2 (en) Reactor manufacturing method
JP2013008740A (en) Reactor
JP2011009660A (en) Reactor
JP2012222089A (en) Method for manufacturing reactor and reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803433

Country of ref document: EP

Kind code of ref document: A1