WO2012171439A1 - 发光灯体聚光透镜结构及相应的照明装置 - Google Patents

发光灯体聚光透镜结构及相应的照明装置 Download PDF

Info

Publication number
WO2012171439A1
WO2012171439A1 PCT/CN2012/076568 CN2012076568W WO2012171439A1 WO 2012171439 A1 WO2012171439 A1 WO 2012171439A1 CN 2012076568 W CN2012076568 W CN 2012076568W WO 2012171439 A1 WO2012171439 A1 WO 2012171439A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens structure
lamp body
corrugated
illuminating lamp
Prior art date
Application number
PCT/CN2012/076568
Other languages
English (en)
French (fr)
Inventor
蔡子丰
Original Assignee
莱姆尼斯照明(亚洲)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 莱姆尼斯照明(亚洲)有限公司 filed Critical 莱姆尼斯照明(亚洲)有限公司
Publication of WO2012171439A1 publication Critical patent/WO2012171439A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/045Refractors for light sources of lens shape the lens having discontinuous faces, e.g. Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/0005Fastening of light sources or lamp holders of sources having contact pins, wires or blades, e.g. pinch sealed lamp
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to the field of illuminating illumination, in particular to the technical field of illuminating illuminating equipment, and in particular to a illuminating lamp body concentrating lens structure and a corresponding illuminating device.
  • lighting devices With the continuous advancement of human civilization and the continuous development of science and technology, lighting devices have long been widely known.
  • such lighting devices include a housing and a lighting component disposed within the housing.
  • LEDs have been able to provide enough light energy for lighting purposes.
  • incandescent and halogen lamps have been used in order to reduce the energy consumption of lighting and reduce carbon dioxide emissions.
  • LED light sources have been It is the trend of the times that consumers need products that can achieve the light output of incandescent or halogen lamps, have lower energy consumption and longer service life, and are cheaper.
  • many different LED products are already on the market, most of them are too expensive for the average consumer, and the product performance has not achieved the desired results.
  • the light is easily refracted by the lenticular lens to achieve the concentrating effect, and in order to obtain the same condensing effect, as much as possible, the thickness of the lens can be replaced by a Fresnel lens instead of the conventional lenticular lens. .
  • the Fresnel lens also known as the threaded lens, is a lens invented by the French physicist Augustine. Fresnel.
  • the design of this lens was originally applied to the lighthouse. This design can be built larger.
  • the aperture lens is characterized by a short focal length and a smaller amount of material, less weight and volume than a typical lens. Compared to earlier lenses, the Fresnel lens is thinner, so it can refract more light to form a parallel beam of higher brightness, making the lighthouse visible even at considerable distances.
  • the illumination portion of a conventional Fresnel lens spotlight consists of a lamp, a Fresnel lens and a spherical auxiliary mirror.
  • the filament of the lamp is fixed at the center of the spherical mirror. Therefore, part of the light from the lamp is reflected back to help the light in the front hemisphere to fire.
  • the forward direction of the light is focused by the Fresnel lens.
  • the degree of light focusing is determined by the distance between the Fresnel lens and the lamp. If the filament of the lamp is at the focus of the Fresnel lens, the finest focused spot will be produced. This makes its light path approximate to a parallel line, also known as a spot.
  • the object of the present invention is to overcome the shortcomings of the prior art mentioned above, and to provide a divergent mixing of light of different colors or different color temperatures, a practical structure, a safe and environmentally friendly, stable and reliable working performance, and a wide range of applications.
  • the illuminating lamp body concentrating lens structure and the corresponding illuminating device are to overcome the shortcomings of the prior art mentioned above, and to provide a divergent mixing of light of different colors or different color temperatures, a practical structure, a safe and environmentally friendly, stable and reliable working performance, and a wide range of applications.
  • the illuminating lamp body concentrating lens structure includes:
  • the lens structure is a monolithic composite Fresnel lens having a smooth surface.
  • the front end surface of the lens in the illuminating body of the illuminating lamp body comprises:
  • the corrugated refractive region in the illuminating body concentrating lens structure may have a plurality of radial corrugated ridges extending in a radial straight line.
  • the width of the radial corrugated ridges in the illuminating body concentrating lens structure gradually increases from the center to the periphery.
  • the illuminating lamp body concentrating lens structure has a dividing groove between adjacent radial corrugated ridges.
  • the cross section of the radial corrugated ridge in the illuminating body concentrating lens structure may be triangular, semi-circular, arcuate, semi-elliptical or semi-polygonal.
  • the corrugated refracting region in the illuminating body concentrating lens structure may also have a plurality of vortex-shaped corrugated ridges extending along the radial volute.
  • the width of the vortex-type corrugated ridge in the illuminating body concentrating lens structure gradually increases from the center to the periphery.
  • the illuminating body concentrating lens structure has a dividing groove between adjacent vortex-shaped corrugated ridges.
  • the cross section of the vortex-type corrugated ridge in the illuminating body concentrating lens structure may be triangular, semi-circular, arcuate, semi-elliptical or semi-polygonal.
  • the corrugated refracting region in the illuminating body concentrating lens structure may further have a plurality of scaly projections arranged in a concentric circumferential direction centered on a central portion of the front end surface of the lens.
  • the size of the scaly protrusions in the illuminating lens body concentrating lens structure gradually increases from the center to the periphery.
  • the scaly protrusions in the illuminating lamp body condensing lens structure may be a pyramid, a prismatic body, a hemisphere, a semi-ellipsoid, a cylinder or a cone.
  • the rear end surface of the lens in the illuminating body of the illuminating lamp body comprises:
  • a total reflection region which is disposed between the outer edge inner reflection region and the convex surface refraction region on the rear end surface of the lens, and totally reflects the incident light and enters the lens structure.
  • the surface of the rear end surface of the inner peripheral reflection region of the outer edge of the illuminating lamp body condensing lens structure is covered with a dielectric film.
  • the outer edge inner reflection region of the illuminating lamp body condensing lens structure has a trapezoidal shape along a central axial section of the lens structure.
  • the total reflection area in the illuminating body concentrating lens structure is an inner cylindrical surface between the outer rim inner reflecting area and the convex refracting area.
  • the outer edge position of the convex refractive region in the illuminating body concentrating lens structure corresponds to the outer edge position of the corrugated refracting region along the central axis of the lens structure.
  • the illuminating lamp body concentrating lens structure has a maximum thickness of not more than 10 mm.
  • the illuminating device having the above lens structure is characterized in that: the illuminating device comprises:
  • the lens structure is disposed at a front end of the housing, and the position of the lens structure corresponds to the light emitting component.
  • the illuminating assembly in the illuminating device comprises a substrate and a plurality of light emitting diodes LED disposed on the substrate, and each of the light emitting diodes LED corresponds to the position of the corrugated refracting region.
  • Each of the light emitting diodes LEDs in the illumination device are circumferentially distributed on the substrate, and each of the light emitting diode LEDs may correspond to a respective radial corrugation ridge position.
  • Each of the light emitting diode LEDs in the illumination device may also correspond to a respective volley type corrugated ridge position.
  • the distance between the light emitting diode LED in the illumination device and the rear end surface of the lens of the lens structure does not exceed 5 mm.
  • Each of the light-emitting diodes LEDs in the illumination device has the same illumination color, different illumination colors, or different color temperatures.
  • the lens structure in the illuminating device is fixedly bonded to the front end of the casing by a photo-curable resin adhesive layer.
  • the illuminating lamp body concentrating lens structure and the corresponding illuminating device of the invention have the Fresnel refractive region, the convex lens refraction region and the corrugated refraction region on the front end surface of the lens, and the outer edge internal reflection on the rear end surface of the lens
  • the region, the convex refractive region, and the total reflection region can effectively diffuse and refract most of the incident light, and at the same time, can reflect and refract a small portion of the light to integrate the light beam, which is not only practical but also economical and practical.
  • the work performance is stable and reliable.
  • the width and angle of the bundle and the degree of scattering and mixing of different colors of light can be flexibly adjusted according to the needs.
  • the scope of application is wide, which brings great convenience to people's work and life.
  • FIG. 1 is a perspective view showing a first embodiment of a condensing lens structure of a illuminating lamp body of the present invention.
  • FIG. 2 is a schematic view showing a front end surface of a lens of a condensing lens structure of the illuminating lamp body of the present invention.
  • Figure 3 is a cross-sectional view taken along line C - C of Figure 2;
  • Figure 4 is a cross-sectional view taken along line D - D of Figure 2;
  • 5a and 5b are schematic diagrams showing the transmitted optical path of the illuminating lamp body concentrating lens structure of the present invention.
  • Fig. 6a is a perspective view showing a second embodiment of the illuminating lamp body concentrating lens structure of the present invention.
  • Fig. 6b is a perspective view showing a third embodiment of the illuminating lamp body concentrating lens structure of the present invention.
  • Figure 7 is a schematic illustration of a lighting assembly of a lighting device of the present invention.
  • FIG. 8 is a schematic diagram showing the positional correspondence between the light-emitting assembly of the illumination device of the present invention and the condensing lens of the illuminating lamp body.
  • Fig. 9 is a schematic view showing the overall appearance of the lighting device of the present invention. detailed description
  • the illuminating lamp body concentrating lens structure comprises: (1) a lens front end surface 1;
  • the lens structure is a monolithic composite Fresnel lens having a smooth surface.
  • the lens front end face 1 in the illuminating body concentrating lens structure includes:
  • Fresnel refractive region 11 distributed in an outer edge region of the front end face 1 of the lens, refracting incident light to form a directed beam
  • the corrugated refraction region 13 may have a plurality of radial corrugated ridges 14 extending in a radial direction; the width of the radial corrugated ridges 14 Gradually increasing from the center to the periphery, and the adjacent radial corrugated ridges 14 have a dividing groove 15 therebetween, and the cross-section of the radial corrugated ridge 14 may be triangular, semi-circular, arcuate, semi-elliptical Or a semi-polygon.
  • the corrugated refraction area 13 in the illuminating lamp body condensing lens structure may also have a plurality of vortex-shaped corrugations extending along the radial worm line.
  • the width of the ridge-shaped corrugated ridge 16 gradually increases from the center to the periphery; the adjacent vortex-shaped corrugated ridges 16 have a dividing groove 17 between the vortex-shaped corrugated ridges.
  • the cross section of 16 may be triangular, semi-circular, arcuate, semi-elliptical or semi-polygonal.
  • the corrugated refraction area 13 in the illuminating lamp body concentrating lens structure may further have a plurality of centers along the center of the front end surface of the lens.
  • the scaly protrusions 18 arranged in a concentric circumferential direction, the size of the scaly protrusions 18 gradually increasing from the center to the periphery, and the scaly protrusions 18 may be pyramids, prismatic bodies, hemispheres, semi-ellipses Sphere, cylinder or cone.
  • the lens rear end surface 2 of the illuminating lamp body concentrating lens structure includes:
  • the outer edge inner reflection region 21 is distributed on the outer edge region of the rear end surface 2 of the lens, and the thickness gradually increases from the outer edge toward the central portion, and the incident light is internally reflected and redirected to the illumination direction of the light-emitting lamp body;
  • the total reflection area 23 is distributed between the outer edge inner reflection area 21 and the convex area refraction area 22 on the rear end surface 2 of the lens, and the incident light is totally reflected and injected into the lens structure.
  • the surface of the outer edge inner reflection region 21 of the lens rear end surface 2 in the illuminating lamp body condensing lens structure is covered with a dielectric film, so that the reflectance of the outer rim inner reflection region 21 can be further enhanced.
  • the outer edge inner reflection region 21 has a trapezoidal cross section along the central axial direction of the lens structure; the total reflection region 23 is an inner circle between the outer edge inner reflection region 21 and the convex surface refraction region 22.
  • the outer edge position 221 of the convex refractive area 22 and the outer edge position 131 of the corrugated refraction area 13 correspond to the central axial direction of the lens structure.
  • the maximum thickness of the illuminating lamp body concentrating lens structure may not exceed 10 mm, and the diameter of the illuminating lamp body concentrating lens structure may not exceed 45 mm; According to the size of different types of light-emitting lamps, the maximum thickness and diameter parameters of the lens structure can be flexibly adjusted to suit the actual application.
  • the lighting device having the lens structure described above includes:
  • the lens structure is disposed at a front end of the housing 3, and the position of the lens structure corresponds to the light-emitting assembly 4.
  • the light-emitting assembly 4 in the illumination device includes a substrate 41 and a plurality of light-emitting diodes LEDs 42 disposed on the substrate 41. Each of the light-emitting diodes LED 42 corresponds to the position of the corrugated-refractive region 13.
  • the corrugated refraction region 13 of the illumination device has a plurality of radial corrugated ridges 14 extending in a radial line, and the respective LEDs 42 are on the substrate 41.
  • the upper portions are distributed in the circumferential direction, and each of the light emitting diode LEDs 42 respectively corresponds to the position of the corresponding radial corrugated ridge 14.
  • the corrugated refraction region 13 of the illumination device has a plurality of vortex-type corrugated ridges 16 extending in a radial straight line, and the respective LEDs 42 are on the substrate. 41 is distributed in the circumferential direction, and each of the light-emitting diode LEDs 42 corresponds to the position of the corresponding wavy-type corrugated ridge 16, respectively.
  • the distance between the LEDs 42 of the illuminating device and the rear end surface 2 of the lens structure does not exceed 5 mm; of course, in the technical solution of the present invention, the lens structure can be flexibly adjusted according to the size of the illuminating lamp body of different models.
  • the distance parameter between the rear end face 2 of the lens and the LED LED 42 is adapted to the actual application.
  • the light-emitting color or color temperature of each of the light-emitting diodes LED 42 in the lighting device is different, and the lens structure can be fixedly bonded to the front end of the casing 3 through a light-curing resin adhesive layer.
  • the basic idea of the present invention is to make full use of the advanced nature of LED technology and to utilize optical language technology (optical language technology is a new technology produced by the compatibility of LED technology and optical technology). ).
  • optical language technology is a new technology produced by the compatibility of LED technology and optical technology).
  • the principle of spectroscopy technology is utilized, and LEDs of different colors are used. After the light emitted by the LEDs of different colors is refracted by the lens structure of the present invention, divergence mixing can be performed, which first depends on the Fresnel lens. At the same time, it also depends on the special composite refractive structure of the present invention, thereby generating a spectrum of light that can be adapted to the feeling of the human eye, and is more efficient, so that the illumination device of the present invention can obtain higher brightness using less energy. .
  • the illuminating lamp body concentrating lens structure of the invention can simultaneously realize the mixing of the light emitted by the LED emitting source and
  • the action and effect of the concentrating light, and the LED array of the present invention are arranged in a ring shape, so that the LEDs can correspond to the respective refracting and scattering mixing functional units of the corrugated refraction zone, thereby obtaining a good light divergence mixing effect.
  • the present invention applies a suitable corrugated refraction characteristic in a radial array and at a position corresponding to the LED array, thereby refracting and scattering most of the light through the corrugated refraction region 13 in a plurality of directions, thereby causing different color temperatures.
  • Light can overlap each other to mix light of different color temperatures/colors.
  • a small portion of the light can pass through the Fresnel refractive region 11 in the concentrating lens structure of the present invention and undergo a plurality of internal reflections to finally converge and become an outgoing beam pattern having a relatively small beam angle, thereby improving Utilization of light energy.

Abstract

一种发光灯体聚光透镜结构,包括透镜前端面(1)以及与透镜前端面(1)相对的透镜后端面(2),其中透镜结构为具有光滑表面的单片复合菲涅尔透镜。一种具有发光灯体聚光透镜结构的照明装置,在透镜前端面(1)上具有菲涅尔折射区(11)、凸透镜折射区(12)和波紋折射区(13),透镜后端面(2)上具有外缘内部反射区(21)、凸面折射区(22)和全反射区(23),能够将绝大部分的入射光有效进行发散混合折射,并将少部分光进行反射、折射重定向从而集成光束,不仅结构简单实用,工作性能稳定可靠,而且可根据需要灵活调整集束的宽度和角度、不同颜色光的散射混合程度,适用范围较为广泛。

Description

发光灯体聚光透镜结构及相应的照明装置 技术领域
本发明涉及发光照明领域, 特别涉及发光照明器材技术领域, 具体是指一种发光灯体聚 光透镜结构及相应的照明装置。
背景技术
随着人类文明的不断进步以及科学技术的不断发展, 照明装置早已广为人知。 总的说来, 这类照明装置包括壳体和设置在所述壳体内的发光部件。
随着技术的进步, LED已经能够提供足够的光能用于照明用途, 为了减少照明的能源消 耗, 减少二氧化碳的排放, 为推动替代光源市场的不断前进, 用 LED光源取代白炽灯和卤素 灯已经是大势所趋, 消费者所需要的是能够达到白炽灯或卤素灯的光量输出、 同时具有更低 的能耗和更长的使用寿命、物美价廉的产品。虽然市场上已经有许多不同的 LED产品在推出, 但其中大多数对一般消费者来说太过于昂贵, 而且产品性能并没有达到预期效果。
根据光学原理, 光线很容易被双凸透镜所折射而达到聚光效果, 而为了获得同样的聚光 效果而尽可能减 ' j、透镜的厚度, 可以釆用菲涅尔透镜来取代常规的双凸透镜。
菲涅尔透镜(Fresnel lens ), 又称螺紋透镜, 是由法国物理学家奥古斯丁 .筒.菲涅尔所发 明的一种透镜, 此透镜的设计原来被应用于灯塔, 这个设计可以建造更大孔径的透镜, 其特 点是焦距短, 且比一般的透镜的材料用量更少、 重量与体积更小。 和早期的透镜相比, 菲涅 尔透镜更薄, 因此可以折射出更多的光以形成亮度更高的平行光束, 使得灯塔即使距离相当 远仍可看见。
常规的菲涅尔透镜聚光灯的照明部分由灯、 菲涅尔透镜和球形辅助反射镜组成。 一般来 说, 灯的灯丝都会固定在球形反射镜的中心点。 因此, 灯发出的部分光线放反射回来, 帮助 前半球的灯光发射。 方向向前的光线由菲涅尔透镜聚焦 .但是光线聚焦的程度由菲涅尔透镜与 灯之间的距离决定。 如果灯的灯丝位于菲涅尔透镜的焦点上, 则将产生最细的聚焦光点。 这 使得其光路近似于平行线, 也将其称为聚斑(spot )。
减少菲涅尔透镜与灯之间的距离, 就会使发射出来的光点的孔径角度连续增大。 这就产 生了发散的光路, 也称为泛光(flood )。
但这种光如具有光裁量不足的缺陷, 尤其在聚斑位置 ( spot position ) 内, 这主要由于在 这种情况下, 聚斑位置内只有相对很小的空间角度范围被菲涅尔透镜覆盖所致。 同时, 常规的菲涅尔透镜本身并不能起到对不同颜色的光进行散射混合的效果, 因此无 法适用于各种对于光源和发光光束有特定要求的场合。
因此, 整个灯的聚光问题一直是技术上的瓶颈, 同时, 如何制造一种能够将同种颜色的 光折射出特定的光束样式而且经济实惠的照明装置, 始终是困扰人们的普遍问题。 虽然 LED 本身技术有所进步, 可以发出各种不同颜色的光, 但如何利用一种筒单的透镜结构能够将光 进行充分散射混合、 降低制造成本和产品复杂度、 节能环保, 一直是摆在人们面前亟待解决 的问题。 发明内容
本发明的目的是克服了上述现有技术中的缺点, 提供一种能够有效实现不同颜色或不同 色温的光线的发散混合、 结构筒单实用、 节能安全环保、 工作性能稳定可靠、 适用范围较为 广泛的发光灯体聚光透镜结构及相应的照明装置。
为了实现上述的目的,本发明的发光灯体聚光透镜结构及相应的照明装置具有如下构成: 该发光灯体聚光透镜结构, 包括:
- 透镜前端面, 以及
- 与透镜前端面相对的透镜后端面;
其主要特点是,
所述的透镜结构为具有光滑表面的单片复合菲涅尔透镜。
该发光灯体聚光透镜结构中的透镜前端面包括:
- 菲涅尔折射区, 分布于该透镜前端面的外部边缘区域, 将入射光折射形成定向光束;
- 凸透镜折射区, 分布于该透镜前端面的中心部位, 将入射光进行聚光折射;
- 波紋折射区, 分布于所述的透镜前端面上的该菲涅尔折射区与凸透镜折射区之间, 且 将入射光进行发散混合折射。
该发光灯体聚光透镜结构中的波紋折射区中可以具有数个沿径向直线发散延伸的径向波 紋凸脊。
该发光灯体聚光透镜结构中的径向波紋凸脊的宽度自中心向周边逐渐增加。
该发光灯体聚光透镜结构中相邻的径向波紋凸脊之间具有分割凹槽。
该发光灯体聚光透镜结构中的径向波紋凸脊的横截面可以呈三角形、 半圆形、 弓形、 半 椭圆形或者半多边形。 该发光灯体聚光透镜结构中的波紋折射区中也可以具有数个沿径向蜗线发散延伸的蜗线 型波紋凸脊。
该发光灯体聚光透镜结构中的蜗线型波紋凸脊的宽度自中心向周边逐渐增加。
该发光灯体聚光透镜结构中相邻的蜗线型波紋凸脊之间具有分割凹槽。
该发光灯体聚光透镜结构中的蜗线型波紋凸脊的横截面可以呈三角形、 半圆形、 弓形、 半椭圆形或者半多边形。
该发光灯体聚光透镜结构中的波紋折射区中还可以具有数个沿以该透镜前端面的中心部 位为圆心的同心圆周方向排列的鳞状凸起。
该发光灯体聚光透镜结构中的鳞状凸起的大小自中心向周边逐渐增加。
该发光灯体聚光透镜结构中的鳞状凸起可以为棱锥体、 棱台体、 半球体、 半椭球体、 圆 柱体或者圆锥体。
该发光灯体聚光透镜结构中的透镜后端面包括:
- 外缘内部反射区, 分布于该透镜后端面的外部边缘区域, 且厚度从外部边缘向中心部 位方向逐渐增加, 将入射光进行内部反射并重定向至发光灯体的照射方向;
- 凸面折射区, 分布于该透镜后端面的中心部位, 将入射光进行聚光折射;
- 全反射区, 分布于所述的透镜后端面上的该外缘内部反射区与凸面折射区之间, 将入 射光进行全反射并射入该透镜结构中。
该发光灯体聚光透镜结构中的外缘内部反射区的透镜后端面表面上覆盖有介质膜。 该发光灯体聚光透镜结构中的外缘内部反射区沿该透镜结构的中心轴向截面呈梯形。 该发光灯体聚光透镜结构中的全反射区为所述的外缘内部反射区与凸面折射区之间的内 圆筒面。
该发光灯体聚光透镜结构中的凸面折射区的外部边缘位置与所述的波紋折射区的外部边 缘位置沿该透镜结构的中心轴向相对应。
该发光灯体聚光透镜结构的最大厚度不超过 10mm。
该发光灯体聚光透镜结构的直径不超过 45mm。
该具有上述的透镜结构的照明装置, 其主要特点是, 所述的照明装置包括:
-壳体, 以及
- 设置于壳体中的发光组件;
所述的透镜结构设置于该壳体前端, 且该透镜结构的位置与所述的发光组件相对应。 该照明装置中的发光组件包括基板和设置于该基板上的数个发光二极管 LED, 各个发光 二极管 LED与所述的波紋折射区位置相对应。
该照明装置中的各个发光二极管 LED在基板上沿圆周方向分布,且每个发光二极管 LED 可以分别与相应的径向波紋凸脊位置相对应。
该照明装置中每个发光二极管 LED也可以分别与相应的蜗线型波紋凸脊位置相对应。 该照明装置中的发光二极管 LED与该透镜结构的透镜后端面的距离不超过 5mm。
该照明装置中的各个发光二极管 LED的发光颜色相同、 发光颜色不同或者色温不同。 该照明装置中的透镜结构通过光硬化树脂粘合层固定粘接于所述的壳体前端。
釆用了该发明的发光灯体聚光透镜结构及相应的照明装置, 由于其在透镜前端面上具有 菲涅尔折射区、 凸透镜折射区、 波紋折射区, 透镜后端面上具有外缘内部反射区、 凸面折射 区、 全反射区, 从而能够将绝大部分的入射光有效进行发散混合折射, 同时可以将少部分光 进行反射、 折射重定向从而集成光束, 不仅结构筒单实用, 而且经济实用, 工作性能稳定可 靠, 同时可以根据需要灵活调整集束的宽度和角度、 不同颜色光的散射混合程度, 适用范围 较为广泛, 为人们的工作和生活都带来了很大的便利。 附图说明
图 1为本发明的发光灯体聚光透镜结构的第一种实施方式的立体示意图。
图 2为本发明的发光灯体聚光透镜结构的透镜前端面示意图。
图 3为图 2的 C - C方向剖视示意图。
图 4为图 2的 D - D方向剖视示意图。
图 5a、 5b为本发明的发光灯体聚光透镜结构的透射光路示意图。
图 6a为本发明的发光灯体聚光透镜结构的第二种实施方式的立体示意图。
图 6b为本发明的发光灯体聚光透镜结构的第三种实施方式的立体示意图。
图 7为本发明的照明装置的发光组件的示意图。
图 8为本发明的照明装置的发光组件与发光灯体聚光透镜的位置对应关系示意图。 图 9为本发明的照明装置的整体外观结构示意图。 具体实施方式
为了能够更清楚地理解本发明的技术内容, 特举以下实施例详细说明。 请参阅图 1至图 4、 图 5a、 图 5b所示, 该发光灯体聚光透镜结构, 包括: ( 1 )透镜前端面 1 ;
( 2 ) 与透镜前端面 1相对的透镜后端面 2;
其中, 所述的透镜结构为具有光滑表面的单片复合菲涅尔透镜。
该发光灯体聚光透镜结构中的透镜前端面 1包括:
( 1 )菲涅尔折射区 11 , 分布于该透镜前端面 1 的外部边缘区域, 将入射光折射形成定 向光束;
( 2 ) 凸透镜折射区 12, 分布于该透镜前端面 1的中心部位, 将入射光进行聚光折射;
( 3 ) 波紋折射区 13 , 分布于所述的透镜前端面 1上的该菲涅尔折射区 11与凸透镜折射 区 12之间, 且将入射光进行发散混合折射, 从而可以实现不同波长、 不同温度的光相互之间 的发散和混合, 保证出射光是一束同种光线的集合输出。
其中, 在本发明的第一种实施例中, 所述的波紋折射区 13中可以具有数个沿径向直线发 散延伸的径向波紋凸脊 14; 所述的径向波紋凸脊 14的宽度自中心向周边逐渐增加, 且相邻 的径向波紋凸脊 14之间具有分割凹槽 15 , 所述的径向波紋凸脊 14的横截面可以呈三角形、 半圆形、 弓形、 半椭圆形或者半多边形。
请参阅图 6a所示, 在本发明的第二种实施例中, 该发光灯体聚光透镜结构中的波紋折射 区 13 中也可以具有数个沿径向蜗线发散延伸的蜗线型波紋凸脊 16, 所述的蜗线型波紋凸脊 16的宽度自中心向周边逐渐增加; 相邻的蜗线型波紋凸脊 16之间具有分割凹槽 17, 所述的 蜗线型波紋凸脊 16的横截面可以呈三角形、 半圆形、 弓形、 半椭圆形或者半多边形。
再请参阅图 6b所示, 在本发明的第三种实施例中, 该发光灯体聚光透镜结构中的波紋折 射区 13 中还可以具有数个沿以该透镜前端面的中心部位为圆心的同心圆周方向排列的鳞状 凸起 18 ,所述的鳞状凸起 18的大小自中心向周边逐渐增加,且该鳞状凸起 18可以为棱锥体、 棱台体、 半球体、 半椭球体、 圆柱体或者圆锥体。
再请参阅图 3和图 4所示, 该发光灯体聚光透镜结构中的透镜后端面 2包括:
( 1 )外缘内部反射区 21 , 分布于该透镜后端面 2的外部边缘区域, 且厚度从外部边缘 向中心部位方向逐渐增加, 将入射光进行内部反射并重定向至发光灯体的照射方向;
( 2 ) 凸面折射区 22, 分布于该透镜后端面 2的中心部位, 将入射光进行聚光折射;
( 3 )全反射区 23 , 分布于所述的透镜后端面 2上的该外缘内部反射区 21与凸面折射区 22之间, 将入射光进行全反射并射入该透镜结构中。 其中,该发光灯体聚光透镜结构中的透镜后端面 2的外缘内部反射区 21的表面上覆盖有 介质膜, 从而能够进一步增强该外缘内部反射区 21的反射率。
同时, 所述的外缘内部反射区 21沿该透镜结构的中心轴向截面呈梯形; 所述的全反射区 23为所述的外缘内部反射区 21与凸面折射区 22之间的内圆筒面; 所述的凸面折射区 22的 外部边缘位置 221与所述的波紋折射区 13的外部边缘位置 131沿该透镜结构的中心轴向相对 应。
不仅如此, 在本发明的具体实施方式中, 该发光灯体聚光透镜结构的最大厚度可以不超 过 10mm, 且该发光灯体聚光透镜结构的直径可以不超过 45mm; 当然本发明的技术方案中, 可以根据不同型号的发光灯体的尺寸, 灵活调整透镜结构的最大厚度以及直径的参数, 从而 和实际的应用相适应。
再请参阅图 7至图 9该具有上述的透镜结构的照明装置, 其中包括:
-壳体 3 , 以及
- 设置于壳体 3中的发光组件 4;
所述的透镜结构设置于该壳体 3前端,且该透镜结构的位置与所述的发光组件 4相对应。 该照明装置中的发光组件 4包括基板 41和设置于该基板 41上的数个发光二极管 LED 42, 各个发光二极管 LED 42与所述的波紋折射区 13的位置相对应。
在本发明的第一种具体实施例中,该照明装置中的波紋折射区 13中具有数个沿径向直线 发散延伸的径向波紋凸脊 14, 所述的各个发光二极管 LED 42在基板 41上沿圆周方向分布, 且每个发光二极管 LED 42分别与相应的径向波紋凸脊 14的位置相对应。
在本发明的第二种具体实施例中,该照明装置中的波紋折射区 13中具有数个沿径向直线 发散延伸的蜗线型波紋凸脊 16,所述的各个发光二极管 LED 42在基板 41上沿圆周方向分布, 且每个发光二极管 LED 42分别与相应的蜗线型波紋凸脊 16的位置相对应。
同时, 该照明装置中的发光二极管 LED 42与该透镜结构的透镜后端面 2的距离不超过 5mm; 当然本发明的技术方案中, 可以根据不同型号的发光灯体的尺寸, 灵活调整透镜结构 的透镜后端面 2与发光二极管 LED 42的距离参数, 从而和实际的应用相适应。
该照明装置中的各个发光二极管 LED 42的发光颜色或者色温不同, 且所述的透镜结构 可以通过光硬化树脂粘合层固定粘接于所述的壳体 3的前端。
在实际使用当中, 本发明的基本思想是充分利用了 LED技术的先进性, 并利用了光语学 技术(光语学技术是将 LED技术和光学技术进行兼容并蓄所产生出的一种新的技术)。 在本发明中利用了光谱学技术的原理,使用了不同颜色的 LED, 不同颜色的 LED发出的 光的经过本发明的透镜结构进行折射后, 能够进行发散混合, 其中首先依赖于菲涅尔透镜, 同时也依赖本发明的特殊的复合折射结构,从而产生了能够适合人的眼睛的感觉的光线频谱, 而且效率较高, 因此本发明的照明装置能够使用更少的能量获得更高的光亮度。
同时, 将不同颜色和色温的 LED发出的光进行混合, 还能够产生可以自由调节的光的颜 色,本发明的发光灯体聚光透镜结构就能够同时实现将 LED发射源发出的光进行混合和聚光 的作用和效果, 而且本发明的 LED阵列排成环形, 从而能够使得 LED与波紋折射区的各个 折射散射混合功能单元相对应, 从而获得好的光线发散混合效果。
本发明就是将合适的波紋折射特点应用在径向阵列中, 而且与 LED 阵列相对应的位置 上, 从而将大部分光经过波紋折射区 13朝多个方向进行折射和散射,从而使得不同色温的光 线能够彼此重叠, 从而将不同色温 /颜色的光线进行混合。 而少部分的光线能够通过本发明的 聚光透镜结构中的菲涅尔折射区 11并经过多次内部反射后最终进行会聚,并成为一个具有相 对较小的光束角度的出射光束图形, 提高了光能量的利用率。
通过调节改变菲涅尔折射区 11、 凸透镜折射区 12、 波紋折射区 13三部分所占的比例和 菲涅尔折射角度, 能够获得不同的出射光束图形。
釆用了上述的发光灯体聚光透镜结构及相应的照明装置, 由于其在透镜前端面 1上具有 菲涅尔折射区 11、 凸透镜折射区 12、 波紋折射区 13 , 透镜后端面 2上具有外缘内部反射区 21、 凸面折射区 22、 全反射区 23 , 从而能够将绝大部分的入射光有效进行发散混合折射, 同 时可以将少部分光进行反射、 折射重定向从而集成光束, 不仅结构筒单实用, 而且经济实用, 工作性能稳定可靠, 同时可以根据需要灵活调整集束的宽度和角度、 不同颜色光的散射混合 程度, 适用范围较为广泛, 为人们的工作和生活都带来了很大的便利。
在此说明书中, 本发明已参照其特定的实施例作了描述。 但是, 很显然仍可以作出各种 修改和变换而不背离本发明的精神和范围。 因此, 说明书和附图应被认为是说明性的而非限 制性的。

Claims

权利要求
1、 一种发光灯体聚光透镜结构, 包括:
- 透镜前端面, 以及
- 与该透镜前端面相对的透镜后端面;
其特征在于,
所述的透镜结构为具有光滑表面的单片复合菲涅尔透镜。
2、根据权利要求 1所述的发光灯体聚光透镜结构,其特征在于,所述的透镜前端面包括: - 菲涅尔折射区, 分布于该透镜前端面的外部边缘区域, 将入射光折射形成定向光束; - 凸透镜折射区, 分布于该透镜前端面的中心部位, 将入射光进行聚光折射;
- 波紋折射区, 分布于所述的透镜前端面上的该菲涅尔折射区与凸透镜折射区之间, 且 将入射光进行发散混合折射。
3、 根据权利要求 2所述的发光灯体聚光透镜结构, 其特征在于, 所述的波紋折射区中具 有数个沿径向直线发散延伸的径向波紋凸脊。
4、 根据权利要求 3所述的发光灯体聚光透镜结构, 其特征在于, 所述的径向波紋凸脊的 宽度自中心向周边逐渐增加。
5、 根据权利要求 3所述的发光灯体聚光透镜结构, 其特征在于, 相邻的径向波紋凸脊之 间具有分割凹槽。
6、 根据权利要求 3所述的发光灯体聚光透镜结构, 其特征在于, 所述的径向波紋凸脊的 横截面呈三角形、 半圆形、 弓形、 半椭圆形或者半多边形。
7、 根据权利要求 2所述的发光灯体聚光透镜结构, 其特征在于, 所述的波紋折射区中具 有数个沿径向蜗线发散延伸的蜗线型波紋凸脊。
8、 根据权利要求 7所述的发光灯体聚光透镜结构, 其特征在于, 所述的蜗线型波紋凸脊 的宽度自中心向周边逐渐增加。
9、 根据权利要求 7所述的发光灯体聚光透镜结构, 其特征在于, 相邻的蜗线型波紋凸脊 之间具有分割凹槽。
10、 根据权利要求 7所述的发光灯体聚光透镜结构, 其特征在于, 所述的蜗线型波紋凸 脊的横截面呈三角形、 半圆形、 弓形、 半椭圆形或者半多边形。
11、 根据权利要求 2所述的发光灯体聚光透镜结构, 其特征在于, 所述的波紋折射区中 具有数个沿以该透镜前端面的中心部位为圆心的同心圆周方向排列的鳞状凸起。
12、 根据权利要求 11所述的发光灯体聚光透镜结构, 其特征在于, 所述的鳞状凸起的大 小自中心向周边逐渐增加。
13、 根据权利要求 11所述的发光灯体聚光透镜结构, 其特征在于, 所述的鳞状凸起为棱 锥体、 棱台体、 半球体、 半椭球体、 圆柱体或者圆锥体。
14、 根据权利要求 2至 13中任一项所述的发光灯体聚光透镜结构, 其特征在于, 所述的 透镜后端面包括:
- 外缘内部反射区, 分布于该透镜后端面的外部边缘区域, 且厚度从外部边缘向中心部 位方向逐渐增加, 将入射光进行内部反射并重定向至发光灯体的照射方向;
- 凸面折射区, 分布于该透镜后端面的中心部位, 将入射光进行聚光折射;
- 全反射区, 分布于所述的透镜后端面上的该外缘内部反射区与凸面折射区之间, 将入 射光进行全反射并射入该透镜结构中。
15、 根据权利要求 14所述的发光灯体聚光透镜结构, 其特征在于, 所述的外缘内部反射 区的透镜后端面表面上覆盖介质膜。
16、 根据权利要求 14所述的发光灯体聚光透镜结构, 其特征在于, 所述的外缘内部反射 区沿该透镜结构的中心轴向截面呈梯形。
17、 根据权利要求 14所述的发光灯体聚光透镜结构, 其特征在于, 所述的全反射区为所 述的外缘内部反射区与凸面折射区之间的内圆筒面。
18、 根据权利要求 14所述的发光灯体聚光透镜结构, 其特征在于, 所述的凸面折射区的 外部边缘位置与所述的波紋折射区的外部边缘位置沿该透镜结构的中心轴向相对应。
19、 根据权利要求 1至 13中任一项所述的发光灯体聚光透镜结构, 其特征在于, 所述的 透镜结构的最大厚度不超过 10mm。
20、 根据权利要求 1至 13中任一项所述的发光灯体聚光透镜结构, 其特征在于, 所述的 透镜结构的直径不超过 45mm。
21、 一种具有权利要求 1所述的透镜结构的照明装置, 其特征在于, 所述的照明装置包 括:
-壳体, 以及
- 设置于壳体中的发光组件;
所述的透镜结构设置于该壳体前端, 且该透镜结构的位置与所述的发光组件相对应。
22、根据权利要求 21所述的照明装置,其特征在于,所述的透镜前端面包括波紋折射区, 该波紋折射区将入射光进行发散混合折射, 所述的发光组件包括基板和设置于该基板上的数 个发光二极管 LED, 各个发光二极管 LED与所述的波紋折射区位置相对应。
23、 根据权利要求 22所述的照明装置, 其特征在于, 所述的波紋折射区中具有数个沿径 向直线发散延伸的径向波紋凸脊, 所述的各个发光二极管 LED在基板上沿圆周方向分布, 且 每个发光二极管 LED分别与相应的径向波紋凸脊位置相对应。
24、 根据权利要求 22所述的照明装置, 其特征在于, 所述的波紋折射区中具有数个沿径 向直线发散延伸的蜗线型波紋凸脊, 所述的各个发光二极管 LED在基板上沿圆周方向分布, 且每个发光二极管 LED分别与相应的蜗线型波紋凸脊位置相对应。
25、 根据权利要求 22所述的照明装置, 其特征在于, 所述的发光二极管 LED与该透镜 结构的透镜后端面的距离不超过 5mm。
26、 根据权利要求 22至 25中任一项所述的照明装置, 其特征在于, 所述的各个发光二 极管 LED的发光颜色相同、 发光颜色不同或者色温不同。
27、 根据权利要求 21至 25中任一项所述的照明装置, 其特征在于, 所述的透镜结构通 过光硬化树脂粘合层固定粘接于所述的壳体前端。
PCT/CN2012/076568 2011-06-13 2012-06-07 发光灯体聚光透镜结构及相应的照明装置 WO2012171439A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110158727.9A CN102829430B (zh) 2011-06-13 2011-06-13 发光灯体聚光透镜结构及相应的照明装置
CN201110158727.9 2011-06-13

Publications (1)

Publication Number Publication Date
WO2012171439A1 true WO2012171439A1 (zh) 2012-12-20

Family

ID=47332659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076568 WO2012171439A1 (zh) 2011-06-13 2012-06-07 发光灯体聚光透镜结构及相应的照明装置

Country Status (2)

Country Link
CN (1) CN102829430B (zh)
WO (1) WO2012171439A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014206756A1 (en) * 2013-06-26 2014-12-31 Osram Gmbh Lens for illumination device and illumination device comprising the lens
WO2017017375A1 (fr) * 2015-07-30 2017-02-02 Gaggione Sas Système optique de collimation non-imageur d'intensité lumineuse maximale
US10760770B2 (en) 2017-01-19 2020-09-01 Ledil Oy Device for modifying light distribution
DE102015107443B4 (de) 2015-05-12 2022-01-13 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Linse und optoelektronische Leuchtvorrichtung
DE102021108747A1 (de) 2021-04-08 2022-10-13 Ledlenser GmbH & Co. KG Kollimator und tragbare Leuchte

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10274159B2 (en) 2017-07-07 2019-04-30 RAB Lighting Inc. Lenses and methods for directing light toward a side of a luminaire
CN107798892B (zh) * 2017-11-15 2020-04-17 厦门通士达照明有限公司 一种交通信号灯
JPWO2019117283A1 (ja) * 2017-12-14 2020-10-22 Scivax株式会社 光学素子および光学系装置
WO2019201634A1 (en) * 2018-04-19 2019-10-24 Signify Holding B.V. A lighting device
CN110160008B (zh) * 2019-03-31 2020-08-11 广州达森灯光股份有限公司 一种led水纹灯具产生水纹3d起伏效果的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1637341A (zh) * 2003-12-22 2005-07-13 肖特股份公司 各照明单元间隔可耦合变化的菲涅尔透镜聚光灯
CN1667436A (zh) * 2004-03-10 2005-09-14 西铁城电子股份有限公司 具有菲涅耳透镜面的透镜及采用该透镜的照明装置
CN101430072A (zh) * 2006-01-19 2009-05-13 清华大学 一种拼装而成的均匀面光源
WO2011033437A1 (en) * 2009-09-18 2011-03-24 Koninklijke Philips Electronics N.V. Luminaire and optical component
CN102032472A (zh) * 2009-09-25 2011-04-27 鸿富锦精密工业(深圳)有限公司 灯具结构
CN202082809U (zh) * 2011-06-13 2011-12-21 蔡子丰 发光灯体聚光透镜结构及相应的照明装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1637341A (zh) * 2003-12-22 2005-07-13 肖特股份公司 各照明单元间隔可耦合变化的菲涅尔透镜聚光灯
CN1667436A (zh) * 2004-03-10 2005-09-14 西铁城电子股份有限公司 具有菲涅耳透镜面的透镜及采用该透镜的照明装置
CN101430072A (zh) * 2006-01-19 2009-05-13 清华大学 一种拼装而成的均匀面光源
WO2011033437A1 (en) * 2009-09-18 2011-03-24 Koninklijke Philips Electronics N.V. Luminaire and optical component
CN102032472A (zh) * 2009-09-25 2011-04-27 鸿富锦精密工业(深圳)有限公司 灯具结构
CN202082809U (zh) * 2011-06-13 2011-12-21 蔡子丰 发光灯体聚光透镜结构及相应的照明装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014206756A1 (en) * 2013-06-26 2014-12-31 Osram Gmbh Lens for illumination device and illumination device comprising the lens
DE102015107443B4 (de) 2015-05-12 2022-01-13 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Linse und optoelektronische Leuchtvorrichtung
WO2017017375A1 (fr) * 2015-07-30 2017-02-02 Gaggione Sas Système optique de collimation non-imageur d'intensité lumineuse maximale
FR3039628A1 (fr) * 2015-07-30 2017-02-03 Gaggione Sas Systeme de collimation non-imageur d'intensite lumineuse maximale
EP3587912A1 (fr) * 2015-07-30 2020-01-01 Gaggione SAS Système de collimation non-imageur d'intensité lumineuse maximale
US10655816B2 (en) 2015-07-30 2020-05-19 Gaggione Sas Optical system for non-imaging collimation of maximum light intensity
US10760770B2 (en) 2017-01-19 2020-09-01 Ledil Oy Device for modifying light distribution
DE102021108747A1 (de) 2021-04-08 2022-10-13 Ledlenser GmbH & Co. KG Kollimator und tragbare Leuchte

Also Published As

Publication number Publication date
CN102829430B (zh) 2016-12-07
CN102829430A (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
WO2012171439A1 (zh) 发光灯体聚光透镜结构及相应的照明装置
US20080310028A1 (en) Near field lens for a light assembly
US10663651B2 (en) Light mixing systems with a glass light pipe
AU2012365473B2 (en) Improved optical systems and LED luminaires
TW201621220A (zh) 聚光透鏡以及使用該聚光透鏡之燈具
WO2013145351A1 (ja) 照明ランプ用レンズ板および照明ランプ
TW201523033A (zh) 全向發光二極體透鏡
TW201420956A (zh) 發光二極體光分配透鏡及其光源裝置
CN202082809U (zh) 发光灯体聚光透镜结构及相应的照明装置
US20110141731A1 (en) Reflection-type light-emitting assembly
TWI418853B (zh) 光學透鏡模組及其發光裝置
US10663652B2 (en) Light mixing systems with a glass light pipe
WO2020063569A1 (zh) 一种扩散板和具有该扩散板的灯具
CN218064498U (zh) 一种光学结构灯具
TWI452231B (zh) A lighting device with microstructure brightening film
JP6889267B2 (ja) 阻止中心レンズを有する誘電体コリメータ
US20100109500A1 (en) Light generating unit
TWM451497U (zh) 具有大發光角度之led燈具
TWI479106B (zh) 光學透鏡
TW201024627A (en) Reflection element for light-emitting unit
CN209068433U (zh) 一种平板灯用内置定位柱透镜
WO2021093668A1 (zh) 一种照明模组及灯具
TWM411533U (en) structure for optical lens of light source
US20140355239A1 (en) Beam shaping light emitting module
TWI352794B (en) Light source-modulating device having composite cu

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12801227

Country of ref document: EP

Kind code of ref document: A1