WO2014073380A1 - Reactor, converter, power conversion apparatus, and reactor manufacturing method - Google Patents

Reactor, converter, power conversion apparatus, and reactor manufacturing method Download PDF

Info

Publication number
WO2014073380A1
WO2014073380A1 PCT/JP2013/078746 JP2013078746W WO2014073380A1 WO 2014073380 A1 WO2014073380 A1 WO 2014073380A1 JP 2013078746 W JP2013078746 W JP 2013078746W WO 2014073380 A1 WO2014073380 A1 WO 2014073380A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
reactor
adhesive layer
metal member
thickness
Prior art date
Application number
PCT/JP2013/078746
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 吉川
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2014073380A1 publication Critical patent/WO2014073380A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/266Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps

Definitions

  • the present invention relates to a reactor, a converter including a reactor, a power converter including a converter, and a reactor used in a DC-DC converter mounted on a vehicle such as a hybrid vehicle or a component of a power converter. It relates to a manufacturing method. In particular, the present invention relates to a reactor that is excellent in heat dissipation and insulation properties and also in productivity.
  • Reactor is one of the circuit components that perform voltage step-up and step-down operations.
  • a reactor used in a converter mounted on a vehicle such as a hybrid vehicle
  • a coil including a cylindrical coil element formed by winding a winding in a spiral shape and this coil are arranged.
  • An annular magnetic core and a case that houses a combination of a coil and a magnetic core are disclosed.
  • Patent Document 1 discloses, in particular, a configuration in which a bottom plate portion of a case on which an assembly is placed and a coil are fixed with an adhesive. By fixing the coil to the metal bottom plate with the adhesive, the heat of the coil that can be generated when using the reactor can be efficiently transmitted to the bottom plate, and as a result, the heat of the coil can be transferred to the installation target to which the reactor is attached. . Therefore, this reactor is excellent in heat dissipation.
  • the reactor described in Patent Document 1 is excellent in heat dissipation as described above by including an adhesive layer made of an adhesive. Further, for example, when the adhesive layer between the coil and the metal bottom plate portion has a multilayer structure, the insulating property can be enhanced. However, when the number of layers is increased, a curing process is required for each layer, resulting in a decrease in productivity.
  • the curing process can be performed once. Moreover, even if it is one sheet-like adhesive, insulation can be improved if thickness is increased. However, when the thickness is increased, the curing time becomes longer and the productivity is lowered. Moreover, since the reactor is increased in size by increasing the thickness, there is a limit to the improvement in insulation by increasing the thickness of the sheet-like adhesive. Furthermore, since the distance between a coil and a baseplate part becomes large by making the said thickness thick, the fall of heat dissipation is caused depending on the material.
  • one of the objects of the present invention is to provide a reactor that is excellent in heat dissipation and insulation properties and also in productivity.
  • Another object of the present invention is to provide a converter including the reactor and a power conversion device including the converter.
  • another object of the present invention is to provide a reactor manufacturing method capable of manufacturing a reactor excellent in heat dissipation and insulation with high productivity.
  • the reactor of the present invention is a reactor comprising a coil formed by winding a winding in a spiral shape, and a magnetic core on which the coil is disposed, and a metal member on which the coil is placed, and the coil And a bonding layer that is interposed between the metal member and fixes the coil to the metal member.
  • the bonding layer includes both an insulating sheet made of an insulating material, a coil-side adhesive layer that contacts the coil, and a metal-side adhesive layer that contacts the metal member. It consists of an adhesive sheet.
  • the coil side adhesive layer is thicker than the metal side adhesive layer.
  • the method for manufacturing a reactor according to the present invention relates to a method for manufacturing a reactor by assembling a coil formed by winding a winding in a spiral and a magnetic core on which the coil is arranged, and includes the following steps.
  • a step of preparing a double-sided adhesive sheet comprising an insulating sheet made of an insulating material and adhesive layers respectively formed on the front and back surfaces of the insulating sheet.
  • the thickness of one adhesive layer in contact with the coil is thicker than the thickness of the other adhesive layer in contact with the metal member.
  • the reactor of the present invention is excellent in heat dissipation and insulation, and also in productivity.
  • the reactor manufacturing method of the present invention can manufacture a reactor excellent in heat dissipation and insulation with high productivity.
  • FIG. 1 is a schematic configuration diagram schematically showing a power supply system of a hybrid vehicle. It is a schematic circuit diagram which shows an example of the power converter device of Embodiment 4 which provides the converter of Embodiment 4.
  • the present invention achieves the above-mentioned object by providing a bonding layer composed of a specific adhesive sheet. First, the contents of the embodiment of the present invention will be listed and described.
  • the reactor according to the embodiment includes a coil formed by winding a winding in a spiral shape, a magnetic core on which the coil is disposed, a metal member on which the coil is placed, and the coil And a joining layer that is interposed between the metal member and fixes the coil to the metal member.
  • the bonding layer includes both an insulating sheet made of an insulating material, a coil side adhesive layer formed on the front and back surfaces of the insulating sheet and in contact with the coil, and a metal side adhesive layer in contact with the metal member. It consists of an adhesive sheet. And the thickness of the said coil side contact bonding layer is thicker than the thickness of the said metal side contact bonding layer.
  • a metal member for example, a metal plate or a bottom plate portion of a case
  • a metal member generally made of a metal having excellent thermal conductivity and a coil are joined by a joining layer, so that the metal member is a heat dissipation member.
  • the heat of the coil can be efficiently transmitted to the outside (for example, the installation target of the reactor). Therefore, the reactor of the embodiment is excellent in heat dissipation.
  • an insulating sheet which is a part of the bonding layer is interposed between the coil and the metal member, and the insulating sheet functions as an insulating member to insulate the coil from the metal member. Increases sex. Therefore, the reactor according to the embodiment is excellent in insulation even if the bonding layer is thin. Specifically, the reactor according to the embodiment can ensure equivalent or higher insulation as compared with a case where a thick adhesive layer made of a single material adhesive is interposed between the coil and the metal member. Moreover, the reactor of embodiment can shorten the distance between a coil and a metal member by thickness reduction of a joining layer. Also from this point, the reactor of embodiment is excellent in heat dissipation.
  • the reactor according to the embodiment uses a double-sided adhesive sheet as a constituent member of the bonding layer, so that a single curing step is required when fixing the coil and the metal member, and the productivity is excellent. Moreover, when the bonding layer (double-sided adhesive sheet) is thinned as described above, the curing time can also be shortened. Also from this point, the reactor of embodiment is excellent in productivity.
  • the reactor according to the embodiment since the thickness of the coil-side adhesive layer is larger than that of the metal-side adhesive layer, the reactor according to the embodiment has an inevitable variation in the outer shape of the turn that can be caused by winding the winding spirally. Can be absorbed by layer. That is, each of the turns in the coil and the constituent material of the coil-side adhesive layer can be sufficiently contacted, and the coil and the metal member are firmly bonded. Also from this point, the reactor of embodiment is excellent in heat dissipation. Moreover, it can also be set as the reactor which is excellent in shape precision and dimensional precision by absorption of the above-mentioned dispersion
  • the above-mentioned form in which the thickness of the coil-side adhesive layer is in the above-mentioned range is that the coil and the metal member are firmly joined, and further, the heat dissipation is deteriorated and the reactor is enlarged due to excessive thickness of the adhesive layer. Can be suppressed. Therefore, the said form can be made into a small reactor while being excellent in heat dissipation.
  • the adhesive is interposed between the turns, the contact area between each turn and the adhesive is large, and the coil and the metal member are more firmly bonded. Therefore, the said form is more excellent by heat dissipation.
  • the winding includes a conductor composed of a rectangular wire, and the coil is an edgewise coil.
  • the edgewise coil is easy to increase the space factor and can be a small coil.
  • the coil and the metal member are further firmly bonded by the anchor effect of the adhesive interposed between the turns. Therefore, the said form is further excellent in heat dissipation while being small.
  • the reactor further includes a case that houses a combination of the coil and the magnetic core, and the case is independent of the bottom plate portion on which the combination is placed and the bottom plate portion. It can be made into the form which comprises the side wall part which is the member which encloses the circumference
  • the metal member is the bottom plate portion and the side wall portion is made of an insulating resin.
  • the double-sided adhesive sheet constituting the assembly and the bonding layer can be placed on the bottom plate part with the side wall part removed, and the assembly workability is excellent.
  • the said form can improve the insulation of a coil and a baseplate part by a double-sided adhesive sheet (especially insulating sheet), and when a coil and a side wall part are made to adjoin by the side wall part comprised with insulating resin.
  • insulation between the coil and the side wall can be ensured. Therefore, the said form is excellent in productivity, and also is excellent in the insulation between a coil and a case.
  • the said form is excellent also in heat dissipation by making a part (bottom plate part) of a case function as a heat radiating member.
  • the reactor which concerns on the above-mentioned embodiment can be utilized suitably for the component of a converter.
  • the converter according to the embodiment includes the reactor according to the embodiment described in any one of (1) to (4) above.
  • the converter of the embodiment is excellent in heat dissipation, insulation, and productivity by including the reactor of the embodiment excellent in heat dissipation, insulation, and productivity.
  • the converter of the said embodiment can be utilized suitably for the component of a power converter device.
  • the power converter device which concerns on embodiment comprises the converter of the said embodiment.
  • the power conversion device of the embodiment is excellent in heat dissipation, insulation, and productivity by including the converter of the embodiment including the reactor of the embodiment that is excellent in heat dissipation, insulation, and productivity.
  • a method for manufacturing a reactor according to the embodiment relates to a method for manufacturing a reactor by assembling a coil formed by winding a winding spirally and a magnetic core on which the coil is arranged, and Preparation step, sheet placement step, assembly placement step, and joining step.
  • Preparation process The process of preparing the double-sided adhesive sheet which comprises the insulating sheet comprised from the insulating material, and the contact bonding layer formed in the front and back of the said insulating sheet, respectively.
  • Sheet Arrangement Step A step of arranging the double-sided adhesive sheet on a metal member on which an assembly of the coil and the magnetic core is placed.
  • the manufacturing method of the reactor of the embodiment uses a double-sided adhesive sheet for joining the coil and the metal member, so that the constituent material of the joining layer is cured from the placement of the constituent material on the metal member to the joining of the coil and the metal member.
  • the process can be performed once. Therefore, the manufacturing method of the reactor of embodiment can manufacture the reactor of embodiment which is excellent in the heat dissipation and insulation mentioned above with sufficient productivity.
  • a double-sided adhesive sheet by using a thin one adhesive layer (the above-mentioned metal side adhesive layer), compared to the case where both adhesive layers have the same thickness and are thick.
  • a reactor having a short distance between the coil and the metal member can be manufactured.
  • the thickness of both adhesive layers is increased by this curing.
  • the multilayer adhesive layer is formed by performing the curing for each layer, the outermost layer in contact with the combined body of the multilayer adhesive layers is arranged in an uncured state, and then Cured.
  • the thickness of the outermost layer after curing tends to be thinner than that before curing by being pressed by the combination.
  • the adhesive layer below the outermost layer is already cured, the thickness of the lower adhesive layer does not substantially change after the outermost layer is cured. In other words, it does not become thin. Therefore, the reactor manufacturing method of the embodiment using the double-sided adhesive sheet in which the thickness of the adhesive layer has a specific relationship is compared with the case where a multilayer adhesive layer is constructed by curing each layer. A reactor having a shorter distance between the metal member and the metal member can be manufactured. Also from this point, the manufacturing method of the reactor of embodiment can manufacture the reactor excellent in heat dissipation. Moreover, the manufacturing method of the reactor of embodiment can manufacture a small reactor because the distance between a coil and a metal member is short.
  • the reactor 1 includes a coil 2 formed by spirally winding a winding 2 w and a magnetic core 3 on which the coil 2 is disposed. Furthermore, the reactor 1 of this example also includes a case 4 that houses an assembly 10 of a coil 2 and a magnetic core 3.
  • the case 4 includes a bottom plate portion 40 (FIG. 2) on which the combined body 10 is placed and a side wall portion 41 standing from the bottom plate portion 40.
  • the bottom plate part 40 is a metal member made of a metal material.
  • the coil 2 is fixed to the bottom plate portion 40 by a bonding layer 42 (FIG. 2) interposed between the coil 2 and the bottom plate portion 40.
  • a feature of the reactor 1 of the first embodiment is that the bonding layer 42 is formed of a double-sided adhesive sheet having a specific three-layer structure.
  • both the coil 2 and the magnetic core 3 can be of a known shape and material.
  • the coil 2 includes a pair of coil elements 2a and 2b formed by spirally winding a winding 2w, and a connecting portion 2r for connecting both the coil elements 2a and 2b.
  • Each coil element 2a, 2b is a hollow cylindrical body having the same number of turns, and is arranged in parallel (side by side) so that the respective axial directions are parallel.
  • the winding 2 w is a covered rectangular wire including a conductor made of a copper rectangular wire and an insulating coating covering the surface of the conductor.
  • Each of the coil elements 2a and 2b is an edgewise coil in which the covered rectangular wire is wound edgewise.
  • the magnetic core 3 includes a pair of columnar inner core portions 31 and a pair of columnar outer core portions 32 as shown in FIG.
  • Each inner core portion 31 is inserted and arranged in the coil elements 2a and 2b arranged side by side, and is used as a coil arrangement portion.
  • the outer core portion 32 is a portion that is exposed from the coil 2 and is not substantially disposed.
  • Each outer core part 32 is arrange
  • the case 4 is a member in which the bottom plate portion 40 constituting the bottom portion of the case 4 and the side wall portion 41 constituting the wall portion of the case 4 are independent in the manufacturing process of the reactor 1.
  • the bottom plate part 40 and the side wall part 41 are assembled by a fixing member (not shown) and formed in a box shape.
  • the bottom plate portion 40 on which the assembly 10 is placed is a metal member as described above, and functions as a heat radiating member that transfers the heat of the coil 2 to the outside.
  • the bonding layer 42 is interposed between the region facing the bottom plate portion 40 (the lower surface in FIGS. 2 and 4A) of the coil 2 and the inner surface 40 i of the bottom plate portion 40.
  • the bottom plate part 40 are joined by the joining layer 42 (FIG. 4A).
  • FIG. 4A only the vicinity of the bottom plate portion 40 is shown for easy understanding.
  • the coil 2 (winding 2w) is not hatched for easy understanding.
  • FIG. 4B shows an enlarged view of a region surrounded by a dotted line in FIG.
  • the bonding layer 42 has a three-layer structure including an insulating sheet 422 made of an insulating material and adhesive layers 425 and 427 formed on the front and back surfaces of the insulating sheet 422, respectively. .
  • the insulating sheet 422 is a flat plate-like member for enhancing electrical insulation between the coil 2 and the metal member (here, the bottom plate portion 40). Therefore, the insulating sheet 422 has a predetermined withstand voltage characteristic. For example, in a vehicle-mounted reactor, an insulating sheet 422 having a withstand voltage characteristic of 1 kV or more, and further 3 kV or more is preferable. For example, in the case of a sheet material having 10 kV / mm or more, the insulating sheet 422 having a desired withstand voltage characteristic (kV) can be obtained by adjusting the thickness. Further, when the insulating sheet 422 is made of a material having high thermal conductivity, it is preferable because heat dissipation is improved.
  • thermal conductivity is 0.1 W / m ⁇ K or more, further 0.15 W / m ⁇ K or more, 0.5 W / m ⁇ K or more, 1 W / m ⁇ K or more, or 2.0 W / m ⁇ K or more
  • the insulating sheet 422 that satisfies the requirements can improve heat dissipation.
  • the material for the insulating sheet 422 include polyimide resin, amideimide resin, polyester resin, and epoxy resin.
  • a polyimide resin is excellent in heat resistance and insulation.
  • Amidoimide resins have very high heat resistance.
  • Epoxy resin is excellent in insulation. Although depending on the dielectric breakdown strength (kV / mm) and thickness, these resins can have a withstand voltage characteristic of about 5 kV to 7 kV, for example, when the thickness is 50 ⁇ m.
  • Other materials include, for example, ceramics such as silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), aluminum nitride (AlN), boron nitride (BN), silicon carbide (SiC), etc. The thing containing the filler which consists of is mentioned.
  • the insulating sheet 422 made of a resin containing a filler made of the ceramic can further improve heat dissipation and insulation.
  • the thickness t i of the insulating sheet 422 can be appropriately selected as long as the desired withstand voltage characteristics are satisfied as described above.
  • the thickness t i of the insulating sheet 422 depending on the material, if it is 10 ⁇ m or more 100 ⁇ m or less, can be made thin bonding layer 42 on which is excellent in insulating properties. Since the joining layer 42 is thin, the distance between the coil 2 and the metal member (here, the bottom plate portion 40) can be shortened, and the reactor 1 is excellent in heat dissipation.
  • the insulating sheet 422 is made of a material having excellent insulating properties (for example, when the withstand voltage characteristic satisfies 7 kV or more), even if the insulating sheet 422 is thin (for example, 10 ⁇ m or more and 50 ⁇ m or less, further 30 ⁇ m or less), Excellent insulation.
  • the bonding layer 42 is thinned, and as a result, the distance between the coil 2 and the metal member (here, the bottom plate portion 40) can be shortened, and the heat dissipation is further improved.
  • the insulating sheet 422 is made of a material having excellent thermal conductivity (for example, when the thermal conductivity satisfies 0.5 W / m ⁇ K or more), the heat dissipation is excellent even if the insulating sheet 422 is made thick within the above range.
  • the adhesive layers 425 and 427 provided on the front and back surfaces of the flat insulating sheet 422 are bonded between the coil 2 and the insulating sheet 422, and bonded between the insulating sheet 422 and the metal member (here, the bottom plate portion 40), respectively.
  • the materials of both layers 425 and 427 can be the same or different.
  • the above-mentioned resin is applied to the front and back surfaces of the insulating sheet 422, and then cured to some extent, thereby producing a double-layer adhesive sheet 420 having a three-layer structure in which the insulating sheet 422 is held between the two adhesive layers 425 and 427. Yes (FIG. 4C).
  • the bonding layer 42 is formed by completely curing the double-sided adhesive sheet 420 having a three-layer structure.
  • the thickness t c of the coil side adhesive layer 425 and the thickness t m of the metal side adhesive layer 427 are different. Specifically, the thickness t c of the coil side adhesive layer 425 is thicker than the thickness t m of the metal side adhesive layer 427. Note that the thickness t c of the coil side adhesive layer 425 and the thickness t m of the metal side adhesive layer 427 in the bonding layer 42 are the thicknesses of the adhesive layers 425 and 427 completely cured.
  • the thickness t c of the coil side adhesive layer 425 that joins the coil 2 and the insulating sheet 422 is relatively thick, the contact area with the coil 2 is increased, the variation in the outer shape of the turn in the coil 2 is absorbed, and the insulating property. Can be improved. Since the thickness t m of the metal-side adhesive layer 427 that joins the insulating sheet 422 and the metal member (here, the bottom plate portion 40) is relatively thin, the joining layer 42 becomes thin, and consequently the reactor 1 is downsized. be able to.
  • Such a bonding layer 42 is formed by using a double-sided adhesive sheet 420 in which the thickness t cs of the coil side adhesive layer 425 is thicker than the thickness t ms of the metal side adhesive layer 427 as shown in FIG. can do.
  • the thickness t cs of the coil side adhesive layer 425 and the thickness t ms of the metal side adhesive layer 427 in the double-sided adhesive sheet 420 are the thicknesses before the adhesive layers 425 and 427 are completely cured (typically Is the thickness when the coil 2 and the metal member are not arranged and are in an independent state.
  • a specific thickness t c of the coil side adhesive layer 425 in the bonding layer 42 is, for example, more than 30 ⁇ m and 350 ⁇ m or less.
  • the bonding layer 42 is sufficiently thin, and heat dissipation can be improved and the size can be reduced. Since the thickness t c of the coil side adhesive layer 425 is more than 30 ⁇ m, the thickness t cs of the double-sided adhesive sheet 420 before being completely cured also has a sufficient thickness, and the contact area described above Increase, variation absorption, and insulation can be improved.
  • the bonding layer 42 is further thinned, and when the thickness t c is 50 ⁇ m or more, and further 100 ⁇ m or more, the insulating property is improved. Further enhanced. Therefore, it is considered that the thickness t c of the coil side adhesive layer 425 is preferably about 70 ⁇ m or more and 120 ⁇ m or less.
  • the thickness t c of the coil-side adhesive layer 425 in the bonding layer 42 is the average thickness between the surface of the coil 2 facing the bottom plate portion 40 and one surface of the insulating sheet 422 (FIG. 4B). .
  • the thickness t cs of the double-sided adhesive sheet 420 may be adjusted so that the thickness t c of the coil-side adhesive layer 425 in the bonding layer 42 becomes a desired thickness.
  • the thickness t cs of the coil side adhesive layer 425 included in the double-sided adhesive sheet 420 may be 50 ⁇ m or more and 500 ⁇ m or less.
  • Specific thickness t m of the metal side adhesive layer 427 in the bonding layer 42 is, for example, 5 ⁇ m or more and 50 ⁇ m or less (where t c > t m ).
  • the insulating sheet 422 and the metal member here, the bottom plate portion 40
  • the thickness t m of the metal side adhesive layer 427 can be set to 20 ⁇ m or more.
  • the thickness t ms of the double-sided adhesive sheet 420 may be adjusted so that the thickness t m of the metal side adhesive layer 427 in the bonding layer 42 becomes a desired thickness.
  • the thickness t ms of the metal side adhesive layer 427 provided in the double-sided adhesive sheet 420 may be more than 5 ⁇ m and not more than 100 ⁇ m.
  • both the adhesive layers 425 and 427 of the double-sided adhesive sheet 420 are hardened simultaneously, and the union body 10 and the metal member (here, the bottom plate part 40) are joined, thereby the union body 10
  • the thickness t c and t m at the time of the reactor 1 are usually set by pressing the union 10 by its own weight. It becomes thinner (t c ⁇ t cs , t m ⁇ t ms ).
  • the above-described thickness relationship (the thickness of the coil-side adhesive layer 425 is greater than the thickness of the metal-side adhesive layer 427) is maintained even after the above-described curing.
  • the thickness tis of the insulating sheet 422 when only the double-sided adhesive sheet 420 is used may be thinned by pressing or the like due to the weight of the combined body 10 (t i ⁇ t is ).
  • the ratio (t c / t m ) of the thickness t c of the coil side adhesive layer 425 to the thickness t m of the metal side adhesive layer 427 in the bonding layer 42 can be appropriately selected. Is mentioned.
  • the coil side adhesive layer 425 is too thick, leading to a thickening of the bonding layer 42, or the coil side adhesive layer 425 and the metal side. Since there is a risk of warping based on the difference in thermal expansion and contraction with the adhesive layer 427, it is preferably about 10 or less, and more preferably about 2 or more and 5 or less.
  • the thickness ratio (t c / t m ) in the bonding layer 42 may substantially maintain the thickness ratio (t cs / t ms ) in the double-sided adhesive tape 420, but as will be described later, In the case where the adhesive constituting the adhesive layer 425 is interposed between turns, the thickness t c of the bonding layer 42 is small, so that t c / t m ⁇ t cs / t ms may be satisfied.
  • + T ms is about 65 ⁇ m or more and 700 ⁇ m or less, preferably about 500 ⁇ m or less.
  • the bonding layer 42 and the double-sided adhesive sheet 420 have an area where at least a surface facing the metal member (here, the bottom plate portion 40) of the coil 2 (here, a virtual surface formed by a plurality of turns) can be sufficiently contacted. If it is, shape and size are not particularly limited.
  • the bonding layer 42 and the double-sided adhesive sheet 420 are surfaces facing the metal member in the assembly 10 (here, the virtual surface of the coil 2 and the metal member side of the outer core portion 32.
  • the shape is in line with the contour created by the surface. Therefore, since both the coil 2 and the outer core part 32 can fully contact the joining layer 42 and both heats are transmitted to the outside through the metal member, the reactor 1 can further improve heat dissipation.
  • the bonding layer 42 and the insulating sheet 422 of the double-sided adhesive sheet 420 are made of polyimide, and the adhesive layers 425 and 427 are made of epoxy resin.
  • the thickness t IS is 25 ⁇ m insulating sheet 422
  • the thickness t cs is 300 ⁇ m coil side adhesive layer 425
  • a double-sided adhesive sheet 420 having a thickness of t ms is 30 ⁇ m metal side adhesive layer 427 using the bonding
  • the thickness t i of the insulating sheet 422 in the layer 42 is 25 ⁇ m
  • the thickness t c of the coil side adhesive layer 425 is 100 ⁇ m
  • the reactor 1 can be manufactured through the following steps (1) to (4), for example.
  • a double-sided adhesive sheet 420 is prepared.
  • the above-mentioned specific three-layer structure double-sided adhesive sheet 420 is prepared.
  • the adhesive layers 425 and 427 are formed on the front and back surfaces of the insulating sheet 422 so that the thickness t cs of the coil side adhesive layer 425 is larger than the thickness t ms of the metal side adhesive layer 427. Further, the double-sided adhesive sheet 420 is cut into a desired shape.
  • the double-sided adhesive sheet 420 is arranged on the metal member.
  • the prepared double-sided adhesive sheet 420 is placed on a metal member (here, the bottom plate portion 40).
  • the double-sided adhesive sheet 420 can be disposed on the bottom plate portion 40 with the side wall portion 41 removed, and the workability is excellent.
  • the combined body 10 is mounted on the double-sided adhesive sheet 420.
  • the combined body 10 is prepared in advance, and the combined body 10 is placed on the double-sided adhesive sheet 420.
  • the combined body 10 is formed by stacking a plurality of core pieces 31m and a gap material 31g to form two inner core portions 31, and the inner core portions 31 are respectively coiled elements 2a and 2b. It can manufacture by assembling
  • the adhesive layers 425 and 427 provided on the double-sided adhesive sheet 420 are cured, and the coil 2 and the metal member are joined by the double-sided adhesive sheet 420.
  • the double-sided adhesive sheet 420 is brought to a predetermined temperature, so that both the adhesive layers 425 and 427 are softened to some extent, and the coil 2 and the insulating sheet 422 are joined by the coil-side adhesive layer 425, and the metal-side adhesive layer
  • the insulating sheet 422 and the metal member (here, the bottom plate portion 40) can be joined by 427, and then cured to fix the joined state. As a result, the coil 2 and the metal member are joined by the double-sided adhesive sheet 420.
  • the coil 2, the magnetic core 3, and the metal member are provided by the step (4), and the coil 2 and the metal member are configured by curing the double-sided adhesive sheet 420.
  • the reactor 1 bonded through the bonding layer 42 is obtained.
  • the reactor 1 can have a form in which an adhesive constituting the coil-side adhesive layer 425 is interposed between adjacent turns in the coil 2.
  • the contact between the coil 2 and the adhesive is mainly compared to the case where the adhesive is mainly in contact with the surface (the virtual surface described above) facing the metal member (here, the bottom plate portion 40) in the coil 2.
  • the area increases. Therefore, in this embodiment, the heat of the coil 2 is easily transmitted by the metal member, the heat dissipation is excellent, and the coil 2 is firmly fixed by the metal member.
  • the adhesive constituting the coil side adhesive layer 425 included in the double-sided adhesive sheet 420 is cured in a state of being interposed between the turns, so that the thickness t c of the coil side adhesive layer 425 in the bonding layer 42 is further increased. Can be thinned efficiently. Also from this point, this form is excellent in heat dissipation.
  • an edgewise coil is used as in this example, stronger anchoring can be realized by an anchor effect due to the presence of an adhesive as compared to a flatwise coil or a coil using a round wire.
  • the axial length of the coil 2 does not become too long, and the coil 2 and the metal member
  • the adhesive constituting the coil-side adhesive layer 425 can be sufficiently interposed between (the bottom plate portion 40 here) and is preferable.
  • the coil 2 is formed so that the adjacent turns have a desired interval. Further, by narrowing the distance between adjacent turns as described above, the adhesive before curing can penetrate to some extent by capillary action, although it depends on the viscosity of the adhesive before curing.
  • the penetration depth of the adhesive before the curing can be further increased, and the adjacent turn It is possible to uniformly penetrate between them. As a result, it is possible to penetrate the height h i is larger reactor adhesive interposed between adjacent turns.
  • Penetration height h i can be appropriately selected.
  • penetration height h i is 1 / 4-1 / 2 of about the width W of the windings 2w (flat wire) (0.25 ⁇ W or 0.5 ⁇ W
  • the contact area is sufficiently large, and the thickness t c of the coil side adhesive layer 425 can be sufficiently secured. It is preferable to adjust the interval between turns, the pressing force, and the like so that the penetration height hi becomes a desired height.
  • the manufacturing of the reactor 1 shown in FIG. 1 further includes a step of assembling the case 4 by assembling the bottom plate portion 40 and the side wall portion 41.
  • the side wall 41 is placed on the bottom plate 40 by covering the side wall 41 from above the combination 10 so as to surround the outer peripheral surface of the combination 10 fixed by the bonding layer 42.
  • the bottom plate portion 40 and the side wall portion 41 are integrated by a fixing member (a connecting bolt not shown here).
  • the reactor 1 is excellent in heat dissipation from the following points. (1) Since the coil 2 and the metal member (here, the bottom plate portion 40) are joined by the joining layer 42, even if the coil or the like generates heat during use, this heat can be efficiently transferred to the outside (such as the installation target of the reactor 1). ). (2) Since the bonding layer 42 includes the insulating sheet 422 and is excellent in insulation, the bonding layer 42 can be thinned, and the distance between the coil 2 and the metal member can be shortened. (3) Since the coil-side adhesive layer 425 in the bonding layer 42 is thick, the coil 2 can sufficiently contact.
  • both the adhesive layers 425 and 427 in the bonding layer 42 can be made thin, and the distance between the coil 2 and the metal member can be made shorter.
  • formation of the first adhesive layer on the metal member (here, the bottom plate portion 40) ⁇ placement of the insulating sheet ⁇ curing of the first adhesive layer ⁇ formation of the second adhesive layer on the insulating sheet ⁇ combination Consider the case where the second adhesive layer is cured in this order. In this case, the second adhesive layer can be made thinner than before curing by the weight of the assembly or pressing. However, since the assembly is placed after the first adhesive layer is cured, the first adhesive layer is unlikely to be thin.
  • both the adhesive layers 425 and 427 can be made thinner than before curing by the weight or pressing of the combined body 10, so that the coil 2 and the metal member can be used rather than the above-described two times of curing.
  • the distance between can be shortened.
  • the reactor 1 is excellent also in insulation from the point in which the joining layer 42 comprises the insulating sheet 422. Moreover, the reactor 1 can aim at reduction of a hardening process and shortening of hardening time by comprising the joining layer 42 with the specific double-sided adhesive sheet 420, and it is excellent also in productivity. Furthermore, the reactor 1 can absorb the dispersion
  • the coil 2 is formed by a single continuous winding 2 w. More specifically, a part of the winding 2w extending from the end of one coil element 2a is bent in a U shape to form a connecting part 2r, and the other coil element 2b is subsequently connected to the connecting part 2r. Is formed. With this configuration, the winding directions of both coil elements 2a and 2b are the same, and both coil elements 2a and 2b are electrically connected in series.
  • the end face shape of the coil elements 2a and 2b is a rectangular shape with rounded corners, but may be appropriately changed such as an annular shape.
  • Each coil element is manufactured by separate windings, and one end of each coil element winding is directly joined by welding, soldering, crimping, etc., or via a separately prepared connecting member (for example, plate material). It can also be a coil joined.
  • a coated wire having an insulating coating made of an insulating material (typically polyamideimide) on the outer circumference of a conductor made of a conductive material such as copper, aluminum, or an alloy thereof can be suitably used.
  • the conductor is typically a round wire or a rectangular wire.
  • an edgewise coil is formed by using a (covered) flat wire for the winding 2w, (1) it is easy to form a coil having a higher space factor than when a round wire is used.
  • at least a part of the outer peripheral surface (virtual surface) formed by a plurality of turns can be made flat, it is possible to secure a wide contact area with the bonding layer 42 and improve heat dissipation.
  • (3) Winding There is an advantage that a wide contact area can be secured between the wire 2w and a connection object such as a terminal fitting 8 (described later).
  • the terminal fitting 8 is typically connected to the conductor portion exposed by peeling off the insulation coating.
  • An external device such as a power source for supplying power is connected to the coil 2 via the terminal fitting 8. It may be directly connected to the connection location of the external device without going through the terminal fitting 8.
  • the winding 2w and the terminal fitting 8 may be joined at an appropriate time. In this example, it may be performed after the case 4 is assembled.
  • the inner core portion 31 of the magnetic core 3 includes a plurality of core pieces 31m made of a soft magnetic material and gap members 31g made of a material having a relative permeability smaller than that of the core pieces 31m. It is an arranged laminate.
  • the core piece 31m and the gap material 31g are integrated with an adhesive, it is easy to handle and it is expected that noise can be reduced by firmly fixing the core piece 31m and the gap material 31g.
  • the core piece 31m and the gap material 31g are integrated with an adhesive tape or the like, it is easy to handle.
  • the outer core portion 32 is a core piece made of a soft magnetic material.
  • the inner core portion 31 has a rectangular parallelepiped shape
  • the outer core portion 32 has a columnar shape in which the upper surface and the lower surface in FIG. 3 have a dome shape (a deformed trapezoidal shape in which the cross-sectional area decreases outward from the inner end surface 32e).
  • the shape of the inner core portion 31 (core piece 31m / gap material 31g) and the shape of the outer core portion 32 can be appropriately selected.
  • the surface (the lower surface in FIG. 3) facing the metal member (here, the bottom plate portion 40 (FIG. 2)) in the outer core portion 32 is the surface facing the metal member in the coil 2 (the lower surface in FIG. 3).
  • the size of the outer core portion 32 is adjusted to be flush with each other.
  • the outer peripheral surface (particularly the lower surface) of the outer core portion 32 protrudes from the outer peripheral surface of the inner core portion 31.
  • the opposing surface of the combined body 10 to the metal member is mainly composed of the lower surfaces of the two outer core portions 32 and the lower surface of the coil 2, and not only the coil 2 but also the outer core portion 32 includes the bonding layer 42. To touch.
  • the core piece constituting the inner core portion 31 and the outer core portion 32 has a molded body using an insulating group and a soft magnetic powder typified by an iron group metal such as iron or an alloy thereof, an oxide containing iron, or the like.
  • a laminated plate body in which a plurality of magnetic thin plates (for example, an electromagnetic steel plate typified by a silicon steel plate) is laminated may be mentioned.
  • the molded body is a compact material (typically using a coating powder having an insulation coating), a sintered body, a composite material obtained by injection molding or cast molding of a mixture containing soft magnetic powder and resin. Etc.
  • each core piece is a powder compact of soft magnetic metal powder containing iron such as iron or steel.
  • a known material can be used for the gap material 31g.
  • the specific material of the gap material 31g is a mixture containing a nonmagnetic material such as alumina or unsaturated polyester, a nonmagnetic material such as polyphenylene sulfide (PPS) resin, and magnetic powder (for example, soft magnetic powder such as iron powder). Etc.
  • each core piece which comprises the magnetic core 3 shall be the thing of the same specification (compact compact
  • the reactor 1 also includes an insulator 5 interposed between the coil 2 and the magnetic core 3, and is excellent in insulation between the coil 2 and the magnetic core 3.
  • the insulator 5 shown in this example includes a pair of peripheral wall portions 51 interposed between the coil element 2a or the coil element 2b and the inner core portion 31 to insulate them, and the coil elements 2a and 2b. And a pair of frame plate portions 52 that are interposed between the inner end surface 32e and the inner end surface 32e of the outer core portion 32 to insulate them.
  • the shape of the insulator 5 shown in FIG. 3 is an example, and can be changed as appropriate.
  • the peripheral wall 51 is composed of divided members 512 and 514 having a bowl-shaped cross section.
  • the shape of the dividing members 512 and 514 can be selected as appropriate.
  • the dividing members 512 and 514 are formed so as to partially cover the outer periphery of the inner core portion 31. Therefore, in the form having the sealing resin described later, it is easy to deaerate at the time of filling the sealing resin, it is excellent in manufacturability, and the contact area between the inner core portion 31 and the sealing resin can be increased, thereby suppressing noise. It is expected to be possible.
  • the peripheral wall portion 51 By configuring the peripheral wall portion 51 with the plurality of divided members 512 and 514, the peripheral wall portion 51 is easily arranged on the outer periphery of the inner core portion 31, and the assembly workability is excellent.
  • the frame plate portion 52 is a B-shaped flat plate member having a pair of openings (through holes) into which the two inner core portions 31 can be inserted.
  • the partition portion 52b disposed so as to be interposed between the coil elements 2a and 2b, the connecting portion 2r of the coil 2, and the one outer core portion 32.
  • a flat plate-like pedestal 52p a flat plate-like pedestal 52p.
  • the partition part 52b protrudes from one surface of the frame plate part 52 toward the coil side, and the pedestal 52p protrudes from the other surface of the frame plate part 52 toward the outer core part 32 side. You may abbreviate
  • an insulating material such as PPS resin, polytetrafluoroethylene (PTFE) resin, polybutylene terephthalate (PBT) resin, liquid crystal polymer, or the like can be used.
  • thermoplastic resins such as PPS resin, PTFE resin, LCP, nylon 6, nylon 66, and PBT resin can be used.
  • the case 4 is a box that includes a flat bottom plate portion 40 on which the combined body 10 is placed and a frame-shaped side wall portion 41 that surrounds the periphery of the combined body 10. Yes ( Figure 1).
  • the bottom plate portion 40 is typically a plate material fixed in contact with the installation target when the reactor 1 is installed on the installation target. Since the bottom plate portion 40 is used for the heat dissipation path of the coil 2, it is generally made of a metal that is a material having a high thermal conductivity. Specific examples of the metal include aluminum and its alloys, magnesium and its alloys, copper and its alloys, silver and its alloys, iron and austenitic stainless steel. Aluminum, magnesium, and their alloys can be made into lightweight cases. The thickness of the bottom plate portion 40 is, for example, about 2 mm or more and 5 mm or less in consideration of strength, shielding properties, heat dissipation, noise characteristics, and the like. Here, the bottom plate portion 40 is made of an aluminum alloy, and the thermal conductivity of the bottom plate portion 40 is sufficiently higher than the thermal conductivity of the side wall portion 41 described later.
  • the outer shape of the bottom plate portion 40 can be selected as appropriate.
  • the bottom plate portion 40 has a rectangular shape as shown in FIG. 2 and has mounting portions 400 protruding from the four corners.
  • the side wall portion 41 also has an attachment portion 411.
  • Bolt holes 400h and 411h are provided in the attachment portions 400 and 411, respectively.
  • Bolts (not shown) for fixing the case 4 to the installation target are inserted through the bolt holes 400h and 411h.
  • the shape, the number, and the like of the attachment portions 400 and 411 can be selected as appropriate. If the bolt hole 411h of the side wall part 41 is comprised with a metal pipe, even if the side wall part 41 is comprised with resin so that it may mention later, it is excellent in intensity
  • the side wall portion 41 is a frame-like body (here, a rectangular shape), and the whole is made of an insulating resin. Therefore, even when the coil 2 and the side wall 41 are arranged close to each other as shown in FIG. 1 (for example, the interval between the outer peripheral surface of the coil 2 and the inner surface of the side wall 41 is about 0 mm or more and 1.0 mm or less), Excellent insulation. Moreover, the reactor 1 can be reduced in size by reducing the said space
  • the insulating resin include PBT resin, urethane resin, PPS resin, acrylonitrile-butadiene-styrene (ABS) resin, and the like.
  • the side wall 41 When at least a part of the side wall 41 is made of metal (particularly nonmagnetic metal such as aluminum or magnesium), an improvement in heat dissipation and a shielding function can be expected.
  • all the side wall portions 41 are made of insulating resin as in this example, (1) excellent insulation between the coil 2 and the case 4 is achieved. (2) Even a complicated shape is easily manufactured by injection molding or the like. (3) It has the advantage that weight reduction can be achieved.
  • the side wall portion 41 includes two flange portions 410 made of a flat plate covering a part of the opening of the case 4 (FIG. 2).
  • the flange 410 By providing the flange 410, (1) improvement of vibration resistance, (2) improvement of rigidity of the case 4 (particularly the side wall part 41), and (3) external environment of the magnetic core 3 (particularly the outer core part 32).
  • Various effects such as protection from mechanical and mechanical protection, and (4) prevention of falling off of the combined body 10 can be obtained.
  • one flange portion 410 (left side in FIG. 2) is used as a terminal block to which the terminal fitting 8 is fixed. Further, a terminal groove is provided in the flange 410 so that the terminal fitting 8 can be positioned.
  • the terminal fixing member 9 is preferably formed of the above-described insulating resin. It is also possible to insert-mold the terminal fitting 8 into the side wall portion 41 to form a side wall portion including the terminal fitting 8.
  • the bottom plate portion 40 and the side wall portion 41 are integrated by the connecting bolt as described above, but an adhesive may be used together with the connecting bolt. Or you may connect the baseplate part 40 and the side wall part 41 only using an adhesive agent.
  • the double-sided adhesive sheet 420 has the same size as the bottom plate part 40, and the large double-sided adhesive sheet 420 allows the bonding layer 42 and the adhesive layer to join the bottom plate part 40 and the side wall part 41 to each other. Both of them can be formed. That is, the bonding layer 42 can be constituted by a part of the double-sided adhesive sheet 420 and the adhesive layer for integrating the case 4 can be constituted by the other part.
  • the curing step of the bonding layer 42 and the curing step of the adhesive layer that bonds the bottom plate portion 40 and the side wall portion 41 can be performed simultaneously, and the curing step can be reduced. Therefore, this form can improve productivity.
  • the case 4 may be filled with a sealing resin (not shown).
  • the sealing resin fixes the position of the assembly 10 stored in the case 4, mechanical protection of the assembly 10 and the like, and protection from the external environment (improves corrosion resistance). Can be improved.
  • the end of the winding 2w is exposed from the sealing resin, the end of the winding 2w and the terminal fitting 8 are easily joined. After joining the end part of the winding 2w and the terminal fitting 8, it is also possible to have a form in which the joining portion is embedded in the sealing resin.
  • the sealing resin examples include insulating resins such as an epoxy resin, a urethane resin, and a silicone resin.
  • insulating resins such as an epoxy resin, a urethane resin, and a silicone resin.
  • the sealing resin is a resin containing a filler made of ceramic described in the section of the material of the insulating sheet 422 described above, heat dissipation and insulation can be improved.
  • the sealing resin In the form including the sealing resin, if a packing (not shown) is provided between the bottom plate portion 40 and the side wall portion 41, the uncured resin leaks from the gap between the bottom plate portion 40 and the side wall portion 41. Can be prevented.
  • the adhesive can be sealed between the two to prevent leakage of uncured resin, so that packing can be omitted.
  • the reactor 1 can be configured to include a lid (not shown) that covers the opening of the case 4.
  • a lid (not shown) that covers the opening of the case 4.
  • the constituent material of the lid include the insulating resin described in the section of the material of the side wall 41.
  • the reactor 1 described above is used in applications where the energization conditions are, for example, maximum current (DC): about 100 A to 1000 A, average voltage: about 100 V to 1000 V, and operating frequency: about 5 kHz to 100 kHz, typically an electric vehicle or a hybrid It can be suitably used for a component part of an in-vehicle power converter such as an automobile.
  • DC maximum current
  • Embodiment 2 In Embodiment 1 mentioned above, the form in which the baseplate part 40 and the side wall part 41 are independent members was demonstrated. In addition, it can be set as the form which provides the case which consists of a box body in which the baseplate part and the side wall part were shape
  • the insulation between the coil and the case is improved. It is done.
  • the embodiment including the case has been described.
  • it can be set as the form which does not have a case.
  • it replaces with the baseplate part 40, and it is set as the form which provides the metal member interposed between the coil 2 and the installation object of the reactor 1.
  • FIG. If the metal member is flat or has a flat surface like the above-described bottom plate portion 40, the double-sided adhesive tape 420 and the combination 10 of the coil 2 and the magnetic core 3 can be stably disposed and assembled. Excellent workability.
  • the constituent material of the metal member include metals excellent in heat dissipation such as aluminum and its alloys described in the section of the bottom plate portion 40.
  • this metal member is provided with the attachment part to installation object similarly to the baseplate part 40, the installation operation
  • the outer resin portion covering the outer periphery of the combined body 10 is provided, or the outer resin portion covering both the combined body 10 and the metal member is provided, mechanical protection of the combined body 10 is achieved. And protection from the external environment.
  • the outer resin portion can also contribute to the integration of the combined body 10 and the metal member.
  • the outer resin portion is made of the above-described insulating resin, the insulation between the coil 2 and the like and the outside can be enhanced.
  • the reactors of the first to third embodiments can be used, for example, as a component part of a converter mounted on a vehicle or the like, or a component part of a power conversion device including the converter.
  • a vehicle 1200 such as a hybrid vehicle or an electric vehicle is used for traveling by being driven by a main battery 1210, a power converter 1100 connected to the main battery 1210, and power supplied from the main battery 1210 as shown in FIG. Motor (load) 1220.
  • the motor 1220 is typically a three-phase AC motor, which drives the wheel 1250 when traveling and functions as a generator during regeneration.
  • vehicle 1200 includes an engine in addition to motor 1220.
  • an inlet is shown as a charge location of the vehicle 1200, it can be set as the form which provides a plug.
  • the power conversion device 1100 includes a converter 1110 connected to the main battery 1210 and an inverter 1120 connected to the converter 1110 and performing mutual conversion between direct current and alternating current.
  • the converter 1110 shown in this example boosts the DC voltage (input voltage) of the main battery 1210 of about 200V to 300V to about 400V to 700V when the vehicle 1200 is running, and supplies the inverter 1120 with power.
  • converter 1110 steps down DC voltage (input voltage) output from motor 1220 via inverter 1120 to DC voltage suitable for main battery 1210 during regeneration, and causes main battery 1210 to be charged.
  • the inverter 1120 converts the direct current boosted by the converter 1110 into a predetermined alternating current when the vehicle 1200 is running, and supplies the motor 1220 with electric power. During regeneration, the alternating current output from the motor 1220 is converted into direct current and output to the converter 1110. is doing.
  • the converter 1110 includes a plurality of switching elements 1111, a drive circuit 1112 that controls the operation of the switching elements 1111, and a reactor L, and converts input voltage by ON / OFF repetition (switching operation). (In this case, step-up / down pressure) is performed.
  • a power device such as a field effect transistor (FET) or an insulated gate bipolar transistor (IGBT) is used.
  • the reactor L has the function of smoothing the change when the current is going to increase or decrease by the switching operation by utilizing the property of the coil that prevents the change of the current to flow through the circuit.
  • the reactors of the first to third embodiments are provided.
  • the power conversion device 1100 and the converter 1110 are also excellent in heat dissipation, insulation, and productivity by including the reactor 1 that is excellent in productivity.
  • Vehicle 1200 is connected to converter 1110, power supply converter 1150 connected to main battery 1210, sub-battery 1230 serving as a power source for auxiliary machinery 1240, and main battery 1210.
  • Auxiliary power supply converter 1160 for converting high voltage to low voltage is provided.
  • the converter 1110 typically performs DC-DC conversion, while the power supply device converter 1150 and the auxiliary power supply converter 1160 perform AC-DC conversion. Some power supply device converters 1150 perform DC-DC conversion.
  • the reactors of the power supply device converter 1150 and the auxiliary power supply converter 1160 have the same configuration as that of the reactors of the first to third embodiments, and a reactor whose size and shape are appropriately changed can be used.
  • the reactors of the first to third embodiments can be used for a converter that performs conversion of input power, and that only performs step-up or only performs step-down.
  • the reactor of the present invention includes various converters such as an in-vehicle converter (typically a DC-DC converter) and an air conditioner converter mounted on a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, and a fuel cell vehicle. It can be suitably used as a component part of a power converter.
  • the manufacturing method of the reactor of this invention can be utilized suitably for manufacture of the reactor utilized for the component of a converter and a power converter device.

Abstract

Provided are: a reactor having excellent heat dissipating characteristics, insulating characteristics and productivity; a converter that is provided with the reactor; a power conversion apparatus; and a reactor manufacturing method. A reactor (1) is provided with a coil (2) formed by spirally winding a winding wire (2w), and a magnetic core (3) having the coil (2) disposed thereon. The reactor is also provided with a metal member having the coil (2) placed thereon, and a bonding layer (42), which is disposed between the coil (2) and the metal member, and which fixes the coil (2) to the metal member. The bonding layer (42) is configured from a double-sided adhesive sheet (420) which is provided with: an insulating sheet (422) that is configured from an insulating material; and a coil-side adhesive layer (425) in contact with the coil (2), and a metal-side adhesive layer (427) in contact with the metal member, said adhesive layers being formed on the front and rear surfaces of the insulating sheet (422), respectively. The thickness (tc) of the coil-side adhesive layer (425) is more than the thickness (tm) of the metal-side adhesive layer (427).

Description

リアクトル、コンバータ、電力変換装置、及びリアクトルの製造方法Reactor, converter, power converter, and reactor manufacturing method
 本発明は、ハイブリッド自動車などの車両に搭載される車載用DC-DCコンバータや電力変換装置の構成部品などに利用されるリアクトル、リアクトルを具えるコンバータ、コンバータを具える電力変換装置、及びリアクトルの製造方法に関する。特に、放熱性及び絶縁性に優れる上に、生産性にも優れるリアクトルに関するものである。 The present invention relates to a reactor, a converter including a reactor, a power converter including a converter, and a reactor used in a DC-DC converter mounted on a vehicle such as a hybrid vehicle or a component of a power converter. It relates to a manufacturing method. In particular, the present invention relates to a reactor that is excellent in heat dissipation and insulation properties and also in productivity.
 電圧の昇圧動作や降圧動作を行う回路の部品の一つに、リアクトルがある。特許文献1は、ハイブリッド自動車などの車両に載置されるコンバータに利用されるリアクトルとして、巻線を螺旋状に巻回してなる筒状のコイル素子を具えるコイルと、このコイルが配置される環状の磁性コアと、コイルと磁性コアとの組合体を収納するケースとを具えるものを開示している。 Reactor is one of the circuit components that perform voltage step-up and step-down operations. In Patent Document 1, as a reactor used in a converter mounted on a vehicle such as a hybrid vehicle, a coil including a cylindrical coil element formed by winding a winding in a spiral shape and this coil are arranged. An annular magnetic core and a case that houses a combination of a coil and a magnetic core are disclosed.
 特許文献1では、特に、組合体が載置されるケースの底板部と、コイルとを接着剤によって固定する構成を開示している。接着剤によって、コイルが金属製の底板部に固定されることで、リアクトルの使用時に生じ得るコイルの熱を効率よく底板部に伝えられ、ひいてはリアクトルが取り付けられる設置対象にコイルの熱を伝達できる。そのため、このリアクトルは、放熱性に優れる。 Patent Document 1 discloses, in particular, a configuration in which a bottom plate portion of a case on which an assembly is placed and a coil are fixed with an adhesive. By fixing the coil to the metal bottom plate with the adhesive, the heat of the coil that can be generated when using the reactor can be efficiently transmitted to the bottom plate, and as a result, the heat of the coil can be transferred to the installation target to which the reactor is attached. . Therefore, this reactor is excellent in heat dissipation.
特許第4952963号公報Japanese Patent No. 4959633
 放熱性及び絶縁性に優れる上に、生産性に優れるリアクトルの開発が望まれる。 Development of a reactor that excels in heat dissipation and insulation as well as productivity is desired.
 特許文献1に記載されるリアクトルは、接着剤からなる接着剤層を具えることで、上述のように放熱性に優れる。また、コイルと金属製の底板部との間の接着剤層を例えば、多層構造とすると、絶縁性を高められる。しかし、多層にすると、一層ごとに硬化工程が必要であり、生産性の低下を招く。 The reactor described in Patent Document 1 is excellent in heat dissipation as described above by including an adhesive layer made of an adhesive. Further, for example, when the adhesive layer between the coil and the metal bottom plate portion has a multilayer structure, the insulating property can be enhanced. However, when the number of layers is increased, a curing process is required for each layer, resulting in a decrease in productivity.
 特許文献1に記載されるシート状接着剤を1枚用いる場合には、硬化工程を1回にできる。また、1枚のシート状接着剤であっても、厚さを厚くすれば、絶縁性を向上することができる。しかし、上記厚さを厚くすると、硬化時間が長くなり、生産性の低下を招く。また、上記厚さを厚くすることで、リアクトルの大型化も招くことから、シート状接着剤の厚肉化による絶縁性の向上には、限界がある。更に、上記厚さを厚くすることで、コイルと底板部との間の距離が大きくなるため、材質によっては、放熱性の低下を招く。 When using one sheet-like adhesive described in Patent Document 1, the curing process can be performed once. Moreover, even if it is one sheet-like adhesive, insulation can be improved if thickness is increased. However, when the thickness is increased, the curing time becomes longer and the productivity is lowered. Moreover, since the reactor is increased in size by increasing the thickness, there is a limit to the improvement in insulation by increasing the thickness of the sheet-like adhesive. Furthermore, since the distance between a coil and a baseplate part becomes large by making the said thickness thick, the fall of heat dissipation is caused depending on the material.
 従って、絶縁性をより高めた場合でも、放熱性に優れ、かつ生産性にも優れる構成の開発が望まれる。 Therefore, it is desired to develop a structure that is excellent in heat dissipation and productivity even when the insulation is further improved.
 そこで、本発明の目的の一つは、放熱性及び絶縁性に優れる上に、生産性にも優れるリアクトルを提供することにある。また、本発明の別の目的は、上記リアクトルを具えるコンバータ、このコンバータを具える電力変換装置を提供することにある。更に、本発明の別の目的は、放熱性及び絶縁性に優れるリアクトルを生産性よく製造できるリアクトルの製造方法を提供することにある。 Therefore, one of the objects of the present invention is to provide a reactor that is excellent in heat dissipation and insulation properties and also in productivity. Another object of the present invention is to provide a converter including the reactor and a power conversion device including the converter. Furthermore, another object of the present invention is to provide a reactor manufacturing method capable of manufacturing a reactor excellent in heat dissipation and insulation with high productivity.
 本発明のリアクトルは、巻線を螺旋状に巻回してなるコイルと、前記コイルが配置される磁性コアとを具えるリアクトルであって、前記コイルが載置される金属部材と、前記コイルと前記金属部材との間に介在して、前記コイルを前記金属部材に固定する接合層とを具える。前記接合層は、絶縁材料から構成された絶縁シートと、前記絶縁シートの表裏面にそれぞれ形成され、前記コイルに接するコイル側接着層、及び前記金属部材に接する金属側接着層とを具える両面接着シートから構成される。前記コイル側接着層の厚さが前記金属側接着層の厚さよりも厚い。 The reactor of the present invention is a reactor comprising a coil formed by winding a winding in a spiral shape, and a magnetic core on which the coil is disposed, and a metal member on which the coil is placed, and the coil And a bonding layer that is interposed between the metal member and fixes the coil to the metal member. The bonding layer includes both an insulating sheet made of an insulating material, a coil-side adhesive layer that contacts the coil, and a metal-side adhesive layer that contacts the metal member. It consists of an adhesive sheet. The coil side adhesive layer is thicker than the metal side adhesive layer.
 本発明のリアクトルの製造方法は、巻線を螺旋状に巻回してなるコイルと、前記コイルが配置される磁性コアとを組み付けてリアクトルを製造する方法に係るものであり、以下の工程を具える。
 絶縁材料から構成された絶縁シートと、前記絶縁シートの表裏面にそれぞれ形成された接着層とを具える両面接着シートを用意する工程。
 前記コイルと前記磁性コアとの組合体が載置される金属部材に前記両面接着シートを配置する工程。
 前記両面接着シートの上に前記組合体を載置する工程。
 前記両面接着シートに具える前記接着層を硬化して、前記コイルと前記金属部材とを前記両面接着シートを介して接合する工程。
 そして、前記両面接着シートは、前記コイルに接する一方の接着層の厚さが、前記金属部材に接する他方の接着層の厚さよりも厚い。
The method for manufacturing a reactor according to the present invention relates to a method for manufacturing a reactor by assembling a coil formed by winding a winding in a spiral and a magnetic core on which the coil is arranged, and includes the following steps. Yeah.
A step of preparing a double-sided adhesive sheet comprising an insulating sheet made of an insulating material and adhesive layers respectively formed on the front and back surfaces of the insulating sheet.
The process of arrange | positioning the said double-sided adhesive sheet in the metal member in which the assembly of the said coil and the said magnetic core is mounted.
Placing the assembly on the double-sided adhesive sheet;
Curing the adhesive layer provided on the double-sided adhesive sheet and joining the coil and the metal member via the double-sided adhesive sheet;
In the double-sided adhesive sheet, the thickness of one adhesive layer in contact with the coil is thicker than the thickness of the other adhesive layer in contact with the metal member.
 本発明のリアクトルは、放熱性及び絶縁性に優れる上に、生産性にも優れる。本発明のリアクトルの製造方法は、放熱性及び絶縁性に優れるリアクトルを生産性よく製造することができる。 The reactor of the present invention is excellent in heat dissipation and insulation, and also in productivity. The reactor manufacturing method of the present invention can manufacture a reactor excellent in heat dissipation and insulation with high productivity.
実施形態1のリアクトルを示す概略斜視図である。It is a schematic perspective view which shows the reactor of Embodiment 1. FIG. 実施形態1のリアクトルの概略を示す分解斜視図である。It is a disassembled perspective view which shows the outline of the reactor of Embodiment 1. FIG. 実施形態1のリアクトルに具えるコイルと磁性コアとの組合体の概略を示す分解斜視図である。It is a disassembled perspective view which shows the outline of the assembly of the coil and magnetic core which are provided in the reactor of Embodiment 1. FIG. (A)は図1に示すリアクトルにおける(IV)-(IV)断面を示す部分断面図、(B)は図4(A)における破線領域内の拡大断面図、(C)は両面接着テープの断面図である。(A) is a partial cross-sectional view showing a (IV)-(IV) cross section in the reactor shown in FIG. 1, (B) is an enlarged cross-sectional view in a broken line region in FIG. 4 (A), and (C) is a double-sided adhesive tape. It is sectional drawing. ハイブリッド自動車の電源系統を模式的に示す概略構成図である。1 is a schematic configuration diagram schematically showing a power supply system of a hybrid vehicle. 実施形態4のコンバータを具える実施形態4の電力変換装置の一例を示す概略回路図である。It is a schematic circuit diagram which shows an example of the power converter device of Embodiment 4 which provides the converter of Embodiment 4.
 [本発明の実施の形態の説明]
 本発明は、特定の接着シートから構成される接合層を具えることで、上述の目的を達成する。最初に本発明の実施形態の内容を列記して説明する。
[Description of Embodiment of the Present Invention]
The present invention achieves the above-mentioned object by providing a bonding layer composed of a specific adhesive sheet. First, the contents of the embodiment of the present invention will be listed and described.
 (1) 実施形態に係るリアクトルは、巻線を螺旋状に巻回してなるコイルと、上記コイルが配置される磁性コアとを具え、更に、上記コイルが載置される金属部材と、上記コイルと上記金属部材との間に介在して、上記コイルを上記金属部材に固定する接合層とを具える。上記接合層は、絶縁材料から構成された絶縁シートと、上記絶縁シートの表裏面にそれぞれ形成され、上記コイルに接するコイル側接着層、及び上記金属部材に接する金属側接着層とを具える両面接着シートから構成される。そして、上記コイル側接着層の厚さが上記金属側接着層の厚さよりも厚い。 (1) The reactor according to the embodiment includes a coil formed by winding a winding in a spiral shape, a magnetic core on which the coil is disposed, a metal member on which the coil is placed, and the coil And a joining layer that is interposed between the metal member and fixes the coil to the metal member. The bonding layer includes both an insulating sheet made of an insulating material, a coil side adhesive layer formed on the front and back surfaces of the insulating sheet and in contact with the coil, and a metal side adhesive layer in contact with the metal member. It consists of an adhesive sheet. And the thickness of the said coil side contact bonding layer is thicker than the thickness of the said metal side contact bonding layer.
 実施形態のリアクトルは、一般に熱伝導性に優れる金属から構成される金属部材(例えば、金属板やケースの底板部など)とコイルとが接合層によって接合されていることで、金属部材を放熱部材として機能させて、コイルの熱を効率よく外部(例えば、リアクトルの設置対象など)に伝達できる。従って、実施形態のリアクトルは、放熱性に優れる。 In the reactor of the embodiment, a metal member (for example, a metal plate or a bottom plate portion of a case) generally made of a metal having excellent thermal conductivity and a coil are joined by a joining layer, so that the metal member is a heat dissipation member. The heat of the coil can be efficiently transmitted to the outside (for example, the installation target of the reactor). Therefore, the reactor of the embodiment is excellent in heat dissipation.
 また、実施形態のリアクトルは、コイルと金属部材との間に、接合層の一部である絶縁シートが介在されており、この絶縁シートを絶縁部材として機能させて、コイルと金属部材との絶縁性を高められる。従って、実施形態のリアクトルは、接合層の厚さが薄くても、絶縁性に優れる。具体的には、実施形態のリアクトルは、コイルと金属部材との間に単一材質の接着剤からなる厚い接着剤層が介在された場合と比較して、同等以上の絶縁性を確保できる。また、実施形態のリアクトルは、接合層の薄肉化によってコイルと金属部材との間の距離を短くすることができる。この点からも、実施形態のリアクトルは、放熱性に優れる。 In the reactor of the embodiment, an insulating sheet which is a part of the bonding layer is interposed between the coil and the metal member, and the insulating sheet functions as an insulating member to insulate the coil from the metal member. Increases sex. Therefore, the reactor according to the embodiment is excellent in insulation even if the bonding layer is thin. Specifically, the reactor according to the embodiment can ensure equivalent or higher insulation as compared with a case where a thick adhesive layer made of a single material adhesive is interposed between the coil and the metal member. Moreover, the reactor of embodiment can shorten the distance between a coil and a metal member by thickness reduction of a joining layer. Also from this point, the reactor of embodiment is excellent in heat dissipation.
 更に、実施形態のリアクトルは、接合層の構成部材に両面接着シートを利用することで、コイルと金属部材とを固定する際に硬化工程が1回でよく、生産性にも優れる。また、上述のように接合層(両面接着シート)を薄くした場合、硬化時間も短縮できる。この点からも、実施形態のリアクトルは、生産性に優れる。 Furthermore, the reactor according to the embodiment uses a double-sided adhesive sheet as a constituent member of the bonding layer, so that a single curing step is required when fixing the coil and the metal member, and the productivity is excellent. Moreover, when the bonding layer (double-sided adhesive sheet) is thinned as described above, the curing time can also be shortened. Also from this point, the reactor of embodiment is excellent in productivity.
 かつ、実施形態のリアクトルは、コイル側接着層の厚さが金属側接着層よりも厚いため、巻線を螺旋状に巻回することで生じ得る不可避的なターンの外形のばらつきをコイル側接着層によって吸収できる。つまり、コイルにおける各ターンのそれぞれとコイル側接着層の構成材料とが十分に接触できる上に、コイルと金属部材とが強固に接合される。この点からも、実施形態のリアクトルは、放熱性に優れる。また、上述のばらつきの吸収によって、形状精度や寸法精度に優れるリアクトルとすることもできる。 In addition, since the thickness of the coil-side adhesive layer is larger than that of the metal-side adhesive layer, the reactor according to the embodiment has an inevitable variation in the outer shape of the turn that can be caused by winding the winding spirally. Can be absorbed by layer. That is, each of the turns in the coil and the constituent material of the coil-side adhesive layer can be sufficiently contacted, and the coil and the metal member are firmly bonded. Also from this point, the reactor of embodiment is excellent in heat dissipation. Moreover, it can also be set as the reactor which is excellent in shape precision and dimensional precision by absorption of the above-mentioned dispersion | variation.
 (2) 実施形態に係るリアクトルの一例として、上記コイル側接着層の厚さが30μm超350μm以下である形態が挙げられる。 (2) As an example of the reactor according to the embodiment, a form in which the thickness of the coil side adhesive layer is more than 30 μm and not more than 350 μm can be given.
 コイル側接着層の厚さが上述の範囲である上記形態は、コイルと金属部材とが強固に接合される上に、接着層の過度の厚肉化による放熱性の劣化やリアクトルの大型化を抑制できる。従って、上記形態は、放熱性に優れる上に小型なリアクトルとすることができる。 The above-mentioned form in which the thickness of the coil-side adhesive layer is in the above-mentioned range is that the coil and the metal member are firmly joined, and further, the heat dissipation is deteriorated and the reactor is enlarged due to excessive thickness of the adhesive layer. Can be suppressed. Therefore, the said form can be made into a small reactor while being excellent in heat dissipation.
 (3) 実施形態に係るリアクトルの一例として、上記コイルにおける隣接するターン間に上記コイル側接着層を構成する接着剤が介在した形態が挙げられる。 (3) As an example of the reactor according to the embodiment, there is a form in which an adhesive constituting the coil side adhesive layer is interposed between adjacent turns in the coil.
 ターン間にも接着剤が介在することで、各ターンのそれぞれと接着剤との接触面積が大きく、コイルと金属部材とがより強固に接合される。従って、上記形態は、放熱性により優れる。 Since the adhesive is interposed between the turns, the contact area between each turn and the adhesive is large, and the coil and the metal member are more firmly bonded. Therefore, the said form is more excellent by heat dissipation.
 (4) 実施形態に係るリアクトルの一例として、上記巻線が平角線から構成された導体を具え、上記コイルがエッジワイズコイルである形態が挙げられる。 (4) As an example of the reactor according to the embodiment, a form in which the winding includes a conductor composed of a rectangular wire, and the coil is an edgewise coil.
 エッジワイズコイルは、占積率を高め易く小型なコイルとすることができる。特に、上述のターン間に接着剤が介在した構成では、ターン間に介在する接着剤のアンカー効果によってコイルと金属部材とが更に強固に接合される。従って、上記形態は、小型な上に、放熱性に更に優れる。 The edgewise coil is easy to increase the space factor and can be a small coil. In particular, in the above-described configuration in which an adhesive is interposed between the turns, the coil and the metal member are further firmly bonded by the anchor effect of the adhesive interposed between the turns. Therefore, the said form is further excellent in heat dissipation while being small.
 実施形態に係るリアクトルの一例として、更に、上記コイルと上記磁性コアとの組合体を収納するケースを具え、上記ケースは、上記組合体が載置される底板部と、上記底板部とは独立した部材であり、上記組合体の周囲を囲む側壁部とを具える形態とすることができる。この形態では、上記金属部材が上記底板部であり、上記側壁部が絶縁性樹脂によって構成されていることが好ましい。 As an example of the reactor according to the embodiment, it further includes a case that houses a combination of the coil and the magnetic core, and the case is independent of the bottom plate portion on which the combination is placed and the bottom plate portion. It can be made into the form which comprises the side wall part which is the member which encloses the circumference | surroundings of the said assembly. In this embodiment, it is preferable that the metal member is the bottom plate portion and the side wall portion is made of an insulating resin.
 上記形態は、側壁部を取り外した状態の底板部に、組合体及び接合層を構成する両面接着シートを載置でき、組立作業性に優れる。また、上記形態は、両面接着シート(特に絶縁シート)によってコイルと底板部との絶縁性を高められる上に、絶縁性樹脂によって構成された側壁部によって、コイルと側壁部とを近接させた場合でも、コイルと側壁部との絶縁を確保できる。従って、上記形態は、生産性に優れる上に、コイルとケースとの絶縁性にも優れる。更に、上記形態は、ケースの一部(底板部)を放熱部材として機能させることで、放熱性にも優れる。 In the above embodiment, the double-sided adhesive sheet constituting the assembly and the bonding layer can be placed on the bottom plate part with the side wall part removed, and the assembly workability is excellent. Moreover, the said form can improve the insulation of a coil and a baseplate part by a double-sided adhesive sheet (especially insulating sheet), and when a coil and a side wall part are made to adjoin by the side wall part comprised with insulating resin. However, insulation between the coil and the side wall can be ensured. Therefore, the said form is excellent in productivity, and also is excellent in the insulation between a coil and a case. Furthermore, the said form is excellent also in heat dissipation by making a part (bottom plate part) of a case function as a heat radiating member.
 上述の実施形態に係るリアクトルは、コンバータの構成部品に好適に利用することができる。
 (5) 実施形態に係るコンバータは、上述の(1)~(4)のいずれか1つに記載の実施形態のリアクトルを具える。
The reactor which concerns on the above-mentioned embodiment can be utilized suitably for the component of a converter.
(5) The converter according to the embodiment includes the reactor according to the embodiment described in any one of (1) to (4) above.
 実施形態のコンバータは、放熱性、絶縁性、生産性に優れる実施形態のリアクトルを具えることで、放熱性、絶縁性、生産性に優れる。 The converter of the embodiment is excellent in heat dissipation, insulation, and productivity by including the reactor of the embodiment excellent in heat dissipation, insulation, and productivity.
 上記実施形態のコンバータは、電力変換装置の構成部品に好適に利用することができる。
 (6) 実施形態に係る電力変換装置は、上記実施形態のコンバータを具える。
The converter of the said embodiment can be utilized suitably for the component of a power converter device.
(6) The power converter device which concerns on embodiment comprises the converter of the said embodiment.
 実施形態の電力変換装置は、放熱性、絶縁性、生産性に優れる実施形態のリアクトルを具える実施形態のコンバータを具えることで、放熱性、絶縁性、生産性に優れる。 The power conversion device of the embodiment is excellent in heat dissipation, insulation, and productivity by including the converter of the embodiment including the reactor of the embodiment that is excellent in heat dissipation, insulation, and productivity.
 上述の実施形態に係るリアクトルは、例えば、以下の製造方法によって製造することができる。(7)実施形態に係るリアクトルの製造方法は、巻線を螺旋状に巻回してなるコイルと、上記コイルが配置される磁性コアとを組み付けてリアクトルを製造する方法に係るものであり、以下の準備工程、シート配置工程、組合体載置工程、及び接合工程を具える。
 (準備工程)絶縁材料から構成された絶縁シートと、上記絶縁シートの表裏面にそれぞれ形成された接着層とを具える両面接着シートを用意する工程。
 (シート配置工程)上記コイルと上記磁性コアとの組合体が載置される金属部材に上記両面接着シートを配置する工程。
 (組合体載置工程)上記両面接着シートの上に上記組合体を載置する工程。
 (接合工程)上記両面接着シートに具える上記接着層を硬化して、上記コイルと上記金属部材とを上記両面接着シートを介して接合する工程。
 そして、上記両面接着シートは、上記コイルに接する一方の接着層の厚さが上記金属部材に接する他方の接着層の厚さよりも厚い。
The reactor which concerns on the above-mentioned embodiment can be manufactured with the following manufacturing methods, for example. (7) A method for manufacturing a reactor according to the embodiment relates to a method for manufacturing a reactor by assembling a coil formed by winding a winding spirally and a magnetic core on which the coil is arranged, and Preparation step, sheet placement step, assembly placement step, and joining step.
(Preparation process) The process of preparing the double-sided adhesive sheet which comprises the insulating sheet comprised from the insulating material, and the contact bonding layer formed in the front and back of the said insulating sheet, respectively.
(Sheet Arrangement Step) A step of arranging the double-sided adhesive sheet on a metal member on which an assembly of the coil and the magnetic core is placed.
(Union body mounting process) The process of mounting the said assembly body on the said double-sided adhesive sheet.
(Jointing step) A step of curing the adhesive layer provided on the double-sided adhesive sheet and joining the coil and the metal member via the double-sided adhesive sheet.
In the double-sided adhesive sheet, the thickness of one adhesive layer in contact with the coil is thicker than the thickness of the other adhesive layer in contact with the metal member.
 実施形態のリアクトルの製造方法は、コイルと金属部材との接合に両面接着シートを利用することで、接合層の構成材料を金属部材に配置してからコイルと金属部材との接合までに、硬化工程を1回とすることができる。従って、実施形態のリアクトルの製造方法は、上述した放熱性及び絶縁性に優れる実施形態のリアクトルを生産性よく製造できる。 The manufacturing method of the reactor of the embodiment uses a double-sided adhesive sheet for joining the coil and the metal member, so that the constituent material of the joining layer is cured from the placement of the constituent material on the metal member to the joining of the coil and the metal member. The process can be performed once. Therefore, the manufacturing method of the reactor of embodiment can manufacture the reactor of embodiment which is excellent in the heat dissipation and insulation mentioned above with sufficient productivity.
 また、両面接着シートとして、一方の接着層(上述の金属側接着層)の厚さが薄いものを用いることで、双方の接着層の厚さが同じでかつ厚いものを用いる場合に比較して、コイルと金属部材との間の距離が短いリアクトルを製造できる。特に、上述の特定の両面接着シートの上にコイルと磁性コアとの組合体が載置された状態で、接着層を構成する接着剤を硬化することで、この硬化によって双方の接着層の厚さを薄くできる。ここで、1層ごとに硬化を行って多層の接着剤層を形成する場合、多層の接着剤層のうち、組合体と接する最表層は、未硬化の状態で組合体が配置されて、その後硬化される。このため、上記最表層の硬化後の厚さは、組合体に押されることで、硬化前よりも薄くなる傾向にある。しかし、上記最表層よりも下層の接着剤層は既に硬化されていることで、これら下層の接着剤層の厚さは、最表層の硬化後に実質的に変化しない。つまり、薄くならない。従って、接着層の厚さが特定の関係にある両面接着シートを利用する実施形態のリアクトルの製造方法は、1層ごとに硬化して多層の接着剤層を構築した場合と比較して、コイルと金属部材との間の距離がより短いリアクトルを製造できる。この点からも、実施形態のリアクトルの製造方法は、放熱性に優れるリアクトルを製造できる。また、実施形態のリアクトルの製造方法は、コイルと金属部材との間の距離が短いことで、小型なリアクトルを製造できる。 Moreover, as a double-sided adhesive sheet, by using a thin one adhesive layer (the above-mentioned metal side adhesive layer), compared to the case where both adhesive layers have the same thickness and are thick. A reactor having a short distance between the coil and the metal member can be manufactured. In particular, by curing the adhesive constituting the adhesive layer in a state where the combination of the coil and the magnetic core is placed on the above-described specific double-sided adhesive sheet, the thickness of both adhesive layers is increased by this curing. Can be thin. Here, when the multilayer adhesive layer is formed by performing the curing for each layer, the outermost layer in contact with the combined body of the multilayer adhesive layers is arranged in an uncured state, and then Cured. For this reason, the thickness of the outermost layer after curing tends to be thinner than that before curing by being pressed by the combination. However, since the adhesive layer below the outermost layer is already cured, the thickness of the lower adhesive layer does not substantially change after the outermost layer is cured. In other words, it does not become thin. Therefore, the reactor manufacturing method of the embodiment using the double-sided adhesive sheet in which the thickness of the adhesive layer has a specific relationship is compared with the case where a multilayer adhesive layer is constructed by curing each layer. A reactor having a shorter distance between the metal member and the metal member can be manufactured. Also from this point, the manufacturing method of the reactor of embodiment can manufacture the reactor excellent in heat dissipation. Moreover, the manufacturing method of the reactor of embodiment can manufacture a small reactor because the distance between a coil and a metal member is short.
 [本発明の実施形態の詳細]
 以下、図面を参照して、本発明の実施の形態を具体的に説明する。図中の同一符号は同一名称物を示す。
[Details of the embodiment of the present invention]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same reference numerals in the figure indicate the same names.
 [実施形態1]
 図1~図4を参照して、実施形態1のリアクトルを説明する。
[Embodiment 1]
The reactor according to the first embodiment will be described with reference to FIGS.
 (リアクトルの全体構成)
 リアクトル1は、図1に示すように、巻線2wを螺旋状に巻回してなるコイル2と、コイル2が配置される磁性コア3とを具える。更に、この例のリアクトル1は、コイル2と磁性コア3との組合体10を収納するケース4も具える。ケース4は、組合体10が載置される底板部40(図2)と、底板部40から立設する側壁部41とを具える。底板部40は金属材料から構成された金属部材である。コイル2は、コイル2と底板部40との間に介在される接合層42(図2)によって底板部40に固定される。実施形態1のリアクトル1の特徴とするところは、この接合層42が特定の三層構造の両面接着シートから構成されている点にある。以下、リアクトル1の主要な構成部材であるコイル2及び磁性コア3の概略、これらを収納するケース4の概略、特徴点である接合層42(両面接着シート420、図4(C))、リアクトル1の製造方法、及び特徴点に基づく主要な効果をまず説明し、次に各構成を詳細に説明する。
(Reactor overall configuration)
As shown in FIG. 1, the reactor 1 includes a coil 2 formed by spirally winding a winding 2 w and a magnetic core 3 on which the coil 2 is disposed. Furthermore, the reactor 1 of this example also includes a case 4 that houses an assembly 10 of a coil 2 and a magnetic core 3. The case 4 includes a bottom plate portion 40 (FIG. 2) on which the combined body 10 is placed and a side wall portion 41 standing from the bottom plate portion 40. The bottom plate part 40 is a metal member made of a metal material. The coil 2 is fixed to the bottom plate portion 40 by a bonding layer 42 (FIG. 2) interposed between the coil 2 and the bottom plate portion 40. A feature of the reactor 1 of the first embodiment is that the bonding layer 42 is formed of a double-sided adhesive sheet having a specific three-layer structure. Hereinafter, the outline of the coil 2 and the magnetic core 3 that are the main constituent members of the reactor 1, the outline of the case 4 that houses them, the bonding layer 42 that is a characteristic point (double-sided adhesive sheet 420, FIG. 4C), the reactor First, the main effects based on the manufacturing method and feature points will be described first, and then each configuration will be described in detail.
 (コイル及び磁性コアの概略)
 コイル2及び磁性コア3はいずれも、公知の形状、材質のものを利用することができる。ここでは、コイル2は、図2,図3に示すように、巻線2wを螺旋状に巻回してなる一対のコイル素子2a,2bと、両コイル素子2a,2bを連結する連結部2rとを具える。各コイル素子2a,2bは、互いに同一の巻数の中空の筒状体であり、各軸方向が平行するように並列(横並び)されている。ここでは、巻線2wは、銅平角線からなる導体と、導体の表面を覆う絶縁被覆とを具える被覆平角線である。また、各コイル素子2a,2bは、上記被覆平角線をエッジワイズ巻きにしたエッジワイズコイルである。
(Outline of coil and magnetic core)
Both the coil 2 and the magnetic core 3 can be of a known shape and material. Here, as shown in FIGS. 2 and 3, the coil 2 includes a pair of coil elements 2a and 2b formed by spirally winding a winding 2w, and a connecting portion 2r for connecting both the coil elements 2a and 2b. With Each coil element 2a, 2b is a hollow cylindrical body having the same number of turns, and is arranged in parallel (side by side) so that the respective axial directions are parallel. Here, the winding 2 w is a covered rectangular wire including a conductor made of a copper rectangular wire and an insulating coating covering the surface of the conductor. Each of the coil elements 2a and 2b is an edgewise coil in which the covered rectangular wire is wound edgewise.
 磁性コア3は、ここでは、図3に示すように一対の柱状の内側コア部31と、一対の柱状の外側コア部32とを具える。各内側コア部31はそれぞれ、横並びされたコイル素子2a,2b内に挿通配置されて、コイルの配置部分として利用される。外側コア部32は、コイル2から露出され、コイル2が実質的に配置されない部分である。横並びされた両内側コア部31を繋ぐように各外側コア部32が配置されて、環状の磁性コア3を形成する。 Here, the magnetic core 3 includes a pair of columnar inner core portions 31 and a pair of columnar outer core portions 32 as shown in FIG. Each inner core portion 31 is inserted and arranged in the coil elements 2a and 2b arranged side by side, and is used as a coil arrangement portion. The outer core portion 32 is a portion that is exposed from the coil 2 and is not substantially disposed. Each outer core part 32 is arrange | positioned so that both the inner core parts 31 arranged side by side may be connected, and the cyclic | annular magnetic core 3 is formed.
 (ケースの概略)
 ケース4は、図2に示すように、リアクトル1の製造過程では、ケース4の底部を構成する底板部40と、ケース4の壁部を構成する側壁部41とが独立した部材である。リアクトル1の完成状態では、図1に示すように、底板部40と側壁部41とが固定部材(図示せず)によって組み付けられて、箱状に形成されている。
(Case outline)
As shown in FIG. 2, the case 4 is a member in which the bottom plate portion 40 constituting the bottom portion of the case 4 and the side wall portion 41 constituting the wall portion of the case 4 are independent in the manufacturing process of the reactor 1. In the completed state of the reactor 1, as shown in FIG. 1, the bottom plate part 40 and the side wall part 41 are assembled by a fixing member (not shown) and formed in a box shape.
 組合体10が載置される底板部40は、上述のように金属部材であり、コイル2の熱を外部に伝える放熱部材として機能する。リアクトル1の完成状態では、コイル2における底板部40との対向領域(図2,図4(A)では下面)と底板部40の内面40iとの間に接合層42が介在されて、コイル2と底板部40とが接合層42によって接合されている(図4(A))。なお、図4(A)では、分かりやすいように底板部40の近傍のみを示す。また、図4(A),図4(B)では、コイル2(巻線2w)は分かり易いようにハッチングを省略している。図4(B)は、図4(A)において点線で囲まれた領域を拡大して示す。 The bottom plate portion 40 on which the assembly 10 is placed is a metal member as described above, and functions as a heat radiating member that transfers the heat of the coil 2 to the outside. In the completed state of the reactor 1, the bonding layer 42 is interposed between the region facing the bottom plate portion 40 (the lower surface in FIGS. 2 and 4A) of the coil 2 and the inner surface 40 i of the bottom plate portion 40. And the bottom plate part 40 are joined by the joining layer 42 (FIG. 4A). In FIG. 4A, only the vicinity of the bottom plate portion 40 is shown for easy understanding. 4A and 4B, the coil 2 (winding 2w) is not hatched for easy understanding. FIG. 4B shows an enlarged view of a region surrounded by a dotted line in FIG.
 (接合層)
 接合層42は、図4(B)に示すように絶縁材料から構成された絶縁シート422と、絶縁シート422の表裏面にそれぞれ形成された接着層425,427とを具える三層構造である。
(Bonding layer)
As shown in FIG. 4B, the bonding layer 42 has a three-layer structure including an insulating sheet 422 made of an insulating material and adhesive layers 425 and 427 formed on the front and back surfaces of the insulating sheet 422, respectively. .
 絶縁シート422は、コイル2と金属部材(ここでは底板部40)との電気的絶縁性を高めるための平板状の部材である。従って、絶縁シート422は、所定の耐電圧特性を有する。例えば、車載用のリアクトルでは、耐電圧特性が1kV以上、更に3kV以上を有する絶縁シート422が好ましい。例えば、10kV/mm以上を有するシート材であれば、その厚さを調整することで、耐電圧特性(kV)が所望の値を有する絶縁シート422とすることができる。また、絶縁シート422は、熱伝導率が高い材料から構成される場合、放熱性を高められて好ましい。例えば、熱伝導率が0.1W/m・K以上、更に0.15W/m・K以上、0.5W/m・K以上、1W/m・K以上、又は2.0W/m・K以上を満たす絶縁シート422は、放熱性を高められる。 The insulating sheet 422 is a flat plate-like member for enhancing electrical insulation between the coil 2 and the metal member (here, the bottom plate portion 40). Therefore, the insulating sheet 422 has a predetermined withstand voltage characteristic. For example, in a vehicle-mounted reactor, an insulating sheet 422 having a withstand voltage characteristic of 1 kV or more, and further 3 kV or more is preferable. For example, in the case of a sheet material having 10 kV / mm or more, the insulating sheet 422 having a desired withstand voltage characteristic (kV) can be obtained by adjusting the thickness. Further, when the insulating sheet 422 is made of a material having high thermal conductivity, it is preferable because heat dissipation is improved. For example, thermal conductivity is 0.1 W / m · K or more, further 0.15 W / m · K or more, 0.5 W / m · K or more, 1 W / m · K or more, or 2.0 W / m · K or more The insulating sheet 422 that satisfies the requirements can improve heat dissipation.
 絶縁シート422の具体的な材質は、ポリイミド樹脂、アミドイミド樹脂、ポリエステル樹脂、エポキシ樹脂などが挙げられる。ポリイミド樹脂は、耐熱性及び絶縁性に優れる。アミドイミド樹脂は、非常に高い耐熱性を有する。エポキシ樹脂は、絶縁性に優れる。これらの樹脂は、絶縁破壊強さ(kV/mm)や厚さにもよるが、例えば、厚さ50μmとした場合、5kV~7kV程度の耐電圧特性を有することができる。その他の材質として、例えば、上述の樹脂に、窒化珪素(Si)、アルミナ(Al)、窒化アルミニウム(AlN)、窒化ほう素(BN)、炭化珪素(SiC)などのセラミックスからなるフィラーを含有するものが挙げられる。上記セラミックスからなるフィラーを含有する樹脂から構成される絶縁シート422は、放熱性や絶縁性を更に高められる。 Specific examples of the material for the insulating sheet 422 include polyimide resin, amideimide resin, polyester resin, and epoxy resin. A polyimide resin is excellent in heat resistance and insulation. Amidoimide resins have very high heat resistance. Epoxy resin is excellent in insulation. Although depending on the dielectric breakdown strength (kV / mm) and thickness, these resins can have a withstand voltage characteristic of about 5 kV to 7 kV, for example, when the thickness is 50 μm. Other materials include, for example, ceramics such as silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), aluminum nitride (AlN), boron nitride (BN), silicon carbide (SiC), etc. The thing containing the filler which consists of is mentioned. The insulating sheet 422 made of a resin containing a filler made of the ceramic can further improve heat dissipation and insulation.
 絶縁シート422の厚さtは、上述のように所望の耐電圧特性を満たせば、適宜選択することができる。絶縁シート422の厚さtは、材質にもよるが、10μm以上100μm以下であると、絶縁性に優れる上に接合層42を薄くできる。接合層42が薄いことで、コイル2と金属部材(ここでは底板部40)との間の距離を短くでき、リアクトル1は放熱性に優れる。特に、絶縁シート422が絶縁性に優れる材料から構成される場合(例えば、耐電圧特性が7kV以上を満たす場合)、絶縁シート422が薄くても(例えば、10μm以上50μm以下、更に30μm以下)、絶縁性に優れる。また、上述のように絶縁シート422が薄いことで、接合層42が薄くなり、ひいてはコイル2と金属部材(ここでは底板部40)との間の距離を短くでき、放熱性に更に優れる。絶縁シート422が熱伝導性に優れる材料から構成される場合(例えば、熱伝導率0.5W/m・K以上を満たす場合)、上述の範囲内で厚くしても放熱性に優れる。 The thickness t i of the insulating sheet 422 can be appropriately selected as long as the desired withstand voltage characteristics are satisfied as described above. The thickness t i of the insulating sheet 422, depending on the material, if it is 10μm or more 100μm or less, can be made thin bonding layer 42 on which is excellent in insulating properties. Since the joining layer 42 is thin, the distance between the coil 2 and the metal member (here, the bottom plate portion 40) can be shortened, and the reactor 1 is excellent in heat dissipation. In particular, when the insulating sheet 422 is made of a material having excellent insulating properties (for example, when the withstand voltage characteristic satisfies 7 kV or more), even if the insulating sheet 422 is thin (for example, 10 μm or more and 50 μm or less, further 30 μm or less), Excellent insulation. In addition, since the insulating sheet 422 is thin as described above, the bonding layer 42 is thinned, and as a result, the distance between the coil 2 and the metal member (here, the bottom plate portion 40) can be shortened, and the heat dissipation is further improved. When the insulating sheet 422 is made of a material having excellent thermal conductivity (for example, when the thermal conductivity satisfies 0.5 W / m · K or more), the heat dissipation is excellent even if the insulating sheet 422 is made thick within the above range.
 平板状の絶縁シート422の表裏面に設けられる接着層425,427はそれぞれ、コイル2と絶縁シート422との間の接合、絶縁シート422と金属部材(ここでは底板部40)との間の接合に利用される。前者の接着層=コイル側接着層425、及び後者の接着層=金属側接着層427のそれぞれの構成材料の材質は、上記接合が行えて、リアクトル1の使用時の到達温度に対する耐熱性を有するものが利用できる。具体的な材質は、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステルなどの熱硬化性樹脂や、アクリル樹脂、ポリフェニレンサルファイド(PPS)樹脂、液晶ポリマー(LCP)などの熱可塑性樹脂などが挙げられる。両層425,427の材質は等しくすることもできるし、異ならせることもできる。 The adhesive layers 425 and 427 provided on the front and back surfaces of the flat insulating sheet 422 are bonded between the coil 2 and the insulating sheet 422, and bonded between the insulating sheet 422 and the metal member (here, the bottom plate portion 40), respectively. Used for The materials of the constituent materials of the former adhesive layer = coil side adhesive layer 425 and the latter adhesive layer = metal side adhesive layer 427 can be joined as described above, and have heat resistance against the ultimate temperature when the reactor 1 is used. Things are available. Specific materials include thermosetting resins such as epoxy resins, silicone resins, and unsaturated polyesters, and thermoplastic resins such as acrylic resins, polyphenylene sulfide (PPS) resins, and liquid crystal polymers (LCP). The materials of both layers 425 and 427 can be the same or different.
 上述の樹脂を絶縁シート422の表裏面にそれぞれ塗布した後、ある程度硬化することで、2層の接着層425,427の間に絶縁シート422が保持された三層構造の両面接着シート420を製造できる(図4(C))。接合層42は、この三層構造の両面接着シート420を完全に硬化することによって形成される。 The above-mentioned resin is applied to the front and back surfaces of the insulating sheet 422, and then cured to some extent, thereby producing a double-layer adhesive sheet 420 having a three-layer structure in which the insulating sheet 422 is held between the two adhesive layers 425 and 427. Yes (FIG. 4C). The bonding layer 42 is formed by completely curing the double-sided adhesive sheet 420 having a three-layer structure.
 そして、接合層42では、コイル側接着層425の厚さtと金属側接着層427の厚さtとが異なる。具体的には、コイル側接着層425の厚さtが、金属側接着層427の厚さtよりも厚い。なお、接合層42におけるコイル側接着層425の厚さt及び金属側接着層427の厚さtとは、接着層425,427を完全に硬化した状態の厚さをいう。 In the bonding layer 42, the thickness t c of the coil side adhesive layer 425 and the thickness t m of the metal side adhesive layer 427 are different. Specifically, the thickness t c of the coil side adhesive layer 425 is thicker than the thickness t m of the metal side adhesive layer 427. Note that the thickness t c of the coil side adhesive layer 425 and the thickness t m of the metal side adhesive layer 427 in the bonding layer 42 are the thicknesses of the adhesive layers 425 and 427 completely cured.
 コイル2と絶縁シート422とを接合するコイル側接着層425の厚さtが相対的に厚いことで、コイル2との接触面積の増大、コイル2におけるターンの外形のばらつきの吸収、絶縁性の向上を図ることができる。絶縁シート422と金属部材(ここでは底板部40)とを接合する金属側接着層427の厚さtが相対的に薄いことで、接合層42が薄くなり、ひいてはリアクトル1の小型化を図ることができる。このような接合層42は、図4(C)に示すようなコイル側接着層425の厚さtcsが金属側接着層427の厚さtmsよりも厚い両面接着シート420を用いることで形成することができる。なお、この両面接着シート420におけるコイル側接着層425の厚さtcs及び金属側接着層427の厚さtmsとは、接着層425,427を完全に硬化する前の厚さ(代表的には、コイル2と金属部材との間に配置されておらず、独立した状態にあるときの厚さ)をいう。 Since the thickness t c of the coil side adhesive layer 425 that joins the coil 2 and the insulating sheet 422 is relatively thick, the contact area with the coil 2 is increased, the variation in the outer shape of the turn in the coil 2 is absorbed, and the insulating property. Can be improved. Since the thickness t m of the metal-side adhesive layer 427 that joins the insulating sheet 422 and the metal member (here, the bottom plate portion 40) is relatively thin, the joining layer 42 becomes thin, and consequently the reactor 1 is downsized. be able to. Such a bonding layer 42 is formed by using a double-sided adhesive sheet 420 in which the thickness t cs of the coil side adhesive layer 425 is thicker than the thickness t ms of the metal side adhesive layer 427 as shown in FIG. can do. Note that the thickness t cs of the coil side adhesive layer 425 and the thickness t ms of the metal side adhesive layer 427 in the double-sided adhesive sheet 420 are the thicknesses before the adhesive layers 425 and 427 are completely cured (typically Is the thickness when the coil 2 and the metal member are not arranged and are in an independent state.
 接合層42におけるコイル側接着層425の具体的な厚さtは、例えば、30μm超350μm以下が挙げられる。コイル側接着層425の厚さtが350μm(0.35mm)以下であることで、接合層42が十分に薄く、放熱性の向上や小型化を図ることができる。コイル側接着層425の厚さtが30μm超であることで、完全に硬化する前の両面接着シート420のときの厚さtcsも十分な厚さを有しており、上述の接触面積の増大、ばらつきの吸収、絶縁性の向上を図ることができる。コイル側接着層425の厚さtが300μm以下、200μm以下、更に100μm未満であると、接合層42が更に薄くなり、厚さtが50μm以上、更に100μm以上であると、絶縁性を更に高められる。従って、コイル側接着層425の厚さtは、70μm以上120μm以下程度が好ましいと考えられる。ここでは、接合層42におけるコイル側接着層425の厚さtは、コイル2における底板部40との対向面と絶縁シート422の一面との間の平均厚さとする(図4(B))。 A specific thickness t c of the coil side adhesive layer 425 in the bonding layer 42 is, for example, more than 30 μm and 350 μm or less. When the thickness t c of the coil side adhesive layer 425 is 350 μm (0.35 mm) or less, the bonding layer 42 is sufficiently thin, and heat dissipation can be improved and the size can be reduced. Since the thickness t c of the coil side adhesive layer 425 is more than 30 μm, the thickness t cs of the double-sided adhesive sheet 420 before being completely cured also has a sufficient thickness, and the contact area described above Increase, variation absorption, and insulation can be improved. When the thickness t c of the coil side adhesive layer 425 is 300 μm or less, 200 μm or less, and further less than 100 μm, the bonding layer 42 is further thinned, and when the thickness t c is 50 μm or more, and further 100 μm or more, the insulating property is improved. Further enhanced. Therefore, it is considered that the thickness t c of the coil side adhesive layer 425 is preferably about 70 μm or more and 120 μm or less. Here, the thickness t c of the coil-side adhesive layer 425 in the bonding layer 42 is the average thickness between the surface of the coil 2 facing the bottom plate portion 40 and one surface of the insulating sheet 422 (FIG. 4B). .
 接合層42におけるコイル側接着層425の厚さtが所望の厚さとなるように、両面接着シート420のときの厚さtcsを調整するとよい。例えば、両面接着シート420に具えるコイル側接着層425の厚さtcsは、50μm以上500μm以下が挙げられる。 The thickness t cs of the double-sided adhesive sheet 420 may be adjusted so that the thickness t c of the coil-side adhesive layer 425 in the bonding layer 42 becomes a desired thickness. For example, the thickness t cs of the coil side adhesive layer 425 included in the double-sided adhesive sheet 420 may be 50 μm or more and 500 μm or less.
 接合層42における金属側接着層427の具体的な厚さtは、例えば、5μm以上50μm以下が挙げられる(但し、t>t)。金属側接着層427の厚さtが上記の範囲を満たすことで、絶縁シート422と金属部材(ここでは底板部40)とを十分に接合できる上に、接合層42が薄いため、放熱性の向上や小型化を図ることができる。金属側接着層427の厚さtは、20μm以上とすることができる。 Specific thickness t m of the metal side adhesive layer 427 in the bonding layer 42 is, for example, 5 μm or more and 50 μm or less (where t c > t m ). When the thickness t m of the metal-side adhesive layer 427 satisfies the above range, the insulating sheet 422 and the metal member (here, the bottom plate portion 40) can be sufficiently bonded, and the bonding layer 42 is thin, so that heat dissipation is achieved. Improvement and downsizing can be achieved. The thickness t m of the metal side adhesive layer 427 can be set to 20 μm or more.
 接合層42における金属側接着層427の厚さtが所望の厚さとなるように、両面接着シート420のときの厚さtmsを調整するとよい。例えば、両面接着シート420に具える金属側接着層427の厚さtmsは、5μm超100μm以下が挙げられる。 The thickness t ms of the double-sided adhesive sheet 420 may be adjusted so that the thickness t m of the metal side adhesive layer 427 in the bonding layer 42 becomes a desired thickness. For example, the thickness t ms of the metal side adhesive layer 427 provided in the double-sided adhesive sheet 420 may be more than 5 μm and not more than 100 μm.
 なお、組合体10を載置した状態で両面接着シート420の両接着層425,427を同時に硬化して組合体10と金属部材(ここでは底板部40)とを接合することで、組合体10を載置する前の両面接着シート420のみのときの厚さtcs,tmsよりも、リアクトル1のときの厚さt,tは、組合体10の自重による押し付けなどによって、通常、薄くなる(t<tcs、t<tms)。しかし、上述の厚さの関係(コイル側接着層425の厚さが金属側接着層427の厚さよりも厚い)は、上述の硬化後も維持される。また、両面接着シート420のみのときの絶縁シート422の厚さtisも、組合体10の自重による押し付けなどによって薄くなる場合がある(t≦tis)。 In addition, in the state which mounted the union body 10, both the adhesive layers 425 and 427 of the double-sided adhesive sheet 420 are hardened simultaneously, and the union body 10 and the metal member (here, the bottom plate part 40) are joined, thereby the union body 10 Than the thickness t cs and t ms when only the double-sided adhesive sheet 420 is placed, the thickness t c and t m at the time of the reactor 1 are usually set by pressing the union 10 by its own weight. It becomes thinner (t c <t cs , t m <t ms ). However, the above-described thickness relationship (the thickness of the coil-side adhesive layer 425 is greater than the thickness of the metal-side adhesive layer 427) is maintained even after the above-described curing. In addition, the thickness tis of the insulating sheet 422 when only the double-sided adhesive sheet 420 is used may be thinned by pressing or the like due to the weight of the combined body 10 (t i ≦ t is ).
 接合層42における金属側接着層427の厚さtに対するコイル側接着層425の厚さtの比(t/t)は、適宜選択することができ、例えば、2以上10以下程度が挙げられる。上述の厚さの比率となるように、両面接着テープ420における金属側接着層427の厚さtmsに対するコイル側接着層425の厚さtcsの比(tcs/tms)や硬化条件などを調整するとよい。両面接着テープ420における厚さの比(tcs/tms)は、大き過ぎるとコイル側接着層425が厚過ぎて、接合層42の厚肉化を招いたり、コイル側接着層425と金属側接着層427との熱伸縮量の差に基づく反りが生じたりする恐れがあることから、10以下程度が好ましく、2以上5以下程度がより好ましいと考えられる。接合層42における厚さの比(t/t)は、両面接着テープ420における厚さの比(tcs/tms)を実質的に維持する場合もあるが、後述するようにコイル側接着層425を構成する接着剤がターン間に介在する場合では、接合層42における厚さtが小さくなるため、t/t≠tcs/tmsとなることもある。 The ratio (t c / t m ) of the thickness t c of the coil side adhesive layer 425 to the thickness t m of the metal side adhesive layer 427 in the bonding layer 42 can be appropriately selected. Is mentioned. The ratio of the thickness t cs of the coil side adhesive layer 425 to the thickness t ms of the metal side adhesive layer 427 in the double-sided adhesive tape 420 (t cs / t ms ), the curing conditions, etc. It is good to adjust. If the thickness ratio (t cs / t ms ) in the double-sided adhesive tape 420 is too large, the coil side adhesive layer 425 is too thick, leading to a thickening of the bonding layer 42, or the coil side adhesive layer 425 and the metal side. Since there is a risk of warping based on the difference in thermal expansion and contraction with the adhesive layer 427, it is preferably about 10 or less, and more preferably about 2 or more and 5 or less. The thickness ratio (t c / t m ) in the bonding layer 42 may substantially maintain the thickness ratio (t cs / t ms ) in the double-sided adhesive tape 420, but as will be described later, In the case where the adhesive constituting the adhesive layer 425 is interposed between turns, the thickness t c of the bonding layer 42 is small, so that t c / t m ≠ t cs / t ms may be satisfied.
 以上のことから、接合層42の厚さt(=t+t+t)は、45μm超500μm以下程度、好ましくは200μm以下程度、両面接着シート420の厚さt(=tis+tcs+tms)は、65μm以上700μm以下程度、好ましくは500μm以下程度が挙げられる。 From the above, the thickness t (= t i + t c + t m ) of the bonding layer 42 is more than 45 μm and not more than 500 μm, preferably not more than 200 μm, and the thickness t s (= t is + t cs ) of the double-sided adhesive sheet 420. + T ms ) is about 65 μm or more and 700 μm or less, preferably about 500 μm or less.
 接合層42及び両面接着シート420は、少なくともコイル2における金属部材(ここでは底板部40)との対向面(ここでは、複数のターンによってつくられる仮想面)が十分に接触可能な面積を有していれば、特に形状・大きさは問わない。ここでは、接合層42及び両面接着シート420は、図2に示すように、組合体10における金属部材との対向面(ここではコイル2における上記仮想面、及び外側コア部32における金属部材側の面)がつくる輪郭に沿った形状としている。従って、コイル2及び外側コア部32の双方が接合層42に十分に接触でき、金属部材を介して両者の熱を外部に伝えられるため、リアクトル1は、放熱性を更に高められる。 The bonding layer 42 and the double-sided adhesive sheet 420 have an area where at least a surface facing the metal member (here, the bottom plate portion 40) of the coil 2 (here, a virtual surface formed by a plurality of turns) can be sufficiently contacted. If it is, shape and size are not particularly limited. Here, as shown in FIG. 2, the bonding layer 42 and the double-sided adhesive sheet 420 are surfaces facing the metal member in the assembly 10 (here, the virtual surface of the coil 2 and the metal member side of the outer core portion 32. The shape is in line with the contour created by the surface. Therefore, since both the coil 2 and the outer core part 32 can fully contact the joining layer 42 and both heats are transmitted to the outside through the metal member, the reactor 1 can further improve heat dissipation.
 ここでは、接合層42及び両面接着シート420の絶縁シート422は、ポリイミドから構成され、両接着層425,427はエポキシ樹脂から構成されている。また、ここでは、絶縁シート422の厚さtisが25μm、コイル側接着層425の厚さtcsが300μm、金属側接着層427の厚さtmsが30μmの両面接着シート420を用い、接合層42における絶縁シート422の厚さtが25μm、コイル側接着層425の厚さtが100μm、金属側接着層427の厚さtが10μm(t/t=10)、である。 Here, the bonding layer 42 and the insulating sheet 422 of the double-sided adhesive sheet 420 are made of polyimide, and the adhesive layers 425 and 427 are made of epoxy resin. Further, here, the thickness t IS is 25μm insulating sheet 422, the thickness t cs is 300μm coil side adhesive layer 425, a double-sided adhesive sheet 420 having a thickness of t ms is 30μm metal side adhesive layer 427 using the bonding The thickness t i of the insulating sheet 422 in the layer 42 is 25 μm, the thickness t c of the coil side adhesive layer 425 is 100 μm, and the thickness t m of the metal side adhesive layer 427 is 10 μm (t c / t m = 10). is there.
 (リアクトルの製造方法)
 リアクトル1は、例えば、以下の各工程(1)~(4)を経て、製造することができる。
(Reactor manufacturing method)
The reactor 1 can be manufactured through the following steps (1) to (4), for example.
 (1) 準備工程では、両面接着シート420を用意する。
 この工程では、上述の特定の三層構造の両面接着シート420を用意する。上述のようにコイル側接着層425の厚さtcsが金属側接着層427の厚さtmsよりも厚くなるように、絶縁シート422の表裏面にそれぞれ、接着層425,427を形成する。また、両面接着シート420を所望の形状に切断する。
(1) In the preparation step, a double-sided adhesive sheet 420 is prepared.
In this step, the above-mentioned specific three-layer structure double-sided adhesive sheet 420 is prepared. As described above, the adhesive layers 425 and 427 are formed on the front and back surfaces of the insulating sheet 422 so that the thickness t cs of the coil side adhesive layer 425 is larger than the thickness t ms of the metal side adhesive layer 427. Further, the double-sided adhesive sheet 420 is cut into a desired shape.
 (2) シート配置工程では、金属部材に両面接着シート420を配置する。
 この工程では、用意した両面接着シート420を金属部材(ここでは底板部40)に配置する。ここでは、上述のように底板部40と側壁部41とが独立していることから、側壁部41を取り外した状態で底板部40に両面接着シート420を配置可能であり、作業性に優れる。
(2) In the sheet arranging step, the double-sided adhesive sheet 420 is arranged on the metal member.
In this step, the prepared double-sided adhesive sheet 420 is placed on a metal member (here, the bottom plate portion 40). Here, since the bottom plate portion 40 and the side wall portion 41 are independent as described above, the double-sided adhesive sheet 420 can be disposed on the bottom plate portion 40 with the side wall portion 41 removed, and the workability is excellent.
 (3) 組合体載置工程では、両面接着シート420の上に組合体10を載置する。
 この工程では、予め組合体10を作製しておき、この組合体10を両面接着シート420の上に置く。組合体10は、ここでは、図3に示すように複数のコア片31mとギャップ材31gとを積層して二つの内側コア部31を形成し、各内側コア部31をそれぞれコイル素子2a,2b内に配置した後、両内側コア部31の端面31eと外側コア部32の内端面32とが接するように組み付けることで製造できる。この載置工程では、組合体10の自重や後述する押し付けによって接着層425,427がある程度薄くなるため、両面接着シート420の厚さtはある程度薄くなる。
(3) In the combined body mounting step, the combined body 10 is mounted on the double-sided adhesive sheet 420.
In this step, the combined body 10 is prepared in advance, and the combined body 10 is placed on the double-sided adhesive sheet 420. Here, as shown in FIG. 3, the combined body 10 is formed by stacking a plurality of core pieces 31m and a gap material 31g to form two inner core portions 31, and the inner core portions 31 are respectively coiled elements 2a and 2b. It can manufacture by assembling | attaching so that the end surface 31e of both the inner core parts 31 and the inner end surface 32 of the outer core part 32 may contact | connect, after arrange | positioning inside. The higher the mounting step, since the adhesive layer 425, 427 made somewhat thinned by imposition of its own weight or below of the combined product 10, the thickness t s of the double-sided adhesive sheet 420 is somewhat thinner.
 (4) 接合工程では、両面接着シート420に具える接着層425,427を硬化して、コイル2と金属部材とを両面接着シート420によって接合する。
 この工程では、両面接着シート420を所定の温度にすることで、両接着層425,427をある程度柔らかくして、コイル側接着層425によってコイル2と絶縁シート422とを接合し、金属側接着層427によって絶縁シート422と金属部材(ここでは底板部40)とを接合可能とし、その後、硬化して接合状態を固定する。この結果、コイル2と金属部材とは、両面接着シート420によって接合される。
(4) In the joining step, the adhesive layers 425 and 427 provided on the double-sided adhesive sheet 420 are cured, and the coil 2 and the metal member are joined by the double-sided adhesive sheet 420.
In this step, the double-sided adhesive sheet 420 is brought to a predetermined temperature, so that both the adhesive layers 425 and 427 are softened to some extent, and the coil 2 and the insulating sheet 422 are joined by the coil-side adhesive layer 425, and the metal-side adhesive layer The insulating sheet 422 and the metal member (here, the bottom plate portion 40) can be joined by 427, and then cured to fix the joined state. As a result, the coil 2 and the metal member are joined by the double-sided adhesive sheet 420.
 また、上記工程(4)によって、コイル2と、磁性コア3と、金属部材(ここでは底板部40)とを具え、かつコイル2と金属部材とが、両面接着シート420の硬化によって構成された接合層42を介して接合されたリアクトル1が得られる。 In addition, the coil 2, the magnetic core 3, and the metal member (here, the bottom plate portion 40) are provided by the step (4), and the coil 2 and the metal member are configured by curing the double-sided adhesive sheet 420. The reactor 1 bonded through the bonding layer 42 is obtained.
 更に、リアクトル1は、図4(B)に示すようにコイル2における隣接するターン間にコイル側接着層425を構成する接着剤が介在した形態とすることができる。この形態は、コイル2における金属部材(ここでは底板部40)との対向面(上述の仮想面)に主として接着剤が接触している場合と比較して、コイル2と上記接着剤との接触面積が増大する。そのため、この形態は、コイル2の熱を金属部材により伝達し易く、放熱性に優れる上に、コイル2が金属部材により強固に固定される。また、両面接着シート420に具えるコイル側接着層425を構成する接着剤がターン間にも介在した状態で硬化されることで、接合層42におけるコイル側接着層425の厚さtをより効率よく薄くできる。この点からも、この形態は、放熱性に優れる。特に、本例のようにエッジワイズコイルとすると、フラットワイズコイルや丸線を用いたコイルに比較して、接着剤の介在によるアンカー効果によって、より強固な固定を実現できる。 Furthermore, as shown in FIG. 4B, the reactor 1 can have a form in which an adhesive constituting the coil-side adhesive layer 425 is interposed between adjacent turns in the coil 2. In this form, the contact between the coil 2 and the adhesive is mainly compared to the case where the adhesive is mainly in contact with the surface (the virtual surface described above) facing the metal member (here, the bottom plate portion 40) in the coil 2. The area increases. Therefore, in this embodiment, the heat of the coil 2 is easily transmitted by the metal member, the heat dissipation is excellent, and the coil 2 is firmly fixed by the metal member. Further, the adhesive constituting the coil side adhesive layer 425 included in the double-sided adhesive sheet 420 is cured in a state of being interposed between the turns, so that the thickness t c of the coil side adhesive layer 425 in the bonding layer 42 is further increased. Can be thinned efficiently. Also from this point, this form is excellent in heat dissipation. In particular, when an edgewise coil is used as in this example, stronger anchoring can be realized by an anchor effect due to the presence of an adhesive as compared to a flatwise coil or a coil using a round wire.
 上記形態は、隣接するターン間を狭くすると、具体的には、0.3mm以下、更に0.2mm以下とすると、コイル2における軸方向の長さが長くなり過ぎず、かつコイル2と金属部材(ここでは底板部40)との間にも、コイル側接着層425を構成する接着剤が十分に介在できて好ましい。隣接するターン間が所望の間隔となるように、コイル2を形成する。また、隣接するターン間を上述のように狭くすることで、硬化前の接着剤の粘度にもよるものの、硬化前の接着剤が毛管現象によってある程度侵入することができる。更に、上述の硬化するときに組合体10を両面接着シート420側に別途治具などで押し付けることで、上記硬化前の接着剤の侵入深さをより深くすることができる上に、隣接するターン間に均一的に侵入させることができる。その結果、隣接するターン間に介在する接着剤の侵入高さhが大きいリアクトルとすることができる。 In the above embodiment, when the distance between adjacent turns is narrowed, specifically, when it is 0.3 mm or less, and further 0.2 mm or less, the axial length of the coil 2 does not become too long, and the coil 2 and the metal member The adhesive constituting the coil-side adhesive layer 425 can be sufficiently interposed between (the bottom plate portion 40 here) and is preferable. The coil 2 is formed so that the adjacent turns have a desired interval. Further, by narrowing the distance between adjacent turns as described above, the adhesive before curing can penetrate to some extent by capillary action, although it depends on the viscosity of the adhesive before curing. Furthermore, by pressing the combined body 10 against the double-sided adhesive sheet 420 side with a jig or the like when the above-mentioned curing is performed, the penetration depth of the adhesive before the curing can be further increased, and the adjacent turn It is possible to uniformly penetrate between them. As a result, it is possible to penetrate the height h i is larger reactor adhesive interposed between adjacent turns.
 侵入高さhは適宜選択することができる。例えば、コイル2がエッジワイズコイルである場合、侵入高さhは、巻線2w(平角線)の幅Wの1/4~1/2程度(0.25×W以上0.5×W以下程度)であると、上述の接触面積が十分に大きい上に、コイル側接着層425の厚さtも十分に確保できる。侵入高さhが所望の高さとなるように、ターン間の間隔や押圧力などを調整するとよい。 Penetration height h i can be appropriately selected. For example, if the coil 2 is an edgewise coil, penetration height h i is 1 / 4-1 / 2 of about the width W of the windings 2w (flat wire) (0.25 × W or 0.5 × W The contact area is sufficiently large, and the thickness t c of the coil side adhesive layer 425 can be sufficiently secured. It is preferable to adjust the interval between turns, the pressing force, and the like so that the penetration height hi becomes a desired height.
 図1に示すリアクトル1の製造では、更に、底板部40と側壁部41とを組み付けてケース4を組み立てる工程を具える。
 ここでは、接合層42によって固定された組合体10の外周面を囲むように、組合体10の上方から側壁部41を被せて、底板部40の上に側壁部41を配置する。そして、底板部40と側壁部41とを固定部材(ここでは図示しない連結ボルト)によって一体化する。この工程によって、組合体10がケース4に収納されたリアクトル1が得られる。
The manufacturing of the reactor 1 shown in FIG. 1 further includes a step of assembling the case 4 by assembling the bottom plate portion 40 and the side wall portion 41.
Here, the side wall 41 is placed on the bottom plate 40 by covering the side wall 41 from above the combination 10 so as to surround the outer peripheral surface of the combination 10 fixed by the bonding layer 42. Then, the bottom plate portion 40 and the side wall portion 41 are integrated by a fixing member (a connecting bolt not shown here). By this step, the reactor 1 in which the combined body 10 is housed in the case 4 is obtained.
 (主要な効果)
 リアクトル1は、以下の点から放熱性に優れる。
 (1)コイル2と金属部材(ここでは底板部40)とが接合層42によって接合されているため、使用時にコイルなどが発熱しても、この熱を効率よく外部(リアクトル1の設置対象など)に伝達できる。
 (2)接合層42が絶縁シート422を具えることで絶縁性に優れるため、接合層42を薄くでき、コイル2と金属部材との間の距離を短くできる。
 (3)接合層42におけるコイル側接着層425が厚いことで、コイル2が十分に接触できる。
(Main effect)
The reactor 1 is excellent in heat dissipation from the following points.
(1) Since the coil 2 and the metal member (here, the bottom plate portion 40) are joined by the joining layer 42, even if the coil or the like generates heat during use, this heat can be efficiently transferred to the outside (such as the installation target of the reactor 1). ).
(2) Since the bonding layer 42 includes the insulating sheet 422 and is excellent in insulation, the bonding layer 42 can be thinned, and the distance between the coil 2 and the metal member can be shortened.
(3) Since the coil-side adhesive layer 425 in the bonding layer 42 is thick, the coil 2 can sufficiently contact.
 (4)特定の両面接着シート420を利用することで、接合層42における両接着層425,427の双方が薄くでき、コイル2と金属部材との間の距離をより短くできる。
 例えば、金属部材(ここでは底板部40)の上に第一の接着層の形成→絶縁シートの配置→第一の接着層の硬化→絶縁シートの上に第二の接着層の形成→組合体の配置→第二の接着層の硬化を順に行う場合を考える。この場合、第二の接着層は、組合体の自重や押し付けなどによって、硬化前よりも薄くできる。しかし、第一の接着層が硬化されてから組合体が載置されるため、第一の接着層は薄くなり難い。一方、リアクトル1では、組合体10の自重や押し付けなどによって、両接着層425,427の双方を硬化前よりも薄くできるため、上述の2回の硬化を行う場合よりも、コイル2と金属部材との間の距離を短くできる。
(4) By using the specific double-sided adhesive sheet 420, both the adhesive layers 425 and 427 in the bonding layer 42 can be made thin, and the distance between the coil 2 and the metal member can be made shorter.
For example, formation of the first adhesive layer on the metal member (here, the bottom plate portion 40) → placement of the insulating sheet → curing of the first adhesive layer → formation of the second adhesive layer on the insulating sheet → combination Consider the case where the second adhesive layer is cured in this order. In this case, the second adhesive layer can be made thinner than before curing by the weight of the assembly or pressing. However, since the assembly is placed after the first adhesive layer is cured, the first adhesive layer is unlikely to be thin. On the other hand, in the reactor 1, both the adhesive layers 425 and 427 can be made thinner than before curing by the weight or pressing of the combined body 10, so that the coil 2 and the metal member can be used rather than the above-described two times of curing. The distance between can be shortened.
 かつ、リアクトル1は、接合層42が絶縁シート422を具える点から絶縁性にも優れる。また、リアクトル1は、接合層42を特定の両面接着シート420によって構成することで、硬化工程の低減、硬化時間の短縮を図ることができ、生産性にも優れる。更に、リアクトル1は、接合層42におけるコイル側接着層425が厚いことで、コイル2の形状のばらつきを吸収でき、形状精度や寸法精度にも優れる。 And the reactor 1 is excellent also in insulation from the point in which the joining layer 42 comprises the insulating sheet 422. Moreover, the reactor 1 can aim at reduction of a hardening process and shortening of hardening time by comprising the joining layer 42 with the specific double-sided adhesive sheet 420, and it is excellent also in productivity. Furthermore, the reactor 1 can absorb the dispersion | variation in the shape of the coil 2 because the coil side contact bonding layer 425 in the joining layer 42 is thick, and is excellent also in shape precision and dimensional accuracy.
 以下、リアクトル1の各構成要素の詳細を説明する。
 (コイル)
 コイル2は、図2,図3に示すように、連続する1本の巻線2wによって形成されている。より具体的には、一方のコイル素子2aの端部から延びる巻線2wの一部がU字状に屈曲されて連結部2rが形成され、この連結部2rに引き続いて他方のコイル素子2bが形成されている。この構成により、両コイル素子2a,2bの巻回方向は同一となり、両コイル素子2a,2bは電気的に直列に接続される。ここでは、コイル素子2a,2bの端面形状は、角部を丸めた矩形状であるが、円環状など、適宜変更することができる。
Hereinafter, the detail of each component of the reactor 1 is demonstrated.
(coil)
As shown in FIGS. 2 and 3, the coil 2 is formed by a single continuous winding 2 w. More specifically, a part of the winding 2w extending from the end of one coil element 2a is bent in a U shape to form a connecting part 2r, and the other coil element 2b is subsequently connected to the connecting part 2r. Is formed. With this configuration, the winding directions of both coil elements 2a and 2b are the same, and both coil elements 2a and 2b are electrically connected in series. Here, the end face shape of the coil elements 2a and 2b is a rectangular shape with rounded corners, but may be appropriately changed such as an annular shape.
 各コイル素子を別々の巻線によって作製し、各コイル素子の巻線の一端部同士を溶接や半田付け、圧着などによって直接接合されたコイルや、別途用意した連結部材(例えば、板材)を介して接合されたコイルとすることもできる。 Each coil element is manufactured by separate windings, and one end of each coil element winding is directly joined by welding, soldering, crimping, etc., or via a separately prepared connecting member (for example, plate material). It can also be a coil joined.
 巻線2wは、銅やアルミニウム、その合金といった導電性材料からなる導体の外周に、絶縁材(代表的にはポリアミドイミド)からなる絶縁被覆を具える被覆線を好適に利用できる。導体は、丸線や平角線が代表的である。この例のように、巻線2wに(被覆)平角線を用いてエッジワイズコイルとした場合、(1)丸線を用いた場合よりも占積率が高いコイルを形成し易いため、小型にできる、(2)複数のターンによって形成される外周面(仮想面)の少なくとも一部を平面にできるため、接合層42との接触面積を広く確保して放熱性を高められる、(3)巻線2wと端子金具8(後述)などの接続対象との接触面積を広く確保できる、といった利点がある。 As the winding 2w, a coated wire having an insulating coating made of an insulating material (typically polyamideimide) on the outer circumference of a conductor made of a conductive material such as copper, aluminum, or an alloy thereof can be suitably used. The conductor is typically a round wire or a rectangular wire. As in this example, when an edgewise coil is formed by using a (covered) flat wire for the winding 2w, (1) it is easy to form a coil having a higher space factor than when a round wire is used. (2) Since at least a part of the outer peripheral surface (virtual surface) formed by a plurality of turns can be made flat, it is possible to secure a wide contact area with the bonding layer 42 and improve heat dissipation. (3) Winding There is an advantage that a wide contact area can be secured between the wire 2w and a connection object such as a terminal fitting 8 (described later).
 コイル2を形成する巻線2wの両端部は、絶縁被覆が剥がされて露出された導体部分に、代表的には、端子金具8が接続される。端子金具8を介して、コイル2に電力供給を行う電源などの外部装置(図示せず)が接続される。端子金具8を介さずに外部装置の接続箇所に直接接続されることもある。巻線2wと端子金具8との接合は、適宜な時期に行うとよい。この例では、ケース4の組立後に行うとよい。 At both ends of the winding 2 w forming the coil 2, the terminal fitting 8 is typically connected to the conductor portion exposed by peeling off the insulation coating. An external device (not shown) such as a power source for supplying power is connected to the coil 2 via the terminal fitting 8. It may be directly connected to the connection location of the external device without going through the terminal fitting 8. The winding 2w and the terminal fitting 8 may be joined at an appropriate time. In this example, it may be performed after the case 4 is assembled.
 (磁性コア)
 磁性コア3のうち内側コア部31は、図3に示すように軟磁性材料からなる複数のコア片31mと、コア片31mよりも比透磁率が小さい材料からなるギャップ材31gとが交互に積層配置された積層物である。コア片31mとギャップ材31gとは、特に接着剤によって一体化すると、扱い易い上に、コア片31mとギャップ材31gとを強固に固定することで騒音を低減できると期待される。その他、コア片31mとギャップ材31gとを接着テープなどによって一体化すると、扱い易い。外側コア部32は、軟磁性材料からなるコア片である。
(Magnetic core)
As shown in FIG. 3, the inner core portion 31 of the magnetic core 3 includes a plurality of core pieces 31m made of a soft magnetic material and gap members 31g made of a material having a relative permeability smaller than that of the core pieces 31m. It is an arranged laminate. When the core piece 31m and the gap material 31g are integrated with an adhesive, it is easy to handle and it is expected that noise can be reduced by firmly fixing the core piece 31m and the gap material 31g. In addition, when the core piece 31m and the gap material 31g are integrated with an adhesive tape or the like, it is easy to handle. The outer core portion 32 is a core piece made of a soft magnetic material.
 ここでは、内側コア部31を直方体状、外側コア部32は図3における上面・下面がドーム状(内端面32eから外方に向かって断面積が小さくなる変形台形状)である柱状としているが、内側コア部31(コア片31m・ギャップ材31g)の形状、外側コア部32の形状は適宜選択することができる。また、ここでは、外側コア部32における金属部材(ここでは底板部40(図2))との対向面(図3では下面)が、コイル2における金属部材との対向面(図3では下面)と面一になるように、外側コア部32の大きさを調整している。つまり、磁性コア3を環状に組み立てた場合、外側コア部32の外周面(特に下面)は、内側コア部31の外周面よりも突出している。こうすることで、組合体10における金属部材との対向面は、主として二つの外側コア部32の下面と、コイル2の下面とで構成され、コイル2だけでなく外側コア部32も接合層42に接する。 Here, the inner core portion 31 has a rectangular parallelepiped shape, and the outer core portion 32 has a columnar shape in which the upper surface and the lower surface in FIG. 3 have a dome shape (a deformed trapezoidal shape in which the cross-sectional area decreases outward from the inner end surface 32e). The shape of the inner core portion 31 (core piece 31m / gap material 31g) and the shape of the outer core portion 32 can be appropriately selected. In addition, here, the surface (the lower surface in FIG. 3) facing the metal member (here, the bottom plate portion 40 (FIG. 2)) in the outer core portion 32 is the surface facing the metal member in the coil 2 (the lower surface in FIG. 3). The size of the outer core portion 32 is adjusted to be flush with each other. That is, when the magnetic core 3 is assembled in an annular shape, the outer peripheral surface (particularly the lower surface) of the outer core portion 32 protrudes from the outer peripheral surface of the inner core portion 31. By doing so, the opposing surface of the combined body 10 to the metal member is mainly composed of the lower surfaces of the two outer core portions 32 and the lower surface of the coil 2, and not only the coil 2 but also the outer core portion 32 includes the bonding layer 42. To touch.
 内側コア部31や外側コア部32を構成するコア片は、鉄などの鉄族金属やその合金、鉄を含む酸化物などに代表される軟磁性粉末を用いた成形体や、絶縁被膜を有する磁性薄板(例えば、ケイ素鋼板に代表される電磁鋼板)を複数積層した積層板体が挙げられる。上記成形体は、圧粉成形体(代表的には絶縁被覆を具える被覆粉末を使用)、焼結体、軟磁性粉末と樹脂とを含む混合体を射出成形や注型成形などした複合材料などが挙げられる。ここでは、各コア片はいずれも、鉄や鋼などの鉄を含有する軟磁性金属粉末の圧粉成形体としている。 The core piece constituting the inner core portion 31 and the outer core portion 32 has a molded body using an insulating group and a soft magnetic powder typified by an iron group metal such as iron or an alloy thereof, an oxide containing iron, or the like. A laminated plate body in which a plurality of magnetic thin plates (for example, an electromagnetic steel plate typified by a silicon steel plate) is laminated may be mentioned. The molded body is a compact material (typically using a coating powder having an insulation coating), a sintered body, a composite material obtained by injection molding or cast molding of a mixture containing soft magnetic powder and resin. Etc. Here, each core piece is a powder compact of soft magnetic metal powder containing iron such as iron or steel.
 ギャップ材31gは公知のものを利用できる。ギャップ材31gの具体的な材料は、アルミナや不飽和ポリエステルなどの非磁性材料、ポリフェニレンスルフィド(PPS)樹脂などの非磁性材料と磁性粉末(例えば、鉄粉などの軟磁性粉末)とを含む混合物などが挙げられる。 A known material can be used for the gap material 31g. The specific material of the gap material 31g is a mixture containing a nonmagnetic material such as alumina or unsaturated polyester, a nonmagnetic material such as polyphenylene sulfide (PPS) resin, and magnetic powder (for example, soft magnetic powder such as iron powder). Etc.
 なお、ここでは、磁性コア3を構成する各コア片は一様な材質から構成された同一の仕様(圧粉成形体)のものとしているが、内側コア部31と外側コア部32とで磁気特性や仕様を異ならせることができる。例えば、圧粉成形体と複合材料とを組み合わせた形態、材質や軟磁性粉末の混合量などが異なる複合材料を組み合わせた形態などとすることができる。 In addition, although each core piece which comprises the magnetic core 3 shall be the thing of the same specification (compact compact | molding | casting body) comprised from the uniform material here, it is magnetic with the inner core part 31 and the outer core part 32. Characteristics and specifications can be varied. For example, it is possible to adopt a form in which a green compact and a composite material are combined, or a form in which composite materials having different materials and mixed amounts of soft magnetic powder are combined.
 更に、リアクトル1は、コイル2と磁性コア3との間に介在されるインシュレータ5も具えており、コイル2と磁性コア3との間の絶縁性にも優れる。この例に示すインシュレータ5は、図3に示すようにコイル素子2a又はコイル素子2bと内側コア部31との間に介在されて両者を絶縁する一対の周壁部51と、各コイル素子2a,2bの端面と外側コア部32の内端面32eとの間に介在されて両者を絶縁する一対の枠板部52とを具える。図3に示すインシュレータ5の形状は例示であり、適宜変更することができる。 Furthermore, the reactor 1 also includes an insulator 5 interposed between the coil 2 and the magnetic core 3, and is excellent in insulation between the coil 2 and the magnetic core 3. As shown in FIG. 3, the insulator 5 shown in this example includes a pair of peripheral wall portions 51 interposed between the coil element 2a or the coil element 2b and the inner core portion 31 to insulate them, and the coil elements 2a and 2b. And a pair of frame plate portions 52 that are interposed between the inner end surface 32e and the inner end surface 32e of the outer core portion 32 to insulate them. The shape of the insulator 5 shown in FIG. 3 is an example, and can be changed as appropriate.
 ここでは、周壁部51は、断面がΠ状である分割部材512,514から構成される。分割部材512,514の形状は適宜選択することができる。ここでは、内側コア部31の外周を部分的に覆うように分割部材512,514を形成している。そのため、後述する封止樹脂を具える形態では、封止樹脂の充填時に脱気し易く、製造性に優れる上に、内側コア部31と封止樹脂との接触面積を増大でき、騒音を抑制できると期待される。周壁部51を複数の分割部材512,514によって構成することで、内側コア部31の外周に配置し易く、組立作業性に優れる。 Here, the peripheral wall 51 is composed of divided members 512 and 514 having a bowl-shaped cross section. The shape of the dividing members 512 and 514 can be selected as appropriate. Here, the dividing members 512 and 514 are formed so as to partially cover the outer periphery of the inner core portion 31. Therefore, in the form having the sealing resin described later, it is easy to deaerate at the time of filling the sealing resin, it is excellent in manufacturability, and the contact area between the inner core portion 31 and the sealing resin can be increased, thereby suppressing noise. It is expected to be possible. By configuring the peripheral wall portion 51 with the plurality of divided members 512 and 514, the peripheral wall portion 51 is easily arranged on the outer periphery of the inner core portion 31, and the assembly workability is excellent.
 枠板部52は、2個の内側コア部31がそれぞれ挿通可能な一対の開口部(貫通孔)を有するB字状の平板部材である。ここでは、枠板部52は、コイル2に組み付けたとき、両コイル素子2a,2b間に介在されるように配置される仕切り部52bと、コイル2の連結部2rと一方の外側コア部32との間に配置される平板状の台座52pとを具える。仕切り部52bは、枠板部52の一面からコイル側に向かって突設され、台座52pは、枠板部52の他面から外側コア部32側に向かって突設されている。仕切り部52bや台座52pを省略してもよい。 The frame plate portion 52 is a B-shaped flat plate member having a pair of openings (through holes) into which the two inner core portions 31 can be inserted. Here, when the frame plate portion 52 is assembled to the coil 2, the partition portion 52b disposed so as to be interposed between the coil elements 2a and 2b, the connecting portion 2r of the coil 2, and the one outer core portion 32. And a flat plate-like pedestal 52p. The partition part 52b protrudes from one surface of the frame plate part 52 toward the coil side, and the pedestal 52p protrudes from the other surface of the frame plate part 52 toward the outer core part 32 side. You may abbreviate | omit the partition part 52b and the base 52p.
 インシュレータ5の構成材料には、PPS樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ポリブチレンテレフタレート(PBT)樹脂、液晶ポリマーなどの絶縁性材料が利用できる。 As a constituent material of the insulator 5, an insulating material such as PPS resin, polytetrafluoroethylene (PTFE) resin, polybutylene terephthalate (PBT) resin, liquid crystal polymer, or the like can be used.
 その他、磁性コア3の一方又は両方の内側コア部31と、周壁部51と、一方の枠板部52とを樹脂によって一体に成形したコア部品とすることができる。この樹脂には、PPS樹脂、PTFE樹脂、LCP、ナイロン6、ナイロン66、PBT樹脂などの熱可塑性樹脂が利用できる。 In addition, a core component in which one or both of the inner core portion 31, the peripheral wall portion 51, and the one frame plate portion 52 of the magnetic core 3 are integrally formed with a resin can be obtained. As this resin, thermoplastic resins such as PPS resin, PTFE resin, LCP, nylon 6, nylon 66, and PBT resin can be used.
 (ケース)
 ケース4は、組合体10が載置される平板状の底板部40と、組合体10の周囲を囲む枠状の側壁部41とを具え、底板部40と対向する上側が開口した箱体である(図1)。
(Case)
The case 4 is a box that includes a flat bottom plate portion 40 on which the combined body 10 is placed and a frame-shaped side wall portion 41 that surrounds the periphery of the combined body 10. Yes (Figure 1).
 底板部40は、代表的には、リアクトル1が設置対象に設置されるときに設置対象に接して固定される板材である。底板部40は、コイル2の放熱経路に利用されることから、一般に熱伝導率が高い材料である金属によって構成される。具体的な金属は、アルミニウムやその合金、マグネシウムやその合金、銅やその合金、銀やその合金、鉄やオーステナイト系ステンレス鋼などが挙げられる。アルミニウムやマグネシウム、これらの合金は、軽量なケースにできる。底板部40の厚さは、強度、シールド性、放熱性、騒音特性などを考慮して、例えば、2mm以上5mm以下程度が挙げられる。ここでは、底板部40をアルミニウム合金から構成しており、底板部40の熱伝導率は、後述する側壁部41の熱伝導率よりも十分に高い。 The bottom plate portion 40 is typically a plate material fixed in contact with the installation target when the reactor 1 is installed on the installation target. Since the bottom plate portion 40 is used for the heat dissipation path of the coil 2, it is generally made of a metal that is a material having a high thermal conductivity. Specific examples of the metal include aluminum and its alloys, magnesium and its alloys, copper and its alloys, silver and its alloys, iron and austenitic stainless steel. Aluminum, magnesium, and their alloys can be made into lightweight cases. The thickness of the bottom plate portion 40 is, for example, about 2 mm or more and 5 mm or less in consideration of strength, shielding properties, heat dissipation, noise characteristics, and the like. Here, the bottom plate portion 40 is made of an aluminum alloy, and the thermal conductivity of the bottom plate portion 40 is sufficiently higher than the thermal conductivity of the side wall portion 41 described later.
 底板部40の外形は適宜選択することができる。ここでは、底板部40は、図2に示すように矩形状であり、四隅のそれぞれから突出した取付部400を有する。側壁部41も取付部411を有しており、底板部40と側壁部41とを組み付けてケース4を形成した場合、底板部40の取付部400と側壁部41の取付部411とが重なる。取付部400,411にはそれぞれ、ボルト孔400h,411hが連通するように設けられている。ボルト孔400h,411hには、設置対象にケース4を固定するボルト(図示せず)が挿通される。取付部400,411の形状、個数などは適宜選択することができる。側壁部41のボルト孔411hは、金属管によって構成すると、後述するように側壁部41が樹脂で構成されていても、強度に優れる。 The outer shape of the bottom plate portion 40 can be selected as appropriate. Here, the bottom plate portion 40 has a rectangular shape as shown in FIG. 2 and has mounting portions 400 protruding from the four corners. The side wall portion 41 also has an attachment portion 411. When the case 4 is formed by assembling the bottom plate portion 40 and the side wall portion 41, the attachment portion 400 of the bottom plate portion 40 and the attachment portion 411 of the side wall portion 41 overlap. Bolt holes 400h and 411h are provided in the attachment portions 400 and 411, respectively. Bolts (not shown) for fixing the case 4 to the installation target are inserted through the bolt holes 400h and 411h. The shape, the number, and the like of the attachment portions 400 and 411 can be selected as appropriate. If the bolt hole 411h of the side wall part 41 is comprised with a metal pipe, even if the side wall part 41 is comprised with resin so that it may mention later, it is excellent in intensity | strength.
 なお、ここでは、底板部40が下方となる設置状態を示すが、底板部40が上方、又は側方となる設置状態も有り得る。 In addition, although the installation state in which the baseplate part 40 becomes downward is shown here, the installation state in which the baseplate part 40 becomes an upper side or a side is also possible.
 側壁部41は、枠状体(ここでは矩形状)であり、その全体が絶縁性樹脂から構成されている。そのため、図1に示すようにコイル2と側壁部41とを近接配置した場合(例えば、コイル2の外周面と側壁部41の内面との間隔が0mm以上1.0mm以下程度)でも、両者の絶縁性に優れる。また、上記間隔を小さくすることで、リアクトル1を小型にできる。上記絶縁性樹脂は、PBT樹脂、ウレタン樹脂、PPS樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂などが挙げられる。 The side wall portion 41 is a frame-like body (here, a rectangular shape), and the whole is made of an insulating resin. Therefore, even when the coil 2 and the side wall 41 are arranged close to each other as shown in FIG. 1 (for example, the interval between the outer peripheral surface of the coil 2 and the inner surface of the side wall 41 is about 0 mm or more and 1.0 mm or less), Excellent insulation. Moreover, the reactor 1 can be reduced in size by reducing the said space | interval. Examples of the insulating resin include PBT resin, urethane resin, PPS resin, acrylonitrile-butadiene-styrene (ABS) resin, and the like.
 側壁部41の少なくとも一部を金属(特にアルミニウムやマグネシウムなどの非磁性金属)で構成すると、放熱性の向上やシールド機能を期待できる。この例のように側壁部41の全てを絶縁性樹脂で構成すると、(1)コイル2とケース4との絶縁性に優れる、(2)複雑な形状であっても射出成形などで容易に製造できる、(3)軽量化を図ることができるといった利点を有する。 When at least a part of the side wall 41 is made of metal (particularly nonmagnetic metal such as aluminum or magnesium), an improvement in heat dissipation and a shielding function can be expected. When all the side wall portions 41 are made of insulating resin as in this example, (1) excellent insulation between the coil 2 and the case 4 is achieved. (2) Even a complicated shape is easily manufactured by injection molding or the like. (3) It has the advantage that weight reduction can be achieved.
 また、ここでは、側壁部41は、ケース4の開口部の一部を覆う平板からなる庇部410を二つ具える(図2)。庇部410を具えることで、(1)耐振動性の向上、(2)ケース4(特に側壁部41)の剛性の向上、(3)磁性コア3(特に外側コア部32)の外部環境からの保護や機械的保護、(4)組合体10の脱落防止、といった種々の効果が得られる。ここでは、一方の庇部410(図2では左側)を端子金具8が固定される端子台に利用している。また、端子金具8を位置決めできるように、庇部410に端子溝を設けている。更に、ここでは、庇部410に端子金具8を配置した後、その上方を平板状の端子固定部材9によって覆い、ボルト91によって端子固定部材9を庇部410に固定することで端子台を形成している。端子固定部材9は、上述の絶縁性樹脂によって形成するとよい。端子金具8を側壁部41にインサート成形して、端子金具8を具える側壁部とすることもできる。 Further, here, the side wall portion 41 includes two flange portions 410 made of a flat plate covering a part of the opening of the case 4 (FIG. 2). By providing the flange 410, (1) improvement of vibration resistance, (2) improvement of rigidity of the case 4 (particularly the side wall part 41), and (3) external environment of the magnetic core 3 (particularly the outer core part 32). Various effects such as protection from mechanical and mechanical protection, and (4) prevention of falling off of the combined body 10 can be obtained. Here, one flange portion 410 (left side in FIG. 2) is used as a terminal block to which the terminal fitting 8 is fixed. Further, a terminal groove is provided in the flange 410 so that the terminal fitting 8 can be positioned. Further, here, after the terminal fitting 8 is disposed on the flange 410, the upper portion thereof is covered with a flat terminal fixing member 9, and the terminal fixing member 9 is fixed to the flange 410 with a bolt 91 to form a terminal block. is doing. The terminal fixing member 9 is preferably formed of the above-described insulating resin. It is also possible to insert-mold the terminal fitting 8 into the side wall portion 41 to form a side wall portion including the terminal fitting 8.
 ここでは、底板部40及び側壁部41は、上述のように連結ボルトによって一体化しているが、連結ボルトと共に接着剤を併用してもよい。又は、接着剤のみを利用して底板部40及び側壁部41を連結してもよい。接着剤を利用する場合、例えば、両面接着シート420を底板部40と同様の大きさとし、この大きな両面接着シート420によって、接合層42と、底板部40及び側壁部41を接合する接着剤層との双方を形成する形態とすることができる。つまり、両面接着シート420の一部によって接合層42を構成し、他部によってケース4の一体のための接着剤層を構成することができる。この形態は、接合層42の硬化工程と、底板部40及び側壁部41を接合する接着剤層の硬化工程とを同時に行えて、硬化工程を低減できる。従って、この形態は、生産性の向上を図ることができる。 Here, the bottom plate portion 40 and the side wall portion 41 are integrated by the connecting bolt as described above, but an adhesive may be used together with the connecting bolt. Or you may connect the baseplate part 40 and the side wall part 41 only using an adhesive agent. When using an adhesive, for example, the double-sided adhesive sheet 420 has the same size as the bottom plate part 40, and the large double-sided adhesive sheet 420 allows the bonding layer 42 and the adhesive layer to join the bottom plate part 40 and the side wall part 41 to each other. Both of them can be formed. That is, the bonding layer 42 can be constituted by a part of the double-sided adhesive sheet 420 and the adhesive layer for integrating the case 4 can be constituted by the other part. In this embodiment, the curing step of the bonding layer 42 and the curing step of the adhesive layer that bonds the bottom plate portion 40 and the side wall portion 41 can be performed simultaneously, and the curing step can be reduced. Therefore, this form can improve productivity.
 (その他の構成部材:封止樹脂)
 ケース4内に封止樹脂(図示せず)を充填した形態とすることができる。封止樹脂は、ケース4に収納した組合体10などの位置の固定、組合体10などの機械的な保護や外部環境からの保護(耐食性の向上)、材質によっては放熱性の向上、絶縁性の向上などを図ることができる。この形態では、例えば、巻線2wの端部を封止樹脂から露出させると、巻線2wの端部と端子金具8とを接合し易い。巻線2wの端部と端子金具8とを接合した後、この接合箇所を封止樹脂に埋設させた形態とすることもできる。
(Other components: sealing resin)
The case 4 may be filled with a sealing resin (not shown). The sealing resin fixes the position of the assembly 10 stored in the case 4, mechanical protection of the assembly 10 and the like, and protection from the external environment (improves corrosion resistance). Can be improved. In this embodiment, for example, when the end of the winding 2w is exposed from the sealing resin, the end of the winding 2w and the terminal fitting 8 are easily joined. After joining the end part of the winding 2w and the terminal fitting 8, it is also possible to have a form in which the joining portion is embedded in the sealing resin.
 封止樹脂は、例えば、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂などの絶縁性樹脂が挙げられる。封止樹脂を、上述の絶縁シート422の材質の項で述べたセラミックスからなるフィラーを含有する樹脂とすると、放熱性や絶縁性を高められる。 Examples of the sealing resin include insulating resins such as an epoxy resin, a urethane resin, and a silicone resin. When the sealing resin is a resin containing a filler made of ceramic described in the section of the material of the insulating sheet 422 described above, heat dissipation and insulation can be improved.
 封止樹脂を具える形態では、底板部40と側壁部41との間にパッキン(図示せず)を具えると、底板部40と側壁部41との隙間から未硬化の樹脂が漏れることを防止できる。底板部40と側壁部41とを接着剤によって一体化する場合、この接着剤によって両者間を密閉して未硬化の樹脂の漏洩を防止できることから、パッキンを省略できる。 In the form including the sealing resin, if a packing (not shown) is provided between the bottom plate portion 40 and the side wall portion 41, the uncured resin leaks from the gap between the bottom plate portion 40 and the side wall portion 41. Can be prevented. When the bottom plate portion 40 and the side wall portion 41 are integrated with an adhesive, the adhesive can be sealed between the two to prevent leakage of uncured resin, so that packing can be omitted.
 (その他の構成部材:蓋)
 リアクトル1は、ケース4の開口部を覆う蓋(図示せず)を具える形態とすることができる。蓋の構成材料は、側壁部41の材質の項で述べた絶縁性樹脂などが挙げられる。蓋を具える形態では、騒音の低減、組合体10の機械的な保護や外部環境からの保護(耐食性の向上)、外部の部品との接触回避、絶縁性の確保などを図ることができる。
(Other components: lid)
The reactor 1 can be configured to include a lid (not shown) that covers the opening of the case 4. Examples of the constituent material of the lid include the insulating resin described in the section of the material of the side wall 41. In the form having a lid, it is possible to reduce noise, mechanically protect the assembly 10 and protect it from the external environment (improvement of corrosion resistance), avoid contact with external parts, and ensure insulation.
 (用途)
 上述のリアクトル1は、通電条件が、例えば、最大電流(直流):100A~1000A程度、平均電圧:100V~1000V程度、使用周波数:5kHz~100kHz程度である用途、代表的には電気自動車やハイブリッド自動車などの車載用電力変換装置の構成部品に好適に利用することができる。
(Use)
The reactor 1 described above is used in applications where the energization conditions are, for example, maximum current (DC): about 100 A to 1000 A, average voltage: about 100 V to 1000 V, and operating frequency: about 5 kHz to 100 kHz, typically an electric vehicle or a hybrid It can be suitably used for a component part of an in-vehicle power converter such as an automobile.
 [実施形態2]
 上述した実施形態1では、底板部40と側壁部41とが独立した部材である形態を説明した。その他、底板部と側壁部とが一体に成形された箱体からなるケースを具える形態とすることができる。この形態では、ケース全体が上述のアルミニウムなどの金属で構成された場合には、ケース全体を放熱経路に利用でき、放熱性を高められる。この場合、コイルとケースの側壁部との間にも上述の両面接着テープ420を配置して同時に硬化し、コイルとケースの側壁部との間にも絶縁シートが介在する形態とすることができる。この場合、コイルを側壁部に近接配置しても、つまり、コイルとケースの側壁部との間の距離を短くしても(例えば、0.5mm以下)、コイルとケースとの絶縁性を高められる。
[Embodiment 2]
In Embodiment 1 mentioned above, the form in which the baseplate part 40 and the side wall part 41 are independent members was demonstrated. In addition, it can be set as the form which provides the case which consists of a box body in which the baseplate part and the side wall part were shape | molded integrally. In this form, when the whole case is comprised with metals, such as the above-mentioned aluminum, the whole case can be utilized for a thermal radiation path | route and heat dissipation is improved. In this case, the above-mentioned double-sided adhesive tape 420 is also disposed between the coil and the side wall of the case and cured at the same time, so that an insulating sheet is interposed between the coil and the side wall of the case. . In this case, even if the coil is disposed close to the side wall, that is, even if the distance between the coil and the side wall of the case is shortened (for example, 0.5 mm or less), the insulation between the coil and the case is improved. It is done.
 [実施形態3]
 上述した実施形態1,2では、ケースを具える形態を説明した。その他、ケースを具えていない形態とすることができる。この場合、底板部40に代えて、コイル2とリアクトル1の設置対象との間に介在される金属部材を具える形態とする。この金属部材は、上述の底板部40のように平板状とする又は平面を有するものとすると、両面接着テープ420、及びコイル2と磁性コア3との組合体10を安定して配置でき、組立作業性に優れる。この金属部材の構成材料は、底板部40の項で説明したアルミニウムやその合金などの放熱性に優れる金属が挙げられる。また、この金属部材は、底板部40と同様に設置対象への取付部を具えると、リアクトルの設置作業を容易に行える。更に、この形態では、組合体10の外周を覆う外側樹脂部を具える形態、又は組合体10と金属部材との双方を覆う外側樹脂部を具える形態とすると、組合体10の機械的保護や外部環境からの保護を図ることができる。後者の形態では、外側樹脂部は、組合体10と金属部材との一体化にも寄与することができる。上記外側樹脂部は、上述した絶縁性樹脂によって構成すると、コイル2などと外部との絶縁性を高められる。
[Embodiment 3]
In the first and second embodiments described above, the embodiment including the case has been described. In addition, it can be set as the form which does not have a case. In this case, it replaces with the baseplate part 40, and it is set as the form which provides the metal member interposed between the coil 2 and the installation object of the reactor 1. FIG. If the metal member is flat or has a flat surface like the above-described bottom plate portion 40, the double-sided adhesive tape 420 and the combination 10 of the coil 2 and the magnetic core 3 can be stably disposed and assembled. Excellent workability. Examples of the constituent material of the metal member include metals excellent in heat dissipation such as aluminum and its alloys described in the section of the bottom plate portion 40. Moreover, if this metal member is provided with the attachment part to installation object similarly to the baseplate part 40, the installation operation | work of a reactor can be performed easily. Further, in this embodiment, when the outer resin portion covering the outer periphery of the combined body 10 is provided, or the outer resin portion covering both the combined body 10 and the metal member is provided, mechanical protection of the combined body 10 is achieved. And protection from the external environment. In the latter form, the outer resin portion can also contribute to the integration of the combined body 10 and the metal member. When the outer resin portion is made of the above-described insulating resin, the insulation between the coil 2 and the like and the outside can be enhanced.
 [実施形態4]
 実施形態1~3のリアクトルは、例えば、車両などに載置されるコンバータの構成部品や、このコンバータを具える電力変換装置の構成部品に利用することができる。
[Embodiment 4]
The reactors of the first to third embodiments can be used, for example, as a component part of a converter mounted on a vehicle or the like, or a component part of a power conversion device including the converter.
 例えば、ハイブリッド自動車や電気自動車といった車両1200は、図5に示すようにメインバッテリ1210と、メインバッテリ1210に接続される電力変換装置1100と、メインバッテリ1210からの供給電力により駆動して走行に利用されるモータ(負荷)1220とを具える。モータ1220は、代表的には、3相交流モータであり、走行時、車輪1250を駆動し、回生時、発電機として機能する。ハイブリッド自動車の場合、車両1200は、モータ1220に加えてエンジンを具える。なお、図5では、車両1200の充電箇所としてインレットを示すが、プラグを具える形態とすることができる。 For example, a vehicle 1200 such as a hybrid vehicle or an electric vehicle is used for traveling by being driven by a main battery 1210, a power converter 1100 connected to the main battery 1210, and power supplied from the main battery 1210 as shown in FIG. Motor (load) 1220. The motor 1220 is typically a three-phase AC motor, which drives the wheel 1250 when traveling and functions as a generator during regeneration. In the case of a hybrid vehicle, vehicle 1200 includes an engine in addition to motor 1220. In addition, in FIG. 5, although an inlet is shown as a charge location of the vehicle 1200, it can be set as the form which provides a plug.
 電力変換装置1100は、メインバッテリ1210に接続されるコンバータ1110と、コンバータ1110に接続されて、直流と交流との相互変換を行うインバータ1120とを有する。この例に示すコンバータ1110は、車両1200の走行時、200V~300V程度のメインバッテリ1210の直流電圧(入力電圧)を400V~700V程度にまで昇圧して、インバータ1120に給電する。また、コンバータ1110は、回生時、モータ1220からインバータ1120を介して出力される直流電圧(入力電圧)をメインバッテリ1210に適合した直流電圧に降圧して、メインバッテリ1210に充電させている。インバータ1120は、車両1200の走行時、コンバータ1110で昇圧された直流を所定の交流に変換してモータ1220に給電し、回生時、モータ1220からの交流出力を直流に変換してコンバータ1110に出力している。 The power conversion device 1100 includes a converter 1110 connected to the main battery 1210 and an inverter 1120 connected to the converter 1110 and performing mutual conversion between direct current and alternating current. The converter 1110 shown in this example boosts the DC voltage (input voltage) of the main battery 1210 of about 200V to 300V to about 400V to 700V when the vehicle 1200 is running, and supplies the inverter 1120 with power. In addition, converter 1110 steps down DC voltage (input voltage) output from motor 1220 via inverter 1120 to DC voltage suitable for main battery 1210 during regeneration, and causes main battery 1210 to be charged. The inverter 1120 converts the direct current boosted by the converter 1110 into a predetermined alternating current when the vehicle 1200 is running, and supplies the motor 1220 with electric power. During regeneration, the alternating current output from the motor 1220 is converted into direct current and output to the converter 1110. is doing.
 コンバータ1110は、図6に示すように複数のスイッチング素子1111と、スイッチング素子1111の動作を制御する駆動回路1112と、リアクトルLとを具え、ON/OFFの繰り返し(スイッチング動作)により入力電圧の変換(ここでは昇降圧)を行う。スイッチング素子1111には、電界効果トランジスタ(FET),絶縁ゲートバイポーラトランジスタ(IGBT)などのパワーデバイスが利用される。リアクトルLは、回路に流れようとする電流の変化を妨げようとするコイルの性質を利用し、スイッチング動作によって電流が増減しようとしたとき、その変化を滑らかにする機能を有する。このリアクトルLとして、上記実施形態1~3のリアクトルを具える。放熱性及び絶縁性に優れる上に、生産性にも優れるリアクトル1などを具えることで、電力変換装置1100やコンバータ1110も、放熱性、絶縁性、生産性に優れる。 As shown in FIG. 6, the converter 1110 includes a plurality of switching elements 1111, a drive circuit 1112 that controls the operation of the switching elements 1111, and a reactor L, and converts input voltage by ON / OFF repetition (switching operation). (In this case, step-up / down pressure) is performed. For the switching element 1111, a power device such as a field effect transistor (FET) or an insulated gate bipolar transistor (IGBT) is used. The reactor L has the function of smoothing the change when the current is going to increase or decrease by the switching operation by utilizing the property of the coil that prevents the change of the current to flow through the circuit. As the reactor L, the reactors of the first to third embodiments are provided. In addition to excellent heat dissipation and insulation, the power conversion device 1100 and the converter 1110 are also excellent in heat dissipation, insulation, and productivity by including the reactor 1 that is excellent in productivity.
 なお、車両1200は、コンバータ1110の他、メインバッテリ1210に接続された給電装置用コンバータ1150や、補機類1240の電力源となるサブバッテリ1230とメインバッテリ1210とに接続され、メインバッテリ1210の高圧を低圧に変換する補機電源用コンバータ1160を具える。コンバータ1110は、代表的には、DC-DC変換を行うが、給電装置用コンバータ1150や補機電源用コンバータ1160は、AC-DC変換を行う。給電装置用コンバータ1150のなかには、DC-DC変換を行うものもある。給電装置用コンバータ1150や補機電源用コンバータ1160のリアクトルに、上記実施形態1~3のリアクトルなどと同様の構成を具え、適宜、大きさや形状などを変更したリアクトルを利用することができる。また、入力電力の変換を行うコンバータであって、昇圧のみを行うコンバータや降圧のみを行うコンバータに、上記実施形態1~3のリアクトルなどを利用することもできる。 Vehicle 1200 is connected to converter 1110, power supply converter 1150 connected to main battery 1210, sub-battery 1230 serving as a power source for auxiliary machinery 1240, and main battery 1210. Auxiliary power supply converter 1160 for converting high voltage to low voltage is provided. The converter 1110 typically performs DC-DC conversion, while the power supply device converter 1150 and the auxiliary power supply converter 1160 perform AC-DC conversion. Some power supply device converters 1150 perform DC-DC conversion. The reactors of the power supply device converter 1150 and the auxiliary power supply converter 1160 have the same configuration as that of the reactors of the first to third embodiments, and a reactor whose size and shape are appropriately changed can be used. In addition, the reactors of the first to third embodiments can be used for a converter that performs conversion of input power, and that only performs step-up or only performs step-down.
 なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
 本発明のリアクトルは、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、燃料電池自動車などの車両に搭載される車載用コンバータ(代表的にはDC-DCコンバータ)や空調機のコンバータなどの種々のコンバータ、電力変換装置の構成部品に好適に利用することができる。本発明のリアクトルの製造方法は、コンバータ、電力変換装置の構成部品に利用されるリアクトルの製造に好適に利用することができる。 The reactor of the present invention includes various converters such as an in-vehicle converter (typically a DC-DC converter) and an air conditioner converter mounted on a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, and a fuel cell vehicle. It can be suitably used as a component part of a power converter. The manufacturing method of the reactor of this invention can be utilized suitably for manufacture of the reactor utilized for the component of a converter and a power converter device.
 1 リアクトル 10 組合体
 2 コイル
  2a,2b コイル素子 2r 連結部 2w 巻線
 3 磁性コア
  31 内側コア部 31e 端面 31m コア片
  31g ギャップ材
  32 外側コア部 32e 内端面
 4 ケース
  40 底板部 40i 内面 41 側壁部 42 接合層
  400,411 取付部 400h,411h ボルト孔
  410 庇部
  420 両面接着シート 422 絶縁シート
  425 コイル側接着層 427 金属側接着層
 5 インシュレータ
  51 周壁部 512,514 分割部材 52 枠板部
  52b 仕切り板 52p 台座
 8 端子金具 9 端子固定部材 91 ボルト
 1100 電力変換装置 1110 コンバータ
 1111 スイッチング素子 1112 駆動回路
 L リアクトル 1120 インバータ
 1150 給電装置用コンバータ 1160 補機電源用コンバータ
 1200 車両 1210 メインバッテリ 1220 モータ
 1230 サブバッテリ 1240 補機類 1250 車輪
DESCRIPTION OF SYMBOLS 1 Reactor 10 Combination 2 Coil 2a, 2b Coil element 2r Connection part 2w Winding 3 Magnetic core 31 Inner core part 31e End surface 31m Core piece 31g Gap material 32 Outer core part 32e Inner end surface 4 Case 40 Bottom board part 40i Inner surface 41 Side wall part 42 Bonding layer 400, 411 Mounting portion 400h, 411h Bolt hole 410 Hook portion 420 Double-sided adhesive sheet 422 Insulating sheet 425 Coil side adhesive layer 427 Metal side adhesive layer 5 Insulator 51 Peripheral wall portion 512, 514 Dividing member 52 Frame plate portion 52b Partition plate 52p base 8 terminal fitting 9 terminal fixing member 91 bolt 1100 power converter 1110 converter 1111 switching element 1112 drive circuit L reactor 1120 inverter 1150 power supply converter 1160 auxiliary power supply Converter 1200 Vehicle 1210 Main battery 1220 Motor 1230 Sub battery 1240 Auxiliaries 1250 Wheel

Claims (7)

  1.  巻線を螺旋状に巻回してなるコイルと、前記コイルが配置される磁性コアとを具えるリアクトルであって、
     前記コイルが載置される金属部材と、
     前記コイルと前記金属部材との間に介在して、前記コイルを前記金属部材に固定する接合層とを具え、
     前記接合層は、絶縁材料から構成された絶縁シートと、前記絶縁シートの表裏面にそれぞれ形成され、前記コイルに接するコイル側接着層、及び前記金属部材に接する金属側接着層とを具える両面接着シートから構成され、
     前記コイル側接着層の厚さが前記金属側接着層の厚さよりも厚いリアクトル。
    A reactor comprising a coil formed by spirally winding a winding and a magnetic core on which the coil is disposed,
    A metal member on which the coil is placed;
    Comprising a bonding layer interposed between the coil and the metal member to fix the coil to the metal member;
    The bonding layer includes both an insulating sheet made of an insulating material, a coil-side adhesive layer that contacts the coil, and a metal-side adhesive layer that contacts the metal member. Composed of adhesive sheet,
    A reactor in which the coil side adhesive layer is thicker than the metal side adhesive layer.
  2.  前記コイル側接着層の厚さは、30μm超350μm以下である請求項1に記載のリアクトル。 The reactor according to claim 1, wherein a thickness of the coil side adhesive layer is more than 30 µm and not more than 350 µm.
  3.  前記コイルにおける隣接するターン間に前記コイル側接着層を構成する接着剤が介在している請求項1又は請求項2に記載のリアクトル。 The reactor according to claim 1 or 2, wherein an adhesive constituting the coil-side adhesive layer is interposed between adjacent turns in the coil.
  4.  前記巻線は、平角線から構成された導体を具え、
     前記コイルは、エッジワイズコイルである請求項1~請求項3のいずれか1項に記載のリアクトル。
    The winding comprises a conductor composed of a flat wire,
    The reactor according to any one of claims 1 to 3, wherein the coil is an edgewise coil.
  5.  請求項1~請求項4のいずれか1項に記載のリアクトルを具えるコンバータ。 A converter comprising the reactor according to any one of claims 1 to 4.
  6.  請求項5に記載のコンバータを具える電力変換装置。 A power conversion device comprising the converter according to claim 5.
  7.  巻線を螺旋状に巻回してなるコイルと、前記コイルが配置される磁性コアとを組み付けてリアクトルを製造するリアクトルの製造方法であって、
     絶縁材料から構成された絶縁シートと、前記絶縁シートの表裏面にそれぞれ形成された接着層とを具える両面接着シートを用意する工程と、
     前記コイルと前記磁性コアとの組合体が載置される金属部材に前記両面接着シートを配置する工程と、
     前記両面接着シートの上に前記組合体を載置する工程と、
     前記両面接着シートに具える前記接着層を硬化して、前記コイルと前記金属部材とを前記両面接着シートを介して接合する工程とを具え、
     前記両面接着シートは、前記コイルに接する一方の接着層の厚さが、前記金属部材に接する他方の接着層の厚さよりも厚いリアクトルの製造方法。
    A reactor manufacturing method for manufacturing a reactor by assembling a coil formed by spirally winding a winding and a magnetic core on which the coil is disposed,
    Preparing a double-sided adhesive sheet comprising an insulating sheet composed of an insulating material and an adhesive layer formed on each of the front and back surfaces of the insulating sheet;
    Placing the double-sided adhesive sheet on a metal member on which a combination of the coil and the magnetic core is placed;
    Placing the combination on the double-sided adhesive sheet;
    Curing the adhesive layer provided on the double-sided adhesive sheet, and joining the coil and the metal member via the double-sided adhesive sheet;
    The double-sided adhesive sheet is a method for manufacturing a reactor in which the thickness of one adhesive layer in contact with the coil is thicker than the thickness of the other adhesive layer in contact with the metal member.
PCT/JP2013/078746 2012-11-08 2013-10-23 Reactor, converter, power conversion apparatus, and reactor manufacturing method WO2014073380A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012246789A JP5954542B2 (en) 2012-11-08 2012-11-08 Reactor, converter, power converter, and reactor manufacturing method
JP2012-246789 2012-11-08

Publications (1)

Publication Number Publication Date
WO2014073380A1 true WO2014073380A1 (en) 2014-05-15

Family

ID=50684491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078746 WO2014073380A1 (en) 2012-11-08 2013-10-23 Reactor, converter, power conversion apparatus, and reactor manufacturing method

Country Status (2)

Country Link
JP (1) JP5954542B2 (en)
WO (1) WO2014073380A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113785369A (en) * 2019-05-24 2021-12-10 株式会社自动网络技术研究所 Electric reactor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191666B2 (en) * 2015-08-28 2017-09-06 株式会社明電舎 Vibration control structure of static induction equipment
KR102311192B1 (en) * 2020-12-29 2021-10-13 주식회사 정안시스템 Coil winding tape
CN115863015B (en) * 2023-02-21 2023-04-25 深圳市斯比特技术股份有限公司 Multi-coil continuous winding inductor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129146A (en) * 2005-11-07 2007-05-24 Toyota Motor Corp Cooling structure of reactor and electrical apparatus unit
WO2012039268A1 (en) * 2010-09-22 2012-03-29 住友電気工業株式会社 Reactor, converter, and electric power converter
WO2013058024A1 (en) * 2011-10-19 2013-04-25 住友電気工業株式会社 Reactor, converter, and power conversion device
JP2013098459A (en) * 2011-11-04 2013-05-20 Toyota Motor Corp Reactor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021530A (en) * 2007-07-13 2009-01-29 Sumitomo Electric Ind Ltd Insulating resin film and power module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129146A (en) * 2005-11-07 2007-05-24 Toyota Motor Corp Cooling structure of reactor and electrical apparatus unit
WO2012039268A1 (en) * 2010-09-22 2012-03-29 住友電気工業株式会社 Reactor, converter, and electric power converter
WO2013058024A1 (en) * 2011-10-19 2013-04-25 住友電気工業株式会社 Reactor, converter, and power conversion device
JP2013098459A (en) * 2011-11-04 2013-05-20 Toyota Motor Corp Reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113785369A (en) * 2019-05-24 2021-12-10 株式会社自动网络技术研究所 Electric reactor
CN113841210A (en) * 2019-05-24 2021-12-24 株式会社自动网络技术研究所 Electric reactor
CN113785369B (en) * 2019-05-24 2024-03-15 株式会社自动网络技术研究所 Reactor with a reactor body
CN113841210B (en) * 2019-05-24 2024-04-09 株式会社自动网络技术研究所 Reactor with a reactor body

Also Published As

Publication number Publication date
JP5954542B2 (en) 2016-07-20
JP2014096463A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP4947503B1 (en) Reactor, converter, and power converter
JP5881015B2 (en) Reactor, converter, and power converter
JP5892337B2 (en) Reactor, converter, and power converter
JP5929725B2 (en) Reactor, converter, and power converter
JP6034012B2 (en) Reactor manufacturing method
JP4952963B1 (en) Reactor, converter, and power converter
JP2013135191A (en) Reactor, converter, and power conversion device
JP5861940B2 (en) Reactor, converter, and power converter
WO2014073380A1 (en) Reactor, converter, power conversion apparatus, and reactor manufacturing method
WO2014017149A1 (en) Reactor, converter, and electric-power conversion device
JP2013179186A (en) Reactor, component for reactor, converter, and power conversion device
JP2013145850A (en) Reactor
WO2014017150A1 (en) Reactor, converter, and electric-power conversion device
JP6179701B2 (en) Reactor, converter, and power converter
JP2013179184A (en) Reactor, converter, and power conversion device
WO2013150688A1 (en) Reactor, method for producing reactor, converter, and power conversion device
JP6070928B2 (en) Reactor, converter, and power converter
JP2013175564A (en) Reactor, converter, and power conversion equipment
WO2012176558A1 (en) Reactor, and manufacturing method therefor
JP2014027025A (en) Reactor, converter and electrical power conversion apparatus
JP2014150171A (en) Reactor, converter, and electric power conversion device
JP2014067758A (en) Reactor, converter, and power converter
JP2013026418A (en) Reactor
JP6406610B2 (en) Reactor
JP2014078603A (en) Reactor, converter, power conversion device, and method of manufacturing reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853474

Country of ref document: EP

Kind code of ref document: A1