WO2012172944A1 - Exhaust gas after-treatment device - Google Patents

Exhaust gas after-treatment device Download PDF

Info

Publication number
WO2012172944A1
WO2012172944A1 PCT/JP2012/063193 JP2012063193W WO2012172944A1 WO 2012172944 A1 WO2012172944 A1 WO 2012172944A1 JP 2012063193 W JP2012063193 W JP 2012063193W WO 2012172944 A1 WO2012172944 A1 WO 2012172944A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
urea water
dispersion member
mixer
exhaust
Prior art date
Application number
PCT/JP2012/063193
Other languages
French (fr)
Japanese (ja)
Inventor
真範 八田
笹谷 亨
昭一 前田
信太郎 川崎
敦 城所
作太郎 星
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011133297A external-priority patent/JP2013002337A/en
Priority claimed from JP2011133294A external-priority patent/JP2013002334A/en
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2012172944A1 publication Critical patent/WO2012172944A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4315Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being deformed flat pieces of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3141Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit with additional mixing means other than injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas aftertreatment device, and more particularly to a configuration for purifying exhaust gas from a diesel engine using a reducing agent.
  • an exhaust gas aftertreatment device that purifies exhaust gas of a diesel engine is a urea selective reduction system (urea SCR system) that purifies nitrogen oxide (NOx) in exhaust gas using urea water as a reducing agent.
  • the urea SCR system includes a reduction catalyst provided in an exhaust pipe, and a reducing agent injection device that injects urea water into the exhaust pipe upstream of the reduction catalyst.
  • the reduction catalyst reacts ammonia (NH 3 ) generated from urea water injected into the exhaust pipe with NOx contained in the exhaust gas, and reduces it to harmless nitrogen (N 2 ) and water (H 2 O). To do.
  • NH 3 ammonia
  • N 2 nitrogen
  • H 2 O water
  • the urea SCR system described in Patent Document 1 includes a mixer unit for mixing exhaust gas and urea water to make the distribution state of urea water uniform.
  • the mixer unit is a plate-like member provided between the reducing agent injection device and the reduction catalyst, and includes a plurality of passages through which exhaust gas and urea water flow, and a plurality of passages formed on the outlet side of each passage. With fins.
  • the reducing agent injection device injects urea water toward the mixer plate, and the urea water atomized by colliding with the mixer plate is dispersed in the exhaust pipe.
  • the dispersed urea water passes through each passage of the mixer plate together with the exhaust gas, and then is mixed with the exhaust gas by the turbulent flow generated by each fin and then supplied to the reduction catalyst.
  • the present invention has been made to solve such problems, and provides an exhaust gas after-treatment device that achieves downsizing while uniformly dispersing the reducing agent in the exhaust gas. Objective.
  • An exhaust gas aftertreatment device includes an exhaust pipe through which exhaust gas discharged from an internal combustion engine flows, a reducing agent supply device that injects a reducing agent into the exhaust pipe, and a downstream side of the reducing agent supply device.
  • a reduction catalyst that purifies the exhaust gas by reacting the exhaust gas and the reducing agent, and inside the exhaust pipe, a plate-like dispersion member disposed at a portion facing the reducing agent supply means;
  • a mixing means is provided between the dispersion member and the reduction catalyst, and a mixing means for mixing the exhaust gas and the reducing agent is provided.
  • the dispersion member and the mixing means are arranged adjacent to each other.
  • adjacent includes the case where the dispersing member and the mixing means are integrally formed and the case where they are arranged separately as separate parts.
  • the range of the distance at which the dispersing member and the mixing means are separated is such that the flow of the exhaust gas does not substantially change between these members. For example, the distance is separated by a distance of 10% or less with respect to the diameter of the exhaust pipe. .
  • the reducing agent supply device injects the reducing agent in a direction perpendicular to the direction in which the exhaust gas flows through the exhaust pipe.
  • the vertical is not necessarily strictly vertical as long as it is less susceptible to changes in the flow of exhaust gas.
  • the vertical component of the penetrating force of the injected reducing agent tends to weaken. Therefore, the range of about ⁇ 5 degrees to 5 degrees, which is a range in which the vertical component is less affected by the flow of exhaust gas, can be set.
  • the dispersion member can be extended in parallel to the direction in which the exhaust gas flows through the exhaust pipe.
  • parallel does not need to be strictly parallel and includes an angle at which pressure loss can be ignored.
  • the dispersion member can be a single member. Further, the dispersion member can have a width capable of contacting the inner peripheral surface of the exhaust pipe.
  • the mixing means has a plurality of first fins and a plurality of second fins which are arranged so as to be parallel to each other and which incline the flow of exhaust gas passing therethrough at a predetermined angle which is opposite to each other.
  • the mixing means and the reduction catalyst are connected to each other through a straight piping portion that extends in a straight line and a tapered piping portion that is formed so as to widen from the upstream side to the downstream side.
  • a row in which a plurality of first fins are arranged and a row in which a plurality of second fins are arranged are alternately arranged one by one.
  • the straight piping part can be made into a cylindrical shape.
  • the gradient at which the tapered pipe portion spreads can be made smaller than the angle ⁇ , and the angle ⁇ can be set to 45 °.
  • the exhaust gas aftertreatment device can be miniaturized while the reducing agent is uniformly dispersed in the exhaust gas.
  • FIG. 1 is a cross-sectional side view schematically showing a configuration of an exhaust gas aftertreatment device according to Embodiment 1.
  • FIG. FIG. 2 is a perspective view schematically showing a dispersion member and mixing means in the exhaust gas aftertreatment device according to Embodiment 1, wherein (a) is a perspective view seen from the downstream side in the exhaust gas flow direction, and (b) is an upstream side. It is the perspective view seen from the side.
  • FIG. 4 is a cross-sectional view taken along IV-IV in FIG. 2. It is a cross-sectional side view which shows roughly the structure of the exhaust-gas aftertreatment apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 6 is a schematic diagram for explaining the flow of exhaust gas generated inside a straight piping section in an exhaust gas aftertreatment device according to Embodiment 3.
  • FIG. 9 is a schematic diagram for explaining the flow of exhaust gas generated inside a straight pipe portion and a taper pipe portion in an exhaust gas aftertreatment device according to Embodiment 3.
  • 6 is a graph showing the transition of the CV value when the length of the straight pipe portion is changed with respect to the exhaust gas aftertreatment device according to Embodiment 3.
  • FIG. 6 is a cross-sectional view showing a modification of the exhaust gas aftertreatment device according to Embodiment 1.
  • FIG. 6 is a cross-sectional view showing a modification of the exhaust gas aftertreatment device according to Embodiment 1.
  • FIG. 1 schematically shows the configuration of an exhaust system of a diesel engine provided with the exhaust gas aftertreatment device according to the first embodiment.
  • An exhaust pipe 2 is connected to the diesel engine 1 which is an internal combustion engine, and the exhaust gas discharged from the diesel engine 1 into the exhaust pipe 2 is in the direction indicated by the arrow A with the diesel engine 1 side as the upstream side. Circulate.
  • An oxidation catalyst 3 that oxidizes carbon monoxide (CO), hydrocarbon (HC), and the like contained in the exhaust gas is provided in the middle of the exhaust pipe 2.
  • An SCR catalyst 4 that is a reduction catalyst for purifying nitrogen oxide (NOx) contained in the exhaust gas is provided on the downstream side of the oxidation catalyst 3.
  • the SCR catalyst 4 is a catalyst that purifies NOx by reacting ammonia (NH 3 ) generated from urea water, which is a reducing agent added to the exhaust gas, and the exhaust gas.
  • an injection nozzle 5 is provided as a reducing agent supply device that injects urea water into the exhaust pipe 2.
  • a urea water tank 6 that stores urea water therein and a urea water addition system 7 that supplies urea water in the urea water tank 6 to the injection nozzle 5 are connected to the injection nozzle 5 via a connection pipe 8. ing.
  • the urea water addition system 7 is electrically connected to an ECU 9 that controls the operation of the diesel engine 1 and the exhaust gas aftertreatment device.
  • a NOx sensor 11 and a NOx sensor 12 for detecting the amount of NOx contained in the exhaust gas are provided on the upstream side and the downstream side of the SCR catalyst 4, and these NOx sensors are electrically connected to the ECU 9. ing.
  • the ECU 9 determines the injection amount and the injection timing of the urea water from the injection nozzle 5 based on the NOx amount detected by the NOx sensors 11 and 12, and outputs a signal based on the injection amount to the urea water addition system 7 to thereby inject the injection nozzle. 5 controls the injection of urea water.
  • a filter 13 for collecting particulate matter (PM) contained in the exhaust gas is provided on the downstream side of the SCR catalyst 4.
  • PM particulate matter
  • a slip catalyst 14 is provided on the downstream side of the filter 13, for example, when the amount of ammonia is excessive with respect to the amount of NOx contained in the exhaust gas, the ammonia that has passed through the SCR catalyst 4 without being reacted is removed.
  • a slip catalyst 14 is provided on the downstream side of the slip catalyst 14, and the exhaust gas that has passed through the slip catalyst 14 is released into the atmosphere after the exhaust noise is reduced inside the muffler.
  • urea water injected from the injection nozzle 5 is atomized and dispersed in the exhaust pipe 2 on the upstream side of the SCR catalyst 4 inside the exhaust pipe 2.
  • a dispersion member 21 for mixing and a mixer 31 which is a mixing means for mixing the urea water dispersed by the dispersion member 21 into the exhaust gas.
  • the configuration of the dispersion member 21 and the mixer 31 will be described in detail with reference to FIGS.
  • the vertical direction in the exhaust gas aftertreatment device is defined by the arrows shown in FIG.
  • the dispersion member 21 is a flat plate-like member disposed at a portion facing the injection nozzle 5, and is provided so as to extend in parallel to the exhaust gas flow direction indicated by the arrow A. ing.
  • the length of the dispersion member 21 in the flow direction is a length in which all urea water injected from the injection nozzle 5 collides with the dispersion member 21.
  • the mixer 31 is a substantially disk-shaped member disposed adjacent to the downstream end of the dispersion member 21, and is provided so as to be perpendicular to the flow direction of the exhaust gas.
  • the exhaust pipe 2 is divided into an upstream pipe 2a and a downstream pipe 2b, and the outer peripheral portion of the mixer 31 is held between them.
  • the injection nozzle 5 injects urea water F indicated by a one-dot chain line in a direction substantially perpendicular to the flow direction of the exhaust gas, that is, in a direction substantially perpendicular to the dispersion member 21. F is directly collided with the dispersion member 21.
  • a plurality of first fins 32a and a plurality of first fins 32a and a plurality of first fins 32a are bent at portions located inside the exhaust pipe 2 in the mixer 31 by bending a trapezoidal cut that is partially connected.
  • Two fins 32b are formed.
  • the mixer 31 has a plurality of openings 33 formed by bending these fins 32 a and 32 b, and exhaust gas flowing from the upstream side of the mixer 31 passes through these openings 33. Circulate downstream.
  • the mixer 31 according to the first embodiment has a rectangular pipe member 35 (see FIG. 3B) disposed on the upstream side corresponding to each opening 33, and the dispersion member 21. The exhaust gas that has passed through passes through the opening 33 as it is through the rectangular pipe member 35.
  • the first fin 32a and the second fin 32b are bent in directions opposite to each other, and the first fin 32a is bent so that the front end portion thereof faces obliquely upward.
  • the 2nd fin 32b is bent so that the front-end
  • the fins 32a and 32b are parallel to each other in a row in which a plurality of first fins 32a are arranged in the vertical direction and a row in which the plurality of second fins 32b are arranged in the vertical direction. It is arranged alternately one row at a time. That is, the mixer 31 in the present embodiment is a device that mixes the fluid that passes by changing the flow of the exhaust gas upward and downward. Further, as shown in FIG. 3B, a pair of support portions 34 projecting to the upstream side are joined to the upstream surface 31 a of the mixer 31, and both sides of the dispersion member 21 are joined by these support portions 34. The part is supported.
  • the dispersion member 21 is disposed so as to pass through the central portion in the exhaust pipe 2 and has a width W that is substantially the same as the inner diameter of the exhaust pipe 2. Accordingly, the portion where the dispersion member 21 is disposed in the exhaust pipe 2 is in a state of being divided into a region R1 on the upper side of the dispersion member 21, that is, the region R2 on the injection nozzle 5 side, and a region R2 on the lower side.
  • the urea water F injected from the injection nozzle 5 is dispersed in the region R1 without flowing into the region R2.
  • Part of the exhaust gas that has passed through the oxidation catalyst 3 flows through the region R1, and the remaining part flows through the region R2.
  • the NOx sensor 11 provided on the upstream side of the SCR catalyst 4 (see FIG. 1) is provided so as to be positioned below the dispersion member 21 and is separated from the injection nozzle 5 by the dispersion member 21. .
  • the upper side and the lower side divided by the dispersion member 21 correspond to the upper side and the lower side where the fins 32a and 32b of the mixer 31 change the flow of the exhaust gas.
  • the dispersion member 21 is disposed at a portion facing the injection nozzle 5, and the urea water F injected from the injection nozzle 5 directly collides with the dispersion member 21.
  • the urea water thus dispersed is dispersed in the exhaust gas flowing through the region R1.
  • the dispersion member 21 is disposed adjacent to the mixer 31, the urea water dispersed in the exhaust gas by colliding with the dispersion member 21 is immediately supplied to the mixer 31 by the flow of the exhaust gas. Is done.
  • urea water is generally injected obliquely toward the mixer 31.
  • the exhaust gas aftertreatment device disperses urea water using the dispersion member 21 disposed at a portion facing the injection nozzle 5, and disposes the dispersion member 21 and the mixer 31 adjacent to each other.
  • the distance between the injection nozzle 5 and the mixer 31 can be shortened.
  • the distance between the oxidation catalyst 3 (see FIG. 1) and the SCR catalyst 4 is also shortened, so that the exhaust gas aftertreatment device can be miniaturized to improve the mountability on the vehicle.
  • the apparatus since the apparatus is downsized, the temperature drop until the exhaust gas reaches the SCR catalyst 4 is suppressed, so that the NOx purification by the SCR catalyst 4 can be performed efficiently.
  • the exhaust gas aftertreatment device As shown in FIG. 1, when the operation of the diesel engine 1 is started, the exhaust gas discharged into the exhaust pipe 2 flows in the direction indicated by the arrow A and passes through the oxidation catalyst 3. During this passage, carbon monoxide (CO), hydrocarbon (HC), etc. contained in the exhaust gas are oxidized by the oxidation catalyst 3 and at the same time, a part of nitrogen monoxide (NO) is nitrogen dioxide (NO 2 ). It is oxidized to. Further, when the operation of the diesel engine 1 is started, the ECU 9 outputs a signal to the urea water addition system 7 and starts injection of urea water by the injection nozzle 5.
  • CO carbon monoxide
  • HC hydrocarbon
  • NO 2 nitrogen dioxide
  • part of the exhaust gas that has passed through the oxidation catalyst 3 flows through the region R1 partitioned by the dispersion member 21 on the injection nozzle 5 side (see arrow A1), and the remaining part is on the lower side. Is distributed (see arrow A2).
  • the urea water F injected from the injection nozzle 5 is added to the exhaust gas flowing through the region R1. Since the dispersion member 21 is provided at a portion facing the injection nozzle 5, the urea water F injected from the injection nozzle 5 directly collides with the dispersion member 21, and the urea water atomized by colliding with the dispersion member 21 is formed. Dispersed in the exhaust gas flowing through the region R1.
  • the dispersing member 21 and the mixer 31 are disposed adjacent to each other, the urea water dispersed in the region R1 is immediately supplied to the mixer 31 by the flow of the exhaust gas.
  • the urea water dispersed in the exhaust gas is hydrolyzed by the heat of the exhaust gas in the process of flowing downstream, thereby generating ammonia.
  • the dispersion member 21 is disposed so as to pass through the central portion in the exhaust pipe 2, it is efficiently heated by the heat of the exhaust gas, and further promotes hydrolysis of urea water.
  • the exhaust gas flowing through the region R2 side is supplied to the mixer 31 as it is.
  • the exhaust gas and urea water flowing from the region R1 side and the exhaust gas flowing from the region R2 side are mixed by the turbulent flow generated when they pass through the fins 32a and 32b of the mixer 31, thereby The urea water is uniformly mixed with the exhaust gas flowing through the exhaust pipe 2.
  • the SCR catalyst 4 reacts with the ammonia and the exhaust gas to convert NOx contained in the exhaust gas into harmless nitrogen (N 2 ). Reduce to water (H 2 O). Since the dispersion member 21 is a flat plate member and is provided so as to be parallel to the exhaust gas flow direction, NOx purification can be performed without increasing the exhaust gas pressure loss. Can do.
  • the injection nozzle 5 injects urea water in a direction perpendicular to the direction in which the exhaust gas flows (in this embodiment, perpendicular to the dispersion member 21), urea water is injected into the exhaust gas.
  • urea water is injected into the exhaust gas.
  • the range in which the injected urea water collides with the mixer 31 has a high exhaust gas flow rate. Since it becomes narrow as it becomes, the range where urea water is disperse
  • the urea water when the urea water is injected perpendicularly to the direction in which the exhaust gas circulates, the injected urea water collides with the dispersion member 21 even when the flow rate of the exhaust gas increases, so that the urea water is reliably dispersed. It is possible. In other words, even if the flow rate of the exhaust gas changes, the dispersion characteristics hardly change.
  • the dispersion member 21 has a width W (see FIG. 4) that is substantially the same as the inner diameter of the exhaust pipe 2, and divides the interior of the exhaust pipe 2 into a region R1 and a region R2. That is, since the urea water injected from the injection nozzle 5 is not supplied to the region R2 side, the amount of urea water adhering to the inner peripheral surface of the exhaust pipe 2 is reduced.
  • the exhaust pipe 2 is heated by the exhaust gas flowing through the inside thereof.
  • the outer peripheral surface of the exhaust pipe 2 is cooled by the outside air, for example, the exhaust immediately after the diesel engine 1 (see FIG. 1) is started. The temperature of the pipe 2 is lower than the temperature of the exhaust gas.
  • urea water adheres to the inner peripheral surface of the exhaust pipe 2 in such a state, hydrolysis does not occur, the water of the urea water evaporates and urea remains, and the remaining urea accumulates on the inner peripheral surface of the exhaust pipe. Sometimes. That is, since the accumulated urea does not reach the SCR catalyst 4, the amount of ammonia that is originally required is not supplied to the SCR catalyst 4, and it is necessary to increase the amount of urea water added.
  • the inside of the exhaust pipe 2 is partitioned into the region R1 and the region R2 by the dispersing member 21, and the amount of urea water adhering to the inner peripheral surface of the exhaust pipe 2 is reduced.
  • the dispersion member 21 is disposed so as to pass through the central portion of the exhaust pipe 2, that is, a portion that becomes high in temperature, the dispersion member 21 is quickly heated without being influenced by the temperature of the exhaust pipe 2.
  • the dispersion member 21 is shorter than the exhaust pipe 2 in the flow direction of the exhaust gas and has a small heat capacity, it is easily heated by the exhaust gas. Therefore, the generation of ammonia from the urea water adhering to the dispersion member 21 is not hindered due to the low temperature of the exhaust pipe 2.
  • the NOx sensor 11 provided on the upstream side of the SCR catalyst 4 usually contains fine ceramics such as zirconia as a material. Further, since the NOx sensor 11 is exposed to the exhaust gas flowing inside the exhaust pipe 2, it operates at a high temperature of, for example, 600 ° C to 1000 ° C. When urea water adheres to the NOx sensor 11 operating at such a high temperature, a sudden temperature change occurs, so-called thermal shock is applied, and breakage such as cracking may occur.
  • the NOx sensor 11 is generally provided at a predetermined distance on the upstream side of the injection nozzle 5 so that the urea water F does not adhere.
  • the upstream NOx sensor 11 in the present invention is separated from the injection nozzle 5 by the dispersion member 21, the upstream NOx sensor 11 is not damaged due to adhesion of the urea water F, and is disposed in the vicinity of the injection nozzle 5. It is possible to do. Therefore, the distance between the oxidation catalyst 3 (see FIG. 1) and the SCR catalyst 4 can be further shortened to reduce the size of the apparatus.
  • the upper side and the lower side divided by the dispersing member 21 correspond to the upper side and the lower side where the first fin 32a and the second fin 32b of the mixer 31 change the flow of the exhaust gas. Accordingly, urea water or hydrolyzed ammonia that has collided with the dispersion member 21 disposed so as to pass through the central portion in the exhaust pipe 2 is dispersed from the mixer 31 upward and downward to be dispersed throughout. .
  • the exhaust gas that has passed through the SCR catalyst 4 passes through the filter 13, and particulate matter contained in the exhaust gas is removed at that time. If the exhaust gas that has passed through the filter 13 contains excess ammonia, the excess ammonia is removed by the slip catalyst 14.
  • the exhaust gas that has passed through the slip catalyst 14 is reduced in noise inside a muffler (not shown) and released into the atmosphere.
  • the NOx sensors 11 and 12 detect the NOx concentration on the upstream side and the downstream side of the SCR catalyst 4 as needed, and the ECU 9 uses the injection nozzle 5 based on the NOx concentration detected by these NOx sensors. The injection amount of the urea water F is controlled.
  • the plate-like dispersion member 21 is provided at the portion facing the injection nozzle 5, the urea water injected from the injection nozzle 5 directly collides with the dispersion member 21.
  • the reducing agent that collides with the dispersing member 21 and atomized is dispersed in the exhaust pipe 2, mixed with the exhaust gas by the mixer 31, and then supplied to the SCR catalyst 4. Since the urea water is dispersed by the dispersing member 21, the distance between the injection nozzle 5 and the mixer 31 in order to widen the injection range of the urea water as in the case of injecting the urea water toward the mixer 31. There is no need to take large.
  • the dispersion member 21 and the mixer 31 are disposed adjacent to each other, it is not necessary to lengthen the exhaust pipe in order to provide the dispersion member 21. Therefore, it is possible to reduce the size of the exhaust gas aftertreatment device while uniformly dispersing urea water in the exhaust gas.
  • the injection nozzle 5 injects urea water in a direction perpendicular to the direction in which the exhaust gas flows, the influence of the flow of exhaust gas until the injected urea water collides with the dispersion member 21. It becomes difficult to receive. Therefore, the urea water can be reliably collided with the dispersion member 21 and efficiently dispersed in the exhaust gas.
  • the dispersion member 21 is provided so as to extend in parallel to the direction in which the exhaust gas flows through the inside of the exhaust pipe 2, it is possible to supply urea water to the mixer 31 without increasing the pressure loss. Become.
  • the exhaust gas aftertreatment device according to the first embodiment includes the single dispersion member 21, whereas the first dispersion member and the plurality of the dispersion members are described below. And a second dispersion member.
  • the same reference numerals as those in FIGS. 1 to 4 are the same or similar components, and detailed description thereof will be omitted.
  • five dispersion members 41 a to 41 e each having a flat plate shape are arranged in a state of being arranged in the vertical direction at a portion facing the injection nozzle 5 in the exhaust pipe 2. Yes. Further, a mixer 31 is provided so as to be adjacent to the downstream end portions of the dispersion members 41a to 41e.
  • the first dispersing member 41a located on the lowermost side is a flat plate-like member similar to the dispersing member 21 in the first embodiment.
  • the four second dispersion members 41b to 41e provided on the upper side of the first dispersion member 41a are flat members in which a plurality of through holes 42 are formed, and urea water injected from the injection nozzle 5 F can be sequentially passed from the upper side to the lower side.
  • a part of the urea water F injected to the upper surface of the uppermost second dispersion member 41e is dispersed in the exhaust gas by colliding with the second dispersion member 41e, and the remaining part is in the through hole 42. Pass through.
  • part of the urea water that has passed through the through hole 42 of the second dispersion member 41e is dispersed in the exhaust gas by colliding with the second dispersion member 41d, and the remaining part is dispersed in the second dispersion member 41c, It passes through 41b sequentially and finally collides with the first dispersion member 41a.
  • the urea water F can be widely dispersed in the exhaust pipe 2 by reducing the amount of the urea water F passing through the through holes 42 of the second dispersion members 41b to 41e by, for example, 20%. It is possible. Other configurations are the same as those in the first embodiment.
  • the exhaust gas aftertreatment device can be reduced in size.
  • Embodiment 3 FIG. Next, an exhaust gas aftertreatment device according to Embodiment 3 of the present invention will be described.
  • the dimensional regulations described below are added to the exhaust pipe 2 and the mixer 31 of the exhaust gas aftertreatment device according to the first embodiment.
  • the diameter of the SCR catalyst 4 located on the downstream side of the mixer 31 is larger than the diameter of the downstream piping part 2b, and the downstream piping part 2b and the SCR catalyst 4 are directed from the upstream side to the downstream side.
  • a tapered pipe portion 2c formed so as to spread in a tapered shape. That is, the mixer 31 and the SCR catalyst 4 are connected to each other via the downstream pipe portion 2b and the taper pipe portion 2c that extend linearly.
  • the downstream side piping section 2b constitutes a straight piping section of the exhaust gas aftertreatment device according to the third embodiment.
  • the bent directions of the first fin 32a and the second fin 32b are opposite to each other, but the angle is a common angle ⁇ . That is, the mixer 31 tilts the flow of exhaust gas (see arrow A) before passing through the mixer 31 by an angle ⁇ in the vertical direction opposite to each other by the first fin 32a and the second fin 32b. is there.
  • the angle ⁇ at which the first fin 32a and the second fin 32b are bent in the mixer 31, that is, the angle ⁇ at which the fins 32a and 32b incline the flow of the exhaust gas is set to 45 °.
  • the internal diameter D of the downstream piping part 2b which connects the mixer 31 and the taper piping part 2c is set to 66 mm.
  • the length L of the downstream pipe portion 2b is defined in accordance with the angle ⁇ and the inner diameter D, and the following ( 1) It is set to satisfy the equation.
  • the length L of the downstream pipe portion 2b eventually satisfies the following equation (2).
  • the length L of the downstream pipe portion 2b is set to 43 mm that satisfies the above equations (1) and (2).
  • the exhaust gas aftertreatment device configured as described above, in order to efficiently reduce NOx by the SCR catalyst 4, it is necessary to supply ammonia to the entire surface of the SCR catalyst 4 in a uniform distribution state. Become. For that purpose, it is necessary to uniformly disperse ammonia in the exhaust gas and to diffuse the exhaust gas in the tapered pipe portion 2c.
  • the first fin 32a and the second fin 32b of the mixer 31 are bent in the vertical direction opposite to each other, and the flow of exhaust gas passing therethrough. Tilt up and down.
  • the fins 32a and 32b are arranged such that a plurality of first fins 32a arranged in the vertical direction and a plurality of second fins 32b arranged in the vertical direction are arranged with each other. They are arranged one by one alternately so as to be parallel.
  • the exhaust gas that has collided with the inner peripheral surface 2d has a cross section perpendicular to the axial direction of the downstream pipe portion 2b.
  • a circulating flow is provided.
  • ammonia can be efficiently dispersed in the exhaust gas flowing through the downstream side piping portion 2b.
  • the exhaust gas that has passed through the mixer 31 is given a flow inclined at an angle ⁇ in the vertical direction by the first fin 32a and the second fin 32b, as indicated by the arrow C1.
  • the exhaust gas that has collided with the inner peripheral surface 2d of the downstream pipe portion 2b goes straight along the axial direction of the downstream pipe portion 2b.
  • the timing at which the exhaust gas that has passed through the first fin 32a and the second fin 32b collides with the inner peripheral surface 2d of the downstream pipe portion 2b varies depending on the positions of the fins 32a and 32b.
  • the flow of exhaust gas along the axial direction and the flow of exhaust gas inclined at an angle ⁇ coexist in the downstream side piping section 2b.
  • the exhaust gas that has passed through the first fin 32a located on the uppermost side collides with the inner peripheral surface 2d at the earliest timing (see the arrow C1). As the position of the first fin 32a becomes lower, the timing of the collision is delayed (see arrow C2). Further, when the position of the first fin 32a is further on the lower side, the exhaust gas that has passed therethrough does not collide with the inner peripheral surface 2d, but flows in a direction (see arrow C3) directly flowing into the tapered pipe portion 2c.
  • the second fin 32b is the same except that the direction is reversed.
  • the flow angle of the exhaust gas flowing through the downstream pipe portion 2b and flowing into the tapered pipe portion 2c is the angle ⁇ at which the first fin 32a and the second fin 32b tilt the flow of the exhaust gas, and the downstream side
  • the inner diameter D and the distance L (see FIG. 6) of the pipe portion 2b are satisfied, and these satisfy the above-described equations (1) and (2), the flow of exhaust gas along the axial direction (arrow) C1, C2) and the flow of exhaust gas inclined with respect to the axial direction (arrow C3) are balanced.
  • the angle ⁇ of the gradient of the tapered pipe portion 2c is smaller than the angle ⁇ , a flow substantially along the angle ⁇ is given to the exhaust gas that has passed through the downstream side pipe portion 2b. Accordingly, since the ammonia dispersed in the exhaust gas in the downstream pipe portion 2b is diffused along the gradient of the taper pipe portion 2c, the ammonia can be supplied to the SCR catalyst 4 in a uniform distribution state. It becomes.
  • the transition of the distribution state of ammonia supplied to the SCR catalyst 4 the transition of the so-called in-plane uniformity is measured. Is shown in FIG.
  • the exhaust gas flow rate was 52 (g / s), and the exhaust gas temperature was 423 (° C.).
  • the preferred range of the length L is 33 (mm) ⁇ L ⁇ 99 (mm) In such a range, the CV value can be made less than 10%.
  • CV value (variation coefficient: number obtained by dividing the standard deviation by the average ⁇ 100), which is one of the indexes indicating the in-plane uniformity, with the length L of the downstream pipe portion 2b as the horizontal axis. It is the graph which made the vertical axis
  • the CV value gradually increases as the length L increases. This is because the flow in the direction along the axial direction of the downstream pipe portion 2b (see arrows C1 and C2 in FIG. 8) becomes too strong as the length L increases, so that the exhaust gas flowing into the tapered pipe portion 2c. Is not diffused along the taper shape but goes straight as it is and is supplied only to the vicinity of the center of the SCR catalyst 4.
  • the angle ⁇ , the inner diameter D, and the length L satisfy the above-described formulas (1) and (2), ammonia is supplied to the SCR catalyst 4 in a uniform distribution state from FIG. Can also be confirmed.
  • the first fin 32a and the second fin 32a of the mixer 31 are connected.
  • the angle at which the flow of the exhaust gas passing through the fin 32b is inclined is ⁇
  • the inner diameter of the downstream side pipe portion 13 is D
  • the length is L, D / 2 ⁇ cot ⁇ ⁇ L ⁇ 3/2 ⁇ D ⁇ cot ⁇
  • the mixer 31 since the rows in which the plurality of first fins 32a are arranged and the rows in which the plurality of second fins 32b are arranged are alternately arranged one by one, in the downstream side piping section 2b, Exhaust gas flows in directions different from each other occur alternately and ammonia is efficiently dispersed in the exhaust gas. Furthermore, since the downstream side piping part 2b is cylindrical, the flow along the circumferential direction is given to the exhaust gas that has passed through the mixer 31 and collided with the inner peripheral surface 2d of the downstream side piping part 2b, so that ammonia is more efficient. It is often dispersed in exhaust gas.
  • the injection nozzle 5 as the reducing agent supply device is configured to inject urea water in a direction perpendicular to the dispersion member 21, but limits the direction in which urea water is injected. is not. For example, even if the spray nozzle 5 ′ and the spray nozzle 5 ′′ shown in FIG. 10 are provided at an angle with respect to the dispersion member 21, the urea water directly collides with the dispersion member 21, so that the same.
  • both of the exhaust gas is discharged until the injected reducing agent collides with the dispersion member. Less affected by flow.
  • the dispersion member 21 in the first and third embodiments is arranged so as to be parallel to the flow direction of the exhaust gas.
  • the dispersion member 51 shown in FIG. It is also possible to make an angle with respect to it. In this case, the pressure loss increases, but the dispersibility can be adjusted by adjusting the direction of the exhaust gas flowing into the mixer.
  • the dispersion member does not directly contact the exhaust pipe 2 at the end portion, and may be separated.
  • the dispersion member may be supported only by the mixer.
  • the temperature of the dispersion member can be kept high because it is in contact with the outside air and separated from the exhaust pipe 2 having a relatively low temperature.
  • the end portion may be directly supported by the exhaust pipe 2 without being supported by the mixer.
  • the dispersion member 21 is disposed so as to pass through the central portion in the exhaust pipe 2, but the configuration is not limited thereto. What is necessary is just to oppose the injection nozzle 5 and to arrange
  • the position of the dispersion member 21 for example, the surface on which the urea water collides may be arranged at the center of the mixer.
  • the first fins and the second fins of the mixer are arranged so as to be alternately arranged one by one, but the arrangement of these fins is not limited.
  • the first and second fins only need to be able to change the flow angle of the exhaust gas passing therethrough.
  • the first fin row and the second fin row are alternately arranged in two rows. Other arrangements are also possible.
  • dimensional regulations are added to the exhaust pipe 2 and the mixer 31 of the exhaust gas aftertreatment device according to the first embodiment provided with a single dispersion member.
  • the present invention is not limited to this configuration. Absent. It is also possible to add dimensions to the exhaust pipe 2 and the mixer 31 of the exhaust gas aftertreatment device according to Embodiment 2 including a plurality of second dispersion members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Upstream of an SCR catalyst (4) in an exhaust gas pipe (2) are provided a dispersion member (21) for dispersing urea water injected from an injection nozzle (5) in the exhaust gas pipe (2), and a mixer (31) for mixing the dispersed urea water into the exhaust gas. The dispersion member (21), a flat member arranged in a position facing the injection nozzle (5), extends parallel to the flow direction of the exhaust gas. Meanwhile, the mixer (31), a substantially disk-shaped member through which exhaust gas and urea water can flow, and is disposed perpendicular to the flow direction of the exhaust gas. The dispersion member (21) and the mixer (31) are adjacent, and urea water impinging on and dispersed by the dispersion member (21) is immediately supplied to the mixer (31).

Description

排気ガス後処理装置Exhaust gas aftertreatment device
 この発明は排気ガス後処理装置に係り、特に、還元剤を用いてディーゼルエンジンの排気ガスを浄化する構成に関する。 The present invention relates to an exhaust gas aftertreatment device, and more particularly to a configuration for purifying exhaust gas from a diesel engine using a reducing agent.
 ディーゼルエンジンの排気ガスを浄化する排気ガス後処理装置の一例として、尿素水を還元剤として排気ガス中の窒素酸化物(NOx)を浄化する尿素選択還元システム(尿素SCRシステム)が挙げられる。例えば特許文献1に記載されているように、尿素SCRシステムは、排気管に設けられた還元触媒と、還元触媒の上流側で尿素水を排気管内に噴射する還元剤噴射装置とを備えている。還元触媒は、排気管内に噴射された尿素水から生成されるアンモニア(NH3)と排気ガスに含まれるNOxとを反応させ、無害な窒素(N2)と水(H2O)とに還元するものである。この還元を効率よく行うためには、還元触媒に対して尿素水を均一な分布状態で供給することが必要となる。 An example of an exhaust gas aftertreatment device that purifies exhaust gas of a diesel engine is a urea selective reduction system (urea SCR system) that purifies nitrogen oxide (NOx) in exhaust gas using urea water as a reducing agent. For example, as described in Patent Document 1, the urea SCR system includes a reduction catalyst provided in an exhaust pipe, and a reducing agent injection device that injects urea water into the exhaust pipe upstream of the reduction catalyst. . The reduction catalyst reacts ammonia (NH 3 ) generated from urea water injected into the exhaust pipe with NOx contained in the exhaust gas, and reduces it to harmless nitrogen (N 2 ) and water (H 2 O). To do. In order to perform this reduction efficiently, it is necessary to supply urea water with a uniform distribution to the reduction catalyst.
 また、特許文献1に記載の尿素SCRシステムは、排気ガスと尿素水とを混合して尿素水の分布状態を均一とするためのミキサーユニットを備えている。ミキサーユニットは、還元剤噴射装置と還元触媒との間に設けられたプレート状の部材であって、排気ガス及び尿素水が流通する複数の通路と、各通路の出口側に形成された複数のフィンとを有している。還元剤噴射装置は、尿素水をミキサープレートに向かって噴射し、ミキサープレートに衝突して微粒化した尿素水が排気管内に分散される。分散された尿素水は、排気ガスとともにミキサープレートの各通路を通過し、次いで、各フィンが発生させる乱流によって排気ガスに混合されてから還元触媒に供給される。 Also, the urea SCR system described in Patent Document 1 includes a mixer unit for mixing exhaust gas and urea water to make the distribution state of urea water uniform. The mixer unit is a plate-like member provided between the reducing agent injection device and the reduction catalyst, and includes a plurality of passages through which exhaust gas and urea water flow, and a plurality of passages formed on the outlet side of each passage. With fins. The reducing agent injection device injects urea water toward the mixer plate, and the urea water atomized by colliding with the mixer plate is dispersed in the exhaust pipe. The dispersed urea water passes through each passage of the mixer plate together with the exhaust gas, and then is mixed with the exhaust gas by the turbulent flow generated by each fin and then supplied to the reduction catalyst.
特開2009-24654号公報JP 2009-24654 A
 特許文献1に記載のミキサープレート単体で尿素水を均一に分散させるためには、還元剤噴射装置から噴射される尿素水をミキサーユニットの全面に対して衝突させる必要がある。ここで、通常、還元剤噴射装置は尿素水を円錐状に噴射する。したがって、尿素水をミキサーユニットの全面に衝突させるためには、尿素水の噴射範囲が十分に広がるように、還元剤噴射装置とミキサーユニットとの間に距離をとる必要がある。すなわち、特許文献1に記載の尿素SCRシステムでは、ミキサーユニットの上流側の排気管を短くすることができず、装置全体を小型化することが困難であるという問題点を有していた。 In order to uniformly disperse urea water with a single mixer plate described in Patent Document 1, it is necessary to make urea water injected from the reducing agent injection device collide with the entire surface of the mixer unit. Here, the reducing agent injection device normally injects urea water in a conical shape. Therefore, in order for the urea water to collide with the entire surface of the mixer unit, it is necessary to provide a distance between the reducing agent injection device and the mixer unit so that the injection range of the urea water is sufficiently widened. That is, the urea SCR system described in Patent Document 1 has a problem that the exhaust pipe on the upstream side of the mixer unit cannot be shortened and it is difficult to downsize the entire apparatus.
 この発明は、このような問題点を解決するためになされたもので、排気ガスに対して還元剤を均一に分散させつつ、小型化することを実現した排気ガス後処理装置を提供することを目的とする。 The present invention has been made to solve such problems, and provides an exhaust gas after-treatment device that achieves downsizing while uniformly dispersing the reducing agent in the exhaust gas. Objective.
 この発明に係る排気ガス後処理装置は、内燃機関から排出される排気ガスが流通する排気管と、排気管の内部に還元剤を噴射する還元剤供給装置と、還元剤供給装置の下流側に配置され、排気ガスと還元剤とを反応させて排気ガスを浄化する還元触媒とを備え、排気管の内部には、還元剤供給手段に対向する部位に配置される板状の分散部材と、分散部材と還元触媒との間に配置され、排気ガスと還元剤とを混合する混合手段とが設けられ、分散部材と混合手段とは、隣接して配置される。 An exhaust gas aftertreatment device according to the present invention includes an exhaust pipe through which exhaust gas discharged from an internal combustion engine flows, a reducing agent supply device that injects a reducing agent into the exhaust pipe, and a downstream side of the reducing agent supply device. A reduction catalyst that purifies the exhaust gas by reacting the exhaust gas and the reducing agent, and inside the exhaust pipe, a plate-like dispersion member disposed at a portion facing the reducing agent supply means; A mixing means is provided between the dispersion member and the reduction catalyst, and a mixing means for mixing the exhaust gas and the reducing agent is provided. The dispersion member and the mixing means are arranged adjacent to each other.
 ここで、隣接とは、分散部材と混合手段とが一体的に形成されている場合と、これらが別部品として離れて配置されている場合とを含む。分散部材と混合手段とが離される距離の範囲は、これらの部材間で排気ガスの流れが実質的に変わらない程度であり、例えば、排気管の直径に対して10%以下の距離だけ離される。 Here, the term “adjacent” includes the case where the dispersing member and the mixing means are integrally formed and the case where they are arranged separately as separate parts. The range of the distance at which the dispersing member and the mixing means are separated is such that the flow of the exhaust gas does not substantially change between these members. For example, the distance is separated by a distance of 10% or less with respect to the diameter of the exhaust pipe. .
 還元剤供給装置は、排気ガスが排気管の内部を流通する方向に対して垂直となる方向に還元剤を噴射する。ここで、垂直とは、排気ガスの流れの変化に影響を受けにくくなる程度であれば、厳密に垂直でなくてもよい。垂直から角度がずれるにしたがって、噴射された還元剤の貫徹力の垂直方向成分が弱くなる傾向がある。そのため、垂直方向成分が排気ガスの流れの影響を受けにくくなる範囲であるおよそ-5度~5度の範囲とすることができる。 The reducing agent supply device injects the reducing agent in a direction perpendicular to the direction in which the exhaust gas flows through the exhaust pipe. Here, the vertical is not necessarily strictly vertical as long as it is less susceptible to changes in the flow of exhaust gas. As the angle deviates from the vertical, the vertical component of the penetrating force of the injected reducing agent tends to weaken. Therefore, the range of about −5 degrees to 5 degrees, which is a range in which the vertical component is less affected by the flow of exhaust gas, can be set.
 また、分散部材は、排気ガスが排気管の内部を流通する方向に対して平行に延ばすことができる。ここで、平行とは、厳密に平行でなくてもよく、圧力損失が無視できる程度の角度を含む。 Also, the dispersion member can be extended in parallel to the direction in which the exhaust gas flows through the exhaust pipe. Here, the term “parallel” does not need to be strictly parallel and includes an angle at which pressure loss can be ignored.
 尚、分散部材は、単一の部材とすることができる。また、分散部材は、排気管の内周面に当接可能な幅を有することができる。 Note that the dispersion member can be a single member. Further, the dispersion member can have a width capable of contacting the inner peripheral surface of the exhaust pipe.
 混合手段は、互いに平行となるように配列されるとともに通過する排気ガスの流れを互いに逆向きとなる所定の角度に傾かせる複数の第1のフィン及び複数の第2のフィンを有しており、混合手段と還元触媒とは、直線状に延びるストレート配管部、及び上流側から下流側に向かって広くなるように形成されたテーパ配管部を順次介して接続されており、角度をα、ストレート配管部の内径をD、ストレート配管部の長さをLとしたときに、
 D/2×cotα≦L≦3/2×D×cotα
を満たす。
The mixing means has a plurality of first fins and a plurality of second fins which are arranged so as to be parallel to each other and which incline the flow of exhaust gas passing therethrough at a predetermined angle which is opposite to each other. The mixing means and the reduction catalyst are connected to each other through a straight piping portion that extends in a straight line and a tapered piping portion that is formed so as to widen from the upstream side to the downstream side. When the inner diameter of the piping part is D and the length of the straight piping part is L,
D / 2 × cotα ≦ L ≦ 3/2 × D × cotα
Meet.
 混合部材には、複数の第1のフィンが配列された列と複数の第2のフィンが配列された列とが一列ずつ交互に配置される。また、ストレート配管部は円筒状とすることができる。さらに、テーパ配管部が広がる勾配を角度αより小さくすること、及び角度αを45°とすることができる。 In the mixing member, a row in which a plurality of first fins are arranged and a row in which a plurality of second fins are arranged are alternately arranged one by one. Moreover, the straight piping part can be made into a cylindrical shape. Furthermore, the gradient at which the tapered pipe portion spreads can be made smaller than the angle α, and the angle α can be set to 45 °.
 この発明によれば、排気ガス後処理装置において、排気ガスに対して還元剤を均一に分散させつつ、小型化することが可能となる。 According to the present invention, the exhaust gas aftertreatment device can be miniaturized while the reducing agent is uniformly dispersed in the exhaust gas.
この発明の実施の形態1に係る排気ガス後処理装置の構成を示す概略図である。It is the schematic which shows the structure of the exhaust-gas aftertreatment apparatus which concerns on Embodiment 1 of this invention. 実施の形態1に係る排気ガス後処理装置の構成を概略的に示す断面側面図である。1 is a cross-sectional side view schematically showing a configuration of an exhaust gas aftertreatment device according to Embodiment 1. FIG. 実施の形態1に係る排気ガス後処理装置における分散部材及び混合手段を概略的に示す斜視図であり、(a)は排気ガスの流通方向における下流側から見た斜視図、(b)は上流側から見た斜視図である。FIG. 2 is a perspective view schematically showing a dispersion member and mixing means in the exhaust gas aftertreatment device according to Embodiment 1, wherein (a) is a perspective view seen from the downstream side in the exhaust gas flow direction, and (b) is an upstream side. It is the perspective view seen from the side. 図2のIV-IVに沿った断面図である。FIG. 4 is a cross-sectional view taken along IV-IV in FIG. 2. この発明の実施の形態2に係る排気ガス後処理装置の構成を概略的に示す断面側面図である。It is a cross-sectional side view which shows roughly the structure of the exhaust-gas aftertreatment apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る排気ガス後処理装置の構成を概略的に示す断面側面図である。It is a cross-sectional side view which shows roughly the structure of the exhaust-gas aftertreatment apparatus which concerns on Embodiment 3 of this invention. 実施の形態3に係る排気ガス後処理装置においてストレート配管部の内部に生じる排気ガスの流れを説明するための概略図である。FIG. 6 is a schematic diagram for explaining the flow of exhaust gas generated inside a straight piping section in an exhaust gas aftertreatment device according to Embodiment 3. 実施の形態3に係る排気ガス後処理装置においてストレート配管部及びテーパ配管部の内部に生じる排気ガスの流れを説明するための概略図である。FIG. 9 is a schematic diagram for explaining the flow of exhaust gas generated inside a straight pipe portion and a taper pipe portion in an exhaust gas aftertreatment device according to Embodiment 3. 実施の形態3に係る排気ガス後処理装置に関し、ストレート配管部の長さを変化させた場合におけるCV値の推移を示すグラフである。6 is a graph showing the transition of the CV value when the length of the straight pipe portion is changed with respect to the exhaust gas aftertreatment device according to Embodiment 3. 実施の形態1に係る排気ガス後処理装置の変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a modification of the exhaust gas aftertreatment device according to Embodiment 1. 実施の形態1に係る排気ガス後処理装置の変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a modification of the exhaust gas aftertreatment device according to Embodiment 1.
 以下に、この発明の実施の形態について、添付図に基づいて説明する。
実施の形態1.
 図1に、この実施の形態1に係る排気ガス後処理装置を備えたディーゼルエンジンの排気系の構成を概略的に示す。内燃機関であるディーゼルエンジン1には排気管2が接続されており、ディーゼルエンジン1から排気管2の内部に排出された排気ガスが、ディーゼルエンジン1側を上流側として矢印Aで示される方向に流通する。排気管2の途中には、排気ガスに含まれる一酸化炭素(CO)や炭化水素(HC)等を酸化する酸化触媒3が設けられている。また、酸化触媒3の下流側には、排気ガスに含まれる窒素酸化物(NOx)を浄化するための還元触媒であるSCR触媒4が設けられている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 schematically shows the configuration of an exhaust system of a diesel engine provided with the exhaust gas aftertreatment device according to the first embodiment. An exhaust pipe 2 is connected to the diesel engine 1 which is an internal combustion engine, and the exhaust gas discharged from the diesel engine 1 into the exhaust pipe 2 is in the direction indicated by the arrow A with the diesel engine 1 side as the upstream side. Circulate. An oxidation catalyst 3 that oxidizes carbon monoxide (CO), hydrocarbon (HC), and the like contained in the exhaust gas is provided in the middle of the exhaust pipe 2. An SCR catalyst 4 that is a reduction catalyst for purifying nitrogen oxide (NOx) contained in the exhaust gas is provided on the downstream side of the oxidation catalyst 3.
 SCR触媒4は、排気ガスに添加される還元剤である尿素水から生成されるアンモニア(NH3)と排気ガスとを反応させてNOxを浄化する触媒である。酸化触媒3とSCR触媒4との間には、排気管2の内部に尿素水を噴射する還元剤供給装置としての噴射ノズル5が設けられている。噴射ノズル5には、尿素水を内部に貯留する尿素水タンク6と、尿素水タンク6内の尿素水を噴射ノズル5に供給する尿素水添加システム7とが、接続管8を介して接続されている。また、尿素水添加システム7は、ディーゼルエンジン1及び排気ガス後処理装置の動作を制御するECU9に電気的に接続されている。 The SCR catalyst 4 is a catalyst that purifies NOx by reacting ammonia (NH 3 ) generated from urea water, which is a reducing agent added to the exhaust gas, and the exhaust gas. Between the oxidation catalyst 3 and the SCR catalyst 4, an injection nozzle 5 is provided as a reducing agent supply device that injects urea water into the exhaust pipe 2. A urea water tank 6 that stores urea water therein and a urea water addition system 7 that supplies urea water in the urea water tank 6 to the injection nozzle 5 are connected to the injection nozzle 5 via a connection pipe 8. ing. The urea water addition system 7 is electrically connected to an ECU 9 that controls the operation of the diesel engine 1 and the exhaust gas aftertreatment device.
 また、SCR触媒4の上流側及び下流側には、排気ガスに含まれるNOxの量を検知するNOxセンサ11及びNOxセンサ12が設けられており、これらのNOxセンサがECU9に電気的に接続されている。ECU9は、NOxセンサ11、12が検知したNOxの量に基づいて噴射ノズル5による尿素水の噴射量や噴射時期を決定するとともに、それに基づく信号を尿素水添加システム7に出力することによって噴射ノズル5による尿素水の噴射を制御する。 Further, a NOx sensor 11 and a NOx sensor 12 for detecting the amount of NOx contained in the exhaust gas are provided on the upstream side and the downstream side of the SCR catalyst 4, and these NOx sensors are electrically connected to the ECU 9. ing. The ECU 9 determines the injection amount and the injection timing of the urea water from the injection nozzle 5 based on the NOx amount detected by the NOx sensors 11 and 12, and outputs a signal based on the injection amount to the urea water addition system 7 to thereby inject the injection nozzle. 5 controls the injection of urea water.
 SCR触媒4の下流側には、排気ガスに含まれる粒子状物質(PM)を捕集するフィルタ13が設けられている。また、フィルタ13の下流側には、例えば排気ガスに含まれるNOxの量に対してアンモニアの量が過剰となった場合等に、未反応のままSCR触媒4を通過したアンモニアを除去するためのスリップ触媒14が設けられている。スリップ触媒14の下流側には図示しないマフラが接続されており、スリップ触媒14を通過した排気ガスは、マフラの内部で排気音を低減されてから大気中に放出される。 A filter 13 for collecting particulate matter (PM) contained in the exhaust gas is provided on the downstream side of the SCR catalyst 4. In addition, on the downstream side of the filter 13, for example, when the amount of ammonia is excessive with respect to the amount of NOx contained in the exhaust gas, the ammonia that has passed through the SCR catalyst 4 without being reacted is removed. A slip catalyst 14 is provided. A muffler (not shown) is connected to the downstream side of the slip catalyst 14, and the exhaust gas that has passed through the slip catalyst 14 is released into the atmosphere after the exhaust noise is reduced inside the muffler.
 以上のように構成されるディーゼルエンジン1の排気系において、排気管2の内部におけるSCR触媒4の上流側には、噴射ノズル5から噴射された尿素水を微粒化して排気管2内に分散させるための分散部材21と、分散部材21によって分散された尿素水を排気ガスに混合するための混合手段であるミキサー31とが設けられている。
 以下に、分散部材21及びミキサー31の構成について、図2~図4を用いて詳細に説明する。尚、以下の説明の便宜上、排気ガス後処理装置における上下方向を、図2に示す各矢印によって規定する。
In the exhaust system of the diesel engine 1 configured as described above, urea water injected from the injection nozzle 5 is atomized and dispersed in the exhaust pipe 2 on the upstream side of the SCR catalyst 4 inside the exhaust pipe 2. There are provided a dispersion member 21 for mixing and a mixer 31 which is a mixing means for mixing the urea water dispersed by the dispersion member 21 into the exhaust gas.
Hereinafter, the configuration of the dispersion member 21 and the mixer 31 will be described in detail with reference to FIGS. For convenience of the following description, the vertical direction in the exhaust gas aftertreatment device is defined by the arrows shown in FIG.
 図2に示すように、分散部材21は、噴射ノズル5に対向する部位に配置された平板状の部材であって、矢印Aで示す排気ガスの流通方向に対して平行に延びるように設けられている。分散部材21の流通方向の長さは、噴射ノズル5から噴射される尿素水がすべて分散部材21に衝突する長さである。一方、ミキサー31は、分散部材21の下流側の端部に隣接して配置された略円板状の部材であって、排気ガスの流通方向に対して垂直となるように設けられている。ミキサー31が位置する部位において、排気管2は上流側配管2aと下流側配管2bとに分割されており、これらの間にミキサー31の外周部が保持されている。また、噴射ノズル5は、排気ガスの流通方向に対して略垂直となる方向に、すなわち、分散部材21に対して略垂直となる方向に一点鎖線で示される尿素水Fを噴射し、尿素水Fを分散部材21に直接衝突させる。 As shown in FIG. 2, the dispersion member 21 is a flat plate-like member disposed at a portion facing the injection nozzle 5, and is provided so as to extend in parallel to the exhaust gas flow direction indicated by the arrow A. ing. The length of the dispersion member 21 in the flow direction is a length in which all urea water injected from the injection nozzle 5 collides with the dispersion member 21. On the other hand, the mixer 31 is a substantially disk-shaped member disposed adjacent to the downstream end of the dispersion member 21, and is provided so as to be perpendicular to the flow direction of the exhaust gas. In the part where the mixer 31 is located, the exhaust pipe 2 is divided into an upstream pipe 2a and a downstream pipe 2b, and the outer peripheral portion of the mixer 31 is held between them. The injection nozzle 5 injects urea water F indicated by a one-dot chain line in a direction substantially perpendicular to the flow direction of the exhaust gas, that is, in a direction substantially perpendicular to the dispersion member 21. F is directly collided with the dispersion member 21.
 図3(a)に示すように、ミキサー31において排気管2の内部に位置する部位には、一部が繋がった台形状の切り込みが折り曲げられることによって複数の第1のフィン32aと複数の第2のフィン32bとが形成されている。また、ミキサー31は、これらのフィン32a、32bを折り曲げることによって形成された複数の開口部33を有しており、ミキサー31の上流側から流れてきた排気ガスが、これらの開口部33を通って下流側に流通する。また、この実施の形態1に係るミキサー31は、各開口部33に対応してその上流側に配置された矩形状パイプ部材35(図3(b)参照)を有しており、分散部材21を通過した排気ガスが、矩形状パイプ部材35を介してそのまま開口部33を通るようになっている。 As shown in FIG. 3 (a), a plurality of first fins 32a and a plurality of first fins 32a and a plurality of first fins 32a are bent at portions located inside the exhaust pipe 2 in the mixer 31 by bending a trapezoidal cut that is partially connected. Two fins 32b are formed. The mixer 31 has a plurality of openings 33 formed by bending these fins 32 a and 32 b, and exhaust gas flowing from the upstream side of the mixer 31 passes through these openings 33. Circulate downstream. Further, the mixer 31 according to the first embodiment has a rectangular pipe member 35 (see FIG. 3B) disposed on the upstream side corresponding to each opening 33, and the dispersion member 21. The exhaust gas that has passed through passes through the opening 33 as it is through the rectangular pipe member 35.
 第1のフィン32a及び第2のフィン32bは、互いに逆向きとなる方向に折り曲げられており、第1のフィン32aは、その先端部が斜め上方側を向くように折り曲げられている。一方、第2のフィン32bは、その先端部が斜め下方側を向くように折り曲げられている。また、これらのフィン32a、32bは、複数の第1のフィン32aを上下方向に沿って配列した列と、複数の第2のフィン32bを上下方向に沿って配列した列とが、互いに平行となるように一列ずつ交互に配置されている。つまり、本実施形態におけるミキサー31は、上方側および下方側へ排気ガスの流れを変えることによって、通過する流体を混合する装置である。また、図3(b)に示すように、ミキサー31の上流側の表面31aには、上流側に突出する一対の支持部34が接合されており、これらの支持部34によって分散部材21の両側部が支持されている。 The first fin 32a and the second fin 32b are bent in directions opposite to each other, and the first fin 32a is bent so that the front end portion thereof faces obliquely upward. On the other hand, the 2nd fin 32b is bent so that the front-end | tip part may face diagonally downward. The fins 32a and 32b are parallel to each other in a row in which a plurality of first fins 32a are arranged in the vertical direction and a row in which the plurality of second fins 32b are arranged in the vertical direction. It is arranged alternately one row at a time. That is, the mixer 31 in the present embodiment is a device that mixes the fluid that passes by changing the flow of the exhaust gas upward and downward. Further, as shown in FIG. 3B, a pair of support portions 34 projecting to the upstream side are joined to the upstream surface 31 a of the mixer 31, and both sides of the dispersion member 21 are joined by these support portions 34. The part is supported.
 図4に示すように、分散部材21は排気管2内の中心部を通るように配置されており、排気管2の内径とほぼ同一となる幅Wを有している。したがって、排気管2内において分散部材21が配置されている部位は、分散部材21の上方側、すなわち噴射ノズル5側にある領域R1と、下方側の領域R2とに区画された状態となっており、噴射ノズル5から噴射された尿素水Fが、領域R2内に流入することなく領域R1内で分散される。また、酸化触媒3(図1参照)を通過した排気ガスの一部は領域R1内を流通し、且つ残りの一部が領域R2を流通する。尚、SCR触媒4(図1参照)の上流側に設けられているNOxセンサ11は、分散部材21の下方に位置するように設けられており、分散部材21によって噴射ノズル5から隔てられている。また、図3に示すように、分散部材21によって分けられる上方側と下方側は、ミキサー31のフィン32a、32bが排気ガスの流れを変える上方側と下方側に対応している。 As shown in FIG. 4, the dispersion member 21 is disposed so as to pass through the central portion in the exhaust pipe 2 and has a width W that is substantially the same as the inner diameter of the exhaust pipe 2. Accordingly, the portion where the dispersion member 21 is disposed in the exhaust pipe 2 is in a state of being divided into a region R1 on the upper side of the dispersion member 21, that is, the region R2 on the injection nozzle 5 side, and a region R2 on the lower side. The urea water F injected from the injection nozzle 5 is dispersed in the region R1 without flowing into the region R2. Part of the exhaust gas that has passed through the oxidation catalyst 3 (see FIG. 1) flows through the region R1, and the remaining part flows through the region R2. The NOx sensor 11 provided on the upstream side of the SCR catalyst 4 (see FIG. 1) is provided so as to be positioned below the dispersion member 21 and is separated from the injection nozzle 5 by the dispersion member 21. . Moreover, as shown in FIG. 3, the upper side and the lower side divided by the dispersion member 21 correspond to the upper side and the lower side where the fins 32a and 32b of the mixer 31 change the flow of the exhaust gas.
 ここで、上述したように、分散部材21は噴射ノズル5に対向する部位に配置されており、噴射ノズル5から噴射された尿素水Fが分散部材21に直接衝突するため、衝突して微粒化した尿素水は、領域R1内を流通する排気ガス中に分散される。また、分散部材21は、ミキサー31と隣接するように配置されているため、分散部材21に衝突することによって排気ガス中に分散された尿素水は、排気ガスの流れによってすぐにミキサー31に供給される。一方、仮に分散部材21を用いずに排気ガス中に尿素水を分散させようとする場合、例えば尿素水をミキサー31に向かって斜めに噴射することが一般的である。この場合、排気ガス中の尿素水の分布を均一にするには、ミキサー31の全面に対して尿素水を衝突させることが必要となる。したがって、尿素水の噴射範囲がミキサー31の全面に広がるように、噴射ノズル5とミキサー31との間に距離を取ることが必要となる。 Here, as described above, the dispersion member 21 is disposed at a portion facing the injection nozzle 5, and the urea water F injected from the injection nozzle 5 directly collides with the dispersion member 21. The urea water thus dispersed is dispersed in the exhaust gas flowing through the region R1. Further, since the dispersion member 21 is disposed adjacent to the mixer 31, the urea water dispersed in the exhaust gas by colliding with the dispersion member 21 is immediately supplied to the mixer 31 by the flow of the exhaust gas. Is done. On the other hand, if it is intended to disperse urea water in the exhaust gas without using the dispersion member 21, for example, urea water is generally injected obliquely toward the mixer 31. In this case, in order to make the distribution of the urea water in the exhaust gas uniform, it is necessary to make the urea water collide with the entire surface of the mixer 31. Accordingly, it is necessary to provide a distance between the injection nozzle 5 and the mixer 31 so that the injection range of the urea water extends over the entire surface of the mixer 31.
 すなわち、本発明における排気ガス後処理装置は、噴射ノズル5に対向する部位に配置された分散部材21を用いて尿素水を分散させること、及び分散部材21とミキサー31とを隣接して配置することにより、噴射ノズル5とミキサー31との間の距離を短縮可能としている。それに伴い、酸化触媒3(図1参照)とSCR触媒4との間の距離も短縮されるため、排気ガス後処理装置を小型化して車両への搭載性を向上することが可能となる。また、装置が小型化されることにより、排気ガスがSCR触媒4に到達するまでの温度低下が抑制されるため、SCR触媒4によるNOxの浄化を効率よく行うことが可能となっている。 That is, the exhaust gas aftertreatment device according to the present invention disperses urea water using the dispersion member 21 disposed at a portion facing the injection nozzle 5, and disposes the dispersion member 21 and the mixer 31 adjacent to each other. Thus, the distance between the injection nozzle 5 and the mixer 31 can be shortened. Accordingly, the distance between the oxidation catalyst 3 (see FIG. 1) and the SCR catalyst 4 is also shortened, so that the exhaust gas aftertreatment device can be miniaturized to improve the mountability on the vehicle. Further, since the apparatus is downsized, the temperature drop until the exhaust gas reaches the SCR catalyst 4 is suppressed, so that the NOx purification by the SCR catalyst 4 can be performed efficiently.
 次に、この発明の実施の形態1に係る排気ガス後処理装置の動作について説明する。
 図1に示すように、ディーゼルエンジン1の運転が開始されると、排気管2の内部に排出された排気ガスが矢印Aで示される方向に流通して酸化触媒3を通過する。この通過の際、排気ガスに含まれる一酸化炭素(CO)や炭化水素(HC)等が酸化触媒3によって酸化されると同時に、一酸化窒素(NO)の一部が二酸化窒素(NO2)に酸化される。また、ディーゼルエンジン1の運転が開始されると、ECU9は、尿素水添加システム7に信号を出力し、噴射ノズル5による尿素水の噴射を開始させる。
Next, the operation of the exhaust gas aftertreatment device according to Embodiment 1 of the present invention will be described.
As shown in FIG. 1, when the operation of the diesel engine 1 is started, the exhaust gas discharged into the exhaust pipe 2 flows in the direction indicated by the arrow A and passes through the oxidation catalyst 3. During this passage, carbon monoxide (CO), hydrocarbon (HC), etc. contained in the exhaust gas are oxidized by the oxidation catalyst 3 and at the same time, a part of nitrogen monoxide (NO) is nitrogen dioxide (NO 2 ). It is oxidized to. Further, when the operation of the diesel engine 1 is started, the ECU 9 outputs a signal to the urea water addition system 7 and starts injection of urea water by the injection nozzle 5.
 図2に示すように、酸化触媒3を通過した排気ガスの一部は、分散部材21によって噴射ノズル5側に区画された領域R1を流通(矢印A1参照)し、残りの一部が下方側の領域R2を流通(矢印A2参照)する。領域R1を流通する排気ガスには、噴射ノズル5から噴射された尿素水Fが添加される。分散部材21は噴射ノズル5に対向する部位に設けられているため、噴射ノズル5から噴射された尿素水Fは分散部材21に直接衝突し、分散部材21に衝突して微粒化した尿素水が領域R1を流通する排気ガス中に分散される。また、分散部材21とミキサー31とは隣接して配置されているため、領域R1で分散された尿素水は、排気ガスの流れによってすぐにミキサー31に供給される。尚、排気ガス中に分散された尿素水は、下流側に流れていく過程で排気ガスの熱で加水分解され、それによりアンモニアが生成される。特に、分散部材21は排気管2内の中心部を通るように配置されているため、排気ガスの熱で効率的に加熱されており、尿素水の加水分解をより促進させる。 As shown in FIG. 2, part of the exhaust gas that has passed through the oxidation catalyst 3 flows through the region R1 partitioned by the dispersion member 21 on the injection nozzle 5 side (see arrow A1), and the remaining part is on the lower side. Is distributed (see arrow A2). The urea water F injected from the injection nozzle 5 is added to the exhaust gas flowing through the region R1. Since the dispersion member 21 is provided at a portion facing the injection nozzle 5, the urea water F injected from the injection nozzle 5 directly collides with the dispersion member 21, and the urea water atomized by colliding with the dispersion member 21 is formed. Dispersed in the exhaust gas flowing through the region R1. Further, since the dispersing member 21 and the mixer 31 are disposed adjacent to each other, the urea water dispersed in the region R1 is immediately supplied to the mixer 31 by the flow of the exhaust gas. The urea water dispersed in the exhaust gas is hydrolyzed by the heat of the exhaust gas in the process of flowing downstream, thereby generating ammonia. In particular, since the dispersion member 21 is disposed so as to pass through the central portion in the exhaust pipe 2, it is efficiently heated by the heat of the exhaust gas, and further promotes hydrolysis of urea water.
 一方、領域R2側を流通する排気ガスは、そのままミキサー31に供給される。領域R1側から流れてきた排気ガス及び尿素水と、領域R2側から流れてきた排気ガスとは、これらがミキサー31のフィン32a、32bを通過する際に発生する乱流によって混合され、それにより、排気管2内を流通する排気ガスに対して尿素水が均一に混合される。このようにミキサー31を通過した排気ガス及びアンモニアがSCR触媒4に供給されると、SCR触媒4はアンモニアと排気ガスとを反応させ、排気ガスに含まれるNOxを無害な窒素(N2)と水(H2O)とに還元する。尚、分散部材21は平板状の部材であり、且つ排気ガスの流通方向に対して平行となるように設けられているため、排気ガスの圧力損失を増大させることなく、NOxの浄化を行うことができる。 On the other hand, the exhaust gas flowing through the region R2 side is supplied to the mixer 31 as it is. The exhaust gas and urea water flowing from the region R1 side and the exhaust gas flowing from the region R2 side are mixed by the turbulent flow generated when they pass through the fins 32a and 32b of the mixer 31, thereby The urea water is uniformly mixed with the exhaust gas flowing through the exhaust pipe 2. When the exhaust gas and ammonia that have passed through the mixer 31 are supplied to the SCR catalyst 4 in this way, the SCR catalyst 4 reacts with the ammonia and the exhaust gas to convert NOx contained in the exhaust gas into harmless nitrogen (N 2 ). Reduce to water (H 2 O). Since the dispersion member 21 is a flat plate member and is provided so as to be parallel to the exhaust gas flow direction, NOx purification can be performed without increasing the exhaust gas pressure loss. Can do.
 ここで、噴射ノズル5は、排気ガスが流通する方向に対して垂直となる方向(本実施の形態では分散部材21に対して垂直)に尿素水を噴射しているため、排気ガス中に尿素水を分散させる際に排気ガスの流速の影響を受けにくい状態となっている。すなわち、上述したように尿素水を斜めに噴射し、分散部材21を用いずにミキサー31によって尿素水を分散させる場合、噴射された尿素水がミキサー31に衝突する範囲は排気ガスの流速が速くなるにつれて狭くなるため、それに伴って尿素水が分散される範囲も狭くなる。一方、尿素水を排気ガスの流通する方向に対して垂直に噴射する場合、噴射された尿素水は排気ガスの流速が速くなっても分散部材21に衝突するため、尿素水を確実に分散させることが可能となっている。言い換えると、排気ガスの流速が変化しても、分散特性は変化しにくい。 Here, since the injection nozzle 5 injects urea water in a direction perpendicular to the direction in which the exhaust gas flows (in this embodiment, perpendicular to the dispersion member 21), urea water is injected into the exhaust gas. When water is dispersed, it is not easily affected by the flow rate of the exhaust gas. That is, as described above, when urea water is injected obliquely and the urea water is dispersed by the mixer 31 without using the dispersion member 21, the range in which the injected urea water collides with the mixer 31 has a high exhaust gas flow rate. Since it becomes narrow as it becomes, the range where urea water is disperse | distributed with it is also narrowed. On the other hand, when the urea water is injected perpendicularly to the direction in which the exhaust gas circulates, the injected urea water collides with the dispersion member 21 even when the flow rate of the exhaust gas increases, so that the urea water is reliably dispersed. It is possible. In other words, even if the flow rate of the exhaust gas changes, the dispersion characteristics hardly change.
 また、分散部材21は、排気管2の内径とほぼ同一となる幅W(図4参照)を有しており、排気管2の内部を領域R1と領域R2とに区画している。すなわち、噴射ノズル5から噴射された尿素水は領域R2側には供給されないため、排気管2の内周面に付着する尿素水の量が低減される。ここで、排気管2は、その内部を流通する排気ガスによって加熱されるが、排気管2の外周面は外気で冷却されるため、例えばディーゼルエンジン1(図1参照)の始動直後等における排気管2の温度は、排気ガスの温度に対して低温となっている。このような状態で排気管2の内周面に尿素水が付着すると加水分解が起こらず、尿素水の水分が気化して尿素が残留し、残留した尿素が排気管の内周面に堆積することがある。すなわち、堆積した尿素はSCR触媒4には届かないため、本来必要となる量のアンモニアがSCR触媒4に供給されず、尿素水の添加量を増やすことが必要となる。 Further, the dispersion member 21 has a width W (see FIG. 4) that is substantially the same as the inner diameter of the exhaust pipe 2, and divides the interior of the exhaust pipe 2 into a region R1 and a region R2. That is, since the urea water injected from the injection nozzle 5 is not supplied to the region R2 side, the amount of urea water adhering to the inner peripheral surface of the exhaust pipe 2 is reduced. Here, the exhaust pipe 2 is heated by the exhaust gas flowing through the inside thereof. However, since the outer peripheral surface of the exhaust pipe 2 is cooled by the outside air, for example, the exhaust immediately after the diesel engine 1 (see FIG. 1) is started. The temperature of the pipe 2 is lower than the temperature of the exhaust gas. If urea water adheres to the inner peripheral surface of the exhaust pipe 2 in such a state, hydrolysis does not occur, the water of the urea water evaporates and urea remains, and the remaining urea accumulates on the inner peripheral surface of the exhaust pipe. Sometimes. That is, since the accumulated urea does not reach the SCR catalyst 4, the amount of ammonia that is originally required is not supplied to the SCR catalyst 4, and it is necessary to increase the amount of urea water added.
 しかしながら、本発明による排気ガス後処理装置では、分散部材21によって排気管2内を領域R1と領域R2とに区画し、排気管2の内周面に付着する尿素水の量を低減させたので、噴射された尿素水の大部分をSCR触媒に供給することが可能となっている。尚、分散部材21は、排気管2の中心部、すなわち高温となる部位を通るように配置されているため、排気管2の温度に左右されることなく速やかに加熱される。また、分散部材21は、排気管2と比較して排気ガスの流通方向に対して短く、熱容量が少ないため、排気ガスにより加熱されやすくなっている。したがって、排気管2の温度が低いことに起因して、分散部材21に付着した尿素水からのアンモニアの生成が妨げられることはない。 However, in the exhaust gas aftertreatment device according to the present invention, the inside of the exhaust pipe 2 is partitioned into the region R1 and the region R2 by the dispersing member 21, and the amount of urea water adhering to the inner peripheral surface of the exhaust pipe 2 is reduced. Thus, most of the injected urea water can be supplied to the SCR catalyst. In addition, since the dispersion member 21 is disposed so as to pass through the central portion of the exhaust pipe 2, that is, a portion that becomes high in temperature, the dispersion member 21 is quickly heated without being influenced by the temperature of the exhaust pipe 2. Further, since the dispersion member 21 is shorter than the exhaust pipe 2 in the flow direction of the exhaust gas and has a small heat capacity, it is easily heated by the exhaust gas. Therefore, the generation of ammonia from the urea water adhering to the dispersion member 21 is not hindered due to the low temperature of the exhaust pipe 2.
 また、SCR触媒4の上流側に設けられたNOxセンサ11は、通常、ジルコニア等のファインセラミックスを材料として含んでいる。また、NOxセンサ11は、排気管2の内部を流通する排気ガスに晒されるため、例えば600℃~1000℃といった高温下で動作する。このような高温下で動作しているNOxセンサ11に尿素水が付着すると、急激な温度変化が生じる、いわゆる熱衝撃が加わることとなるため、割れ等の破損が生じることがある。 Further, the NOx sensor 11 provided on the upstream side of the SCR catalyst 4 usually contains fine ceramics such as zirconia as a material. Further, since the NOx sensor 11 is exposed to the exhaust gas flowing inside the exhaust pipe 2, it operates at a high temperature of, for example, 600 ° C to 1000 ° C. When urea water adheres to the NOx sensor 11 operating at such a high temperature, a sudden temperature change occurs, so-called thermal shock is applied, and breakage such as cracking may occur.
 このような破損を防止するため、通常、NOxセンサ11は、尿素水Fが付着することがないよう、噴射ノズル5の上流側に所定の距離を隔てて設けることが一般的となっている。しかしながら、本発明における上流側NOxセンサ11は、分散部材21によって噴射ノズル5から隔てられているため、尿素水Fが付着することに起因して破損することがなく、噴射ノズル5の近傍に配置することが可能となっている。したがって、酸化触媒3(図1参照)とSCR触媒4との間の距離をさらに短くして装置を小型化することが可能となる。 In order to prevent such damage, the NOx sensor 11 is generally provided at a predetermined distance on the upstream side of the injection nozzle 5 so that the urea water F does not adhere. However, since the upstream NOx sensor 11 in the present invention is separated from the injection nozzle 5 by the dispersion member 21, the upstream NOx sensor 11 is not damaged due to adhesion of the urea water F, and is disposed in the vicinity of the injection nozzle 5. It is possible to do. Therefore, the distance between the oxidation catalyst 3 (see FIG. 1) and the SCR catalyst 4 can be further shortened to reduce the size of the apparatus.
 さらに、分散部材21によって分けられる上方側と下方側は、ミキサー31の第1のフィン32a及び第2のフィン32bが排気ガスの流れを変える上方側と下方側に対応している。したがって、排気管2内の中心部を通るように配置された分散部材21に衝突した尿素水または加水分解したアンモニアは、ミキサー31から上方側と下方側に分散されることで全体に分散される。 Furthermore, the upper side and the lower side divided by the dispersing member 21 correspond to the upper side and the lower side where the first fin 32a and the second fin 32b of the mixer 31 change the flow of the exhaust gas. Accordingly, urea water or hydrolyzed ammonia that has collided with the dispersion member 21 disposed so as to pass through the central portion in the exhaust pipe 2 is dispersed from the mixer 31 upward and downward to be dispersed throughout. .
 図1に戻って、SCR触媒4を通過した排気ガスはフィルタ13を通過し、その際に排気ガスに含まれる粒子状物質が除去される。また、フィルタ13を通過した排気ガスに余剰分となるアンモニアが含まれている場合、余剰分のアンモニアはスリップ触媒14によって除去される。スリップ触媒14を通過した排気ガスは、図示しないマフラの内部で騒音を低減され、大気中に放出される。尚、NOxセンサ11、12は、SCR触媒4の上流側及び下流側におけるNOxの濃度を随時検知しており、ECU9は、これらのNOxセンサが検知したNOxの濃度に基づいて、噴射ノズル5による尿素水Fの噴射量を制御する。 Referring back to FIG. 1, the exhaust gas that has passed through the SCR catalyst 4 passes through the filter 13, and particulate matter contained in the exhaust gas is removed at that time. If the exhaust gas that has passed through the filter 13 contains excess ammonia, the excess ammonia is removed by the slip catalyst 14. The exhaust gas that has passed through the slip catalyst 14 is reduced in noise inside a muffler (not shown) and released into the atmosphere. The NOx sensors 11 and 12 detect the NOx concentration on the upstream side and the downstream side of the SCR catalyst 4 as needed, and the ECU 9 uses the injection nozzle 5 based on the NOx concentration detected by these NOx sensors. The injection amount of the urea water F is controlled.
 以上のように、噴射ノズル5に対向する部位に板状の分散部材21を設けたので、噴射ノズル5から噴射された尿素水が分散部材21に直接衝突する。分散部材21に衝突して微粒化した還元剤は排気管2内に分散され、ミキサー31によって排気ガスと混合されてからSCR触媒4に供給される。分散部材21によって尿素水を分散させるように構成したので、尿素水をミキサー31に向かって噴射する場合のように、尿素水の噴射範囲を広げるために噴射ノズル5とミキサー31との間の距離を大きくとる必要がない。また、分散部材21とミキサー31とは隣接して配置されているため、分散部材21を設けるために排気管を長くする必要もない。したがって、排気ガス後処理装置において、排気ガスに対して尿素水を均一に分散させつつ、小型化することが可能となる。 As described above, since the plate-like dispersion member 21 is provided at the portion facing the injection nozzle 5, the urea water injected from the injection nozzle 5 directly collides with the dispersion member 21. The reducing agent that collides with the dispersing member 21 and atomized is dispersed in the exhaust pipe 2, mixed with the exhaust gas by the mixer 31, and then supplied to the SCR catalyst 4. Since the urea water is dispersed by the dispersing member 21, the distance between the injection nozzle 5 and the mixer 31 in order to widen the injection range of the urea water as in the case of injecting the urea water toward the mixer 31. There is no need to take large. Further, since the dispersion member 21 and the mixer 31 are disposed adjacent to each other, it is not necessary to lengthen the exhaust pipe in order to provide the dispersion member 21. Therefore, it is possible to reduce the size of the exhaust gas aftertreatment device while uniformly dispersing urea water in the exhaust gas.
 また、噴射ノズル5は、排気ガスの流通する方向に対して垂直となる方向に尿素水を噴射するため、噴射された尿素水が分散部材21に衝突するまでの間、排気ガスの流れの影響を受けにくくなる。したがって、尿素水を確実に分散部材21に衝突させて効率よく排気ガス中に分散させることが可能となる。 Further, since the injection nozzle 5 injects urea water in a direction perpendicular to the direction in which the exhaust gas flows, the influence of the flow of exhaust gas until the injected urea water collides with the dispersion member 21. It becomes difficult to receive. Therefore, the urea water can be reliably collided with the dispersion member 21 and efficiently dispersed in the exhaust gas.
 また、分散部材21を、排気ガスが排気管2の内部を流通する方向に対して平行に延びるように設けたので、圧力損失を上げることなく、ミキサー31に尿素水を供給することが可能となる。 Further, since the dispersion member 21 is provided so as to extend in parallel to the direction in which the exhaust gas flows through the inside of the exhaust pipe 2, it is possible to supply urea water to the mixer 31 without increasing the pressure loss. Become.
実施の形態2.
 次に、この発明の実施の形態2に係る排気ガス後処理装置について説明する。
 この実施の形態2に係る排気ガス後処理装置は、実施の形態1に係る排気ガス後処理装置が単一の分散部材21を備えていたのに対し、以下に説明する第一分散部材と複数の第二分散部材とを備えるように構成したものである。尚、以下に説明する各実施の形態において、図1~4の参照符号と同一の符号は同一または同様な構成要素であるので、その詳細な説明は省略する。
Embodiment 2. FIG.
Next, an exhaust gas aftertreatment device according to Embodiment 2 of the present invention will be described.
In the exhaust gas aftertreatment device according to the second embodiment, the exhaust gas aftertreatment device according to the first embodiment includes the single dispersion member 21, whereas the first dispersion member and the plurality of the dispersion members are described below. And a second dispersion member. In each of the embodiments described below, the same reference numerals as those in FIGS. 1 to 4 are the same or similar components, and detailed description thereof will be omitted.
 図5に示すように、排気管2の内部において噴射ノズル5に対向する部位には、共に平板形状を有する5つの分散部材41a~41eが、上下方向に沿って並べられた状態で配置されている。また、これらの分散部材41a~41eの下流側の端部に隣接するようにミキサー31が設けられている。分散部材41a~41eのうち、最も下方側に位置する第一分散部材41aは、実施の形態1における分散部材21と同様の平板状の部材である。一方、第一分散部材41aの上方側に設けられた4つの第二分散部材41b~41eは、複数の貫通穴42が形成された平板状の部材であり、噴射ノズル5から噴射された尿素水Fを上方側から下方側に向かって順次通過させることが可能となっている。 As shown in FIG. 5, five dispersion members 41 a to 41 e each having a flat plate shape are arranged in a state of being arranged in the vertical direction at a portion facing the injection nozzle 5 in the exhaust pipe 2. Yes. Further, a mixer 31 is provided so as to be adjacent to the downstream end portions of the dispersion members 41a to 41e. Of the dispersing members 41a to 41e, the first dispersing member 41a located on the lowermost side is a flat plate-like member similar to the dispersing member 21 in the first embodiment. On the other hand, the four second dispersion members 41b to 41e provided on the upper side of the first dispersion member 41a are flat members in which a plurality of through holes 42 are formed, and urea water injected from the injection nozzle 5 F can be sequentially passed from the upper side to the lower side.
 最も上方側にある第二分散部材41eの上面に噴射された尿素水Fの一部は、第二分散部材41eに衝突することによって排気ガス中に分散され、残りの一部が貫通穴42内を通過する。同様に、第二分散部材41eの貫通穴42を通過した尿素水の一部は、第二分散部材41dに衝突することによって排気ガス中に分散され、残りの一部が第二分散部材41c、41bを順次通過し、最終的に第一分散部材41aに衝突する。したがって、各第二分散部材41b~41eの貫通穴42を通過する尿素水Fの量を、例えば20%ずつ低減させていくことにより、尿素水Fを排気管2の内部に広く分散させることが可能となっている。その他の構成については、実施の形態1と同様である。 A part of the urea water F injected to the upper surface of the uppermost second dispersion member 41e is dispersed in the exhaust gas by colliding with the second dispersion member 41e, and the remaining part is in the through hole 42. Pass through. Similarly, part of the urea water that has passed through the through hole 42 of the second dispersion member 41e is dispersed in the exhaust gas by colliding with the second dispersion member 41d, and the remaining part is dispersed in the second dispersion member 41c, It passes through 41b sequentially and finally collides with the first dispersion member 41a. Therefore, the urea water F can be widely dispersed in the exhaust pipe 2 by reducing the amount of the urea water F passing through the through holes 42 of the second dispersion members 41b to 41e by, for example, 20%. It is possible. Other configurations are the same as those in the first embodiment.
 以上のように、分散部材を複数とし、貫通穴を有さない第一分散部材と貫通穴を有する第二分散部材とで構成しても、各分散部材に衝突して分散した尿素水がすぐにミキサー31に供給される。したがって、実施の形態1と同様に、排気ガス後処理装置を小型化することが可能となる。 As described above, even if a plurality of dispersion members are used and the first dispersion member having no through holes and the second dispersion member having the through holes are configured, the urea water that collides with each dispersion member and is dispersed immediately To the mixer 31. Therefore, as in the first embodiment, the exhaust gas aftertreatment device can be reduced in size.
実施の形態3.
 次に、この発明の実施の形態3に係る排気ガス後処理装置について説明する。この実施の形態3に係る排気ガス後処理装置は、実施の形態1に係る排気ガス後処理装置の排気管2及びミキサー31に対し、以下に説明する寸法上の規定を加えたものである。
Embodiment 3 FIG.
Next, an exhaust gas aftertreatment device according to Embodiment 3 of the present invention will be described. In the exhaust gas aftertreatment device according to the third embodiment, the dimensional regulations described below are added to the exhaust pipe 2 and the mixer 31 of the exhaust gas aftertreatment device according to the first embodiment.
 図6に示すように、ミキサー31の下流側に位置するSCR触媒4の直径は下流側配管部2bの直径より大きく、下流側配管部2bとSCR触媒4とが、上流側から下流側に向かってテーパ状に広がるように形成されたテーパ配管部2cを介して接続されている。すなわち、ミキサー31とSCR触媒4とは、直線状に延びる下流側配管部2bとテーパ配管部2cとを順次介して接続されている。ここで、下流側配管部2bは、この実施の形態3に係る排気ガス後処理装置のストレート配管部を構成している。 As shown in FIG. 6, the diameter of the SCR catalyst 4 located on the downstream side of the mixer 31 is larger than the diameter of the downstream piping part 2b, and the downstream piping part 2b and the SCR catalyst 4 are directed from the upstream side to the downstream side. Are connected via a tapered pipe portion 2c formed so as to spread in a tapered shape. That is, the mixer 31 and the SCR catalyst 4 are connected to each other via the downstream pipe portion 2b and the taper pipe portion 2c that extend linearly. Here, the downstream side piping section 2b constitutes a straight piping section of the exhaust gas aftertreatment device according to the third embodiment.
 実施の形態1で説明したように、第1のフィン32a及び第2のフィン32bが折り曲げられた方向は互いに逆向きとなっているが、その角度は共通の角度αとなっている。すなわち、ミキサー31は、ミキサー31を通過する前の排気ガスの流れ(矢印A参照)を、第1のフィン32a及び第2のフィン32bによって互いに逆向きとなる上下方向に角度α傾かせるものである。 As described in the first embodiment, the bent directions of the first fin 32a and the second fin 32b are opposite to each other, but the angle is a common angle α. That is, the mixer 31 tilts the flow of exhaust gas (see arrow A) before passing through the mixer 31 by an angle α in the vertical direction opposite to each other by the first fin 32a and the second fin 32b. is there.
 ミキサー31において第1のフィン32a及び第2のフィン32bが折り曲げられた角度α、すなわちこれらのフィン32a、32bが排気ガスの流れを傾かせる角度αは、45°に設定されている。また、ミキサー31とテーパ配管部2cとを接続する下流側配管部2bの内径Dは、66mmに設定されている。このように角度α=45°、内径D=66mmと設定された排気ガス後処理装置において、下流側配管部2bの長さLは角度α及び内径Dに応じて規定されており、下記の(1)式を満たすように設定される。
 D/2×cotα≦L≦3/2×D×cotα・・・(1)
つまり、α=45°、内径D=66mmである場合、長さLの範囲は、33(mm)≦L≦99(mm)となる。
The angle α at which the first fin 32a and the second fin 32b are bent in the mixer 31, that is, the angle α at which the fins 32a and 32b incline the flow of the exhaust gas is set to 45 °. Moreover, the internal diameter D of the downstream piping part 2b which connects the mixer 31 and the taper piping part 2c is set to 66 mm. In this way, in the exhaust gas aftertreatment device in which the angle α = 45 ° and the inner diameter D = 66 mm, the length L of the downstream pipe portion 2b is defined in accordance with the angle α and the inner diameter D, and the following ( 1) It is set to satisfy the equation.
D / 2 × cotα ≦ L ≦ 3/2 × D × cotα (1)
That is, when α = 45 ° and the inner diameter D = 66 mm, the range of the length L is 33 (mm) ≦ L ≦ 99 (mm).
 また、上記の角度αが45°である場合、すなわち、上記(1)式のcotα=1となる場合、下流側配管部2bの長さLは、結局、下記の(2)式を満たすように設定される。
 2/D≦L≦3/2×D・・・(2)
この実施の形態3に係る排気ガス後処理装置において、下流側配管部2bの長さLは、上記(1)式及び(2)式を満たす43mmに設定されている。尚、テーパ配管部2cが下流側に向かって広がる勾配、すなわち下流側配管部2bの軸方向に対してテーパ配管部2cが広がる角度βは、上記の角度α=45°より小さい角度となっている。その他の構成については、実施の形態1と同様である。
When the angle α is 45 °, that is, when cot α = 1 in the above equation (1), the length L of the downstream pipe portion 2b eventually satisfies the following equation (2). Set to
2 / D ≦ L ≦ 3/2 × D (2)
In the exhaust gas aftertreatment device according to Embodiment 3, the length L of the downstream pipe portion 2b is set to 43 mm that satisfies the above equations (1) and (2). Note that the slope β of the taper pipe portion 2c spreading toward the downstream side, that is, the angle β at which the taper pipe portion 2c spreads with respect to the axial direction of the downstream pipe portion 2b is smaller than the angle α = 45 °. Yes. Other configurations are the same as those in the first embodiment.
 以上のように構成される排気ガス後処理装置において、SCR触媒4によるNOxの還元を効率よく行うためには、SCR触媒4の全面に対してアンモニアを均一な分布状態で供給することが必要となる。そのためには、排気ガス中にアンモニアを均一に分散させること、及び排気ガスをテーパ配管部2c内で拡散させることが必要となる。ここで、図3(a)に示されているように、ミキサー31の第1のフィン32a及び第2のフィン32bは互いに逆向きとなる上下方向に折り曲げられており、通過する排気ガスの流れを上下方向に傾かせる。また、これらのフィン32a、32bの配置は、複数の第1のフィン32aを上下方向に沿って配列した列と、複数の第2のフィン32bを上下方向に沿って配列した列とを、互いに平行となるように一列ずつ交互に配置したものとなっている。 In the exhaust gas aftertreatment device configured as described above, in order to efficiently reduce NOx by the SCR catalyst 4, it is necessary to supply ammonia to the entire surface of the SCR catalyst 4 in a uniform distribution state. Become. For that purpose, it is necessary to uniformly disperse ammonia in the exhaust gas and to diffuse the exhaust gas in the tapered pipe portion 2c. Here, as shown in FIG. 3 (a), the first fin 32a and the second fin 32b of the mixer 31 are bent in the vertical direction opposite to each other, and the flow of exhaust gas passing therethrough. Tilt up and down. The fins 32a and 32b are arranged such that a plurality of first fins 32a arranged in the vertical direction and a plurality of second fins 32b arranged in the vertical direction are arranged with each other. They are arranged one by one alternately so as to be parallel.
 したがって、図7に示すように、ミキサー31(図6参照)の下流側にある下流側配管部2bの内部には、第1のフィン32aからなる列によって上方側に傾けられた排気ガスの流れ(矢印B1参照)と、第2のフィン32bからなる列によって下方側に傾けられた排気ガスの流れ(矢印B2参照)とが1列ずつ交互に隣り合って生じた状態となる。また、下流側配管部2bは円筒状であるため、下流側配管部2bの内周面2dに衝突した排気ガスには、下流側配管部2bの周方向に沿った流れ(矢印B3参照)が与えられる。つまり、ミキサー31を通過して下流側配管部2bに流入した排気ガスのうち、内周面2dに衝突した排気ガスには、下流側配管部2bの軸方向に対して垂直となる断面内を循環するような流れが与えられる。それにより、下流側配管部2b内を流通する排気ガスに対し、アンモニアを効率よく分散させることが可能となる。 Therefore, as shown in FIG. 7, the flow of the exhaust gas inclined upward by the row of the first fins 32a inside the downstream piping portion 2b on the downstream side of the mixer 31 (see FIG. 6). (Refer to arrow B1) and the flow of exhaust gas (see arrow B2) tilted downward by the row of the second fins 32b are alternately adjacent to each other. Moreover, since the downstream side piping part 2b is cylindrical, the flow along the circumferential direction of the downstream side piping part 2b (see arrow B3) flows in the exhaust gas that has collided with the inner peripheral surface 2d of the downstream side piping part 2b. Given. That is, out of the exhaust gas flowing through the mixer 31 and flowing into the downstream pipe portion 2b, the exhaust gas that has collided with the inner peripheral surface 2d has a cross section perpendicular to the axial direction of the downstream pipe portion 2b. A circulating flow is provided. As a result, ammonia can be efficiently dispersed in the exhaust gas flowing through the downstream side piping portion 2b.
 また、図8に示すように、ミキサー31を通過した排気ガスには、第1のフィン32a及び第2のフィン32bによって上下方向に角度α傾いた流れがそれぞれ与えられるが、矢印C1で示すように、下流側配管部2bの内周面2dに衝突した排気ガスは、下流側配管部2bの軸方向に沿って直進するようになる。ここで、第1のフィン32a及び第2のフィン32bを通過した排気ガスが下流側配管部2bの内周面2dに衝突するタイミングは、これらのフィン32a、32bの位置に応じて様々であり、下流側配管部2bの内部には、その軸方向に沿った排気ガスの流れと、角度α傾いた排気ガスの流れとが混在する。 Also, as shown in FIG. 8, the exhaust gas that has passed through the mixer 31 is given a flow inclined at an angle α in the vertical direction by the first fin 32a and the second fin 32b, as indicated by the arrow C1. In addition, the exhaust gas that has collided with the inner peripheral surface 2d of the downstream pipe portion 2b goes straight along the axial direction of the downstream pipe portion 2b. Here, the timing at which the exhaust gas that has passed through the first fin 32a and the second fin 32b collides with the inner peripheral surface 2d of the downstream pipe portion 2b varies depending on the positions of the fins 32a and 32b. The flow of exhaust gas along the axial direction and the flow of exhaust gas inclined at an angle α coexist in the downstream side piping section 2b.
 より具体的に説明すると、第1のフィン32aの場合、最も上方側に位置する第1のフィン32aを通過した排気ガスが最も早いタイミングで内周面2dに衝突し(矢印C1参照)、第1のフィン32aの位置が下方側になるにつれて衝突のタイミングが遅くなる(矢印C2参照)。また、第1のフィン32aの位置がさらに下方側になると、通過した排気ガスは内周面2dに衝突することなく、テーパ配管部2c内に直接流入する方向(矢印C3参照)に流れる。尚、第2のフィン32bの場合も、方向が逆向きとなること以外は同様である。したがって、下流側配管部2dの軸方向に沿った排気ガスの流れ(矢印C1、C2参照)は、軸方向に対して傾いた排気ガスの流れ(矢印C3参照)と衝突し、その流れの角度αを徐々に減少させる(矢印C4参照)。 More specifically, in the case of the first fin 32a, the exhaust gas that has passed through the first fin 32a located on the uppermost side collides with the inner peripheral surface 2d at the earliest timing (see the arrow C1). As the position of the first fin 32a becomes lower, the timing of the collision is delayed (see arrow C2). Further, when the position of the first fin 32a is further on the lower side, the exhaust gas that has passed therethrough does not collide with the inner peripheral surface 2d, but flows in a direction (see arrow C3) directly flowing into the tapered pipe portion 2c. The second fin 32b is the same except that the direction is reversed. Therefore, the flow of exhaust gas (see arrows C1 and C2) along the axial direction of the downstream pipe portion 2d collides with the flow of exhaust gas inclined with respect to the axial direction (see arrow C3), and the angle of the flow α is gradually decreased (see arrow C4).
 すなわち、下流側配管部2bを通過してテーパ配管部2c内に流入する排気ガスの流れの角度は、第1のフィン32a及び第2のフィン32bが排気ガスの流れを傾ける角度α、下流側配管部2bの内径D及び距離L(図6参照)に応じたものとなっており、これらが上述の(1)、(2)式を満たす場合、軸方向に沿った排気ガスの流れ(矢印C1、C2)と軸方向に対して傾いた排気ガスの流れ(矢印C3)とがバランスする。尚、テーパ配管部2cの勾配の角度βは角度αより小さい角度であるため、下流側配管部2bを通過した排気ガスに、この角度βにほぼ沿った流れが与えられる。したがって、下流側配管部2b内で排気ガス中に分散されたアンモニアがテーパ配管部2cの勾配に沿って拡散されるため、SCR触媒4に対してアンモニアを均一な分布状態で供給することが可能となる。 That is, the flow angle of the exhaust gas flowing through the downstream pipe portion 2b and flowing into the tapered pipe portion 2c is the angle α at which the first fin 32a and the second fin 32b tilt the flow of the exhaust gas, and the downstream side When the inner diameter D and the distance L (see FIG. 6) of the pipe portion 2b are satisfied, and these satisfy the above-described equations (1) and (2), the flow of exhaust gas along the axial direction (arrow) C1, C2) and the flow of exhaust gas inclined with respect to the axial direction (arrow C3) are balanced. In addition, since the angle β of the gradient of the tapered pipe portion 2c is smaller than the angle α, a flow substantially along the angle β is given to the exhaust gas that has passed through the downstream side pipe portion 2b. Accordingly, since the ammonia dispersed in the exhaust gas in the downstream pipe portion 2b is diffused along the gradient of the taper pipe portion 2c, the ammonia can be supplied to the SCR catalyst 4 in a uniform distribution state. It becomes.
 ここで、角度αを45°、内径Dを66mmとし、長さLを変化させた場合において、SCR触媒4に供給されるアンモニアの分布状態の推移、いわゆる面内均一性の推移を計測した結果を図9に示す。尚、排気ガスの流量は52(g/s)、排気ガスの温度は423(℃)とした。この場合、この実施の形態3に係る排気ガス後処理装置によれば、長さLの好適な範囲は、
 33(mm)≦L≦99(mm)
であり、このような範囲であれば、CV値を10%未満にすることが可能である。尚、図9は、下流側配管部2bの長さLを横軸とし、面内均一性を示す指標の1つであるCV値(変動係数:標準偏差を平均で割った数×100)を縦軸としたグラフである。また、CV値は、SCR触媒4に供給されるアンモニアの分布状態が均一となる場合にゼロとなり、分布状態が不均一になるにつれて上昇するものである。
Here, when the angle α is 45 °, the inner diameter D is 66 mm, and the length L is changed, the transition of the distribution state of ammonia supplied to the SCR catalyst 4, the transition of the so-called in-plane uniformity is measured. Is shown in FIG. The exhaust gas flow rate was 52 (g / s), and the exhaust gas temperature was 423 (° C.). In this case, according to the exhaust gas aftertreatment device according to Embodiment 3, the preferred range of the length L is
33 (mm) ≤ L ≤ 99 (mm)
In such a range, the CV value can be made less than 10%. FIG. 9 shows the CV value (variation coefficient: number obtained by dividing the standard deviation by the average × 100), which is one of the indexes indicating the in-plane uniformity, with the length L of the downstream pipe portion 2b as the horizontal axis. It is the graph which made the vertical axis | shaft. Further, the CV value becomes zero when the distribution state of ammonia supplied to the SCR catalyst 4 is uniform, and increases as the distribution state becomes non-uniform.
 図9に示されるように、下流側配管部2bの長さLが約30(mm)を下回ると、CV値が急激に高くなる。これは、下流側配管部2bの長さLが短すぎるため、下流側配管部2bの内部においてアンモニアが十分に分散される前に、排気ガスがテーパ配管部2c内に流入するためである。つまり、軸方向に対して傾いた排気ガスの流れ(図8の矢印C3)が強くなり過ぎるため、分散が不十分となる。 As shown in FIG. 9, when the length L of the downstream pipe portion 2b is less than about 30 (mm), the CV value increases rapidly. This is because the length L of the downstream pipe portion 2b is too short, so that the exhaust gas flows into the tapered pipe portion 2c before ammonia is sufficiently dispersed inside the downstream pipe portion 2b. That is, the flow of exhaust gas tilted with respect to the axial direction (arrow C3 in FIG. 8) becomes too strong, resulting in insufficient dispersion.
 一方、下流側配管部2bの長さLが約50(mm)を超えると、長さLの増加に伴ってCV値も徐々に高くなる。これは、長さLの増加に伴って下流側配管部2bの軸方向に沿った方向の流れ(図8の矢印C1、C2参照)が強くなりすぎるため、テーパ配管部2cに流入した排気ガスがテーパ形状に沿って拡散されず、そのまま直進してSCR触媒4の中央部近辺のみに供給されてしまうためである。このように、角度α、内径D及び長さLが上述の(1)式及び(2)式を満たす場合、SCR触媒4に対してアンモニアが均一な分布状態で供給されることが図9からも確認できる。 On the other hand, when the length L of the downstream pipe portion 2b exceeds about 50 (mm), the CV value gradually increases as the length L increases. This is because the flow in the direction along the axial direction of the downstream pipe portion 2b (see arrows C1 and C2 in FIG. 8) becomes too strong as the length L increases, so that the exhaust gas flowing into the tapered pipe portion 2c. Is not diffused along the taper shape but goes straight as it is and is supplied only to the vicinity of the center of the SCR catalyst 4. As described above, when the angle α, the inner diameter D, and the length L satisfy the above-described formulas (1) and (2), ammonia is supplied to the SCR catalyst 4 in a uniform distribution state from FIG. Can also be confirmed.
 尚、排気ガスの流量や流速が変化した場合も、図8に示される矢印C1~C4等の流れの流量や流速がそれぞれ同じ割合で変化するので、その結果は図9に示されるものと同じ傾向となる。 Even when the flow rate and flow rate of the exhaust gas change, the flow rate and flow rate of the flows indicated by arrows C1 to C4 shown in FIG. 8 change at the same rate, so the result is the same as that shown in FIG. It becomes a trend.
 以上に述べたように、ミキサー31とSCR触媒4とを下流側配管部2b及びテーパ配管部2cを順次介して接続した排気ガス後処理装置において、ミキサー31の第1のフィン32a及び第2のフィン32bが通過する排気ガスの流れを傾ける角度をα、下流側配管部13の内径をD、長さをLとしたときに、
 D/2×cotα≦L≦3/2×D×cotα
を満たすように構成した場合、下流側配管部2bを通過してテーパ配管部2cに流入した排気ガスに対し、テーパ配管部2cの勾配に沿った流れを生じさせることができる。したがって、実施の形態1と同様の効果を得られることに加え、SCR触媒4に対してアンモニアを均一な分布状態で供給することも可能となる。
As described above, in the exhaust gas aftertreatment device in which the mixer 31 and the SCR catalyst 4 are connected to each other via the downstream pipe portion 2b and the tapered pipe portion 2c, the first fin 32a and the second fin 32a of the mixer 31 are connected. When the angle at which the flow of the exhaust gas passing through the fin 32b is inclined is α, the inner diameter of the downstream side pipe portion 13 is D, and the length is L,
D / 2 × cotα ≦ L ≦ 3/2 × D × cotα
When configured so as to satisfy the above, it is possible to cause a flow along the gradient of the tapered pipe portion 2c to the exhaust gas flowing through the downstream side pipe portion 2b and flowing into the tapered pipe portion 2c. Therefore, in addition to obtaining the same effect as in the first embodiment, ammonia can be supplied to the SCR catalyst 4 in a uniform distribution state.
 また、ミキサー31において、複数の第1のフィン32aが配列された列と複数の第2のフィン32bが配列された列とを一列ずつ交互に配置したので、下流側配管部2bの内部において、互いに異なる方向への排気ガスの流れが交互に隣り合って生じ、アンモニアが効率よく排気ガス中に分散される。さらに、下流側配管部2bは円筒状であるため、ミキサー31を通過して下流側配管部2bの内周面2dに衝突した排気ガスに周方向に沿った流れが与えられ、アンモニアがさらに効率よく排気ガス中に分散される。 Further, in the mixer 31, since the rows in which the plurality of first fins 32a are arranged and the rows in which the plurality of second fins 32b are arranged are alternately arranged one by one, in the downstream side piping section 2b, Exhaust gas flows in directions different from each other occur alternately and ammonia is efficiently dispersed in the exhaust gas. Furthermore, since the downstream side piping part 2b is cylindrical, the flow along the circumferential direction is given to the exhaust gas that has passed through the mixer 31 and collided with the inner peripheral surface 2d of the downstream side piping part 2b, so that ammonia is more efficient. It is often dispersed in exhaust gas.
 実施の形態1において、還元剤供給装置としての噴射ノズル5は、分散部材21に対して垂直となる方向に尿素水を噴射するように構成されたが、尿素水を噴射する方向を限定するものではない。例えば図10に示される噴射ノズル5’及び噴射ノズル5”のように、分散部材21に対して角度を付けた状態で設けたとしても、尿素水は分散部材21に直接衝突するため、同様の効果を得ることができる。また、噴射ノズル5’、5”は流通方向に対して垂直に噴射しているので、いずれも噴射された還元剤が分散部材に衝突するまでの間、排気ガスの流れの影響を受けにくくなる。 In the first embodiment, the injection nozzle 5 as the reducing agent supply device is configured to inject urea water in a direction perpendicular to the dispersion member 21, but limits the direction in which urea water is injected. is not. For example, even if the spray nozzle 5 ′ and the spray nozzle 5 ″ shown in FIG. 10 are provided at an angle with respect to the dispersion member 21, the urea water directly collides with the dispersion member 21, so that the same In addition, since the injection nozzles 5 'and 5 "are injected perpendicularly to the flow direction, both of the exhaust gas is discharged until the injected reducing agent collides with the dispersion member. Less affected by flow.
 また、実施の形態1、3における分散部材21は、排気ガスの流通方向に対して平行となるように配置されたが、例えば図11に示す分散部材51のように、排気ガスの流通方向に対して角度を付けることも可能である。この場合、圧損は増加してしまうが、ミキサーに流入する排気ガスの向きを調整することで、分散性を調整することができる。 Further, the dispersion member 21 in the first and third embodiments is arranged so as to be parallel to the flow direction of the exhaust gas. However, for example, like the dispersion member 51 shown in FIG. It is also possible to make an angle with respect to it. In this case, the pressure loss increases, but the dispersibility can be adjusted by adjusting the direction of the exhaust gas flowing into the mixer.
 また、分散部材は排気管2と端部で直接接触することは無く、離間していてもよい。この場合、分散部材はミキサーのみによって支持されてもよい。この場合、外気と接触して比較的温度の低い排気管2と離間しているので、分散部材の温度を高温に保つことができる。また逆にミキサーに支持されず、排気管2に端部が直接支持されていてもよい。 Further, the dispersion member does not directly contact the exhaust pipe 2 at the end portion, and may be separated. In this case, the dispersion member may be supported only by the mixer. In this case, the temperature of the dispersion member can be kept high because it is in contact with the outside air and separated from the exhaust pipe 2 having a relatively low temperature. Conversely, the end portion may be directly supported by the exhaust pipe 2 without being supported by the mixer.
 実施の形態1、3において、分散部材21は排気管2内の中心部を通るように配置したが、この構成に限らない。噴射ノズル5に対向し、ミキサー31に隣接して配置すればよい。分散部材21の位置は例えば、尿素水が衝突する面が、ミキサーの中心に配置されるとよい。 In the first and third embodiments, the dispersion member 21 is disposed so as to pass through the central portion in the exhaust pipe 2, but the configuration is not limited thereto. What is necessary is just to oppose the injection nozzle 5 and to arrange | position adjacent to the mixer 31. As for the position of the dispersion member 21, for example, the surface on which the urea water collides may be arranged at the center of the mixer.
 実施の形態1~3において、ミキサーの第1のフィン及び第2のフィンは一列ずつ交互となるように配置されたが、これらのフィンの配置を限定するものではない。第1及び第2のフィンは、通過する排気ガスの流れの角度を変更可能であればよいため、例えば、第1のフィンの列と第2のフィンの列とを2列ずつ交互に配置することや、その他の配置とすることも可能である。 In the first to third embodiments, the first fins and the second fins of the mixer are arranged so as to be alternately arranged one by one, but the arrangement of these fins is not limited. The first and second fins only need to be able to change the flow angle of the exhaust gas passing therethrough. For example, the first fin row and the second fin row are alternately arranged in two rows. Other arrangements are also possible.
 実施の形態3において、単一の分散部材を備えた実施の形態1に係る排気ガス後処理装置の排気管2及びミキサー31に対し寸法上の規定を加えたが、この構成に限定するものではない。複数の第二分散部材を備えた実施の形態2に係る排気ガス後処理装置の排気管2及びミキサー31に対し寸法上の規定を加えることも可能である。 In the third embodiment, dimensional regulations are added to the exhaust pipe 2 and the mixer 31 of the exhaust gas aftertreatment device according to the first embodiment provided with a single dispersion member. However, the present invention is not limited to this configuration. Absent. It is also possible to add dimensions to the exhaust pipe 2 and the mixer 31 of the exhaust gas aftertreatment device according to Embodiment 2 including a plurality of second dispersion members.

Claims (9)

  1.  内燃機関から排出される排気ガスが流通する排気管と、
     前記排気管の内部に還元剤を噴射する還元剤供給装置と、
     前記還元剤供給装置の下流側に配置され、前記排気ガスと前記還元剤とを反応させて前記排気ガスを浄化する還元触媒と
    を備え、
     前記排気管の内部には、
     前記還元剤供給手段に対向する部位に配置される板状の分散部材と、
     前記分散部材と前記還元触媒との間に配置され、前記排気ガスと前記還元剤とを混合する混合手段と
    が設けられ、
     前記分散部材と前記混合手段とは、隣接して配置される排気ガス後処理装置。
    An exhaust pipe through which exhaust gas discharged from the internal combustion engine flows;
    A reducing agent supply device for injecting a reducing agent into the exhaust pipe;
    A reduction catalyst disposed on the downstream side of the reducing agent supply device and purifying the exhaust gas by reacting the exhaust gas with the reducing agent;
    In the exhaust pipe,
    A plate-like dispersion member disposed at a portion facing the reducing agent supply means;
    A mixing means disposed between the dispersion member and the reduction catalyst and mixing the exhaust gas and the reducing agent;
    The dispersion member and the mixing means are exhaust gas aftertreatment devices that are arranged adjacent to each other.
  2.  前記還元剤供給装置は、前記排気ガスが前記排気管の内部を流通する方向に対して垂直となる方向に前記還元剤を噴射する請求項1に記載の排気ガス後処理装置。 The exhaust gas aftertreatment device according to claim 1, wherein the reducing agent supply device injects the reducing agent in a direction perpendicular to a direction in which the exhaust gas flows through the exhaust pipe.
  3.  前記分散部材は、前記排気ガスが前記排気管の内部を流通する方向に対して平行に延びる請求項1または2に記載の排気ガス後処理装置。 The exhaust gas aftertreatment device according to claim 1 or 2, wherein the dispersion member extends in parallel with a direction in which the exhaust gas flows through the inside of the exhaust pipe.
  4.  前記分散部材は、単一の部材である請求項1~3のいずれか一項に記載の排気ガス後処理装置。 The exhaust gas aftertreatment device according to any one of claims 1 to 3, wherein the dispersion member is a single member.
  5.  前記混合手段は、互いに平行となるように配列されるとともに通過する前記排気ガスの流れを互いに逆向きとなる所定の角度に傾かせる複数の第1のフィン及び複数の第2のフィンを有しており、
     前記混合手段と前記還元触媒とは、直線状に延びるストレート配管部、及び上流側から下流側に向かって広くなるように形成されたテーパ配管部を順次介して接続されており、
     前記角度をα、前記ストレート配管部の内径をD、前記ストレート配管部の長さをLとしたときに、
     D/2×cotα≦L≦3/2×D×cotα
    を満たす請求項1~4に記載の排気ガス後処理装置。
    The mixing means includes a plurality of first fins and a plurality of second fins that are arranged so as to be parallel to each other and that incline the flow of the exhaust gas passing therethrough at a predetermined angle that is opposite to each other. And
    The mixing means and the reduction catalyst are sequentially connected through a straight piping portion extending linearly and a tapered piping portion formed so as to widen from the upstream side toward the downstream side,
    When the angle is α, the inner diameter of the straight pipe portion is D, and the length of the straight pipe portion is L,
    D / 2 × cotα ≦ L ≦ 3/2 × D × cotα
    The exhaust gas aftertreatment device according to claim 1, wherein:
  6.  前記混合部材には、複数の前記第1のフィンが配列された列と複数の前記第2のフィンが配列された列とが一列ずつ交互に配置される請求項5に記載の排気ガス後処理装置。 6. The exhaust gas aftertreatment according to claim 5, wherein the mixing member includes a row in which a plurality of the first fins are arranged and a row in which the plurality of second fins are arranged alternately. apparatus.
  7.  前記ストレート配管部は円筒状である請求項5または6に記載の排気ガス後処理装置。 The exhaust gas aftertreatment device according to claim 5 or 6, wherein the straight pipe portion is cylindrical.
  8.  前記テーパ配管部が広がる勾配は、前記角度αより小さい請求項5~7のいずれか一項に記載の排気ガス後処理装置。 The exhaust gas aftertreatment device according to any one of claims 5 to 7, wherein a gradient in which the tapered pipe portion spreads is smaller than the angle α.
  9.  前記角度αは45°である請求項5~8のいずれか一項に記載の排気ガス後処理装置。 The exhaust gas aftertreatment device according to any one of claims 5 to 8, wherein the angle α is 45 °.
PCT/JP2012/063193 2011-06-15 2012-05-23 Exhaust gas after-treatment device WO2012172944A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011133297A JP2013002337A (en) 2011-06-15 2011-06-15 Exhaust gas postprocessing device
JP2011-133294 2011-06-15
JP2011-133297 2011-06-15
JP2011133294A JP2013002334A (en) 2011-06-15 2011-06-15 Exhaust gas after-treatment device

Publications (1)

Publication Number Publication Date
WO2012172944A1 true WO2012172944A1 (en) 2012-12-20

Family

ID=47356938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063193 WO2012172944A1 (en) 2011-06-15 2012-05-23 Exhaust gas after-treatment device

Country Status (1)

Country Link
WO (1) WO2012172944A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017084549A1 (en) * 2015-11-18 2017-05-26 天纳克(苏州)排放系统有限公司 Mixer and mixing components thereof
NL2022889B1 (en) * 2019-04-08 2020-10-15 Daf Trucks Nv An arrangement for introducing a liquid medium into exhaust gases
CN112012815A (en) * 2019-05-30 2020-12-01 日本碍子株式会社 Exhaust gas mixer, exhaust gas purification device, and exhaust gas purification method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130013U (en) * 1988-02-29 1989-09-05
JP2008280999A (en) * 2007-05-08 2008-11-20 Friedrich Boysen Gmbh & Co Kg Device for distributing flowable additive in exhaust gas system of internal combustion engine
JP2009024654A (en) * 2007-07-23 2009-02-05 Bosch Corp Exhaust emission control device for internal combustion engine, mixer plate, mixer unit, and press molding device for mixer plate
JP2009138598A (en) * 2007-12-05 2009-06-25 Toyota Motor Corp Additive distribution board structure of exhaust passage
JP2009156199A (en) * 2007-12-27 2009-07-16 Mitsubishi Fuso Truck & Bus Corp Engine exhaust emission control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130013U (en) * 1988-02-29 1989-09-05
JP2008280999A (en) * 2007-05-08 2008-11-20 Friedrich Boysen Gmbh & Co Kg Device for distributing flowable additive in exhaust gas system of internal combustion engine
JP2009024654A (en) * 2007-07-23 2009-02-05 Bosch Corp Exhaust emission control device for internal combustion engine, mixer plate, mixer unit, and press molding device for mixer plate
JP2009138598A (en) * 2007-12-05 2009-06-25 Toyota Motor Corp Additive distribution board structure of exhaust passage
JP2009156199A (en) * 2007-12-27 2009-07-16 Mitsubishi Fuso Truck & Bus Corp Engine exhaust emission control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017084549A1 (en) * 2015-11-18 2017-05-26 天纳克(苏州)排放系统有限公司 Mixer and mixing components thereof
NL2022889B1 (en) * 2019-04-08 2020-10-15 Daf Trucks Nv An arrangement for introducing a liquid medium into exhaust gases
CN112012815A (en) * 2019-05-30 2020-12-01 日本碍子株式会社 Exhaust gas mixer, exhaust gas purification device, and exhaust gas purification method
CN112012815B (en) * 2019-05-30 2022-04-19 日本碍子株式会社 Exhaust gas mixer, exhaust gas purification device, and exhaust gas purification method

Similar Documents

Publication Publication Date Title
US10408110B2 (en) Reductant decomposition reactor chamber
KR101758217B1 (en) Reducing agent mixing apparatus having liquid drop preventing function
US8468802B2 (en) Exhaust gas system
US8397495B2 (en) Exhaust gas additive/treatment system and mixer for use therein
EP3279440B1 (en) Exhaust purification unit
JP5714844B2 (en) Exhaust gas purification device
JP4930796B2 (en) Exhaust gas purification device and exhaust pipe for diesel engine
JP5163755B2 (en) Exhaust gas purification device for internal combustion engine
KR20110009685A (en) Exhaust element comprising a static means for mixing an additive into the exhaust gases
US9964016B2 (en) Exhaust gas aftertreatment device
EP2423479A2 (en) Exhaust gas purification apparatus
US10907520B1 (en) Sampling device for an exhaust gas sensor
JP2013002335A (en) Exhaust gas after-treatment device
JP2013002337A (en) Exhaust gas postprocessing device
US20160194995A1 (en) Flow mixing device for an exhaust after-treatment system
WO2017170108A1 (en) Exhaust purification system
WO2012172944A1 (en) Exhaust gas after-treatment device
JP2008240722A (en) Exhaust emission control device
JP2013002334A (en) Exhaust gas after-treatment device
US11203966B1 (en) Circular sampling device for an exhaust gas sensor
WO2012172945A1 (en) Exhaust gas after-treatment device
EP2823880B1 (en) Exhaust gas purification apparatus for an internal combustion engine
JP6623733B2 (en) Exhaust gas purification device
JP2014231744A (en) Exhaust gas purification device
JP2015055227A (en) Attachment structure of exhaust gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800603

Country of ref document: EP

Kind code of ref document: A1