WO2012172688A1 - Light source and illuminating apparatus provided with same - Google Patents

Light source and illuminating apparatus provided with same Download PDF

Info

Publication number
WO2012172688A1
WO2012172688A1 PCT/JP2011/063960 JP2011063960W WO2012172688A1 WO 2012172688 A1 WO2012172688 A1 WO 2012172688A1 JP 2011063960 W JP2011063960 W JP 2011063960W WO 2012172688 A1 WO2012172688 A1 WO 2012172688A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
source substrate
substrate
wiring pattern
light emitting
Prior art date
Application number
PCT/JP2011/063960
Other languages
French (fr)
Japanese (ja)
Inventor
村田 淳哉
義郎 岡
森山 厳與
Original Assignee
東芝ライテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝ライテック株式会社 filed Critical 東芝ライテック株式会社
Priority to PCT/JP2011/063960 priority Critical patent/WO2012172688A1/en
Priority to CN201190001096.3U priority patent/CN203642078U/en
Priority to JP2013520392A priority patent/JP5871402B2/en
Publication of WO2012172688A1 publication Critical patent/WO2012172688A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/12Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening by screwing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • F21V19/0035Fastening of light source holders, e.g. of circuit boards or substrates holding light sources the fastening means being capable of simultaneously attaching of an other part, e.g. a housing portion or an optical component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0083Array of reflectors for a cluster of light sources, e.g. arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V21/00Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
    • F21V21/14Adjustable mountings
    • F21V21/30Pivoted housings or frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/507Cooling arrangements characterised by the adaptation for cooling of specific components of means for protecting lighting devices from damage, e.g. housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/89Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/061Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body

Definitions

  • Embodiments of the present invention relate to a light source having a plurality of semiconductor light-emitting elements such as LEDs (light-emitting diodes), and a lighting fixture including the light source.
  • LEDs light-emitting diodes
  • An LED lighting device in which a light source unit disposed in an appliance body includes a plurality of LEDs, a substrate on which these LEDs are mounted, and a reflector is known as a prior art.
  • the substrate has a metal heat diffusion layer on the back surface.
  • the reflector is made of synthetic resin and has the same number of through holes as LEDs. Each through-hole has a paraboloidal shape that expands on the surface side of the reflector.
  • a reflective layer is deposited on the surface of the reflector and the inner surface of the paraboloidal through hole.
  • the reflective layer is made of an aluminum vapor deposition layer.
  • the reflector is combined with the substrate so that the LED is disposed inside the tip of the through hole.
  • the substantially center part and the peripheral part of the reflector are in contact with the substrate.
  • the mortar-shaped through holes are provided in the substantially central portion of the reflector, after all, the tips of these through holes are in contact with the substrate. This prevents deformation of the reflector due to shrinkage when the reflector is molded, and satisfies a predetermined optical performance.
  • the amount of heat generated by LEDs has increased with the increase in brightness and output of LEDs. Therefore, when the substrate shape increases as the number of LEDs used increases, the substrate tends to be greatly deformed by the heat generated by each LED. In this case, since the substrate is warped so that the substantially central portion of the surface on which the LED is mounted becomes the top, the LED may be slightly tilted and the predetermined optical performance may not be maintained. Along with this, there is an increased risk that the stress applied to the wiring pattern of the substrate and the connection portion between this pattern and the LED will increase.
  • the substrate may be thickened, for example, the metal heat diffusion layer may be thickened.
  • the substrate may be heavier and increases the cost of the substrate.
  • the thermal resistance inside the substrate increases according to the thickness of the substrate. For this reason, it is not preferable for efficiently releasing the heat of the LED to the outside.
  • Embodiment is providing the light source which can suppress the curvature of a light source board
  • the light source of the embodiment includes a light source substrate provided with a wiring pattern, a plurality of semiconductor light emitting elements mounted on the light source substrate in connection with the wiring pattern, and a reflector that covers the light source substrate so as to face the light source substrate It comprises.
  • the reflecting plate has a plurality of metal reflecting surfaces facing each other for each semiconductor light emitting element. These reflective surfaces are separated from the semiconductor light emitting element and the light source substrate by an insulating distance. At least one convex portion in contact with the light source substrate is provided so as to protrude from the back surface of the reflecting plate while being displaced from the opening of the reflecting surface.
  • FIG. 1 is a perspective view illustrating the lighting apparatus according to the first embodiment.
  • FIG. 2 is a side view showing the lighting apparatus of FIG.
  • FIG. 3 is a perspective view showing a light source according to the first embodiment provided in the lighting fixture of FIG. 1.
  • FIG. 4 is a front view showing the light source of FIG.
  • FIG. 5 is a schematic cross-sectional view showing the light source of FIG.
  • FIG. 6 is a back view showing a reflector provided in the light source of FIG.
  • FIG. 7 is a front view of the light source substrate included in the light source of FIG.
  • the light source of Embodiment 1 includes: a light source substrate provided with a wiring pattern; a plurality of semiconductor light emitting elements mounted on the light source substrate connected to the wiring pattern; and the light source substrate so as to face the light source substrate.
  • a plurality of metal reflecting surfaces arranged to cover each other and spaced apart from the semiconductor light emitting element and the light source substrate and facing each of the semiconductor light emitting elements;
  • a light source substrate having a metal base plate can be preferably used as the light source substrate.
  • the reflector plate has at least one convex portion in contact with the substrate.
  • the base plate can be formed of a metal such as aluminum, iron, or copper. The shape and size of the light source substrate can be appropriately determined according to the use of the lighting fixture.
  • the semiconductor light-emitting element refers to a light-emitting element that generates heat at the time of light emission, and typically includes an LED (light-emitting diode), but a semiconductor laser can also be used.
  • an LED is used for the semiconductor light emitting element, an SMD type LED, a bullet type LED, a COB type LED, or the like can be used.
  • the emission color of a semiconductor light emitting element such as an LED may be white or other than white.
  • the reflector is preferably made of synthetic resin, but may be made of ceramics or other electrical insulating material.
  • the reflecting surface of the reflecting plate can be provided by vapor deposition or plating.
  • this side wall is disposed around the light source substrate. This can be realized by contacting the part and screwing the reflector.
  • the peripheral portion of the reflector is flat, it is also possible to place a reflector with a predetermined thickness between the peripheral portion and the peripheral portion of the light source substrate so as to cover the light source substrate. It is. In this case, the reflector and the spacer may be held in a predetermined arrangement state using a screw or the like that passes through the reflector and the spacer.
  • the opening portion of the reflecting surface protrudes toward the light source substrate and is provided in the same arrangement pattern as the arrangement pattern of the semiconductor light emitting elements.
  • the fact that the convex portion is displaced from the opening portion of the reflecting surface indicates that the opening portion and the convex portion are provided separately.
  • the convex portion can be formed by a protrusion or rib that does not extend like a rib.
  • these may be provided at least between the openings of the adjacent reflecting surfaces, and for example, provided at a position equidistant from the openings of the adjacent reflecting surfaces. preferable.
  • a convex portion is provided on the back surface of the reflecting plate facing the light source substrate by shifting the position from the opening of the reflecting surface of the reflecting plate. For this reason, even if it tries to deform
  • the light source of the first embodiment it is possible to suppress the light source substrate from warping with a simple configuration without causing deterioration of the heat dissipation performance of the semiconductor light emitting element.
  • the convex portions are arranged avoiding the wiring pattern.
  • the insulating separation distance formed between the adjacent wiring patterns of the light source substrate is widened, and the tip of the convex portion is formed in the insulating space that bears this distance.
  • the wiring pattern has a heat spreader portion, and the heat spreader portion is provided with a relief portion that avoids the convex portion.
  • the escape portion can have a configuration in which a part of the peripheral portion of the heat spreader portion is recessed, or can be configured to be surrounded by the heat spreader portion.
  • Embodiment 3 since the insulation separation distance between adjacent heat spreader portions is kept to a minimum in Embodiment 2, the area of each heat spreader portion can be further ensured. Along with this, it is possible to prevent the wiring pattern of the light source substrate from being stressed while suppressing a decrease in heat dissipation of the semiconductor light emitting element.
  • the lighting fixture of Embodiment 4 is a lighting fixture comprising: a fixture main body having a light source arrangement portion; and a light source attached to the fixture main body with a back surface in contact with the light source arrangement portion.
  • a light source substrate provided with a wiring pattern; a plurality of semiconductor light emitting elements mounted on the light source substrate connected to the wiring pattern; and disposed to cover the light source substrate so as to face the light source substrate;
  • a reflecting plate having two convex portions protruding from the back surface.
  • the lighting fixture of the fourth embodiment includes the light source of the first embodiment, the light source substrate can be prevented from warping with a simple configuration without causing a decrease in the heat dissipation performance of the semiconductor light emitting device. The effect of being there can be expected.
  • reference numeral 1 denotes a lighting fixture, for example, a projector installed outdoors.
  • the projector 1 includes an instrument main body 2, at least one light source 3, a lighting cover 4, a power supply housing 6, and an installation member 7.
  • the appliance body 2 has, for example, a rectangular box shape that is horizontally long and has an open front surface.
  • the instrument body 2 is formed of a highly heat conductive metal such as an aluminum alloy.
  • the bottom wall of the instrument body 2 is used as a flat light source arrangement portion 2a (see FIG. 5).
  • Radiation fins 2 b are integrally projected on the outer surface of the peripheral wall of the instrument body 2.
  • three light sources 3 are used in the first embodiment.
  • the light sources 3 are arranged in the left-right direction and are built in the instrument body 2 in contact with the light source arrangement portion 2a. Specific configurations of these light sources 3 will be described in detail later.
  • the lighting cover 4 has a frame 4a corresponding to the size of the front opening of the instrument body 2, and a translucent panel 4b such as a glass plate attached to the frame 4a with its inside closed.
  • the translucent panel 4b forms a light exit surface of the projector 1, and this surface is a rectangle extending in the lateral direction.
  • the four corners of the frame 4a are connected to the instrument body 2 with bolts and cap nuts.
  • the illumination cover 4 is attached to the instrument body 2 with its front opening closed, covering each light source 3.
  • the ring-shaped waterproof packing (not shown) is pinched
  • the power supply housing 6 is connected to the light source arrangement portion 2a and arranged behind the instrument body 2.
  • the power supply housing 6 has a waterproof structure, and a power supply circuit (not shown) for lighting each light source 3 is accommodated therein.
  • the power supply circuit is electrically connected to the light source 3.
  • the installation member 7 is made of a metal such as an aluminum alloy.
  • the installation member 7 includes an installation base 7a and arms 7b bent from both longitudinal ends of the installation base 7a.
  • the distal end of the arm 7b is connected to the lower part of the instrument body 2 and to both ends in the longitudinal direction by connecting bolts 8. Due to this connection, the installation base 7 a is disposed below the instrument body 2.
  • the relative position of the instrument body 2 and the installation member 7 can be adjusted with the connecting bolt 8 loosened.
  • the state in which the instrument body 2 is at an arbitrary inclination angle with respect to the installation member 7 by this adjustment is held by tightening the connecting bolt.
  • a loosening prevention component (not shown) for ensuring this holding is incorporated in the connecting portion between the instrument body 2 and the installation arm 7b.
  • the projector 1 is installed in a state where the instrument body 2 is tilted as shown in FIG. This installation is performed by screwing a plurality of fixing holes 9 formed in the installation base 7a into installation locations through installation bolts (not shown).
  • each light source 3 of the projector 1 installed in this way is turned on, the light emitted from each light source 3 passes through the translucent panel 4b of the illumination cover 4 and is emitted obliquely upward, for example, to be projected onto the illumination target. To be lighted.
  • Each light source 3 generates heat when the projector 1 is turned on. This heat is released to the light source arrangement portion 2a of the instrument body 2, and then conducted to the entire instrument body 2, and is released from the heat radiating fins 2b and the like to the outside of the instrument body 2. It is possible to suppress the temperature rise of the light source 3 by such heat radiation to the atmosphere.
  • Each light source 3 includes a light source substrate 11, a plurality of semiconductor light emitting elements such as LEDs 18, and a reflector 21 as shown in FIG.
  • Each light source 3 has a large size corresponding to the large light emission area of the projector 1, and is made, for example, in a size of 13 cm in length and 10 cm in width.
  • the light source substrate 11 is, for example, a metal base substrate. Specifically, as shown in FIG. 7, the light source substrate 11 includes an iron plate base plate 12, an insulating plate 13 made of an insulating material such as polycarbonate resin, a wiring pattern 14, and a resist layer 15.
  • the base plate 12 forms the back surface of the light source substrate 11.
  • the insulating plate 13 is laminated on the base plate 12.
  • the surface of the insulating plate 13, that is, the side surface opposite to the base plate 12 forms an element mounting surface.
  • the wiring pattern 14 is made of a metal foil, such as a copper foil, provided on the element mounting surface.
  • the resist layer 15 is laminated on the insulating plate 13 so as to cover the wiring pattern 14 and the element mounting surface except for a part of the wiring pattern 14, that is, a portion where an LED 18 described later is mounted.
  • the resist layer 15 is preferably formed from a white resin layer in order to be electrically insulating and to reflect light efficiently.
  • the wiring pattern 14 has a pair of power supply terminal portions 14a and 14b.
  • the wiring pattern 14 is formed by arranging a plurality of wiring pairs P, for example, three pairs in the vertical direction and four pairs in the horizontal direction in FIG.
  • Each wiring pair P is paired with a heat spreader portion 14c also serving as a first wiring portion and a second wiring portion 14d.
  • the heat spreader portion 14c has a much larger area than the second wiring portion 14d, and is formed with a recess 14e at the center.
  • the recess 14e is opened at one end in the width direction of the heat spreader portion 14c.
  • the continuous heat spreader portion 14c is the farthest heat spreader portion 14c among the other heat spreader portions 14c adjacent in the vertical direction or the heat spreader portions 14c in other vertical columns adjacent in the horizontal direction.
  • Each wiring pair P is electrically connected to form a series circuit by mounting LEDs 18 to be described later.
  • the heat spreader portion 14c of the wiring pair P disposed at one end of the series circuit is integrally connected to the one power supply terminal portion 14a through the linear pattern portion 14g.
  • the second wiring portion 14d of the wiring pair P disposed at the other end of the series circuit is integrally connected to the other power supply terminal portion 14b via the linear pattern portion 14h.
  • the heat spreader portions 14c arranged in the vertical direction in FIG. 7 are adjacent to each other with a predetermined insulating distance C therebetween.
  • each heat spreader portion 14c is provided with a relief portion 14f.
  • the escape portion 14f is formed by, for example, a semicircular recess that opens to both ends in the longitudinal direction of the heat spreader portion 14c. Therefore, the escape portions 14f adjacent in the vertical direction in FIG. 7 face each other and form a substantially circular space therebetween.
  • the width B of this space is larger than the separation distance C for insulation between the heat spreaders 14c arranged in the vertical direction in FIG.
  • escape portions 14f can be provided in the vicinity of both ends of the heat spreader portions 14c arranged in the vertical direction in FIG. 7 by extending the insulating separation distance C instead of forming the recesses.
  • reference numeral 16 indicates fixing holes provided at a plurality of peripheral portions of the light source substrate 11, for example, at four corners.
  • Each LED 18 is, for example, an SMD type LED that emits white light. These LEDs 18 are mounted on the element mounting surface of the light source substrate 11 side by side in the vertical and horizontal directions. Each LED 18 is mounted across one end of the second wiring portion 14d located in the back of the recess 14e and the vicinity of the recess 14e of the heat spreader portion 14c forming the first wiring portion. The cathode of the mounted LED 18 is electrically connected to the heat spreader portion 14c that forms the first wiring portion. The anode of the mounted LED 18 is electrically connected to the second wiring portion 14d.
  • the LED 18 Since the light emission of the LED 18 is realized by passing a forward current through a pn junction of a semiconductor, the LED 18 is a solid element that directly converts electric energy into light.
  • a semiconductor light-emitting element that emits light based on such a light emission principle has an energy saving effect as compared with an incandescent bulb that inclines a filament to a high temperature by energization and emits visible light by its thermal radiation.
  • the reflecting plate 21 is formed having a reflecting plate body 22 made of an integrally molded product of synthetic resin having electrical insulation and a reflecting surface 29.
  • the reflector main body 22 is formed by providing side walls 24 functioning as spacers on the four circumferences of the front wall 22 a whose planar view shape is equal to the size of the light source substrate 11. .
  • the back side of the reflector main body 22 is open.
  • fixing grooves 25 that are open over the surface and side surfaces of the reflector plate main body 22 are formed in the periphery, for example, the four corners of the reflector plate main body 22.
  • a through hole 25 a is provided at the bottom of each fixed groove 25.
  • reference numeral 24 a indicates a through groove through which an electric wire (not shown) connected to the power supply terminals 14 a and 14 b is passed.
  • the front wall 22 a is a part that becomes a region facing the surface of the light source substrate 11 in a state where the reflection plate 21 is combined with the light source substrate 11.
  • a plurality of openings 26 equal to the number of the LEDs 18 are formed on the front wall 22a, specifically, vertically and horizontally. These openings 26 project from the back surface of the reflector main body 22 as shown in FIG.
  • the protruding height H1 of each opening 26 is shorter than the protruding height of the side wall 24 with respect to the front wall 22a, that is, the width H2 of the side wall 24. Furthermore, the inner peripheral surface of each opening 26 is inclined.
  • the opening 26 is formed so that the cross-sectional area in the direction perpendicular to the central axis of the opening 26 gradually increases from the protruding end of the opening 26 toward the surface of the front wall 22a.
  • the opening area of the protruding end of each opening 26 is larger than the LED 18.
  • the reflector main body 22 has a plurality of convex portions 27 that are integrally projected on the back surface of the front wall 22a forming the region. These convex portions 27 are formed of, for example, thin round bar-like projections.
  • the protrusion height H3 of each protrusion 27 is higher than the protrusion height H1 of each opening 26, and is substantially the same as the protrusion height (width) H2 of the side wall 24.
  • Each convex part 27 is provided so as to be shifted from the opening part 26.
  • the convex portions 27 are arranged so as to be located on both the upper and lower sides of the opening portions 26 arranged in the vertical direction in FIG. Therefore, each convex part 27 is scattered over the whole intermediate area
  • the protrusions 27 provided between the openings 26 adjacent in the vertical direction in FIG. 6 are spaced equidistant from the openings 26 adjacent in the vertical direction.
  • the reflection surface 29 is applied over the entire surface of the front wall 22 a that forms the region and the entire inner surface of the opening 26. Therefore, the reflection surface 29 has a plurality of the openings 26.
  • the reflection surface 29 is provided on the reflection plate main body 22 by evaporating a metal such as aluminum, and forms a mirror surface.
  • the reflective surface 29 may be attached only to the inner surface of each opening 26.
  • the reflection surface 29 excluding each opening 26 has a reflection layer portion that is attached to the surface of the front wall 22a. When the light reflected by the translucent panel 4b is incident on this reflection layer portion, This is preferable in that this light can be reflected again toward the translucent panel 4b.
  • the reflector 21 is combined with the light source substrate 11 so as to cover the surface of the light source substrate 11 on which the LEDs 18 are mounted.
  • the light source 3 is assembled by holding this combined state by screwing. This screwing is performed by screwing screws (see FIG. 5) 30 inserted into the respective through holes 25a and the fixing holes 16 communicated therewith into the light source arrangement portion 2a of the instrument body 2. Along with this screwing, the metal base plate 12 forming the back surface of the light source substrate 11 of the light source 3 is brought into surface contact with the light source arrangement portion 2a, and the light source 3 is fixed to the light source arrangement portion 2a.
  • the front wall 22a of the reflecting plate 21 is disposed so as to cover the surface of the light source substrate 11 on which the LED 18 is mounted.
  • each of the openings 26 faces the LED 18.
  • the reflective surface 29 provided in the inner surface of each opening part 26 is also facing each LED18.
  • substrate 11 when the light source 3 is seen from the front is shown with the dashed-two dotted line in FIG.
  • the side wall 24 of the reflector 21 and the bottom surface of the fixing groove 25 are both brought into close contact with the surface of the light source substrate 11. Therefore, a predetermined insulation distance is ensured between the surface of the light source substrate 11 (element mounting surface) and between the LED 18 and the tip of each opening 26. This insulation distance is defined by the difference between the protruding height H2 of the side wall 24 and the protruding height H1 of the opening 26.
  • each convex portion 27 protruding from the back surface of the reflector 21 and the protruding height H2 of the side wall 24 are substantially the same.
  • the tips of the convex portions 27 substantially contact the surface of the light source substrate 11. That is, the tip of each convex portion 27 is disposed at a close distance to the surface of the light source substrate 11 or is brought into close contact with or slightly touching.
  • each convex portion 27 is disposed in the relief portion 14 f of the wiring pattern 14. That is, each convex portion 27 is substantially in contact with the surface of the light source substrate 11 while avoiding the wiring pattern 14.
  • each convex portion 27 is substantially in contact with the surface of the light source substrate 11 while avoiding the wiring pattern 14.
  • substrate 11 is seen from the front, arrangement
  • the region of the reflection plate 21 provided with the opening 26 covered with the metal reflection surface 29, and the element mounting surfaces of the LED 18 and the light source substrate 11 are predetermined. They are separated by an insulation distance. Thereby, although the reflecting surface 29 is provided in a state of reaching the tip of each opening 26, the reflecting surface 29 on the inner surface of the opening can be electrically insulated from the LED 18 and the wiring pattern 14 of the light source substrate 11.
  • the inner surface of the distal end portion of the opening portion 26 in order to ensure electrical insulation between the metal reflection surface 29 and the light source substrate 11 as compared with the configuration in which the distal end of each opening portion 26 is in contact with the light source substrate 11, the inner surface of the distal end portion of the opening portion 26. Therefore, it is not necessary to provide the reflecting surface 29 on the inner surface of each opening 26. For this reason, it is possible to adhere the reflecting surface 29 to the entire inner surface of each opening 26.
  • a new high-precision masking jig is developed as a masking means for preventing metal from being vapor deposited on the inner surface of the tip of each opening 26. I don't need it. At the same time, the deterioration of the vapor deposition workability associated with the use of such a jig can be eliminated. For this reason, the manufacturing cost of the reflecting plate 21 can be reduced.
  • the plurality of convex portions 27 provided on the back surface of the region of the reflecting plate 21 facing the surface of the light source substrate 11 are shifted from the respective openings 26 of the reflecting surface 29.
  • the tips of the convex portions 27 are in substantially contact with the light source substrate 11. For this reason, even if each opening part 26 is not made to contact the light source board
  • each LED 18 that emits light generates heat.
  • This heat is mainly diffused to the heat spreader portion 14 c of the wiring pattern 14 and then released to the light source arrangement portion 2 a of the instrument body 2 through the metal base plate 12.
  • the light source substrate 11 rises in temperature due to the heat generated by each LED 18, the light source substrate 11 tends to warp upward in FIG. In other words, the light source substrate 11 tends to be deformed so that the central portion thereof is closest to the back surface of the reflecting plate 21.
  • each time the light source 3 is turned on the thermal deformation of the light source substrate 11 can be suppressed by the convex portion 27. Regardless of this, since each convex portion 27 avoids the wiring pattern 14 and contacts the light source substrate 11, no stress is applied to the wiring pattern 14 of the light source substrate 11 due to the stopper action of each convex portion 27. For this reason, there is no possibility that the wiring pattern 14 is disconnected, and the life of the light source 3 can be kept long.
  • the convex portion 27 is integrally provided on the back surface of the reflector main body 22. Accordingly, in order to suppress thermal deformation of the light source substrate 11, it is not necessary to increase the strength of the light source substrate 11 by increasing the thickness of the base plate 12 or the like of the light source substrate 11. Therefore, the light source substrate 11 does not become heavy and the cost of the light source substrate 11 does not increase. In addition, since the thermal resistance does not increase inside the light source substrate 11 as when the thickness of the light source substrate 11 is increased, the heat of the LED 18 can be easily released to the light source arrangement portion 2a of the instrument body 2. Is possible.
  • the first embodiment it is possible to expect an effect that the configuration of the light source 3 is simple and the warp of the light source substrate 11 can be suppressed without causing a decrease in the heat dissipation performance of the LED 18.
  • electrical insulation between the reflection surface 29 of the reflection plate 21 provided in the light source 3 and the light source substrate 11 is possible.
  • the wiring pattern 14 of the light source 3 of the first embodiment has a heat spreader portion 14c, and an escape portion 14f that avoids the convex portion 27 is provided at the edge of the heat spreader portion 14c.
  • the insulation separation distance C between the adjacent heat spreader portions 14c can be kept to a minimum. Therefore, a large area of each heat spreader portion 14c can be secured.
  • the projector (lighting device) of the first embodiment can also be implemented as an indoor lighting device by providing a vent hole on the side wall of the device body 2. .
  • the light source 3 can be air-cooled. That is, as described above, each opening 26 of the light source 3 and the light source substrate 11 are separated by a predetermined insulating distance. For this reason, in the lighting state of the lighting fixture, it is possible to suppress the temperature rise of the LED 18 exposed to the airflow as convection is formed through the respective openings 26 and inside and outside the reflecting plate 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)

Abstract

The present invention suppresses, with a simple configuration, warpage of a light source substrate without causing deterioration of heat dissipation performance. According to an embodiment of the present invention, a light source (3) is provided with: a light source substrate (11), which is provided with a wiring pattern; a plurality of semiconductor light emitting elements (18), which are mounted on the light source substrate (11) by being connected to the wiring pattern; and a reflecting plate (21), which covers the light source substrate (11) such that the reflecting plate faces the light source substrate (11). The reflecting plate (21) has a plurality of metal reflecting surfaces (29) that face each other by each of the semiconductor light emitting elements (18). The reflecting surfaces (29) are separated from the semiconductor light emitting elements (18) and the light source substrates (11) by insulating distances. At least one protruding portion (27) in contact with the light source substrate (11) is protruding from the rear surface of the reflecting plate (21) by having the position of the protruding portion shifted from openings (26) in the reflecting surfaces (29).

Description

光源及びこれを備えた照明器具Light source and lighting apparatus provided with the same
 本発明の実施形態は、LED(発光ダイオード)等の半導体発光素子を複数有する光源、及びこの光源を備えた照明器具に関する。 Embodiments of the present invention relate to a light source having a plurality of semiconductor light-emitting elements such as LEDs (light-emitting diodes), and a lighting fixture including the light source.
 器具本体内に配置された光源部が、複数のLEDと、これらが実装された基板と、反射体を備えて形成されたLED照明装置が、従来技術として知られている。 An LED lighting device in which a light source unit disposed in an appliance body includes a plurality of LEDs, a substrate on which these LEDs are mounted, and a reflector is known as a prior art.
 この照明器具で、基板は、その裏面に金属の熱拡散層を有した構成である。反射体は、合成樹脂製で、貫通孔をLEDと同数有している。各貫通孔は反射体の表面側に開拡する回転放物面状をなしている。反射体の表面及び回転放物面状の貫通孔の内面に反射層が被着されている。反射層はアルミニウムの蒸着層からなる。 In this lighting apparatus, the substrate has a metal heat diffusion layer on the back surface. The reflector is made of synthetic resin and has the same number of through holes as LEDs. Each through-hole has a paraboloidal shape that expands on the surface side of the reflector. A reflective layer is deposited on the surface of the reflector and the inner surface of the paraboloidal through hole. The reflective layer is made of an aluminum vapor deposition layer.
 反射体は、貫通孔の先端部内側にLEDが配置されるように基板と組み合わされている。反射体の略中心部及び周縁部は基板に当接されている。ここで、反射体の略中心部にすり鉢状の貫通孔が設けられているので、結局のところ、これら貫通孔の先端が基板に当接されている。これにより、反射体を成形する際の肉引けによる反射体の変形が防止されて、所定の光学性能を満足できる。 The reflector is combined with the substrate so that the LED is disposed inside the tip of the through hole. The substantially center part and the peripheral part of the reflector are in contact with the substrate. Here, since the mortar-shaped through holes are provided in the substantially central portion of the reflector, after all, the tips of these through holes are in contact with the substrate. This prevents deformation of the reflector due to shrinkage when the reflector is molded, and satisfies a predetermined optical performance.
 近年、LEDの高輝度・高出力化に伴い、LEDが発生する熱量は増大している。そのため、LEDの使用数が増えるに伴って基板形状が大きくなると、各LEDの発熱により基板が大きく変形する傾向がある。この場合、LEDが実装された面の略中央部が頂部となるように基板が反るので、LEDが微妙に傾いて所定の光学性能を維持できなくなるおそれがある。これとともに、基板の配線パターン及びこのパターンとLEDとの接続部に加わるストレスが増えるおそれが高まる。 In recent years, the amount of heat generated by LEDs has increased with the increase in brightness and output of LEDs. Therefore, when the substrate shape increases as the number of LEDs used increases, the substrate tends to be greatly deformed by the heat generated by each LED. In this case, since the substrate is warped so that the substantially central portion of the surface on which the LED is mounted becomes the top, the LED may be slightly tilted and the predetermined optical performance may not be maintained. Along with this, there is an increased risk that the stress applied to the wiring pattern of the substrate and the connection portion between this pattern and the LED will increase.
 この課題については、基板の強度を高めることで対処することが考えられる。このためには、基板を厚くすること、例えば金属製熱拡散層を厚くすればよい。しかし、こうすると、基板が重くなり、かつ、基板のコストが増える。それだけではなく、基板の厚みに応じてその内部での熱抵抗が増える。このため、LEDの熱を外部に効率よく放出する上では好ましくない。 This issue can be dealt with by increasing the strength of the substrate. For this purpose, the substrate may be thickened, for example, the metal heat diffusion layer may be thickened. However, this makes the substrate heavier and increases the cost of the substrate. Not only that, the thermal resistance inside the substrate increases according to the thickness of the substrate. For this reason, it is not preferable for efficiently releasing the heat of the LED to the outside.
特開2008-204692号公報JP 2008-204692 A
 実施形態は、簡単な構成で、半導体発光素子の放熱性能の低下を招くことなく光源基板の反りを抑制可能な光源及びこれを備えた照明器具を提供することにある。 Embodiment is providing the light source which can suppress the curvature of a light source board | substrate with a simple structure, and does not cause the fall of the thermal radiation performance of a semiconductor light-emitting device, and a lighting fixture provided with the same.
 実施形態の光源は、配線パターンが設けられた光源基板と、光源基板に配線パターンと接続して実装された複数の半導体発光素子と、光源基板に対向するようにこの光源基板を覆った反射板を具備する。反射板は半導体発光素子毎に対向する複数の金属の反射面を有する。これら反射面を半導体発光素子及び光源基板から絶縁距離を隔てる。光源基板に接する少なくとも一つの凸部を、反射面の開口部から位置をずらして反射板の裏面から突設する。 The light source of the embodiment includes a light source substrate provided with a wiring pattern, a plurality of semiconductor light emitting elements mounted on the light source substrate in connection with the wiring pattern, and a reflector that covers the light source substrate so as to face the light source substrate It comprises. The reflecting plate has a plurality of metal reflecting surfaces facing each other for each semiconductor light emitting element. These reflective surfaces are separated from the semiconductor light emitting element and the light source substrate by an insulating distance. At least one convex portion in contact with the light source substrate is provided so as to protrude from the back surface of the reflecting plate while being displaced from the opening of the reflecting surface.
図1は、実施例1に係る照明器具を示す斜視図である。FIG. 1 is a perspective view illustrating the lighting apparatus according to the first embodiment. 図2は、図1の照明器具を示す側面図である。FIG. 2 is a side view showing the lighting apparatus of FIG. 図3は、図1の照明器具が備えた実施例1に係る光源を示す斜視図である。FIG. 3 is a perspective view showing a light source according to the first embodiment provided in the lighting fixture of FIG. 1. 図4は、図3の光源を示す正面図である。FIG. 4 is a front view showing the light source of FIG. 図5は、図3の光源を示す略断面図である。FIG. 5 is a schematic cross-sectional view showing the light source of FIG. 図6は、図3の光源が備える反射板を示す裏面図である。FIG. 6 is a back view showing a reflector provided in the light source of FIG. 図7は、図3の光源が備える光源基板を一部切欠いて示す正面図である。FIG. 7 is a front view of the light source substrate included in the light source of FIG.
 実施形態1の光源は、配線パターンが設けられた光源基板と;この光源基板に前記配線パターンと接続して実装された複数の半導体発光素子と;前記光源基板に対向するように前記光源基板を覆って配置され、前記半導体発光素子及び前記光源基板から絶縁距離を隔てられて前記半導体発光素子毎に対向する複数の金属反射面を有し、この反射面の開口部から位置をずらして前記光源基板に接する少なくとも一つの凸部が裏面から突設されている反射板と;を具備する
 この実施形態1で、光源基板には、金属のベース板を有した光源基板を好適に用いることができる他、単層又は複層の絶縁板からなる光源基板を用いることも可能である。金属のベース板を有した光源基板の場合、そのベース板は、アルミニウム、鉄、銅等の金属で形成できる。光源基板の形状及び大きさは、照明器具の用途に応じて適宜決定できる。
The light source of Embodiment 1 includes: a light source substrate provided with a wiring pattern; a plurality of semiconductor light emitting elements mounted on the light source substrate connected to the wiring pattern; and the light source substrate so as to face the light source substrate. A plurality of metal reflecting surfaces arranged to cover each other and spaced apart from the semiconductor light emitting element and the light source substrate and facing each of the semiconductor light emitting elements; In this Embodiment 1, a light source substrate having a metal base plate can be preferably used as the light source substrate. The reflector plate has at least one convex portion in contact with the substrate. In addition, it is also possible to use a light source substrate made of a single-layer or multi-layer insulating plate. In the case of a light source substrate having a metal base plate, the base plate can be formed of a metal such as aluminum, iron, or copper. The shape and size of the light source substrate can be appropriately determined according to the use of the lighting fixture.
 実施形態1で、半導体発光素子は、その発光時に発熱を伴う発光素子を指しており、代表的にはLED(発光ダイオード)を挙げることができるが、半導体レーザを用いることも可能である。半導体発光素子にLEDを用いる場合、SMD型LED、砲弾型LED、又はCOB型LED等を使用可能である。LED等の半導体発光素子の発光色は、白色又は白色以外であっても良い。 In the first embodiment, the semiconductor light-emitting element refers to a light-emitting element that generates heat at the time of light emission, and typically includes an LED (light-emitting diode), but a semiconductor laser can also be used. When an LED is used for the semiconductor light emitting element, an SMD type LED, a bullet type LED, a COB type LED, or the like can be used. The emission color of a semiconductor light emitting element such as an LED may be white or other than white.
 実施形態1で、反射板は、合成樹脂製であることが好適であるが、セラミックスその他の電気絶縁材製であっても差し支えない。反射板の反射面は、蒸着又はメッキ等により設けることができる。実施形態1で、光源基板を覆って反射板を配置するには、反射板がその周部に開口部の突出長さより長く折れ曲がった側壁を有している場合は、この側壁を光源基板の周部に接触させて、反射板をねじ止めすること等により実現できる。この他、反射板の周部が平板状である場合は、この周部と光源基板の周部との間に所定厚みのスペーサを挟んで、光源基板を覆って反射板を配置することも可能である。この場合、反射板とスペーサを挿通するねじ等を用いて、反射板とスペーサを所定の配置状態を保持すればよい。 In Embodiment 1, the reflector is preferably made of synthetic resin, but may be made of ceramics or other electrical insulating material. The reflecting surface of the reflecting plate can be provided by vapor deposition or plating. In Embodiment 1, in order to dispose the reflection plate so as to cover the light source substrate, when the reflection plate has a side wall that is bent longer than the projecting length of the opening, this side wall is disposed around the light source substrate. This can be realized by contacting the part and screwing the reflector. In addition, in the case where the peripheral portion of the reflector is flat, it is also possible to place a reflector with a predetermined thickness between the peripheral portion and the peripheral portion of the light source substrate so as to cover the light source substrate. It is. In this case, the reflector and the spacer may be held in a predetermined arrangement state using a screw or the like that passes through the reflector and the spacer.
 実施形態1で、反射面の開口部は、光源基板に向って突出されて、半導体発光素子の配設パターンと同様の配設パターンで設けられることが好ましい。実施形態1で、凸部が反射面の開口部からずれているとは、開口部と凸部が別々に設けられていることを指している。 In Embodiment 1, it is preferable that the opening portion of the reflecting surface protrudes toward the light source substrate and is provided in the same arrangement pattern as the arrangement pattern of the semiconductor light emitting elements. In the first embodiment, the fact that the convex portion is displaced from the opening portion of the reflecting surface indicates that the opening portion and the convex portion are provided separately.
 実施形態1で、凸部は、リブのように延びていない突起又はリブで形成することが可能である。実施形態1で、凸部は、複数設けることが好ましいが、1個であってもよく、この場合、反射板の裏面中央部から突設することが好ましい。更に、実施形態1で、凸部が複数の場合、これらを少なくとも隣接した反射面の開口部間に設けるとよく、しかも、例えば隣接した反射面の開口部から等距離隔たった位置に設けることが好ましい。 In Embodiment 1, the convex portion can be formed by a protrusion or rib that does not extend like a rib. In the first embodiment, it is preferable to provide a plurality of convex portions, but one convex portion may be provided. In this case, it is preferable to project from the central portion of the back surface of the reflecting plate. Furthermore, in the first embodiment, when there are a plurality of convex portions, these may be provided at least between the openings of the adjacent reflecting surfaces, and for example, provided at a position equidistant from the openings of the adjacent reflecting surfaces. preferable.
 実施形態1で、凸部が光源基板に接するとは、少なくとも半導体発光素子の発光状態で接することを指している。このため、非発光状態で凸部の先端は、光源基板に軽微に接触していてもよく、又はごく僅かな隙間を設けて至近距離に位置されていてもよく、若しくは光源基板に押付けられていても差し支えない。 In the first embodiment, that the convex portion is in contact with the light source substrate means that it is in contact with at least the light emitting state of the semiconductor light emitting element. For this reason, the tip of the convex portion may be in slight contact with the light source substrate in a non-light emitting state, or may be positioned at a close distance with a very small gap, or is pressed against the light source substrate. There is no problem.
 実施形態1では、光源基板に対向した反射板の裏面に、この反射板が有した反射面の開口部から位置をずらして凸部を設けている。このため、半導体発光素子の発熱により光源基板がその中央部が反射板の裏面に最も近付くように変形しようとしても、凸部のストッパ作用で光源基板が反ることを抑制可能である。これにより、光源基板を厚くすることなく、反射板がこれに一体成形された凸部を有するという簡単な構成で、半導体発光素子の発光中に光源基板が反るという熱変形を抑制可能である。 In the first embodiment, a convex portion is provided on the back surface of the reflecting plate facing the light source substrate by shifting the position from the opening of the reflecting surface of the reflecting plate. For this reason, even if it tries to deform | transform so that the center part may closely approach the back surface of a reflecting plate by the heat_generation | fever of a semiconductor light-emitting element, it can suppress that a light source board warps by the stopper effect | action of a convex part. Thereby, without making the light source substrate thick, it is possible to suppress thermal deformation in which the light source substrate is warped during light emission of the semiconductor light emitting element with a simple configuration in which the reflector has a convex portion formed integrally therewith. .
 以上のように実施形態1の光源によれば、簡単な構成で、半導体発光素子の放熱性能の低下を招くことなく光源基板が反ることを抑制可能である。 As described above, according to the light source of the first embodiment, it is possible to suppress the light source substrate from warping with a simple configuration without causing deterioration of the heat dissipation performance of the semiconductor light emitting element.
 実施形態2の光源は、実施形態1において、前記各凸部が前記配線パターンを避けて配設されている。 In the light source of the second embodiment, in the first embodiment, the convex portions are arranged avoiding the wiring pattern.
 この実施形態2で、凸部が配線パターンを避けるための構成としては、光源基板の隣接する配線パターン間に形成される絶縁用離間距離を広くし、この距離を担う絶縁スペースに凸部の先端が接するように構成することが可能である、又は、これに代えて、後述する実施形態3で説明する構成等を採用することも可能である。 In the second embodiment, as a configuration for the convex portion to avoid the wiring pattern, the insulating separation distance formed between the adjacent wiring patterns of the light source substrate is widened, and the tip of the convex portion is formed in the insulating space that bears this distance. Can be configured so as to be in contact with each other, or instead of this, a configuration described in a third embodiment to be described later can be employed.
 実施形態2では、実施形態1において、更に、光源の点灯中に光源基板の熱変形を抑制する凸部を原因として、光源基板の配線パターンにストレスが与えられることがない。このため、配線パターンが断線するおそれがなく、光源の寿命を長くすることが可能である。 In the second embodiment, in addition to the first embodiment, no stress is applied to the wiring pattern of the light source substrate due to the convex portion that suppresses the thermal deformation of the light source substrate while the light source is turned on. For this reason, there is no possibility that the wiring pattern is disconnected, and the life of the light source can be extended.
 実施形態3の光源は、実施形態2において、前記配線パターンがヒートスプレッダ部を有していて、このヒートスプレッダ部に前記凸部を避ける逃げ部が設けられている。 In the light source of Embodiment 3, in Embodiment 2, the wiring pattern has a heat spreader portion, and the heat spreader portion is provided with a relief portion that avoids the convex portion.
 この実施形態3で、逃げ部は、ヒートスプレッダ部の周部の一部を凹ませた構成とすることができる他、ヒートスプレッダ部で囲まれる構成とすることも可能である。 In Embodiment 3, the escape portion can have a configuration in which a part of the peripheral portion of the heat spreader portion is recessed, or can be configured to be surrounded by the heat spreader portion.
 実施形態3では、実施形態2において、更に、隣接するヒートスプレッダ部間の絶縁用離間距離が最小に保たれるので、各ヒートスプレッダ部の面積をより大きく確保できる。これに伴い、半導体発光素子の放熱性の低下を抑制しつつ、凸部を原因とするストレスを光源基板の配線パターンに与えないようすることが可能である。 In Embodiment 3, since the insulation separation distance between adjacent heat spreader portions is kept to a minimum in Embodiment 2, the area of each heat spreader portion can be further ensured. Along with this, it is possible to prevent the wiring pattern of the light source substrate from being stressed while suppressing a decrease in heat dissipation of the semiconductor light emitting element.
 実施形態4の照明器具は、光源配設部を有した器具本体と;裏面を前記光源配設部に接触させて前記器具本体に取付けられた光源と;を具備する照明器具であって、前記光源が配線パターンが設けられた光源基板と;この光源基板に前記配線パターンと接続して実装された複数の半導体発光素子と;前記光源基板に対向するように前記光源基板を覆って配置され、前記半導体発光素子及び前記光源基板から絶縁距離を隔てられて前記半導体発光素子毎に対向する複数の金属反射面を有し、この反射面の開口部から位置をずらして前記光源基板に接する少なくとも一つの凸部が裏面から突設されている反射板と;を備える。 The lighting fixture of Embodiment 4 is a lighting fixture comprising: a fixture main body having a light source arrangement portion; and a light source attached to the fixture main body with a back surface in contact with the light source arrangement portion. A light source substrate provided with a wiring pattern; a plurality of semiconductor light emitting elements mounted on the light source substrate connected to the wiring pattern; and disposed to cover the light source substrate so as to face the light source substrate; A plurality of metal reflecting surfaces spaced apart from the semiconductor light emitting element and the light source substrate and facing each of the semiconductor light emitting elements, and at least one contacting the light source substrate by shifting a position from an opening of the reflecting surface; A reflecting plate having two convex portions protruding from the back surface.
 この実施形態4の照明器具は、実施形態1の光源を備えているので、この光源について、簡単な構成で、半導体発光素子の放熱性能の低下を招くことなく光源基板が反ることを抑制可能ある、という効果を期待できる。 Since the lighting fixture of the fourth embodiment includes the light source of the first embodiment, the light source substrate can be prevented from warping with a simple configuration without causing a decrease in the heat dissipation performance of the semiconductor light emitting device. The effect of being there can be expected.
 以下、実施例1の照明器具について、図1~図7を参照して詳細に説明する。 Hereinafter, the lighting apparatus of Example 1 will be described in detail with reference to FIGS.
 図1及び図2中符号1は照明器具例えば屋外に設置される投光器を示している。この投光器1は、器具本体2と、少なくとも一個の光源3と、照明カバー4と、電源筐体6と、設置部材7を備えている。 In FIG. 1 and FIG. 2, reference numeral 1 denotes a lighting fixture, for example, a projector installed outdoors. The projector 1 includes an instrument main body 2, at least one light source 3, a lighting cover 4, a power supply housing 6, and an installation member 7.
 器具本体2は例えば横長で前面が開放された四角い箱状をなしている。器具本体2は、良熱伝導性金属例えばアルミニウム合金等で成形されている。この器具本体2の底壁は平らな光源配設部2a(図5参照)として用いられている。器具本体2の周壁の外面に放熱フィン2bが一体に突設されている。 The appliance body 2 has, for example, a rectangular box shape that is horizontally long and has an open front surface. The instrument body 2 is formed of a highly heat conductive metal such as an aluminum alloy. The bottom wall of the instrument body 2 is used as a flat light source arrangement portion 2a (see FIG. 5). Radiation fins 2 b are integrally projected on the outer surface of the peripheral wall of the instrument body 2.
 図1に示すように光源3は実施例1では3個用いられている。各光源3は左右方向に並べられて光源配設部2aに接して器具本体2に内蔵されている。これら光源3の具体的構成は後で詳しく説明する。 As shown in FIG. 1, three light sources 3 are used in the first embodiment. The light sources 3 are arranged in the left-right direction and are built in the instrument body 2 in contact with the light source arrangement portion 2a. Specific configurations of these light sources 3 will be described in detail later.
 照明カバー4は、器具本体2の前面開口の大きさに見合った枠4aと、枠4aにその内側を閉じて取付けられたガラス板等の透光パネル4bとを有している。透光パネル4bは投光器1の光出射面をなしていて、この面は横方向に延びた長方形である。枠4aの四隅は器具本体2にボルト及び袋ナットで連結されている。これにより、照明カバー4は各光源3を覆って器具本体2にその前面開口を閉じて装着されている。尚、袋ナットのみを(図2に符号5で示す。器具本体2と枠4aとの間に環形の防水パッキン(図示しない)が挟まれていて、それにより、防水が図られている。 The lighting cover 4 has a frame 4a corresponding to the size of the front opening of the instrument body 2, and a translucent panel 4b such as a glass plate attached to the frame 4a with its inside closed. The translucent panel 4b forms a light exit surface of the projector 1, and this surface is a rectangle extending in the lateral direction. The four corners of the frame 4a are connected to the instrument body 2 with bolts and cap nuts. As a result, the illumination cover 4 is attached to the instrument body 2 with its front opening closed, covering each light source 3. In addition, only a cap nut is shown by the code | symbol 5 in FIG. 2. The ring-shaped waterproof packing (not shown) is pinched | interposed between the instrument main body 2 and the frame 4a, and, thereby, waterproofing is achieved.
 電源筐体6は、光源配設部2aに連結されて器具本体2の後方に配設されている。この電源筐体6は防水構造であり、その内部に各光源3を点灯させる図示しない電源回路が収容されている。電源回路は光源3に電気的に接続されている。 The power supply housing 6 is connected to the light source arrangement portion 2a and arranged behind the instrument body 2. The power supply housing 6 has a waterproof structure, and a power supply circuit (not shown) for lighting each light source 3 is accommodated therein. The power supply circuit is electrically connected to the light source 3.
 設置部材7は金属例えばアルミニウム合金製である。この設置部材7は、設置ベース7aと、この設置ベース7aの長手方向両端から折り曲げられたアーム7bとからなる。アーム7bの先端部は器具本体2の下部でかつ長手方向両端部に連結ボルト8で連結されている。この連結により設置ベース7aは器具本体2の下方に配置されている。 The installation member 7 is made of a metal such as an aluminum alloy. The installation member 7 includes an installation base 7a and arms 7b bent from both longitudinal ends of the installation base 7a. The distal end of the arm 7b is connected to the lower part of the instrument body 2 and to both ends in the longitudinal direction by connecting bolts 8. Due to this connection, the installation base 7 a is disposed below the instrument body 2.
 連結ボルト8を緩めた状態で器具本体2と設置部材7との相対位置は調節可能である。この調節により設置部材7に対して器具本体2が任意の傾き角度となった状態は、連結ボルトの締め付けによって保持される。尚、この保持を確実にするための弛み止め用部品(図示しない)が器具本体2と設置アーム7bとの連結部に組み込まれている。 The relative position of the instrument body 2 and the installation member 7 can be adjusted with the connecting bolt 8 loosened. The state in which the instrument body 2 is at an arbitrary inclination angle with respect to the installation member 7 by this adjustment is held by tightening the connecting bolt. A loosening prevention component (not shown) for ensuring this holding is incorporated in the connecting portion between the instrument body 2 and the installation arm 7b.
 投光器1は、設置箇所に器具本体2を例えば図2に示すように傾けた状態に設置される。この設置は、設置ベース7aに形成された複数の固定孔9に図示しない設置ボルトを通して設置箇所にねじ込むことにより行われる。こうして設置された投光器1の各光源3が点灯されると、この各光源3から発した光が、照明カバー4の透光パネル4bを透過して例えば斜め上向きに出射されて、照明対象に投光される。 The projector 1 is installed in a state where the instrument body 2 is tilted as shown in FIG. This installation is performed by screwing a plurality of fixing holes 9 formed in the installation base 7a into installation locations through installation bolts (not shown). When each light source 3 of the projector 1 installed in this way is turned on, the light emitted from each light source 3 passes through the translucent panel 4b of the illumination cover 4 and is emitted obliquely upward, for example, to be projected onto the illumination target. To be lighted.
 投光器1の点灯時に各光源3は発熱を伴う。この熱は、器具本体2の光源配設部2aに放出された上で、器具本体2の全体に伝導されて、放熱フィン2b等から器具本体2の外部に放出される。こうした大気中への放熱により光源3の温度過昇を抑制可能である。 Each light source 3 generates heat when the projector 1 is turned on. This heat is released to the light source arrangement portion 2a of the instrument body 2, and then conducted to the entire instrument body 2, and is released from the heat radiating fins 2b and the like to the outside of the instrument body 2. It is possible to suppress the temperature rise of the light source 3 by such heat radiation to the atmosphere.
 次に、光源3について図3~図7を参照して説明する。各光源3は、図5等に示すように光源基板11と、複数の半導体発光素子例えばLED18と、反射板21を具備している。各光源3は、投光器1の光出射面積が大きいことに伴い、それに見合って大形であり、例えば縦13cm、横10cmの大きさに作られている。 Next, the light source 3 will be described with reference to FIGS. Each light source 3 includes a light source substrate 11, a plurality of semiconductor light emitting elements such as LEDs 18, and a reflector 21 as shown in FIG. Each light source 3 has a large size corresponding to the large light emission area of the projector 1, and is made, for example, in a size of 13 cm in length and 10 cm in width.
 光源基板11は例えば金属ベース基板である。具体的に光源基板11は、図7に示すように鉄板製のベース板12と、絶縁材例えばポリカーボネート樹脂等からなる絶縁板13と、配線パターン14と、レジスト層15とからなる。 The light source substrate 11 is, for example, a metal base substrate. Specifically, as shown in FIG. 7, the light source substrate 11 includes an iron plate base plate 12, an insulating plate 13 made of an insulating material such as polycarbonate resin, a wiring pattern 14, and a resist layer 15.
 ベース板12は光源基板11の裏面を形成している。絶縁板13はベース板12に積層されている。この絶縁板13の表面、つまり、ベース板12と反対側の側面は、素子実装面をなしている。配線パターン14は素子実装面に設けられた金属箔例えば銅箔等からなる。レジスト層15は、配線パターン14の一部、つまり、後述するLED18が実装される部位を除いて、この配線パターン14と素子実装面を覆って絶縁板13に積層されている。このレジスト層15は、電気絶縁性でかつ光を効率よく反射させるために、白色の樹脂層から形成することが好ましい。 The base plate 12 forms the back surface of the light source substrate 11. The insulating plate 13 is laminated on the base plate 12. The surface of the insulating plate 13, that is, the side surface opposite to the base plate 12 forms an element mounting surface. The wiring pattern 14 is made of a metal foil, such as a copper foil, provided on the element mounting surface. The resist layer 15 is laminated on the insulating plate 13 so as to cover the wiring pattern 14 and the element mounting surface except for a part of the wiring pattern 14, that is, a portion where an LED 18 described later is mounted. The resist layer 15 is preferably formed from a white resin layer in order to be electrically insulating and to reflect light efficiently.
 図7に示すように配線パターン14は、対をなす給電端子部14a,14bを有している。これとともに、図7の例示に制約されることはないが、配線パターン14は、複数の配線対Pを、例えば図7において縦方向に3対並べるとともに横方向に4対並べて形成されている。 As shown in FIG. 7, the wiring pattern 14 has a pair of power supply terminal portions 14a and 14b. In addition, although not limited to the illustration of FIG. 7, the wiring pattern 14 is formed by arranging a plurality of wiring pairs P, for example, three pairs in the vertical direction and four pairs in the horizontal direction in FIG.
 各配線対Pは,第1配線部を兼ねるヒートスプレッダ部14cと第2配線部14dを対とする。ヒートスプレッダ部14cは、第2配線部14dに比較して面積がはるかに大きく、その中央部に凹部14eを有して形成されている。凹部14eはヒートスプレッダ部14cの幅方向一端に開放されている。 Each wiring pair P is paired with a heat spreader portion 14c also serving as a first wiring portion and a second wiring portion 14d. The heat spreader portion 14c has a much larger area than the second wiring portion 14d, and is formed with a recess 14e at the center. The recess 14e is opened at one end in the width direction of the heat spreader portion 14c.
 第2配線部14dの一端部は凹部14e内に配設されている。第2配線部14dの他端は、ヒートスプレッダ部14cに一体に連続されている。この場合、連続されるヒートスプレッダ部14cは、縦方向に隣接した他のヒートスプレッダ部14c、又は、横方向に隣接した他の縦列のヒートスプレッダ部14cのうちで、最も遠い位置のヒートスプレッダ部14cである。 One end of the second wiring portion 14d is disposed in the recess 14e. The other end of the second wiring part 14d is integrally connected to the heat spreader part 14c. In this case, the continuous heat spreader portion 14c is the farthest heat spreader portion 14c among the other heat spreader portions 14c adjacent in the vertical direction or the heat spreader portions 14c in other vertical columns adjacent in the horizontal direction.
 各配線対Pは、それらに後述するLED18が夫々実装されることにより、電気的に直列回路を形成して接続されている。この直列回路の一端に配置された配線対Pのヒートスプレッダ部14cは、線状パターン部14gを介して一方の給電端子部14aに一体に連続されている。直列回路の他端に配置された配線対Pの第2配線部14dは、他方の給電端子部14bに線状パターン部14hを介して一体に連続されている。 Each wiring pair P is electrically connected to form a series circuit by mounting LEDs 18 to be described later. The heat spreader portion 14c of the wiring pair P disposed at one end of the series circuit is integrally connected to the one power supply terminal portion 14a through the linear pattern portion 14g. The second wiring portion 14d of the wiring pair P disposed at the other end of the series circuit is integrally connected to the other power supply terminal portion 14b via the linear pattern portion 14h.
 図7で縦方向に並べられたヒートスプレッダ部14cは、互いの間に所定の絶縁用離間距離Cを隔てて隣接されている。これとともに、各ヒートスプレッダ部14cに逃げ部14fが夫々設けられている。具体的に、逃げ部14fは、ヒートスプレッダ部14cの長手方向両端に開放する例えば半円状の凹みによって形成されている。このため、図7で縦方向に隣接された逃げ部14fは互に対向し相互間に略円形のスペースを形成している。このスペースの幅Bは、図7で縦方向に並べられたヒートスプレッダ部14c間の絶縁用離間距離Cよりも大きい。 The heat spreader portions 14c arranged in the vertical direction in FIG. 7 are adjacent to each other with a predetermined insulating distance C therebetween. In addition, each heat spreader portion 14c is provided with a relief portion 14f. Specifically, the escape portion 14f is formed by, for example, a semicircular recess that opens to both ends in the longitudinal direction of the heat spreader portion 14c. Therefore, the escape portions 14f adjacent in the vertical direction in FIG. 7 face each other and form a substantially circular space therebetween. The width B of this space is larger than the separation distance C for insulation between the heat spreaders 14c arranged in the vertical direction in FIG.
 尚、逃げ部14fは、凹みで形成することに代えて絶縁用離間距離Cを広げることによって、図7で縦方向に並んだヒートスプレッダ部14cの並び方向両端近傍に夫々設けることも可能である。 Note that the escape portions 14f can be provided in the vicinity of both ends of the heat spreader portions 14c arranged in the vertical direction in FIG. 7 by extending the insulating separation distance C instead of forming the recesses.
 図7中符号16は光源基板11の周部複数個所例えば四隅に夫々設けられた固定孔を示している。 In FIG. 7, reference numeral 16 indicates fixing holes provided at a plurality of peripheral portions of the light source substrate 11, for example, at four corners.
 各LED18には例えば白色発光をするSMD型LEDが用いられている。これらLED18は光源基板11の素子実装面に縦横に並べて実装されている。各LED18は、凹部14eの奥部に位置された第2配線部14dの一端部と、第1配線部をなしたヒートスプレッダ部14cの凹部14eの近傍部位とにわたって実装されている。実装されたLED18のカソードは、第1配線部をなしたヒートスプレッダ部14cに電気的に接続されている。実装されたLED18のアノードは、第2配線部14dに電気的に接続されている。 Each LED 18 is, for example, an SMD type LED that emits white light. These LEDs 18 are mounted on the element mounting surface of the light source substrate 11 side by side in the vertical and horizontal directions. Each LED 18 is mounted across one end of the second wiring portion 14d located in the back of the recess 14e and the vicinity of the recess 14e of the heat spreader portion 14c forming the first wiring portion. The cathode of the mounted LED 18 is electrically connected to the heat spreader portion 14c that forms the first wiring portion. The anode of the mounted LED 18 is electrically connected to the second wiring portion 14d.
 LED18の発光は、半導体のp-n接合に順方向電流を流すことで実現されるので、LED18は電気エネルギーを直接光に変換する固体素子である。こうした発光原理で発光する半導体発光素子は、通電によりフィラメントを高温に白熱させて、その熱放射により可視光を放射させる白熱電球と比較して、省エネルギー効果を有するものである。 Since the light emission of the LED 18 is realized by passing a forward current through a pn junction of a semiconductor, the LED 18 is a solid element that directly converts electric energy into light. A semiconductor light-emitting element that emits light based on such a light emission principle has an energy saving effect as compared with an incandescent bulb that inclines a filament to a high temperature by energization and emits visible light by its thermal radiation.
 図5に示すように反射板21は、電気絶縁性を有する合成樹脂の一体成形品からなる反射板本体22と、反射面29を有して形成されている。 As shown in FIG. 5, the reflecting plate 21 is formed having a reflecting plate body 22 made of an integrally molded product of synthetic resin having electrical insulation and a reflecting surface 29.
 詳しくは、反射板本体22は、図3及び図4に示すように平面視形状が光源基板11の大きさに等しい表壁22aの四周に、スペーサとして機能する側壁24を設けて形成されている。このため、反射板本体22の裏側は開放されている。更に、反射板本体22の周部例えば四隅に、反射板本体22の表面及び側面にわたって開放された固定溝25が夫々形成されている。これとともに、各固定溝25の底に通孔25aが設けられている。尚、図3及び図6中符号24aは、給電端子14a,14bに接続される図示しない電線が通される通線溝を示している。 Specifically, as shown in FIGS. 3 and 4, the reflector main body 22 is formed by providing side walls 24 functioning as spacers on the four circumferences of the front wall 22 a whose planar view shape is equal to the size of the light source substrate 11. . For this reason, the back side of the reflector main body 22 is open. Furthermore, fixing grooves 25 that are open over the surface and side surfaces of the reflector plate main body 22 are formed in the periphery, for example, the four corners of the reflector plate main body 22. At the same time, a through hole 25 a is provided at the bottom of each fixed groove 25. 3 and 6, reference numeral 24 a indicates a through groove through which an electric wire (not shown) connected to the power supply terminals 14 a and 14 b is passed.
 表壁22aは、反射板21が光源基板11に組み合わされた状態で光源基板11の表面に対向する領域となる部位である。この表壁22aに複数具体的にはLED18と同数の開口部26が縦横に並んで形成されている。これら開口部26は、図5に示すように反射板本体22の裏面から突設されている。各開口部26の突出高さH1は、側壁24の表壁22aに対する突出高さつまり側壁24の幅H2より短い。更に、各開口部26の内周面は傾斜されている。この傾斜によって、開口部26の突出端から表壁22aの表面に向かうに従い、開口部26の中心軸線と直交する方向の断面積が次第に大きくなるように開口部26は形成されている。各開口部26の突出端の開口面積は、LED18より大きい。 The front wall 22 a is a part that becomes a region facing the surface of the light source substrate 11 in a state where the reflection plate 21 is combined with the light source substrate 11. A plurality of openings 26 equal to the number of the LEDs 18 are formed on the front wall 22a, specifically, vertically and horizontally. These openings 26 project from the back surface of the reflector main body 22 as shown in FIG. The protruding height H1 of each opening 26 is shorter than the protruding height of the side wall 24 with respect to the front wall 22a, that is, the width H2 of the side wall 24. Furthermore, the inner peripheral surface of each opening 26 is inclined. Due to this inclination, the opening 26 is formed so that the cross-sectional area in the direction perpendicular to the central axis of the opening 26 gradually increases from the protruding end of the opening 26 toward the surface of the front wall 22a. The opening area of the protruding end of each opening 26 is larger than the LED 18.
 図5及び図6に示すように反射板本体22は、前記領域をなした表壁22aの裏面に一体に突設された複数の凸部27を有している。これら凸部27は例えば細い丸棒状の突起からなる。各凸部27の突出高さH3は、各開口部26の突出高さH1より高く、側壁24の突出高さ(幅)H2と略同じである。 As shown in FIG. 5 and FIG. 6, the reflector main body 22 has a plurality of convex portions 27 that are integrally projected on the back surface of the front wall 22a forming the region. These convex portions 27 are formed of, for example, thin round bar-like projections. The protrusion height H3 of each protrusion 27 is higher than the protrusion height H1 of each opening 26, and is substantially the same as the protrusion height (width) H2 of the side wall 24.
 各凸部27はいずれも開口部26からずらして設けられている。具体的には、図6で上下方向に並んだ開口部26の上下両側に夫々位置するように各凸部27が配設されている。したがって、各凸部27は、表壁22aの長手方向両端部間の中間領域全域にわたって点在しかつ等間隔に設けられている。これとともに、図6で上下方向に隣接した開口部26間に設けられた凸部27は、上下方向に隣接した開口部26から等距離隔たっている。 Each convex part 27 is provided so as to be shifted from the opening part 26. Specifically, the convex portions 27 are arranged so as to be located on both the upper and lower sides of the opening portions 26 arranged in the vertical direction in FIG. Therefore, each convex part 27 is scattered over the whole intermediate area | region between the longitudinal direction both ends of the front wall 22a, and is provided at equal intervals. At the same time, the protrusions 27 provided between the openings 26 adjacent in the vertical direction in FIG. 6 are spaced equidistant from the openings 26 adjacent in the vertical direction.
 図5に示すように反射面29は、前記領域をなした表壁22aの表面及び開口部26の内面全体にわたって被着されている。そのため、反射面29は複数の前記開口部26を有している。反射面29は、例えばアルミニウム等の金属を蒸着することによって反射板本体22に設けられて、鏡面をなしている。尚、反射面29は各開口部26の内面だけに被着してもよい。しかし、各開口部26を除いた反射面29が表壁22aの表面に被着された反射層部位を有することは、この反射層部位に透光パネル4bで反射された光が入射した場合、この光を再び透光パネル4bに向けて反射できる点で好ましい。 As shown in FIG. 5, the reflection surface 29 is applied over the entire surface of the front wall 22 a that forms the region and the entire inner surface of the opening 26. Therefore, the reflection surface 29 has a plurality of the openings 26. The reflection surface 29 is provided on the reflection plate main body 22 by evaporating a metal such as aluminum, and forms a mirror surface. The reflective surface 29 may be attached only to the inner surface of each opening 26. However, the reflection surface 29 excluding each opening 26 has a reflection layer portion that is attached to the surface of the front wall 22a. When the light reflected by the translucent panel 4b is incident on this reflection layer portion, This is preferable in that this light can be reflected again toward the translucent panel 4b.
 反射板21は、LED18が実装された光源基板11の表を覆って、光源基板11と組み合わされている。この組み合わせ状態をねじ止めにより保持することで光源3が組立てられる。このねじ止めは、各通孔25a及びこれらに連通された固定孔16に挿通されたねじ(図5参照)30を、器具本体2の光源配設部2aにねじ込むことで行われる。このねじ止めに伴い、光源3が有した光源基板11の裏面をなす金属製のベース板12が光源配設部2aに面接触されて、光源3が光源配設部2aに固定される。 The reflector 21 is combined with the light source substrate 11 so as to cover the surface of the light source substrate 11 on which the LEDs 18 are mounted. The light source 3 is assembled by holding this combined state by screwing. This screwing is performed by screwing screws (see FIG. 5) 30 inserted into the respective through holes 25a and the fixing holes 16 communicated therewith into the light source arrangement portion 2a of the instrument body 2. Along with this screwing, the metal base plate 12 forming the back surface of the light source substrate 11 of the light source 3 is brought into surface contact with the light source arrangement portion 2a, and the light source 3 is fixed to the light source arrangement portion 2a.
 図5に示すように光源3が組立てられた状態で、反射板21の表壁22aは、LED18が実装された光源基板11の表面を覆って配置される。これとともに、各開口部26の夫々はLED18に対向している。それにより、各開口部26の内面に設けられた反射面29もLED18毎に対向している。尚、光源3を正面から見たときの、光源基板11の配線パターン14に対する各開口部26の四角い形状をなした先端の配置を、図7中二点鎖線で示す。 In the state where the light source 3 is assembled as shown in FIG. 5, the front wall 22a of the reflecting plate 21 is disposed so as to cover the surface of the light source substrate 11 on which the LED 18 is mounted. At the same time, each of the openings 26 faces the LED 18. Thereby, the reflective surface 29 provided in the inner surface of each opening part 26 is also facing each LED18. In addition, the arrangement | positioning of the front-end | tip which made the square shape of each opening part 26 with respect to the wiring pattern 14 of the light source board | substrate 11 when the light source 3 is seen from the front is shown with the dashed-two dotted line in FIG.
 光源3を組立てる前記ねじ30の締付けに伴い、反射板21の側壁24及び固定溝25の底面が、共に光源基板11の表面に密接される。このため、所定の絶縁距離が、光源基板11の表面(素子実装面)及びLED18と各開口部26の先端との間に夫々確保される。この絶縁距離は、側壁24の突出高さH2と開口部26の突出高さH1との差によって規定される。 As the screws 30 for assembling the light source 3 are tightened, the side wall 24 of the reflector 21 and the bottom surface of the fixing groove 25 are both brought into close contact with the surface of the light source substrate 11. Therefore, a predetermined insulation distance is ensured between the surface of the light source substrate 11 (element mounting surface) and between the LED 18 and the tip of each opening 26. This insulation distance is defined by the difference between the protruding height H2 of the side wall 24 and the protruding height H1 of the opening 26.
 反射板21の裏面に突設された各凸部27の高さH3と側壁24の突出高さH2とは略同じである。これにより、前記ねじ30の締付けに伴い、各凸部27の先端が光源基板11の表面に略接する。つまり、各凸部27の先端が、光源基板11の表面に対して至近距離に配置され、又は軽微に接し、若しくは押し当るように密接される。 The height H3 of each convex portion 27 protruding from the back surface of the reflector 21 and the protruding height H2 of the side wall 24 are substantially the same. As a result, as the screws 30 are tightened, the tips of the convex portions 27 substantially contact the surface of the light source substrate 11. That is, the tip of each convex portion 27 is disposed at a close distance to the surface of the light source substrate 11 or is brought into close contact with or slightly touching.
 この場合、各凸部27の先端は配線パターン14の逃げ部14fに配設される。即ち、各凸部27は、配線パターン14を避けて光源基板11の表面に略接する。尚、光源基板11を正面から見たときの、配線パターン14に対する各凸部27の配置を、図7中二点鎖線で示す。 In this case, the tip of each convex portion 27 is disposed in the relief portion 14 f of the wiring pattern 14. That is, each convex portion 27 is substantially in contact with the surface of the light source substrate 11 while avoiding the wiring pattern 14. In addition, when the light source board | substrate 11 is seen from the front, arrangement | positioning of each convex part 27 with respect to the wiring pattern 14 is shown with the dashed-two dotted line in FIG.
 実施例1の光源3は、既述のように金属の反射面29で覆われた開口部26が設けられた反射板21の領域と、LED18及び光源基板11の素子実装面とが、所定の絶縁距離で隔てられている。これにより、反射面29が各開口部26の先端に達する状態に設けられるにも拘らず、これら開口部内面の反射面29とLED18及び光源基板11の配線パターン14とを電気的に絶縁できる。 In the light source 3 of the first embodiment, as described above, the region of the reflection plate 21 provided with the opening 26 covered with the metal reflection surface 29, and the element mounting surfaces of the LED 18 and the light source substrate 11 are predetermined. They are separated by an insulation distance. Thereby, although the reflecting surface 29 is provided in a state of reaching the tip of each opening 26, the reflecting surface 29 on the inner surface of the opening can be electrically insulated from the LED 18 and the wiring pattern 14 of the light source substrate 11.
 これにより、各開口部26の先端を光源基板11に接触させた構成と比較して、金属の反射面29と光源基板11との電気的絶縁を確保するために、開口部26の先端部内面をマスキングして各開口部26の内面に反射面29を設ける必要がない。このため、各開口部26の内面全体に反射面29を被着することが可能である。 Accordingly, in order to ensure electrical insulation between the metal reflection surface 29 and the light source substrate 11 as compared with the configuration in which the distal end of each opening portion 26 is in contact with the light source substrate 11, the inner surface of the distal end portion of the opening portion 26. Therefore, it is not necessary to provide the reflecting surface 29 on the inner surface of each opening 26. For this reason, it is possible to adhere the reflecting surface 29 to the entire inner surface of each opening 26.
 したがって、反射板本体22に対して反射面29を例えば蒸着により被着する場合、各開口部26の先端部内面に金属を蒸着させないためのマスキング手段として、高精度のマスキング冶具の新たな開発を要しない。これとともに、こうした冶具を用いることに伴う蒸着作業性の低下も解消できる。このため、反射板21の製造コストを低減可能である。 Therefore, when the reflective surface 29 is applied to the reflector main body 22 by vapor deposition, for example, a new high-precision masking jig is developed as a masking means for preventing metal from being vapor deposited on the inner surface of the tip of each opening 26. I don't need it. At the same time, the deterioration of the vapor deposition workability associated with the use of such a jig can be eliminated. For this reason, the manufacturing cost of the reflecting plate 21 can be reduced.
 更に、既述のように光源基板11の表面に対向された反射板21の領域の裏面に設けられた複数の凸部27は、反射面29の各開口部26からずれている。これとともに、各凸部27の先端は光源基板11の略接触している。このため、各開口部26を光源基板11に接触させなくても、点灯中での光源基板11の熱変形を抑制可能である。 Further, as described above, the plurality of convex portions 27 provided on the back surface of the region of the reflecting plate 21 facing the surface of the light source substrate 11 are shifted from the respective openings 26 of the reflecting surface 29. At the same time, the tips of the convex portions 27 are in substantially contact with the light source substrate 11. For this reason, even if each opening part 26 is not made to contact the light source board | substrate 11, the thermal deformation of the light source board | substrate 11 during lighting can be suppressed.
 即ち、投光器1の各光源3が点灯された状態では、発光した各LED18は発熱する。この熱は、配線パターン14のヒートスプレッダ部14cに主として拡散されてから、金属製のベース板12を経由して器具本体2の光源配設部2aに放出される。この場合、各LED18の発熱を原因として光源基板11が昇温するに伴い、形状が大きいほど光源基板11は、その中央部が頂きとなるように図5において上方へ反ろうとする。言い換えれば、光源基板11はその中央部が反射板21の裏面に最も近付くように変形しようとする。 That is, in a state where each light source 3 of the projector 1 is turned on, each LED 18 that emits light generates heat. This heat is mainly diffused to the heat spreader portion 14 c of the wiring pattern 14 and then released to the light source arrangement portion 2 a of the instrument body 2 through the metal base plate 12. In this case, as the light source substrate 11 rises in temperature due to the heat generated by each LED 18, the light source substrate 11 tends to warp upward in FIG. In other words, the light source substrate 11 tends to be deformed so that the central portion thereof is closest to the back surface of the reflecting plate 21.
 このように光源基板11が変形しようとしても、光源配設部2aに動かないようにねじ30で固定されている反射板21に一体形成された各凸部27のストッパ作用によって、光源基板11の反りが抑制される。これにより、光源基板11に実装された各LED18が微妙に傾くおそれがなくなって、所定の光学性能を維持することが可能である。これとともに、光源基板11の配線パターン14及びこのパターンとLED18との接続部にストレスが加わるおそれもなくすことが可能である。 Thus, even if the light source substrate 11 is deformed, the stoppers of the convex portions 27 formed integrally with the reflection plate 21 fixed by the screws 30 so as not to move to the light source arrangement portion 2a cause the light source substrate 11 to move. Warpage is suppressed. Thereby, there is no possibility that each LED 18 mounted on the light source substrate 11 is slightly tilted, and it is possible to maintain a predetermined optical performance. At the same time, it is possible to eliminate the possibility of stress being applied to the wiring pattern 14 of the light source substrate 11 and the connection portion between this pattern and the LED 18.
 以上のように光源3が点灯される度に、凸部27で光源基板11の熱変形を抑制できる。これに拘らず、各凸部27は配線パターン14を避けて光源基板11に接するので、各凸部27のストッパ作用に伴って光源基板11の配線パターン14にストレスが与えられることがない。このため、配線パターン14が断線するおそれがなく、光源3の寿命を長く保持することが可能である。 As described above, each time the light source 3 is turned on, the thermal deformation of the light source substrate 11 can be suppressed by the convex portion 27. Regardless of this, since each convex portion 27 avoids the wiring pattern 14 and contacts the light source substrate 11, no stress is applied to the wiring pattern 14 of the light source substrate 11 due to the stopper action of each convex portion 27. For this reason, there is no possibility that the wiring pattern 14 is disconnected, and the life of the light source 3 can be kept long.
 更に、光源基板11の熱変形を抑制するのに、反射板本体22の裏面に凸部27を一体に設けるという簡単な構成で実現できる。これに伴い、光源基板11の熱変形を抑制する上で、光源基板11のベース板12等を厚くして光源基板11の強度を高める必要がない。そのため、光源基板11が重くなることがなく、かつ、光源基板11のコストが増えることもない。それだけではなく、光源基板11の厚みを増やした場合のように光源基板11の内部で熱抵抗が増えることもないので、LED18の熱を容易に器具本体2の光源配設部2aに放出することが可能である。 Furthermore, in order to suppress thermal deformation of the light source substrate 11, it can be realized with a simple configuration in which the convex portion 27 is integrally provided on the back surface of the reflector main body 22. Accordingly, in order to suppress thermal deformation of the light source substrate 11, it is not necessary to increase the strength of the light source substrate 11 by increasing the thickness of the base plate 12 or the like of the light source substrate 11. Therefore, the light source substrate 11 does not become heavy and the cost of the light source substrate 11 does not increase. In addition, since the thermal resistance does not increase inside the light source substrate 11 as when the thickness of the light source substrate 11 is increased, the heat of the LED 18 can be easily released to the light source arrangement portion 2a of the instrument body 2. Is possible.
 以上説明したように実施例1によれば、光源3の構成が簡単で、LED18の放熱性能の低下を招くことなく光源基板11の反りを抑制することが可能である、という効果を期待できる。これとともに、実施例1によれば、光源3が備える反射板21の反射面29と光源基板11との間の電気的絶縁が可能である。 As described above, according to the first embodiment, it is possible to expect an effect that the configuration of the light source 3 is simple and the warp of the light source substrate 11 can be suppressed without causing a decrease in the heat dissipation performance of the LED 18. In addition, according to the first embodiment, electrical insulation between the reflection surface 29 of the reflection plate 21 provided in the light source 3 and the light source substrate 11 is possible.
 更に、実施例1の光源3の配線パターン14はヒートスプレッダ部14cを有していて、このヒートスプレッダ部14cの縁部に凸部27を避ける逃げ部14fが設けられている。これにより、隣接するヒートスプレッダ部14cの相互間の絶縁用離間距離Cを最小に保つことができる。したがって、各ヒートスプレッダ部14cの面積を大きく確保できる。これに伴い、LED18の放熱性の低下を抑制しつつ、凸部27を原因とするストレスを光源基板11の配線パターン14に与えないようすることが可能である。 Furthermore, the wiring pattern 14 of the light source 3 of the first embodiment has a heat spreader portion 14c, and an escape portion 14f that avoids the convex portion 27 is provided at the edge of the heat spreader portion 14c. Thereby, the insulation separation distance C between the adjacent heat spreader portions 14c can be kept to a minimum. Therefore, a large area of each heat spreader portion 14c can be secured. Along with this, it is possible to prevent the wiring pattern 14 of the light source substrate 11 from being subjected to stress due to the convex portion 27 while suppressing a decrease in heat dissipation of the LED 18.
 実施例1は以上のように構成したが、この実施例1の投光器(照明器具)は、器具本体2の側壁に通気孔を設けることによって、屋内用の照明器具として実施することも可能である。この場合、通気孔を通って器具本体2の内外が通気されるので、光源3の空冷が可能である。即ち、既述のように光源3の各開口部26と光源基板11とは所定の絶縁距離で隔てられている。このため、照明器具の点灯状態では、各開口部26を通って反射板21の内外にわたる対流が形成されるに伴い、この気流に晒されるLED18の温度上昇を抑制することが可能である。 Although the first embodiment is configured as described above, the projector (lighting device) of the first embodiment can also be implemented as an indoor lighting device by providing a vent hole on the side wall of the device body 2. . In this case, since the inside and outside of the instrument main body 2 are ventilated through the vent hole, the light source 3 can be air-cooled. That is, as described above, each opening 26 of the light source 3 and the light source substrate 11 are separated by a predetermined insulating distance. For this reason, in the lighting state of the lighting fixture, it is possible to suppress the temperature rise of the LED 18 exposed to the airflow as convection is formed through the respective openings 26 and inside and outside the reflecting plate 21.

Claims (4)

  1.  配線パターンが設けられた光源基板と;
     この光源基板に前記配線パターンと接続して実装された複数の半導体発光素子と;
     前記光源基板に対向するように前記光源基板を覆って配置され、前記半導体発光素子及び前記光源基板から絶縁距離を隔てられて前記半導体発光素子毎に対向する複数の金属反射面を有し、この反射面の開口部から位置をずらして前記光源基板に接する少なくとも一つの凸部が裏面から突設されている反射板と;
    を具備する光源。
    A light source substrate provided with a wiring pattern;
    A plurality of semiconductor light emitting elements mounted on the light source substrate in connection with the wiring pattern;
    A plurality of metal reflecting surfaces arranged to cover the light source substrate so as to face the light source substrate, and spaced apart from the semiconductor light emitting element and the light source substrate to face each semiconductor light emitting element; A reflective plate having at least one convex portion that protrudes from the back surface thereof in a position shifted from the opening of the reflective surface and in contact with the light source substrate;
    A light source comprising:
  2.  請求項1に記載の光源において、前記各凸部が前記配線パターンを避けて配設されている。 2. The light source according to claim 1, wherein each of the convex portions is arranged avoiding the wiring pattern.
  3.  請求項2に記載の光源において、前記配線パターンがヒートスプレッダ部を有していて、このヒートスプレッダ部に前記凸部を避ける逃げ部が設けられている。 3. The light source according to claim 2, wherein the wiring pattern has a heat spreader portion, and a relief portion for avoiding the convex portion is provided in the heat spreader portion.
  4.  光源配設部を有した器具本体と;
     裏面を前記光源配設部に接触させて前記器具本体に取付けられた光源と;
    を具備する照明器具であって、
     前記光源が、
     配線パターンが設けられた光源基板と;
     この光源基板に前記配線パターンと接続して実装された複数の半導体発光素子と;
     前記光源基板に対向するように前記光源基板を覆って配置され、前記半導体発光素子及び前記光源基板から絶縁距離を隔てられて前記半導体発光素子毎に対向する複数の金属反射面を有し、この反射面の開口部から位置をずらして前記光源基板に接する少なくとも一つの凸部が裏面から突設されている反射板と;
    を備える。
    An instrument body having a light source arrangement;
    A light source attached to the instrument body with a back surface in contact with the light source arrangement;
    A lighting fixture comprising:
    The light source is
    A light source substrate provided with a wiring pattern;
    A plurality of semiconductor light emitting elements mounted on the light source substrate in connection with the wiring pattern;
    A plurality of metal reflecting surfaces arranged to cover the light source substrate so as to face the light source substrate, and spaced apart from the semiconductor light emitting element and the light source substrate to face each semiconductor light emitting element; A reflective plate having at least one convex portion that protrudes from the back surface thereof in a position shifted from the opening of the reflective surface and in contact with the light source substrate;
    Is provided.
PCT/JP2011/063960 2011-06-17 2011-06-17 Light source and illuminating apparatus provided with same WO2012172688A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/063960 WO2012172688A1 (en) 2011-06-17 2011-06-17 Light source and illuminating apparatus provided with same
CN201190001096.3U CN203642078U (en) 2011-06-17 2011-06-17 Light source and illumination appliance with same
JP2013520392A JP5871402B2 (en) 2011-06-17 2011-06-17 lighting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063960 WO2012172688A1 (en) 2011-06-17 2011-06-17 Light source and illuminating apparatus provided with same

Publications (1)

Publication Number Publication Date
WO2012172688A1 true WO2012172688A1 (en) 2012-12-20

Family

ID=47356714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063960 WO2012172688A1 (en) 2011-06-17 2011-06-17 Light source and illuminating apparatus provided with same

Country Status (3)

Country Link
JP (1) JP5871402B2 (en)
CN (1) CN203642078U (en)
WO (1) WO2012172688A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174034A1 (en) * 2013-04-26 2014-10-30 Zumtobel Lighting Gmbh Flat reflector element for an led circuit board
KR20150028943A (en) * 2013-09-06 2015-03-17 주식회사 케이엠더블유 High power LED lighting
JP2015225816A (en) * 2014-05-29 2015-12-14 パナソニックIpマネジメント株式会社 Light source unit and lighting fixture
JP2016051649A (en) * 2014-09-01 2016-04-11 パナソニックIpマネジメント株式会社 Lighting apparatus
JP2016054140A (en) * 2014-09-02 2016-04-14 周煥球Chou, Huan−Chiu Inner surface reflection type lighting apparatus
JP2016076417A (en) * 2014-10-08 2016-05-12 株式会社ケイ・シー・エス Led projector with high light volume
JP2017527066A (en) * 2015-04-10 2017-09-14 李峰 LED lighting with integrated heat dissipation structure
EP3153764A4 (en) * 2014-05-27 2017-11-22 Chinolite (HK) Limited Multifunctional module-type light
KR20180034786A (en) * 2016-09-27 2018-04-05 엘지디스플레이 주식회사 Display device
CN109080533A (en) * 2018-08-25 2018-12-25 宁波永佳汽车零部件有限公司 A kind of heat-resisting triangle brand
EP3296625A4 (en) * 2015-05-08 2018-12-26 Feng Li Led reflective structure
JP7482050B2 (en) 2021-01-08 2024-05-13 シーシーエス株式会社 Light irradiation unit and light irradiation device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102305234B1 (en) * 2015-01-28 2021-09-29 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Lighting source unit
CN111812884A (en) * 2019-04-10 2020-10-23 中强光电股份有限公司 Light source module and display device
KR102586406B1 (en) * 2022-12-28 2023-10-10 주식회사 케이시스 Reflective array unit installed on the led array of an led sign that realizes an asymmetrical tilting light distribution area

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033944A (en) * 2005-07-27 2007-02-08 Canon Inc Illuminator and imaging apparatus
JP2007173072A (en) * 2005-12-22 2007-07-05 Yamaha Corp Light source unit
JP2010198955A (en) * 2009-02-26 2010-09-09 Eye Lighting Syst Corp Led lighting device
JP2010238596A (en) * 2009-03-31 2010-10-21 Showa Denko Kk Lighting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2166273A3 (en) * 2008-09-22 2011-11-30 Toshiba Lighting & Technology Corporation Light-emitting module, light-emitting device having the light-emitting module, and lighting apparatus having the light-emitting device
JP2011096876A (en) * 2009-10-30 2011-05-12 Toshiba Lighting & Technology Corp Light emitting device, and lighting apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033944A (en) * 2005-07-27 2007-02-08 Canon Inc Illuminator and imaging apparatus
JP2007173072A (en) * 2005-12-22 2007-07-05 Yamaha Corp Light source unit
JP2010198955A (en) * 2009-02-26 2010-09-09 Eye Lighting Syst Corp Led lighting device
JP2010238596A (en) * 2009-03-31 2010-10-21 Showa Denko Kk Lighting device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10113710B2 (en) 2013-04-26 2018-10-30 Zumtobel Lighting Gmbh Reflector element for an LED circuit board
WO2014174034A1 (en) * 2013-04-26 2014-10-30 Zumtobel Lighting Gmbh Flat reflector element for an led circuit board
KR20150028943A (en) * 2013-09-06 2015-03-17 주식회사 케이엠더블유 High power LED lighting
JP2015534241A (en) * 2013-09-06 2015-11-26 ケーエムダブリュ・インコーポレーテッド High power LED lighting device
KR101668265B1 (en) 2013-09-06 2016-10-24 주식회사 케이엠더블유 High power LED lighting
US10132468B2 (en) 2013-09-06 2018-11-20 Gigatera Inc. High power LED lighting device
EP3153764A4 (en) * 2014-05-27 2017-11-22 Chinolite (HK) Limited Multifunctional module-type light
US9927078B2 (en) 2014-05-27 2018-03-27 Chinolite (Hk) Limited Multifunctional module-type light
JP2015225816A (en) * 2014-05-29 2015-12-14 パナソニックIpマネジメント株式会社 Light source unit and lighting fixture
JP2016051649A (en) * 2014-09-01 2016-04-11 パナソニックIpマネジメント株式会社 Lighting apparatus
JP2016054140A (en) * 2014-09-02 2016-04-14 周煥球Chou, Huan−Chiu Inner surface reflection type lighting apparatus
JP2016076417A (en) * 2014-10-08 2016-05-12 株式会社ケイ・シー・エス Led projector with high light volume
JP2017527066A (en) * 2015-04-10 2017-09-14 李峰 LED lighting with integrated heat dissipation structure
EP3282173A4 (en) * 2015-04-10 2018-09-12 Feng Li Led illumination lamp with integrated heat dissipation structure
EP3296625A4 (en) * 2015-05-08 2018-12-26 Feng Li Led reflective structure
KR20180034786A (en) * 2016-09-27 2018-04-05 엘지디스플레이 주식회사 Display device
KR102554267B1 (en) 2016-09-27 2023-07-12 엘지디스플레이 주식회사 Display device
CN109080533A (en) * 2018-08-25 2018-12-25 宁波永佳汽车零部件有限公司 A kind of heat-resisting triangle brand
JP7482050B2 (en) 2021-01-08 2024-05-13 シーシーエス株式会社 Light irradiation unit and light irradiation device

Also Published As

Publication number Publication date
CN203642078U (en) 2014-06-11
JPWO2012172688A1 (en) 2015-02-23
JP5871402B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5871402B2 (en) lighting equipment
JP5320555B2 (en) Light emitting element lamp and lighting apparatus
JP5391767B2 (en) Light emitting device and lighting apparatus
US8641246B2 (en) Lamp unit and lighting fixture
US20120127741A1 (en) Lamp unit and lighting fixture
JP2009129809A (en) Lighting system
KR101388876B1 (en) Lighting fixture
JP2010153044A (en) Light source unit and luminaire
JP2010073654A (en) Luminaire
JP2010135747A (en) Light-emitting module and lighting apparatus
JP2010010134A (en) Light emitting element lamp, and luminaire
JP5958805B2 (en) Light source device and illumination device
JP2012243661A (en) Lighting fixture
JP2013062107A (en) Luminaire
JP2014011045A (en) Illumination device and illumination system
JP2007179834A (en) Light source device
JP2008078047A (en) Lighting system
JP6264714B2 (en) lighting equipment
JP6960098B2 (en) lighting equipment
JP2015212997A (en) Lighting device
JP2006031969A (en) Lighting system
JP6886395B2 (en) lighting equipment
JP6253358B2 (en) Lamp and lighting device
JP6646881B2 (en) lighting equipment
JP5963014B2 (en) lighting equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190001096.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520392

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867682

Country of ref document: EP

Kind code of ref document: A1