WO2012172945A1 - Exhaust gas after-treatment device - Google Patents

Exhaust gas after-treatment device Download PDF

Info

Publication number
WO2012172945A1
WO2012172945A1 PCT/JP2012/063195 JP2012063195W WO2012172945A1 WO 2012172945 A1 WO2012172945 A1 WO 2012172945A1 JP 2012063195 W JP2012063195 W JP 2012063195W WO 2012172945 A1 WO2012172945 A1 WO 2012172945A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
urea water
mixer
reducing agent
pipe
Prior art date
Application number
PCT/JP2012/063195
Other languages
French (fr)
Japanese (ja)
Inventor
真範 八田
昭一 前田
笹谷 亨
信太郎 川崎
敦 城所
作太郎 星
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011133295A external-priority patent/JP2013002335A/en
Priority claimed from JP2011133297A external-priority patent/JP2013002337A/en
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2012172945A1 publication Critical patent/WO2012172945A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4315Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being deformed flat pieces of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3141Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit with additional mixing means other than injector mixers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to an exhaust gas aftertreatment device, and more particularly to a configuration for purifying exhaust gas of a diesel engine using a reducing agent and a reduction catalyst.
  • an exhaust gas aftertreatment device that purifies exhaust gas of a diesel engine is a urea selective reduction system (urea SCR system) that purifies nitrogen oxide (NOx) in exhaust gas using urea water as a reducing agent.
  • the urea SCR system includes a reduction catalyst provided in the exhaust pipe and a reducing agent injection device that injects urea water into the exhaust pipe on the upstream side of the reduction catalyst.
  • the reduction catalyst reacts ammonia (NH 3 ) generated from urea water injected into the exhaust pipe with NOx contained in the exhaust gas, and reduces it to harmless nitrogen (N 2 ) and water (H 2 O). To do.
  • NH 3 ammonia
  • N 2 nitrogen
  • H 2 O water
  • the urea SCR system described in Patent Document 1 includes a mixer unit for mixing exhaust gas and urea water to make the distribution state of urea water uniform.
  • the mixer unit is a plate-like member provided between the reducing agent injection device and the reduction catalyst, and includes a plurality of passages through which exhaust gas and urea water flow, and a plurality of passages formed on the outlet side of each passage. With fins.
  • the reducing agent injection device injects urea water toward the mixer plate, and the urea water atomized by colliding with the mixer plate is dispersed in the exhaust pipe.
  • the dispersed urea water passes through each passage of the mixer plate together with the exhaust gas, and then is mixed with the exhaust gas by the turbulent flow generated by each fin and then supplied to the reduction catalyst.
  • the exhaust pipe is generally curved at a plurality of locations such as the upstream side of the reduction catalyst due to a layout problem when mounted on the vehicle.
  • the urea SCR system described in Patent Document 1 there may be a case where a desired distance cannot be taken between the reducing agent injection device and the mixer unit in order to widen the injection range of the urea water. That is, when the exhaust pipe includes a curved portion on the upstream side of the mixer unit, the urea SCR system described in Patent Document 1 cannot make urea water collide with the entire surface of the mixer unit, and the urea water is uniformly dispersed. It had the problem that it became difficult to do.
  • the present invention has been made to solve such a problem, and the exhaust gas after realizing the downsizing while uniformly distributing the reducing agent to the exhaust gas in the exhaust pipe including the curved portion is realized.
  • An object is to provide a processing apparatus.
  • An exhaust gas aftertreatment device has an exhaust pipe having a curved portion that bends the direction in which exhaust gas flows, and exhaust gas discharged from an internal combustion engine, and a reducing agent is injected into the exhaust pipe.
  • An exhaust gas after-treatment device comprising: a reducing agent supply device for reducing the exhaust gas by reacting the exhaust gas with the reducing agent, disposed on the downstream side of the reducing agent supply device and the curved portion.
  • the plate-shaped dispersion member disposed between the curved portion and the reduction catalyst, and having one surface facing the outer peripheral side of the curved portion, and disposed between the dispersion member and the reduction catalyst, and the exhaust gas And a mixing means for mixing the reducing agent with the reducing agent, and the reducing agent injection device is disposed at a portion upstream of the dispersion member and at a portion where the reducing agent can be injected toward one surface of the dispersion member.
  • the dispersing member and the mixing means may be arranged adjacent to each other.
  • adjacent means that not only the dispersion member and the mixing means are integrally formed, but also separate parts that are substantially separated within a range where the exhaust gas flow does not change between the dispersion member and the mixing means. Including, for example, those separated by a distance of 10% or less with respect to the diameter of the exhaust pipe.
  • the dispersing member When the exhaust pipe extends straight and has a straight piping part between the curved part and the reduction catalyst in which the dispersing member and the mixing means are arranged, the dispersing member extends in parallel to the axial direction of the straight piping part. be able to.
  • the term “parallel” does not need to be strictly parallel, and includes an angle at which pressure loss is negligible. Also, a plurality of dispersing members can be provided.
  • the mixing means has a plurality of first fins and a plurality of second fins which are arranged so as to be parallel to each other and which incline the flow of exhaust gas passing therethrough at a predetermined angle which is opposite to each other.
  • the mixing means and the reduction catalyst are sequentially connected through a part of the straight piping portion and a tapered piping portion formed so as to widen from the upstream side to the downstream side.
  • the angle is ⁇
  • the inner diameter of the straight piping portion is D
  • the length of the straight piping portion from the mixing means to the tapered piping portion is L, D / 2 ⁇ cot ⁇ ⁇ L ⁇ 3/2 ⁇ D ⁇ cot ⁇ Meet.
  • a row in which a plurality of first fins are arranged and a row in which a plurality of second fins are arranged are alternately arranged one by one.
  • the straight piping part can be made into a cylindrical shape.
  • the gradient at which the tapered pipe portion spreads can be made smaller than the angle ⁇ , and the angle ⁇ can be set to 45 °.
  • an exhaust gas aftertreatment device having an exhaust pipe including a curved portion, it is possible to reduce the size of the exhaust gas while uniformly dispersing the reducing agent in the exhaust gas.
  • FIG. 2 is a cross-sectional view schematically showing a configuration of a main part in the exhaust gas aftertreatment device according to Embodiment 1.
  • FIG. FIG. 2 is a perspective view schematically showing a dispersion member and mixing means in the exhaust gas aftertreatment device according to Embodiment 1, wherein (a) is a perspective view seen from the downstream side in the exhaust gas flow direction, and (b) is an upstream side. It is the perspective view seen from the side.
  • FIG. 4 is a cross-sectional view taken along IV-IV in FIG. 2.
  • FIG. 3 is a schematic diagram for explaining the flow of exhaust gas in the exhaust gas aftertreatment device according to Embodiment 1; It is a cross-sectional side view which shows roughly the structure of the exhaust-gas aftertreatment apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 6 is a schematic diagram for explaining a flow of exhaust gas generated in a straight pipe section in an exhaust gas aftertreatment device according to Embodiment 2.
  • FIG. 6 is a schematic diagram for explaining a flow of exhaust gas generated inside a straight piping portion and a tapered piping portion in an exhaust gas aftertreatment device according to Embodiment 2. It is a graph which shows transition of the CV value at the time of changing the length of a straight piping part about the exhaust gas aftertreatment device concerning Embodiment 2.
  • FIG. 1 schematically shows the configuration of an exhaust system of a diesel engine provided with the exhaust gas aftertreatment device according to the first embodiment.
  • An exhaust pipe 2 is connected to a diesel engine 1 that is an internal combustion engine, and exhaust gas discharged from the diesel engine 1 circulates inside the exhaust pipe 2 with the diesel engine 1 side as an upstream side.
  • An oxidation catalyst 3 that oxidizes carbon monoxide (CO), hydrocarbon (HC), and the like contained in the exhaust gas is provided in the middle of the exhaust pipe 2.
  • An SCR catalyst 4 that is a reduction catalyst for purifying nitrogen oxide (NOx) contained in the exhaust gas is provided on the downstream side of the oxidation catalyst 3.
  • the SCR catalyst 4 is a catalyst that purifies NOx by reacting ammonia (NH 3 ) generated from urea water, which is a reducing agent added to the exhaust gas, and the exhaust gas.
  • an injection nozzle 5 is provided as a reducing agent supply device that injects urea water into the exhaust pipe 2.
  • a urea water tank 6 that stores urea water therein and a urea water addition system 7 that supplies urea water in the urea water tank 6 to the injection nozzle 5 are connected to the injection nozzle 5 via a connection pipe 8. ing.
  • the urea water addition system 7 is electrically connected to an ECU 9 that controls the operation of the diesel engine 1 and the exhaust gas aftertreatment device.
  • An NOx sensor 11 and a NOx sensor 12 for detecting the amount of NOx contained in the exhaust gas are provided on the upstream side and the downstream side of the SCR catalyst 4, and these NOx sensors 11 and 12 are electrically connected to the ECU 9.
  • the ECU 9 determines the urea water injection amount and the injection timing based on the NOx amounts detected by the NOx sensors 11 and 12, and outputs a signal based on the urea water injection system 7 to the urea water addition system 7. Control the injection.
  • a catalyst, a muffler for reducing exhaust noise, and the like are sequentially connected.
  • the exhaust pipe 2 is curved at a plurality of locations due to layout problems when mounted on a vehicle (not shown), and has a curved portion 2 a between the oxidation catalyst 3 and the SCR catalyst 4. More specifically, the exhaust pipe 2 is tapered from the oxidation catalyst 3 toward the downstream side, then curved at the curved portion 2a, and then linearly extending the straight piping portion 2b and the tapered piping portion. 2c is connected to the SCR catalyst 4 sequentially. That is, after the exhaust gas discharged from the diesel engine 1 passes through the SCR catalyst 4, the flow direction is bent by the curved portion 2a, and then passes through the straight piping portion 2b and the tapered piping portion 2c in sequence. The catalyst 4 is supplied.
  • FIG. 1 is a view of the exhaust pipe 2 as viewed from the upper side in the vertical direction, and shows the exhaust pipe 2 being bent in the lateral direction.
  • the exhaust pipe 2 is in any direction other than the lateral direction. Can be curved.
  • urea water injected from the injection nozzle 5 is disposed inside the straight pipe portion 2b located between the curved portion 2a of the exhaust pipe 2 and the SCR catalyst 4.
  • a mixer 31 as a mixing means for mixing the urea water dispersed by the dispersing members 21 to 23 into the exhaust gas. It has been.
  • the dispersive members 21 to 23, the mixer 31, and the configuration around them will be described in detail with reference to FIGS.
  • the left-right direction in the exhaust gas aftertreatment device and the outer peripheral side and inner peripheral side in the curved portion 2a of the exhaust pipe 2 are defined by the arrows shown in FIG.
  • the dispersion members 21 to 23 are flat plate members arranged in the left-right direction inside the straight pipe portion 2b, and extend in parallel along the axial direction of the straight pipe portion 2b. It is provided as follows. Further, the lengths of the dispersion members 21 to 23 along the axial direction of the straight pipe portion 2b are different from each other, and from the dispersion member 21 on the right side toward the dispersion member 23 on the left side, that is, on the outer peripheral side of the curved portion 2a. In other words, the distance from the dispersive member 21 to the dispersive member 23 on the inner peripheral side is further increased as the distance from the injection nozzle 5 increases.
  • the dispersing members 21 to 23 are provided so that the surfaces 21a to 23a, which are one of these surfaces, face the outer peripheral side of the curved portion 2a.
  • the injection nozzle 5 is disposed immediately before the curved portion 2a, that is, a portion upstream of the dispersion members 21 to 23 and on the outer peripheral side of the curved portion 2a, and is indicated by a one-dot chain line.
  • the urea water F can be injected toward the surfaces 21a to 23a of the dispersion members 21 to 23.
  • the mixer 31 is a substantially disk-shaped member disposed adjacent to the downstream end of the dispersion members 21 to 23, and is perpendicular to the direction in which the exhaust gas flows in the straight pipe portion 2b. It is provided as follows. Moreover, in the site
  • a plurality of first fins 32a and a plurality of first fins 32a and a plurality of first fins 32a are bent at portions located inside the exhaust pipe 2 in the mixer 31 by bending a trapezoidal cut that is partially connected.
  • Two fins 32b are formed.
  • the mixer 31 has a plurality of openings 33 formed by bending the fins 32 a and 32 b, and the exhaust gas flowing from the upstream side of the mixer 31 passes through these openings 33. Distributes downstream.
  • a rectangular pipe member 35 (see FIG. 3b) is disposed on the upstream side corresponding to each opening 33, and the exhaust gas that has passed through the dispersion members 21 to 23 is disposed. However, the opening 33 is passed through the rectangular pipe member 35 as it is.
  • the first fin 32a and the second fin 32b are bent in directions opposite to each other, and the first fin 32a is bent so that the tip portion thereof faces the left side in FIG.
  • the second fin 32b is bent so that the tip thereof faces the right side in FIG.
  • the fins 32a and 32b are arranged such that a row in which a plurality of first fins 32a are arranged in the left-right direction and a row in which a plurality of second fins 32b are arranged in the left-right direction are parallel to each other. It is arranged alternately one row at a time.
  • the mixer 31 is a device that generates turbulent flow by inclining the flow of exhaust gas that passes through the first fin 32a and the second fin 32b in different directions, thereby mixing the fluid that passes therethrough. is there. Further, as shown in FIG. 3B, a pair of support portions 34 projecting to the upstream side are joined to the upstream surface 31 a of the mixer 31, and both sides of the dispersion member 21 are joined by these support portions 34. The part is supported.
  • FIG. 4 shows a cross section of the straight pipe portion 2b at the portion where the dispersing members 21 to 23 are located.
  • the injection nozzle 5 of FIG. 4 is originally disposed in a portion not shown in FIG. 4 but is shown in the same cross section for convenience of explanation.
  • each of the dispersion members 21 to 23 has a width that substantially contacts the inner peripheral surface of the straight pipe portion 2b, and the inside of the straight pipe portion 2b is above the dispersion member 21 in FIG.
  • the spray nozzle 5 sprays urea water F perpendicularly to the dispersion members 21 to 23.
  • the urea water F injected from the injection nozzle 5 is dispersed in the regions R1 to R3 by colliding with the surfaces 21a to 23a of the dispersion members 21 to 23, but does not flow into the region R4. ing.
  • the flow of the exhaust gas that has passed through the SCR catalyst 4 and the curved portion 2a is divided by the dispersing members 21 to 23 so as to pass through all the regions R1 to R4.
  • the direction in which the dispersing members 21 to 23 divide the flow of exhaust gas corresponds to the direction in which the first fin 32a and the second fin 32b of the mixer 31 incline the flow of exhaust gas (see FIGS. 2 and 3). ing.
  • the urea water dispersed by colliding with the surfaces 21a to 23a of the dispersing members 21 to 23 is It is immediately supplied to the mixer 31 by the flow of the exhaust gas.
  • the urea water is applied to the entire surface of the mixer 31. It is necessary to make it collide.
  • the urea water injection range between the injection nozzle 5 and the mixer 31 is widened so that the injection range of the urea water extends over the entire surface of the mixer 31. Therefore, it is necessary to make the straight pipe portion 2b longer.
  • the exhaust gas aftertreatment device shortens the distance between the injection nozzle 5 and the mixer 31 by causing the urea water injected by the injection nozzle 5 to directly collide with the dispersion members 21 to 23 and disperse. It is. Further, the distance is further shortened by making the dispersing members 21 to 23 and the mixer 31 adjacent to each other. Accordingly, the distance between the oxidation catalyst 3 (see FIG. 1) and the SCR catalyst 4 is also shortened, so that the exhaust gas aftertreatment device can be miniaturized to improve the mountability on the vehicle. Further, since the apparatus is downsized, the temperature drop until the exhaust gas reaches the SCR catalyst 4 is suppressed, so that the NOx purification by the SCR catalyst 4 can be performed efficiently.
  • the exhaust gas aftertreatment device As shown in FIG. 1, when the operation of the diesel engine 1 is started, the exhaust gas discharged from the exhaust pipe 2 flows through the inside of the exhaust pipe 2 and passes through the oxidation catalyst 3.
  • the oxidation catalyst 3 oxidizes carbon monoxide (CO), hydrocarbon (HC), etc. contained in the exhaust gas passing therethrough, and at the same time oxidizes a part of nitrogen monoxide (NO) to nitrogen dioxide (NO 2 ).
  • the ECU 9 outputs a signal to the urea water addition system 7 and starts injection of urea water by the injection nozzle 5.
  • the NOx sensors 11 and 12 detect the NOx concentration on the upstream side and the downstream side of the SCR catalyst 4 as needed, and the ECU 9 controls the operation of the injection nozzle 5 based on these detection results.
  • the exhaust gas that has passed through the oxidation catalyst 3 passes through the curved portion 2a of the exhaust pipe 2 and flows into the straight piping portion 2b, and is divided into regions R1 to R4 partitioned by the dispersion members 21 to 23.
  • the urea water F sprayed from the spray nozzle 5 is atomized by colliding with the surfaces 21a to 23a of the dispersion members 21 to 23, and the atomized urea water passes through the regions R1 to R3 (see FIG. 4).
  • Dispersed in the circulating exhaust gas The urea water dispersed in the exhaust gas is hydrolyzed by the heat of the exhaust gas in the process of flowing downstream, thereby producing ammonia. Further, the dispersion members 21 to 23 are efficiently heated by the heat of the exhaust gas flowing through the inside of the exhaust pipe 2, and the hydrolysis of urea water is further promoted by the heat.
  • the exhaust gas reaching the dispersion members 21 to 23 is also generated as indicated by arrows A1 to A3. It circulates while curving.
  • the flow of exhaust gas is usually difficult to flow around the regions R11 to R13 indicated by the dotted lines around the surfaces 21a to 23a, so that the urea water atomized by colliding with the surfaces 21a to 23a is dispersed. It becomes difficult.
  • the injection nozzle 5 injects the urea water F from the upstream side toward the surfaces 21a to 23a
  • the flow of the injected urea water F is indicated by arrows A1 to A3 as indicated by arrows B1 to B3. It impinges on the surfaces 21a-23a across the indicated exhaust gas flow diagonally. That is, even if the curved portion 2a is on the upstream side of the dispersion members 21 to 23, the flow of the exhaust gas can be generated in the regions R11 to R13 using the flow of the urea water F injected by the injection nozzle 5. Therefore, it is possible to efficiently disperse the urea water colliding with the surfaces 21a to 23a in the straight pipe portion 2b.
  • the dispersing members 21 to 23 are preferably arranged from the center to the left side (that is, the inner peripheral side) as shown in FIG. Moreover, since the outer peripheral side of the curved portion 2a usually has a larger mounting space than the inner peripheral side, it is convenient to dispose the injection nozzle 5.
  • the dispersion members 21 to 23 have widths that substantially contact the inner peripheral surface of the straight pipe portion 2b (see FIG. 4), and urea water is not supplied to the region R4 farthest from the injection nozzle 5.
  • the amount of urea water adhering to the inner peripheral surface of the straight piping portion 2b is reduced.
  • the straight piping part 2b is heated by the exhaust gas which distribute
  • the amount of urea water adhering to the inner peripheral surface of the straight pipe portion 2b is reduced by dividing the region R4 to which the urea water injected from the injection nozzle 5 is not supplied. Therefore, most of the injected urea water can be supplied to the SCR catalyst.
  • the dispersion members 21 to 23 are shorter in the direction of exhaust gas flow than the exhaust pipe 2 and have a small heat capacity, they are easily heated by the exhaust gas. Therefore, generation of ammonia from the urea water adhering to the dispersion members 21 to 23 is not hindered due to the low temperature of the exhaust pipe 2.
  • the urea water dispersed in the regions R1 to R3 is immediately supplied to the mixer 31 by the flow of the exhaust gas.
  • the exhaust gas flowing through the region R4 is supplied to the mixer as it is without adding the urea water F.
  • the exhaust gas and urea water flowing from the regions R1 to R3 and the exhaust gas flowing from the region R4 are mixed by the turbulent flow generated when passing through the plurality of fins 32a and 32b of the mixer 31, thereby The urea water is uniformly mixed with the exhaust gas.
  • the SCR catalyst 4 reacts with the ammonia and the exhaust gas to convert NOx contained in the exhaust gas into harmless nitrogen (N 2 ). Reduce to water (H 2 O).
  • the dispersing members 21 to 23 are flat members and extend in parallel to the axial direction of the straight pipe portion 2b, so that NOx can be purified without increasing the pressure loss of the exhaust gas. it can.
  • the exhaust gas that has passed through the SCR catalyst 4 passes through a filter (not shown) provided on the downstream side of the SCR catalyst 4, and particulate matter contained in the exhaust gas is removed at that time.
  • a slip catalyst (not shown) provided on the downstream side of the filter removes surplus ammonia. To do.
  • the exhaust gas that has passed through the slip catalyst is released into the atmosphere after noise is reduced inside a muffler (not shown).
  • the dispersion members 21 to 23 are provided between the curved portion 2a of the exhaust pipe 2 and the SCR catalyst 4, and the injection nozzle 5 is disposed at a portion where urea water can be injected toward the dispersion members 21 to 23. Therefore, the urea water atomized by colliding with the dispersing members 21 to 23 is dispersed in the exhaust pipe 2.
  • the mixer 31 is provided between the dispersing members 21 to 23 and the SCR catalyst 4, the urea water that collides with the dispersing members 21 to 23 and is dispersed by the mixer 31 is mixed with the exhaust gas by the mixer 31. To be supplied.
  • the injection nozzle 5 and the mixer 31 are used to widen the injection range of the urea water as in the case where the urea water is directly injected toward the mixer 31. There is no need to increase the distance between the two.
  • the exhaust gas that reaches the dispersion members 21 to 23 flows while being curved along the curved portion 2a, the exhaust gas normally flows in the regions R11 to R13 around the surfaces 21a to 23a of the dispersion members 21 to 23. Thus, the exhaust gas flow hardly occurs.
  • the injection nozzle 5 injects urea water from the upstream side toward the surfaces 21a to 23a, the flow of the injected urea water obliquely crosses the exhaust gas flowing while curving and collides with the surfaces 21a to 23a. To do.
  • the flow of the exhaust gas can be generated in the regions R11 to R31 by the flow of the urea water injected from the injection nozzle 5, the urea water colliding with the dispersion members 21 to 23 can be efficiently dispersed. . Therefore, in the exhaust gas aftertreatment device having the exhaust pipe 2 including the curved portion 2a, it is possible to reduce the size while uniformly dispersing the urea water in the exhaust gas.
  • the exhaust gas aftertreatment device can be further downsized.
  • the urea water dispersed by the dispersion members 21 to 23 immediately passes through the mixer 31, the urea water can be efficiently mixed with the exhaust gas.
  • the dispersing members 21 to 23 and the mixer 31 are provided in the straight piping portion 2b extending linearly, and the dispersing members 21 to 23 extend along the axial direction of the straight piping portion 2b, without increasing pressure loss.
  • the urea water can be supplied to the mixer 31.
  • the exhaust gas aftertreatment device is configured to include the plurality of dispersion members 21 to 23, more urea water can collide with the dispersion members 21 to 23, and the urea water is efficiently dispersed.
  • Embodiment 2 an exhaust gas aftertreatment device according to Embodiment 2 of the present invention will be described.
  • the dimensional regulations described below are added to the exhaust pipe 2 and the mixer 31 of the exhaust gas aftertreatment device according to the first embodiment.
  • the diameter of the SCR catalyst 4 located on the downstream side of the mixer 31 is larger than the diameter of the downstream piping part 2e, and the downstream piping part 2e and the SCR catalyst 4 are directed from the upstream side toward the downstream side.
  • a tapered pipe portion 2c formed so as to spread in a tapered shape. That is, the mixer 31 and the SCR catalyst 4 are sequentially connected via the downstream piping portion 2e and the tapered piping portion 2c, which are a part of the straight piping portion 2b extending linearly.
  • the bent directions of the first fin 32a and the second fin 32b are opposite to each other, but the angle is a common angle ⁇ . That is, the mixer 31 inclines the flow of the exhaust gas before passing through the mixer 31 by the first fin 32a and the second fin 32b by an angle ⁇ in the left-right direction opposite to each other.
  • the angle ⁇ at which the first fin 32a and the second fin 32b are bent in the mixer 31, that is, the angle ⁇ at which the fins 32a and 32b incline the flow of the exhaust gas is set to 45 °.
  • the internal diameter D of the downstream piping part 2e which connects the mixer 31 and the taper piping part 2c is set to 66 mm.
  • the length L of the downstream pipe portion 2e is defined according to the angle ⁇ and the inner diameter D, and the following ( 1) It is set to satisfy the equation.
  • the length L of the downstream pipe portion 2e is set to 43 mm that satisfies the expressions (1) and (2).
  • Other configurations are the same as those in the first embodiment.
  • the exhaust gas aftertreatment device configured as described above, in order to efficiently reduce NOx by the SCR catalyst 4, it is necessary to supply ammonia to the entire surface of the SCR catalyst 4 in a uniform distribution state. Become. For that purpose, it is necessary to uniformly disperse ammonia in the exhaust gas and to diffuse the exhaust gas in the tapered pipe portion 2c.
  • the first fin 32a and the second fin 32b of the mixer 31 are bent in the left and right directions opposite to each other, and the flow of exhaust gas passing therethrough. Tilt left and right.
  • the fins 32a and 32b are arranged such that a plurality of first fins 32a are arranged in the left-right direction and a plurality of second fins 32b are arranged in the left-right direction. They are arranged one by one alternately so as to be parallel.
  • the exhaust gas that has collided with the inner peripheral surface 2f has a cross section perpendicular to the axial direction of the downstream pipe portion 2e.
  • a circulating flow is provided.
  • the exhaust gas that has passed through the mixer 31 is provided with a flow inclined at an angle ⁇ in the left-right direction by the first fin 32a and the second fin 32b, as indicated by an arrow C1.
  • the exhaust gas that has collided with the inner peripheral surface 2f of the downstream side piping part 2e goes straight along the axial direction of the downstream side piping part 2e.
  • the timing at which the exhaust gas that has passed through the first fin 32a and the second fin 32b collides with the inner peripheral surface 2f of the downstream pipe portion 2e varies depending on the positions of the fins 32a and 32b.
  • the flow of exhaust gas along the axial direction and the flow of exhaust gas inclined at an angle ⁇ coexist in the downstream side piping part 2e.
  • the exhaust gas that has passed through the first fin 32a located on the leftmost side collides with the inner peripheral surface 2f at the earliest timing (see arrow C1).
  • the timing of the collision is delayed as the position of the fin 32a becomes the right side (see arrow C2).
  • the exhaust gas that has passed does not collide with the inner peripheral surface 2f and flows in a direction (see arrow C3) directly flowing into the tapered pipe portion 2c.
  • the second fin 32b is the same except that the direction is reversed.
  • the flow angle of the exhaust gas flowing through the downstream pipe portion 2e and flowing into the tapered pipe portion 2c is the angle ⁇ at which the first fin 32a and the second fin 32b tilt the flow of the exhaust gas, and the downstream side
  • the pipe portion 2e has an inner diameter D and a distance L (see FIG. 6) and these satisfy the above-described expressions (1) and (2), the flow of exhaust gas along the axial direction (arrow) C1, C2) and the flow of exhaust gas inclined with respect to the axial direction (arrow C3) are balanced. Since the angle ⁇ of the gradient of the tapered pipe portion 2c is smaller than the angle ⁇ , a flow substantially along the angle ⁇ is given to the exhaust gas that has passed through the downstream side pipe portion 2e. Accordingly, since the ammonia dispersed in the exhaust gas in the downstream pipe portion 2e is diffused along the gradient of the taper pipe portion 2c, the ammonia can be supplied to the SCR catalyst 4 in a uniform distribution state. It becomes.
  • the transition of the distribution state of ammonia supplied to the SCR catalyst 4 the transition of the so-called in-plane uniformity is measured. Is shown in FIG.
  • the exhaust gas flow rate was 52 (g / s), and the exhaust gas temperature was 423 (° C.).
  • the preferred range of the length L is 33 (mm) ⁇ L ⁇ 99 (mm) In such a range, the CV value can be made less than 10%.
  • CV value (variation coefficient: number obtained by dividing the standard deviation by the average ⁇ 100), which is one of the indices indicating the in-plane uniformity, with the length L of the downstream pipe portion 2e as the horizontal axis. It is the graph which made the vertical axis
  • the CV value is rapidly increased. This is because the length L of the downstream pipe portion 2e is too short, so that the exhaust gas flows into the tapered pipe portion 2c before ammonia is sufficiently dispersed inside the downstream pipe portion 2e. That is, the flow of exhaust gas tilted with respect to the axial direction (arrow C3 in FIG. 8) becomes too strong, resulting in insufficient dispersion.
  • the CV value gradually increases as the length L increases. This is because the flow in the direction along the axial direction of the downstream pipe portion 2e (see arrows C1 and C2 in FIG. 8) becomes too strong as the length L increases, so that the exhaust gas flowing into the tapered pipe portion 2c. Is not diffused along the taper shape but goes straight as it is and is supplied only to the vicinity of the center of the SCR catalyst 4.
  • the angle ⁇ , the inner diameter D, and the length L satisfy the above-described formulas (1) and (2), ammonia is supplied to the SCR catalyst 4 in a uniform distribution state from FIG. Can also be confirmed.
  • the first fin 32a and the second fin 32a of the mixer 31 are connected.
  • the angle at which the flow of the exhaust gas passing through the fin 32b is inclined is ⁇
  • the inner diameter of the downstream pipe portion 2e is D
  • the length is L
  • D / 2 ⁇ cot ⁇ ⁇ L ⁇ 3/2 ⁇ D ⁇ cot ⁇ When it is configured to satisfy the condition, a flow along the gradient of the tapered pipe portion 2c can be generated for the exhaust gas that has passed through the downstream side pipe portion 2e and has flowed into the tapered pipe portion 2c. Therefore, in addition to obtaining the same effect as in the first embodiment, ammonia can be supplied to the SCR catalyst 4 in a uniform distribution state.
  • the mixer 31 since the rows in which the plurality of first fins 32a are arranged and the rows in which the plurality of second fins 32b are arranged are alternately arranged one by one, in the downstream side piping section 2e, Exhaust gas flows in directions different from each other occur alternately and ammonia is efficiently dispersed in the exhaust gas. Furthermore, since the downstream side piping part 2e is cylindrical, the flow along the circumferential direction is given to the exhaust gas that has passed through the mixer 31 and collided with the inner peripheral surface 2f of the downstream side piping part 2e, and ammonia is more efficient. It is often dispersed in exhaust gas.
  • the exhaust gas aftertreatment device is configured to include three dispersing members
  • the number of dispersing members is not limited to three.
  • the number of dispersing members can be appropriately changed mainly depending on layout factors such as the position of the curved portion and the inner diameter of the exhaust pipe, and includes three members including a single dispersing member. It is possible to change to a number other than.
  • the dispersive member and the mixer are disposed adjacent to each other. However, they can be disposed apart from each other. Although the length of the exhaust pipe is increased by separating the dispersing member and the mixer, the effect that the urea water can be dispersed in advance on the upstream side of the mixer can be obtained without change.
  • the present invention is not limited to such a configuration. As long as it is possible to disperse the urea water sprayed from the spray nozzle, it may be dispersed due to layout factors when all the dispersive members have the same length or as the distance from the spray nozzle decreases. The length of the member may become longer.
  • each dispersion member in the first and second embodiments is configured to have a width that substantially contacts the inner peripheral surface of the exhaust pipe, but is configured to be separated from the inner peripheral surface and supported only by the mixer. It is also possible. In this case, since the exhaust pipe having a relatively low temperature and the dispersion member are separated from each other by being in contact with the outside air, it is possible to promote the hydrolysis of urea water by keeping the temperature of the dispersion member at a high temperature. Become.
  • the mixer 31 in the first and second embodiments is configured to have the rectangular pipe member 35 corresponding to the opening 33, but may be configured by omitting the rectangular pipe member 35. .
  • the mixer 31 and the dispersion members 21 to 23 may be arranged apart from each other, but the mixer 31 and the dispersion member 21 are such that the exhaust gas that has passed through the dispersion members 21 to 23 passes through the opening 33 as it is. ⁇ 23 are adjacent to each other, the exhaust gas can be guided to the mixer 31 with a controlled flow of exhaust gas, so that improvement in dispersibility can be expected and miniaturization can be achieved.

Abstract

Downstream of a curved section (2a) of an exhaust gas pipe (2) is provided an SCR catalyst (4) which, with urea water injected from an injection nozzle (5) as a reducing agent, purifies NOX contained in an exhaust gas. Further, between the curved section (2a) and the SCR catalyst (4) are provided dispersion members (21-23) for dispersing in the exhaust gas pipe (2) the urea water injected from the injection nozzle (5), and a mixer (31) for mixing the dispersed urea water into the exhaust gas. The injection nozzle (5) is positioned upstream of the dispersion members (21-23) and arranged on the outer circumference side of the curved section (2a) so that the injected urea water can impinge directly on the surfaces (21a-23a) of the dispersion members (21-23).

Description

排気ガス後処理装置Exhaust gas aftertreatment device
 この発明は排気ガス後処理装置に係り、特に、還元剤及び還元触媒を用いてディーゼルエンジンの排気ガスを浄化する構成に関する。 This invention relates to an exhaust gas aftertreatment device, and more particularly to a configuration for purifying exhaust gas of a diesel engine using a reducing agent and a reduction catalyst.
 ディーゼルエンジンの排気ガスを浄化する排気ガス後処理装置の一例として、尿素水を還元剤として排気ガス中の窒素酸化物(NOx)を浄化する尿素選択還元システム(尿素SCRシステム)が挙げられる。例えば特許文献1に記載されているように、尿素SCRシステムは、排気管に設けられた還元触媒と、還元触媒の上流側で排気管内に尿素水を噴射する還元剤噴射装置とを備えている。還元触媒は、排気管内に噴射された尿素水から生成されるアンモニア(NH3)と排気ガスに含まれるNOxとを反応させ、無害な窒素(N2)と水(H2O)とに還元するものである。この還元を効率よく行うためには、還元触媒に対して尿素水を均一な分布状態で供給することが必要となる。 An example of an exhaust gas aftertreatment device that purifies exhaust gas of a diesel engine is a urea selective reduction system (urea SCR system) that purifies nitrogen oxide (NOx) in exhaust gas using urea water as a reducing agent. For example, as described in Patent Document 1, the urea SCR system includes a reduction catalyst provided in the exhaust pipe and a reducing agent injection device that injects urea water into the exhaust pipe on the upstream side of the reduction catalyst. . The reduction catalyst reacts ammonia (NH 3 ) generated from urea water injected into the exhaust pipe with NOx contained in the exhaust gas, and reduces it to harmless nitrogen (N 2 ) and water (H 2 O). To do. In order to perform this reduction efficiently, it is necessary to supply urea water with a uniform distribution to the reduction catalyst.
 また、特許文献1に記載の尿素SCRシステムは、排気ガスと尿素水とを混合して尿素水の分布状態を均一とするためのミキサーユニットを備えている。ミキサーユニットは、還元剤噴射装置と還元触媒との間に設けられたプレート状の部材であって、排気ガス及び尿素水が流通する複数の通路と、各通路の出口側に形成された複数のフィンとを有している。還元剤噴射装置は、尿素水をミキサープレートに向かって噴射し、ミキサープレートに衝突して微粒化した尿素水が排気管内に分散される。分散された尿素水は、排気ガスとともにミキサープレートの各通路を通過し、次いで、各フィンが発生させる乱流によって排気ガスに混合されてから還元触媒に供給される。 Also, the urea SCR system described in Patent Document 1 includes a mixer unit for mixing exhaust gas and urea water to make the distribution state of urea water uniform. The mixer unit is a plate-like member provided between the reducing agent injection device and the reduction catalyst, and includes a plurality of passages through which exhaust gas and urea water flow, and a plurality of passages formed on the outlet side of each passage. With fins. The reducing agent injection device injects urea water toward the mixer plate, and the urea water atomized by colliding with the mixer plate is dispersed in the exhaust pipe. The dispersed urea water passes through each passage of the mixer plate together with the exhaust gas, and then is mixed with the exhaust gas by the turbulent flow generated by each fin and then supplied to the reduction catalyst.
特開2009-24654号公報JP 2009-24654 A

 特許文献1に記載のミキサープレート単体で尿素水を均一に分散させるためには、還元剤噴射装置から噴射される尿素水をミキサーユニットの全面に対して衝突させる必要がある。ここで、通常、還元剤噴射装置は尿素水を円錐状に噴射する。したがって、尿素水をミキサーユニットの全面に衝突させるためには、尿素水の噴射範囲が十分に広がるように、還元剤噴射装置とミキサーユニットとの間に距離をとる必要がある。すなわち、特許文献1に記載の尿素SCRシステムでは、ミキサーユニットの上流側の排気管を短くすることができず、装置全体を小型化することが困難であるという問題点を有していた。

In order to uniformly disperse the urea water with the mixer plate described in Patent Document 1, it is necessary to cause the urea water injected from the reducing agent injection device to collide with the entire surface of the mixer unit. Here, the reducing agent injection device normally injects urea water in a conical shape. Therefore, in order for the urea water to collide with the entire surface of the mixer unit, it is necessary to provide a distance between the reducing agent injection device and the mixer unit so that the injection range of the urea water is sufficiently widened. That is, the urea SCR system described in Patent Document 1 has a problem that the exhaust pipe on the upstream side of the mixer unit cannot be shortened and it is difficult to downsize the entire apparatus.
 また、通常、排気管は車両に搭載する際のレイアウト上の問題により、還元触媒の上流側等の複数個所で湾曲していることが一般的である。このような場合、特許文献1に記載の尿素SCRシステムでは、尿素水の噴射範囲を広げるために所望される距離を還元剤噴射装置とミキサーユニットとの間にとることができない場合がある。すなわち、排気管がミキサーユニットの上流側に湾曲部を含んでいる場合、特許文献1に記載の尿素SCRシステムでは尿素水をミキサーユニットの全面に衝突させることができず、尿素水を均一に分散させることが困難になるという問題点を有していた。 In general, the exhaust pipe is generally curved at a plurality of locations such as the upstream side of the reduction catalyst due to a layout problem when mounted on the vehicle. In such a case, in the urea SCR system described in Patent Document 1, there may be a case where a desired distance cannot be taken between the reducing agent injection device and the mixer unit in order to widen the injection range of the urea water. That is, when the exhaust pipe includes a curved portion on the upstream side of the mixer unit, the urea SCR system described in Patent Document 1 cannot make urea water collide with the entire surface of the mixer unit, and the urea water is uniformly dispersed. It had the problem that it became difficult to do.
 この発明は、このような問題点を解決するためになされたもので、湾曲部を含む排気管内において還元剤を排気ガスに対して均一に分散させつつ、小型化することを実現した排気ガス後処理装置を提供することを目的とする。 The present invention has been made to solve such a problem, and the exhaust gas after realizing the downsizing while uniformly distributing the reducing agent to the exhaust gas in the exhaust pipe including the curved portion is realized. An object is to provide a processing apparatus.
 この発明に係る排気ガス後処理装置は、内燃機関から排出される排気ガスが流通するとともに、排気ガスが流通する方向を湾曲させる湾曲部を有する排気管と、排気管の内部に還元剤を噴射する還元剤供給装置と、還元剤供給装置及び湾曲部の下流側に配置され、排気ガスと還元剤とを反応させて排気ガスを浄化する還元触媒とを備えた排気ガス後処理装置であって、湾曲部と還元触媒との間に配置され、一方の面が湾曲部における外周側を向くように設けられた板状の分散部材と、分散部材と還元触媒との間に配置され、排気ガスと還元剤とを混合する混合手段とをさらに備え、還元剤噴射装置は、分散部材の上流側の部位であり、且つ分散部材の一方の面に向かって還元剤を噴射可能な部位に配置される。 An exhaust gas aftertreatment device according to the present invention has an exhaust pipe having a curved portion that bends the direction in which exhaust gas flows, and exhaust gas discharged from an internal combustion engine, and a reducing agent is injected into the exhaust pipe. An exhaust gas after-treatment device comprising: a reducing agent supply device for reducing the exhaust gas by reacting the exhaust gas with the reducing agent, disposed on the downstream side of the reducing agent supply device and the curved portion. The plate-shaped dispersion member disposed between the curved portion and the reduction catalyst, and having one surface facing the outer peripheral side of the curved portion, and disposed between the dispersion member and the reduction catalyst, and the exhaust gas And a mixing means for mixing the reducing agent with the reducing agent, and the reducing agent injection device is disposed at a portion upstream of the dispersion member and at a portion where the reducing agent can be injected toward one surface of the dispersion member. The
 分散部材と混合手段とが隣接して配置されてもよい。ここで隣接とは、分散部材と混合手段とが一体的に形成されているものだけでなく、別部品でも実質、分散部材と混合手段との間で排気ガス流れが変わらない距離の範囲で離れている場合も含み、例えば、排気管の直径に対して10%以下の距離だけ離れているものを含む。 The dispersing member and the mixing means may be arranged adjacent to each other. Here, the term “adjacent” means that not only the dispersion member and the mixing means are integrally formed, but also separate parts that are substantially separated within a range where the exhaust gas flow does not change between the dispersion member and the mixing means. Including, for example, those separated by a distance of 10% or less with respect to the diameter of the exhaust pipe.
 排気管が、直線状に延びるとともに分散部材及び混合手段が配置されるストレート配管部を湾曲部と還元触媒との間に有する場合、分散部材を、ストレート配管部の軸方向に対して平行に延ばすことができる。ここで平行とは、厳密に平行でなくてもよく、圧力損失が無視できる程度の角度を含むものとする。また、分散部材を複数とすることもできる。 When the exhaust pipe extends straight and has a straight piping part between the curved part and the reduction catalyst in which the dispersing member and the mixing means are arranged, the dispersing member extends in parallel to the axial direction of the straight piping part. be able to. Here, the term “parallel” does not need to be strictly parallel, and includes an angle at which pressure loss is negligible. Also, a plurality of dispersing members can be provided.
 混合手段は、互いに平行となるように配列されるとともに通過する排気ガスの流れを互いに逆向きとなる所定の角度に傾かせる複数の第1のフィン及び複数の第2のフィンを有しており、混合手段と還元触媒とは、ストレート配管部の一部、及び上流側から下流側に向かって広くなるように形成されたテーパ配管部を順次介して接続される。この場合、角度をα、ストレート配管部の内径をD、混合手段からテーパ配管部までのストレート配管部の長さをLとしたときに、
 D/2×cotα≦L≦3/2×D×cotα
を満たす。
The mixing means has a plurality of first fins and a plurality of second fins which are arranged so as to be parallel to each other and which incline the flow of exhaust gas passing therethrough at a predetermined angle which is opposite to each other. The mixing means and the reduction catalyst are sequentially connected through a part of the straight piping portion and a tapered piping portion formed so as to widen from the upstream side to the downstream side. In this case, when the angle is α, the inner diameter of the straight piping portion is D, and the length of the straight piping portion from the mixing means to the tapered piping portion is L,
D / 2 × cotα ≦ L ≦ 3/2 × D × cotα
Meet.
 混合手段には、複数の第1のフィンが配列された列と複数の第2のフィンが配列された列とが一列ずつ交互に配置される。また、ストレート配管部は円筒状とすることができる。さらに、テーパ配管部が広がる勾配を角度αより小さくすること、及び角度αを45°とすることができる。 In the mixing means, a row in which a plurality of first fins are arranged and a row in which a plurality of second fins are arranged are alternately arranged one by one. Moreover, the straight piping part can be made into a cylindrical shape. Furthermore, the gradient at which the tapered pipe portion spreads can be made smaller than the angle α, and the angle α can be set to 45 °.
 この発明によれば、湾曲部を含む排気管を有する排気ガス後処理装置において、排気ガスに対して還元剤を均一に分散させつつ、小型化することが可能となる。 According to the present invention, in an exhaust gas aftertreatment device having an exhaust pipe including a curved portion, it is possible to reduce the size of the exhaust gas while uniformly dispersing the reducing agent in the exhaust gas.
この発明の実施の形態1に係る排気ガス後処理装置の構成を示す概略図である。It is the schematic which shows the structure of the exhaust-gas aftertreatment apparatus which concerns on Embodiment 1 of this invention. 実施の形態1に係る排気ガス後処理装置における要部の構成を概略的に示す断面図である。2 is a cross-sectional view schematically showing a configuration of a main part in the exhaust gas aftertreatment device according to Embodiment 1. FIG. 実施の形態1に係る排気ガス後処理装置における分散部材及び混合手段を概略的に示す斜視図であり、(a)は排気ガスの流通方向における下流側から見た斜視図、(b)は上流側から見た斜視図である。FIG. 2 is a perspective view schematically showing a dispersion member and mixing means in the exhaust gas aftertreatment device according to Embodiment 1, wherein (a) is a perspective view seen from the downstream side in the exhaust gas flow direction, and (b) is an upstream side. It is the perspective view seen from the side. 図2のIV-IVに沿った断面図である。FIG. 4 is a cross-sectional view taken along IV-IV in FIG. 2. 実施の形態1に係る排気ガス後処理装置における排気ガスの流れを説明するための概略図である。FIG. 3 is a schematic diagram for explaining the flow of exhaust gas in the exhaust gas aftertreatment device according to Embodiment 1; この発明の実施の形態2に係る排気ガス後処理装置の構成を概略的に示す断面側面図である。It is a cross-sectional side view which shows roughly the structure of the exhaust-gas aftertreatment apparatus which concerns on Embodiment 2 of this invention. 実施の形態2に係る排気ガス後処理装置においてストレート配管部の内部に生じる排気ガスの流れを説明するための概略図である。FIG. 6 is a schematic diagram for explaining a flow of exhaust gas generated in a straight pipe section in an exhaust gas aftertreatment device according to Embodiment 2. 実施の形態2に係る排気ガス後処理装置においてストレート配管部及びテーパ配管部の内部に生じる排気ガスの流れを説明するための概略図である。FIG. 6 is a schematic diagram for explaining a flow of exhaust gas generated inside a straight piping portion and a tapered piping portion in an exhaust gas aftertreatment device according to Embodiment 2. 実施の形態2に係る排気ガス後処理装置に関し、ストレート配管部の長さを変化させた場合におけるCV値の推移を示すグラフである。It is a graph which shows transition of the CV value at the time of changing the length of a straight piping part about the exhaust gas aftertreatment device concerning Embodiment 2.
 以下に、この発明の実施の形態について添付図に基づいて説明する。
実施の形態1.
 図1に、この実施の形態1に係る排気ガス後処理装置を備えたディーゼルエンジンの排気系の構成を概略的に示す。
 内燃機関であるディーゼルエンジン1には排気管2が接続されており、ディーゼルエンジン1から排出された排気ガスが、ディーゼルエンジン1側を上流側として排気管2の内部を流通する。排気管2の途中には、排気ガスに含まれる一酸化炭素(CO)や炭化水素(HC)等を酸化する酸化触媒3が設けられている。また、酸化触媒3の下流側には、排気ガスに含まれる窒素酸化物(NOx)を浄化するための還元触媒であるSCR触媒4が設けられている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 schematically shows the configuration of an exhaust system of a diesel engine provided with the exhaust gas aftertreatment device according to the first embodiment.
An exhaust pipe 2 is connected to a diesel engine 1 that is an internal combustion engine, and exhaust gas discharged from the diesel engine 1 circulates inside the exhaust pipe 2 with the diesel engine 1 side as an upstream side. An oxidation catalyst 3 that oxidizes carbon monoxide (CO), hydrocarbon (HC), and the like contained in the exhaust gas is provided in the middle of the exhaust pipe 2. An SCR catalyst 4 that is a reduction catalyst for purifying nitrogen oxide (NOx) contained in the exhaust gas is provided on the downstream side of the oxidation catalyst 3.
 SCR触媒4は、排気ガスに添加される還元剤である尿素水から生成されるアンモニア(NH3)と排気ガスとを反応させてNOxを浄化する触媒である。酸化触媒3とSCR触媒4との間には、排気管2の内部に尿素水を噴射する還元剤供給装置としての噴射ノズル5が設けられている。噴射ノズル5には、尿素水を内部に貯留する尿素水タンク6と、尿素水タンク6内の尿素水を噴射ノズル5に供給する尿素水添加システム7とが、接続管8を介して接続されている。また、尿素水添加システム7は、ディーゼルエンジン1及び排気ガス後処理装置の動作を制御するECU9に電気的に接続されている。 The SCR catalyst 4 is a catalyst that purifies NOx by reacting ammonia (NH 3 ) generated from urea water, which is a reducing agent added to the exhaust gas, and the exhaust gas. Between the oxidation catalyst 3 and the SCR catalyst 4, an injection nozzle 5 is provided as a reducing agent supply device that injects urea water into the exhaust pipe 2. A urea water tank 6 that stores urea water therein and a urea water addition system 7 that supplies urea water in the urea water tank 6 to the injection nozzle 5 are connected to the injection nozzle 5 via a connection pipe 8. ing. The urea water addition system 7 is electrically connected to an ECU 9 that controls the operation of the diesel engine 1 and the exhaust gas aftertreatment device.
 SCR触媒4の上流側及び下流側には、排気ガスに含まれるNOxの量を検知するNOxセンサ11及びNOxセンサ12が設けられており、これらのNOxセンサ11、12がECU9に電気的に接続されている。ECU9は、NOxセンサ11、12が検知したNOxの量に基づいて尿素水の噴射量や噴射時期を決定するとともに、それに基づく信号を尿素水添加システム7に出力し、噴射ノズル5による尿素水の噴射を制御する。尚、図示はされていないが、SCR触媒4の下流側には、排気ガスに含まれる粒子状物質(PM)を捕集するフィルタ、未反応のままSCR触媒4を通過したアンモニアを除去するスリップ触媒、排気音を低減するためのマフラ等が順次接続されている。 An NOx sensor 11 and a NOx sensor 12 for detecting the amount of NOx contained in the exhaust gas are provided on the upstream side and the downstream side of the SCR catalyst 4, and these NOx sensors 11 and 12 are electrically connected to the ECU 9. Has been. The ECU 9 determines the urea water injection amount and the injection timing based on the NOx amounts detected by the NOx sensors 11 and 12, and outputs a signal based on the urea water injection system 7 to the urea water addition system 7. Control the injection. Although not shown, on the downstream side of the SCR catalyst 4, a filter that collects particulate matter (PM) contained in the exhaust gas, and a slip that removes ammonia that has passed through the SCR catalyst 4 without being reacted. A catalyst, a muffler for reducing exhaust noise, and the like are sequentially connected.
 ここで、排気管2は、図示しない車両に搭載する際のレイアウト上の問題により複数箇所で湾曲されており、酸化触媒3とSCR触媒4との間に湾曲部2aを有している。さらに具体的に説明すると、排気管2は、酸化触媒3から下流側に向かってテーパ状に細くなってから湾曲部2aで湾曲され、次いで、直線状に延びるストレート配管部2b、及びテーパ配管部2cを順次介してSCR触媒4に接続されている。すなわち、ディーゼルエンジン1から排出された排気ガスは、SCR触媒4を通過した後、その流れの方向を湾曲部2aによって湾曲され、次いで、ストレート配管部2b及びテーパ配管部2cを順次通過してSCR触媒4に供給される。尚、図1は、鉛直方向における上方側から排気管2を見た図であり、排気管2が横方向に湾曲された様子を示すものであるが、排気管2は横方向以外のあらゆる方向に湾曲し得る。 Here, the exhaust pipe 2 is curved at a plurality of locations due to layout problems when mounted on a vehicle (not shown), and has a curved portion 2 a between the oxidation catalyst 3 and the SCR catalyst 4. More specifically, the exhaust pipe 2 is tapered from the oxidation catalyst 3 toward the downstream side, then curved at the curved portion 2a, and then linearly extending the straight piping portion 2b and the tapered piping portion. 2c is connected to the SCR catalyst 4 sequentially. That is, after the exhaust gas discharged from the diesel engine 1 passes through the SCR catalyst 4, the flow direction is bent by the curved portion 2a, and then passes through the straight piping portion 2b and the tapered piping portion 2c in sequence. The catalyst 4 is supplied. FIG. 1 is a view of the exhaust pipe 2 as viewed from the upper side in the vertical direction, and shows the exhaust pipe 2 being bent in the lateral direction. The exhaust pipe 2 is in any direction other than the lateral direction. Can be curved.
 以上のように構成されるディーゼルエンジン1の排気系において、排気管2の湾曲部2aとSCR触媒4との間に位置するストレート配管部2bの内部には、噴射ノズル5から噴射された尿素水を微粒化して排気管2内に分散させるための3つの分散部材21~23と、分散部材21~23によって分散された尿素水を排気ガスに混合するための混合手段であるミキサー31とが設けられている。以下に、分散部材21~23、ミキサー31及びこれらの周辺の構成について、図2~図4を用いて詳細に説明する。尚、以下の説明の便宜上、排気ガス後処理装置における左右方向と、排気管2の湾曲部2aにおける外周側及び内周側とを、図2に示す各矢印によって規定する。 In the exhaust system of the diesel engine 1 configured as described above, urea water injected from the injection nozzle 5 is disposed inside the straight pipe portion 2b located between the curved portion 2a of the exhaust pipe 2 and the SCR catalyst 4. Are provided with three dispersing members 21 to 23 for atomizing and dispersing in the exhaust pipe 2, and a mixer 31 as a mixing means for mixing the urea water dispersed by the dispersing members 21 to 23 into the exhaust gas. It has been. Hereinafter, the dispersive members 21 to 23, the mixer 31, and the configuration around them will be described in detail with reference to FIGS. For convenience of the following description, the left-right direction in the exhaust gas aftertreatment device and the outer peripheral side and inner peripheral side in the curved portion 2a of the exhaust pipe 2 are defined by the arrows shown in FIG.
 図2に示すように、分散部材21~23は、ストレート配管部2bの内部に左右方向に沿って並べられた平板状の部材であって、ストレート配管部2bの軸方向に沿って平行に延びるように設けられている。また、ストレート配管部2bの軸方向に沿った分散部材21~23の長さは互いに異なっており、右側にある分散部材21から左側にある分散部材23に向かって、すなわち湾曲部2aにおける外周側にある分散部材21から内周側にある分散部材23に向かって、さらに言い換えると噴射ノズル5との間の距離が遠くなるにつれて、順次長くなるように形成されている。 As shown in FIG. 2, the dispersion members 21 to 23 are flat plate members arranged in the left-right direction inside the straight pipe portion 2b, and extend in parallel along the axial direction of the straight pipe portion 2b. It is provided as follows. Further, the lengths of the dispersion members 21 to 23 along the axial direction of the straight pipe portion 2b are different from each other, and from the dispersion member 21 on the right side toward the dispersion member 23 on the left side, that is, on the outer peripheral side of the curved portion 2a. In other words, the distance from the dispersive member 21 to the dispersive member 23 on the inner peripheral side is further increased as the distance from the injection nozzle 5 increases.
 さらに、分散部材21~23は、これらの一方の面である表面21a~23aが湾曲部2aにおける外周側を向くように設けられている。また、噴射ノズル5は、湾曲部2aの上流側直前、すなわち分散部材21~23の上流側の部位であり、且つ湾曲部2aにおける外周側となる部位に配置されており、一点鎖線で示される尿素水Fを、分散部材21~23の表面21a~23aに向かって噴射可能となっている。 Furthermore, the dispersing members 21 to 23 are provided so that the surfaces 21a to 23a, which are one of these surfaces, face the outer peripheral side of the curved portion 2a. Further, the injection nozzle 5 is disposed immediately before the curved portion 2a, that is, a portion upstream of the dispersion members 21 to 23 and on the outer peripheral side of the curved portion 2a, and is indicated by a one-dot chain line. The urea water F can be injected toward the surfaces 21a to 23a of the dispersion members 21 to 23.
 ミキサー31は、分散部材21~23の下流側の端部に隣接して配置された略円板状の部材であって、ストレート配管部2b内を排気ガスが流通する方向に対して垂直となるように設けられている。また、ミキサー31が位置する部位において、ストレート配管部2bは上流側配管部2dと下流側配管部2eとに分割されており、これらの間にミキサー31の外周部が保持されている。 The mixer 31 is a substantially disk-shaped member disposed adjacent to the downstream end of the dispersion members 21 to 23, and is perpendicular to the direction in which the exhaust gas flows in the straight pipe portion 2b. It is provided as follows. Moreover, in the site | part in which the mixer 31 is located, the straight piping part 2b is divided | segmented into the upstream piping part 2d and the downstream piping part 2e, and the outer peripheral part of the mixer 31 is hold | maintained among these.
 図3(a)に示されるように、ミキサー31において排気管2の内部に位置する部位には、一部が繋がった台形状の切り込みを折り曲げることによって複数の第1のフィン32aと複数の第2のフィン32bとが形成されている。また、ミキサー31は、各フィン32a、32bを折り曲げることによって形成された複数の開口部33を有しており、ミキサー31の上流側から流れてきた排気ガスが、これらの開口部33を通って下流側に流通する。また、本実施の形態に係るミキサー31では、各開口部33に対応してその上流側に矩形状パイプ部材35(図3b参照)が配置されており、分散部材21~23を通過した排気ガスが、矩形状パイプ部材35を介してそのまま開口部33を通るようになっている。 As shown in FIG. 3 (a), a plurality of first fins 32a and a plurality of first fins 32a and a plurality of first fins 32a are bent at portions located inside the exhaust pipe 2 in the mixer 31 by bending a trapezoidal cut that is partially connected. Two fins 32b are formed. The mixer 31 has a plurality of openings 33 formed by bending the fins 32 a and 32 b, and the exhaust gas flowing from the upstream side of the mixer 31 passes through these openings 33. Distributes downstream. Further, in the mixer 31 according to the present embodiment, a rectangular pipe member 35 (see FIG. 3b) is disposed on the upstream side corresponding to each opening 33, and the exhaust gas that has passed through the dispersion members 21 to 23 is disposed. However, the opening 33 is passed through the rectangular pipe member 35 as it is.
 第1のフィン32a及び第2のフィン32bは、互いに逆向きとなる方向に折り曲げられており、第1のフィン32aは、その先端部が図3において左側を向くように折り曲げられている。一方、第2のフィン32bは、その先端部が図3において右側を向くように折り曲げられている。また、これらのフィン32a、32bは、複数の第1のフィン32aを左右方向に沿って配列した列と、複数の第2のフィン32bを左右方向に沿って配列した列とが、互いに平行となるように一列ずつ交互に配置されている。つまり、ミキサー31は、第1のフィン32a及び第2のフィン32bを通過する排気ガスの流れを互いに異なる方向に傾かせることによって乱流を発生させ、それにより、通過する流体を混合する装置である。また、図3(b)に示すように、ミキサー31の上流側の表面31aには、上流側に突出する一対の支持部34が接合されており、これらの支持部34によって分散部材21の両側部が支持されている。 The first fin 32a and the second fin 32b are bent in directions opposite to each other, and the first fin 32a is bent so that the tip portion thereof faces the left side in FIG. On the other hand, the second fin 32b is bent so that the tip thereof faces the right side in FIG. In addition, the fins 32a and 32b are arranged such that a row in which a plurality of first fins 32a are arranged in the left-right direction and a row in which a plurality of second fins 32b are arranged in the left-right direction are parallel to each other. It is arranged alternately one row at a time. In other words, the mixer 31 is a device that generates turbulent flow by inclining the flow of exhaust gas that passes through the first fin 32a and the second fin 32b in different directions, thereby mixing the fluid that passes therethrough. is there. Further, as shown in FIG. 3B, a pair of support portions 34 projecting to the upstream side are joined to the upstream surface 31 a of the mixer 31, and both sides of the dispersion member 21 are joined by these support portions 34. The part is supported.
 ここで、分散部材21~23が位置する部位におけるストレート配管部2bの断面を図4に示す。尚、図4の噴射ノズル5は、本来であれば図4には示されない部位に配置されているが、説明の便宜上、同一の断面内に示したものである。図4に示すように、分散部材21~23は、ストレート配管部2bの内周面にほぼ当接する幅をそれぞれ有しており、ストレート配管部2bの内部が、分散部材の21の図4上の右側にある領域R1、分散部材21と分散部材22との間にある領域R2、分散部材22と分散部材23との間にある領域R3、分散部材23の左側にある領域R4に区画されている。尚、図4断面内で見た場合、噴射ノズル5は、分散部材21~23に対して尿素水Fを垂直に噴射している。 Here, FIG. 4 shows a cross section of the straight pipe portion 2b at the portion where the dispersing members 21 to 23 are located. Note that the injection nozzle 5 of FIG. 4 is originally disposed in a portion not shown in FIG. 4 but is shown in the same cross section for convenience of explanation. As shown in FIG. 4, each of the dispersion members 21 to 23 has a width that substantially contacts the inner peripheral surface of the straight pipe portion 2b, and the inside of the straight pipe portion 2b is above the dispersion member 21 in FIG. Are divided into a region R1 on the right side, a region R2 between the dispersion member 21 and the dispersion member 22, a region R3 between the dispersion member 22 and the dispersion member 23, and a region R4 on the left side of the dispersion member 23. Yes. 4, the spray nozzle 5 sprays urea water F perpendicularly to the dispersion members 21 to 23.
 すなわち、噴射ノズル5から噴射された尿素水Fは、分散部材21~23の表面21a~23aに衝突することによって領域R1~R3内で分散されるが、領域R4内には流入しないようになっている。一方、SCR触媒4及び湾曲部2a(図2参照)を通過した排気ガスの流れは、領域R1~R4の全てを通過するように分散部材21~23によって分けられる。また、分散部材21~23が排気ガスの流れを分ける方向は、ミキサー31の第1のフィン32a及び第2のフィン32bが排気ガスの流れを傾かせる方向(図2、3参照)に対応している。 That is, the urea water F injected from the injection nozzle 5 is dispersed in the regions R1 to R3 by colliding with the surfaces 21a to 23a of the dispersion members 21 to 23, but does not flow into the region R4. ing. On the other hand, the flow of the exhaust gas that has passed through the SCR catalyst 4 and the curved portion 2a (see FIG. 2) is divided by the dispersing members 21 to 23 so as to pass through all the regions R1 to R4. Further, the direction in which the dispersing members 21 to 23 divide the flow of exhaust gas corresponds to the direction in which the first fin 32a and the second fin 32b of the mixer 31 incline the flow of exhaust gas (see FIGS. 2 and 3). ing.
 ここで、図2を用いて上述したように、分散部材21~23とミキサー31とは隣接しているため、分散部材21~23の表面21a~23aに衝突して分散された尿素水は、排気ガスの流れによってすぐにミキサー31に供給される。一方、分散部材21~23を用いずにミキサー31のみによって尿素水を分散させようとする場合、排気ガス中の尿素水の分布を均一にするには、ミキサー31の全面に対して尿素水を衝突させることが必要となる。しかしながら、噴射ノズル5から噴射された尿素水Fをミキサー31の全面に対して衝突させるためには、尿素水の噴射範囲がミキサー31の全面に広がるように、噴射ノズル5とミキサー31との間に距離を取ること、すなわちストレート配管部2bを長くすることが必要となる。 Here, as described above with reference to FIG. 2, since the dispersing members 21 to 23 and the mixer 31 are adjacent to each other, the urea water dispersed by colliding with the surfaces 21a to 23a of the dispersing members 21 to 23 is It is immediately supplied to the mixer 31 by the flow of the exhaust gas. On the other hand, when it is attempted to disperse the urea water only by the mixer 31 without using the dispersing members 21 to 23, in order to make the urea water distribution in the exhaust gas uniform, the urea water is applied to the entire surface of the mixer 31. It is necessary to make it collide. However, in order for the urea water F injected from the injection nozzle 5 to collide with the entire surface of the mixer 31, the urea water injection range between the injection nozzle 5 and the mixer 31 is widened so that the injection range of the urea water extends over the entire surface of the mixer 31. Therefore, it is necessary to make the straight pipe portion 2b longer.
 つまり、本発明における排気ガス後処理装置は、噴射ノズル5が噴射した尿素水を分散部材21~23に直接衝突させて分散させることによって噴射ノズル5とミキサー31との間の距離を短縮するものである。また、その距離は、分散部材21~23とミキサー31とを隣接させることによってさらに短縮されている。それに伴い、酸化触媒3(図1参照)とSCR触媒4との間の距離も短縮されるため、排気ガス後処理装置を小型化して車両への搭載性を向上することが可能となる。また、装置が小型化されることにより、排気ガスがSCR触媒4に到達するまでの温度低下が抑制されるため、SCR触媒4によるNOxの浄化を効率よく行うことが可能となっている。 That is, the exhaust gas aftertreatment device according to the present invention shortens the distance between the injection nozzle 5 and the mixer 31 by causing the urea water injected by the injection nozzle 5 to directly collide with the dispersion members 21 to 23 and disperse. It is. Further, the distance is further shortened by making the dispersing members 21 to 23 and the mixer 31 adjacent to each other. Accordingly, the distance between the oxidation catalyst 3 (see FIG. 1) and the SCR catalyst 4 is also shortened, so that the exhaust gas aftertreatment device can be miniaturized to improve the mountability on the vehicle. Further, since the apparatus is downsized, the temperature drop until the exhaust gas reaches the SCR catalyst 4 is suppressed, so that the NOx purification by the SCR catalyst 4 can be performed efficiently.
 次に、この発明の実施の形態1に係る排気ガス後処理装置の動作について説明する。
 図1に示すように、ディーゼルエンジン1の運転が開始されると、排気管2から排出された排気ガスが排気管2の内部を流通して酸化触媒3を通過する。酸化触媒3は、通過する排気ガスに含まれる一酸化炭素(CO)や炭化水素(HC)等を酸化すると同時に、一酸化窒素(NO)の一部を二酸化窒素(NO2)に酸化する。また、ディーゼルエンジン1の運転が開始されると、ECU9は、尿素水添加システム7に信号を出力し、噴射ノズル5による尿素水の噴射を開始させる。尚、NOxセンサ11、12は、SCR触媒4の上流側及び下流側におけるNOxの濃度を随時検知しており、これらの検知結果に基づいて、ECU9による噴射ノズル5の動作の制御が行われる。
Next, the operation of the exhaust gas aftertreatment device according to Embodiment 1 of the present invention will be described.
As shown in FIG. 1, when the operation of the diesel engine 1 is started, the exhaust gas discharged from the exhaust pipe 2 flows through the inside of the exhaust pipe 2 and passes through the oxidation catalyst 3. The oxidation catalyst 3 oxidizes carbon monoxide (CO), hydrocarbon (HC), etc. contained in the exhaust gas passing therethrough, and at the same time oxidizes a part of nitrogen monoxide (NO) to nitrogen dioxide (NO 2 ). Further, when the operation of the diesel engine 1 is started, the ECU 9 outputs a signal to the urea water addition system 7 and starts injection of urea water by the injection nozzle 5. The NOx sensors 11 and 12 detect the NOx concentration on the upstream side and the downstream side of the SCR catalyst 4 as needed, and the ECU 9 controls the operation of the injection nozzle 5 based on these detection results.
 図2に示すように、酸化触媒3を通過した排気ガスは、排気管2の湾曲部2aを通過してストレート配管部2b内に流入し、分散部材21~23によって区画された領域R1~R4(図4参照)を流通する。また、噴射ノズル5から噴射された尿素水Fは、分散部材21~23の表面21a~23aに衝突することによって微粒化され、微粒化された尿素水が領域R1~R3(図4参照)を流通する排気ガス中に分散される。尚、排気ガス中に分散された尿素水は、下流側に流れていく過程で排気ガスの熱によって加水分解され、それにより、アンモニアが生成される。また、分散部材21~23は、排気管2の内部を流通する排気ガスの熱で効率的に加熱されており、その熱によって尿素水の加水分解をさらに促進している。 As shown in FIG. 2, the exhaust gas that has passed through the oxidation catalyst 3 passes through the curved portion 2a of the exhaust pipe 2 and flows into the straight piping portion 2b, and is divided into regions R1 to R4 partitioned by the dispersion members 21 to 23. (See FIG. 4). Further, the urea water F sprayed from the spray nozzle 5 is atomized by colliding with the surfaces 21a to 23a of the dispersion members 21 to 23, and the atomized urea water passes through the regions R1 to R3 (see FIG. 4). Dispersed in the circulating exhaust gas. The urea water dispersed in the exhaust gas is hydrolyzed by the heat of the exhaust gas in the process of flowing downstream, thereby producing ammonia. Further, the dispersion members 21 to 23 are efficiently heated by the heat of the exhaust gas flowing through the inside of the exhaust pipe 2, and the hydrolysis of urea water is further promoted by the heat.
 ここで、図5に示すように、分散部材21~23は湾曲部2aの下流側に配置されているため、矢印A1~A3で示されるように、分散部材21~23に到達する排気ガスも湾曲しながら流通してくる。このような場合、通常、表面21a~23aの周辺において点線で示される領域R11~R13には排気ガスの流れが回り込みにくいため、表面21a~23aに衝突して微粒化された尿素水が分散されにくい状態となる。 Here, as shown in FIG. 5, since the dispersion members 21 to 23 are arranged on the downstream side of the bending portion 2a, the exhaust gas reaching the dispersion members 21 to 23 is also generated as indicated by arrows A1 to A3. It circulates while curving. In such a case, the flow of exhaust gas is usually difficult to flow around the regions R11 to R13 indicated by the dotted lines around the surfaces 21a to 23a, so that the urea water atomized by colliding with the surfaces 21a to 23a is dispersed. It becomes difficult.
 しかしながら、噴射ノズル5は、表面21a~23aに向かって上流側から尿素水Fを噴射するため、噴射された尿素水Fの流れは、矢印B1~B3で示されるように、矢印A1~A3で示される排気ガスの流れを斜めに横切って表面21a~23aに衝突する。つまり、分散部材21~23の上流側に湾曲部2aがあっても、噴射ノズル5が噴射した尿素水Fの流れを利用して領域R11~R13に排気ガスの流れを生じさせることができる。したがって、表面21a~23aに衝突した尿素水を効率よくストレート配管部2b内に分散させることが可能となっている。つまり、湾曲部2aの下流側に配置された分散部材21~23の表面21a~23aには、排気ガスの流れが回り込みにくいため、普通に尿素水Fを当てただけでは分散性が悪い。本実施の形態では、表面21a~23aに向かって上流側から尿素水Fを噴射して排気ガスの流れを補助するため、分散性がよい。 However, since the injection nozzle 5 injects the urea water F from the upstream side toward the surfaces 21a to 23a, the flow of the injected urea water F is indicated by arrows A1 to A3 as indicated by arrows B1 to B3. It impinges on the surfaces 21a-23a across the indicated exhaust gas flow diagonally. That is, even if the curved portion 2a is on the upstream side of the dispersion members 21 to 23, the flow of the exhaust gas can be generated in the regions R11 to R13 using the flow of the urea water F injected by the injection nozzle 5. Therefore, it is possible to efficiently disperse the urea water colliding with the surfaces 21a to 23a in the straight pipe portion 2b. That is, since the flow of the exhaust gas does not easily flow around the surfaces 21a to 23a of the dispersion members 21 to 23 arranged on the downstream side of the curved portion 2a, dispersibility is poor only by applying the urea water F normally. In the present embodiment, since the urea water F is injected from the upstream side toward the surfaces 21a to 23a to assist the flow of the exhaust gas, the dispersibility is good.
 また、湾曲部2aの外周側は、内周側に比べて排気ガスの流れが強いため、図4の右側(すなわち外周側)の領域R1に分散部材が無くても尿素水が分散されやすい。したがって、尿素水を均一に分散するには、分散部材21~23を図4のように中央から左側(すなわち内周側)に配置するとよい。また、通常、湾曲部2aの外周側は内周側に比べて搭載スペースに余裕があるため、噴射ノズル5を配置するのに都合がよい。 Further, since the exhaust gas flow is stronger on the outer peripheral side of the curved portion 2a than on the inner peripheral side, urea water is likely to be dispersed even if there is no dispersing member in the region R1 on the right side (that is, the outer peripheral side) in FIG. Therefore, in order to disperse the urea water uniformly, the dispersing members 21 to 23 are preferably arranged from the center to the left side (that is, the inner peripheral side) as shown in FIG. Moreover, since the outer peripheral side of the curved portion 2a usually has a larger mounting space than the inner peripheral side, it is convenient to dispose the injection nozzle 5.
 また、分散部材21~23は、ストレート配管部2bの内周面にほぼ当接する幅をそれぞれ有しており(図4参照)、噴射ノズル5から最も遠い領域R4には尿素水が供給されないため、ストレート配管部2bの内周面に付着する尿素水の量が低減される。ここで、ストレート配管部2bは、その内部を流通する排気ガスによって加熱されるが、その外周面は外気で冷却される。したがって、例えばディーゼルエンジン1(図1参照)の始動直後等におけるストレート配管部2bの温度は、排気ガスの温度に対して低温となる。 Further, the dispersion members 21 to 23 have widths that substantially contact the inner peripheral surface of the straight pipe portion 2b (see FIG. 4), and urea water is not supplied to the region R4 farthest from the injection nozzle 5. The amount of urea water adhering to the inner peripheral surface of the straight piping portion 2b is reduced. Here, although the straight piping part 2b is heated by the exhaust gas which distribute | circulates the inside, the outer peripheral surface is cooled with external air. Therefore, for example, the temperature of the straight pipe portion 2b immediately after starting the diesel engine 1 (see FIG. 1) is lower than the temperature of the exhaust gas.
 このような状態でストレート配管部2bの内周面に尿素水が付着すると加水分解が起こらず、尿素水の水分が気化して尿素が残留し、残留した尿素がストレート配管部2bの内周面に堆積することがある。また、堆積した尿素はSCR触媒4(図2参照)には届かず、本来必要となる量のアンモニアがSCR触媒4に供給されないため、尿素水の添加量を増やすことが必要となる。 In this state, when urea water adheres to the inner peripheral surface of the straight pipe portion 2b, hydrolysis does not occur, the urea water moisture evaporates and urea remains, and the remaining urea remains in the inner peripheral surface of the straight pipe portion 2b. May be deposited on. Further, the accumulated urea does not reach the SCR catalyst 4 (see FIG. 2), and the amount of ammonia that is originally required is not supplied to the SCR catalyst 4, so it is necessary to increase the amount of urea water added.
 しかしながら、本発明による排気ガス後処理装置では、噴射ノズル5から噴射された尿素水が供給されない領域R4を区画することにより、ストレート配管部2bの内周面に付着する尿素水の量を低減したので、噴射された尿素水の大部分をSCR触媒に供給することが可能となっている。また、分散部材21~23は、排気管2に比較して排気ガスの流通方向に対して短く、熱容量が少ないため、排気ガスにより加熱されやすくなっている。したがって、排気管2の温度が低いことに起因して、分散部材21~23に付着した尿素水からのアンモニアの生成が妨げられることはない。 However, in the exhaust gas aftertreatment device according to the present invention, the amount of urea water adhering to the inner peripheral surface of the straight pipe portion 2b is reduced by dividing the region R4 to which the urea water injected from the injection nozzle 5 is not supplied. Therefore, most of the injected urea water can be supplied to the SCR catalyst. In addition, since the dispersion members 21 to 23 are shorter in the direction of exhaust gas flow than the exhaust pipe 2 and have a small heat capacity, they are easily heated by the exhaust gas. Therefore, generation of ammonia from the urea water adhering to the dispersion members 21 to 23 is not hindered due to the low temperature of the exhaust pipe 2.
 図2に戻って、分散部材21とミキサー31とは隣接して配置されているため、領域R1~R3で分散された尿素水は、排気ガスの流れによってすぐにミキサー31に供給される。一方、領域R4内を流通する排気ガスは、尿素水Fを添加されることなく、そのままミキサーに供給される。領域R1~R3から流れてきた排気ガス及び尿素水と、領域R4から流れてきた排気ガスとは、ミキサー31の複数のフィン32a、32bを通過する際に発生する乱流によって混合され、それにより、排気ガスに対して尿素水が均一に混合された状態となる。 2, since the dispersing member 21 and the mixer 31 are arranged adjacent to each other, the urea water dispersed in the regions R1 to R3 is immediately supplied to the mixer 31 by the flow of the exhaust gas. On the other hand, the exhaust gas flowing through the region R4 is supplied to the mixer as it is without adding the urea water F. The exhaust gas and urea water flowing from the regions R1 to R3 and the exhaust gas flowing from the region R4 are mixed by the turbulent flow generated when passing through the plurality of fins 32a and 32b of the mixer 31, thereby The urea water is uniformly mixed with the exhaust gas.
 このようにミキサー31を通過した排気ガス及びアンモニアがSCR触媒4に供給されると、SCR触媒4はアンモニアと排気ガスとを反応させ、排気ガスに含まれるNOxを無害な窒素(N2)と水(H2O)とに還元する。尚、分散部材21~23は平板状の部材であり、且つストレート配管部2bの軸方向に対して平行に延びているため、排気ガスの圧力損失を増大させることなくNOxの浄化を行うことができる。 When the exhaust gas and ammonia that have passed through the mixer 31 are supplied to the SCR catalyst 4 in this way, the SCR catalyst 4 reacts with the ammonia and the exhaust gas to convert NOx contained in the exhaust gas into harmless nitrogen (N 2 ). Reduce to water (H 2 O). The dispersing members 21 to 23 are flat members and extend in parallel to the axial direction of the straight pipe portion 2b, so that NOx can be purified without increasing the pressure loss of the exhaust gas. it can.
 SCR触媒4を通過した排気ガスは、SCR触媒4の下流側に設けられた図示しないフィルタ通過し、その際に排気ガスに含まれる粒子状物質が除去される。また、未反応のままSCR触媒4を通過して余剰分となったアンモニアが排気ガスに含まれている場合、フィルタの下流側に設けられた図示しないスリップ触媒が余剰分となったアンモニアを除去する。スリップ触媒を通過した排気ガスは、図示しないマフラの内部で騒音を低減された後、大気中に放出される。 The exhaust gas that has passed through the SCR catalyst 4 passes through a filter (not shown) provided on the downstream side of the SCR catalyst 4, and particulate matter contained in the exhaust gas is removed at that time. In addition, when exhaust gas contains surplus ammonia that has not passed through the SCR catalyst 4, a slip catalyst (not shown) provided on the downstream side of the filter removes surplus ammonia. To do. The exhaust gas that has passed through the slip catalyst is released into the atmosphere after noise is reduced inside a muffler (not shown).
 以上に述べたように、排気管2の湾曲部2aとSCR触媒4との間に分散部材21~23を設けるとともに、分散部材21~23に向かって尿素水を噴射可能な部位に噴射ノズル5を配置したので、分散部材21~23に衝突することによって微粒化された尿素水が排気管2内に分散される。また、分散部材21~23とSCR触媒4との間にミキサー31を設けたので、分散部材21~23に衝突して分散された尿素水は、ミキサー31によって排気ガスと混合されてSCR触媒4に供給される。つまり、分散部材21~23によって尿素水を予め分散することができるため、尿素水をミキサー31に向かって直接噴射する場合のように、尿素水の噴射範囲を広げるために噴射ノズル5とミキサー31との間の距離を大きくとる必要がない。 As described above, the dispersion members 21 to 23 are provided between the curved portion 2a of the exhaust pipe 2 and the SCR catalyst 4, and the injection nozzle 5 is disposed at a portion where urea water can be injected toward the dispersion members 21 to 23. Therefore, the urea water atomized by colliding with the dispersing members 21 to 23 is dispersed in the exhaust pipe 2. In addition, since the mixer 31 is provided between the dispersing members 21 to 23 and the SCR catalyst 4, the urea water that collides with the dispersing members 21 to 23 and is dispersed by the mixer 31 is mixed with the exhaust gas by the mixer 31. To be supplied. That is, since the urea water can be preliminarily dispersed by the dispersing members 21 to 23, the injection nozzle 5 and the mixer 31 are used to widen the injection range of the urea water as in the case where the urea water is directly injected toward the mixer 31. There is no need to increase the distance between the two.
 また、分散部材21~23に到達する排気ガスは、湾曲部2aに沿って湾曲しながら流通してくるため、通常、分散部材21~23の表面21a~23aの周辺の領域R11~R13には、排気ガスの流れが生じにくい状態となる。ここで、噴射ノズル5は表面21a~23aに向かって上流側から尿素水を噴射するため、噴射された尿素水の流れは、湾曲しながら流れる排気ガスを斜めに横切って表面21a~23aに衝突する。つまり、噴射ノズル5から噴射された尿素水の流れにより、領域R11~R31に排気ガスの流れを生じさせることができるため、分散部材21~23に衝突した尿素水を効率よく分散させることができる。したがって、湾曲部2aを含む排気管2を有する排気ガス後処理装置において、尿素水を排気ガスに対して均一に分散させつつ、小型化することが可能となる。 Further, since the exhaust gas that reaches the dispersion members 21 to 23 flows while being curved along the curved portion 2a, the exhaust gas normally flows in the regions R11 to R13 around the surfaces 21a to 23a of the dispersion members 21 to 23. Thus, the exhaust gas flow hardly occurs. Here, since the injection nozzle 5 injects urea water from the upstream side toward the surfaces 21a to 23a, the flow of the injected urea water obliquely crosses the exhaust gas flowing while curving and collides with the surfaces 21a to 23a. To do. In other words, since the flow of the exhaust gas can be generated in the regions R11 to R31 by the flow of the urea water injected from the injection nozzle 5, the urea water colliding with the dispersion members 21 to 23 can be efficiently dispersed. . Therefore, in the exhaust gas aftertreatment device having the exhaust pipe 2 including the curved portion 2a, it is possible to reduce the size while uniformly dispersing the urea water in the exhaust gas.
 分散部材21~23とミキサー31とを隣接して配置してこれらの間の距離を短くしたので、排気ガス後処理装置をさらに小型化することが可能となる。また、分散部材21~23によって分散された尿素水が直ちにミキサー31を通過するため、尿素水を効率よく排気ガスに混合することが可能となる。 Since the dispersing members 21 to 23 and the mixer 31 are arranged adjacent to each other to shorten the distance between them, the exhaust gas aftertreatment device can be further downsized. In addition, since the urea water dispersed by the dispersion members 21 to 23 immediately passes through the mixer 31, the urea water can be efficiently mixed with the exhaust gas.
 また、分散部材21~23及びミキサー31を直線状に延びるストレート配管部2bに設け、分散部材21~23がストレート配管部2bの軸方向に沿って伸びるようにしたので、圧力損失を上げることなく、ミキサー31に尿素水を供給することが可能となる。 Further, since the dispersing members 21 to 23 and the mixer 31 are provided in the straight piping portion 2b extending linearly, and the dispersing members 21 to 23 extend along the axial direction of the straight piping portion 2b, without increasing pressure loss. The urea water can be supplied to the mixer 31.
 さらに、排気ガス後処理装置が複数の分散部材21~23を備えるように構成したので、より多くの尿素水を分散部材21~23に衝突させることができ、効率よく尿素水が分散される。 Furthermore, since the exhaust gas aftertreatment device is configured to include the plurality of dispersion members 21 to 23, more urea water can collide with the dispersion members 21 to 23, and the urea water is efficiently dispersed.
実施の形態2.
 次に、この発明の実施の形態2に係る排気ガス後処理装置について説明する。この実施の形態2に係る排気ガス後処理装置は、実施の形態1に係る排気ガス後処理装置の排気管2及びミキサー31に対し、以下に説明する寸法上の規定を加えたものである。
Embodiment 2. FIG.
Next, an exhaust gas aftertreatment device according to Embodiment 2 of the present invention will be described. In the exhaust gas aftertreatment device according to the second embodiment, the dimensional regulations described below are added to the exhaust pipe 2 and the mixer 31 of the exhaust gas aftertreatment device according to the first embodiment.
 図6に示すように、ミキサー31の下流側に位置するSCR触媒4の直径は下流側配管部2eの直径より大きく、下流側配管部2eとSCR触媒4とが、上流側から下流側に向かってテーパ状に広がるように形成されたテーパ配管部2cを介して接続されている。すなわち、ミキサー31とSCR触媒4とは、直線状に延びるストレート配管部2bの一部である下流側配管部2eとテーパ配管部2cとを順次介して接続されている。 As shown in FIG. 6, the diameter of the SCR catalyst 4 located on the downstream side of the mixer 31 is larger than the diameter of the downstream piping part 2e, and the downstream piping part 2e and the SCR catalyst 4 are directed from the upstream side toward the downstream side. Are connected via a tapered pipe portion 2c formed so as to spread in a tapered shape. That is, the mixer 31 and the SCR catalyst 4 are sequentially connected via the downstream piping portion 2e and the tapered piping portion 2c, which are a part of the straight piping portion 2b extending linearly.
 実施の形態1で説明したように、第1のフィン32a及び第2のフィン32bが折り曲げられた方向は互いに逆向きとなっているが、その角度は共通の角度αとなっている。すなわち、ミキサー31は、ミキサー31を通過する前の排気ガスの流れを、第1のフィン32a及び第2のフィン32bによって互いに逆向きとなる左右方向に角度α傾かせるものである。 As described in the first embodiment, the bent directions of the first fin 32a and the second fin 32b are opposite to each other, but the angle is a common angle α. That is, the mixer 31 inclines the flow of the exhaust gas before passing through the mixer 31 by the first fin 32a and the second fin 32b by an angle α in the left-right direction opposite to each other.
 ミキサー31において第1のフィン32a及び第2のフィン32bが折り曲げられた角度α、すなわちこれらのフィン32a、32bが排気ガスの流れを傾かせる角度αは、45°に設定されている。また、ミキサー31とテーパ配管部2cとを接続する下流側配管部2eの内径Dは、66mmに設定されている。このように角度α=45°、内径D=66mmと設定された排気ガス後処理装置において、下流側配管部2eの長さLは角度α及び内径Dに応じて規定されており、下記の(1)式を満たすように設定される。
 D/2×cotα≦L≦3/2×D×cotα・・・(1)
つまり、α=45°、内径D=66mmである場合、長さLの範囲は、33(mm)≦L≦99(mm)となる。
The angle α at which the first fin 32a and the second fin 32b are bent in the mixer 31, that is, the angle α at which the fins 32a and 32b incline the flow of the exhaust gas is set to 45 °. Moreover, the internal diameter D of the downstream piping part 2e which connects the mixer 31 and the taper piping part 2c is set to 66 mm. In this way, in the exhaust gas aftertreatment device in which the angle α = 45 ° and the inner diameter D = 66 mm, the length L of the downstream pipe portion 2e is defined according to the angle α and the inner diameter D, and the following ( 1) It is set to satisfy the equation.
D / 2 × cotα ≦ L ≦ 3/2 × D × cotα (1)
That is, when α = 45 ° and the inner diameter D = 66 mm, the range of the length L is 33 (mm) ≦ L ≦ 99 (mm).
 また、上記の角度αが45°である場合、すなわち、上記(1)式のcotα=1となる場合、下流側配管部2eの長さLは、結局、下記の(2)式を満たすように設定される。
 2/D≦L≦3/2×D・・・(2)
この実施の形態2に係る排気ガス後処理装置において、下流側配管部2eの長さLは、上記(1)式及び(2)式を満たす43mmに設定されている。尚、テーパ配管部2cが下流側に向かって広がる勾配、すなわち下流側配管部2eの軸方向に対してテーパ配管部2cが広がる角度βは、上記の角度α=45°より小さい角度となっている。その他の構成については、実施の形態1と同様である。
When the angle α is 45 °, that is, when cot α = 1 in the above equation (1), the length L of the downstream pipe portion 2e eventually satisfies the following equation (2). Set to
2 / D ≦ L ≦ 3/2 × D (2)
In the exhaust gas aftertreatment device according to the second embodiment, the length L of the downstream pipe portion 2e is set to 43 mm that satisfies the expressions (1) and (2). Note that the slope β of the taper pipe portion 2c spreading toward the downstream side, that is, the angle β at which the taper pipe portion 2c spreads with respect to the axial direction of the downstream pipe portion 2e is smaller than the angle α = 45 °. Yes. Other configurations are the same as those in the first embodiment.
 以上のように構成される排気ガス後処理装置において、SCR触媒4によるNOxの還元を効率よく行うためには、SCR触媒4の全面に対してアンモニアを均一な分布状態で供給することが必要となる。そのためには、排気ガス中にアンモニアを均一に分散させること、及び排気ガスをテーパ配管部2c内で拡散させることが必要となる。ここで、図3(a)に示されているように、ミキサー31の第1のフィン32a及び第2のフィン32bは互いに逆向きとなる左右方向に折り曲げられており、通過する排気ガスの流れを左右方向に傾かせる。また、これらのフィン32a、32bの配置は、複数の第1のフィン32aを左右方向に沿って配列した列と、複数の第2のフィン32bを左右方向に沿って配列した列とを、互いに平行となるように一列ずつ交互に配置したものとなっている。 In the exhaust gas aftertreatment device configured as described above, in order to efficiently reduce NOx by the SCR catalyst 4, it is necessary to supply ammonia to the entire surface of the SCR catalyst 4 in a uniform distribution state. Become. For that purpose, it is necessary to uniformly disperse ammonia in the exhaust gas and to diffuse the exhaust gas in the tapered pipe portion 2c. Here, as shown in FIG. 3A, the first fin 32a and the second fin 32b of the mixer 31 are bent in the left and right directions opposite to each other, and the flow of exhaust gas passing therethrough. Tilt left and right. The fins 32a and 32b are arranged such that a plurality of first fins 32a are arranged in the left-right direction and a plurality of second fins 32b are arranged in the left-right direction. They are arranged one by one alternately so as to be parallel.
 したがって、図7に示すように、ミキサー31(図6参照)の下流側にある下流側配管部2eの内部には、第1のフィン32aからなる列によって左側に傾けられた排気ガスの流れ(矢印B1参照)と、第2のフィン32bからなる列によって右側に傾けられた排気ガスの流れ(矢印B2参照)とが1列ずつ交互に隣り合って生じた状態となる。また、下流側配管部2eは円筒状であるため、下流側配管部2eの内周面2fに衝突した排気ガスには、下流側配管部2eの周方向に沿った流れ(矢印B3参照)が与えられる。つまり、ミキサー31を通過して下流側配管部2eに流入した排気ガスのうち、内周面2fに衝突した排気ガスには、下流側配管部2eの軸方向に対して垂直となる断面内を循環するような流れが与えられる。それにより、下流側配管部2e内を流通する排気ガスに対し、アンモニアを効率よく分散させることが可能となる。 Therefore, as shown in FIG. 7, the flow of exhaust gas inclined to the left side by the row of the first fins 32a (inside the downstream piping portion 2e on the downstream side of the mixer 31 (see FIG. 6)) ( An arrow B1) and an exhaust gas flow inclined to the right by the row of the second fins 32b (see the arrow B2) are alternately adjacent to each other. Moreover, since the downstream side piping part 2e is cylindrical, the flow along the circumferential direction of the downstream side piping part 2e (see arrow B3) flows in the exhaust gas that has collided with the inner peripheral surface 2f of the downstream side piping part 2e. Given. That is, out of the exhaust gas flowing through the mixer 31 and flowing into the downstream pipe portion 2e, the exhaust gas that has collided with the inner peripheral surface 2f has a cross section perpendicular to the axial direction of the downstream pipe portion 2e. A circulating flow is provided. Thereby, it becomes possible to disperse ammonia efficiently with respect to the exhaust gas flowing through the downstream side piping part 2e.
 また、図8に示すように、ミキサー31を通過した排気ガスには、第1のフィン32a及び第2のフィン32bによって左右方向に角度α傾いた流れがそれぞれ与えられるが、矢印C1で示すように、下流側配管部2eの内周面2fに衝突した排気ガスは、下流側配管部2eの軸方向に沿って直進するようになる。ここで、第1のフィン32a及び第2のフィン32bを通過した排気ガスが下流側配管部2eの内周面2fに衝突するタイミングは、これらのフィン32a、32bの位置に応じて様々であり、下流側配管部2eの内部には、その軸方向に沿った排気ガスの流れと、角度α傾いた排気ガスの流れとが混在する。 Further, as shown in FIG. 8, the exhaust gas that has passed through the mixer 31 is provided with a flow inclined at an angle α in the left-right direction by the first fin 32a and the second fin 32b, as indicated by an arrow C1. Moreover, the exhaust gas that has collided with the inner peripheral surface 2f of the downstream side piping part 2e goes straight along the axial direction of the downstream side piping part 2e. Here, the timing at which the exhaust gas that has passed through the first fin 32a and the second fin 32b collides with the inner peripheral surface 2f of the downstream pipe portion 2e varies depending on the positions of the fins 32a and 32b. The flow of exhaust gas along the axial direction and the flow of exhaust gas inclined at an angle α coexist in the downstream side piping part 2e.
 より具体的に説明すると、第1のフィン32aの場合、最も左側に位置する第1のフィン32aを通過した排気ガスが最も早いタイミングで内周面2fに衝突し(矢印C1参照)、第1のフィン32aの位置が右側になるにつれて衝突のタイミングが遅くなる(矢印C2参照)。また、第1のフィン32aの位置がさらに右側になると、通過した排気ガスは内周面2fに衝突することなく、テーパ配管部2c内に直接流入する方向(矢印C3参照)に流れる。尚、第2のフィン32bの場合も、方向が逆向きとなること以外は同様である。したがって、下流側配管部2eの軸方向に沿った排気ガスの流れ(矢印C1、C2参照)は、軸方向に対して傾いた排気ガスの流れ(矢印C3参照)と衝突し、その流れの角度αを徐々に減少させる(矢印C4参照)。 More specifically, in the case of the first fin 32a, the exhaust gas that has passed through the first fin 32a located on the leftmost side collides with the inner peripheral surface 2f at the earliest timing (see arrow C1). The timing of the collision is delayed as the position of the fin 32a becomes the right side (see arrow C2). Further, when the position of the first fin 32a is further on the right side, the exhaust gas that has passed does not collide with the inner peripheral surface 2f and flows in a direction (see arrow C3) directly flowing into the tapered pipe portion 2c. The second fin 32b is the same except that the direction is reversed. Therefore, the exhaust gas flow (see arrows C1 and C2) along the axial direction of the downstream pipe portion 2e collides with the exhaust gas flow (see arrow C3) inclined with respect to the axial direction, and the angle of the flow α is gradually decreased (see arrow C4).
 すなわち、下流側配管部2eを通過してテーパ配管部2c内に流入する排気ガスの流れの角度は、第1のフィン32a及び第2のフィン32bが排気ガスの流れを傾ける角度α、下流側配管部2eの内径D及び距離L(図6参照)に応じたものとなっており、これらが上述の(1)、(2)式を満たす場合、軸方向に沿った排気ガスの流れ(矢印C1、C2)と軸方向に対して傾いた排気ガスの流れ(矢印C3)とがバランスする。尚、テーパ配管部2cの勾配の角度βは角度αより小さい角度であるため、下流側配管部2eを通過した排気ガスに、この角度βにほぼ沿った流れが与えられる。したがって、下流側配管部2e内で排気ガス中に分散されたアンモニアがテーパ配管部2cの勾配に沿って拡散されるため、SCR触媒4に対してアンモニアを均一な分布状態で供給することが可能となる。 That is, the flow angle of the exhaust gas flowing through the downstream pipe portion 2e and flowing into the tapered pipe portion 2c is the angle α at which the first fin 32a and the second fin 32b tilt the flow of the exhaust gas, and the downstream side When the pipe portion 2e has an inner diameter D and a distance L (see FIG. 6) and these satisfy the above-described expressions (1) and (2), the flow of exhaust gas along the axial direction (arrow) C1, C2) and the flow of exhaust gas inclined with respect to the axial direction (arrow C3) are balanced. Since the angle β of the gradient of the tapered pipe portion 2c is smaller than the angle α, a flow substantially along the angle β is given to the exhaust gas that has passed through the downstream side pipe portion 2e. Accordingly, since the ammonia dispersed in the exhaust gas in the downstream pipe portion 2e is diffused along the gradient of the taper pipe portion 2c, the ammonia can be supplied to the SCR catalyst 4 in a uniform distribution state. It becomes.
 ここで、角度αを45°、内径Dを66mmとし、長さLを変化させた場合において、SCR触媒4に供給されるアンモニアの分布状態の推移、いわゆる面内均一性の推移を計測した結果を図9に示す。尚、排気ガスの流量は52(g/s)、排気ガスの温度は423(℃)とした。この場合、この実施の形態2に係る排気ガス後処理装置によれば、長さLの好適な範囲は、
 33(mm)≦L≦99(mm)
であり、このような範囲であれば、CV値を10%未満にすることが可能である。尚、図9は、下流側配管部2eの長さLを横軸とし、面内均一性を示す指標の1つであるCV値(変動係数:標準偏差を平均で割った数×100)を縦軸としたグラフである。また、CV値は、SCR触媒4に供給されるアンモニアの分布状態が均一となる場合にゼロとなり、分布状態が不均一になるにつれて上昇する。
Here, when the angle α is 45 °, the inner diameter D is 66 mm, and the length L is changed, the transition of the distribution state of ammonia supplied to the SCR catalyst 4, the transition of the so-called in-plane uniformity is measured. Is shown in FIG. The exhaust gas flow rate was 52 (g / s), and the exhaust gas temperature was 423 (° C.). In this case, according to the exhaust gas aftertreatment device according to the second embodiment, the preferred range of the length L is
33 (mm) ≤ L ≤ 99 (mm)
In such a range, the CV value can be made less than 10%. FIG. 9 shows the CV value (variation coefficient: number obtained by dividing the standard deviation by the average × 100), which is one of the indices indicating the in-plane uniformity, with the length L of the downstream pipe portion 2e as the horizontal axis. It is the graph which made the vertical axis | shaft. Further, the CV value becomes zero when the distribution state of ammonia supplied to the SCR catalyst 4 becomes uniform, and increases as the distribution state becomes non-uniform.
 図9に示されるように、下流側配管部2eの長さLが約30(mm)を下回ると、CV値が急激に高くなる。これは、下流側配管部2eの長さLが短すぎるため、下流側配管部2eの内部においてアンモニアが十分に分散される前に、排気ガスがテーパ配管部2c内に流入するためである。つまり、軸方向に対して傾いた排気ガスの流れ(図8の矢印C3)が強くなり過ぎるため、分散が不十分となる。 As shown in FIG. 9, when the length L of the downstream pipe portion 2e is less than about 30 (mm), the CV value is rapidly increased. This is because the length L of the downstream pipe portion 2e is too short, so that the exhaust gas flows into the tapered pipe portion 2c before ammonia is sufficiently dispersed inside the downstream pipe portion 2e. That is, the flow of exhaust gas tilted with respect to the axial direction (arrow C3 in FIG. 8) becomes too strong, resulting in insufficient dispersion.
 一方、下流側配管部2eの長さLが約50(mm)を超えると、長さLの増加に伴ってCV値も徐々に高くなる。これは、長さLの増加に伴って下流側配管部2eの軸方向に沿った方向の流れ(図8の矢印C1、C2参照)が強くなりすぎるため、テーパ配管部2cに流入した排気ガスがテーパ形状に沿って拡散されず、そのまま直進してSCR触媒4の中央部近辺のみに供給されてしまうためである。このように、角度α、内径D及び長さLが上述の(1)式及び(2)式を満たす場合、SCR触媒4に対してアンモニアが均一な分布状態で供給されることが図9からも確認できる。 On the other hand, when the length L of the downstream pipe portion 2e exceeds about 50 (mm), the CV value gradually increases as the length L increases. This is because the flow in the direction along the axial direction of the downstream pipe portion 2e (see arrows C1 and C2 in FIG. 8) becomes too strong as the length L increases, so that the exhaust gas flowing into the tapered pipe portion 2c. Is not diffused along the taper shape but goes straight as it is and is supplied only to the vicinity of the center of the SCR catalyst 4. As described above, when the angle α, the inner diameter D, and the length L satisfy the above-described formulas (1) and (2), ammonia is supplied to the SCR catalyst 4 in a uniform distribution state from FIG. Can also be confirmed.
 尚、排気ガスの流量や流速が変化した場合も、図8に示される矢印C1~C4等の流れの流量や流速がそれぞれ同じ割合で変化するので、その結果は図9に示されるものと同じ傾向となる。 Even when the flow rate and flow rate of the exhaust gas change, the flow rate and flow rate of the flows indicated by arrows C1 to C4 shown in FIG. 8 change at the same rate, so the result is the same as that shown in FIG. It becomes a trend.
 以上に述べたように、ミキサー31とSCR触媒4とを下流側配管部2e及びテーパ配管部2cを順次介して接続した排気ガス後処理装置において、ミキサー31の第1のフィン32a及び第2のフィン32bが通過する排気ガスの流れを傾ける角度をα、下流側配管部2eの内径をD、長さをLとしたときに、
 D/2×cotα≦L≦3/2×D×cotα
を満たすように構成した場合、下流側配管部2eを通過してテーパ配管部2cに流入した排気ガスに対し、テーパ配管部2cの勾配に沿った流れを生じさせることができる。したがって、実施の形態1と同様の効果を得られることに加え、SCR触媒4に対してアンモニアを均一な分布状態で供給することも可能となる。
As described above, in the exhaust gas aftertreatment device in which the mixer 31 and the SCR catalyst 4 are connected to each other via the downstream pipe portion 2e and the taper pipe portion 2c, the first fin 32a and the second fin 32a of the mixer 31 are connected. When the angle at which the flow of the exhaust gas passing through the fin 32b is inclined is α, the inner diameter of the downstream pipe portion 2e is D, and the length is L,
D / 2 × cotα ≦ L ≦ 3/2 × D × cotα
When it is configured to satisfy the condition, a flow along the gradient of the tapered pipe portion 2c can be generated for the exhaust gas that has passed through the downstream side pipe portion 2e and has flowed into the tapered pipe portion 2c. Therefore, in addition to obtaining the same effect as in the first embodiment, ammonia can be supplied to the SCR catalyst 4 in a uniform distribution state.
 また、ミキサー31において、複数の第1のフィン32aが配列された列と複数の第2のフィン32bが配列された列とを一列ずつ交互に配置したので、下流側配管部2eの内部において、互いに異なる方向への排気ガスの流れが交互に隣り合って生じ、アンモニアが効率よく排気ガス中に分散される。さらに、下流側配管部2eは円筒状であるため、ミキサー31を通過して下流側配管部2eの内周面2fに衝突した排気ガスに周方向に沿った流れが与えられ、アンモニアがさらに効率よく排気ガス中に分散される。 Further, in the mixer 31, since the rows in which the plurality of first fins 32a are arranged and the rows in which the plurality of second fins 32b are arranged are alternately arranged one by one, in the downstream side piping section 2e, Exhaust gas flows in directions different from each other occur alternately and ammonia is efficiently dispersed in the exhaust gas. Furthermore, since the downstream side piping part 2e is cylindrical, the flow along the circumferential direction is given to the exhaust gas that has passed through the mixer 31 and collided with the inner peripheral surface 2f of the downstream side piping part 2e, and ammonia is more efficient. It is often dispersed in exhaust gas.
 実施の形態1、2に係る排気ガス後処理装置は、3つの分散部材を備えたものとして構成されたが、分散部材の数を3つに限定するものではない。分散部材の数は、例えば湾曲部の位置や排気管の内径等、主にレイアウト上の要因に応じて適宜変更し得るものであり、分散部材を単一の部材とすることを含め、3つ以外の数に変更することが可能である。 Although the exhaust gas aftertreatment device according to Embodiments 1 and 2 is configured to include three dispersing members, the number of dispersing members is not limited to three. The number of dispersing members can be appropriately changed mainly depending on layout factors such as the position of the curved portion and the inner diameter of the exhaust pipe, and includes three members including a single dispersing member. It is possible to change to a number other than.
 また、実施の形態1、2において分散部材とミキサーとは隣接して配置されたが、これらを離間して配置することも可能である。分散部材とミキサーとが離間することによって排気管の長さは増加するが、ミキサーの上流側で尿素水を予め分散させることができるという効果は、変わらずに得ることができる。 In the first and second embodiments, the dispersive member and the mixer are disposed adjacent to each other. However, they can be disposed apart from each other. Although the length of the exhaust pipe is increased by separating the dispersing member and the mixer, the effect that the urea water can be dispersed in advance on the upstream side of the mixer can be obtained without change.
 実施の形態1、2における各分散部材は互いに異なる長さを有し、噴射ノズルとの距離が遠い位置に最も長い分散部材が配置されたが、このような構成に限定するものではない。噴射ノズルから噴射される尿素水を分散させることが可能であればよいため、レイアウト上の要因により、全ての分散部材が同一の長さを有する場合や、噴射ノズルとの距離が近くなるにつれて分散部材の長さが長くなる場合もある。 Although the respective dispersion members in the first and second embodiments have different lengths and the longest dispersion member is disposed at a position far from the injection nozzle, the present invention is not limited to such a configuration. As long as it is possible to disperse the urea water sprayed from the spray nozzle, it may be dispersed due to layout factors when all the dispersive members have the same length or as the distance from the spray nozzle decreases. The length of the member may become longer.
 また、実施の形態1、2における各分散部材は、排気管の内周面にほぼ当接する幅を有するように構成されたが、内周面から離間するように構成し、ミキサーのみによって支持することも可能である。この場合、外気と接触していることにより比較的温度が低い排気管と分散部材とが離間しているため、分散部材の温度を高温に保って尿素水の加水分解を促進することが可能となる。 In addition, each dispersion member in the first and second embodiments is configured to have a width that substantially contacts the inner peripheral surface of the exhaust pipe, but is configured to be separated from the inner peripheral surface and supported only by the mixer. It is also possible. In this case, since the exhaust pipe having a relatively low temperature and the dispersion member are separated from each other by being in contact with the outside air, it is possible to promote the hydrolysis of urea water by keeping the temperature of the dispersion member at a high temperature. Become.
 また、実施の形態1、2におけるミキサー31は、開口部33に対応して矩形状パイプ部材35を有するように構成されたが、矩形状パイプ部材35を省略して構成することも可能である。また、ミキサー31と分散部材21~23とが離れて配置されていてもよいが、分散部材21~23を通過した排気ガスが、実質そのまま開口部33を通る程度に、ミキサー31と分散部材21~23とが隣接配置されていれば、制御された排気ガスの流れでミキサー31へ排気ガスを導けるので、分散性の向上が期待でき、また小型化も出来るため、より好ましい。 Further, the mixer 31 in the first and second embodiments is configured to have the rectangular pipe member 35 corresponding to the opening 33, but may be configured by omitting the rectangular pipe member 35. . In addition, the mixer 31 and the dispersion members 21 to 23 may be arranged apart from each other, but the mixer 31 and the dispersion member 21 are such that the exhaust gas that has passed through the dispersion members 21 to 23 passes through the opening 33 as it is. ˜23 are adjacent to each other, the exhaust gas can be guided to the mixer 31 with a controlled flow of exhaust gas, so that improvement in dispersibility can be expected and miniaturization can be achieved.

Claims (9)

  1.  内燃機関から排出される排気ガスが流通するとともに、前記排気ガスが流通する方向を湾曲させる湾曲部を有する排気管と、
     前記排気管の内部に還元剤を噴射する還元剤供給装置と、
     前記還元剤供給装置及び前記湾曲部の下流側に配置され、前記排気ガスと前記還元剤とを反応させて前記排気ガスを浄化する還元触媒と
    を備えた排気ガス後処理装置であって、
     前記湾曲部と前記還元触媒との間に配置され、一方の面が前記湾曲部における外周側を向くように設けられた板状の分散部材と、
     前記分散部材と前記還元触媒との間に配置され、前記排気ガスと前記還元剤とを混合する混合手段と
    をさらに備え、
     前記還元剤噴射装置は、前記分散部材の上流側の部位であり、且つ前記分散部材の前記一方の面に向かって前記還元剤を噴射可能な部位に配置される排気ガス後処理装置。
    An exhaust pipe through which exhaust gas discharged from the internal combustion engine flows and has a curved portion that curves the direction in which the exhaust gas flows;
    A reducing agent supply device for injecting a reducing agent into the exhaust pipe;
    An exhaust gas aftertreatment device, which is disposed downstream of the reducing agent supply device and the bending portion, and includes a reduction catalyst that purifies the exhaust gas by reacting the exhaust gas and the reducing agent,
    A plate-like dispersion member disposed between the curved portion and the reduction catalyst and provided so that one surface faces the outer peripheral side of the curved portion;
    A mixing means disposed between the dispersion member and the reduction catalyst, and further mixing the exhaust gas and the reducing agent;
    The reducing agent injection device is an exhaust gas post-processing device that is disposed at a site upstream of the dispersing member and capable of injecting the reducing agent toward the one surface of the dispersing member.
  2.  前記分散部材と前記混合手段とが隣接して配置される請求項1に記載の排気ガス後処理装置。 The exhaust gas aftertreatment device according to claim 1, wherein the dispersing member and the mixing means are disposed adjacent to each other.
  3.  前記排気管は、直線状に延びるとともに前記分散部材及び前記混合手段が配置されるストレート配管部を前記湾曲部と前記還元触媒との間に有しており、
     前記分散部材は、前記ストレート配管部の軸方向に対して平行に延びる請求項1または2に記載の排気ガス後処理装置。
    The exhaust pipe extends straight and has a straight pipe part between the curved part and the reduction catalyst in which the dispersion member and the mixing means are arranged.
    The exhaust gas aftertreatment device according to claim 1 or 2, wherein the dispersion member extends in parallel to an axial direction of the straight pipe portion.
  4.  前記分散部材は複数である請求項1~3のいずれか一項に記載の排気ガス後処理装置。 The exhaust gas aftertreatment device according to any one of claims 1 to 3, wherein there are a plurality of dispersion members.
  5.  前記混合手段は、互いに平行となるように配列されるとともに通過する前記排気ガスの流れを互いに逆向きとなる所定の角度に傾かせる複数の第1のフィン及び複数の第2のフィンを有しており、
     前記混合手段と前記還元触媒とは、前記ストレート配管部の一部、及び上流側から下流側に向かって広くなるように形成されたテーパ配管部を順次介して接続されており、
     前記角度をα、前記ストレート配管部の内径をD、前記混合手段から前記テーパ配管部までの前記ストレート配管部の長さをLとしたときに、
     D/2×cotα≦L≦3/2×D×cotα
    を満たす請求項3または4に記載の排気ガス後処理装置。
    The mixing means includes a plurality of first fins and a plurality of second fins that are arranged so as to be parallel to each other and that incline the flow of the exhaust gas passing therethrough at a predetermined angle that is opposite to each other. And
    The mixing means and the reduction catalyst are sequentially connected through a part of the straight piping portion and a tapered piping portion formed so as to widen from the upstream side to the downstream side,
    When the angle is α, the inner diameter of the straight piping portion is D, and the length of the straight piping portion from the mixing means to the tapered piping portion is L,
    D / 2 × cotα ≦ L ≦ 3/2 × D × cotα
    The exhaust gas aftertreatment device according to claim 3 or 4, satisfying
  6.  前記混合手段には、複数の前記第1のフィンが配列された列と複数の前記第2のフィンが配列された列とが一列ずつ交互に配置される請求項5に記載の排気ガス後処理装置。 The exhaust gas aftertreatment according to claim 5, wherein the mixing unit includes a row in which a plurality of the first fins are arranged and a row in which the plurality of second fins are arranged alternately. apparatus.
  7.  前記ストレート配管部は円筒状である請求項3~6のいずれか一項に記載の排気ガス後処理装置。 The exhaust gas aftertreatment device according to any one of claims 3 to 6, wherein the straight pipe portion is cylindrical.
  8.  前記テーパ配管部が広がる勾配は、前記角度αより小さい請求項5~7のいずれか一項に記載の排気ガス後処理装置。 The exhaust gas aftertreatment device according to any one of claims 5 to 7, wherein a gradient in which the tapered pipe portion spreads is smaller than the angle α.
  9.  前記角度αは45°である請求項5~8のいずれか一項に記載の排気ガス後処理装置。 The exhaust gas aftertreatment device according to any one of claims 5 to 8, wherein the angle α is 45 °.
PCT/JP2012/063195 2011-06-15 2012-05-23 Exhaust gas after-treatment device WO2012172945A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-133295 2011-06-15
JP2011-133297 2011-06-15
JP2011133295A JP2013002335A (en) 2011-06-15 2011-06-15 Exhaust gas after-treatment device
JP2011133297A JP2013002337A (en) 2011-06-15 2011-06-15 Exhaust gas postprocessing device

Publications (1)

Publication Number Publication Date
WO2012172945A1 true WO2012172945A1 (en) 2012-12-20

Family

ID=47356939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063195 WO2012172945A1 (en) 2011-06-15 2012-05-23 Exhaust gas after-treatment device

Country Status (1)

Country Link
WO (1) WO2012172945A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2984310A4 (en) * 2013-04-12 2016-12-21 Scania Cv Ab Method and device for the injection of a reducing agent into a combustion engine exhaust pipe
US10371032B2 (en) * 2016-09-16 2019-08-06 Mazda Motor Corporation Exhaust gas purifier for engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280999A (en) * 2007-05-08 2008-11-20 Friedrich Boysen Gmbh & Co Kg Device for distributing flowable additive in exhaust gas system of internal combustion engine
JP2009024654A (en) * 2007-07-23 2009-02-05 Bosch Corp Exhaust emission control device for internal combustion engine, mixer plate, mixer unit, and press molding device for mixer plate
JP2009138598A (en) * 2007-12-05 2009-06-25 Toyota Motor Corp Additive distribution board structure of exhaust passage
JP2009209822A (en) * 2008-03-05 2009-09-17 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2010031779A (en) * 2008-07-30 2010-02-12 Mitsubishi Motors Corp Exhaust emission control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280999A (en) * 2007-05-08 2008-11-20 Friedrich Boysen Gmbh & Co Kg Device for distributing flowable additive in exhaust gas system of internal combustion engine
JP2009024654A (en) * 2007-07-23 2009-02-05 Bosch Corp Exhaust emission control device for internal combustion engine, mixer plate, mixer unit, and press molding device for mixer plate
JP2009138598A (en) * 2007-12-05 2009-06-25 Toyota Motor Corp Additive distribution board structure of exhaust passage
JP2009209822A (en) * 2008-03-05 2009-09-17 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2010031779A (en) * 2008-07-30 2010-02-12 Mitsubishi Motors Corp Exhaust emission control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2984310A4 (en) * 2013-04-12 2016-12-21 Scania Cv Ab Method and device for the injection of a reducing agent into a combustion engine exhaust pipe
US10371032B2 (en) * 2016-09-16 2019-08-06 Mazda Motor Corporation Exhaust gas purifier for engine

Similar Documents

Publication Publication Date Title
EP3279440B1 (en) Exhaust purification unit
US9217348B2 (en) Exhaust gas purification device
US11465108B2 (en) Dosing and mixing arrangement for use in exhaust aftertreatment
US8397495B2 (en) Exhaust gas additive/treatment system and mixer for use therein
JP5714844B2 (en) Exhaust gas purification device
US10188994B2 (en) Method, apparatus and system for aftertreatment of exhaust gas
JP5655046B2 (en) Mixing / vaporizing device
JP2013002335A (en) Exhaust gas after-treatment device
JP4930796B2 (en) Exhaust gas purification device and exhaust pipe for diesel engine
US20100132345A1 (en) Mixing devices for selective catalytic reduction systems
JP5163755B2 (en) Exhaust gas purification device for internal combustion engine
US9964016B2 (en) Exhaust gas aftertreatment device
US11268424B2 (en) Exhaust gas purification device
JP2013002337A (en) Exhaust gas postprocessing device
WO2017170108A1 (en) Exhaust purification system
JP2010144569A (en) Selective reduction catalyst device
WO2012172945A1 (en) Exhaust gas after-treatment device
WO2012172944A1 (en) Exhaust gas after-treatment device
CN107035480A (en) Hybrid chamber component
US20200003097A1 (en) Scr mixer and scr device comprising same
JP2013002334A (en) Exhaust gas after-treatment device
US11306642B2 (en) Exhaust sensor baffle
JP6756629B2 (en) Exhaust gas purification device
JP6623733B2 (en) Exhaust gas purification device
JP2014231744A (en) Exhaust gas purification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12799871

Country of ref document: EP

Kind code of ref document: A1