WO2012171503A1 - 异构网络中小区改变的方法和装置 - Google Patents

异构网络中小区改变的方法和装置 Download PDF

Info

Publication number
WO2012171503A1
WO2012171503A1 PCT/CN2012/077081 CN2012077081W WO2012171503A1 WO 2012171503 A1 WO2012171503 A1 WO 2012171503A1 CN 2012077081 W CN2012077081 W CN 2012077081W WO 2012171503 A1 WO2012171503 A1 WO 2012171503A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
frequency
heterogeneous network
determining
determined
Prior art date
Application number
PCT/CN2012/077081
Other languages
English (en)
French (fr)
Inventor
张涛
蔺波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12800854.7A priority Critical patent/EP2717625B1/en
Priority to JP2014515054A priority patent/JP5806397B2/ja
Priority to EP21158967.6A priority patent/EP3886499A1/en
Publication of WO2012171503A1 publication Critical patent/WO2012171503A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/324Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • H04W36/008375Determination of triggering parameters for hand-off based on historical data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a method and apparatus for cell change in a heterogeneous network. Background of the invention
  • Heterogeneous Network a macro base station and a low-power node can be deployed at the same time.
  • the macro base station has a large cell coverage and can be called a macro cell.
  • the cell coverage of the low-power node is smaller than the coverage of the macro cell, which can be called Small cell.
  • the macro cell provides seamless coverage for users, while the small cell increases the capacity of the network system.
  • a macro cell and a small cell may use the same frequency, or may use different frequencies, and use a heterogeneous network of a macro cell and a small cell of different frequencies, which is called an inter-frequency heterogeneous network, and uses a macro of the same frequency.
  • a heterogeneous network of cells and small cells is called a co-frequency heterogeneous network.
  • UE User Equipment
  • the UE When a user equipment (UE, User Equipment) moves in an inter-frequency heterogeneous network, the UE will change the cell.
  • the change of the camped cell of the UE in the idle state is referred to as cell reselection, and the change of the serving cell of the UE in the connected state is referred to as handover.
  • each cell sets an identical frequency priority order for different UEs, and all UEs in the network preferentially measure and reselect to the priority. On a higher frequency.
  • the frequency priority of the macro cell is set to be higher than the frequency priority of the small cell, the network is within the network. All UEs will be preferentially reselected to the macro cell, which may cause the macro cell to be overburdened.
  • the frequency priority of the small cell is set to be higher than the frequency priority of the macro cell, all UEs in the network will be preferentially reselected to the small cell, thereby greatly alleviating the burden of the macro cell, but due to the coverage of the small cell. If the range is small, the UE reselected to the small cell can easily leave the coverage of the small cell and enter the coverage of another small cell when moving, or return to the coverage of the macro cell. Cell reselection will have to be performed again, and frequent cell reselection will consume a large amount of battery power of the UE.
  • a main object of embodiments of the present invention is to provide a method and apparatus for cell change in a heterogeneous network, which can effectively reduce power consumption of the UE.
  • an embodiment of the present invention provides a method for cell change in a heterogeneous network, including: determining a mobile state of itself;
  • a frequency priority order where the mobile state is a high mobility state in which the number of cell changes exceeds a first threshold in a predetermined time, The priority of the frequency is higher than the priority of the frequency used by the cell with a small coverage, and the coverage in the heterogeneous network when the mobile state is a low mobility state in which the number of cell changes is lower than the second threshold in a predetermined time.
  • the priority of the frequency used by the large cell is lower than the priority of the frequency used by the cell with a small coverage;
  • An embodiment of the present invention provides a UE, including:
  • a first determining unit configured to determine a moving state of the self
  • a second determining unit configured to determine a frequency priority order according to the moving state determined by the first determining unit, where the moving state is a high moving state in which the number of cell changes exceeds a first threshold in a predetermined time, the different The frequency of the frequency used by the cell with a large coverage in the network is higher than the frequency of the frequency used by the cell with a small coverage, when the mobile state is a low mobile whose number of cell changes is lower than the second threshold within a predetermined time. In the state, the frequency of the frequency used by the cell with a large coverage in the heterogeneous network is lower than the priority of the frequency used by the cell with a small coverage;
  • a measuring unit configured to perform frequency measurement according to a frequency priority order determined by the second determining unit
  • a processing unit configured to perform cell change according to a frequency priority order determined by the second determining unit and a result of performing frequency measurement by the measuring unit.
  • the embodiment of the present invention further provides a method for cell change in a heterogeneous network, including: Detecting the number of times of change in each cell in the heterogeneous network within a specified time; determining, according to the weight value corresponding to each cell and the number of changes in each detected cell, determining that the user is within the specified time The number of cell changes, the weight value corresponding to each cell is proportional to the size of the cell;
  • a cell change is made according to the determined mobility state.
  • the embodiment of the present invention further provides a UE, including:
  • a detecting unit configured to detect a number of changes in each cell in the heterogeneous network within a specified time
  • a first determining unit configured to determine, according to the weight value corresponding to each cell and the number of times of change on each cell detected by the detecting unit, the number of cell changes in the specified time, each of the cells
  • the corresponding weight value is proportional to the size of the cell
  • a second determining unit configured to determine, according to the determined number of cell changes, a mobile state of the mobile device
  • a processing unit configured to perform a cell change according to the determined mobile state.
  • the method for changing a cell in a heterogeneous network and the UE according to the embodiment of the present invention determine the mobile state of the UE according to the weight value corresponding to each cell and the number of times the UE changes on each cell, and therefore, determining the UE In the mobile state, the number of cell changes of the UE is considered, and the size of each cell is considered, so that the real mobile state of the UE can be more accurately reflected, thereby effectively avoiding cell change when performing cell change according to the mobile state of the UE. Service interruption due to premature or late.
  • the embodiment of the present invention further provides a method for cell change in a heterogeneous network, including:
  • a cell change is made based on the amount of hysteresis to be scaled.
  • the embodiment of the present invention further provides a UE, including:
  • a determining unit for determining a moving state of itself
  • a scaling unit configured to scale, according to the mobile state determined by the determining unit and the size of the target cell of the cell change, the amount of hysteresis used by the cell change;
  • a processing unit configured to perform cell change according to a delay amount of scaling performed by the scaling unit.
  • the method for changing a cell in a heterogeneous network and the UE according to the embodiment of the present invention according to the mobile state of the UE and the size of the target cell changed by the cell, scale the hysteresis used by the cell change, thereby enabling the scaled hysteresis It is adapted to the mobile state of the UE and the size of the target cell, so as to effectively avoid the service interruption caused by the cell changing too early or too late when the UE performs the cell change.
  • FIG. 1 is a flowchart of a method for changing a cell in a heterogeneous network according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a heterogeneous heterogeneous network according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for cell change in a heterogeneous network according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for cell change in a heterogeneous network according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for cell change in a heterogeneous network according to an embodiment of the present invention
  • FIG. 7 is a flowchart of a UE according to an embodiment of the present invention
  • Structure diagram FIG. 8 is a structural block diagram of a first determining unit of a UE according to an embodiment of the present invention
  • FIG. 9 is a structural block diagram of a first determining unit of a UE according to an embodiment of the present invention
  • FIG. 11 is a structural block diagram of a processing unit of a UE according to an embodiment of the present invention.
  • FIG. 12 is a structural block diagram of a processing unit of a UE according to an embodiment of the present invention.
  • FIG. 13 is a structural block diagram of a UE according to an embodiment of the present invention.
  • FIG. 14 is a structural block diagram of a first determining unit of a UE according to an embodiment of the present invention
  • FIG. 15 is a structural block diagram of a UE according to an embodiment of the present invention
  • FIG. 16 is a structural block diagram of a UE according to an embodiment of the present invention.
  • FIG. 17 is a structural block diagram of a scaling unit of a UE according to an embodiment of the present invention.
  • FIG. 18 is a structural block diagram of a scaling unit of a UE according to an embodiment of the present invention.
  • FIG. 19 is a structural block diagram of a scaling unit of a UE according to an embodiment of the present invention. Mode for carrying out the invention
  • an inter-frequency heterogeneous network is taken as an example for description.
  • the cell change in the embodiment of the present invention means that the UE performs cell handover or cell reselection.
  • a method for cell change in a heterogeneous network according to an embodiment of the present invention, based on a UE includes the following steps:
  • each frequency priority order corresponds to one or several mobile states of the UE.
  • the UE Before performing cell change, the UE will first determine its own mobility. The state is determined according to the mobile state of the UE, and the frequency priority order used for performing cell change is determined. The mobile state of the UE is different, and the frequency priority order adopted by the UE may be different.
  • the determining criterion of the mobile state of the UE may be:
  • the UE When the number of cell changes of the UE is greater than the first threshold n1 within the specified time t1, the UE enters a high mobility state;
  • the UE During the specified time t1, when the number of cell changes of the UE is less than the second threshold n2, the UE enters a low mobility state.
  • the determining criterion of the mobile state of the UE may also be:
  • the UE When the number of cell changes of the UE is greater than the first threshold n1 within the specified time t1, the UE enters a high mobility state;
  • the UE enters the medium mobility state when the number of cell changes of the UE is less than the first threshold n1 and greater than the second threshold n2 within the specified time t1;
  • the UE Within the prescribed time t2, if the UE does not satisfy the judgment criterion of the high mobility state or the medium mobility state, the UE enters the normal mobility state.
  • the determining criterion of the UE mobile state is not limited, and the UE may further include other mobile states, which is not limited by the present invention.
  • the high mobility state is relative to the low mobility state, and in the same time, the number of cell changes of the UE in the high mobility state is higher than that in the foregoing The number of cell changes of the UE in the low mobility state.
  • FIG. 2 is a schematic diagram of an inter-frequency heterogeneous network according to an embodiment of the present invention.
  • the network includes a macro cell and a plurality of small cells.
  • the frequency used by the macro cell is fl
  • the frequency used by the small cell is f2.
  • the number of reselection of the UE on the macro cell that is, the number of times the UE reselects the macro cell
  • the number is N1
  • the number of reselection of the UE on the small cell that is, the number of times the UE reselects the small cell
  • the total number of times of cell change of the UE in the t1 is N1+N2
  • the UE can be based on N1+
  • the value of N2 determines its own moving state.
  • the number of cell changes depends on the size of the target cell when the cell is changed.
  • the cell change method in the embodiment of the present invention may further include:
  • the UE obtains the weight value corresponding to each cell in the heterogeneous network, and the weight value corresponding to each cell is proportional to the size of the cell; for example: if the size of the larger cell is smaller than the size of the cell 10 times, the weight value corresponding to the larger cell is 1, and the weight value corresponding to the smaller cell is 0.1.
  • the weight value corresponding to each cell is preferably between 0 and 1.
  • step 101 can be specifically divided into the following steps:
  • the weight value corresponding to the macro cell is W1
  • the weight value corresponding to the small cell is W2.
  • the number of reselection of the UE on the macro cell is UE reselection.
  • the number of times of the macro cell is N1
  • the number of reselection times of the UE on the small cell that is, the number of times the UE reselects the small cell is N2.
  • the total number of times of cell change of the UE in the t1, that is, the cell reselection is N1 Wl + N2.
  • W2 the UE can determine its own mobile state according to the value of Nl X Wl + N2 W2;
  • the UE may determine, according to the weight value corresponding to each of the cells, the detected number of changes on each cell, and the cell type of the target cell, that the UE is within the specified time.
  • the number of cell changes; wherein, the cell type of the target cell is divided by the cell coverage, for example, the cell type of the target cell is a macro cell or a small cell;
  • the heterogeneous network shown in FIG. 2 is taken as an example. It is assumed that the number of times the UE changes on the macro cell is N1 times, the weight value corresponding to the macro cell is W1, and the UE changes on the small cell. The number of times is N2 times, and the weight value corresponding to the small cell is W2, and
  • the number of cell changes of the UE in time t ⁇ 1 + ⁇ 2 ⁇ W2AV1;
  • the mobile state of itself is determined.
  • the method for determining the mobile state of the UE that is, considering the number of cell changes of the UE within a predetermined time, and considering the size of each cell, can more accurately reflect the mobile state of the UE, thereby effectively improving the step.
  • the accuracy of the self-moving state determined by the UE can more accurately reflect the mobile state of the UE, thereby effectively improving the step.
  • the UE may receive the system message of each cell in the heterogeneous network, where the system message of each cell carries the weight value corresponding to the cell, and according to the system message of each cell in the heterogeneous network, the UE learns The weight value corresponding to each cell in the heterogeneous network; the UE may also receive the private message of each cell in the heterogeneous network, where the private message of each cell carries the weight value corresponding to the cell Obtaining, according to a specific message of each cell in the heterogeneous network, a weight value corresponding to each cell in the heterogeneous network; in addition, each UE of the heterogeneous network may be pre-stored correspondingly in the UE The weight value information is obtained according to the weight value information stored in advance, and the weight value corresponding to each cell in the heterogeneous network is obtained. Of course, the UE can also obtain the weight value corresponding to each cell by using other methods, which is not limited by the present invention.
  • each priority order corresponds to a UE mobile state; wherein, in a frequency priority sequence corresponding to a high mobility state in which the number of cell changes is higher than the first threshold in a predetermined time, the coverage in the heterogeneous network
  • the priority of the frequency used by the large cell is higher than the frequency of the frequency used by the cell with a small coverage; conversely, the frequency priority sequence corresponding to the low mobility state of the cell change times lower than the second threshold in the predetermined time period , the coverage of the heterogeneous network
  • the priority of the frequency used by the large cell is lower than the frequency of the frequency used by the cell with a small coverage.
  • the priority of the frequency fl used by the macro cell is higher than the frequency of the frequency f2 used by the small cell; in the low mobile state, the frequency of the macro cell is fl. The priority is lower than the priority of the frequency f2 at which the small cell is located.
  • the UE preferentially changes to the macro cell.
  • the UE performs frequent mobility, the UE does not easily leave the coverage of the macro cell. Therefore, the number of cell changes is effectively reduced, and the UE is effectively reduced.
  • the power consumption and the signaling load of the network and the transmission delay of the data improve the user experience.
  • the UE preferentially changes to the small cell, thereby effectively reducing the burden on the cell with a large coverage area. Effectively improve the performance of heterogeneous networks.
  • the UE needs to know the frequency priority order corresponding to each mobile state of the UE.
  • the UE may receive a system message sent by each cell of the heterogeneous network, where the system message carries frequency priority order information corresponding to each mobile state, and according to the system message, it is learned that each mobile state corresponds to each Frequency priority order; the UE may also receive a dedicated message sent by each cell in the heterogeneous network, where the dedicated message carries frequency priority order information corresponding to each mobile state, and each mobile is learned according to the dedicated message.
  • the priority order of the frequencies corresponding to the states are examples of the frequencies corresponding to the states.
  • the UE may pre-store the frequency priority order information corresponding to each mobile state, and the UE can learn the frequency priority order corresponding to each mobile state according to the pre-stored frequency priority order information.
  • the UE may also obtain the frequency priority order corresponding to each mobile state of the UE in other manners, which is not limited by the present invention.
  • the UE may perform frequency measurement as follows:
  • the signal strength or signal quality of the current serving cell is greater than the first threshold, measuring at least one high priority frequency in the heterogeneous network every first predetermined time; If the signal strength or signal quality of the current serving cell is less than the first threshold, all frequencies in the heterogeneous network are measured every first predetermined time.
  • the UE When the UE is in a lower mobile state, such as a stationary UE, it is likely to fall in a gap between small cells for a long time. If these UEs always measure small cells first, they will not measure any small cells for a period of time, and these measurements will consume a lot of battery power of the UE.
  • the UE may perform frequency measurement according to the frequency priority order determined in step 102 and the mobile state determined in step 101;
  • the frequency measurement may be performed according to the foregoing manner, that is,
  • the signal strength or signal quality of the current serving cell is greater than the first threshold, measuring at least one high priority frequency in the heterogeneous network every first predetermined time;
  • the signal strength or signal quality of the current serving cell is less than the first threshold, all frequencies in the heterogeneous network are measured every first predetermined time;
  • the UE may perform cell measurement as follows:
  • the signal strength or signal quality of the current serving cell is greater than the first threshold: performing a quantity of at least one high priority frequency in the heterogeneous network every first predetermined time;
  • the at least one high priority frequency is measured every third predetermined time
  • the second predetermined time is greater than or equal to the first predetermined time
  • the third predetermined time is greater than the first predetermined time.
  • the third predetermined time is four times the first predetermined time.
  • the UE may be small at this time. In the gap between the cells, even if the UE continues to perform the frequency measurement for the first predetermined time interval, it is likely that any cell cannot be searched at the same time. In this case, the measurement time interval is extended from the first predetermined time to the third predetermined time, and When the cell is searched, the measurement time interval is again reduced to the first predetermined time, thereby effectively reducing the number of frequency measurement performed by the UE, significantly improving the efficiency of the frequency measurement, and effectively saving the battery power of the UE.
  • the UE performs cell change according to the frequency priority order and the result of the frequency measurement.
  • the UE selects a scaling coefficient corresponding to its current mobile state according to its own mobile state, and performs scaling on the relevant hysteresis used in cell reselection or handover.
  • the cell reselection speed or the handover speed of the UE may be matched with its own moving speed, after which the UE performs cell change according to the frequency priority order, the result of the frequency measurement, and the scaled correlated hysteresis amount.
  • the relevant hysteresis includes: TimeToTrigger,
  • the appropriate amount of hysteresis for a larger cell may be too large for a smaller cell, so that the reselection or handover occurs too late, thereby interrupting the service;
  • the appropriate amount of hysteresis for a smaller cell may be too small for a larger cell, such that reselection or handoff occurs prematurely, and ping-pong reselection or switching occurs.
  • the UE may use two sets of scaling coefficients to scale the hysteresis in the heterogeneous network.
  • the two sets of scaling coefficients correspond to the size of the target cell and the mobile state of the UE, respectively.
  • the first set of scaling factors macro cell - sf3, small cell - sf4, ...
  • the second set of scaling factors high moving state --sfl, medium moving state --sf2, ...
  • the two sets of scaling factors may be sent by the network to the UE through system messages or dedicated messages, or may be previously stored by the UE itself.
  • the UE determines a first scaling factor from the first set of scaling coefficients according to the cell size of the target cell changed by the cell, and according to the determined moving state, Determining a second scaling factor in the second set of scaling factors;
  • cell change is performed according to the frequency priority order, the result of the frequency measurement, and the scaled hysteresis amount.
  • the amount of hysteresis after scaling the original hysteresis amount x sfl x sf3.
  • the scaled delay is more accurate, effectively avoiding the problem that the UE changes too early or too late in the heterogeneous network. .
  • the current serving cell of the UE determines the size of a possible target cell that the UE next reselects or switches, in order to effectively avoid the problem of the UE changing too early or too late in the heterogeneous network.
  • the current serving cell of the UE broadcasts multiple hysteresis amounts in the system message, and each hysteresis corresponds to A cell size.
  • the UE receives a plurality of hysteresis amounts broadcast by the current serving cell.
  • the UE determines the size of the possible target cell for the next reselection or handover, and according to these possible targets
  • the size of the cell determines the amount of hysteresis corresponding to the possible target cell from the received plurality of hysteresis amounts; the UE determines the scaling factor according to the determined mobility state.
  • the order of determining the scaling factor and determining the amount of hysteresis of the target cell is not limited, and may be performed simultaneously or sequentially; then the UE scales the determined amount of hysteresis according to the determined scaling factor.
  • the size of the target cell is also considered, and the mobile state of the UE is considered. Therefore, the scaled delay is more accurate, which effectively avoids the problem that the UE changes too early or too late in the heterogeneous network.
  • the cell change method in the heterogeneous network provided by the embodiment of the present invention, when the cell is changed, the UE selects the frequency priority order according to the mobile state of the UE, and when the UE is in the high mobility state, the UE preferentially changes to the cell with a large coverage. Therefore, when the UE performs frequent mobility, the UE does not easily leave the coverage of the cell, thereby effectively reducing the number of cell changes in the heterogeneous network, effectively reducing the power consumption of the UE, and signaling load and data transmission of the network. The delay improves the user experience.
  • a specific embodiment of a method for changing a cell in a heterogeneous network includes:
  • the UE obtains a weight value corresponding to each cell in the heterogeneous network, and a weight value corresponding to each of the cells is proportional to a size of the cell.
  • the UE acquires a physical cell identifier (Physical Cell Identity) of the target cell that performs the cell change, and determines a cell type of the target cell according to the PCI of the target cell.
  • a physical cell identifier Physical Cell Identity
  • each cell broadcasts one or more PCI (Physical Cell Identity) intervals in the system message, where each PCI interval corresponds to one cell type, and the cell type indicates the size of the cell.
  • PCI interval of the small cell is [PCI1, PCI2]
  • PCI interval of the macro cell is [PCB, PCI4].
  • the UE can know the cell type corresponding to each PCI interval and each PCI interval through the system message, that is, learn the cell type and Corresponding relationship of the physical cell identifier, so that the cell type of the target cell is determined according to the correspondence and the PCI of the target cell. For example, if the PCI of the target cell is within the PCI interval of the small cell, the target cell is a small cell; and the PCI of the target cell is within the PCI interval of the macro cell, and the target cell is a macro cell.
  • PCI Physical Cell Identity
  • each cell may also send a cell type corresponding to each PCI section and each PCI section to the UE by using a proprietary message, and the UE may also be pre-configured with a PCI type and a cell type corresponding to each PCI section. Not limited.
  • the UE detects, by the UE, the number of changes in each cell in the heterogeneous network within a specified time.
  • steps 203, 202, and 201 is not limited, and may be performed in parallel or sequentially.
  • the UE determines, according to the weight value corresponding to each of the cells, the detected number of times of change on each type of cell, and the cell type of the target cell, the number of cell changes in the predetermined time period.
  • the weight value corresponding to the macro cell is W1 times
  • the weight value corresponding to the small cell is W2 times
  • the weight value corresponding to the small cell is W2.
  • the number of cell changes of the UE in time t ⁇ 1 + ⁇ 2 ⁇ W2AV1;
  • the UE determines, according to the determined number of cell changes, the mobile state of the UE. 206. The UE determines a frequency priority order according to the determined mobility state.
  • the priority order of the frequency used by the macro cell is higher than the priority order of the frequency used by the small cell; conversely, the priority order of the frequency used by the macro cell is lower than the small cell.
  • the UE performs frequency measurement according to the determined frequency priority order.
  • the UE selects a scaling factor corresponding to its current mobile state, and scales the amount of hysteresis used in cell reselection or handover.
  • the UE performs cell change according to the frequency priority order, the result of the frequency measurement, and the scaled hysteresis amount. As shown in FIG. 4, the embodiment of the present invention further provides a method for cell change in a heterogeneous network.
  • the UE includes the following steps:
  • the number of changes of the user equipment on each cell within a predetermined time period is the number of times the UE changes to the cell within a predetermined time.
  • the weight value corresponding to each of the cells is proportional to the size of the cell. For example, if the size of the larger cell is 10 times the size of the smaller cell and the weight value corresponding to the larger cell is 1, the weight value corresponding to the smaller cell is 0.1.
  • the weight value corresponding to each cell is preferably between 0 and 1.
  • the weight value corresponding to the macro cell is W1
  • the weight value corresponding to the small cell is W2.
  • the number of reselection of the UE on the macro cell is the UE reselection macro.
  • the number of times of the cell is N1
  • the number of times the UE performs reselection on the small cell that is, the number of times the UE reselects the small cell is N2.
  • the total number of times of cell change in the UE in T1 is N1 x Wl + N2 W2
  • the UE can determine its own mobile state according to the value of N1 X Wl + N2 W2.
  • the UE may determine, according to the weight value corresponding to each of the cells, the detected number of changes on each cell, and the cell type of the target cell, that the UE is within the specified time.
  • the number of cell changes wherein, the cell type of the target cell is divided by the cell coverage, for example, the cell type of the target cell is a macro cell or a small cell;
  • the heterogeneous network shown in FIG. 2 is taken as an example. It is assumed that the number of times the UE changes on the macro cell is N1 times, the weight value corresponding to the macro cell is W1, and the UE changes on the small cell. The number of times is N2 times, and the weight value corresponding to the small cell is W2, and
  • the number of cell changes of the UE in time t ⁇ 1 + ⁇ 2 ⁇ W2AV1;
  • the UE needs to know the weight value corresponding to each cell in the heterogeneous network. Specifically, the UE may separately receive system messages of each cell in the heterogeneous network, where each of the cells The system message carries the weight value corresponding to the cell, and according to the system message of each cell in the heterogeneous network, the weight value corresponding to each cell in the heterogeneous network is obtained; the UE may separately receive the difference Configuring a private message of each cell in the network, the specific message of each cell carries a weight value corresponding to the cell, and the heterogeneous network is learned according to a proprietary message of each cell in the heterogeneous network.
  • a weight value corresponding to each cell of the heterogeneous network, and the weight value information corresponding to each cell of the heterogeneous network may be pre-stored in the UE, and each cell in the heterogeneous network is learned according to the pre-stored weight value information.
  • the corresponding weight value may be obtained from the UE, and the present invention does not limit this.
  • the method for determining the number of cell changes considers the number of cell changes of the UE within a predetermined time and the size of the cell, so that the true mobile state of the UE can be determined more accurately.
  • the mobile state of the UE itself includes:
  • the UE selects a scaling coefficient corresponding to its current mobile state according to its own mobile state, and performs scaling on the relevant hysteresis used in cell reselection or handover.
  • the cell reselection speed or the handover speed of the UE may be matched with its own moving speed, and then the UE performs cell change according to the scaled correlated hysteresis amount.
  • the relevant hysteresis comprising: TimeToTrigger, Q hyst, T reselectionEUTRA T reselectionRAT or the like.
  • the mobile state of the UE is determined more accurately according to the weight value corresponding to each cell and the number of times the UE changes in each cell. Therefore, the determined mobile state can be determined according to the step. , select a more accurate scaling factor, thus effectively avoiding the service interruption caused by the cell change too early or too late.
  • the method for changing a cell in a heterogeneous network determines the mobile state of the UE according to the weight value corresponding to each cell and the number of times the UE changes on each cell, and therefore, when determining the mobile state of the UE Considering the number of cell changes of the UE, and taking into account the size of the target cell, it can more accurately reflect the real mobile state of the UE, thereby effectively avoiding the cell change prematurely when performing cell change according to the mobile state of the UE. Service interruption due to late.
  • a specific embodiment of a method for changing a cell in a heterogeneous network according to an embodiment of the present invention includes:
  • the UE obtains a weight value corresponding to each cell in the heterogeneous network, and a weight value corresponding to each of the cells is proportional to a size of the cell.
  • the UE acquires a physical cell identifier PCI of the target cell that performs the cell change, where Determining a cell type of the target cell according to the PCI of the target cell;
  • each cell broadcasts one or more PCI intervals in the system message, and each PCI interval corresponds to one cell.
  • Type the cell type indicates the size of the cell.
  • the PCI interval of the small cell is [PCI1, PCI2], and the PCI interval of the macro cell is [PCB, PCI4].
  • the UE can learn the PCI interval and each PCI interval through the system message.
  • Corresponding cell type that is, the correspondence between the cell type and the physical cell identifier is obtained, so that the cell type of the target cell is determined according to the correspondence and the PCI of the target cell. For example, if the PCI of the target cell is within the PCI interval of the small cell, the target cell is a small cell; and the PCI of the target cell is within the PCI area of the macro cell, and the target cell is a macro cell.
  • each cell may also send a cell type corresponding to each PCI section and each PCI section to the UE by using a proprietary message, and the UE may also be pre-configured with a PCI type and a cell type corresponding to each PCI section. Not limited.
  • the UE detects, by the UE, the number of changes in each cell in the heterogeneous network within a specified time.
  • steps 403, 402, and 401 is not limited, and may be performed in parallel or sequentially.
  • the UE determines, according to the weight value corresponding to each cell, the detected number of times of change on each type of cell, and the cell type of the target cell, the number of cell changes in the predetermined time period.
  • the weight value corresponding to the macro cell is W1 times
  • the weight value corresponding to the small cell is W2 times
  • the weight value corresponding to the small cell is W2.
  • the number of cell changes of the UE in time t ⁇ 1 + ⁇ 2 ⁇ W2AV1;
  • the UE determines, according to the determined number of cell changes, the mobile state of the UE.
  • the UE selects a scaling factor corresponding to the current mobile state according to the determined moving state, and scales the amount of hysteresis used in the change.
  • the UE performs a cell change according to the scaled hysteresis amount.
  • the embodiment of the present invention further provides a method for cell change in a heterogeneous network, based on the UE, including:
  • the method for determining the mobile state of the UE in the foregoing embodiment of the present invention may be used, and the method for determining the mobile state of the UE by the UE in the prior art may be used, which is not limited in the present disclosure.
  • the UE When performing cell change, the UE selects a scaling factor corresponding to its current mobile state according to its own mobile state, and scales the relevant hysteresis used in cell reselection or handover to make the cell reselection speed of the UE. Alternatively, the switching speed may match its own moving speed, and then the UE performs cell change according to the scaled correlated hysteresis amount.
  • the relevant hysteresis includes: TimeToTrigger, Qh yst , T reselecti . nEUTRA or T reselection AT and so on.
  • the appropriate amount of hysteresis for a larger cell may be too large for a smaller cell, so that reselection or handover occurs too late, In turn, the service is interrupted; the appropriate amount of hysteresis for the smaller cells may be too small for the larger cells, so that reselection or handover occurs too early, and ping-pong reselection or switching occurs.
  • the UE performs cell change according to the determined mobility state and the size of the target cell changed by the cell.
  • the amount of hysteresis used is scaled.
  • the UE may separately quantize the hysteresis amount by using two sets of scaling coefficients, where the two sets of scaling coefficients respectively correspond to the size of the target cell and the mobile state of the UE.
  • the first set of scaling factors macro cell - sf3, small cell - sf4, ...
  • the second set of scaling factors high moving state --sfl, medium moving state --sf2, ...
  • the two sets of scaling factors may be sent by the network to the UE through system messages or dedicated messages, or may be previously stored by the UE itself.
  • the UE determines a first scaling factor from the first set of scaling coefficients according to the size of the target cell changed by the cell, and according to the determined moving state, from the second set of scaling coefficients. Determining a second scaling factor; wherein, the UE determines that the order of the first scaling factor and the second scaling factor is not limited, may be performed simultaneously, or may be performed sequentially; then, the UE according to the determined first scaling factor and the second scaling Coefficient, scales the amount of hysteresis used to make a cell change.
  • the amount of hysteresis after scaling the original hysteresis amount x sfl x sf3.
  • the scaled delay is more accurate, which effectively avoids the problem that the UE changes too early or too late in the heterogeneous network.
  • the current serving cell of the UE determines a size of a possible target cell that the UE reselects or switches next time, and determines, according to the sizes of the possible target cells, specific to each target cell.
  • the amount of hysteresis is sent to the UE, that is, the UE receives the hysteresis amount used by the current serving cell to perform the cell change, and the hysteresis amount is determined by the serving cell according to the size of the target cell changed by the cell.
  • determining the scaling factor and receiving the hysteresis amount of the current serving cell are not limited, may be performed simultaneously, or may be performed sequentially; then the UE performs scaling according to the determined A coefficient that scales the received hysteresis. In this way, the size of the target cell is also considered, and the mobile state of the UE is considered. Therefore, the scaled delay is more accurate, which effectively avoids the problem that the UE changes too early or too late in the heterogeneous network.
  • the current serving cell of the UE broadcasts multiple hysteresis amounts in the system message, and each hysteresis amount corresponds to one cell size.
  • the UE receives a plurality of hysteresis amounts broadcast by the current serving cell.
  • the UE determines the size of the possible target cell for the next reselection or handover, and determines the amount of hysteresis corresponding to the possible target cell from the received multiple hysteresis according to the size of the possible target cells; the UE according to the determined mobility state, Determine the zoom factor.
  • the order of determining the scaling factor and determining the amount of hysteresis of the target cell is not limited, and may be performed simultaneously or sequentially; then the UE scales the determined amount of hysteresis according to the determined scaling factor.
  • the size of the target cell is also considered, and the mobile state of the UE is considered. Therefore, the scaled delay is more accurate, which effectively avoids the problem that the UE changes too early or too late in the heterogeneous network.
  • the method for changing a cell in a heterogeneous network provided by the embodiment of the present invention, according to the mobile state of the UE and the size of the target cell changed by the cell, the amount of hysteresis used by the cell change is scaled, so that the scaled delay amount and the UE can be made.
  • the mobile state is adapted to the size of the target cell, so that when the UE performs cell change, the service interruption caused by the cell changing too early or too late is effectively avoided.
  • the embodiment of the present invention further provides a UE, as shown in FIG. 7, including:
  • a first determining unit 10 configured to determine a moving state of the self
  • the second determining unit 11 is configured to determine a frequency priority order according to the mobile state determined by the first determining unit 10, where the mobile state is a high mobile state in which the number of cell changes exceeds a first threshold in a predetermined time, the different Prioritize the frequencies used by cells with large coverage in the network a priority of a frequency used by a cell that is higher than a small coverage area, and a cell with a large coverage area in the heterogeneous network when the mobile state is a low mobility state in which the number of cell changes is lower than a second threshold in a predetermined time period.
  • the priority of the used frequency is lower than the priority of the frequency used by the cell with a small coverage;
  • the measuring unit 12 is configured to perform frequency measurement according to the frequency priority order determined by the second determining unit 11;
  • the processing unit 13 is configured to perform cell change according to the frequency priority order determined by the second determining unit 11 and the result of the frequency measurement performed by the measuring unit 12.
  • the UE provided by the embodiment of the present invention selects a frequency priority order according to its own mobile state when the cell is changed.
  • the UE preferentially changes to a cell with a large coverage, so the UE performs the UE.
  • the mobile device moves frequently, the UE does not easily leave the coverage of the cell, thereby effectively reducing the number of cell changes in the heterogeneous network, effectively reducing the power consumption of the UE, the signaling load of the network, and the transmission delay of the data, thereby improving the user.
  • the UE When the UE is in a lower mobility state, the UE preferentially changes to a cell with a smaller coverage area, thereby effectively reducing the burden of a cell with a larger coverage area and effectively improving the performance of the heterogeneous network.
  • the first determining unit 10 includes:
  • the detecting module 101 is configured to detect the number of times of change in each cell in the heterogeneous network within a specified time
  • the number determining module 102 is configured to determine the number of cell changes in the predetermined time according to the weight value corresponding to each cell and the number of changes in each cell detected by the detecting module 101, where each cell corresponds to The weight value is proportional to the size of the cell;
  • the state determining module 103 is configured to determine the mobile state of the cell according to the number of cell changes determined by the number determining module 102.
  • the number determining module 102 is specifically configured to: determine, according to the weight value corresponding to each cell, the number of changes on each cell detected by the detecting module, and the small size of the target cell.
  • the zone type determines the number of cell changes that it has made within the specified time.
  • the first determining unit 10 further includes:
  • the locating module 104 is configured to obtain a physical cell identifier of the target cell that is changed by the cell; the type determining module 105 is configured to determine, according to the physical cell identifier of the target cell acquired by the acquiring module 104, a cell type of the target cell. ;
  • the number determining module 102 is specifically configured to:
  • the UE further includes: a learning unit 14 configured to learn, according to the mobile device, the weighting value corresponding to each cell in the heterogeneous network.
  • the learning unit 14 is specifically configured to receive the system message of each cell in the heterogeneous network, where the system message of each cell carries a weight value corresponding to the cell, according to the heterogeneous network.
  • the system message of each cell learns the weight value corresponding to each cell in the heterogeneous network;
  • the learning unit 14 is specifically configured to receive a specific message of each cell in the heterogeneous network, where the private message of each cell carries a weight value corresponding to the cell, according to the heterogeneous A private message of each cell in the network, and a weight value corresponding to each cell in the heterogeneous network is obtained;
  • the learning unit 14 is specifically configured to learn, according to the pre-stored weight value information, a weight value corresponding to each cell in the heterogeneous network.
  • the learning unit 14 is configured to learn the frequency priority order corresponding to each mobile state, and the second determining unit 11 determines the mobile state and the learning unit 14 determined according to the first determining unit 10.
  • the frequency corresponding to each mobile state obtained is prioritized Level order, determining the frequency priority order.
  • the learning unit 14 is specifically configured to receive a system message, where the system message carries frequency priority order information corresponding to each mobile state, and according to the system message, the frequency corresponding to each mobile state is obtained.
  • Priority order the system message carries frequency priority order information corresponding to each mobile state, and according to the system message, the frequency corresponding to each mobile state is obtained.
  • the learning unit 14 is specifically configured to receive a dedicated message, where the dedicated message carries frequency priority order information corresponding to each mobile state, and according to the dedicated message, the frequency corresponding to each mobile state is preferentially obtained.
  • Order order the dedicated message carries frequency priority order information corresponding to each mobile state, and according to the dedicated message, the frequency corresponding to each mobile state is preferentially obtained.
  • the learning unit 14 is specifically configured to learn, according to the pre-stored frequency priority order information, a frequency priority order corresponding to each mobile state.
  • the measuring unit 12 may be specifically configured according to the frequency priority order determined by the second determining unit 11 and determined by the first determining unit 12.
  • the self-moving state performs frequency measurement.
  • the measuring unit 12 can be specifically configured to:
  • the mobile state is a high mobile state in which the number of cell changes exceeds a first threshold within a predetermined time:
  • At least one high priority frequency in the heterogeneous network is measured every first predetermined time;
  • the signal strength or signal quality of the current serving cell is less than the first threshold, all frequencies in the heterogeneous network are measured every first predetermined time;
  • the measuring unit 12 can be specifically configured to:
  • the moving state is a low moving state in which the number of cell changes is lower than a second threshold within a predetermined time:
  • the search is not performed on the at least one high priority frequency within the second predetermined time
  • the at least one high priority frequency is measured every third predetermined time, and the third predetermined time is greater than the first predetermined time
  • the signal strength or signal quality of the current serving cell is less than the first threshold, all frequencies in the heterogeneous network are measured every first predetermined time.
  • the processing unit 13 includes:
  • the first determining module 131 is configured to determine, according to a cell size of the target cell changed by the cell, a first scaling factor
  • a second determining module 132 configured to determine, according to the determined moving state, a second scaling factor
  • a scaling module 133 configured to use, according to the determined first scaling factor and second scaling factor, to perform cell change The amount of hysteresis is scaled
  • the processing module 134 is configured to perform cell change according to the frequency priority order, the result of the frequency measurement, and the delay amount of performing the scaling.
  • the processing unit 13 includes:
  • the receiving module 135 is configured to receive, by the current serving cell, a hysteresis amount used for performing a cell change, where the hysteresis amount is obtained by the serving cell according to a size of a target cell changed by the cell;
  • a determining module 136 configured to determine a scaling factor according to the determined moving state
  • a scaling module 137 configured to scale the received hysteresis according to the determined scaling factor
  • the processing module 138 is configured to perform cell change according to the frequency priority order, the result of the frequency measurement, and the delay amount of the scaling.
  • the embodiment of the present invention further provides a UE, as shown in FIG. 13, including:
  • the detecting unit 20 is configured to detect the number of times of change in each cell in the heterogeneous network within a specified time period
  • the first determining unit 21 is configured to determine, according to the weight value corresponding to each cell and the number of times of change on each cell detected by the detecting unit 20, the number of cell changes in the predetermined time, each of the cells.
  • the corresponding weight value is proportional to the size of the cell;
  • the second determining unit 22 is configured to determine, according to the determined number of cell changes, a mobile state of the mobile device
  • the processing unit 23 is configured to perform a cell change according to the determined mobility state.
  • the UE provided by the embodiment of the present invention determines the mobility state of the UE according to the weight value corresponding to each cell and the number of times the UE changes on each cell. Therefore, when determining the mobility state of the UE, the UE is considered.
  • the number of changes taking into account the size of the target cell, and therefore more accurately reflects the real mobile state of the UE, thereby effectively avoiding service interruption caused by the cell changing too early or too late when performing cell change according to the mobile state of the UE. .
  • the first determining unit 21 is specifically configured to: determine, according to the weight value corresponding to each of the cells, the detected number of changes on each cell, and the cell type of the target cell, The number of cell changes in the specified time.
  • the first determining unit 21 specifically includes: an earing block 210, configured to acquire a physical cell identifier of a target cell that is changed by the cell; and a type determining module 211. Determining, according to the physical cell identifier of the target cell, a cell type of the target cell;
  • the number determining module 212 is configured to determine, according to the weight value corresponding to each cell, the number of changes on each cell detected by the detecting unit 20, and the cell type of the target cell determined by the type determining module 211, The number of cell changes in the specified time.
  • the UE further includes The obtaining unit 24 is configured to learn a weight value corresponding to each cell in the heterogeneous network.
  • the learning unit 24 is specifically configured to receive the system message of each cell in the heterogeneous network, where the system message of each cell carries a weight value corresponding to the cell, according to the heterogeneous network.
  • the system message of each cell learns the weight value corresponding to each cell in the heterogeneous network;
  • the obtaining unit 24 is specifically configured to separately receive a dedicated message of each cell in the heterogeneous network, where the specific message of each cell carries a weight value corresponding to the cell, according to the heterogeneous A private message of each cell in the network, and a weight value corresponding to each cell in the heterogeneous network is obtained;
  • the obtaining unit 24 is specifically configured to learn, according to the pre-stored weight value information, a weight value corresponding to each cell in the heterogeneous network.
  • the embodiment of the present invention further provides a UE, as shown in FIG. 16, including:
  • a determining unit 30 configured to determine a moving state of the self
  • the scaling unit 31 is configured to scale the amount of hysteresis used by the cell change according to the mobile state determined by the determining unit 30 and the size of the target cell of the cell change;
  • the processing unit 32 is configured to perform cell change according to the amount of hysteresis performed by the scaling unit 31.
  • the UE provided by the embodiment of the present invention scales the hysteresis used by the cell change according to the mobile state of the UE and the size of the target cell changed by the cell, so that the scaled hysteresis can be adjusted with the UE's mobile state and the target cell.
  • the size is adapted so that when the UE performs a cell change, the service interruption caused by the cell changing too early or too late is effectively avoided.
  • the scaling unit 31 specifically includes:
  • a first determining module 311, configured to determine, according to a size of the target cell that the cell changes, a first scaling factor
  • a second determining module 312, configured to determine, according to the moving state determined by the determining unit 30, a second scaling factor
  • the scaling module 313 is configured to scale the amount of hysteresis used for performing the cell change according to the first scaling factor determined by the first determining module 311 and the second scaling factor determined by the second determining module 312.
  • the scaling unit 31 specifically includes:
  • the receiving module 314 is configured to receive, by the current serving cell, a hysteresis amount used for performing a cell change, where the hysteresis amount is obtained by the serving cell according to a size of a target cell changed by the cell;
  • the determining module 315 is configured to determine a scaling factor according to the moving state determined by the determining unit 30, and the scaling module 316 is configured to scale the amount of hysteresis received by the receiving module according to the scaling factor determined by the determining module 315.
  • the scaling unit 31 specifically includes:
  • the receiving module 317 is configured to receive at least one hysteresis amount sent by the current serving cell, where the hysteresis amount corresponds to a cell size.
  • a first determining module 318 configured to determine, according to a size of the target cell that the cell changes, a delay amount corresponding to the target cell from a delay amount received by the receiving module 317;
  • a second determining module 319 configured to determine a scaling factor according to the moving state determined by the determining unit 30;
  • the scaling module 320 is configured to scale the amount of hysteresis determined by the first determining module 318 according to the scaling factor determined by the second determining module 319.

Abstract

本发明的实施例提供了一种异构网络中小区改变的方法和装置,涉及通信技术领域,为能够有效减少UE的电量消耗而发明。所述异构网络中小区改变的方法包括:确定自身的移动状态;根据所述确定的移动状态,确定频率优先级顺序,当所述移动状态为规定时间内小区改变次数超过第一阈值的较高移动状态时,所述异构网络中覆盖范围较大的小区所使用的频率的优先级高于覆盖范围小的小区所使用的频率的优先级,反之,所述异构网络中覆盖范围大的小区所使用的频率的优先级低于覆盖范围小的小区所使用的频率的优先级;根据所述确定的频率优先级顺序,进行频率测量;根据所述频率优先级顺序和所述频率测量的结果,进行小区改变。本发明实施例可用于移动通信技术中。

Description

异构网络中小区改变的方法和装置 本申请要求于 2011 年 6 月 17 日提交中国专利局、 申请号为 201110164411.0、 发明名称为 "异构网络中小区改变的方法和装置" 的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明实施例涉及通信技术, 特别是涉及异构网络中小区改变的方法 和装置。 发明背景
随着通信技术的发展,一种新的网络部署正逐渐被引入到无线网络中, 即异构网络( Heterogeneous Network, HetNet )。 在异构网络中, 可以同时 部署宏基站和低功率节点, 宏基站的小区覆盖范围较大, 可以被称为宏小 区, 低功率节点的小区覆盖范围小于宏小区的覆盖范围, 可以被称为小小 区。 其中, 宏小区为用户提供了无缝覆盖, 而小小区提高了网络系统的容 量。 实际网络中, 宏小区和小小区可以使用相同的频率, 也可以使用不同 的频率, 使用不同频率的宏小区和小小区的异构网络, 被称为异频异构网 络, 使用相同频率的宏小区和小小区的异构网络, 被称为同频异构网络。
用户设备(UE, User Equipment )在异频异构网络中发生移动时, UE 将发生小区改变。其中空闲态的 UE的驻留小区的改变被称为小区重选,连 接态的 UE的服务小区的改变被称为切换。
以现有技术中, 空闲态的 UE在网络中移动时进行小区重选为例, 各 小区为不同的 UE设定一个相同的频率优先级顺序, 网络内所有的 UE都会 优先测量并重选至优先级较高的频率上。 然而, 现有技术这种小区重选的 方法中, 如果设定宏小区的频率优先级高于小小区的频率优先级, 网络内 所有的 UE都会优先重选至宏小区上,这 4艮可能造成宏小区的负担过重。 而 如果设定小小区的频率优先级高于宏小区的频率优先级, 网络内所有的 UE 都会优先重选至小小区上, 从而很大程度上緩解宏小区的负担, 但是由于 小小区的覆盖范围较小,重选到小小区上的 UE在移动的时候非常容易地就 离开了小小区的覆盖范围而进入另一小小区的覆盖范围, 或者回到宏小区 的覆盖范围,此时这些 UE将不得不再次进行小区重选, 而频繁的小区重选 会耗费 UE大量的电池电量。 另外, 由于网络中所有的小小区并不能组成一 个无缝的覆盖,因此一部分相对静止的 UE有可能会长时间落在小小区之间 的缝隙中,这些缝隙属于宏小区的覆盖范围。如果这些 UE总是优先测量小 小区, 其将在很长一段时间内测量不到任何小小区, 而这些测量白白耗费 了 UE大量的电池电量。 发明内容
本发明的实施例的主要目的在于, 提供一种异构网络中小区改变的方 法和装置, 能够有效减少 UE的电量消耗。
为达到上述目的, 本发明的实施例采用如下技术方案:
一方面, 本发明实施例提供了一种异构网络中小区改变的方法, 包括: 确定自身的移动状态;
根据所述确定的移动状态, 确定频率优先级顺序, 当所述移动状态为 规定时间内小区改变次数超过第一阈值的高移动状态时, 所述异构网络中 覆盖范围大的小区所使用的频率的优先级高于覆盖范围小的小区所使用的 频率的优先级, 当所述移动状态为规定时间内小区改变次数低于第二阈值 的低移动状态时, 所述异构网络中覆盖范围大的小区所使用的频率的优先 级低于覆盖范围小的小区所使用的频率的优先级;
根据所述确定的频率优先级顺序, 进行频率测量;
根据所述确定的频率优先级顺序和所述频率测量的结果, 进行小区改 变。
一方面。 本发明实施例提供了一种 UE, 包括:
第一确定单元, 用于确定自身的移动状态;
第二确定单元, 用于根据所述第一确定单元确定的移动状态, 确定频 率优先级顺序, 当所述移动状态为规定时间内小区改变次数超过第一阈值 的高移动状态时, 所述异构网络中覆盖范围大的小区所使用的频率的优先 级高于覆盖范围小的小区所使用的频率的优先级, 当所述移动状态为规定 时间内小区改变次数低于第二阈值的低移动状态时, 所述异构网络中覆盖 范围大的小区所使用的频率的优先级低于覆盖范围小的小区所使用的频率 的优先级;
测量单元, 用于根据所述第二确定单元确定的频率优先级顺序, 进行 频率测量;
处理单元, 用于根据所述第二确定单元确定的频率优先级顺序和所述 测量单元进行频率测量的结果, 进行小区改变。 本发明实施例提供的异构网络中小区改变的方法和 UE,进行小区改变 时, UE将根据自身的移动状态选择频率优先级顺序, 在 UE处于较高移动 状态时, UE优先改变到覆盖范围较大的小区上, 因此在 UE进行频繁移动 时, UE不易离开该小区的覆盖范围, 从而有效减小了异构网络中小区改变 的次数, 有效减少 UE的电量消耗以及网络的信令负荷和数据的传输时延, 提升了用户的体验; 而在 UE处于较低移动状态时, UE优选改变到覆盖范 围较小的小区上, 从而有效减轻了覆盖范围较大的小区的负担, 有效提升 了异构网络的性能。 另一方面, 本发明实施例又提供了一种异构网络中小区改变的方法 , 包括: 检测自身在规定时间内在所述异构网络中各小区上的改变次数; 根据所述各小区所分别对应的权重值和所述检测的各小区上的改变次 数, 确定自身在所述规定时间内的小区改变次数, 每个所述小区对应的权 重值正比于所述小区的大小;
根据所述确定的小区改变次数, 确定自身的移动状态;
根据所述确定的移动状态, 进行小区改变。
另一方面, 本发明实施例又提供了一种 UE, 包括:
检测单元, 用于检测自身在规定时间内在所述异构网络中各小区上的 改变次数;
第一确定单元, 用于根据所述各小区所分别对应的权重值和所述检测 单元检测的各小区上的改变次数, 确定自身在所述规定时间内的小区改变 次数, 每个所述小区对应的权重值正比于所述小区的大小;
第二确定单元, 用于根据所述确定的小区改变次数, 确定自身的移动 状态;
处理单元, 用于才艮据所述确定的移动状态, 进行小区改变。
本发明实施例提供的异构网络中小区改变的方法和 UE,根据所述各小 区所分别对应的权重值和 UE在各小区上的改变次数,确定 UE的移动状态, 因此, 在确定 UE的移动状态时, 即考虑了 UE的小区改变次数, 同时考虑 了各小区的大小, 因此更能准确反应出 UE 的真实移动状态, 从而在根据 UE的移动状态进行小区改变时,有效避免了小区改变过早或者过晚而导致 的服务中断。 再一方面, 本发明实施例又提供了一种异构网络中小区改变的方法, 包括:
确定自身的移动状态;
根据所述确定的移动状态和小区改变的目标小区的大小, 对所述小区 改变所使用的迟滞量进行缩放;
根据所述进行缩放的迟滞量, 进行小区改变。
再一方面, 本发明实施例又提供了一种 UE, 包括:
确定单元, 用于确定自身的移动状态;
缩放单元, 用于根据所述确定单元确定的移动状态和小区改变的目标 小区的大小, 对所述小区改变所使用的迟滞量进行缩放;
处理单元, 用于根据所述缩放单元进行缩放的迟滞量, 进行小区改变。 本发明实施例提供的异构网络中小区改变的方法和 UE,根据 UE的移 动状态以及小区改变的目标小区的大小, 对小区改变所使用的迟滞量进行 缩放,因此能够使缩放后的迟滞量与 UE的移动状态和目标小区的大小相适 应,从而在 UE进行小区改变时,有效避免小区改变过早或者过晚而导致的 服务中断。 附图简要说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为本发明实施例的异构网络中小区改变的方法的一种流程图; 图 2为本发明实施例中一种异频异构网络示意图;
图 3为本发明实施例的异构网络中小区改变的方法的一种流程图; 图 4为本发明实施例的异构网络中小区改变的方法的一种流程图; 图 5为本发明实施例的异构网络中小区改变的方法的一种流程图; 图 6为本发明实施例的异构网络中小区改变的方法的一种流程图; 图 7为本发明实施例的 UE的一种结构框图; 图 8为本发明实施例的 UE的第一确定单元的一种结构框图; 图 9为本发明实施例的 UE的第一确定单元的一种结构框图; 图 10为本发明实施例的 UE的一种结构框图;
图 11为本发明实施例的 UE的处理单元的一种结构框图;
图 12为本发明实施例的 UE的处理单元的一种结构框图;
图 13为本发明实施例的 UE的一种结构框图;
图 14为本发明实施例的 UE的第一确定单元的一种结构框图; 图 15为本发明实施例的 UE的一种结构框图;
图 16为本发明实施例的 UE的一种结构框图;
图 17为本发明实施例的 UE的缩放单元的一种结构框图;
图 18为本发明实施例的 UE的缩放单元的一种结构框图;
图 19为本发明实施例的 UE的缩放单元的一种结构框图。 实施本发明的方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述。
显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实 施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳 动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
需要说明的是, 本发明实施例优选适用于异频异构网络, 当然也可适 用于同频异构网络, 本发明对此不 限定。 以下实施例中, 以异频异构网 络为例进行说明。
另外,本发明实施例中的小区改变,意为 UE进行小区切换或小区重选。 如图 1 所示, 本发明实施例提供的一种异构网络中小区改变的方法, 基于 UE, 包括以下步骤:
101 , 确定自身的移动状态。 本发明实施例中, 异构网络中设置有多个频率优先级顺序, 每一个频 率优先级顺序对应与 UE 的一种或几种移动状态, 在进行小区改变之前, UE将首先确定自身的移动状态, 从而根据 UE自身的移动状态, 确定出进 行小区改变所使用的频率优先级顺序, UE的移动状态不同, UE所采用的 频率优先级顺序有可能不同。
可选的, UE的移动状态的确定标准可为:
在规定时间 tl 内, UE的小区改变次数大于第一阈值 nl时, UE进入 高移动状态;
在规定时间 tl 内, UE的小区改变次数小于小于第二阈值 n2时, UE 进入低移动状态。
可选的, UE的移动状态的确定标准还可为:
在规定时间 tl 内, UE的小区改变次数大于第一阈值 nl时, UE进入 高移动状态;
在规定时间 tl内, UE的小区改变次数小于第一阈值 nl而大于第二阈 值 n2时, UE进入中移动状态;
在规定时间 t2内, 如果 UE—直不满足高移动状态或中移动状态的判 断标准, 则 UE进入正常移动状态。
当然, 可以理解的是, UE移动状态的确定标准不限, UE还可包括其 他移动状态, 本发明对此不做限定。
需要说明的是, 本发明实施例中, 所述高移动状态是相对于所述低移 动状态而言的,在相同时间内,处于所述高移动状态的 UE的小区改变次数 高于处于所述低移动状态的 UE的小区改变次数。
其中, 小区改变次数是指规定时间 tl 内 UE进行小区改变的总次数。 举例说明, 图 2为本发明实施例的一个异频异构网络的示意图, 该网络包 括宏小区和若干个小小区, 宏小区所使用的频率为 fl , 小小区使用的频率 为 f2。假设在时间 tl内, UE在宏小区上的重选次数即 UE重选宏小区的次 数为 Nl , UE在小小区上的重选次数即 UE重选小小区的次数为 N2, 则 tl 内 UE 的小区改变次数即进行小区重选的总次数为 N1+N2, UE 可根据 N1+N2的值确定出自身的移动状态。 小区改变的次数,还取决于进行小区改变时目标小区的大小,如果 UE在 tl 内频繁重选小小区, 虽然重选次数较多, 但由于小小区覆盖面积较小, UE 不一定处于较高的移动状态下。 因此, 为了提高本步骤所确定的移动状态 的准确性, 在步骤 101前, 本发明实施例的小区改变方法, 还可包括:
UE获知所述异构网络中各小区所分别对应的权重值, 各所述小区对应 的权重值正比于所述小区的大小; 例如: 若较大的小区的大小是较小的小 区的大小的 10倍, 较大小区对应的权重值为 1 , 则较小小区对应的权重值 为 0.1。 各小区所分别对应的权重值取值优选在 0 ~ 1之间。
这时, 步骤 101具体可分为以下几步进行:
首先, 检测自身在规定时间内在所述异构网络中各小区上的改变次数; 其次, 根据所述各小区所分别对应的权重值和所述检测的各小区上的 改变次数, 确定自身在所述规定时间内的小区改变次数;
同样以图 2所示的异构网络为例, 假设宏小区对应的权重值为 W1 , 小 小区对应的权重值为 W2, 在时间 tl内, UE在宏小区上的重选次数即 UE 重选宏小区的次数为 Nl , UE在小小区上的重选次数即 UE重选小小区的次 数为 N2, 这时, tl 内 UE的小区改变次数即进行小区重选的总次数为 N1 Wl + N2 W2, UE可才艮据 Nl X Wl + N2 W2的值确定出自身的移动 ^夫 态;
可选的, 本步骤中, UE还可根据所述各小区所分别对应的权重值、 所 述检测的各小区上的改变次数和所述目标小区的小区类型, 确定自身在所 述规定时间内的小区改变次数; 其中, 目标小区的小区类型以小区覆盖范 围所划分, 例如目标小区的小区类型为宏小区或小小区; 这时, 同样以图 2所示的异构网络为例, 假设在时间 t内, UE在宏小 区上的改变次数为 N1次, 宏小区对应的权重值为 Wl , UE在小小区上的 改变次数为 N2次, 小小区对应的权重值为 W2, 贝 |J :
当目标小区为宏小区时, UE在时间 t 内的小区改变次数 = Ν1 + Ν2 χ W2AV1;
当目标小区为小小区时, UE在时间 t内的小区改变次数 = N1 X W1/W2 + N2;
然后, 根据所述确定的小区改变次数, 确定自身的移动状态。
上述步骤 101中这种确定 UE的移动状态的方式,即考虑了规定时间内 UE的小区改变次数, 同时考虑了各小区的大小, 因此更能准确反应出 UE 的移动状态, 有效提高了本步骤中 UE所确定的自身移动状态的准确性。
具体的, UE可以分别接收异构网络中各小区的系统消息, 各所述小区 的系统消息中携带有所述小区对应的权重值, 根据所述异构网络中各小区 的系统消息, 获知所述异构网络中各小区所分别对应的权重值; UE还可以 分别接收所述异构网络中各小区的专有消息, 各所述小区的专有消息中携 带有所述小区对应的权重值, 根据所述异构网络中各小区的专有消息, 获 知所述异构网络中各小区所分别对应的权重值; 另外, UE中还可预先存储 有所述异构网络各小区所分别对应的权重值信息, 根据预先存储的权重值 信息, 获知所述异构网络中各小区所分别对应的权重值。 当然, UE还可以 通过其他方式获知各小区所分别对应的权重值, 本发明对此不做限定。
102, 根据所述确定的移动状态, 确定频率优先级顺序。
本发明实施例中, 每一个优先级顺序对应一种 UE移动状态; 其中, 规 定时间内小区改变次数高于第一阈值的高移动状态所对应的频率优先级顺 序中, 异构网络中覆盖范围大的小区所使用的频率的优先级高于覆盖范围 小的小区所使用的频率的优先级; 反之, 规定时间内小区改变次数低于第 二阈值的低移动状态所对应的频率优先级顺序中, 所述异构网络中覆盖范 围大的小区所使用的频率的优先级低于覆盖范围小的小区所使用的频率的 优先级。
同样以图 2所示的异构网络为例, 在高移动状态, 宏小区使用的频率 fl的优先级高于小小区使用的频率 f2的优先级; 在低移动状态, 宏小区所 在的频率 fl的优先级低于小小区所在的频率 f2的优先级。
这样, 在 UE处于高移动状态时, UE优先改变到宏小区上, 在 UE进 行频繁移动时, UE不易离开宏小区的覆盖范围, 因此, 有效减小了小区改 变的次数,有效减少了 UE的电量消耗以及网络的信令负荷和数据的传输时 延, 提升了用户的体验; 而在 UE处于低移动状态时, UE优先改变到小小 区上, 从而有效减轻了覆盖范围大的小区的负担, 有效提升了异构网络的 性能。
显然, 在本步骤之前, UE需要获知 UE的各个移动状态所分别对应的 频率优先级顺序。 具体的, UE可以接收异构网络各小区下发的系统消息, 所述系统消息中携带有各移动状态所分别对应的频率优先级顺序信息, 根 据所述系统消息, 获知各移动状态所分别对应的频率优先级顺序; UE还可 以接收异构网络中各小区下发的专用消息, 所述专用消息携带有各移动状 态所分别对应的频率优先级顺序信息, 根据所述专用消息, 获知各移动状 态所分别对应的频率优先级顺序。 另外, UE中可预先存储有各个移动状态 所分别对应的频率优先级顺序信息, UE能够根据预先存储的频率优先级顺 序信息, 获知各移动状态所分别对应的频率优先级顺序。 当然, UE还可通 过其他方式获知 UE的各个移动状态所分别对应的频率优先级顺序,本发明 对此不做限定。
103, 根据所述确定的频率优先级顺序, 进行频率测量。
可选的, UE可以按照如下方式进行频率测量, 具体为:
如果当前服务小区的信号强度或者信号质量大于第一门限值, 每隔第 一规定时间对所述异构网络中至少一个高优先级频率进行测量; 如果当前服务小区的信号强度或者信号质量小于第一门限值, 每隔第 一规定时间对所述异构网络中的所有频率进行测量。
当 UE处于一较低的移动状态时, 例如静止的 UE, 有可能会长时间落 在小小区之间的缝隙中。如果这些 UE总是优先测量小小区,其将在 ^艮长一 段时间内测量不到任何小小区,而这些测量将白白耗费了 UE大量的电池电 量。
因此, 本步骤中, 优选的, UE可根据步骤 102确定的频率优先级顺序 和步骤 101确定的自身的移动状态, 进行频率测量;
可选的,当 UE自身的移动状态为规定时间内小区改变次数超过第一阈 值的高移动状态时, 可按照前述方式进行频率测量, 即:
如果当前服务小区的信号强度或者信号质量大于第一门限值, 每隔第 一规定时间对所述异构网络中至少一个高优先级频率进行测量;
如果当前服务小区的信号强度或者信号质量小于第一门限值, 每隔第 一规定时间对所述异构网络中的所有频率进行测量;
可选的,当 UE自身的移动状态为规定时间内小区改变次数低于第二阈 值的低移动状态时, UE可按照如下方式进行小区测量:
如果当前服务小区的信号强度或者信号质量大于第一门限值: 每隔第一规定时间对所述异构网络中至少一个高优先级频率进行 'J 量;
如果在第二规定时间内没有在所述至少一个高优先级频率上搜索到任 何小区, 每隔第三规定时间对所述至少一个高优先级频率进行测量;
当在所述至少一个高优先级频率上搜索到至少一个小区后, 每隔第一 规定时间对所述至少一个高优先级频率进行测量;
其中, 第二规定时间大于等于第一规定时间, 第三规定时间大于第一 规定时间, 例如, 第三规定时间为第一规定时间的 4倍。
如果在第二规定时间内没有搜索到任何小区,说明此时 UE可能处于小 小区之间的缝隙中, 即使 UE继续间隔第一规定时间进行频率测量,很可能 同样无法搜索到任何小区, 这时, 将测量时间间隔由第一规定时间延长为 第三规定时间, 并在能够搜索到小区时, 将测量时间间隔再次缩小到第一 规定时间,从而有效减小了 UE进行频率测量的次数, 明显提高了频率测量 的效率, 有效节约了 UE的电池电量。
104,根据所述频率优先级顺序和所述频率测量的结果,进行小区改变。 本步骤中, 具体的, 在进行小区改变时, UE会根据自身的移动状态, 选取与自身当前移动状态相对应的缩放系数, 对小区重选或者切换中所使 用的相关迟滞量进行缩放,以使 UE的小区重选速度或者切换速度可以和自 身的移动速度相匹配,之后 UE根据频率优先级顺序、频率测量的结果和缩 放后的相关迟滞量,进行小区改变。其中,相关迟滞量包括: TimeToTrigger,
Qhyst , TreseiectionEUTRA或 TreseiectionRAT等等。
如果无论小区大小而使用相同的迟滞量的话, 有可能出现如下问题: 对较大小区合适的迟滞量, 对较小小区可能过大, 从而使重选或切换发生 过晚, 进而使服务中断; 对较小小区合适的迟滞量, 对较大区可能过小, 从而使重选或切换发生过早, 进而发生乒乓重选或切换。
为了有效的避免 UE在异构网络中小区改变的过早或过晚的问题,在本 发明的一个实施中,可选地,异构网络中 UE可使用两套缩放系数分别对迟 滞量进行缩放,这两套缩放系数分别对应于目标小区的大小和 UE的移动状 态。 例如:
第一套缩放系数: 宏小区— sf3, 小小区— sf4, ...
第二套缩放系数: 高移动状态 --sfl , 中移动状态 --sf2, ...
这两套缩放系数可以是网络通过系统消息或者专用消息发送给 UE的, 也可以是 UE自身事先存储的。
这时, 在本步骤中, UE将根据所述小区改变的目标小区的小区大小, 从第一套缩放系数中确定第一缩放系数, 并根据所述确定的移动状态, 从 第二套缩放系数中确定第二缩放系数;
然后, 根据所述确定的第一缩放系数和第二缩放系数, 对进行小区改 变所使用的迟滞量进行缩放;
然后, 根据所述频率优先级顺序、 所述频率测量的结果和所述缩放后 的迟滞量, 进行小区改变。
举例说明:假如当前 UE的移动状态为高移动状态,且目标小区为宏小 区, 则: 缩放后的迟滞量=原有的迟滞量 x sfl x sf3。
这种方式下即考虑了小区大小的问题,又考虑了 UE的移动状态,因此, 所缩放的迟滞量较为精确,有效的避免了 UE在异构网络中小区改变的过早 或过晚的问题。
为了有效的避免 UE在异构网络中小区改变的过早或过晚的问题,在本 发明的另一个实施中, UE的当前服务小区判断 UE下次重选或切换的可能 目标小区的大小, 并根据这些可能目标小区的大小确定每一个目标小区所 特有的迟滞量, 并将该迟滞量发送给 UE, UE接收当前服务小区发送的、 进行小区改变所使用的迟滞量, 并根据自身的移动状态, 确定缩放系数, 然后根据所述确定的缩放系数, 对所述接收的迟滞量进行缩放; 然后, 根 据所述频率优先级顺序、 所述频率测量的结果和所述缩放后的迟滞量, 进 行小区重选或切换, 即小区改变。
这种方式同样即考虑了小区大小的问题, 又考虑了 UE的移动状态, 因 此所缩放的迟滞量较为精确,有效的避免了 UE在异构网络中小区改变的过 早或过晚的问题。 为了有效的避免 UE在异构网络中小区改变的过早或过晚的问题,在本 发明的另一个实施中, UE的当前服务小区在系统消息中广播多个迟滞量, 每一个迟滞量对应一种小区大小。 UE接收当前服务小区广播的多个迟滞 量。 UE判断下次重选或切换的可能目标小区的大小, 并根据这些可能目标 小区的大小从接收的多个迟滞量中确定可能目标小区所对应的迟滞量; UE 根据所述确定的移动状态, 确定缩放系数。 其中, 确定缩放系数和确定目 标小区的迟滞量的顺序不限, 可同时进行, 也可依次进行; 然后 UE根据所 述确定的缩放系数, 对所述确定的迟滞量进行缩放。
这种方式同样即考虑了目标小区的大小, 又考虑了 UE的移动状态, 因 此所缩放的迟滞量较为精确,有效的避免了 UE在异构网络中小区改变的过 早或过晚的问题。
本发明实施例提供的异构网络中小区改变的方法, 进行小区改变时, UE将根据自身的移动状态选择频率优先级顺序,在 UE处于高移动状态时, UE优先改变到覆盖范围大的小区上, 因此在 UE进行频繁移动时, UE不 易离开该小区的覆盖范围, 从而有效减小了异构网络中小区改变的次数, 有效减少了 UE的电量消耗以及网络的信令负荷和数据的传输时延,提升了 用户的体验; 而在 UE处于低移动状态时, UE优先改变到覆盖范围小的小 区上, 从而有效减轻了覆盖范围大的小区的负担, 有效提升了异构网络的 性能。 同时, 还能够有效减小进行频率测量的次数, 提高频率测量的效率, 从而进一步减少 UE的电量消耗,还能够有效的避免 UE在异构网络中小区 改变的过早或过晚的问题。 如图 3所示, 为本发明实施例提供的一种异构网络中小区改变的方法 的一个具体实施例, 本实施例包括:
201 , UE获知所述异构网络中各小区所分别对应的权重值, 各所述小 区对应的权重值正比于所述小区的大小。
202, 可选地, UE获取进行小区改变的目标小区的物理小区标识 PCI ( Physical Cell Identity, 物理小区标识), 根据所述目标小区的 PCI, 确定 所述目标小区的小区类型;
在本步骤前, UE需要获知小区类型和物理小区标识的对应关系; 本实 施例中,可选的,每个小区在系统消息中广播一个或多个 PCI ( Physical Cell Identity, 物理小区标识) 区间, 每一个 PCI区间对应一种小区类型, 小区 类型指示了小区的大小, 例如: 小小区的 PCI区间为 [PCI1, PCI2] , 宏小区 的 PCI区间为 [PCB, PCI4] , UE能够通过系统消息, 获知各 PCI区间及各 PCI区间对应的小区类型, 即获知小区类型和物理小区标识的对应关系,从 而根据所述对应关系以及所述目标小区的 PCI, 确定出目标小区的小区类 型。 例如: 目标小区的 PCI在小小区的 PCI区间内, 则目标小区为小小区; 目标小区的 PCI在宏小区的 PCI区间内, 则目标小区为宏小区。
当然, 每个小区还可通过专有消息将各 PCI区间及各 PCI区间对应的 小区类型发送给 UE, UE中也可预先配置有各 PCI区间及各 PCI区间对应 的小区类型, 本实施对此不做限定。
203, UE检测自身在规定时间内在所述异构网络中各小区上的改变次 数;
需要说明的是, 步骤 203、 202、 201 的顺序不限, 可并行进行, 亦可 依次进行。
204, UE根据所述各小区所分别对应的权重值、 所述检测的各类型小 区上的改变次数和所述目标小区的小区类型, 确定自身在所述规定时间内 的小区改变次数。
例如, 假设在时间 t内, UE在宏小区上的改变次数为 N1次, 宏小区 对应的权重值为 Wl , UE在小小区上的改变次数为 N2次, 小小区对应的 权重值为 W2, 贝 |J :
当目标小区为宏小区时, UE在时间 t 内的小区改变次数 = Ν1 + Ν2 χ W2AV1;
当目标小区为小小区时, UE在时间 t内的小区改变次数 = N1 X W1/W2 + N2。
205, UE根据所述确定的小区改变次数, 确定自身的移动状态。 206, UE根据所述确定的移动状态, 确定频率优先级顺序。
具体的, 当 UE处于高移动状态时,宏小区所使用的频率的优先级顺序 高于小小区所使用的频率的优先级顺序; 反之, 宏小区所使用的频率的优 先级顺序低于小小区所使用的频率的优先级顺序;
207, UE根据所述确定的频率优先级顺序, 进行频率测量。
208, UE选取与自身当前移动状态相对应的缩放系数, 对小区重选或 者切换中所使用的迟滞量进行缩放。
209, UE根据所述频率优先级顺序、 所述频率测量的结果和所述缩放 后的迟滞量, 进行小区改变。 如图 4所示, 本发明实施例又提供了一种异构网络中小区改变的方法, 基于 UE, 包括以下步骤:
301 , 检测自身在规定时间内在所述异构网络中各小区上的改变次数。 其中,用户设备在规定时间内在每个小区上的改变次数即为 UE在规定 时间内改变为该小区的次数。
302, 根据所述各小区所分别对应的权重值和所述检测的各小区上的改 变次数, 确定自身在所述规定时间内的小区改变次数。
其中, 每个所述小区对应的权重值正比于所述小区的大小。 例如: 若 较大的小区的大小是较小的小区的大小的 10倍, 较大小区对应的权重值为 1 , 则较小小区对应的权重值为 0.1。 各小区所分别对应的权重值取值优选 在 0 ~ 1之间。
以图 2所示的异构网络为例, 假设宏小区对应的权重值为 W1 , 小小区 对应的权重值为 W2, 在时间 tl内, UE在宏小区上的重选次数即 UE重选 宏小区的次数为 N1 , UE在小小区上的重选次数即 UE重选小小区的次数为 N2。 这时, tl 内 UE的小区改变次数即进行小区重选的总次数为 Nl x Wl + N2 W2, UE可根据 Nl X Wl + N2 W2的值确定出自身的移动状态。 可选的, 本步骤中, UE还可根据所述各小区所分别对应的权重值、 所 述检测的各小区上的改变次数和所述目标小区的小区类型, 确定自身在所 述规定时间内的小区改变次数; 其中, 目标小区的小区类型以小区覆盖范 围所划分, 例如目标小区的小区类型为宏小区或小小区;
这时, 同样以图 2所示的异构网络为例, 假设在时间 t内, UE在宏小 区上的改变次数为 N1次, 宏小区对应的权重值为 Wl , UE在小小区上的 改变次数为 N2次, 小小区对应的权重值为 W2, 贝 |J :
当目标小区为宏小区时, UE在时间 t 内的小区改变次数 = Ν1 + Ν2 χ W2AV1;
当目标小区为小小区时, UE在时间 t内的小区改变次数 = N1 X W1/W2 + N2。
可以理解的是, 在本步骤之前, UE需要获知所述异构网络中各小区所 分别对应的权重值, 具体的, UE可以分别接收异构网络中各小区的系统消 息, 各所述小区的系统消息中携带有所述小区对应的权重值, 根据所述异 构网络中各小区的系统消息, 获知所述异构网络中各小区所分别对应的权 重值; UE还可以分别接收所述异构网络中各小区的专有消息, 各所述小区 的专有消息中携带有所述小区对应的权重值, 根据所述异构网络中各小区 的专有消息, 获知所述异构网络中各小区所分别对应的权重值; 另外, UE 中还可预先存储有所述异构网络各小区所分别对应的权重值信息, 根据预 先存储的权重值信息, 获知所述异构网络中各小区所分别对应的权重值。 当然, UE还可以通过其他方式获知各小区所分别对应的权重值, 本发明对 此不做限定。 这种确定小区改变次数的方法,既考虑了规定时间内 UE的小区改变次 数, 又考虑了小区的大小, 因此能够较准确的确定出 UE的真实移动状态。
303, 根据所述确定的小区改变次数, 确定自身的移动状态。 可选的, UE自身的移动状态包括:
规定时间 tl内 UE的小区改变次数大于第一阈值 nl的高移动状态和规 定时间 tl内 UE的小区改变次数小于第二阈值 n2的低移动状态, 当然, UE 还可包括其他移动状态, 本发明对此不做限定。
304, 根据所述确定的移动状态, 进行小区改变。
本步骤中, 具体的, 在进行小区改变时, UE会根据自身的移动状态, 选取与自身当前移动状态相对应的缩放系数, 对小区重选或者切换中所使 用的相关迟滞量进行缩放,以使 UE的小区重选速度或者切换速度可以和自 身的移动速度相匹配, 之后 UE根据缩放后的相关迟滞量, 进行小区改变。 其中, 相关迟滞量包括: TimeToTrigger, Qhyst, TreselectionEUTRA或 TreselectionRAT 等等。 由于步骤 302和 303中, 根据所述各小区所分别对应的权重值和 UE 在各小区上的改变次数,较为准确的确定了 UE的移动状态, 因此本步骤中 能够根据所述确定的移动状态, 选择较为准确的缩放系数, 从而有效避免 了小区改变过早或者过晚而导致的服务中断。
本发明实施例提供的异构网络中小区改变的方法, 根据所述各小区所 分别对应的权重值和 UE在各小区上的改变次数, 确定 UE的移动状态, 因 此在确定 UE的移动状态时, 即考虑了 UE的小区改变次数, 同时考虑了目 标小区的大小, 因此更能准确反应出 UE的真实移动状态, 从而在根据 UE 的移动状态进行小区改变时, 有效避免了小区改变过早或者过晚而导致的 服务中断。 如图 5所示, 为本发明实施例提供的一种异构网络中小区改变的方法 的一个具体实施例, 本实施例包括:
401 , UE获知所述异构网络中各小区所分别对应的权重值, 各所述小 区对应的权重值正比于所述小区的大小。
402, 可选地, UE获取进行小区改变的目标小区的物理小区标识 PCI, 才艮据所述目标小区的 PCI, 确定所述目标小区的小区类型;
在本步骤前, UE需要获知小区类型和物理小区标识的对应关系; 本实 施例中, 可选的, 每个小区在系统消息中广播一个或多个 PCI 区间, 每一 个 PCI 区间对应一种小区类型, 小区类型指示了小区的大小, 例如: 小小 区的 PCI区间为 [PCI1, PCI2] , 宏小区的 PCI区间为 [PCB, PCI4] , UE能够 通过系统消息, 获知各 PCI区间及各 PCI区间对应的小区类型, 即获知小 区类型和物理小区标识的对应关系, 从而^ f艮据所述对应关系以及所述目标 小区的 PCI, 确定出目标小区的小区类型。 例如: 目标小区的 PCI在小小区 的 PCI区间内, 则目标小区为小小区; 目标小区的 PCI在宏小区的 PCI区 间内, 则目标小区为宏小区。
当然, 每个小区还可通过专有消息将各 PCI区间及各 PCI区间对应的 小区类型发送给 UE, UE中也可预先配置有各 PCI区间及各 PCI区间对应 的小区类型, 本实施对此不做限定。
403, UE检测自身在规定时间内在所述异构网络中各小区上的改变次 数;
需要说明的是, 步骤 403、 402、 401 的顺序不限, 可并行进行, 亦可 依次进行。
404, UE根据所述各小区所分别对应的权重值、 所述检测的各类型小 区上的改变次数和所述目标小区的小区类型, 确定自身在所述规定时间内 的小区改变次数。
例如, 假设在时间 t内, UE在宏小区上的改变次数为 N1次, 宏小区 对应的权重值为 Wl , UE在小小区上的改变次数为 N2次, 小小区对应的 权重值为 W2, 贝 |J :
当目标小区为宏小区时, UE在时间 t 内的小区改变次数 = Ν1 + Ν2 χ W2AV1;
当目标小区为小小区时, UE在时间 t内的小区改变次数 = N1 X W1/W2 + N2。
405, UE根据所述确定的小区改变次数, 确定自身的移动状态。
406, UE根据所述确定的移动状态, 选取与自身当前移动状态相对应 的缩放系数, 对改变中所使用的迟滞量进行缩放。
407, UE根据所述缩放后的迟滞量, 进行小区改变。 如图 6所示, 本发明实施例又提供了一种异构网络中小区改变的方法, 基于 UE, 包括:
501 , 确定自身的移动状态。
具体的,本步骤中,可以采用前述本发明实施例中 UE确定自身的移动 状态的方法,也可以采用现有技术中 UE确定自身的移动状态的方法,本发 明对此不做限定。
502, 根据所述确定的移动状态和所述小区改变的目标小区的大小, 对 进行小区改变所使用的迟滞量进行缩放。
在进行小区改变时, UE会根据自身的移动状态, 选取与自身当前移动 状态相对应的缩放系数, 对小区重选或者切换中所使用的相关迟滞量进行 缩放, 以使 UE 的小区重选速度或者切换速度可以和自身的移动速度相匹 配, 之后 UE根据缩放后的相关迟滞量, 进行小区改变。 其中, 相关迟滞量 包括: TimeToTrigger, Qhyst, TreselectinEUTRA或 T reselection AT等等。
如果无论小区改变的目标小区的大小而使用相同的迟滞量的话, 有可 能出现如下问题: 对较大小区合适的迟滞量, 对较小小区可能过大, 从而 使重选或切换发生过晚, 进而使服务中断; 对较小小区合适的迟滞量, 对 较大区可能过小, 从而使重选或切换发生过早, 进而发生乒乓重选或切换。
因此, 为了有效的避免 UE在异构网络中小区改变的过早或过晚的问 题, 本步骤中, UE根据所述确定的移动状态和所述小区改变的目标小区的 大小, 对进行小区改变所使用的迟滞量进行缩放。 可选的, 在本发明的一个实施例中, UE可使用两套缩放系数分别对迟 滞量进行缩放,这两套缩放系数分别对应于目标小区的大小和 UE的移动状 态。 例如:
第一套缩放系数: 宏小区— sf3, 小小区— sf4, ...
第二套缩放系数: 高移动状态 --sfl , 中移动状态 --sf2, ...
这两套缩放系数可以是网络通过系统消息或者专用消息发送给 UE的, 也可以是 UE自身事先存储的。
这时, 在本步骤中, UE将根据所述小区改变的目标小区的大小, 从第 一套缩放系数中确定第一缩放系数, 并根据所述确定的移动状态, 从第二 套缩放系数中确定第二缩放系数; 其中, UE确定第一缩放系数和第二缩放 系数的先后顺序不限, 可以同时进行, 也可以依次进行; 然后, UE根据所 述确定的第一缩放系数和第二缩放系数, 对进行小区改变所使用的迟滞量 进行缩放。
举例说明:假如当前 UE的移动状态为高移动状态,且目标小区为宏小 区, 则: 缩放后的迟滞量=原有的迟滞量 x sfl x sf3。
这种方式下即考虑了目标小区的大小, 又考虑了 UE的移动状态, 因此 所缩放的迟滞量较为精确,有效的避免了 UE在异构网络中小区改变的过早 或过晚的问题。
可选的, 在本发明的另一个实施例中, UE的当前服务小区判断 UE下 次重选或切换的可能目标小区的大小, 并根据这些可能目标小区的大小确 定每一个目标小区所特有的迟滞量, 并将该迟滞量发送给 UE, 即 UE接收 当前服务小区发送的、 进行小区改变所使用的迟滞量, 所述迟滞量由所述 服务小区根据所述小区改变的目标小区的大小而获得, 并根据所述确定的 移动状态, 确定缩放系数; 其中, 确定缩放系数和接收当前服务小区的迟 滞量的顺序不限, 可同时进行, 也可依次进行; 然后 UE根据所述确定的缩 放系数, 对所述接收的迟滞量进行缩放。 这种方式同样即考虑了目标小区的大小, 又考虑了 UE的移动状态, 因 此所缩放的迟滞量较为精确,有效的避免了 UE在异构网络中小区改变的过 早或过晚的问题。
可选的, 在本发明的另一个实施例中, UE的当前服务小区在系统消息 中广播多个迟滞量, 每一个迟滞量对应一种小区大小。 UE接收当前服务小 区广播的多个迟滞量。 UE判断下次重选或切换的可能目标小区的大小, 并 根据这些可能目标小区的大小从接收的多个迟滞量中确定可能目标小区所 对应的迟滞量; UE根据所述确定的移动状态, 确定缩放系数。 其中, 确定 缩放系数和确定目标小区的迟滞量的顺序不限, 可同时进行, 也可依次进 行; 然后 UE根据所述确定的缩放系数, 对所述确定的迟滞量进行缩放。
这种方式同样即考虑了目标小区的大小, 又考虑了 UE的移动状态, 因 此所缩放的迟滞量较为精确,有效的避免了 UE在异构网络中小区改变的过 早或过晚的问题。
503, 根据所述进行缩放的迟滞量, 进行小区改变。
本发明实施例提供的异构网络中小区改变的方法,根据 UE的移动状态 以及小区改变的目标小区的大小, 对小区改变所使用的迟滞量进行缩放, 因此能够使缩放后的迟滞量与 UE的移动状态和目标小区的大小相适应,从 而在 UE进行小区改变时,有效避免小区改变过早或者过晚而导致的服务中 断。 与前述方法相对应, 本发明实施例还提供了一种 UE, 如图 7所示, 包 括:
第一确定单元 10, 用于确定自身的移动状态;
第二确定单元 11 , 用于根据第一确定单元 10确定的移动状态, 确定频 率优先级顺序, 当所述移动状态为规定时间内小区改变次数超过第一阈值 的高移动状态时, 所述异构网络中覆盖范围大的小区所使用的频率的优先 级高于覆盖范围小的小区所使用的频率的优先级, 当所述移动状态为规定 时间内小区改变次数低于第二阈值的低移动状态时, 所述异构网络中覆盖 范围大的小区所使用的频率的优先级低于覆盖范围小的小区所使用的频率 的优先级;
测量单元 12, 用于根据第二确定单元 11确定的频率优先级顺序, 进行 频率测量;
处理单元 13,用于根据第二确定单元 11确定的频率优先级顺序和测量 单元 12进行频率测量的结果, 进行小区改变。
本发明实施例提供的 UE, 进行小区改变时, 将根据自身的移动状态选 择频率优先级顺序, 在 UE处于较高移动状态时, UE优先改变到覆盖范围 较大的小区上, 因此在 UE进行频繁移动时, UE不易离开该小区的覆盖范 围,从而有效减小了异构网络中小区改变的次数,有效减少了 UE的电量消 耗以及网络的信令负荷和数据的传输时延, 提升了用户的体验; 而在 UE 处于较低移动状态时, UE优先改变到覆盖范围较小的小区上, 从而有效减 轻了覆盖范围较大的小区的负担, 有效提升了异构网络的性能。
进一步的, 为保证第一确定单元 10所确定的移动状态的准确性, 在本 发明的一个实施例中, 如图 8所示, 第一确定单元 10包括:
检测模块 101 ,用于检测自身在规定时间内在所述异构网络中各小区上 的改变次数;
次数确定模块 102,用于根据所述各小区所分别对应的权重值和检测模 块 101检测的各小区上的改变次数, 确定自身在所述规定时间内的小区改 变次数, 每个所述小区对应的权重值正比于所述小区的大小;
状态确定模块 103, 用于根据次数确定模块 102确定的小区改变次数, 确定自身的移动状态。
可选的, 次数确定模块 102可具体用于: 根据所述各小区所分别对应 的权重值、 所述检测模块检测的各小区上的改变次数和所述目标小区的小 区类型, 确定自身在所述规定时间内的小区改变次数。
进一步的, 为保证第一确定单元 10所确定的移动状态的准确性, 在本 发明的另一个实施例中, 如图 9所示, 第一确定单元 10还包括:
获耳 ^莫块 104, 用于获取所述小区改变的目标小区的物理小区标识; 类型确定模块 105,用于根据获取模块 104获取的目标小区的物理小区 标识, 确定所述目标小区的小区类型;
这时, 次数确定模块 102具体用于:
根据所述各小区所分别对应的权重值、 检测模块 101检测的各小区上 的改变次数和类型确定模块 105确定的所述目标小区的小区类型, 确定自 身在所述规定时间内的小区改变次数。
进一步的, 如图 10所示, 所述 UE还包括: 获知单元 14, 用于在第一 确定单元 10确定自身的移动状态前, 获知所述异构网络中各小区所分别对 应的权重值。
可选的, 获知单元 14可具体用于分别接收所述异构网络中各小区的系 统消息, 各所述小区的系统消息中携带有所述小区对应的权重值, 根据所 述异构网络中各小区的系统消息 , 获知所述异构网络中各小区所分别对应 的权重值;
可选的, 获知单元 14可具体用于分别接收所述异构网络中各小区的专 有消息, 各所述小区的专有消息中携带有所述小区对应的权重值, 根据所 述异构网络中各小区的专有消息, 获知所述异构网络中各小区所分别对应 的权重值;
可选的, 获知单元 14可具体用于根据预先存储的权重值信息, 获知所 述异构网络中各小区所分别对应的权重值。
进一步的, 在本发明的一个实施例中, 获知单元 14用于获知各移动状 态所分别对应的频率优先级顺序,第二确定单元 11将根据第一确定单元 10 确定的移动状态和获知单元 14所获知的各移动状态所分别对应的频率优先 级顺序, 确定频率优先级顺序。
可选的, 获知单元 14可具体用于接收系统消息, 所述系统消息中携带 有各移动状态所分别对应的频率优先级顺序信息, 根据所述系统消息, 获 知各移动状态所分别对应的频率优先级顺序;
可选的, 获知单元 14可具体用于接收专用消息, 所述专用消息携带有 各移动状态所分别对应的频率优先级顺序信息, 根据所述专用消息, 获知 各移动状态所分别对应的频率优先级顺序;
可选的,获知单元 14可具体用于根据预先存储的频率优先级顺序信息, 获知各移动状态所分别对应的频率优先级顺序。
优选的, 为了减少频率测量的次数, 提高频率测量的效率, 有效减少 UE的电量消耗, 测量单元 12可具体用于根据第二确定单元 11确定的频率 优先级顺序和第一确定单元 12确定的所述自身的移动状态,进行频率测量。
可选的, 测量单元 12可具体用于:
当所述移动状态为规定时间内小区改变次数超过第一阈值的高移动状 态时:
如果当前服务小区的信号强度或信号质量大于第一门限值, 每隔第一 规定时间对所述异构网络中至少一个高优先级频率进行测量;
如果当前服务小区的信号强度或信号质量小于第一门限值, 每隔第一 规定时间对所述异构网络中的所有频率进行测量;
可选的, 测量单元 12可具体用于:
当所述移动状态为规定时间内小区改变次数低于第二阈值的低移动状 态时:
如果当前服务小区的信号强度或信号质量大于第一门限值:
每隔第一规定时间对所述异构网络中至少一个高优先级频率进行 'J 量;
如果在第二规定时间内没有在所述至少一个高优先级频率上搜索到任 何小区, 每隔第三规定时间对所述至少一个高优先级频率进行测量, 所述 第三规定时间大于所述第一规定时间;
当在所述至少一个高优先级频率上搜索到至少一个小区后, 每隔第一 规定时间对所述至少一个高优先级频率进行测量;
如果当前服务小区的信号强度或信号质量小于第一门限值, 每隔第一 规定时间对所述异构网络中的所有频率进行测量。
进一步的,为了有效的避免 UE在异构网络中小区改变的过早或过晚的 问题, 在本发明的一个实施例中, 如图 11所示, 处理单元 13包括:
第一确定模块 131 , 用于根据所述小区改变的目标小区的小区大小, 确 定第一缩放系数;
第二确定模块 132,用于根据所述确定的移动状态,确定第二缩放系数; 缩放模块 133, 用于根据所述确定的第一缩放系数和第二缩放系数,对 进行小区改变所使用的迟滞量进行缩放;
处理模块 134, 用于根据所述频率优先级顺序、所述频率测量的结果和 所述进行缩放的迟滞量, 进行小区改变。
进一步的,为了有效的避免 UE在异构网络中小区改变的过早或过晚的 问题, 在本发明的一个实施例中, 如图 12所示, 处理单元 13包括:
接收模块 135, 用于接收当前服务小区发送的、进行小区改变所使用的 迟滞量, 所述迟滞量由所述服务小区根据所述小区改变的目标小区的大小 而获得;
确定模块 136, 用于根据所述确定的移动状态, 确定缩放系数; 缩放模块 137, 用于根据所述确定的缩放系数,对所述接收的迟滞量进 行缩放;
处理模块 138, 用于根据所述频率优先级顺序、所述频率测量的结果和 所述进行缩放的迟滞量, 进行小区改变。 与前述方法相对应, 本发明实施例还提供了一种 UE, 如图 13所示, 包括:
检测单元 20, 用于检测自身在规定时间内在所述异构网络中各小区上 的改变次数;
第一确定单元 21 , 用于根据所述各小区所分别对应的权重值和检测单 元 20检测的各小区上的改变次数, 确定自身在所述规定时间内的小区改变 次数, 每个所述小区对应的权重值正比于所述小区的大小;
第二确定单元 22, 用于根据所述确定的小区改变次数, 确定自身的移 动^ 态;
处理单元 23, 用于根据所述确定的移动状态, 进行小区改变。
本发明实施例提供的 UE, 根据所述各小区所分别对应的权重值和 UE 在各小区上的改变次数, 确定 UE的移动状态, 因此在确定 UE的移动状态 时, 即考虑了 UE的小区改变次数, 同时考虑了目标小区的大小, 因此更能 准确反应出 UE的真实移动状态,从而在根据 UE的移动状态进行小区改变 时, 有效避免了小区改变过早或者过晚而导致的服务中断。
可选的, 第一确定单元 21可具体用于: 根据所述各小区所分别对应的 权重值、 所述检测的各小区上的改变次数和所述目标小区的小区类型, 确 定自身在所述规定时间内的小区改变次数。
在本发明的一个实施例中, 如图 14所示, 第一确定单元 21具体包括: 获耳 ^莫块 210, 用于获取所述小区改变的目标小区的物理小区标识; 类型确定模块 211 , 用于根据所述目标小区的物理小区标识, 确定所述 目标小区的小区类型;
次数确定模块 212, 用于根据所述各小区所分别对应的权重值、检测单 元 20检测的各小区上的改变次数和类型确定模块 211确定的所述目标小区 的小区类型, 确定自身在所述规定时间内的小区改变次数。
进一步的, 在本发明的一个实施例中, 如图 15所示, 所述 UE还包括 获知单元 24 , 用于获知所述异构网络中各小区所分别对应的权重值。
可选的, 获知单元 24可具体用于分别接收所述异构网络中各小区的系 统消息, 各所述小区的系统消息中携带有所述小区对应的权重值, 根据所 述异构网络中各小区的系统消息 , 获知所述异构网络中各小区所分别对应 的权重值;
可选的, 获知单元 24可具体用于分别接收所述异构网络中各小区的专 有消息, 各所述小区的专有消息中携带有所述小区对应的权重值, 根据所 述异构网络中各小区的专有消息, 获知所述异构网络中各小区所分别对应 的权重值;
可选的, 获知单元 24可具体用于根据预先存储的权重值信息, 获知所 述异构网络中各小区所分别对应的权重值。 与前述方法相对应, 本发明实施例还提供了一种 UE, 如图 16所示, 包括:
确定单元 30, 用于确定自身的移动状态;
缩放单元 31 ,用于才艮据确定单元 30确定的移动状态和小区改变的目标 小区的大小, 对所述小区改变所使用的迟滞量进行缩放;
处理单元 32,用于根据缩放单元 31进行缩放的迟滞量,进行小区改变。 本发明实施例提供的 UE, 根据 UE的移动状态以及小区改变的目标小 区的大小, 对小区改变所使用的迟滞量进行缩放, 因此能够使缩放后的迟 滞量与 UE的移动状态和目标小区的大小相适应,从而在 UE进行小区改变 时, 有效避免小区改变过早或者过晚而导致的服务中断。
可选的, 在本发明的一个实施例中, 如图 17所示, 缩放单元 31具体 包括:
第一确定模块 311 , 用于根据所述小区改变的目标小区的大小, 确定第 一缩放系数; 第二确定模块 312, 用于根据确定单元 30确定的移动状态, 确定第二 缩放系数;
缩放模块 313 ,用于根据第一确定模块 311确定的第一缩放系数和第二 确定模块 312确定的第二缩放系数, 对进行小区改变所使用的迟滞量进行 缩放。
可选的, 在本发明的一个实施例中, 如图 18所示, 缩放单元 31具体 包括:
接收模块 314, 用于接收当前服务小区发送的、进行小区改变所使用的 迟滞量, 所述迟滞量由所述服务小区根据所述小区改变的目标小区的大小 而获得;
确定模块 315 , 用于根据确定单元 30确定的移动状态, 确定缩放系数; 缩放模块 316, 用于根据确定模块 315确定的缩放系数,对所述接收模 块接收的迟滞量进行缩放。
可选的, 在本发明的一个实施例中, 如图 19所示, 缩放单元 31具体 包括:
接收模块 317, 用于接收当前服务小区发送的至少一个迟滞量,每个所 述迟滞量对应于一种小区大小;
第一确定模块 318, 用于根据所述小区改变的目标小区的大小,从接收 模块 317接收的迟滞量中, 确定所述目标小区所对应的迟滞量;
第二确定模块 319, 用于根据确定单元 30确定的移动状态, 确定缩放 系数;
缩放模块 320, 用于根据第二确定模块 319确定的缩放系数,对第一确 定模块 318确定的迟滞量进行缩放。 本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分流 程可以通过计算机程序指令相关的硬件来完成, 前述的程序可以存储于一 计算机可读取存储介质中, 该程序在进行时, 进行包括上述方法实施例的 步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存 储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应以所述权利要求的保护范围为准。

Claims

权利要求
1、 一种异构网络中小区改变的方法, 其特征在于, 包括: 确定自身的移动状态;
根据所述确定的移动状态, 确定频率优先级顺序, 当所述移动状 态为规定时间内小区改变次数超过第一阈值的高移动状态时,所述异 构网络中覆盖范围大的小区所使用的频率的优先级高于覆盖范围小 的小区所使用的频率的优先级,当所述移动状态为规定时间内小区改 变次数低于第二阈值的低移动状态时,所述异构网络中覆盖范围大的 小区所使用的频率的优先级低于覆盖范围小的小区所使用的频率的 优先级;
根据所述确定的频率优先级顺序, 进行频率测量;
根据所述确定的频率优先级顺序和所述频率测量的结果,进行小 区改变。
2、 根据权利要求 1所述的方法, 其特征在于,
所述确定自身的移动状态包括:
检测自身在规定时间内在所述异构网络中各小区上的改变次数; 根据所述各小区所分别对应的权重值和所述检测的各小区上的 改变次数, 确定自身在所述规定时间内的小区改变次数, 每个所述小 区对应的权重值正比于所述小区的大小;
根据所述确定的小区改变次数, 确定自身的移动状态。
3、 根据权利要求 2所述的方法, 其特征在于,
所述根据所述各小区所分别对应的权重值和所述检测的各小区 上的改变次数, 确定自身在所述规定时间内的小区改变次数包括: 根据所述各小区所分别对应的权重值、所述检测的各小区上的改 变次数和所述目标小区的小区类型,确定自身在所述规定时间内的小 区改变次数。
4、 根据权利要求 3所述的方法, 其特征在于, 所述方法还包括: 获取所述小区改变的目标小区的物理小区标识;
根据所述目标小区的物理小区标识,确定所述目标小区的小区类 型。
5、 根据权利要求 2 、 3或 4所述的方法, 其特征在于, 在所述 确定自身的移动状态前, 所述方法还包括: 获知所述异构网络中各小 区所分别对应的权重值;
所述获知所述异构网络中各小区所分别对应的权重值包括: 分别接收所述异构网络中各小区的系统消息,各所述小区的系统 消息中携带有所述小区对应的权重值;
根据所述异构网络中各小区的系统消息,获知所述异构网络中各 小区所分别对应的权重值;
或者
分别接收所述异构网络中各小区的专有消息,各所述小区的专有 消息中携带有所述小区对应的权重值;
根据所述异构网络中各小区的专有消息,获知所述异构网络中各 小区所分别对应的权重值;
或者
根据预先存储的权重值信息,获知所述异构网络中各小区所分别 对应的权重值。
6、 根据权利要求 1至 4任一项所述的方法, 其特征在于, 在根据所述检测的移动状态, 确定频率优先级顺序前, 所述方法 还包括:
获知各移动状态所分别对应的频率优先级顺序。
7、 根据权利要求 6所述的方法, 其特征在于,
所述获知各移动状态所分别对应的频率优先级顺序包括: 接收系统消息,所述系统消息中携带有各移动状态所分另 'J对应的 频率优先级顺序信息;
根据所述系统消息,获知各移动状态所分别对应的频率优先级顺 序;
或者
接收专用消息,所述专用消息携带有各移动状态所分别对应的频 率优先级顺序信息;
根据所述专用消息,获知各移动状态所分别对应的频率优先级顺 序;
或者
根据预先存储的频率优先级顺序信息,获知各移动状态所分别对 应的频率优先级顺序。
8、 根据权利要求 1、 2、 3、 4或 7所述的方法, 其特征在于, 所 述根据所述确定的频率优先级顺序, 进行频率测量包括:
根据所述确定的频率优先级顺序和所述确定的移动状态,进行频 率测量。
9、 根据权利要求 8所述的方法, 其特征在于, 所述根据所述确 定的频率优先级顺序和所述确定的移动状态, 进行频率测量包括: 当所述移动状态为规定时间内小区改变次数超过第一阈值的高 移动状态时:
如果当前服务小区的信号强度或信号质量大于第一门限值,每隔 第一规定时间对所述异构网络中至少一个高优先级频率进行测量; 如果当前服务小区的信号强度或信号质量小于第一门限值,每隔 第一规定时间对所述异构网络中的所有频率进行测量;
或者
当所述移动状态为规定时间内小区改变次数低于第二阈值的低 移动状态时:
如果当前服务小区的信号强度或信号质量大于第一门限值: 每隔第一规定时间对所述异构网络中至少一个高优先级频率进 行测量;
如果在第二规定时间内没有在所述至少一个高优先级频率上搜 索到任何小区,每隔第三规定时间对所述至少一个高优先级频率进行 测量, 所述第三规定时间大于所述第一规定时间;
当在所述至少一个高优先级频率上搜索到至少一个小区后,每隔 第一规定时间对所述至少一个高优先级频率进行测量;
如果当前服务小区的信号强度或信号质量小于第一门限值,每隔 第一规定时间对所述异构网络中的所有频率进行测量。
10、 根据权利要求 1、 2、 3、 4、 7或 9所述的方法, 其特征在于, 所述方法还包括:
根据所述小区改变的目标小区的小区大小, 确定第一缩放系数; 根据所述确定的移动状态, 确定第二缩放系数;
根据所述确定的第一缩放系数和第二缩放系数,对进行小区改变 所使用的迟滞量进行缩放;
所述根据所述频率优先级顺序和所述频率测量的结果,进行小区 改变包括:
根据所述频率优先级顺序、所述频率测量的结果和所述进行缩放 的迟滞量, 进行小区改变。
11、 根据权利要求 1、 2、 3、 4、 7或 9所述的方法, 其特征在于, 所述方法还包括:
接收当前服务小区发送的、 进行小区改变所使用的迟滞量, 所述 迟滞量由所述服务小区根据所述小区改变的目标小区的大小而获得; 根据所述确定的移动状态, 确定缩放系数;
根据所述确定的缩放系数, 对所述接收的迟滞量进行缩放; 所述根据所述频率优先级顺序和所述频率测量的结果,进行小区 改变包括:
根据所述频率优先级顺序、所述频率测量的结果和所述进行缩放 的迟滞量, 进行小区改变。
12、 一种异构网络中小区改变的方法, 其特征在于, 包括: 检测自身在规定时间内在所述异构网络中各小区上的改变次数; 根据所述各小区所分别对应的权重值和所述检测的各小区上的 改变次数, 确定自身在所述规定时间内的小区改变次数, 每个所述小 区对应的权重值正比于所述小区的大小;
根据所述确定的小区改变次数, 确定自身的移动状态;
根据所述确定的移动状态, 进行小区改变。
13、 根据权利要求 12所述的方法, 其特征在于,
所述根据所述各小区所分别对应的权重值和所述检测的各小区 上的改变次数, 确定自身在所述规定时间内的小区改变次数包括: 根据所述各小区所分别对应的权重值、所述检测的各小区上的改 变次数和所述目标小区的小区类型,确定自身在所述规定时间内的小 区改变次数。
14、 根据权利要求 12所述的方法, 其特征在于, 所述方法还包 括:
获取所述小区改变的目标小区的物理小区标识;
根据所述目标小区的物理小区标识,确定所述目标小区的小区类 型。
15、 根据权利要求 12、 13或 14所述的方法, 其特征在于, 在所 述确定自身的移动状态前, 所述方法还包括: 获知所述异构网络中各 小区所分别对应的权重值;
所述获知所述异构网络中各小区所分别对应的权重值包括: 分别接收所述异构网络中各小区的系统消息,各所述小区的系统 消息中携带有所述小区对应的权重值;
根据所述异构网络中各小区的系统消息,获知所述异构网络中各 小区所分别对应的权重值;
或者
分别接收所述异构网络中各小区的专有消息,各所述小区的专有 消息中携带有所述小区对应的权重值;
根据所述异构网络中各小区的专有消息,获知所述异构网络中各 小区所分别对应的权重值;
或者
根据预先存储的权重值信息,获知所述异构网络中各小区所分别 对应的权重值。
16、 一种异构网络中小区改变的方法, 其特征在于, 包括: 确定自身的移动状态;
根据所述确定的移动状态和所述小区改变的目标小区的大小,对 进行小区改变所使用的迟滞量进行缩放;
根据所述进行缩放的迟滞量, 进行小区改变。
17、 根据权利要求 16所述的方法, 其特征在于, 所述根据所述 确定的移动状态和所述小区改变的目标小区的大小,对进行小区改变 所使用的迟滞量进行缩放包括:
根据所述小区改变的目标小区的大小, 确定第一缩放系数; 根据所述确定的移动状态, 确定第二缩放系数;
根据所述确定的第一缩放系数和第二缩放系数,对进行小区改变 所使用的迟滞量进行缩放。
18、 根据权利要求 16所述的方法, 其特征在于, 所述根据所述 确定的移动状态和所述小区改变的目标小区的大小,对进行小区改变 所使用的迟滞量进行缩放包括: 接收当前服务小区发送的、 进行小区改变所使用的迟滞量, 所述 迟滞量由所述服务小区根据所述小区改变的目标小区的大小而获得; 根据所述确定的移动状态, 确定缩放系数;
根据所述确定的缩放系数, 对所述接收的迟滞量进行缩放; 根据所述进行缩放的迟滞量, 进行小区改变。
19、 根据权利要求 16所述的方法, 其特征在于, 所述根据所述 确定的移动状态和所述小区改变的目标小区的大小,对进行小区改变 所使用的迟滞量进行缩放包括:
接收当前服务小区发送的至少一个迟滞量,每个所述迟滞量对应 于一种小区大小;
根据所述小区改变的目标小区的大小, 从所述接收的迟滞量中, 确定所述目标小区所对应的迟滞量;
根据所述确定的移动状态, 确定缩放系数;
根据所述确定的缩放系数, 对所述确定的迟滞量进行缩放。
20、 一种用户设备, 其特征在于, 包括:
第一确定单元, 用于确定自身的移动状态;
第二确定单元, 用于根据所述第一确定单元确定的移动状态, 确 定频率优先级顺序,当所述移动状态为规定时间内小区改变次数超过 第一阈值的高移动状态时,所述异构网络中覆盖范围大的小区所使用 的频率的优先级高于覆盖范围小的小区所使用的频率的优先级,当所 述移动状态为规定时间内小区改变次数低于第二阈值的低移动状态 时,所述异构网络中覆盖范围大的小区所使用的频率的优先级低于覆 盖范围小的小区所使用的频率的优先级;
测量单元, 用于根据所述第二确定单元确定的频率优先级顺序, 进行频率测量;
处理单元,用于根据所述第二确定单元确定的频率优先级顺序和 所述测量单元进行频率测量的结果, 进行小区改变。
21、 根据权利要求 20所述的用户设备, 其特征在于, 所述第一 确定单元包括:
检测模块,用于检测自身在规定时间内在所述异构网络中各小区 上的改变次数; 次数确定模块,用于根据所述各小区所分别对应的权重值和所述 检测模块检测的各小区上的改变次数,确定自身在所述规定时间内的 小区改变次数, 每个所述小区对应的权重值正比于所述小区的大小; 状态确定模块, 用于根据所述次数确定模块确定的小区改变次 数, 确定自身的移动状态。
22、 根据权利要求 21所述的用户设备, 其特征在于,
所述次数确定模块具体用于:
根据所述各小区所分别对应的权重值、所述检测模块检测的各小 区上的改变次数和所述目标小区的小区类型,确定自身在所述规定时 间内的小区改变次数。
23、 根据权利要求 22所述的用户设备, 其特征在于,
所述第一确定单元还包括:
获取模块, 用于获取所述小区改变的目标小区的物理小区标识; 类型确定模块, 用于根据所述目标小区的物理小区标识, 确定所 述目标小区的小区类型。
24、 根据权利要求 21、 22或 23所述的用户设备, 其特征在于, 所述用户设备还包括获知单元, 用于:
在所述第一确定单元确定自身的移动状态前,分别接收所述异构 网络中各小区的系统消息,各所述小区的系统消息中携带有所述小区 对应的权重值, 根据所述异构网络中各小区的系统消息, 获知所述异 构网络中各小区所分别对应的权重值;
或者
在所述第一确定单元确定自身的移动状态前,分别接收所述异构 网络中各小区的专有消息,各所述小区的专有消息中携带有所述小区 对应的权重值, 根据所述异构网络中各小区的专有消息, 获知所述异 构网络中各小区所分别对应的权重值;
或者
在所述第一确定单元确定自身的移动状态前,根据预先存储的权 重值信息, 获知所述异构网络中各小区所分别对应的权重值。
25、根据权利要求 20至 23任一项所述的用户设备,其特征在于, 还包括获知单元, 用于在所述第二确定单元确定频率优先级顺序前, 获知各移动状态所分别对应的频率优先级顺序。
26、 根据权利要求 25所述的用户设备, 其特征在于,
所述获知单元具体用于:
接收系统消息,所述系统消息中携带有各移动状态所分另 'J对应的 频率优先级顺序信息, 根据所述系统消息, 获知各移动状态所分别对 应的频率优先级顺序;
或者
接收专用消息,所述专用消息携带有各移动状态所分别对应的频 率优先级顺序信息, 根据所述专用消息, 获知各移动状态所分别对应 的频率优先级顺序;
或者
根据预先存储的频率优先级顺序信息,获知各移动状态所分别对 应的频率优先级顺序。
27、 根据权利要求 20、 21、 22、 23或 26所述的用户设备, 其特 征在于, 所述测量单元具体用于:
根据所述第二确定单元确定的频率优先级顺序和所述第一确定 单元确定的所述自身的移动状态, 进行频率测量。
28、 根据权利要求 27所述的用户设备, 其特征在于, 所述测量 单元具体用于:
当所述移动状态为规定时间内小区改变次数超过第一阈值的高 移动状态时:
如果当前服务小区的信号强度或信号质量大于第一门限值,每隔 第一规定时间对所述异构网络中至少一个高优先级频率进行测量; 如果当前服务小区的信号强度或信号质量小于第一门限值,每隔 第一规定时间对所述异构网络中的所有频率进行测量;
或者
当所述移动状态为规定时间内小区改变次数低于第二阈值的低 移动状态时:
如果当前服务小区的信号强度或信号质量大于第一门限值: 每隔第一规定时间对所述异构网络中至少一个高优先级频率进 行测量;
如果在第二规定时间内没有在所述至少一个高优先级频率上搜 索到任何小区,每隔第三规定时间对所述至少一个高优先级频率进行 测量, 所述第三规定时间大于所述第一规定时间;
当在所述至少一个高优先级频率上搜索到至少一个小区后,每隔 第一规定时间对所述至少一个高优先级频率进行测量;
如果当前服务小区的信号强度或信号质量小于第一门限值,每隔 第一规定时间对所述异构网络中的所有频率进行测量。
29、 根据权利要求 20、 21、 22、 23、 26或 28所述的用户设备, 其特征在于, 所述处理单元包括:
第一确定模块, 用于根据所述小区改变的目标小区的小区大小, 确定第一缩放系数;
第二确定模块, 用于根据所述确定的移动状态, 确定第二缩放系 数;
缩放模块, 用于根据所述确定的第一缩放系数和第二缩放系数, 对进行小区改变所使用的迟滞量进行缩放;
处理模块, 用于根据所述频率优先级顺序、 所述频率测量的结果 和所述进行缩放的迟滞量, 进行小区改变。
30、 根据权利要求 20、 21、 22、 23、 26或 28所述的用户设备, 其特征在于, 所述处理单元包括:
接收模块, 用于接收当前服务小区发送的、 进行小区改变所使用 的迟滞量,所述迟滞量由所述服务小区根据所述小区改变的目标小区 的大小而获得;
确定模块, 用于根据所述确定的移动状态, 确定缩放系数; 缩放模块, 用于根据所述确定的缩放系数, 对所述接收的迟滞量 进行缩放;
处理模块, 用于根据所述频率优先级顺序、 所述频率测量的结果 和所述进行缩放的迟滞量, 进行小区改变。
31、 一种用户设备, 其特征在于, 包括:
检测单元,用于检测自身在规定时间内在所述异构网络中各小区 上的改变次数;
第一确定单元,用于根据所述各小区所分别对应的权重值和所述 检测单元检测的各小区上的改变次数,确定自身在所述规定时间内的 小区改变次数, 每个所述小区对应的权重值正比于所述小区的大小; 第二确定单元, 用于根据所述确定的小区改变次数, 确定自身的 移动状态;
处理单元, 用于根据所述确定的移动状态, 进行小区改变。
32、 根据权利要求 31所述的用户设备, 其特征在于, 所述第一 确定单元具体用于:
根据所述各小区所分别对应的权重值、所述检测的各小区上的改 变次数和所述目标小区的小区类型,确定自身在所述规定时间内的小 区改变次数。
33、 根据权利要求 32所述的用户设备, 其特征在于, 所述第一 确定单元包括:
获取模块, 用于获取所述小区改变的目标小区的物理小区标识; 类型确定模块, 用于根据所述目标小区的物理小区标识, 确定所 述目标小区的小区类型;
次数确定模块, 用于根据所述各小区所分别对应的权重值、 所述 检测单元检测的各小区上的改变次数和所述类型确定模块确定的所 述目标小区的小区类型, 确定自身在所述规定时间内的小区改变次 数。
34、 根据权利要求 31、 32或 33所述的用户设备, 其特征在于, 还包括获知单元, 用于:
分别接收所述异构网络中各小区的系统消息,各所述小区的系统 消息中携带有所述小区对应的权重值,根据所述异构网络中各小区的 系统消息, 获知所述异构网络中各小区所分别对应的权重值;
或者
分别接收所述异构网络中各小区的专有消息,各所述小区的专有 消息中携带有所述小区对应的权重值,根据所述异构网络中各小区的 专有消息, 获知所述异构网络中各小区所分别对应的权重值;
或者
根据预先存储的权重值信息,获知所述异构网络中各小区所分别 对应的权重值。
35、 一种用户设备, 其特征在于, 包括:
确定单元, 用于确定自身的移动状态; 缩放单元,用于根据所述确定单元确定的移动状态和小区改变的 目标小区的大小, 对所述小区改变所使用的迟滞量进行缩放;
处理单元, 用于根据所述缩放单元进行缩放的迟滞量, 进行小区 改变。
36、 根据权利要求 35所述的用户设备, 其特征在于, 所述缩放 单元包括:
第一确定模块, 用于根据所述小区改变的目标小区的大小, 确定 第一缩放系数;
第二确定模块, 用于根据所述确定单元确定的移动状态, 确定第 二缩放系数;
缩放模块,用于根据所述第一确定模块确定的第一缩放系数和所 述第二确定模块确定的第二缩放系数,对进行小区改变所使用的迟滞 量进行缩放。
37、 根据权利要求 35所述的用户设备, 其特征在于, 所述缩放 单元包括:
接收模块, 用于接收当前服务小区发送的、 进行小区改变所使用 的迟滞量,所述迟滞量由所述服务小区根据所述小区改变的目标小区 的大小而获得;
确定模块, 用于根据所述确定单元确定的移动状态, 确定缩放系 数;
缩放模块, 用于根据所述确定的缩放系数, 对所述接收模块接收 的迟滞量进行缩放。
38、 根据权利要求 35所述的用户设备, 其特征在于, 所述缩放 单元包括:
接收模块, 用于接收当前服务小区发送的至少一个迟滞量, 每个 所述迟滞量对应于一种小区大小;
第一确定模块, 用于根据所述小区改变的目标小区的大小, 从所 述接收模块接收的迟滞量中, 确定所述目标小区所对应的迟滞量; 第二确定模块, 用于根据所述确定单元确定的移动状态, 确定缩 放系数;
缩放模块, 用于根据所述第二确定模块确定的缩放系数, 对所述 第一确定模块确定的迟滞量进行缩放。
PCT/CN2012/077081 2011-06-17 2012-06-18 异构网络中小区改变的方法和装置 WO2012171503A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12800854.7A EP2717625B1 (en) 2011-06-17 2012-06-18 Method and device for cell changing in heterogeneous network
JP2014515054A JP5806397B2 (ja) 2011-06-17 2012-06-18 ヘテロジニアスネットワークにおいてセル変更する方法及び装置
EP21158967.6A EP3886499A1 (en) 2011-06-17 2012-06-18 Method and apparatus for cell changing in heterogeneous network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110164411.0 2011-06-17
CN201110164411.0A CN102833801B (zh) 2011-06-17 2011-06-17 异构网络中小区改变的方法和装置

Publications (1)

Publication Number Publication Date
WO2012171503A1 true WO2012171503A1 (zh) 2012-12-20

Family

ID=47336705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077081 WO2012171503A1 (zh) 2011-06-17 2012-06-18 异构网络中小区改变的方法和装置

Country Status (4)

Country Link
EP (2) EP3886499A1 (zh)
JP (1) JP5806397B2 (zh)
CN (1) CN102833801B (zh)
WO (1) WO2012171503A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016527773A (ja) * 2013-07-05 2016-09-08 富士通株式会社 情報取得方法、パラメター最適化方法及びその装置、システム
JP2017523734A (ja) * 2014-08-11 2017-08-17 インテル アイピー コーポレイション アイドル・モードのユーザー装置に関するロード・バランシング・スキーム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014101184A1 (zh) * 2012-12-31 2014-07-03 富士通株式会社 小区重选方法、基站、终端和系统
US20140274063A1 (en) * 2013-03-15 2014-09-18 Qualcomm Incorporated System and method for mitigating ping-pong handovers and cell reselections
US9462553B2 (en) * 2014-10-27 2016-10-04 Qualcomm Incorporated Mobility based power conservation
US9756534B2 (en) * 2015-09-21 2017-09-05 Qualcomm Incorporated Management of inter-frequency measurements
US10630410B2 (en) 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10367677B2 (en) 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US20190281525A1 (en) * 2016-11-04 2019-09-12 Lg Electronics Inc. Method for terminal to perform cell re-selection procedure, and device supporting same
CN108289316B (zh) * 2017-01-10 2020-10-16 中国移动通信有限公司研究院 一种小区选择或重选方法、小区切换参数的设置方法及装置
US11490300B2 (en) 2017-12-11 2022-11-01 Beijing Xiaomi Mobile Software Co., Ltd. Cell reselection method and device, and storage medium
CN110418388B (zh) * 2019-08-22 2022-02-01 深圳市万普拉斯科技有限公司 小区重选的控制方法、装置及移动终端
CN112738719B (zh) * 2019-10-28 2022-06-17 中国移动通信集团湖南有限公司 一种通信小区所覆盖的地理区域的确定方法及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201365345Y (zh) * 2007-03-09 2009-12-16 美商内数位科技公司 无线发射/接收单元
CN101662776A (zh) * 2008-08-29 2010-03-03 中国移动通信集团设计院有限公司 小区频率的配置方法及装置
CN101730081A (zh) * 2009-11-18 2010-06-09 中兴通讯股份有限公司 一种移动终端移动状态的处理方法及装置
CN101742549A (zh) * 2008-11-04 2010-06-16 中兴通讯股份有限公司 一种家庭基站小区优先的测量及重选的方法和装置
WO2011013967A2 (en) * 2009-07-27 2011-02-03 Lg Electronics Inc. Apparatus and method for determining mobility state in wireless communication system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2358550A (en) * 2000-01-18 2001-07-25 Motorola Israel Ltd Battery saving strategy in cellular systems based on a mobile assisted handover process
JP2002027522A (ja) * 2000-07-05 2002-01-25 Toshiba Corp 移動通信端末及びセル選択制御プログラムを記憶した記憶媒体
JP4299082B2 (ja) * 2002-10-18 2009-07-22 株式会社エヌ・ティ・ティ・ドコモ 移動局、移動通信システム、及びセル選択方法
JP2006303739A (ja) * 2005-04-18 2006-11-02 Ntt Docomo Inc 基地局装置、移動通信システム、および移動通信方法
JP4648793B2 (ja) * 2005-08-04 2011-03-09 シャープ株式会社 移動通信システムおよび移動通信端末
WO2008001452A1 (fr) * 2006-06-29 2008-01-03 Fujitsu Limited Procédé de sélection de cellules, appareil de station mobile, et système de communication mobile dans une structure cellulaire hiérarchisée
CN103327624B (zh) * 2007-04-26 2016-05-18 艾利森电话股份有限公司 用于在无线通信系统中处理移动台历史信息的方法和设备
EP2176968B1 (en) * 2007-08-06 2017-07-12 Samsung Electronics Co., Ltd. A method of reducing power consumption in a ue when the ue is in idle mode
CN101594631B (zh) * 2008-05-28 2013-01-30 华为技术有限公司 自动邻接关系测量方法、终端设备和基站设备
CN101784009B (zh) * 2009-01-16 2013-05-22 联芯科技有限公司 省电终端以及使终端省电的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201365345Y (zh) * 2007-03-09 2009-12-16 美商内数位科技公司 无线发射/接收单元
CN101662776A (zh) * 2008-08-29 2010-03-03 中国移动通信集团设计院有限公司 小区频率的配置方法及装置
CN101742549A (zh) * 2008-11-04 2010-06-16 中兴通讯股份有限公司 一种家庭基站小区优先的测量及重选的方法和装置
WO2011013967A2 (en) * 2009-07-27 2011-02-03 Lg Electronics Inc. Apparatus and method for determining mobility state in wireless communication system
CN101730081A (zh) * 2009-11-18 2010-06-09 中兴通讯股份有限公司 一种移动终端移动状态的处理方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016527773A (ja) * 2013-07-05 2016-09-08 富士通株式会社 情報取得方法、パラメター最適化方法及びその装置、システム
JP2017523734A (ja) * 2014-08-11 2017-08-17 インテル アイピー コーポレイション アイドル・モードのユーザー装置に関するロード・バランシング・スキーム
US10390261B2 (en) 2014-08-11 2019-08-20 Intel IP Corporation Load balancing schemes for idle mode user equipment

Also Published As

Publication number Publication date
JP2014519780A (ja) 2014-08-14
EP2717625A1 (en) 2014-04-09
EP2717625A4 (en) 2016-01-06
CN102833801A (zh) 2012-12-19
CN102833801B (zh) 2018-05-29
EP2717625B1 (en) 2021-03-17
EP3886499A1 (en) 2021-09-29
JP5806397B2 (ja) 2015-11-10

Similar Documents

Publication Publication Date Title
WO2012171503A1 (zh) 异构网络中小区改变的方法和装置
JP5364759B2 (ja) 移動通信装置における高速セル選択
CA2867270C (en) Mobility parameter adjustment and mobility state estimation in heterogeneous networks
JP5669936B2 (ja) 移動体無線装置における拡張セルサーチ及び選択
KR100703365B1 (ko) 이동통신 시스템에서 핑―퐁을 방지하기 위한 셀 재선택방법 및 장치
WO2018094665A1 (zh) 小区接入方法、装置和设备
US20170150410A1 (en) Method and Device for Cell Reselection for Terminal
US9503986B2 (en) System and method to reduce power consumption associated with cell reselection operations
EP2763448B1 (en) Mobility state estimation enhancement for small cell and heterogeneous network deployments
WO2012137041A1 (en) Modification of mobility priority based on speed of user equipment and priority for cell operation
EP2665307B1 (en) Mobility management based on cell size
WO2011140740A1 (zh) 一种双模终端的网络选择方法及双模终端
WO2012152162A1 (zh) 移动状态估计方法、用户设备及基站
TWI596963B (zh) 無線資源控制(rrc)狀態改變時之高優先級搜尋之裝置及方法
WO2013044489A1 (zh) 一种估计终端移动状态的方法和装置
WO2014166099A1 (zh) 一种小区测量的方法、用户设备和无线通信节点
WO2016033779A1 (zh) 确定小区的方法、用户终端及节点
WO2013170827A2 (zh) 异频/异系统小区重选的测量发起方法及用户终端
WO2013107262A1 (zh) 一种用户设备运动状态估计方法及用户设备
JP2013143664A (ja) 無線端末装置、通信システム、通信制御方法および通信制御プログラム
CN107682901B (zh) 基站选择控制方法及装置、基站和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800854

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012800854

Country of ref document: EP