WO2012174984A1 - 利用清道夫鱼进行水体生态修复的方法 - Google Patents
利用清道夫鱼进行水体生态修复的方法 Download PDFInfo
- Publication number
- WO2012174984A1 WO2012174984A1 PCT/CN2012/076464 CN2012076464W WO2012174984A1 WO 2012174984 A1 WO2012174984 A1 WO 2012174984A1 CN 2012076464 W CN2012076464 W CN 2012076464W WO 2012174984 A1 WO2012174984 A1 WO 2012174984A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water body
- fish
- water
- scavenger
- ecological restoration
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 133
- 238000000034 method Methods 0.000 title claims abstract description 33
- 241000251468 Actinopterygii Species 0.000 claims abstract description 107
- 241000195493 Cryptophyta Species 0.000 claims abstract description 22
- 244000005700 microbiome Species 0.000 claims abstract description 17
- 239000002516 radical scavenger Substances 0.000 claims description 81
- 238000003306 harvesting Methods 0.000 claims description 10
- 239000013049 sediment Substances 0.000 claims description 7
- 239000005416 organic matter Substances 0.000 claims description 6
- 239000002352 surface water Substances 0.000 claims description 4
- 230000037406 food intake Effects 0.000 claims description 3
- 235000012631 food intake Nutrition 0.000 claims description 3
- 230000001850 reproductive effect Effects 0.000 claims description 3
- 239000004575 stone Substances 0.000 claims description 2
- 241001063986 Lethrinus atlanticus Species 0.000 claims 1
- 210000003097 mucus Anatomy 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 11
- 238000000746 purification Methods 0.000 abstract description 6
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 235000015097 nutrients Nutrition 0.000 description 9
- 230000006378 damage Effects 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241000252233 Cyprinus carpio Species 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/32—Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
- C02F3/327—Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the invention relates to a method for ecological restoration of water bodies, in particular to a method for ecological restoration of water bodies by using scavenger fish (also known as sucker fish, carp, Latin name Plecostomus punctatus ).
- scavenger fish also known as sucker fish, carp, Latin name Plecostomus punctatus
- the scavenger fish Plecostomus punctatus
- Plecostomus punctatus is a common ornamental fish that is familiar and not biologically threatening. It has the characteristics of algae, microbes and flocculent organisms attached to the foraging.
- the invention introduces the scavenger fish ( Plecostomus punctatus ) into the water body ecological restoration project, and utilizes it to convert the microorganisms and algae organisms into fish bodies, which is beneficial to remove the water body.
- the technical problem to be solved by the present invention is to provide a method for ecological restoration of water bodies using scavenger fish.
- scavenger fish by Introducing scavenger fish into the water body ecological restoration project, which uses it to convert microbes and algae organisms into fish bodies, which facilitates the removal of water bodies.
- the method for the ecological restoration of water bodies using the scavenger fish of the present invention includes:
- the scavenger fish is placed in the water body to be subjected to the water body ecological restoration project, thereby carrying out the ecological restoration of the water body.
- step A The selection of the scavenger fish includes: selection of lively and healthy varieties with large food intake, high tolerance, and low reproductive capacity.
- step B the domestication of the scavenger fish includes: cultivating the scavenger fish to be carried out as needed
- the water quality and hydrological and climatic characteristics of the water body ecological restoration project are similar in the water body; or the fence or cage is used for domestication for a period of time in the water body of the water body ecological restoration project.
- the scavenger fish is placed in a size of 150 to 500 g / strip, preferably 250 g /
- the density of the scavenger fish is determined by the density of the wild fish in the water. For example, for a scavenger fish of about half a catty, the water of the V water of surface water is generally 15-150 per hectare.
- the strip serves as a reference for density.
- the scavenger fish is placed in a size of 5-10 cm/bar; the density of the scavenger fish is determined by the thickness of the algae, microorganisms and flocs attached to the plants and sediments, and the size of the fish body.
- the size of the scavenger fish is 5 cm/bar, and the density is: 1-5 scavenger fish per square meter of water surface for water of surface water type V water.
- the water body of the water body ecological restoration project includes: algae, microorganisms and water bodies with excessive flocculent organic matter attached to the plant plants and sediments.
- the above method of using the scavenger fish for ecological restoration of water may also include the steps of removing the scavenger fish from the water body and adjusting the density of the scavenger fish in the water body ecological restoration project.
- the time when the scavenger fish is removed from the water body depends on the need for ecological restoration of the water body, that is, the attached algae, microorganisms, and flocculent organic matter have been removed from the water body when the cleansing fish has been cleaned;
- the amount of the scavenger fish removed from the water body is determined by the algae, the microorganisms, and the floc thickness to determine the harvesting power of the scavenger fish;
- the method of removing the scavenger fish from the body of water preferably the method of cage.
- the larger individual fish are selected to be removed, and the fish having a length of 20 cm or more are preferably removed.
- the invention introduces scavenger fish into the water body ecological restoration project, and adopts the method of stocking the fish to remove algae, microorganisms and flocculent organic matter attached to aquatic plant plants or other substances on the bottom of the water; and adopts the removal of excess scavenger fish.
- the water method removes some of the water's nutrients from the water to purify the water.
- the introduction of Plecostomus punctatus into the water body ecological restoration project can increase the water body nutrient transformation pathway, regulate the algae and microbial growth rate, improve the water purification effect, improve the underwater bottom and plant aesthetics, and greatly improve the ecological restoration effect of the water body.
- the invention has been applied to projects such as the water restoration engineering of the water landscape in Beijing Yuanmingyuan, and the effect is obvious.
- the method for using the scavenger fish to carry out ecological restoration of water bodies mainly comprises placing the scavenger fish to be in need of In the water body of the water ecological restoration project (for example, algae, microorganisms and water bodies with excessive flocculent matter attached to the plant plants and the sediment), the ecological restoration of the water body is carried out, and the specific steps include:
- the scavenger fish Since the scavenger fish is a common ornamental fish with a wide variety, the scavenger fish used in the aquatic ecological restoration project needs a lively and healthy line with high food intake, strong tolerance and low reproductive capacity, and the best strain and life.
- the history is clearer and other features are chosen according to the needs of the project. For example, in the Beijing Yuanmingyuan middle water landscape water body ecological restoration project, Beijing local varieties that can adapt to the northern winter climate are adopted.
- the scavenger fish used in the aquatic ecological engineering which will be domesticated in a small water body similar to the water, hydrology and climate characteristics of the water ecological engineering, which is easy to fish out, during which some unhealthy, Injured or unsuitable for screening with the required fish.
- Fish that meet the requirements can be fished out in the project water body according to the project plan; another more suitable method is to use a fence or cage for a period of domestication at the project site, during which the fish are observed and screened to eliminate injuries and unhealthy. Inactive fish.
- the length of the scavenger fish using the water body ecological restoration project is preferably Between 5-10 cm. Fish of this size have a certain tolerance and a large amount of food, rapid growth, and low cost and convenient transportation.
- the seeding density is determined by the thickness of the algae, microbes and flocs attached to the plants and sediments, and the size of the fish, and the harvesting intensity of the fish is determined according to the thickness of the algae, microorganisms and flocs.
- the water of the surface water of Class V water is generally referred to as a reference density of 1-5 per square meter of water surface.
- the scavenger fish using the water body ecological restoration project can remove the water nutrients from the water body in the form of fish when harvesting and removing the water body, which is a good resource utilization method. According to the needs of ecological restoration, if it is necessary to reduce the density of the fish, try to select the larger individual fish to remove, preferably the length is more than 20 cm, the growth of the fish has begun to slow down, and then stocking in the water body for ecological restoration effect The meaning is not obvious.
- the cage net For the scavenger fish used in the ecological restoration project, it is best to harvest the cage net with a mesh of 0.5-2.0 cm at the time of harvesting, that is, to lay 3-5 cage nets per hectare (generally 20 in diameter) -50 cm or so, 30 cm is common; length is about 10-20 meters; nets are generally 0.8 cm to 1 cm).
- This method has less labor input, less water disturbance, and basically no damage to plants, and is more convenient for regulating the density of scavenger fish.
- scavenger fish do not threaten the growth of other aquatic plants used for ecological restoration, and do not need to specifically control the density. If the scavenger fish density is too high or conflicts with other aquatic plants, the cage net can be used to control the scavenger fish density. Generally, it is obtained in the early morning, and the individuals in the captured scavenger fish are relatively large (preferably 20 cm or more in length), and the smaller ones are returned to the water body without injury.
- the time for the scavenger fish to move out of the water body depends on the need for ecological restoration of the water body, that is, the attached algae, microorganisms and flocculent organic matter have been cleaned, and the scavenger fish removes the scavenger fish out of the water body when the food is lacking.
- the present invention can increase the nutrient transformation pathway of water, regulate the growth rate of algae and microorganisms, improve the water purification effect, improve the underwater and plant aesthetics, greatly improve the effect of water ecological restoration, and also pass Removing excess scavenger fish out of the water to remove some of the nutrients from the water to purify the water And realize the resource utilization of eutrophication of water bodies.
- the invention introduces scavenger fish into the water body ecological restoration project, and adopts the method of stocking the fish to remove algae, microorganisms and flocculent organic matter attached to aquatic plant plants or other substances on the bottom of the water; and adopts the removal of excess scavenger fish.
- the water method removes some of the water's nutrients from the water to purify the water.
- the introduction of Plecostomus punctatus into the water body ecological restoration project can increase the water body nutrient transformation pathway, regulate the algae and microbial growth rate, improve the water purification effect, improve the underwater bottom and plant aesthetics, and greatly improve the ecological restoration effect of the water body.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Hydrology & Water Resources (AREA)
- Botany (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Farming Of Fish And Shellfish (AREA)
Abstract
一种利用清道夫鱼进行水体生态修复的方法,其包括:将清道夫鱼投放到需要进行水体生态修复工程的水体中进行水体生态修复。该方法通过将清道夫鱼引入水体生态修复工程,利用它将微生物和藻类生物转化为鱼体以移出水体,可以提高水质净化效果,改善水底和植物美观程度,从而大大提高水体生态修复的效果。
Description
本发明涉及一种 水体生态修复的方法 ,特别是涉及一种利用 清道夫鱼(又名吸盘鱼、琵琶鱼,拉丁名为
Plecostomus punctatus )进行水体生态修复的方法。
在水体生态修复中,随着水生植物(包括沉水植物、挺水植物和浮叶植物)的引入,大量的絮状悬浮物以及微生物和藻类会附着在植株叶片、茎干或裸露于水体中的根系上,或者附着在水体中裸露的石头或底泥上。水体中的藻类和微生物的生长有助于将溶解或悬浮的营养物质转化为生物体,起到了水体净化的作用。但是,如果不将这些生物体逐渐和适量地移出水体或转化为其他生物体移出水体,它们将在水体中死亡腐烂。这样,这些生物的生长就起不到净化水质的作用,营养成分基本上仍然在水体内部循环。
清道夫鱼(Plecostomus
punctatus)是一种常见的观赏性鱼类,为人们所熟悉,不具备生物威胁。它具有舔食附着的藻类、微生物以及絮状有机物的特性。本发明将清道夫鱼(
Plecostomus punctatus)引入水体生态修复工程,利用它将微生物和藻类生物转化为鱼体,有利于移出水体。
本发明要解决的技术问题是提供一种 利用清道夫鱼进行水体生态修复的方法 。通过
将清道夫鱼引入水体生态修复工程, 利用它将微生物和藻类生物转化为鱼体,有利于移出水体,从而
提高水质净化效果,提高水底和植物美观程度,大大提高水体生态修复的效果。
为解决上述技术问题,本发明的 利用清道夫鱼进行水体生态修复的方法,包括:
将清道夫鱼投放到待需要进行 水体生态修复工程的水体中,从而进行水体生态修复。
在投放清道夫鱼之前还包括如下步骤:A. 清道夫鱼的品系选择; B. 清道夫鱼的驯养。
在步骤A中,
所述清道夫鱼的品系选择,包括:选择食量大、耐受性强、繁殖能力不高的活泼健康品种。
在步骤B中, 所述清道夫鱼的驯养包括:将清道夫鱼驯养于与 待需要进行
水体生态修复工程的水质、水文气候特点相类似的水体中;或者在水体生态修复工程现场水体中采用围网或网箱进行一段时间的驯养。
所述清道夫鱼的投放尺寸为 150 ~ 500g / 条,优选 250g /
条;所述清道夫鱼的投放密度由水体中野杂鱼密度决定,如对于半斤左右的清道夫鱼,地表水 V 类水质的水体,一般在每公顷水面 15-150
条作为参考投放密度。
所述清道夫鱼的投放尺寸为长度在5-10厘米/条;所述清道夫鱼的投放密度由水体中附着在植株和底泥上的藻类、微生物和絮状物厚度和鱼体大小决定,例如对于清道夫鱼的投放尺寸为长度为5厘米/条,其投放密度为:对于地表水V类水质的水体,每平方米水面1-5条清道夫鱼。
所述 待需要进行
水体生态修复工程的水体,包括:种植的植物植株上和底泥上附着的藻类、微生物以及絮状有机物过多的水体。
对于上述利用清道夫鱼进行水体生态修复的方法, 在投放清道夫鱼之后
还可包括如下步骤:将清道夫鱼移出水体,调节水体生态修复工程中的清道夫鱼密度。
所述清道夫鱼移出水体的时间,取决于水体生态修复的需要,即附着的藻类、微生物以及絮状有机物已经清理时将清道夫鱼移出水体;
所述清道夫鱼移出水体的数量,是根据藻类、微生物和絮状物厚度决定对该 清道夫 鱼的收获力度;
所述清道夫鱼移出水体的方法,优选地笼的方法。
所述清道夫鱼移出水体时, 选择个体较大的鱼移出, 优选 长度在20厘米以上 的鱼移出。
本发明将清道夫鱼引入水体生态修复工程,采用放养这种鱼类的方法来清除附着在水生植物植株或水底其他物质上的藻类、微生物和絮状有机物;并采用将多余的清道夫鱼移出水体的方法将部分水体营养成分移出水体,从而净化水质。清道夫鱼(
Plecostomus punctatus
)引入水体生态修复工程可以增加水体营养转化途径、调控藻类和微生物生长速度,提高水质净化效果,提高水底和植物美观程度,大大提高水体生态修复的效果。
本发明曾应用于比如北京圆明园中水景观水体生态修复工程等工程,效果明显。
本发明的 利用清道夫鱼进行水体生态修复的方法,主要是 将清道夫鱼投放到待需要进行
水体生态修复工程的水体(例如,种植的植物植株上和底泥上附着的藻类、微生物以及絮状有机物过多的水体)中,从而进行水体生态修复,具体步骤包括:
( 1 )清道夫鱼的品系选择
由于清道夫鱼是一种常见的观赏性鱼类,品种繁多,使用于水体生态修复工程的清道夫鱼需要食量大、耐受性强、繁殖能力不高的活泼健康品系,最好品系和生活史比较清楚,其他特性根据工程需要而选择。比如北京圆明园中水景观水体生态修复工程中,采用能适应北方冬季气候的北京本地品种。
( 2 )清道夫鱼的驯养
如条件允许,最好对使用于水体生态工程中的清道夫鱼进行驯养,即将其驯养于与水体生态工程水质水文气候特点相类似的方便将鱼捞出的小型水体中,期间对一些不健康、受伤或不适应使用要求的鱼进行筛除。符合要求的鱼可以按工程计划捞出投放于工程水体;另一种更合适的方法是在工程现场采用围网或网箱进行一段时间的驯养,期间对鱼进行观察筛选,排除受伤、不健康、不活泼的鱼。
( 3 )清道夫鱼的投放
A. 清道夫鱼的投放尺寸
使用水体生态修复工程的清道夫鱼的长度最好在
5-10厘米之间。该尺寸的鱼有一定的耐受能力并且食量较大、生长迅速,而且成本不高、运输方便 。
B. 清道夫鱼的投放密度
投放密度由水体中附着在植株和底泥上的藻类、微生物和絮状物厚度和鱼体大小决定,并根据藻类、微生物和絮状物厚度决定对该鱼的收获力度。对于5厘米长的鱼,地表水V类水质的水体,一般在每平方米水面1-5条为参考投放密度。
(4)清道夫鱼的收获(即清道夫鱼移出水体)
A. 清道夫鱼的收获尺寸
使用水体生态修复工程的清道夫鱼在收获移出水体时就可以将水体营养物质以鱼的形式移出水体,是一种很好的资源化利用方法。根据生态修复的需要,如需要减少该鱼的密度,尽量选择个体较大的鱼移出,最好长度在20厘米以上,该尺寸的鱼生长已经开始放缓,再放养在水体中对生态修复效果意义不明显。
B. 清道夫鱼的收获方法
对于使用于生态修复工程的清道夫鱼,在收获时最好采用网眼为0.5-2.0厘米的地笼网这一方法进行收获,即按每公顷放置3-5个地笼网(一般直径在20-50厘米左右,以30厘米为常见;长度在10-20米左右;网目一般为
0.8 厘米 ~1厘米 )。这一方法劳动力投入少,水体扰动小,对植物基本无破坏,比较方便地用来调节清道夫鱼密度。
C. 清道夫鱼的收获时间
一般情况下,清道夫鱼不会威胁其他用于生态修复的水生动植物的生长,不需要特地去控制密度。如果清道夫鱼密度过高或与其他水生动植物冲突,可以采用地笼网控制清道夫鱼密度。一般在清晨起获,将捕获的清道夫鱼中个体比较大(最好长度在20厘米以上)的取出,个体较小的没有受伤的放回水体。
所述清道夫鱼移出水体的时间,取决于水体生态修复的需要,即附着的藻类、微生物以及絮状有机物已经清理,清道夫鱼缺乏食物时将清道夫鱼移出水体。
综上所述,按照上述步骤进行操作,本发明可以增加水体营养转化途径、调控藻类和微生物生长速度,提高水质净化效果,提高水底和植物美观程度,大大提高水体生态修复的效果,也能通过将多余的清道夫鱼移出水体的方法将部分水体营养成分移出水体,从而净化水质
并实现水体富营养的资源化利用 。
本发明将清道夫鱼引入水体生态修复工程,采用放养这种鱼类的方法来清除附着在水生植物植株或水底其他物质上的藻类、微生物和絮状有机物;并采用将多余的清道夫鱼移出水体的方法将部分水体营养成分移出水体,从而净化水质。清道夫鱼(
Plecostomus punctatus
)引入水体生态修复工程可以增加水体营养转化途径、调控藻类和微生物生长速度,提高水质净化效果,提高水底和植物美观程度,大大提高水体生态修复的效果。
Claims (1)
- 1 、一种 利用清道夫鱼进行水体生态修复的方法, 其特征在于, 包括:将清道夫鱼投放到待需要进行 水体生态修复工程的水体中,从而进行水体生态修复。2 、如权利要求1所述的 方法 ,其特征在于:在投放清道夫鱼之前还包括如下步骤:A. 清道夫鱼的品系选择; B. 清道夫鱼的驯养。3 、如权利要求2所述的 方法 ,其特征在于:在步骤A中, 所述清道夫鱼的品系选择,包括:选择食量大、耐受性强、繁殖能力不高的活泼健康品种。4 、如权利要求2所述的 方法 ,其特征在于:在步骤B中, 所述清道夫鱼的驯养包括:将清道夫鱼驯养于与 待需要进行 水体生态修复工程的水质、水文气候特点相类似的水体中;或者在水体生态修复工程现场水体中采用围网或网箱进行一段时间的驯养。5 、如权利要求1所述的 方法 ,其特征在于: 所述清道夫鱼的投放尺寸为长度在 5-10 厘米 / 条;所述清道夫鱼的投放密度由 水体中附着在植株和底泥上的藻类、微生物和絮状物厚度和鱼体大小决定。6 、如权利要求5所述的 方法 ,其特征在于: 所述清道夫鱼的投放尺寸为长度为 5 厘米 / 条;所述清道夫鱼的投放密度为:对于地表水 V 类水质的水体, 每平方米水面1-5条 清道夫鱼。7 、如权利要求1所述的 方法 ,其特征在于: 所述 待需要进行 水体生态修复工程的水体,包括:种植的植物植株上和底泥上附着的藻类、微生物以及絮状有机物过多的水体。8 、如权利要求1所述的 方法 ,其特征在于,在投放清道夫鱼之后 还可包括如下步骤:将清道夫鱼移出水体,调节水体生态修复工程中的清道夫鱼密度。9 、如权利要求8所述的 方法 ,其特征在于, 所述清道夫鱼移出水体的时间,取决于水体生态修复的需要,即植株或水底石块等表面附着的黏液或絮状物已经清理时将清道夫鱼移出水体;所述清道夫鱼移出水体的数量,是 根据藻类、微生物和絮状物厚度决定对该 清道夫 鱼的收获力度;所述清道夫鱼移出水体的方法,包括: 地笼 的方法;所述清道夫鱼移出水体时,选择 长度在20厘米以上 的鱼移出。10 、如权利要求9所述的 方法 ,其特征在于,所述地笼 的方法 采用网眼为0.5-2.0厘米的地笼网。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110170495.9 | 2011-06-22 | ||
CN2011101704959A CN102336475A (zh) | 2011-06-22 | 2011-06-22 | 利用清道夫鱼进行水体生态修复的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012174984A1 true WO2012174984A1 (zh) | 2012-12-27 |
Family
ID=45512483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/076464 WO2012174984A1 (zh) | 2011-06-22 | 2012-06-05 | 利用清道夫鱼进行水体生态修复的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102336475A (zh) |
WO (1) | WO2012174984A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115465957A (zh) * | 2022-08-23 | 2022-12-13 | 长江水利委员会长江科学院 | 一种用于湖库水体生境改善的生态修复综合体及方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102336475A (zh) * | 2011-06-22 | 2012-02-01 | 上海太和水环境科技发展有限公司 | 利用清道夫鱼进行水体生态修复的方法 |
CN102627357A (zh) * | 2012-04-24 | 2012-08-08 | 上海太和水环境科技发展有限公司 | 应用萝卜螺修复水体生态系统的方法 |
CN102627356A (zh) * | 2012-04-24 | 2012-08-08 | 上海太和水环境科技发展有限公司 | 应用沼虾修复水体生态系统的方法 |
CN108423925A (zh) * | 2018-03-12 | 2018-08-21 | 黎兴科 | 一种生态集成系统及生活污水处理方法 |
CN113711971A (zh) * | 2021-08-20 | 2021-11-30 | 同济大学 | 景观鱼缸除藻生物搭配的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101486512A (zh) * | 2008-01-14 | 2009-07-22 | 江苏省滆湖渔业管理委员会办公室 | 浅水湖泊湖滨带生态修复方法 |
CN101575144A (zh) * | 2008-05-07 | 2009-11-11 | 何文辉 | 水体生态修复方法 |
WO2010077922A1 (en) * | 2008-12-17 | 2010-07-08 | LiveFuels, Inc. | Systems and methods for reducing algal biomass |
CN102336475A (zh) * | 2011-06-22 | 2012-02-01 | 上海太和水环境科技发展有限公司 | 利用清道夫鱼进行水体生态修复的方法 |
-
2011
- 2011-06-22 CN CN2011101704959A patent/CN102336475A/zh active Pending
-
2012
- 2012-06-05 WO PCT/CN2012/076464 patent/WO2012174984A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101486512A (zh) * | 2008-01-14 | 2009-07-22 | 江苏省滆湖渔业管理委员会办公室 | 浅水湖泊湖滨带生态修复方法 |
CN101575144A (zh) * | 2008-05-07 | 2009-11-11 | 何文辉 | 水体生态修复方法 |
WO2010077922A1 (en) * | 2008-12-17 | 2010-07-08 | LiveFuels, Inc. | Systems and methods for reducing algal biomass |
CN102336475A (zh) * | 2011-06-22 | 2012-02-01 | 上海太和水环境科技发展有限公司 | 利用清道夫鱼进行水体生态修复的方法 |
Non-Patent Citations (2)
Title |
---|
WANG, YIMIN: "Proposals on ecological restoration of Weihai Bay, Selections of Proposals from Shandong older technologists for implementing the 11th five-year plan and building Shandong as an innovative province", December 2007 (2007-12-01), pages 178 * |
ZHANG, LILI ET AL.: "The Removal of the Alga Attached to the Inner Wall of Aquarium by Scavenger Fish", SCIENCE & TECHNOLOGY, no. 31, November 2010 (2010-11-01), pages 47 - 48 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115465957A (zh) * | 2022-08-23 | 2022-12-13 | 长江水利委员会长江科学院 | 一种用于湖库水体生境改善的生态修复综合体及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102336475A (zh) | 2012-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dan et al. | The culture performance of monosex and mixed-sex new-season and overwintered fry in three strains of Nile tilapia (Oreochromis niloticus) in northern Vietnam | |
WO2012174984A1 (zh) | 利用清道夫鱼进行水体生态修复的方法 | |
CN102491522A (zh) | 一种基于水生植物收割的水生态环境保护的方法 | |
CN207418394U (zh) | 一种用于重金属污染水体净化的组合式人工生态浮床 | |
CN101331860A (zh) | 一种养殖黄鳝的方法和装置 | |
CN102742529A (zh) | 室内室外虾鳖鱼多茬立体生态混养方法 | |
CN103583425A (zh) | 野生长鳍吻鮈陆基池塘网箱驯养方法 | |
CN103931481B (zh) | 一种对虾高位池养殖中培养翼茧形藻调节水质的方法 | |
CN105494177A (zh) | 一种葡萄牙牡蛎速长选育系的制种方法 | |
Wu et al. | Removal of cyanobacterial bloom from a biopond–wetland system and the associated response of zoobenthic diversity | |
CN106830576A (zh) | 一种湿地净化系统及其净化方法 | |
CN103004576A (zh) | 一种鼠尾藻潮间带人工栽培的方法 | |
CN104642089B (zh) | 一种江蓠与石斑鱼的混养方法 | |
CN102745813A (zh) | 以再生水为补给的城市景观水体的生态修复和水质保持的方法 | |
CN100484893C (zh) | 一种温带富营养化海域的综合生态修复方法 | |
CN107651754B (zh) | 一种修复富营养水体的复合生态系统构建方法及人工礁石 | |
CN107473386B (zh) | 一种水生植物功能群组合处理精养池塘污水的方法 | |
CN108323462A (zh) | 一种耐低盐魁蚶苗种的培育方法 | |
Hecht, Thomas and Britz | The current status, future prospects and environmental implications of mariculture in South Africa | |
CN108793412A (zh) | 一种提升城市湖泊生态服务功能的方法 | |
Myrand et al. | Impact of suspension culture using mesh sleeves on genetic characteristics of Mytilus edulis L. in Canada | |
CN101767880B (zh) | 鸟巢蕨在处理畜禽养殖废水中的应用 | |
CN102101724A (zh) | 原位修复富营养化池塘养殖水的方法 | |
CN1255336C (zh) | 亚热带养殖池塘富营养化的生物修复方法 | |
CN102211814A (zh) | 富营养化淡水水体移养华鲮属鱼类控藻方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12803034 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12803034 Country of ref document: EP Kind code of ref document: A1 |