WO2012171444A1 - 一种直流电源绝缘检测装置及其检测方法 - Google Patents

一种直流电源绝缘检测装置及其检测方法 Download PDF

Info

Publication number
WO2012171444A1
WO2012171444A1 PCT/CN2012/076654 CN2012076654W WO2012171444A1 WO 2012171444 A1 WO2012171444 A1 WO 2012171444A1 CN 2012076654 W CN2012076654 W CN 2012076654W WO 2012171444 A1 WO2012171444 A1 WO 2012171444A1
Authority
WO
WIPO (PCT)
Prior art keywords
detecting
branch
insulation
positive
resistance
Prior art date
Application number
PCT/CN2012/076654
Other languages
English (en)
French (fr)
Inventor
张文华
黎学伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012171444A1 publication Critical patent/WO2012171444A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the invention belongs to the technical field of measurement and testing, and particularly relates to a DC power supply insulation detecting device and detection thereof.
  • BACKGROUND OF THE INVENTION The main power supply network and the control signal power supply system and the branch power supply network in the DC power supply system are very large, and the common fault is a ground fault. Under normal circumstances, one-point grounding does not affect the operation of the DC power supply system. However, if the ground fault point cannot be quickly found and repaired, when another ground fault occurs, it may cause a major problem such as a short circuit. Therefore, insulation testing of DC power supply systems is necessary.
  • the working principle of the DC power supply insulation detector popular in the market is: Detecting the DC bus and the insulation resistance of the positive and negative poles of each branch to the ground, and issuing an alarm when the insulation resistance is lower than the set value.
  • the grounding wire of the insulation monitor is disconnected, the true value of the insulation resistance cannot be accurately detected, and there is a serious safety hazard. Therefore, it is necessary to detect whether the grounding wire of the insulation detector is disconnected.
  • the common method for detecting the grounding wire disconnection is to detect the voltage of the grounding point relative to the signal ground of the insulating monitor, as shown in Fig. 1, wherein the signal value of the insulating monitor refers to the reference point of zero potential.
  • SI and S2 are detection switching switches; Rl and R2 are positive and negative busbar detection resistors respectively; K1 represents grounding wire.
  • the voltage of the grounding point relative to the signal ground can be obtained by the voltage sampling circuit. When the grounding point is grounded normally, keep SI and S2 open, and then close S1, the voltage value of the sample will increase. Similarly, keep SI and S2 open, and after S2 is closed, the voltage value of the sample is reduced. .
  • the criterion for judging is that after the S1 and S2 are switched on and off respectively, the grounding point sample voltage has a certain change value, and a change value Us is preset first. When the measured ground point change amount ⁇ is greater than Us, the ground line is determined to be disconnected. .
  • the above grounding wire disconnection detection method requires that the signal ground is a fixed potential or an equipotential, and when the signal state of the insulation monitor is a floating state, the voltages of the positive and negative busbars and the ground relative to the signal ground are in a state of change. The above criteria will not apply. Therefore, the above method for judging whether the ground line is disconnected has limitations.
  • the common branch insulation resistance detection method is the leakage current detection method.
  • the basic procedure is to first connect a detection resistor between the positive bus and the ground, and then detect the leakage current of the branch, and measure the voltage value of the positive and negative bus to the ground. After the measurement is completed, the detection resistor is disconnected; a detection resistor is connected between the negative bus and the ground, the leakage current of the branch is detected again, and the voltage value of the positive and negative bus to the ground is measured, and the detection resistance is turned off after the measurement is completed.
  • the branch-to-ground insulation resistance is obtained by the simultaneous equation.
  • DC power supply system generally has many branches and at the same time there are factors such as switching delay.
  • the common branch insulation resistance detection method requires two ground resistance switches for each branch, resulting in a round trip of the power supply system. Longer time. Summary of the invention
  • a DC power supply insulation detecting device and a detecting method thereof are proposed.
  • the device and the method can accurately detect the abnormality of the grounding wire regardless of whether the signal ground of the DC power supply insulation detecting device is in a floating state or a fixed potential state.
  • the embodiment of the invention provides a DC power supply insulation detecting device, which comprises an insulation detecting circuit and a grounding abnormality detecting circuit;
  • the insulation detecting circuit includes a first detecting branch, a second detecting branch and a first grounding line K1; one end of the first detecting branch is connected to the positive bus bar, and the other end is connected to one end of the first grounding wire K1 One end of the second detecting branch is connected to the negative bus bar, and the other end is connected to the end of the first grounding wire K1; the other end of the first grounding wire K1 is grounded;
  • the grounding abnormality detecting circuit includes a third detecting resistor R3, a fourth detecting resistor R4, a third switch S3, and a second ground line K2; wherein the third detecting resistor R3 is terminated with a positive bus bar, and the other end is connected to the One end of the third switch S3; the fourth detecting resistor R4 is terminated with a negative bus bar, and the other end is connected to the end of the third switch S3; the other end of the third switch S3 is connected to the second grounding wire One end of K2; the other end of the second ground line K2 is grounded.
  • the first detecting branch comprises a first switch S1 and a first detecting resistor R1 connected in series; and the second detecting branch comprises a second switch S2 and a second detecting resistor R2 connected in series.
  • the resistance of the first detecting resistor R1 is opposite to the resistance of the second detecting resistor R2. Wait.
  • the DC power supply insulation detecting device of the present invention further includes a voltage sampling circuit for measuring a voltage across the third detecting resistor R3 or the fourth detecting resistor R4.
  • the DC power supply insulation detecting device of the present invention further comprises a leakage current sensor for detecting the leakage current to the ground of each branch of the DC power supply.
  • the embodiment of the invention further provides a method for detecting an abnormality of the grounding of the DC power supply insulation detecting device, comprising:
  • the embodiment of the invention further provides an insulation detection method for the DC power supply insulation detecting device, comprising:
  • the equivalent insulation resistance of the positive and negative busbars is detected, and the measured equivalent insulation resistance of the positive and negative busbars is compared with the preset alarm resistance value. If the positive and negative busbar equivalent insulation resistances are only one lower than the The alarm resistance value is then detected only for the corresponding positive insulation resistance or negative insulation resistance of each branch, that is, the single-side branch detection method is used; if the positive and negative bus equivalent insulation resistances are lower than the alarm For the resistance value, the positive insulation resistance and the negative insulation resistance of each branch are detected next, that is, the bilateral branch detection method is used.
  • the step of detecting the equivalent insulation resistance of the bus bar comprises:
  • the next positive insulation resistance or negative corresponding to each branch The steps of detecting the insulation resistance include:
  • the third switch S3 is turned off, the first detection branch is disconnected, and the second detection branch is turned on. Road, respectively, measure the leakage current of each branch, and simultaneously measure the positive bus-to-ground voltage U+, and divide U+ by the leakage current of each branch to obtain the insulation resistance of each branch from the positive terminal to ground;
  • the third switch S3 is turned off, the first detection branch is turned on, and the second detection branch is disconnected.
  • Road respectively, measure the leakage current of each branch, and measure the negative bus-to-ground voltage U-, and divide U- by the leakage current of each branch to obtain the insulation resistance of each branch to the ground.
  • the step of detecting the positive insulation resistance and the negative insulation resistance of each branch is as follows:
  • R n+ is the positive insulation resistance of the branch n and R n _ is the negative insulation resistance of the branch n.
  • the DC power supply insulation detecting device of the embodiment of the present invention adds a grounding abnormality detecting circuit, and the basic detecting principle thereof is: when the first grounding wire K1 and the second grounding wire K2 are both grounded normally, the first switch S1 and the second switch The switching of S2 will cause the third detecting resistor R3, the voltage of the fourth detecting resistor R4 to change; when the first grounding wire K1 and the second grounding wire K2 are grounded, any one of the disconnection, the first switch S1, the first The on/off of the second switch S2 does not cause a change in the voltage across the third sense resistor R3 and the fourth sense resistor R4. Moreover, the change mode has no relationship with the state of the DC power supply insulation detecting device signal. Therefore, the DC power supply insulation detecting device of the embodiment of the present invention has the advantages of wide adaptability and high reliability.
  • the embodiment of the present invention proposes a unilateral branch detection method and a bilateral branch detection method, and the unilateral branch detection method is enabled when the bus insulation detection is determined to have only one side resistance reduction, and the bilateral branch detection method is the same as the normal leakage current detection method. law. Different inspection methods can be applied in different situations to speed up the inspection time. In combination with ground line anomaly detection, a new insulation detection process is proposed in the embodiment of the present invention, which can improve the accuracy of insulation detection and shorten the round robin time. BRIEF abstract
  • Figure 1 is a schematic diagram of the current common ground fault detection principle
  • FIG. 2 is a schematic structural view of a DC power source insulation detecting device according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of insulation detection according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing an overall structure of a DC power supply insulation detecting device according to an embodiment of the present invention
  • FIG. 5 is a flow chart of an insulation detecting method according to an embodiment of the present invention.
  • BUS+ is a positive bus
  • BUS- is a negative bus
  • PE is a ground
  • R+ and R- are a positive bus to ground and a negative bus to ground respectively.
  • Rl, R2 are insulation resistance value detection resistors, where R1 is the first sense resistor, R2 is the second sense resistor; R3, R4 are the ground fault anomaly sense resistor, where R3 is the third sense resistor, R4 It is the fourth detecting resistor; Kl and ⁇ 2 are grounding wires, where K1 is the first grounding wire, ⁇ 2 is the second grounding wire; SI, S2 are the detecting switch, and S3 is the grounding wire abnormality detecting switch, wherein S1 is the first Switch, S2 is the second switch, and S3 is the third switch. S3 is closed when grounding wire abnormality detection is performed. When performing bus insulation detection and branch insulation detection, S3 should be disconnected.
  • the S1 terminal is connected to the positive bus, one end is connected to R1; the S2 terminal is connected to the negative bus, and one end is connected to R2; the other ends of R1 and R2 are connected to K1, and the other end of K1 is connected to the ground.
  • the R3 terminal is connected to the positive bus; the R4 terminal is connected to the negative bus, the other ends of R3 and R4 are connected to S3, the other end of S3 is connected to the ⁇ 2- terminal, and the other end of ⁇ 2 is connected to the ground.
  • the DC power supply insulation detecting device of the embodiment of the present invention includes an insulation detecting circuit, a grounding abnormality detecting circuit, and a voltage sampling circuit.
  • the insulation detecting circuit includes a first detecting branch, a second detecting branch and a first grounding line K1; one end of the first detecting branch is connected to the positive bus bar, and the other end is connected to one end of the first grounding wire K1; the second detecting branch One end is connected to the negative bus bar, and the other end is connected to the end of the first ground line K1; the other end of the first ground line K1 is grounded.
  • the first detecting branch includes a first switch S1 and a first detecting resistor R1 connected in series; the second detecting branch includes a second switch S2 and a second detecting resistor R2 connected in series.
  • the ground fault detecting circuit includes a third detecting resistor R3, a fourth detecting resistor R4, a third switch S3, and a second ground line K2. wherein the third detecting resistor R3 is terminated with a positive bus and the other end is connected to one end of the third switch S3.
  • the fourth detecting resistor R4 is terminated with a negative bus bar, and the other end is connected to the end of the third switch S3; the other end of the third switch S3 is connected to the second grounding wire K2 - the end; the second grounding wire K2 is another Grounded at the end.
  • the resistance of the first detecting resistor R1 and the resistance of the second detecting resistor R2 may be equal.
  • the voltage sampling circuit is used to measure the voltage across the third sense resistor R3 or the fourth sense resistor R4.
  • the DC power supply insulation detecting device of the embodiment of the invention further includes a leakage current sensor for detecting the leakage current to the ground of each branch of the DC power source.
  • the grounding abnormality detecting method of the DC power supply insulation detecting device has the following detection principle: when the grounding wires K1 and K2 are grounded normally, S2 is disconnected, S3 is closed and remains unchanged, and S1 is disconnected and In the closed state, the voltage across R3 will change; S2 is disconnected, S3 is closed and remains unchanged. When any of the grounding wires Kl, K2 is disconnected, the switching of S1 will not cause the voltage across R3 to change. S1 and S2 have symmetry, keep S1 open, S3 is in the closed state, S2 is on and off, and the corresponding detection is the voltage change across R4.
  • S1 takes S1 as an example of switching, and the implementation steps are described in detail:
  • Disconnect S2 close S3 and keep the state unchanged.
  • the voltage values across R3 in various states are shown in the table below.
  • an additional detection grounding wire K2 is used, which is the same as the grounding wire K1 of the conventional DC power supply insulation detecting device, the wire diameter, the mounting method and the wiring method. Detecting the disconnection of the grounding wire does not affect the normal implementation of the insulation detection function. However, due to the abnormal damage mechanism of the two wires, such as wire diameter aging, wiring stress, loose terminals, etc., when the grounding wire K2 is disconnected There is also a risk of disconnection of the grounding wire K1. Therefore, when any grounding wire is disconnected, troubleshoot it promptly.
  • FIG. 3 is a schematic diagram of the insulation detection of the present invention, in which Rl+, Rl-, R2+, R2-Rn+,
  • Rn- is the branch 1 and branch 2 branch n on the positive and negative ground insulation resistance
  • Ln is an intelligent leakage current sensor installed on the branch circuit 1 and the branch 2 branch circuit n circuit, which is used to detect the ground leakage current of each branch, and calculate the ground insulation resistance of each branch.
  • the DC power source insulation detecting device mainly includes a resistor switching network, an AD sample processing circuit, and a branch leakage current collector. Network, CPU, sample information and alarm information display, background communication and other parts.
  • the resistance switching network includes an insulation detection circuit and a ground fault detection circuit.
  • FIG. 5 is a flowchart of an insulation detection method according to an embodiment of the present invention. As shown in the figure, before the insulation detection is performed, it is necessary to determine whether the grounding is abnormal, and the default grounding abnormality detection cycle time is reached at the startup, and the grounding abnormality detecting process is entered. When the running time reaches the set cycle time, ground fault detection is started again.
  • the insulation resistance is detected after waiting for the ground fault to be canceled.
  • the bus-to-ground insulation resistance is detected first. If the bus insulation resistance is less than the preset alarm resistance value, the branch insulation detection is performed. According to the detection result of the busbar insulation resistance, it is determined whether the branch insulation detection is unilateral or bilateral. Branch monitoring process It is found that the branch insulation is reduced and an alarm is issued, and is sent out through the background communication. After all the branches have been inspected, the grounding anomaly detection and the busbar insulation resistance detection are repeated.
  • the bus insulation resistance is first detected.
  • the insulation detection resistance R1 R2.
  • the one-side branch detection method is started; if the insulation resistance of the positive and negative busbars to the ground is reduced, the bilateral branch detection method is started.
  • the unilateral branch detection method only needs to detect the switch for the busbar closing detection with the insulation resistance value decreasing.
  • the bilateral branch detection method needs to close the positive and negative busbar detection switching switches respectively.
  • the specific method is as follows: The insulation resistance is compared with the set alarm resistance value Rs, and when R ⁇ . ⁇ Rs, R -> Rs, the unilateral branch detection method is started. S2 is closed, Sl and S3 are disconnected, and the leakage current of each branch is detected respectively.
  • the positive bus-to-ground voltage U+ is measured, and U+ is divided by the leakage current of each branch to obtain the positive end of each branch.
  • Insulation resistance In this embodiment, the set alarm resistance value is 20 ⁇ . If R ⁇ ⁇ Rs, R_. ⁇ Rs, the bilateral branch detection method is initiated. S1 is closed, S2 and S3 are disconnected, and the positive and negative bus-to-ground voltages i ⁇ , ⁇ ⁇ _ , and the leakage current ⁇ ⁇ 1 of the branch ⁇ are measured. Then, S2 is closed, Sl and S3 are disconnected, and the voltages of the positive and negative busbars to ground 11 2 ⁇ , ⁇ 2 _, and the leakage of the branch ⁇ are measured. Current ⁇ 2 . Then calculate the insulation resistance of each branch according to the following formula:
  • R n+ is the positive insulation resistance of the branch n and R n _ is the negative insulation resistance of the branch n.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may use software functions.
  • the form of the module is implemented. The invention is not limited to any specific form of combination of hardware and software.
  • the DC power supply insulation detecting device of the embodiment of the present invention has the advantages of wide adaptability, high reliability, and the like.
  • different detection methods are applied in different situations, which can speed up the inspection time.
  • a new insulation detection process is proposed in the embodiment of the invention, which can improve the accuracy of the insulation detection and shorten the rounding time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

本发明实施例公开了一种直流电源绝缘检测装置,包括绝缘检测电路、接地异常检测电路和电压采用电路;其中,绝缘检测电路包括第一检测支路、第二检测支路和第一接地线K1;接地异常检测电路包括第三检测电阻R3、第四检测电阻R4、第三开关S3和第二接地线K2;电压采样电路用于测量第三检测电阻R3或第四检测电阻R4两端电压。本发明实施例还公开了采用所述直流电源绝缘检测装置的接地异常检测方法以及绝缘检测方法。采用本发明实施例的装置及方法,不论直流电源绝缘检测装置的信号地是悬浮状态还是固定电位状态,都能准确检测出接地线的异常情况,而且提出了单边支路绝缘检测方法,能提高绝缘检测的准确性,缩短轮巡时间。

Description

一种直流电源绝缘检测装置及其检测方法
技术领域
本发明属于测量测试技术领域, 尤其涉及一种直流电源绝缘检测装置及 其检测。 背景技术 直流供电系统中主供电网络及控制信号电源系统和分支供电网络十分的 庞大, 其常见的故障是一点接地故障。 在一般情况下, 一点接地并不影响直 流供电系统的运行, 但如果不能迅速找到接地故障点并予以修复, 当出现另 一点接地故障时, 就可能引短路等重大问题。 所以直流电源供电系统绝缘检 测是十分必要的。
目前市面上流行的直流电源绝缘检测仪工作原理为: 检测直流母线以及 各支路正负极对地绝缘电阻, 当绝缘电阻低于设定值后发出报警。 这样, 当 绝缘监测仪接地线断开时, 就不能准确地检出绝缘电阻真实值, 存在严重的 安全隐患。 因此有必要对绝缘检测仪的接地线是否断开进行检测。
目前常见的接地线断开侦测方法是检测接地点相对绝缘监测仪信号地的 电压, 如图 1所示, 其中, 绝缘监测仪信号地是指零电位的参考点。 图 1中 SI , S2为检测切换开关; Rl , R2分别为正负母线检测电阻; K1表示接地线。 接地点相对信号地的电压可通过电压釆样电路釆样得到。 当接地点接地正常 时, 先保持 SI , S2断开, 再将 S1闭合后, 釆样电压值将增大, 同理, 先保 持 SI , S2断开,将 S2闭合后, 釆样电压值减少。 判断的准则为分别进行 S1 , S2的通断后,接地点釆样电压有一定变化值, 先预设一个变化值 Us, 当测量 得到的接地点变化量 Δυ大于 Us后, 则判定接地线断开。 釆用上述接地线断 开侦测方法要求信号地相对大地是一个固定电位或等电位, 而当绝缘监测仪 信号地为一悬浮状态情况时, 正负母线以及大地相对信号地的电压处于变化 状态, 上述的判断准则将不适用。 所以上述判断接地线是否断开的方法存在 局限性。 常见的支路绝缘电阻检测方法为漏电流检测法, 其基本步骤为先在正母 线与大地之间连接一检测电阻, 然后检测该支路漏电流, 同时测量正负母线 对地的电压值, 测量完成后断开检测电阻; 再在负母线与大地之间连接一检 测电阻, 再次检测该支路漏电流, 同时测量正负母线对地的电压值, 测量完 成后断开检测电阻。 通过联立方程从而得到支路对地绝缘电阻。 直流电源供 电系统一般由于支路较多, 同时又存在切换延时等因素, 常见的支路绝缘电 阻检测方法由于对每条支路都要进行两次对地电阻切换, 导致供电系统一次 轮巡时间较长。 发明内容
提出一种直流电源绝缘检测装置及其检测方法, 釆用该装置及方法, 不论直 流电源绝缘检测装置的信号地是悬浮状态还是固定电位状态, 都能准确检测 出接地线的异常情况。
本发明实施例提供了一种直流电源绝缘检测装置, 包括绝缘检测电路和 接地异常检测电路;
其中, 所述绝缘检测电路包括第一检测支路、 第二检测支路和第一接地 线 K1 ; 所述第一检测支路一端接正母线, 另一端接所述第一接地线 K1的一 端;所述第二检测支路一端接负母线,另一端接所述第一接地线 K1的所述端; 所述第一接地线 K1的另一端接地;
所述接地异常检测电路包括第三检测电阻 R3、 第四检测电阻 R4、 第三 开关 S3和第二接地线 K2; 其中, 所述第三检测电阻 R3—端接正母线, 另一 端接所述第三开关 S3的一端; 所述第四检测电阻 R4—端接负母线, 另一端 接所述第三开关 S3的所述端; 所述第三开关 S3的另一端接所述第二接地线 K2的一端; 所述第二接地线 K2另一端接地。
可选地,所述第一检测支路包括串联的第一开关 S1和第一检测电阻 R1 ; 所述第二检测支路包括串联的第二开关 S2和第二检测电阻 R2。
可选地, 所述第一检测电阻 R1的阻值与所述第二检测电阻 R2的阻值相 等。
可选地, 本发明直流电源绝缘检测装置还包括电压釆样电路, 用于对所 述第三检测电阻 R3或第四检测电阻 R4两端的电压进行测量。
可选地, 本发明直流电源绝缘检测装置还包括漏电流传感器, 用于检测 直流电源各支路对地漏电流大小。
本发明实施例还提供了一种釆用所述直流电源绝缘检测装置的接地异常 检测方法, 包括:
闭合所述第三开关 S3 , 断开所述第一检测支路, 判断断开和接通所述第 二检测支路时,所述第四检测电阻 R4两端电压是否发生变化,若未发生变化 则所述第一接地线 K1和第二接地线 K2中至少一个出现异常; 或者,
闭合所述第三开关 S3 , 断开所述第二检测支路, 判断断开和接通所述第 一检测支路时,所述第三检测电阻 R3两端电压是否发生变化,若未发生变化 则所述第一接地线 K1和第二接地线 K2中至少一个出现异常。
本发明实施例还提供了一种釆用所述直流电源绝缘检测装置的绝缘检测 方法, 包括:
首先检测正、 负母线等效绝缘电阻, 将测得的正、 负母线等效绝缘电阻 与预设的告警电阻值进行比较, 如果正、 负母线等效绝缘电阻中, 仅有一个 低于所述告警电阻值, 则接下来仅对各支路相应的正绝缘电阻或负绝缘电阻 进行检测, 即釆用单边支路检测法; 如果正、 负母线等效绝缘电阻均低于所 述告警电阻值, 则接下来对各支路的正绝缘电阻、 负绝缘电阻均进行检测, 即釆用双边支路检测法。
优选地, 所述检测母线等效绝缘电阻的步骤包括:
使第一检测支路的第一检测电阻 R1 等于第二检测支路的第二检测电阻
R2;
断开所述第三开关 S3;
接通所述第一检测电路, 断开所述第二检测电路, 釆样得到正母线对大 地电压 ϋ ÷和负母线对大地电压 断开所述第一检测电路, 接通所述第二检测电路, 釆样得到正母线对地 电压 ÷和负母线对地电压 根据如下公式计算正母线等效绝缘电阻 R+和负母线等效绝缘电阻 R
R _ ( ÷.x _) — (Ux — ) R ― iU^ U^ - (UxOB_) 优选地, 所述接下来仅对各支路相应的正绝缘电阻或负绝缘电阻进行检 测的步骤包括:
如果正、 负母线等效绝缘电阻中, 仅正母线等效绝缘电阻低于所述告警 电阻值, 则断开所述第三开关 S3, 断开第一检测支路, 接通第二检测支路, 分别测出各条支路漏电流, 同时测出正母线对地电压 U+, 将 U+除以各支路 漏电流得到各支路正端对地绝缘电阻;
如果正、 负母线等效绝缘电阻中, 仅负母线等效绝缘电阻低于所述告警 电阻值, 则断开所述第三开关 S3, 接通第一检测支路, 断开第二检测支路, 分别测出各条支路漏电流, 同时测出负母线对地电压 U-,将 U-除以各支路漏 电流得到各支路负端对地绝缘电阻。
优选地, 所述接下来对各支路的正绝缘电阻、 负绝缘电阻均进行检测的 步骤包括:
断开所述第三开关 S3, 接通所述第一检测支路, 断开第二检测支路, 测 出正母线对地电压 ÷和负母线对地电压!] i_以及支路 n的漏电流 Inl; 断开所述第三开关 S3, 断开所述第一检测支路, 接通第二检测支路, 测 出正母线对地电压!] 2:÷和负母线对地电压 IJ2_以及支路 n的漏电流 I 2; 根据如下公式计算各支路的绝缘电阻: R _ ( ½+::< _) -(Uxl½_) ― C υΞ-!.χϋ..._ ) - CLI^xU^ )
.a+ — C Ui_ ln2 - C ϋ2_χΙΒ1) , n~― (Uxln2) ÷ CUxIni)
其中 Rn+为支路 n的正绝缘电阻, Rn_为支路 n的负绝缘电阻。
本发明实施例的有益效果为:
本发明实施例的直流电源绝缘检测装置增加了一个接地异常检测电路, 其基本检测原理为: 在第一接地线 K1和第二接地线 K2均接地正常情况下, 第一开关 S1和第二开关 S2的通断会导致第三检测电阻 R3, 第四检测电阻 R4两端电压的变化; 当第一接地线 K1 , 第二接地线 K2接地存在任何一条断 开情况下, 第一开关 S1, 第二开关 S2的通断不会导致第三检测电阻 R3, 第 四检测电阻 R4两端电压的变化。并且该变化方式与直流电源绝缘检测装置信 号地的状态没有关系, 因此本发明实施例的直流电源绝缘检测装置具有适应 性广, 可靠性高等优点。
同时, 本发明实施例提出了单边支路检测方法和双边支路检测方法, 单 边支路检测方法在母线绝缘检测判定只有一边电阻降低情况下启用, 双边支 路检测方法同正常漏电流检测法。 在不同情况适用不同检测方法, 可加快巡 检时间。 结合接地线异常检测, 本发明实施例的提出了一种新的绝缘检测流 程, 能提高绝缘检测的准确性, 缩短轮巡时间。 附图概述
图 1为目前常见接地异常检测原理示意图;
图 2为本发明实施例的直流电源绝缘检测装置结构示意图;
图 3为本发明实施例的绝缘检测原理图;
图 4为本发明实施例的直流电源绝缘检测装置应用时的整体结构框图; 图 5 为本发明实施例的绝缘检测方法流程图。 本发明的较佳实施方式 下面结合附图对本发明的实施例作详细说明。
图 2为本发明实施例的直流电源绝缘检测装置结构示意图,图 2中, BUS+ 为正母线, BUS-为负母线, PE为大地, R+、 R-分别是正母线对地、 负母线 对地总的等效绝缘电阻; Rl , R2是绝缘电阻值检测电阻, 其中 R1为第一检 测电阻, R2为第二检测电阻; R3、 R4为接地线异常检测电阻, 其中 R3为第 三检测电阻, R4为第四检测电阻; Kl、 Κ2为接地线, 其中 K1为第一接地 线, Κ2为第二接地线; SI , S2为检测切换开关, S3为接地线异常检测切换 开关, 其中 S1为第一开关, S2为第二开关, S3为第三开关。 在进行接地线 异常检测时将 S3闭合, 在进行母线绝缘检测、 支路绝缘检测时, 需将 S3断 开。
S1—端与正母线相连, 一端与 R1相连; S2—端与负母线相连, 一端与 R2相连; Rl , R2另一端都与 K1连接, K1另一端接大地。 R3—端与正母 线相连; R4—端与负母线相连, R3 , R4另一端都与 S3连接, S3另一端与 Κ2—端相连, Κ2另一端接大地。
如图 2所示, 本发明实施例的直流电源绝缘检测装置, 包括绝缘检测电 路、 接地异常检测电路和电压釆样电路。
其中,绝缘检测电路包括第一检测支路、第二检测支路和第一接地线 K1 ; 第一检测支路一端接正母线,另一端接第一接地线 K1的一端; 第二检测支路 一端接负母线, 另一端接第一接地线 K1的所述端; 第一接地线 K1的另一端 接地。 第一检测支路包括串联的第一开关 S1和第一检测电阻 R1 ; 第二检测 支路包括串联的第二开关 S2和第二检测电阻 R2。
接地异常检测电路包括第三检测电阻 R3、 第四检测电阻 R4、 第三开关 S3和第二接地线 K2; 其中, 第三检测电阻 R3—端接正母线, 另一端接第三 开关 S3的一端; 第四检测电阻 R4—端接负母线, 另一端接第三开关 S3的 所述端; 第三开关 S3的另一端接第二接地线 K2—端; 第二接地线 K2另一 端接地。
为便于进行绝缘检测计算, 第一检测电阻 R1的阻值与第二检测电阻 R2 的阻值可以相等。
电压釆样电路用于对第三检测电阻 R3或第四检测电阻 R4两端的电压进 行测量。
本发明实施例的直流电源绝缘检测装置还包括漏电流传感器, 用于检测 直流电源各支路对地漏电流大小。
釆用本发明实施例的直流电源绝缘检测装置的接地异常检测方法, 其检 测原理为: 在接地线 Kl , K2接地正常情况下, S2断开, S3闭合并保持状态 不变, S1断开和闭合状态下, R3两端电压会发生改变; S2断开, S3闭合 并保持状态不变, 当接地线 Kl , K2有任何一条断开后, S1的通断不会导致 R3两端电压变化。 S1和 S2具有对称性, 保持 S1断开, S3闭合状态不变, S2进行通断, 对应侦测的是 R4两端电压变化。 下面以 S1进行通断为例, 详 细介绍实施步骤:
断开 S2, 闭合 S3并保持状态不变, S1断开情况下测量 R3两端电压, 得到电压值 VI; 保持 S2断开, S3闭合状态不变, S1闭合后测量 R3两端电 压, 得到电压值 V2; 如 V1=V2, 则 Kl , K2至少有一条断开, 报警提示用户 存在一根接地线异常。 各种状态下 R3两端电压值如下表所示。
表一、 接地异常检测时 R3两端电压变化表
Figure imgf000009_0001
从上面表格可以看出, 只有当 Kl、 Κ2都正常连通时, S1闭合后 R3两 端电压才出现降低。 R3两端电压变化的大小取决于 R1阻值的大小。 一般情 况下可将 R1尽量取小, R3值稍取大些, 一般为 R1的 2到 3倍, 可保证电压 变化量能可靠侦测出来。
相对于传统的直流电源绝缘检测装置, 增加的一根检测接地线 K2, 其与 传统的直流电源绝缘检测装置固有的接地线 K1在线径材料、安装方式以及布 线方式都相同。 检测接地线的断开并不影响绝缘检测功能的正常实现, 但因 两根线接地异常损坏机理一致, 如线径老化、 接线存在应力、 接线端子松动 等因素, 当出现接地线 K2断开时, 接地线 K1亦存在断开的风险。 因此当任 何一根接地线出现断开时, 应及时进行故障排除。
图 3为本发明绝缘检测原理图, 图中, Rl+、 Rl-、 R2+、 R2- Rn+、
Rn-分别为支路 1、支路 2 支路 n上正负对地绝缘电阻; LI、 L2
Ln分别是安装在支路 1、 支路 2 支路 n回路上的智能漏电流传感器, 用于检测各支路的对地漏电流, 从而计算各支路的对地绝缘电阻。
图 4为一个具体实施例的本发明直流电源绝缘检测装置应用时的整体结 构框图, 如图所示, 直流电源绝缘检测装置主要包括电阻切换网络、 AD釆样 处理电路、 支路漏电流釆集网络、 CPU、 釆样信息和告警信息显示、 后台通 讯等部分。 其中电阻切换网络包含绝缘检测电路和接地异常检测电路。
图 5 为本发明实施例绝缘检测方法流程图, 如图所示, 在进行绝缘检测 之前需要先判断是否接地异常, 启动时默认接地异常检测循环时间到, 进入 接地异常检测流程。 在运行时间到了设定的循环时间时, 再次启动接地异常 检测。
如果发现接地异常则发出接地异常报警, 等待接地异常故障解除后再进 行绝缘电阻的检测。 绝缘检测时先进行母线对地绝缘电阻的检测, 如果母线 绝缘电阻小于预设的告警电阻值则进行支路绝缘检测。 根据母线绝缘电阻的 检测结果来决定支路绝缘检测釆用单边检测还是双边检测。 支路监测过程中 有发现支路绝缘降低后发出告警, 同时通过后台通讯发送出去。 待所有支路 巡检完后再次循环进行接地异常检测和母线绝缘电阻检测。
下面对釆用本发明实施例的直流电源绝缘检测装置的绝缘检测方法进行 详细说明:
在进行绝缘电阻检测时先检测母线绝缘电阻, 为了便于计算, 使绝缘检 测电阻 R1=R2。 检测母线绝缘电阻时, 需将 S3保持断开状态不变。 先控制 S1闭合, S2断开, 釆样得到正负母线对地电压 然后控制 S1断开,
S2闭合釆样正负母线对地电压 U2:+ , U2_; 然后根据公式:
计算出母线绝缘电阻。
如果发现母线绝缘电阻出现正负母线只有一边下降时, 则启动单边支路 检测法; 如果发现正负母线对地绝缘电阻都出现降低, 则启动双边支路检测 法。 单边支路检测法只需要对绝缘电阻值下降的母线闭合检测切换开关, 双 边支路检测法需要分别闭合正负母线检测切换开关。 具体方法如下: 将绝缘电阻与设定的告警电阻值 Rs作比较, 当 R÷ .≤Rs, R— > Rs时, 启动单边支路检测法。 将 S2闭合, Sl、 S3断开, 分别侦测出各条支路漏电 流, 同时测出正母线对地电压 U+, 将 U+除以各支路漏电流即可得到各支路 正端对地绝缘电阻。 在本实施案例中, 设定的告警电阻值为 20ΚΩ 。 如果 R÷≤Rs, R_. < Rs, 则启动双边支路检测法。 将 S1闭合, S2、 S3 断开, 测出正负母线对地电压 , Οχ_ , 以及支路 η的漏电流 Ιη1。 然后将 S2闭合, Sl、 S3断开, 测出正负母线对地电压 11, ϋ2_, 以及支路 η的漏 电流 ΙΏ2。 然后根据如下公式计算出各支路绝缘电阻:
R (0 ¾-) - (Ul X¾-) ^ (U^Xl^— ) - (UxQ5_)
.a+— C U1_xla2) - ( U2_xlai) , s~ ― (Uxla2) ÷ CUxIni)
其中 Rn+为支路 n的正绝缘电阻, Rn_为支路 n的负绝缘电阻。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现, 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
需要说明的是, 本发明还可有其他多种实施例, 在不背离本发明精神及 和变形, 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范 围。
工业实用性 本发明实施例的直流电源绝缘检测装置具有适应性广,可靠性高等优点。 本发明实施例在不同情况适用不同检测方法, 可加快巡检时间。 结合接地线 异常检测, 本发明实施例的提出了一种新的绝缘检测流程, 能提高绝缘检测 的准确性, 缩短轮巡时间。

Claims

权 利 要 求 书
1、 一种直流电源绝缘检测装置, 包括绝缘检测电路, 所述绝缘检测电路 包括第一检测支路、 第二检测支路和第一接地线 K1 , 所述第一检测支路一端 设置为接正母线,另一端接所述第一接地线 K1的第一端,所述第二检测支路 一端设置为接负母线,另一端接所述第一接地线 K1的所述第一端,所述第一 接地线 K1的另一端设置为接地;
所述装置还包括接地异常检测电路;
所述接地异常检测电路包括第三检测电阻 R3、 第四检测电阻 R4、 第三 开关 S3和第二接地线 K2;其中,所述第三检测电阻 R3—端设置为接正母线, 另一端接所述第三开关 S3的第一端; 所述第四检测电阻 R4—端设置为接负 母线, 另一端接所述第三开关 S3的所述第一端; 所述第三开关 S3的第二端 接所述第二接地线 K2的第一端; 所述第二接地线 K2的第二端设置为接地。
2、 如权利要求 1所述的直流电源绝缘检测装置, 其中, 所述第一检测支 路包括串联的第一开关 S1和第一检测电阻 R1 ; 所述第二检测支路包括串联 的第二开关 S2和第二检测电阻 R2。
3、 如权利要求 2所述的直流电源绝缘检测装置, 其中, 所述第一检测电 阻 R1的阻值与所述第二检测电阻 R2的阻值相等。
4、 如权利要求 1或 2或 3所述的直流电源绝缘检测装置, 其还包括电压 釆样电路,所述电压釆样电路设置为对所述第三检测电阻 R3或第四检测电阻 R4两端的电压进行测量。
5、 如权利要求 1或 2或 3所述的直流电源绝缘检测装置, 其还包括漏电 流传感器, 所述漏电流传感器设置为检测直流电源各支路对地漏电流大小
6、 釆用权利要求 1所述直流电源绝缘检测装置的接地异常检测方法, 包 括:
闭合所述第三开关 S3 , 断开所述第一检测支路, 判断断开和接通所述第 二检测支路时,所述第四检测电阻 R4两端电压是否发生变化,若未发生变化 则所述第一接地线 K1和第二接地线 K2中至少一个出现异常; 或者,
闭合所述第三开关 S3 , 断开所述第二检测支路, 判断断开和接通所述第 一检测支路时,所述第三检测电阻 R3两端电压是否发生变化,若未发生变化 则所述第一接地线 K1和第二接地线 K2中至少一个出现异常。
7、 釆用权利要求 1所述直流电源绝缘检测装置的绝缘检测方法, 包括: 首先检测正、 负母线等效绝缘电阻, 将测得的正、 负母线等效绝缘电阻 与预设的告警电阻值进行比较, 如果正、 负母线等效绝缘电阻中, 仅有一个 低于所述告警电阻值, 则接下来仅对各支路相应的正绝缘电阻或负绝缘电阻 进行检测; 如果正、 负母线等效绝缘电阻均低于所述告警电阻值, 则接下来 对各支路的正绝缘电阻、 负绝缘电阻均进行检测。
8、 如权利要求 7所述的绝缘检测方法, 其中, 所述检测正、 负母线等效 绝缘电阻的步骤包括:
使第一检测支路的第一检测电阻 R1 等于第二检测支路的第二检测电阻
R2;
断开所述第三开关 S3;
接通所述第一检测电路, 断开所述第二检测电路, 釆样得到正母线对大 地电压 和负母线对大地电压 _; 断开所述第一检测电路, 接通所述第二检测电路, 釆样得到正母线对地 电压 ÷和负母线对地电压 根据如下公式计算正母线等效绝缘电阻 R+和负母线等效绝缘电阻 R
R _ χ R1
Figure imgf000015_0001
9、 如权利要求 7或 8所述的绝缘检测方法, 其中, 所述接下来仅对各支 路相应的正绝缘电阻或负绝缘电阻进行检测的步骤包括:
如果正、 负母线等效绝缘电阻中, 仅正母线等效绝缘电阻低于所述告警 电阻值, 则断开所述第三开关 S3 , 断开第一检测支路, 接通第二检测支路, 分别测出各条支路漏电流, 同时测出正母线对地电压 U+, 将 U+除以各支路 漏电流得到各支路正端对地绝缘电阻;
如果正、 负母线等效绝缘电阻中, 仅负母线等效绝缘电阻低于所述告警 电阻值, 则断开所述第三开关 S3 , 接通第一检测支路, 断开第二检测支路, 分别测出各条支路漏电流, 同时测出负母线对地电压 U-,将 U-除以各支路漏 电流得到各支路负端对地绝缘电阻。
10、 如权利要求 7或 8所述的绝缘检测方法, 其中, 所述接下来对各支 路的正绝缘电阻、 负绝缘电阻均进行检测的步骤包括:
断开所述第三开关 S3 ,接通所述第一检测支路,断开所述第二检测支路, 测出正母线对地电压 U和负母线对地电压 以及支路 n的漏电流 Inl;
断开所述第三开关 S3 ,断开所述第一检测支路,接通所述第二检测支路, 测出正母线对地电压 ϋ2 ÷和负母线对地电压 ϋ2—以及支路 η的漏电流 Ι 2; 根据如下公式计算各支路的绝缘电阻: R _ ( ½+::< _) -(Uxl½_) ― C υΞ-!.χϋ..._ ) - CLI^xU^ ) .a+ — C Ui_ ln2 - C ϋ2_χΙΒ1) , n~― (Uxln2) ÷ CUxIni) 其中 Rn+为支路 n的正绝缘电阻, Rn_为支路 n的负绝缘电阻。
PCT/CN2012/076654 2011-06-13 2012-06-08 一种直流电源绝缘检测装置及其检测方法 WO2012171444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101576310A CN102830283A (zh) 2011-06-13 2011-06-13 一种直流电源绝缘检测装置及其检测方法
CN201110157631.0 2011-06-13

Publications (1)

Publication Number Publication Date
WO2012171444A1 true WO2012171444A1 (zh) 2012-12-20

Family

ID=47333488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076654 WO2012171444A1 (zh) 2011-06-13 2012-06-08 一种直流电源绝缘检测装置及其检测方法

Country Status (2)

Country Link
CN (1) CN102830283A (zh)
WO (1) WO2012171444A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103607172A (zh) * 2013-12-05 2014-02-26 无锡上能新能源有限公司 同时实现光伏电站负极接地和对地绝缘阻抗检测的装置
US20140266234A1 (en) * 2013-03-15 2014-09-18 Emerson Network Power Co., Ltd. Grounding detection device and method
CN106054014A (zh) * 2016-07-11 2016-10-26 国网山东省电力公司聊城供电公司 一种n600一点接地测试装置及其应用
CN110780223A (zh) * 2018-07-11 2020-02-11 西门子股份公司 接地故障检测电路及装置
CN113740756A (zh) * 2021-07-30 2021-12-03 中国南方电网有限责任公司超高压输电公司广州局 故障监测装置、电源状态监测方法和直流试验电源

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018614B (zh) * 2011-09-23 2017-11-28 中兴通讯股份有限公司 一种直流系统绝缘监测方法及其设备
CN103116107B (zh) * 2012-12-28 2015-12-02 广东志成冠军集团有限公司 一种高压直流电源绝缘监察装置
CN103091596B (zh) * 2013-01-10 2015-02-25 浙江中碳科技有限公司 一种平衡双投切电路及基于该电路的绝缘检测装置和方法
CN104101784B (zh) * 2013-04-03 2017-08-25 比亚迪股份有限公司 一种绝缘电阻的检测电路
CN104181434B (zh) * 2013-05-27 2017-03-15 深圳奥特迅电力设备股份有限公司 一种直流电源绝缘检测装置及检测方法
CN103389436B (zh) * 2013-07-24 2015-12-02 中达电通股份有限公司 直流供电系统的投切式绝缘监测方法及系统
CN103592563A (zh) * 2013-11-22 2014-02-19 国家电网公司 直流系统绝缘在线监测装置
CN103941141B (zh) * 2014-04-29 2017-06-13 华为技术有限公司 一种漏电流检测电路、直流高压系统、检测方法和装置
CN104049150B (zh) * 2014-06-30 2017-10-17 阳光电源股份有限公司 光伏组件对地绝缘性检测装置及方法及光伏并网发电系统
US20170261541A1 (en) * 2014-09-12 2017-09-14 Otis Elevator Company Ground fault detector and method for detecting ground faults
US10191101B2 (en) 2014-12-01 2019-01-29 General Electric Company System and method for detecting ground fault in a dc system
CN105676084B (zh) * 2016-01-26 2019-08-09 广东雅达电子股份有限公司 一种高压直流绝缘监测系统及监测方法
CN105938175B (zh) * 2016-05-31 2019-03-12 贵阳英纳瑞电气有限公司 基于dsp的直流系统瞬间接地在线监测方法及装置制造
CN106353695A (zh) * 2016-10-24 2017-01-25 郑州云海信息技术有限公司 一种直流电源对地绝缘故障检测装置及方法
CN109239536B (zh) * 2017-07-10 2022-06-14 比亚迪股份有限公司 列车以及列车的绝缘检测系统
CN107843813A (zh) * 2017-09-28 2018-03-27 河南汇纳科技有限公司 一种基于LoRa的绝缘检测装置
CN108152589B (zh) * 2017-12-13 2020-03-24 四川长虹电器股份有限公司 直流电源绝缘电阻检测电路及方法
CN109884451A (zh) * 2019-03-19 2019-06-14 卡斯柯信号有限公司 一种绝缘漏流测试装置
CN110412399A (zh) * 2019-08-27 2019-11-05 中国南方电网有限责任公司超高压输电公司天生桥局 一种双钳表式直流接地查找仪
CN112557940A (zh) * 2019-09-06 2021-03-26 中兴通讯股份有限公司 一种多级直流系统分布式绝缘检测装置
KR20210103238A (ko) * 2020-02-13 2021-08-23 주식회사 만도 멀티 접지 라인 단선 검사 장치 및 이를 포함하는 전자 제어 장치
CN111537905B (zh) * 2020-05-29 2022-07-05 深圳市慧源动力技术有限公司 一种高效绝缘漏电检测电路及绝缘漏电检测方法
CN111987969B (zh) * 2020-07-31 2022-01-28 珠海格力电器股份有限公司 变频电机的控制信号采样电路、变频空调外机及控制方法
CN111948504A (zh) * 2020-08-25 2020-11-17 的卢技术有限公司 一种800v储能系统绝缘检测电路及方法
CN113777452B (zh) * 2021-09-17 2024-01-16 广东电网有限责任公司 一种电压自适应站用直流系统接地试验装置及方法
CN114039342A (zh) * 2021-12-03 2022-02-11 广西电网有限责任公司钦州供电局 一种直流电源系统中的直流设备检验装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2565028Y (zh) * 2002-08-27 2003-08-06 北京华星恒业电气设备有限公司 一种用于检测直流系统绝缘电阻的模块
EP1857825A1 (de) * 2006-05-16 2007-11-21 SMA Technologie AG Messanordnung
CN201181321Y (zh) * 2008-04-18 2009-01-14 南车株洲电力机车有限公司 机车控制回路的接地检测电路
JP2009031187A (ja) * 2007-07-30 2009-02-12 Fuji Electric Systems Co Ltd 絶縁抵抗測定方法および装置
CN101477180A (zh) * 2009-01-23 2009-07-08 合肥英特电力设备有限公司 微机直流监测装置
CN201335868Y (zh) * 2008-12-29 2009-10-28 株洲电力机车厂长河机电产品开发公司 一种直流电网绝缘监测仪

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1070486A (zh) * 1992-09-21 1993-03-31 辽源电业局 直流接地监测告警装置
US6768390B1 (en) * 2003-04-02 2004-07-27 Agilent Technologies, Inc. System and method for generating balanced modulated signals with arbitrary amplitude and phase control using modulation
CN2837858Y (zh) * 2005-10-11 2006-11-15 珠海泰坦科技股份有限公司 电力直流系统正负母线同时接地检测电路
CN101452035A (zh) * 2007-12-04 2009-06-10 肖秋贵 电器接地状态监控电路
CN101261301A (zh) * 2008-04-18 2008-09-10 南车株洲电力机车有限公司 机车控制回路的接地检测电路及接地检测法和断线检测法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2565028Y (zh) * 2002-08-27 2003-08-06 北京华星恒业电气设备有限公司 一种用于检测直流系统绝缘电阻的模块
EP1857825A1 (de) * 2006-05-16 2007-11-21 SMA Technologie AG Messanordnung
JP2009031187A (ja) * 2007-07-30 2009-02-12 Fuji Electric Systems Co Ltd 絶縁抵抗測定方法および装置
CN201181321Y (zh) * 2008-04-18 2009-01-14 南车株洲电力机车有限公司 机车控制回路的接地检测电路
CN201335868Y (zh) * 2008-12-29 2009-10-28 株洲电力机车厂长河机电产品开发公司 一种直流电网绝缘监测仪
CN101477180A (zh) * 2009-01-23 2009-07-08 合肥英特电力设备有限公司 微机直流监测装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHONG HONGRUI ET AL.: "Insulation Supervision of the Direct Current System Based on the MSP430 Processor", ELECTRONIC & TECH., vol. 23, no. 9, 15 September 2010 (2010-09-15), pages 106 - 109 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140266234A1 (en) * 2013-03-15 2014-09-18 Emerson Network Power Co., Ltd. Grounding detection device and method
US9529031B2 (en) * 2013-03-15 2016-12-27 Emerson Network Power, Energy Systems, North America, Inc. Grounding detection device and method
CN103607172A (zh) * 2013-12-05 2014-02-26 无锡上能新能源有限公司 同时实现光伏电站负极接地和对地绝缘阻抗检测的装置
CN106054014A (zh) * 2016-07-11 2016-10-26 国网山东省电力公司聊城供电公司 一种n600一点接地测试装置及其应用
CN110780223A (zh) * 2018-07-11 2020-02-11 西门子股份公司 接地故障检测电路及装置
CN113740756A (zh) * 2021-07-30 2021-12-03 中国南方电网有限责任公司超高压输电公司广州局 故障监测装置、电源状态监测方法和直流试验电源
CN113740756B (zh) * 2021-07-30 2024-04-26 中国南方电网有限责任公司超高压输电公司广州局 故障监测装置、电源状态监测方法和直流试验电源

Also Published As

Publication number Publication date
CN102830283A (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
WO2012171444A1 (zh) 一种直流电源绝缘检测装置及其检测方法
US10996248B2 (en) System and method of identifying path of residual current flow through an intelligent power strip
CN107102236A (zh) 一种基于故障后波形相关分析的单相接地故障选线方法
CN102998537B (zh) 一种低能耗的直流母线绝缘电阻检测电路及检测方法
CN109521359A (zh) 一种动力电池主负继电器状态检测电路及方法
CN201335868Y (zh) 一种直流电网绝缘监测仪
WO2022135554A1 (zh) 车辆高压电路检测方法、装置、车辆及存储介质
JP2012198134A (ja) 事故点標定装置、プログラム
CN108732511A (zh) 一种直流电源系统的绝缘电阻检测电路及检测方法
CN105548719A (zh) 一种对地绝缘电阻的检测电路及方法
CN103675705A (zh) 一种动力电池的电流冗余校验方法
TW200938823A (en) Liquid leak detection system and liquid leak detection method
CN103176049A (zh) 用于不接地直流系统的对地绝缘性监测的电路、装置和方法
CN112595923A (zh) 一种用于配电网不接地系统单相断线故障区段的定位方法
CN202166682U (zh) 一种直接接地绝缘故障检测装置
CN102156271B (zh) 半导体参数测量系统的检测方法
CN105486930B (zh) 带硅链直流系统母线对地电阻的检测装置及方法
CN202870174U (zh) 一种低能耗的直流母线绝缘电阻检测电路
CA2861185C (en) Short detection bus
US9529031B2 (en) Grounding detection device and method
CN102998536A (zh) 一种高可靠性的直流母线绝缘电阻检测方法
JP6039912B2 (ja) 抵抗値算出装置
JP5428030B1 (ja) 絶縁監視装置
CN102062847B (zh) 半导体参数测量系统的检测方法
CN101409747B (zh) 一种检测用户电话外线断线的方法、系统与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800362

Country of ref document: EP

Kind code of ref document: A1