TWI352794B - Light source-modulating device having composite cu - Google Patents

Light source-modulating device having composite cu Download PDF

Info

Publication number
TWI352794B
TWI352794B TW97108981A TW97108981A TWI352794B TW I352794 B TWI352794 B TW I352794B TW 97108981 A TW97108981 A TW 97108981A TW 97108981 A TW97108981 A TW 97108981A TW I352794 B TWI352794 B TW I352794B
Authority
TW
Taiwan
Prior art keywords
light
light source
refractive surface
refractive
emitting diode
Prior art date
Application number
TW97108981A
Other languages
Chinese (zh)
Other versions
TW200938767A (en
Inventor
Chi Feng Chen
Original Assignee
Univ Nat Central
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Central filed Critical Univ Nat Central
Priority to TW97108981A priority Critical patent/TWI352794B/en
Publication of TW200938767A publication Critical patent/TW200938767A/en
Application granted granted Critical
Publication of TWI352794B publication Critical patent/TWI352794B/en

Links

Description

1352794 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種複合曲面型之光源調制裝置,特別為一 種應用於照明之光源調制裝置。 【先前技術】 隨著發光二極體製作技術不斷進步,使得發光二極體的發 光功率逐漸提高,發光二極體之亮度亦逐漸增加,因此發光二 極體可應用之層面也更加廣泛,例如應用於日常照明或情境照 明…等。當發光二極體應用於照明時,其光線需均勻且準直, 使得光線的能量集中,以便於實際應用。 第1圖係為習知發光二極體透鏡結構10之剖面圖。如第1 圖所示,其為在2006年1月消費性電子國際研討會 (International Conference on Consumer Electronics,IECC)上發 表之「高效率發光系統之超小型投影器」(Ultra Small Projector with High Efficiency Illumination System)中提出之一種發光二 極體透鏡結構10。上述發光二極體透鏡結構l〇,係具有一球 面1卜一第一非球面12、一第二非球面π、一第三非球面14、 以及一發光二極體光源15。發光二極體光源15之光線16、 16’、16”由球面11入射,而發光二極體光源15所發出的大角 度的光線16係先於第三非球面14反射後,再於第二非球面 折射出光,使光線變為近似準直,而由發光二極體光源Μ = 出的小角度的光線16’則由第一非球面12折射出光。' ^ 第2圖係為習知發光二極體透鏡結構10之光斑圖。第3 6 1352794 相重合’ Λ第一折射面#設置於能折射由至少一發光二極體光 源所發出小於—配光參考角之光線的位置;以及一第二折射 面,其係為對稱於^心釉之曲面’且第二折射面之周緣係與第 一折射面之周緣相接以形成一容置部,又第二折射面係設置於 能折射由發光二極體光源所發出大於配光參考角之光線的位 置,一基面,其周緣係與第二折射面相接以形成一第一接線; 一反射面,其係為對稱於中心軸之曲面,且反射面之周緣與基 面之周緣相接以形成一第二接線,又反射面設置於能反射由配 光複合折射面入射之光線的位置;以:及一調光複合折射面,其 具有· 一第三折射面,其係為對稱於中心軸之函數曲面,且第 二折射面之周緣與反射面之周緣相接以形成一第三接綠,又 三折射面係設置於能調制由反射面入射之光線的位置;以及第 第四折射面,其係為對稱於中心軸之曲面,且第四折射面及— 緣與第三折射面之周緣相接以形成—第四接線,又第^周 係設置於能調制由第一折射面人射之光線的位置;其永面 考角係介於-配光臨界角的度範_,且配光 ^ 發光:極體光源所發出之一臨界光線入射至光源調制 與發光一極體光源之法線方向間之失角、、置别 光二極體光源發出,並由第一折糾 '、、·彳為由發 緣相接處人射後,再由第四接&射面之周 基面間的垂直距離係大於第叫線與=垂^接線與 藉由本發明的實施,至少可達到下列進步功效離。 一、 :使得發光二極體光源的出光光線準直且均句。 源 二、 藉由調光複合折射 的發散角度。 形狀,以縮小發光二極體光 丄;3)27941352794 IX. Description of the Invention: [Technical Field] The present invention relates to a composite curved type light source modulating device, and more particularly to a light source modulating device applied to illumination. [Prior Art] With the continuous advancement of the manufacturing technology of the light-emitting diode, the light-emitting power of the light-emitting diode is gradually increased, and the brightness of the light-emitting diode is gradually increased, so that the applicable level of the light-emitting diode is also wider, for example, Used in everyday lighting or situational lighting...etc. When the light-emitting diode is applied to illumination, the light needs to be uniform and collimated, so that the energy of the light is concentrated for practical application. 1 is a cross-sectional view of a conventional light emitting diode lens structure 10. As shown in Figure 1, it is the "Ultra Small Projector with High Efficiency" published in the January 2006 International Conference on Consumer Electronics (IECC). A light-emitting diode lens structure 10 proposed in the Illumination System. The light-emitting diode lens structure has a spherical surface, a first aspheric surface 12, a second aspheric surface π, a third aspheric surface 14, and a light-emitting diode light source 15. The light rays 16, 16', 16" of the light-emitting diode light source 15 are incident by the spherical surface 11, and the large-angle light 16 emitted by the light-emitting diode light source 15 is reflected before the third aspheric surface 14, and then after the second The aspherical surface refracts light, causing the light to become approximately collimated, while the small angle of light 16' emitted by the light-emitting diode source 折射 is refracted by the first aspherical surface 12. ' ^ Figure 2 is a conventional illumination a spot pattern of the diode lens structure 10. The 3 6 1352794 phase coincidence ' Λ first refracting surface # is disposed at a position capable of refracting light of less than the light distribution reference angle emitted by the at least one light emitting diode source; a second refractive surface which is symmetrical to the curved surface of the core glaze and the periphery of the second refractive surface is in contact with the periphery of the first refractive surface to form a receiving portion, and the second refractive surface is disposed to be refracting a position of the light emitted by the light-emitting diode source that is greater than the light-receiving reference angle, a base surface having a periphery that is in contact with the second refractive surface to form a first wire; and a reflective surface that is symmetric to the central axis The curved surface, and the periphery of the reflecting surface is connected to the periphery of the base surface Forming a second wiring, wherein the reflecting surface is disposed at a position capable of reflecting the light incident from the light-receiving composite refractive surface; and: a dimming composite refractive surface having a third refractive surface which is symmetric to the center a function of the axis of the axis, and the periphery of the second refractive surface is in contact with the periphery of the reflecting surface to form a third green, and the third refractive surface is disposed at a position capable of modulating the light incident from the reflecting surface; and the fourth refraction a surface which is a curved surface symmetrical with respect to the central axis, and the fourth refractive surface and the edge are connected to the periphery of the third refractive surface to form a fourth wiring, and the second circumference is disposed to be modulated by the first refractive surface The position of the light emitted by the person; the face of the permanent face is between the angle of the critical angle of the light distribution, and the light distribution is illuminating: one of the critical light rays emitted by the polar body light source is incident on the light source to modulate and emit a polar light source. The angle between the normal direction of the line, the light source of the polarized light source is emitted, and the first fold is corrected, and the 彳 is shot by the person at the edge of the hair, and then the fourth joint & The vertical distance between the base surfaces is greater than the first line and the = line and the wiring The implementation of the invention can at least achieve the following advancement effects: 1. The light emitted by the light-emitting diode source is collimated and uniform. Source 2, the divergence angle of the composite refraction by dimming. Body light; 3) 2794

為了使任何熟習相關技藝者了解本發明之技術内容並據 以實鈀,且根據本說明書所揭露之内容、申請專利範圍及圖 式’任何熟習相關技藝者可輕易地理解本發明相關之目的及優 因此將在實;^方式中詳細敘述本發明之詳細特徵以及優 點。 【實施方式】 鲁 第4圖係為本發明之一種複合曲面型光源調制裝置2〇之 體實知例圖。第5圖係為本發明之—種複合曲面型光源調制 裝置20之第一剖視實施例圖。第6圖係為本發明之一種複合 :曲面型光源調制裝置20之第二剖視實施例圖。第7圖係為本 發明之-種複合曲©型綠調難置2G之第三剖視實施例 -圖帛8圖係為本發明之一種複合曲面型光源調制裝置之 .第四剖視實施例圖。第9圖係為本發明之一種複合曲面型光源 調制襄置20之第五剖視實施例圖。第1〇圖係為本發明之一種 #複合曲面型光源調制裝置20之第六剖視實施例圖。第n圖係 為第7圖之複合曲面型光源調制裝置2〇之光斑圖。第12圖係 為第7圖之複合曲面型光源調制裝置2〇之照度分佈圖。 如第4圖所不’本實施例係為一種複合曲面型之光源調制 裝置20,包括:一配光複合折射面3〇 ; 一基面4〇 ; 一反射面 5〇,以及一調光複合折射面60。光源調制裝置2〇具有一中心 軸21,並且光源調制裝置20係對稱於中心軸21,以形成—圓 對稱結構或一橢圓對稱結構。此外,光源調制裝置2〇之材質 可以為一可塑性材質,並可以射出成型之方式製造。 9 1352794 酉己光複合折射面30,其具有:一第一折射面3i;以及一 第二折射面32。配光複合折射面3〇係用以分配由發光二極體 光源15發出之光線’使其分別由第一折射面31及第二折射面 32入射至光源調制裝置2〇中。 第-折射面31’其係為一種函數曲面,可依設計之需要將 第-折射面31設計為不同函數曲φ,例如第—折射面31可為 一凹函數面(如第5圖、第8圖所示)、-凸函數面(如第6圖、 籲第9圖所示)、或一平面(如第7圖、fi〇圖所示)。第一折射 面31之面中心軸係與光源調制裝置2〇之中心軸21重合,又 •第-折射© 31係設置於能折射由至少_發光二極體光源叫 :發出小於-配光參考角Θ之光線的位置,其中配光參考角θ之 定義將詳細描述如後。 • π如第5圖所示,經由光源調制裝置20之設計,可特別使 侍由發光二極體光源15所發出之一光線由第一折射面31之周 緣與第—折射面32之周緣相接處入射至光源調制裝置後, 鲁再由第四接線25(將定義描述如後)處出射離開光源調制裝置 2〇’而此光線即定義為一臨界光線70。而配光臨界角係為入射 至光源調制裝置20前之臨界光線70與發光二極體光源15之 法線方向間之夾角。而配光臨界角之範圍係可介於15度至75 度之間。 而配光參考角Θ則介於配光臨界角的±10度範圍間。舉例 來說,當配光臨界角為15度時,配光參考角(9則可能為介於5 度至25度的範圍間之角度。更佳的是,配光參考角g可恰與 配光臨界角大小相等。當發光二極體光源15所發出之光線的 1352794 入光角度小於配光參考角Θ時,光線皆會被分配至第一折射面 31,並由第一折射面31折射入射至光源調制裝置20中。 如第4圖及第5圖至第10圖所示,第二折射面32,其為 對稱於中心軸21之一任意曲面。第二折射面32之周緣與第一 折射面31之周緣相接以形成一容置部,用以容置發光二極體 光源15,發光二極體光源15係可以為一發光二極體晶片、或 一已封裝之發光二極體,而發光二極體光源15之發光波長係 介於350奈米至850奈米之間。 ^ 第二折射面32係設置於能折射由發光二極體光源15所發 出大於配光參考角Θ之光線的位置。也就是說,當發光二極體 光源15所發出之光線的入光角度大於配光參考角(9時,光線 皆會被分配至第二折射面32,並由第二折射面32折射入射至 光源調制裝置20中。 基面40,其周緣係與第二折射面32相接以形成一第一接 線22,並且亦與反射面50之周緣相接以形成一第二接線23。 •基面40係具有一定位結構,用以使發光二極體光源15得以定 位固定於第一折射面31及第二折射面32所形成之容置部中, 以便於使發光二極體光源15之幾何中心可定位於光源調制裝 置20之t心軸21的延長線上,進而使得發光二極體光源15 之光線可平均地入射光源調制裝置20。 反射面50,其係為對稱於中心軸21之一任意曲面,並與 基面40相接以形成第二接線23。又反射面50係設置於能反射 由配光複合折射面30入射之光線的位置,且反射面50之形狀 係可設計成使入射至反射面50之光線皆被全反射至第三折射 1352794. •面61,意即反射面50之形狀需滿足光線入射於反射面5〇時, 其入射角皆大於臨界角之條件,進而使光線被反射面5〇全反 射,藉此改變光線之行進方向。 調光複合折射面60 ’其具有:-第三折射面61 ;以及-'第四折射面62。調光複合折射面60係用以調制被反射面50 ’反射及被第-折射面31折射之光線^藉由調光複合折射面6〇 之設计,可調制光線之出光路徑,進而使得發光二極體光源15 之光線達到準直且均勻之功效。 鲁 帛三折射面61,其係為對稱於中心轴21之-任意函數曲 面,且第三折射面61之周緣與反射面5〇之周緣相接以形成一 第二接線24 ’又第二折射面61係設置於能調制被反射面5〇 反射之光線的位置。並且,第三折射面61之形狀係可使得入 射至第二折射面61之光線的入射角小於臨界角,進而使得光 •線折射出光源調制裝置並且折射後的光線係近似平行於中 〜轴21,也就是s兒由第二折射面61出光之光線的發散角度非 鲁常小並且相當準直。 第四折射面62,其係為對稱於中心軸21之一任意曲面, •其可以為一凸面,並且第四折射面62之周緣與第三折射面61 :,周緣相接以形成—第四接線25。又第四折射面62係設置於 .能調制由第_折射面31入射之光線的位置,並且第四折射面 62之形狀係可設計成使入射至第四折射面62之光線的入射角 J ;界角,進而使被第—折射面31折射後之光線再次被折 射,且折射出光源調制裝置20的光線近似平行於中心軸 21,意即由光源調制裝置2〇出光之光線相當準直。 12 1352794 為了使微調本實施例之出光準直均勻性,進一步設計第三 折射面61之形狀。如第5圖、第6圖及第7圖所示,將第一 距離D1設計成大於第二距離D2(D1>D2),第一距離D1係為 第三接線24與基面40間的垂直距離,而第二距離D2係為第 四接線25與基面40間的垂直距離。或是如第8圖、第9圖及 第10圖所示,將第一距離D1及第二距離D2皆設計成大於第 三距離D3(D1>D3且D2>D3),而第三距離D3係為第三折射 面61之最低點與基面40間的垂直距離。 以第7圖之複合曲面型光源調制裝置20為例,其係為圓 對稱結構。如第11圖及第12圖所示,其為利用美國Breault Research Organization 之 ASAP (Advanced System Analysis Program)光學模擬軟體模擬第7圖之複合曲面型光源調制裝置 20,在距發光二極體光源15約18公釐處平面的光斑圖及照度 分佈圖。光斑的有效均勻範圍之直徑約為15公釐,並且照度 之強度均勻,光斑不再出現同心圓之形狀,即表示本實施例之 複合曲面型光源調制裝置2 0,其出光光線係相當準直並且照度 分佈相當平均。 本實施例之複合曲面型之光源調制裝置20係具有使發光 二極體光源15達到準直且均勻之功效,因此可先分析待調制 之發光二極體光源15,並根據所需之照明距離及照明範圍,規 劃設計光源調制裝置20之配光複合折射面30、反射面50及調 光複合折射面60,藉以達到所需之照明距離及照明範圍之目 標。 惟上述各實施例係用以說明本發明之特點,其目的在使熟 13 習該技術者歸解本㈣之时並m而雜定本發明 之專利㈣’故凡其他未麟本發明示之精神而完成之等 效修飾或修改’仍應包含在以下所述之巾請專利範圍中。 【圖式簡單說明】 第1圖係為習知發光二極體透鏡結構之剖面圖。 第2圖係為習知發光二極體透鏡結構之光斑圖。 第3圖係為習知發光二極體透鏡結構之照度分佈圖。 第圖系為本發明之種複合曲面型光源調制裝置之立體實施 例圖。 第5圖係為本發明之一種複合曲面型光源調制裝置之第一剖視 實施例圖。 2 6圖係為本發明之—種複合曲面型光源調制裝置之第二剖視 實施例圖。 第7圖係為本發明之—種複合曲面型光源調制裝置之第三剖視 貫施例圖。 ^圖係為本發明之—種複合曲面型光源調制裝置 貫施例圖。 ,9圖係為本發明之-種複合曲面型光源湖裝置 實施例圖。 、圖係為本發明之一種複合曲面型光源調制裝置之第六剖 視實施例圖。 ^ U圖係為第7圖之複合曲面型光源調制裝置之光斑圖。 12圖係為第7 ®之複合曲面型光源調難置之照度分佈圖。 1352794 【主要元件符號說明】 10.......................習知發光二極體透鏡結構 11................... ....球面 ' 12................... ....第一非球面 - 13................... ....第二非球面 14.................... ....第三非球面 15.................... ....發光二極體光源 16、16’、16” .....光線 20.................... ….複合曲面型之光源調制裝置 21.................... ....中心軸 22.................... ....第一接線 23.................... _苐二接線 24.................... ...第=接線 25.................... ...第四接線 φ 30.................... …配光複合折射面 31.................... …第一折射面 32.................... …第二折射面 . 40.................... ...基面 50.................... ...反射面 60.................... ...調光複合折射面 61.................... …第二折射面 62.................... ...第四折射面 Θ .................... .·.配光參考角 15 1352794 70.......................臨界光線 D1......................第一距離 D2......................第二距離In order to make the technical content of the present invention known to those skilled in the art and based on the actual palladium, and in accordance with the disclosure, the scope of the patent and the drawings, the skilled person can easily understand the related objects of the present invention and The detailed features and advantages of the present invention will be described in detail. [Embodiment] Fig. 4 is a view showing an example of a composite curved-surface light source modulating device 2 of the present invention. Fig. 5 is a first cross-sectional view showing a composite curved type light source modulating device 20 of the present invention. Fig. 6 is a cross-sectional view showing a composite of a curved type light source modulating device 20 of the present invention. Figure 7 is a third cross-sectional embodiment of the present invention, which is a composite curved-type light source modulating device of the present invention. The fourth cross-sectional embodiment is implemented. examples. Fig. 9 is a view showing a fifth cross-sectional view of a composite curved type light source modulation unit 20 of the present invention. Fig. 1 is a view showing a sixth cross-sectional embodiment of a composite curved type light source modulating device 20 of the present invention. The nth figure is a spot pattern of the composite curved type light source modulation device of Fig. 7. Fig. 12 is a illuminance distribution diagram of the composite curved type light source modulating device 2 of Fig. 7. As shown in FIG. 4, the present embodiment is a composite curved surface light source modulating device 20, comprising: a light distribution composite refractive surface 3〇; a base surface 4〇; a reflective surface 5〇, and a dimming composite Refractive surface 60. The light source modulating device 2 has a central axis 21, and the light source modulating device 20 is symmetrical to the central axis 21 to form a circular symmetrical structure or an elliptical symmetrical structure. Further, the material of the light source modulating device 2 can be made of a plastic material and can be produced by injection molding. 9 1352794 A composite light refraction surface 30 having a first refractive surface 3i and a second refractive surface 32. The light-receiving composite refractive surface 3 is used to distribute the light emitted by the light-emitting diode light source 15 into the light source modulation device 2 by the first refractive surface 31 and the second refractive surface 32, respectively. The first-refractive surface 31' is a function curved surface, and the first-refractive surface 31 can be designed as a different function curve φ according to the design. For example, the first-refractive surface 31 can be a concave function surface (such as FIG. 5, Figure 8 shows the - convex function surface (as shown in Figure 6, called Figure 9), or a plane (as shown in Figure 7, fi〇). The central axis of the surface of the first refractive surface 31 coincides with the central axis 21 of the light source modulation device 2, and the first-refractive© 31 is set to be refracted by at least _light-emitting diode light source: emit less than - light distribution reference The position of the light of the corners, where the definition of the light distribution reference angle θ will be described in detail as follows. • π, as shown in FIG. 5, through the design of the light source modulating device 20, in particular, one of the rays emitted by the light-emitting diode light source 15 can be made from the periphery of the first refractive surface 31 and the periphery of the first refractive surface 32. After the incident is incident on the light source modulating device, Lu is then exited from the light source modulating device 2' by the fourth wiring 25 (described as described later) and the light is defined as a critical ray 70. The critical angle of the light distribution is the angle between the critical ray 70 incident on the light source modulating device 20 and the normal direction of the illuminating diode source 15. The critical angle of the light distribution can range from 15 degrees to 75 degrees. The light distribution reference angle is between ±10 degrees of the critical angle of the light distribution. For example, when the critical angle of the light distribution is 15 degrees, the light distribution reference angle (9 may be an angle between 5 degrees and 25 degrees. More preferably, the light distribution reference angle g can be matched with The light critical angles are equal in size. When the light incident angle of the light emitted by the LED light source 15 is less than the light distribution reference angle ,, the light is distributed to the first refractive surface 31 and is refracted by the first refractive surface 31. Incident into the light source modulation device 20. As shown in Fig. 4 and Figs. 5 to 10, the second refractive surface 32 is an arbitrary curved surface symmetrical to one of the central axes 21. The periphery of the second refractive surface 32 and the The periphery of a refractive surface 31 is connected to form a receiving portion for accommodating the light emitting diode light source 15. The light emitting diode light source 15 can be a light emitting diode chip or a packaged light emitting diode. The light-emitting wavelength of the light-emitting diode source 15 is between 350 nm and 850 nm. ^ The second refractive surface 32 is disposed to be refracted by the light-emitting diode source 15 to be greater than the light distribution reference angle The position of the light of the ray, that is, when the light emitted by the light-emitting diode source 15 enters When the light angle is greater than the light distribution reference angle (9, the light is distributed to the second refractive surface 32, and is refracted by the second refractive surface 32 into the light source modulation device 20. The base surface 40, the peripheral edge and the second refractive The faces 32 are joined to form a first wire 22, and are also in contact with the periphery of the reflecting surface 50 to form a second wire 23. The base surface 40 has a positioning structure for enabling the light emitting diode source 15 to The positioning is fixed in the accommodating portion formed by the first refracting surface 31 and the second refracting surface 32, so that the geometric center of the illuminating diode light source 15 can be positioned on the extension line of the t-axis 21 of the light source modulating device 20, Further, the light of the light-emitting diode light source 15 is equally incident on the light source modulating device 20. The reflecting surface 50 is symmetrical with respect to one of the central axes 21 and is in contact with the base surface 40 to form the second wiring 23. The reflective surface 50 is disposed at a position capable of reflecting the light incident from the light-receiving composite refractive surface 30, and the shape of the reflective surface 50 is designed such that the light incident on the reflective surface 50 is totally reflected to the third refraction 1352794. • Face 61, meaning the shape of the reflecting surface 50 The shape needs to satisfy the condition that the incident angle of the light is greater than the critical angle when the light is incident on the reflecting surface, and the light is totally reflected by the reflecting surface 5, thereby changing the traveling direction of the light. The dimming composite refractive surface 60' has a third refractive surface 61; and a 'fourth refractive surface 62. The dimming composite refractive surface 60 is used to modulate the light reflected by the reflecting surface 50' and refracted by the first refractive surface 31. The surface design of the surface can modulate the light path of the light, thereby enabling the light of the light-emitting diode source 15 to achieve a collimating and uniform effect. The reed three-refractive surface 61 is symmetrical with respect to the central axis 21 - any The function curved surface, and the periphery of the third refractive surface 61 is in contact with the periphery of the reflecting surface 5A to form a second wiring 24' and the second refractive surface 61 is disposed at a position where the light reflected by the reflecting surface 5 is modulated. Moreover, the shape of the third refractive surface 61 is such that the incident angle of the light incident on the second refractive surface 61 is smaller than the critical angle, so that the light line is refracted by the light source modulation device and the refracted light is approximately parallel to the middle axis. 21, that is, the divergence angle of the light emitted by the second refractive surface 61 is not always small and quite collimated. The fourth refractive surface 62 is arbitrarily curved to one of the central axes 21, • it may be a convex surface, and the periphery of the fourth refractive surface 62 is connected to the third refractive surface 61: the periphery to form a fourth Wiring 25. Further, the fourth refractive surface 62 is disposed at a position capable of modulating the light incident from the first refracting surface 31, and the shape of the fourth refractive surface 62 is designed to cause the incident angle of the light incident to the fourth refractive surface 62. The boundary angle, and thus the light refracted by the first refracting surface 31, is again refracted, and the ray refracting the light source modulating device 20 is approximately parallel to the central axis 21, that is, the light emitted by the light source modulating device 2 is relatively collimated. . 12 1352794 In order to fine-tune the uniformity of the light collimation of this embodiment, the shape of the third refractive surface 61 is further designed. As shown in FIGS. 5, 6, and 7, the first distance D1 is designed to be larger than the second distance D2 (D1 > D2), and the first distance D1 is the vertical between the third wire 24 and the base 40. The distance, and the second distance D2 is the vertical distance between the fourth wire 25 and the base surface 40. Or as shown in FIG. 8, FIG. 9, and FIG. 10, the first distance D1 and the second distance D2 are both designed to be larger than the third distance D3 (D1>D3 and D2>D3), and the third distance D3 It is the vertical distance between the lowest point of the third refractive surface 61 and the base surface 40. Taking the composite curved type light source modulating device 20 of Fig. 7 as an example, it is a circular symmetrical structure. As shown in FIG. 11 and FIG. 12, it is a composite curved surface light source modulating device 20 using the ASAP (Advanced System Analysis Program) optical simulation software simulation of the American Breault Research Organization, at a distance from the light emitting diode light source 15. The spot pattern and illuminance distribution map of the plane at about 18 mm. The effective uniform range of the spot is about 15 mm in diameter, and the intensity of the illuminance is uniform, and the spot no longer has the shape of a concentric circle, that is, the composite curved type light source modulating device 20 of the embodiment has a light ray system that is relatively collimated. And the illuminance distribution is fairly average. The composite curved surface light source modulating device 20 of the embodiment has the function of making the light emitting diode light source 15 collimated and uniform, so that the light emitting diode light source 15 to be modulated can be analyzed first, and according to the required illumination distance. And the illumination range, the light distribution composite refractive surface 30, the reflective surface 50 and the dimming composite refractive surface 60 of the light source modulation device 20 are planned and designed to achieve the desired illumination distance and illumination range. However, the above embodiments are used to illustrate the features of the present invention, and the purpose thereof is to make the invention (4) at the time of resolving the invention (4) and to use the spirit of the invention. The equivalent modification or modification of the completion shall still be included in the scope of the patent application described below. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a conventional light-emitting diode lens structure. Figure 2 is a spot diagram of a conventional light-emitting diode lens structure. Figure 3 is a illuminance distribution diagram of a conventional light-emitting diode lens structure. The figure is a perspective view of a composite curved type light source modulating device of the present invention. Fig. 5 is a first cross-sectional view showing a composite curved type light source modulating device of the present invention. Fig. 6 is a second cross-sectional view showing a composite curved type light source modulating device of the present invention. Fig. 7 is a third cross-sectional view showing a composite curved type light source modulating device of the present invention. The figure is a schematic diagram of a composite curved-surface light source modulating device of the present invention. 9 is a diagram of an embodiment of a composite curved surface light source lake device of the present invention. The figure is a sixth cross-sectional embodiment of a composite curved-type light source modulating device of the present invention. ^ U is a spot diagram of the composite curved type light source modulation device of Fig. 7. Figure 12 shows the illuminance distribution of the 7 x ® composite curved light source. 1352794 [Description of main component symbols] 10............................light-emitting diode lens structure 11.......... ......... .... spherical ' 12................... .... first aspheric - 13..... .....................Second aspheric surface 14........................... third non Spherical surface 15..............................lighting diode light source 16, 16', 16" ..... light 20..... ......................Compact curved surface type light source modulation device 21.......................... Center Axis 22...................... First wiring 23.................. _苐二接线24....................第=接线25.................. .. ...fourth wiring φ 30....................light distribution composite refractive surface 31............. .............the first refractive surface 32....................the second refractive surface. 40.......... .......... ...Base surface 50..........................Reflecting surface 60........ ..................Dimming composite refractive surface 61..........................The second refractive surface 62... ................. ...the fourth refractive surface Θ.......................... Reference angle 15 1 352794 70.......................critical light D1...................... First distance D2......................second distance

1616

Claims (1)

1352794 ___ 年9·牙·讀⑻正眘換頁 .十、申請專利範圍: 1. 一種複合曲面型之光源調制裝置,其包括: 一配光複合折射面,其具有: 一第一折射面,其係為函數曲面,且其面中心轴係與該 ' 光源調制裝置之一中心軸相重合,又該第一折射面係 ' 設置於能折射由至少一發光二極體光源所發出小於一 配光參考角之光線的位置;以及 0 —第二折射面,其係為對稱於該中心軸之曲面,且該第 二折射面之周緣係與該第一折射面之周緣相接以形成 一容置部,又該第二折射面係設置於能折射由該發光 二極體光源所發出大於該配光參考角之光線的位置; 一基面,其周緣係與該第二折射面相接以形成一第一接線; - 一反射面,其係為對稱於該中心軸之曲面,且該反射面之 . 周緣與該基面之周緣相接以形成一第二接線,又該反射 面設置於能反射由該配光複合折射面入射之光線的位 • 置;以及 一調光複合折射面,其具有: . 一第三折射面,其係為對稱於該中心軸之函數曲面,且 ; 該第三折射面之周緣與該反射面之周緣相接以形成一 第三接線,又該第三折射面係設置於能調制由該反射 面入射之光線的位置;以及 一第四折射面,其係為對稱於該中心軸之曲面,且該第 四折射面之周緣與該第三折射面之周緣相接以形成一 第四接線,又該第四折射面係設置於能調制由該第一 17 ^52794 折射面入射之光線的位置; 其中該配光參考角係介於—配光臨界角的±ig 間’且該配光臨界角係為該發光二極體光源所發出 界光線入射至該光源調制裝置前與該發光二極體光源之法 線方向間之夾角,而該臨界光線則為由該發光二極體光源 發出,並由該第一折射面之周緣與該第二折射面之周緣相 接處入射後,再由該第四接線出射之光線; 其中該第三接線與該基面間的垂直距離係大於該第四 接線與該基面間的垂直距離。 2.如申請專利範圍第1項所述之光源調制裝置,其係為一圓 對稱結構。. * Λ .如申請專利範圍第1項所述之光源調制裝置,其係為一橢 圓對稱結構。 4·如申請專利範圍第1項所述之光源調制裝置,其材質係為 一可塑性材質。 5. 如申請專利範圍第1項所述之光源調制裝置,其中該第一 折射面係為一平面、一凹函數曲面、或一凸函數曲面。 6. 如申請專利範圍第1項所述之光源調制裝置,其中該配光 臨界角係介於15度至75度之間。 如申叫專利範圍第1項所述之光源調制裝置,其中該第二 8折射面係為—任意曲面β .如申睛專利範圍第丨頊所述之光源調制裝置,其中該第一 9反射面係為—任意曲面。 .如申請專利範圍第1項所述之光源調制裝置,其中該第三 )Δ. Γ:----~---------- 99. 7, -9 々- Λ d時i ij止皆換頁 __ ------—~ J 折射面係為一任意函數曲面。 10. 如申請專利範圍第1項所述之光源調制裝置,其中該第四 折射面係為一任意曲面。 11. 如申請專利範圍第1項所述之光源調制裝置,其中該第三 接線及該第四接線與該基面間的垂直距離皆大於該第三折 射面之最低點與該基面間的垂直距離。 12. 如申請專利範圍第1項所述之光源調制裝置,其中該基面 具有一定位結構。 13. 如申請專利範圍第1項所述之光源調制裝置,其中該發光 二極體光源係設置於該容置部内,且該發光二極體光源之 幾何中心係位於該中心軸之延長線上。 14. 如申請專利範圍第1項所述之光源調制裝置,係中該發光 二極體光源係為一發光二極體晶片、或一已封裝之發光二 極體。 15. 如申請專利範圍第1項所述之光源調制裝置,其中該發光 二極體光源之發光波長係介於350奈米至850奈米之間。 191352794 ___ year 9 · teeth · read (8) positive care page. X. Patent application scope: 1. A composite curved surface light source modulation device, comprising: a light distribution composite refractive surface, having: a first refractive surface, The function is a function surface, and the central axis of the surface coincides with a central axis of the 'light source modulation device, and the first refractive surface system' is disposed to be refracted by at least one light-emitting diode light source to emit less than one light distribution a position of the light of the reference angle; and 0 - a second refractive surface which is a curved surface symmetrical with respect to the central axis, and a periphery of the second refractive surface is in contact with a periphery of the first refractive surface to form an accommodation And the second refractive surface is disposed at a position capable of refracting light emitted by the light emitting diode source that is greater than the light distribution reference angle; a base surface having a peripheral edge connected to the second refractive surface to form a first wiring; a reflecting surface which is a curved surface symmetrical to the central axis, and a peripheral edge of the reflecting surface is connected to a periphery of the base surface to form a second wiring, and the reflecting surface is disposed on the Reflection by the light distribution a position of the light incident on the refractive surface; and a dimming composite refractive surface having: a third refractive surface which is a function curved surface symmetrical to the central axis, and a periphery of the third refractive surface The peripheral edges of the reflecting surfaces are joined to form a third wiring, and the third refractive surface is disposed at a position capable of modulating light incident from the reflecting surface; and a fourth refractive surface is symmetric to the central axis a curved surface, and a periphery of the fourth refractive surface is in contact with a periphery of the third refractive surface to form a fourth wiring, and the fourth refractive surface is disposed to be modulated by the first 17 ^ 52794 refractive surface a position of the light; wherein the light distribution reference angle is between ± ig of the light distribution critical angle and the critical angle of the light distribution is before the light emitted by the light emitting diode source is incident on the light source modulation device The angle between the normal directions of the light-emitting diode light source, and the critical light is emitted by the light-emitting diode light source, and is incident after the peripheral edge of the first refractive surface meets the periphery of the second refractive surface And then by the fourth The light exiting the wiring; wherein the vertical distance between the third wire and the base is greater than the vertical distance between the fourth wire and the base. 2. The light source modulating device according to claim 1, which is a circular symmetrical structure. The light source modulating device according to claim 1, which is an elliptical symmetrical structure. 4. The light source modulation device according to claim 1, wherein the material is a plastic material. 5. The light source modulating device of claim 1, wherein the first refractive surface is a plane, a concave function curved surface, or a convex function curved surface. 6. The light source modulation device of claim 1, wherein the light distribution critical angle is between 15 degrees and 75 degrees. The light source modulating device according to the first aspect of the invention, wherein the second refracting surface is an arbitrary curved surface β. The light source modulating device according to the ninth aspect of the invention, wherein the first 9 reflection The face is - any surface. The light source modulating device according to claim 1, wherein the third) Δ. Γ:----~---------- 99. 7, -9 々- Λ d i ij all change pages __ ------—~ J The refractive surface is an arbitrary function surface. 10. The light source modulation device of claim 1, wherein the fourth refractive surface is an arbitrary curved surface. 11. The light source modulating device of claim 1, wherein a vertical distance between the third wire and the fourth wire and the base surface is greater than a distance between a lowest point of the third refractive surface and the base surface vertical distance. 12. The light source modulation device of claim 1, wherein the base surface has a positioning structure. 13. The light source modulating device of claim 1, wherein the light emitting diode light source is disposed in the accommodating portion, and a geometric center of the illuminating diode light source is located on an extension line of the central axis. 14. The light source modulating device of claim 1, wherein the light emitting diode source is a light emitting diode chip or a packaged light emitting diode. 15. The light source modulating device of claim 1, wherein the illuminating wavelength of the illuminating diode source is between 350 nm and 850 nm. 19
TW97108981A 2008-03-14 2008-03-14 Light source-modulating device having composite cu TWI352794B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97108981A TWI352794B (en) 2008-03-14 2008-03-14 Light source-modulating device having composite cu

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97108981A TWI352794B (en) 2008-03-14 2008-03-14 Light source-modulating device having composite cu

Publications (2)

Publication Number Publication Date
TW200938767A TW200938767A (en) 2009-09-16
TWI352794B true TWI352794B (en) 2011-11-21

Family

ID=44867435

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97108981A TWI352794B (en) 2008-03-14 2008-03-14 Light source-modulating device having composite cu

Country Status (1)

Country Link
TW (1) TWI352794B (en)

Also Published As

Publication number Publication date
TW200938767A (en) 2009-09-16

Similar Documents

Publication Publication Date Title
US20090225552A1 (en) Light source-modulating device having composite curved surfaces
US7034343B1 (en) Dipolar side-emitting LED lens and LED module incorporating the same
TW200524182A (en) Side reflector for illumination using light emitting diode
TWI418854B (en) Lens structure
TWM352000U (en) Optic lens emitting light from both lateral sides
TW201235707A (en) LED lens and light emitting device using the same
TW201030281A (en) Light-emitting apparatus and light-guiding member thereof
TW201231874A (en) Tube luminescent retrofit using light emitting diodes
US20140268871A1 (en) Optics for illumination devices
EP2064487A2 (en) Brightness-enhancing film
WO2012171439A1 (en) Condenser lens structure for lighting lamp and corresponding illumination device
US20130176727A1 (en) Segmented spotlight having narrow beam size and high lumen output
EP3816724A1 (en) Light source device
TWI479107B (en) Led light distributing lens and light source apparatus using the same
TW201704683A (en) Lens and light-emitting element having same
JP2012209049A (en) Led lighting device and lens
JP2011040196A (en) Led lighting device, street light, and reflector for led lighting
TWI352794B (en) Light source-modulating device having composite cu
TWM451497U (en) Illumination led lamp with wide emission angle
TW201139935A (en) An LED lighting device and the asymmetric lamp cup thereof
JP2006196569A (en) Light emitting device
CN104214668A (en) Lens and LED lamp with same
TWM302218U (en) The parabolic axial light emitting diode (LED) device
TW200816514A (en) Lens and light emitting diode using the same
TWI579504B (en) Light emitting device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees