WO2012171328A1 - 一种电泳装置及其应用 - Google Patents

一种电泳装置及其应用 Download PDF

Info

Publication number
WO2012171328A1
WO2012171328A1 PCT/CN2012/000804 CN2012000804W WO2012171328A1 WO 2012171328 A1 WO2012171328 A1 WO 2012171328A1 CN 2012000804 W CN2012000804 W CN 2012000804W WO 2012171328 A1 WO2012171328 A1 WO 2012171328A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrophoresis
regions
tank
region
anode
Prior art date
Application number
PCT/CN2012/000804
Other languages
English (en)
French (fr)
Inventor
杜权
杜军
Original Assignee
Du Quan
Du Jun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Quan, Du Jun filed Critical Du Quan
Publication of WO2012171328A1 publication Critical patent/WO2012171328A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D57/00Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C
    • B01D57/02Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C by electrophoresis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/24Extraction; Separation; Purification by electrochemical means
    • C07K1/26Electrophoresis

Definitions

  • Electrophoresis device and application thereof
  • the present invention relates to a separation technique for macromolecules, and in particular to a separation device for macromolecular separation, electroelution and concentration and its use. Background technique
  • Electrophoresis refers to the phenomenon in which charged particles or molecules move in an electric field.
  • Russian physicist PeHce first discovered electrophoresis, but it was not until 1937 that Swedish scientist Arne Tiselius assembled the world's first interface electrophoresis instrument.
  • dyeing reagents such as silver ammonia staining, Coomassie Brilliant Blue, etc.
  • the application of immunological technology increases the resolution to trace and ultra-micro levels, and promotes the application of electrophoresis technology to analytical chemistry. , biochemistry, clinical chemistry, toxicology, pharmacology, immunology, microbiology, food chemistry, and many other disciplines and different fields.
  • the distance (ie, mobility) of the charged particles moving per unit time is a constant, which reflects the physical and chemical characteristics of the charged particles. Different charged particles have different charges, or have the same charge but different charge-to-mass ratios. After a period of electrophoresis in the same electric field, they are separated from each other due to different moving distances. Separate distance and applied electric field voltage and electrophoresis Time is proportional. This technique of separating substances by electrophoresis is called electrophoresis. Biomacromolecules such as proteins, nucleic acids, polysaccharides, etc., mostly have cationic and anionic groups, which can be separated by electrophoresis.
  • the instruments required for electrophoresis mainly include a power source and an electrophoresis tank.
  • an applied electric field must be applied, and the resolution and electrophoresis speed of the electrophoresis are closely related to the electrical parameters during electrophoresis.
  • the electrophoresis tank is the core part of the electrophoresis system.
  • the electrophoresis support is placed between two electrode buffers. The electric field is connected to the two buffers through the electrophoresis support. Different electrophoresis methods use different electrophoresis tanks. .
  • the electrophoresis technologies currently used are mainly classified into mobile interface electrophoresis, isocenter focusing electrophoresis and zone electrophoresis.
  • the mobile interface electrophoresis is to place the ion mixture to be separated into one end of the electrophoresis tank. After the electrophoresis starts, the charged particles move to the other pole, and the ion with the fastest swimming speed is at the forefront, and other ions are fast depending on the electrophoresis speed. Arrange in order Different zones.
  • Isoelectric focusing electrophoresis is the addition of an amphoteric electrolyte to an electrophoresis tank containing a pH gradient buffer.
  • Zone electrophoresis is one of the most commonly used electrophoresis techniques in biomedical research.
  • the sample In a uniform carrier electrolyte, the sample is applied to a certain support; under the action of an electric field, the positive or negatively charged ions in the sample move to the negative or positive electrode at different speeds, respectively, and are separated from each other to form a separate zone. .
  • zone electrophoresis can be divided into 1) filter paper electrophoresis; 2) powder electrophoresis: such as cellulose powder, starch, glass powder electrophoresis; 3) gel electrophoresis: such as agar, agarose, silica gel, starch Glue, polyacrylamide gel electrophoresis; 4) Edge electrophoresis: such as nylon wire and rayon electrophoresis.
  • the zone electrophoresis can be divided into 1) plate electrophoresis: the horizontal placement of the support is the most common electrophoresis method; 2) the vertical plate electrophoresis: the polyacrylamide gel can be made into vertical plate electrophoresis; 3) Columnar (tubular) electrophoresis: Polyacrylamide gel can be poured into a suitable electrophoresis tube for tubular electrophoresis.
  • zone electrophoresis can be divided into 1) continuous pH electrophoresis: such as paper electrophoresis and cellulose acetate membrane electrophoresis; 2) non-continuous pH electrophoresis: such as polyacrylamide gel disk electrophoresis.
  • Zone electrophoresis has a wide range of applications in biomedical research.
  • polyacrylamide gel electrophoresis can be used for the identification of protein purity.
  • Polyacrylamide gel electrophoresis has both charge and molecular sieve effects. It can separate substances with the same molecular size and different amounts of charge, and can also separate substances with the same amount of charge and different molecular sizes. The resolution is far. It is much higher than the general chromatographic method and electrophoresis method, and has good repeatability and no electroosmosis.
  • SDS polyacrylamide gel electrophoresis can be used to determine the molecular weight of proteins.
  • the principle is that a large amount of charged SDS is bound to a protein molecule, which overcomes the influence of the original charge of the protein molecule to obtain a constant charge/mass ratio, short measurement time, high resolution, and requires only a very small amount of sample (l-100ug). ).
  • Polyacrylamide gel electrophoresis can be used for protein quantification. The gel after electrophoresis is scanned by a gel scanner to give quantitative results.
  • Agar or agarose gel immunoelectrophoresis can be used to check the purity of the protein preparation, analyze the components of the protein mixture, study whether the antiserum preparation has an antibody against a known antigen, and test whether the two antigens are identical or the like.
  • the quality of the recovered product also includes the integrity of the DNA fragment, while for smaller fragments, the concentration of the recovered product is an important consideration.
  • Recovery yield is another important parameter. Since the amount of electrophoresis is usually small, the electrophoresis process itself will cause dispersion and loss of the sample, so as much as possible to recover the target fragments in the electrophoresis gel strip, and improve the yield of the product, which is for subsequent research. very important.
  • the ease of operation is another key factor, because glue recovery is a basic experimental operation and requires a simple, fast, and low-cost means of research.
  • the easiest method is to cut the gel block containing the separated macromolecules, and to separate the macromolecules from the gel by mechanical disruption and long-term buffer elution. Spread out.
  • Low melting point agarose gel is another relatively simple glue recovery technique.
  • the gel was prepared by using low melting point agarose, and the target band was cut after electrophoresis, and the gel was melted by incubation in a TE solution, and extracted with a conventional phenol chloroform and ethanol precipitated. This method requires the use of an organic reagent such as phenol chloroform and takes a long time.
  • the glass milk/purified filler gel recovery method is another flexible recycling method. First, the strip of the electrophoresis gel is cut, the gel is dissolved in the provided solution, the purified filler is added to the adsorption mixture, and the supernatant is quickly centrifuged to remove the supernatant. After washing the precipitate, the nucleic acid fragment adsorbed in the medium is purified by the eluent. This method is suitable for various sizes of fragments, especially the recovery of large fragments, but the operation is more complicated than the former, involving multiple centrifugation and supernatant removal.
  • the DEAE cellulose film paper method and its improved method are also a relatively traditional glue recycling technology.
  • the DEAE cellulose film is cut into strips for activation treatment; after electrophoresis for a period of time, a knife is cut in front of the target strip, a DEAE cellulose membrane slightly wider than the strip is inserted into the incision, and electrophoresis is continued for a while, the DNA on the strip
  • the membrane was taken out, and the membrane was taken out and transferred to a centrifuge tube, and buffered and eluted, followed by phenol chloroform extraction and ethanol precipitation.
  • this manual recycling method has high technical requirements, poor repeatability, and is not suitable for large-scale operation.
  • Electroelution refers to the technique of migrating the target components contained in certain supports by electrophoresis. Specifically, the gel containing the separated macromolecule is placed in a space separated by a semipermeable membrane, and the electrophoresis current causes the DNA to leave the gel and enter the liquid phase, and the DNA molecule is purified after recovering the liquid phase.
  • electroelution techniques including US Pat. No. 4,552,640, US Pat. No. 4,545,888, US Pat. No. 4,699,706 US Pat. No. 4,608, 147 US Pat. No.
  • the present invention relates to the following topics defined by sequentially numbered paragraphs:
  • An electrophoresis tank characterized in that the electrophoresis tank comprises at least two electrophoretic regions which are fixedly separated or operably separated, and these partitions are made in different electrophoresis regions without affecting the normal electrophoretic behavior of macromolecules.
  • the solution can be collected separately.
  • An electrophoresis tank characterized in that the electrophoresis tank comprises two electrophoretic regions which are fixedly separated or operably separated, and these partitions enable solutions in different electrophoresis regions without affecting the normal electrophoretic behavior of macromolecules. Can be collected separately.
  • An electrophoresis tank characterized in that the electrophoresis tank comprises three fixedly separated or operatively separated electrophoretic regions, which allow solutions in different electrophoretic regions without affecting the normal electrophoretic behavior of macromolecules. Can be collected separately.
  • the electrophoresis tank according to paragraph 1-3 characterized in that the material for fixing the different electrophoretic regions is agarose gel, polyacrylamide gel, porous solid support with a hole.
  • the electrophoresis cell of paragraph 1-3 characterized in that the means for operatively separating the different electrophoretic regions comprises valves, switches, blockable flow channels.
  • the electrophoresis tank according to paragraph 1 characterized in that the electrophoresis tank comprises a tank body, an anode, a cathode and an electrophoresis zone; the electrophoresis zone is separated by an agarose gel or a polyacrylamide gel.
  • the three regions are composed of an anode and a cathode respectively located in the regions at both ends.
  • the electrophoresis tank comprises a tank body, an anode, a cathode and an electrophoresis region; the electrophoresis region comprises three independent regions, the regions are connected by an electrophoresis channel, and the anode and the cathode are respectively located In separate areas at both ends; the electrophoresis channel has an operable divider.
  • the electrophoresis tank comprises a tank body, an anode, a cathode and an electrophoresis region; wherein the electrophoresis region is composed of two nested separable tubular or tubular structures and between them The composition of the connection channel.
  • electrophoresis system characterized in that the electrophoresis system comprises a power source and the electrophoresis tank of any of paragraphs 1-8.
  • said macromolecule comprises a nucleic acid molecule, a protein molecule, a carbohydrate molecule, and a viral particle.
  • the technical problem to be solved by the present invention is how to separate large molecular substances efficiently, simply, and at low cost.
  • the most important technical improvement of the present invention is to distribute macromolecules with different charge properties by electrophoresis in different electrophoretic regions separated or separated by operability, and separate the separation of different macromolecules by separately collecting solutions in different electrophoretic regions. .
  • the present invention provides an electrophoresis tank comprising at least two fixedly spaced or operatively separated electrophoretic regions that are separated in different electrophoretic regions without affecting the normal electrophoretic behavior of the macromolecules
  • the solution can be collected separately.
  • the present invention provides an electrophoresis tank comprising two fixedly spaced or operatively separated electrophoretic regions that are separated in different electrophoretic regions without affecting the normal electrophoretic behavior of the macromolecules.
  • the solution can be collected separately.
  • the present invention provides an electrophoresis tank comprising three fixedly separated or operatively separated electrophoretic regions, which are separated in different electrophoretic regions without affecting the normal electrophoretic behavior of the macromolecules.
  • the solution can be collected separately.
  • Materials for immobilizing different electrophoretic regions in accordance with the present invention include, but are not limited to, agarose gels, polyacrylamide gels, and porous solid supports.
  • a means for operatively separating different electrophoretic regions includes a valve, Switch, blockable flow path.
  • an electrophoresis tank comprising a tank body, an anode, a cathode and an electrophoresis region; the electrophoresis region is composed of three regions separated by an agarose gel or a polyacrylamide gel, and the anode and the cathode are respectively located in the regions at both ends .
  • an electrophoresis tank comprising a tank body, an anode, a cathode and an electrophoresis region; the electrophoresis region comprises three independent regions connected by an electrophoretic channel, and the anode and the cathode are respectively located in independent regions at both ends; With an operable divider.
  • an electrophoresis tank comprising a tank body, an anode, a cathode and an electrophoresis region; wherein the electrophoresis region is composed of two nested separable cylindrical or tubular structures and a connecting passage therebetween.
  • the invention provides an electrophoresis system comprising a power source and an electrophoresis tank provided by the invention.
  • the invention provides the use of the electrophoresis system for separation, electroelution and concentration of macromolecules.
  • the macromolecule comprises a nucleic acid molecule, a protein molecule, a carbohydrate molecule and a viral particle.
  • the electrophoresis system is used in the separation of nucleic acids from proteins.
  • the invention utilizes fixed separation or operability separation to separate the electrophoresis tank into several electrophoresis regions, and different macromolecules are distributed under different electric fields according to their own charge properties without affecting the normal electrophoretic behavior of the macromolecules.
  • the macromolecular substances respectively present therein are separated by separately collecting the solutions in the different regions.
  • Macromolecules isolated by the present invention include, but are not limited to, nucleic acids, proteins, carbohydrates, and viral particles.
  • the separation apparatus and technology provided by the present invention can separate macromolecular substances more simply, efficiently, and at low cost.
  • FIG. 1 Schematic diagram of a two-cavity electrophoresis tank separated by agarose
  • FIG. 1 Schematic diagram of a three-chamber electrophoresis tank separated by agarose
  • FIG. 1 Schematic diagram of a separate two-chamber electrophoresis tank
  • FIG. 4 Schematic diagram of a separate three-chamber electrophoresis tank
  • FIG. 1 Schematic diagram of a cannulated electrophoresis tank Figure 6.
  • the electrophoresis system comprises a power source and an electrophoresis tank, and the electrophoresis tank comprises an electrophoresis region between the tank body, the anode, the cathode, and the anode and the cathode.
  • the electrophoretic region is divided into at least two regions by fixed separation or operability separation, and the fixed or temporary separation enables the solution in each region and the macromolecular sample existing therein without affecting the normal electrophoretic behavior of the macromolecule. It can be collected separately to achieve separation and recovery of macromolecular substances.
  • the electrophoresis tank can be made of a suitable material including, but not limited to, glass, plexiglass, plastic, resin, polypropylene, acrylic or the like.
  • the electrophoresis tank body can be of any suitable shape including, but not limited to, square, rectangular, triangular, circular, cylindrical, spherical, tapered or a combination of different shapes.
  • the separated electrophoretic regions can be divided into an anode region, a cathode region, and an intermediate region according to the relationship with the electrodes; the volume of each region can be freely set at a volume of 10 uL or more to accommodate different uses of the electrophoresis tank.
  • the material for fixing the electrophoresis tank to different regions may be selected from agarose gel, a polyacrylamide gel, and a solid support having pores or micropores; the solid phase support may include dialysis
  • suitable materials other than films, semipermeable membranes, filters, and filter papers include, but are not limited to, plexiglass, plastic, resin, polypropylene, acrylic, or the like.
  • the means for separating the operability of the electrophoresis tank into different regions may include valves, switches, blockable flow paths, or disassembling and separating different electrophoretic regions.
  • the closable flow channel means that the flow channels connecting different electrophoresis regions can be physically blocked to achieve operability separation.
  • the specific blocking methods include, but are not limited to, clamping with a hemostat, folding the flow channel to achieve separation, Insert a barrier to achieve separation.
  • the electrophoresis tank comprises a tank body 1, an anode 2, a cathode 3, an anode region 4, an intermediate region 5 and an agarose gel separation 7; the electrophoresis region is composed of two regions separated by an agarose gel separation 7
  • the anode region 4 and the intermediate region 5 are respectively located, and the anode 2 and the cathode 3 are located in the two regions, respectively.
  • the electrophoresis tank comprises a tank body 1, an anode 2, a cathode 3, an anode region 4, an intermediate portion 5, a cathode region 6, and an agarose gel separation 7; the electrophoresis region is separated by a seperate gel separated by 7
  • the composition of the regions is the anode region 4, the intermediate region 5 and the cathode region 6, respectively, and the anode 2 and the cathode 3 are respectively located in the anode region 4 and the cathode region 6 at both ends.
  • the electrophoresis tank comprises a tank body 1, an anode 2, a cathode 3, an anode region 4, an intermediate portion 5, a valve 8 and a connecting passage 9;
  • the electrophoresis region comprises two independent regions, an anode region 4 and an intermediate region, respectively. 5, they are connected by an electrophoresis channel 9, the anode 2 and the cathode 3 are respectively located in the anode region 4 and the intermediate region 5;
  • the electrophoresis channel 9 is provided with a valve 8.
  • the electrophoresis tank comprises a tank body 1, an anode 2, a cathode 3, an anode region 4, an intermediate region 5, a cathode region 6, a valve 8 and a connecting channel 9; the electrophoresis region comprises three independent regions, respectively an anode region. 4. Intermediate region 5 and cathode region 6, which are connected by electrophoretic channel 9, with anode 2 and cathode 3 in anode region 4 and cathode region 6, respectively; electrophoresis channel 9 with valve 8.
  • the electrophoresis tank includes a tank body 1, an anode 2, a cathode 3, an anode region 4, an intermediate portion 5, and a connecting passage 10;
  • the electrophoretic region is composed of two nested separable tubular structures and a connecting passage therebetween Composition 10:
  • the anode region 4 is located in the outer tube, the intermediate region 5 is located in the inner tube, and the anode 2 and cathode 3 are located in the anode region 4 and the intermediate region 5, respectively.
  • the electrophoresis tank includes a tank body 1, an anode 2, a cathode 3, an anode region 4, an intermediate portion 5, and a connecting passage 10; the electrophoretic region is composed of two nested separable tubular structures and a connecting passage therebetween Composition 10; anode region i or 4 is located in the inner tube, intermediate portion 5 is located in the outer tube, and anode 2 and cathode 3 are located in anode region 4 and intermediate region 5, respectively.
  • Example 2. Nucleic Acid Molecules in Electroeluting Gels
  • the plasmid strip isolated in the agarose gel was recovered using a cannulated electrophoresis tank as shown in FIG.
  • Plasmid electrophoresis Take 20 uL (4 ug) of purified pGL3 (Promega) plasmid, mix it with 2 uL of loading buffer, load onto 1.2% agarose gel, and perform electrophoresis under 100V constant pressure. , the running buffer is 0.5x TBE;
  • the plasmid in the inner tube solution is subjected to ethanol precipitation, and the precipitate is dissolved in 10 uL of deionized water, and the purity of the plasmid is detected and quantified, and the recovery rate is calculated;
  • A260/280 is 1.91 and the recovery rate is 94%.
  • Protein electrophoresis Take 10 ug of bovine serum albumin (Sigma), mix with the loading buffer and load onto a 10% PAGE gel. The electrophoresis conditions are 200v/10mA, and the electrophoresis buffer is Tris-glycine. Protein electrophoresis buffer;
  • the nucleic acid component in the solution was concentrated using a two-chamber electrophoresis tank separated by an agarose gel as shown in FIG.
  • the volume of the anode area of the electrophoresis tank is 20 mL
  • the volume of the middle area is 200 mL
  • the width of the agarose strip is 1 cm
  • the top surface exceeds the liquid level of the electrophoresis buffer by 0.5 cm, in the anode area and the middle area of the electrophoresis tank. A separation is formed between them.
  • A260/280 is 1.87 and the recovery rate is 95%.
  • the nucleic acid and protein molecules are separated from the nucleic acid protein mixture using a separate two-chamber electrophoresis tank as shown in FIG.
  • the volume of the anode area of the electrophoresis tank is 20 mL, and the volume of the middle area is 200 mL.
  • a valve is installed in the electrophoresis channel connecting the anode area and the middle area.
  • Nucleic acid protein mixture Take 10 ug of purified pGL3 (Promega) plasmid and 10 mg of bovine serum albumin (Sigma), dissolved in 200 mL of 0.5x TBE, the final concentration of the plasmid is 50 ng/mL, and the final concentration of protein is 50. Ug/mL;
  • the recovery rate of plasmid DNA was 97%; the protein concentration in the anode region was 5 ug/mL, and the protein concentration in the intermediate region was 47 ug/mL.
  • the experimental results show that the separation electrophoresis tank provided by the invention can separate nucleic acid and protein molecules from the nucleic acid protein mixture simply, efficiently and with high quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Peptides Or Proteins (AREA)

Abstract

电泳槽包括至少两个固定分隔的或可操作性分隔的电泳区域(4,5,6),在不影响大分子正常电泳行为的情况下,这些分隔使不同电泳区域内的溶液以及其中的大分子能够被单独收集。电泳系统,包括上述电泳槽。上述电泳槽和电泳系统能够应用在核酸、蛋白质、碳水化合物及病毒颗粒的分离、电洗脱及浓缩中。

Description

一种电泳装置及其应用 技术领域
本发明涉及一种大分子的分离技术, 具体涉及一种用于大分子分 离、 电洗脱和浓缩的分离装置及其应用。 背景技术
电泳是指带电荷的粒子或分子在电场中移动的现象。 1809 年俄国 物理学家 PeHce首先发现了电泳现象,但直到 1937年,瑞典科学家 Arne Tiselius才组装了世界上第一台界面电泳仪。 随后, 电泳技术得到的广 泛的应用, 并继而发展出多种基于不同载体的电泳技术。 结合增染试 剂如银氨染色、 考马斯亮蓝等的使用大大提高了生物样品的着色与分 辨能力, 免疫技术的应用更是将分辨率提高到微量和超微量水平, 促 进电泳技术应用于分析化学、 生物化学、 临床化学、 毒剂学、 药理学、 免疫学、 微生物学、 食品化学等众多学科和不同的领域。
在电场条件下, 带负电荷的分子向阳极方向移动, 带正电荷的分 子向阴极方移动。 在单位电场强度的作用下, 带电粒子在单位时间内 移动的距离 (即迁移率) 为一个常数, 反应了该带电粒子的物化特征。 不同带电粒子因所带电荷不同, 或虽所带电荷相同但荷质比不同, 在 同一电场中经过一段时间的电泳后, 由于移动距离不同而相互分离, 分开的距离与外加电场的电压与电泳时间成正比。 这种利用电泳现象 使物质分离的技术叫做电泳技术。 生物大分子如蛋白质、 核酸、 多糖 等大多都有阳离子和阴离子基团, 均能通过电泳技术得到分离。
电泳所需的仪器主要有电源和电泳槽。 要使荷电的生物大分子在 电场中泳动, 必须施加外加电场, 且电泳的分辨率和电泳速度与电泳 时的电参数密切相关。 电泳槽是电泳系统中的核心部分, 根据电泳的 原理, 电泳支持物都是放在两个电极緩冲液之间, 电场通过电泳支持 物连接两个緩沖液, 不同电泳方式采用不同的电泳槽。
目前所采用的电泳技术主要分为移动界面电泳、 等点聚焦电泳和 区带电泳等几种类型。 移动界面电泳是将被需要被分离的离子混合物 置于电泳槽的一端, 电泳开始后, 使带电粒子向另一极移动, 泳动速 度最快的离子走在最前面, 其他离子依电泳速度快慢顺序排列, 形成 不同的区带。等电聚焦电泳则是将两性电解质加入盛有 pH梯度緩冲液 的电泳槽中, 当其处在低于其自身等电点的緩冲液中则带正电荷, 向 负极移动; 若其处在高于其自身等电点的緩冲液中, 则带负电向正极 移动。 当这些物质泳动到其自身特有的等电点緩冲液中时, 其净电荷 变为零, 于是停止泳动, 这样具有不同等电点的物质最后聚焦在各自 等电点位置, 形成一个个清晰的区带, 分辨率极高。
区带电泳是生物医学研究中最常用的一种电泳技术。 在均一载体 电解质中, 将样品加在一定的支持物上; 在电场作用下, 样品中带正 或负电荷的离子分别向负或正极以不同速度移动, 彼此分离形成一个 个隔开的区带。 按支持物不同的物理性状, 区带电泳可分为 1) 滤纸电 泳; 2) 粉末电泳: 如纤维素粉、 淀粉、 玻璃粉电泳; 3) 凝胶电泳: 如 琼脂、 琼脂糖、 硅胶、 淀粉胶、 聚丙烯酰胺凝胶电泳; 4) 缘线电泳: 如尼龙丝和人造丝电泳。 按支持物的装置类型, 可将区带电泳可分 1) 平板式电泳: 支持物水平放置, 是最常用的电泳方式; 2) 垂直板电泳: 聚丙烯酰胺凝胶可做成垂直板式电泳; 3) 柱状(管状)电泳: 聚丙烯酰 胺凝胶可灌入适当的电泳管中做成管状电泳。 按 pH的连续性不同, 区 带电泳可分为 1 ) 连续 pH电泳:如纸电泳和醋酸纤维素薄膜电泳; 2) 非 连续 pH电泳: 如聚丙烯酰胺凝胶盘状电泳。
区带电泳技术在生物医学研究中具有广泛的应用领域。 以蛋白的 研究为例, 1 )聚丙烯酰胺凝胶电泳可用于蛋白质纯度的鉴定。 聚丙烯酰 胺凝胶电泳同时具有电荷效应和分子筛效应, 可以将分子大小相同而 带不同数量电荷的物质分离开, 并且还可以将带相同数量电荷而分子 大小不同的物质分离开, 其分辨率远远高于一般层析方法和电泳方法, 且重复性好, 没有电渗作用。 2) SDS聚丙烯酰胺凝胶电泳可用于测定 蛋白质分子量。 其原理是带大量电荷的 SDS结合到蛋白质分子上, 克 服了蛋白质分子原有电荷的影响而得到恒定的荷 /质比, 测定时间短, 分辨率高, 并且仅需要极微量样品(l-100ug)。 3) 聚丙烯酰胺凝胶电泳 可用于蛋白质定量。 电泳后的凝胶经凝胶扫描仪扫描, 从而给出定量 的结果。4) 琼脂或琼脂糖凝胶免疫电泳可用于检查蛋白质制剂的纯度、 分析蛋白质混合物的组分、 研究抗血清制剂中是否具有抗某种已知抗 原的抗体、 以及检验两种抗原是否相同等。
在生物实验中, 经常需要将电泳分离的大分子物质从电泳载体(琼 脂糖凝胶或聚丙烯酰胺凝胶) 中回收回来, 从而能够做进一步的分析。 在这个过程中,最关键的考虑因素包括回收产物的质量(纯度和浓度)、 回收效率、 以及操作的方便程度。 1) 回收产物质量是其中最关键的一 个技术指标。 在常规回收过程中, 普通级别的琼脂糖带有一些性状不 明的多糖, 会连同 DNA—起从凝胶中抽提出来。 这些不明物质可能会 强烈抑制后继的连接、酶切、或者标记、扩增等反应。对于大片断 DNA 回收, 回收产物的质量还包括 DNA片段的完整性, 而对于较小片断而 言, 回收产物的浓度是一个重要的考虑因素。 2) 回收得率是另一个重 要的参数。 由于电泳上样量通常都很少, 电泳过程的本身也会导致样 品的分散和损失, 因而尽可能多的回收电泳凝胶条带中的目的片断, 提高产物得率, 对于后继研究来说是非常重要的。 3) 操作的方便程度 是另一个关键的因素, 因为胶回收是一个基本的实验操作, 需要建立 一种简单、 快速、 低成本的研究手段。
在实验室应用的多种胶回收操作中, 最简单的方法是将包含分离 的大分子的凝胶块切下来, 通过机械破碎和长时间的緩沖液洗脱, 使 分离的大分子从胶中扩散出来。
低熔点琼脂糖凝胶是另一种较为简单的胶回收技术。 用低熔点琼 脂糖制备凝胶, 电泳后切割目的条带, 在 TE溶液中保温使凝胶融化, 用传统的酚氯仿抽提、 乙醇沉淀。 这个方法需要用到酚氯仿等有机试 剂, 并且耗时较长。
玻璃奶 /纯化填料胶回收法是另一个较为灵活回收方法。 首先将电 泳凝胶的条带切下, 在提供的溶液中将胶溶解, 加入纯化填料吸附混 合, 快速离心沉淀去上清, 洗涤沉淀后, 用洗脱液纯化介质中吸附的 核酸片断。 这个方法适合各种不同大小的片断, 特别是大片断的回收, 但是操作就较前者复杂一些, 涉及到多次离心沉淀和取上清。
DEAE 纤维素膜纸片法及其改良法也是一种较为传统的胶回收技 术。 首先将 DEAE纤维素膜裁成小条进行活化处理; 电泳一段时间后, 在目的条带前切一刀, 将比条带略宽的 DEAE纤维素膜插入切口, 继 续电泳一会儿, 条带上的 DNA被膜片截留, 取出膜片冲洗后转移到离 心管中加緩沖液保温洗脱, 然后进行酚氯仿抽提和乙醇沉淀。 显而易 见, 这种手工回收方法对实验人员的技术要求较高, 重复性差, 并且 不适合大规模操作。 除了这些较为传统的方法以外, 电洗脱技术目前在生物研究领域 被广泛使用。 电洗脱 (electroelution) 是指通过电泳, 将在某些支持物中 含有的目的成分迁移出来的技术。 具体做法是将含分离的大分子的凝 胶放在一个用半透膜隔离的空间中, 通过电泳的电流使得 DNA离开凝 胶进入液相, 回收液相后純化其中的 DNA分子。 利用电洗脱技术, 近 年来开发出了一系列方便适用的电洗脱装置, 包括 US Pat. No. 4,552,640、 US Pat. No. 4,545,888、 US Pat. No.4,699,706 US Pat. No.4,608, 147、 US Pat. No.4,964961和 US Pat. No.5,340,449。 电洗脱条 件温和, 操作简单, 对琼脂糖没有特殊要求, 同时还可以用于丙烯酰 胺凝胶中的片断回收或者是蛋白质的回收; 与其他传统的胶回收技术 相比, 具有较大的优势。 但由于以来半透膜的选择性透过性质, 需要 按照被分离分子的大小, 选择合适的半透膜, 使得该技术在应用上受 到一定的限制; 另外, 半透膜对回收产物的吸附也是一个不容忽视的 问题。 发明内容
本发明涉及以下按顺序编号的段落定义的主题:
1.一种电泳槽,其特征在于所述电泳槽包括至少两个固定分隔的或 可操作性分隔的电泳区域, 在不影响大分子正常电泳行为的情况下, 这些分隔使不同电泳区域内的溶液能够被单独收集。
2.—种电泳槽,其特征在于所述电泳槽包括两个固定分隔的或可操 作性分隔的电泳区域, 在不影响大分子正常电泳行为的情况下, 这些 分隔使不同电泳区域内的溶液能够被单独收集。
3.—种电泳槽,其特征在于所述电泳槽包括三个固定分隔的或可操 作性分隔的电泳区域, 在不影响大分子正常电泳行为的情况下, 这些 分隔使不同电泳区域内的溶液能够被单独收集。
4.根据段落 1 -3所述的电泳槽, 其特征在于用于固定分隔不同电泳 区域的材料包括琼脂糖凝胶、 聚丙烯酰胺凝胶、 带孔的固相支持物。
5.根据段落 1 -3所述的电泳槽, 其特征在于用于可操作性分隔不同 电泳区域的方式包括阀门、 开关、 可阻断性流道。
6.根据段落 1所迷的电泳槽,其特征在于该电泳槽包括槽体、阳极、 阴极和电泳区域; 电泳区域由被琼脂糖凝胶或聚丙烯酰胺凝胶分隔的 三个区域组成, 阳极和阴极分别位于两端的区域中。
7.根据段落 1所述的电泳槽,其特征在于该电泳槽包括槽体、阳极、 阴极和电泳区域; 电泳区域包括三个独立的区域, 所述区域经电泳通 道连接, 阳极和阴极分别位于两端的独立区域内; 电泳通道带有可操 作的分隔装置。
8.根据段落 1所述的电泳槽,其特征在于该电泳槽包括槽体、阳极、 阴极和电泳区域; 其中, 电泳区域由两个嵌套的可分离的筒状或管状 结构以及它们之间的连接通道组成。
9.一种电泳系统, 其特征在于所述电泳系统包括电源以及段落 1 -8 任一项所述的电泳槽。
10.段落 9所述的电泳系统在大分子的分离、 电洗脱和浓缩中的应 用。
U .根据段落 10 所迷的应用, 其特征在于所述的大分子包括核酸 分子、 蛋白质分子、 碳水化合物分子、 及病毒颗粒。
12.段落 9所述的电泳系统在核酸与蛋白分离中的应用。 本发明要解决的技术问题是如何高效、 简便、 低成本地分离大分 子物质。 本发明最重要的技术改进是通过电泳使电荷性质不同的大分 子分布于被分隔或可操作性被分隔的不同电泳区域内, 通过单独收集 不同电泳区域内的溶液, 实现对不同大分子的分离。
一方面, 本发明提供了一种电泳槽, 该电泳槽包括至少两个固定 分隔的或可操作性分隔的电泳区域, 在不影响大分子正常电泳行为的 情况下, 这些分隔使不同电泳区域内的溶液能够被单独收集。
另一方面, 本发明提供了一种电泳槽, 该电泳槽包括两个固定分 隔的或可操作性分隔的电泳区域, 在不影响大分子正常电泳行为的情 况下, 这些分隔使不同电泳区域内的溶液能够被单独收集。
另一方面, 本发明提供了一种电泳槽, 该电泳槽包括三个固定分 隔的或可操作性分隔的电泳区域, 在不影响大分子正常电泳行为的情 况下, 这些分隔使不同电泳区域内的溶液能够被单独收集。
根据本发明, 用于固定分隔不同电泳区域的材料包括但不限于琼 脂糖凝胶、 聚丙烯酰胺凝胶、 带孔的固相支持物。
根据本发明, 用于可操作性分隔不同电泳区域的方式包括阀门、 开关、 可阻断的流道。
根据本发明, 所提供的电泳槽包括槽体、 阳极、 阴极和电泳区域; 电泳区域由被琼脂糖凝胶或聚丙烯酰胺凝胶分隔的三个区域组成, 阳 极和阴极分别位于两端的区域中。
根据本发明, 所提供的电泳槽包括槽体、 阳极、 阴极和电泳区域; 电泳区域包括三个独立的区域, 所述区域经电泳通道连接, 阳极和阴 极分别位于两端的独立区域内; 电泳通道带有可操作的分隔装置。
根据本发明, 所提供的电泳槽包括槽体、 阳极、 阴极和电泳区域; 其中, 电泳区域由两个嵌套的可分离的筒状或管状结构以及它们之间 的连接通道组成。
另一方面, 本发明提供了一种电泳系统, 该电泳系统包括电源以 及本发明提供的电泳槽。
另一方面, 本发明提供了所述电泳系统在大分子的分离、 电洗脱 和浓缩中的应用。
根据本发明, 所述的大分子包括核酸分子、 蛋白质分子、 碳水化 合物分子及病毒颗粒。
根据本发明, 所述电泳系统在核酸与蛋白分离中的应用。
本发明的有益效果
本发明利用固定分隔或可操作性分隔将电泳槽分隔成若干电泳区 域, 在不影响大分子正常电泳行为的情况下, 使不同大分子根据其自 身的电荷性质, 在电场作用下分布于不同的电泳区域中, 通过分别收 集不同区域内的溶液, 使其中分别存在的大分子物质得到分离。 本发 明分离的大分子包括但不限于核酸、 蛋白、 碳水化合物、 以及病毒颗 粒。 与现有技术相比, 本发明提供的分离装置及技术能够更简便、 高 效、 低成本地分离大分子物质。 附图说明
图 1. 一种琼脂糖分隔的两腔电泳槽示意图
图 2. —种琼脂糖分隔的三腔电泳槽示意图
图 3. —种分离的两腔电泳槽示意图
图 4. 一种分离的三腔电泳槽示意图
图 5.—种套管式电泳槽示意图 图 6. —种套管式电泳槽示意图 具体实施方式
本发明所提供的电泳系统包括电源和电泳槽, 电泳槽包括槽体、 阳极、 阴极、 阳极与阴极之间的电泳区域。 其中, 电泳区域被固定分 隔或可操作性分隔分成至少两个区域, 这些固定或临时性分隔在不影 响大分子正常电泳行为的情况下, 使各区域内的溶液及存在于其中的 大分子样本可被单独收集, 从而实现大分子物质的分离回收。 电泳槽 槽体可由合适的材料制造, 包括但不限于玻璃、 有机玻璃、 塑料、 树 脂、 聚丙烯、 丙烯酸树脂或类似材料。 电泳槽槽体可以为合适的任何 形状, 包括但不限于方形、 长方形、 三角形、 圆形、 圆筒形、 球形、 锥形或不同形状的组合。 被分隔的电泳区域按照与电极的关系, 可以 分为阳极区域、 阴极区域和中间区域; 各区域的体积可以在 10 uL或以 上体积自由设置, 以适应电泳槽的不同用途。
根据本发明, 用于将电泳槽固定分隔成不同区域的材料可以选自 琼脂糖凝胶、 聚丙浠酰胺凝胶、 以及带孔或微孔的固相支持物; 固相 支持物可以包括除透析膜、 半透膜、 滤膜和滤纸以外的其他合适的材 料, 包括但不限于有机玻璃、 塑料、 树脂、 聚丙烯、 丙烯酸树脂或类 似材料。
根据本发明, 用于将电泳槽可操作性分隔成不同区域的方式可以 包括阀门、 开关、 可阻断性流道、 或将不同的电泳区域拆卸分离。 可 阻断性流道是指连接不同电泳区域的流道可被物理方式阻断, 从而实 现可操作性分隔, 具体的阻断方式包括但不限于用止血钳夹住、 折叠 流道实现分隔、 插入阻挡物实现分隔。
下面将结合实施例进一步详细描述本发明。 应当理解, 列举这些 实施例只是为了起说明作用, 而并不是用来限制本发明的范围。 除非 特别说明, 本发明所用到的试剂、 培养基均为市售商品。 实施例中未 注明具体条件的实验方法,通常按照常规实验条件进行,例如 Sambrook 等人在 《分子克隆: 实脸室手册》 (New York: Cold Spring Harbor Laboratory Press, 1989)中所述的条件, 或按照制造厂商所建议的条件。 实施例 1. 电泳槽结构 一种琼脂糖分隔式的两腔电泳槽
参见图 1, 该电泳槽包括槽体 1、 阳极 2、 阴极 3、 阳极区域 4、 中 间区域 5和琼脂糖凝胶分隔 7; 电泳区域由被琼脂糖凝胶分隔 7分隔的 两个区域组成, 分别为阳极区域 4和中间区域 5 , 阳极 2和阴极 3分别 位于这两个区域中。
一种琼脂糖分隔式的三腔电泳槽
参见图 2 , 该电泳槽包括槽体 1、 阳极 2、 阴极 3、 阳极区域 4、 中 间区域 5、 阴极区域 6和琼脂糖凝胶分隔 7; 电泳区域由被琼脂糖凝胶 分隔 7分隔的三个区域组成, 分别为阳极区域 4、 中间区域 5和阴极区 域 6 , 阳极 2和阴极 3分别位于两端的阳极区域 4和阴极区域 6中。
一种分离式的两腔电泳槽
参见图 3, 该电泳槽包括槽体 1、 阳极 2、 阴极 3、 阳极区域 4、 中 间区域 5、 阀门 8和连接通道 9; 电泳区域包括两个独立的区域, 分别 为阳极区域 4和中间区域 5 , 它们由电泳通道 9连接, 阳极 2和阴极 3 分别位于阳极区域 4和中间区域 5中; 电泳通道 9带有阀门 8。
一种分离式的三腔电泳槽
参见图 4, 该电泳槽包括槽体 1、 阳极 2、 阴极 3、 阳极区域 4、 中 间区域 5、 阴极区域 6、 阀门 8和连接通道 9; 电泳区域包括三个独立 的区域, 分别为阳极区域 4、 中间区域 5和阴极区域 6 , 它们由电泳通 道 9连接, 阳极 2和阴极 3分别位于阳极区域 4和阴极区域 6中; 电 泳通道 9带有阀门 8。
一种套管式电泳槽
参见图 5, 该电泳槽包括槽体 1、 阳极 2、 阴极 3、 阳极区域 4、 中 间区域 5和连接通道 10; 电泳区域由两个嵌套的可分离的管状结构以 及它们之间的连接通道 10组成; 阳极区域 4位于外管中, 中间区域 5 位于内管中, 阳极 2和阴极 3分别位于阳极区域 4和中间区域 5中。
一种套管式电泳槽
参见图 6 , 该电泳槽包括槽体 1、 阳极 2、 阴极 3、 阳极区域 4、 中 间区域 5和连接通道 10; 电泳区域由两个嵌套的可分离的管状结构以 及它们之间的连接通道 10組成; 阳极区 i或 4位于内管中, 中间区域 5 位于外管中, 阳极 2和阴极 3分别位于阳极区域 4和中间区域 5中。 实施例 2. 电洗脱凝胶中的核酸分子
用图 6所示的套管式电泳槽回收琼脂糖凝胶中分离的质粒条带。
1、 质粒电泳: 取 20 uL (4 ug) 纯化的 pGL3 ( Promega )质粒, 与 2 uL上样緩沖液混合后, 上样到 1.2%的琼脂糖凝胶中, 在 100V恒压 条件下进行电泳, 电泳緩沖液为 0.5x TBE;
2、 当质粒条带泳动到琼脂糖凝胶中间位置时, 停止电泳, 取出胶 块, 进行溴化乙锭染色, 在紫外灯下, 用干净的刀片将包含质粒条带 的胶条切下来;
3、 将胶条放置到图 6所示的电泳槽的外管中, 加入 400 uL 0.5x TBE浸没胶条; 在内管中加入 100 uL 0.5x TBE, 使内外管的连接通道 内充满电泳緩沖液, 在内外管溶液之间形成电流回路;
4、 如图 6所示连接电源电极, 在 10V恒压条件下电泳 10分钟后, 停止电泳, 分离内外管;
5、 将内管溶液中的质粒进行乙醇沉淀, 用 10 uL去离子水溶解沉 淀, 检测质粒的纯度并进行定量, 计算回收率;
6、 A260/280为 1.91 , 回收率为 94%。
实验结果表明, 本发明提供的套管式电泳槽能够简便、 高效、 高 质量地回收凝胶电泳中分离的核酸条带。 实施例 3. 电洗脱凝胶中的蛋白分子
用图 6所示的套管式电泳槽回收 PAGE凝胶中分离的蛋白条带。 1、 蛋白电泳: 取 10 ug 牛血清白蛋白 (Sigma ) , 与上样緩冲液 混合后上样到 10%的 PAGE凝胶中, 电泳条件为 200v/10mA, 电泳緩 冲液为 Tris-甘氨酸蛋白电泳緩沖液;
2、 当上样指示剂泳动到凝胶 2/3位置时, 停止电泳, 将胶块取出, 用干净的刀片将包含目标蛋白条带的胶条切下来;
3、 将胶条放置到图 6所示的电泳槽的外管中, 力。入 400 uL 50 mM Tris ( pH8.3 )溶液浸没胶条; 在内管中加入 100 uL 50 mM Tris ( pH8.3 ) 溶液, 使连接内外管的连接通道内充满 Tns緩冲液, 在内外管溶液之 间形成电 ¾f回路;
4、 如图 6所示连接电源电极, 在 15V恒压条件下电泳 20分钟后, 停止电泳, 分离内外管; 5、 利用 Bradford法测定内管溶液中的蛋白含量, 计算回收率;
6、 计算得到的回收率为 93%。
实验结果表明, 本发明提供的套管式电泳槽能够简便、 高效地回 收凝胶电泳中分离的蛋白条带。 实施例 4. 核酸浓缩
用图 1 所示的由琼脂糖凝胶分隔的两腔式电泳槽浓缩溶液中的核 酸成分。 该电泳槽阳极区域容积为 20 mL, 中间区域容积为 200 mL, 琼脂糖胶条的宽度为 1 cm, 顶面超过电泳緩冲液的液面高度 0.5 cm, 在电泳槽的阳极区域和中间区域之间形成分隔。
1、取 20 ug 纯化的 pGL3( Promega )质粒,溶解于 200 mL 0.5x TBE, 质粒终浓度为 100 ng/mL;
2、 将 200 mL质粒溶液緩慢加入到电泳槽的中间区域中, 在电泳 槽的阳极区域中加入 20 mL 0.5x TBE;
3、 如图 〗所示连接电源电极, 在 40V恒压条件下电泳 20分钟后, 停止电 >永;
5、 收集电泳槽阳极区域中的溶液, 进行乙醇沉淀, 用 15 uL去离 子水溶解沉淀, 检测质粒的纯度并进行定量, 计算回收率;
6、 A260/280为 1.87, 回收率为 95%。
实验结果表明, 本发明提供的分隔式电泳槽能够简便、 高效、 高 质量地浓缩样本中的核酸分子。 实施例 5. 核酸与蛋白的分离
用图 3 所示的分离式的两腔电泳槽从核酸蛋白混合液中分离核酸 及蛋白分子。 该电泳槽阳极区域容积为 20 mL, 中间区域容积为 200 mL, 连接阳极区域和中间区域的电泳通道中装有一个阀门。
1、 核酸蛋白混合物: 取 10 ug 纯化的 pGL3 ( Promega )质粒和 10 mg 牛血清白蛋白 (Sigma ) , 溶解于 200 mL 0.5x TBE, 质粒终浓度 为 50 ng/mL, 蛋白的终浓度为 50 ug/mL;
2、 关闭电泳通道中的阀门, 将 200 mL核酸蛋白溶液加入到电泳 槽的中间区域中, 在电泳槽的阳极区域中加入 20 mL 0.5x TBE;
3、 如图 3所示连接电源电极, 打开阀门, 在 40V恒压条件下电泳 20分钟后, 停止电泳;
5、 收集电泳槽阳极区域中的溶液, 进行乙醇沉淀, 用 15 uL去离 子水溶解沉淀并进行定量, 计算回收率; 利用 Bradford法分别测定阳 极区域和中间区域溶液中的蛋白含量;
6、 质粒 DNA的回收率为 97%; 阳极区域蛋白浓度为 5 ug/mL, 中 间区域蛋白浓度为 47 ug/mL。
实验结果表明, 本发明提供的分离式电泳槽能够简便、 高效、 高 质量地从核酸蛋白混合物中分离核酸与蛋白分子。

Claims

权 利 要 求
1. 一种电泳槽, 其特征在于所述电泳槽包括至少两个固定分隔的 或可操作性分隔的电泳区域, 在不影响大分子正常电泳行为的情况下, 这些分隔使不同电泳区域内的溶液能够被单独收集。
2. —种电泳槽, 其特征在于所述电泳槽包括两个固定分隔的或可 操作性分隔的电泳区域, 在不影响大分子正常电泳行为的情况下, 这 些分隔使不同电泳区域内的溶液能够被单独收集。
3. 一种电泳槽, 其特征在于所述电泳槽包括三个固定分隔的或可 操作性分隔的电泳区域, 在不影响大分子正常电泳行为的情况下, 这 些分隔使不同电泳区域内的溶液能够被单独收集。
4. 权利要求 1 -3所述的电泳槽, 其特征在于用于固定分隔不同电 泳区域的材料包括琼脂糖凝胶、 聚丙烯酰胺凝胶、 带孔的固相支持物。
5. 权利要求 〗 -3所述的电泳槽, 其特征在于用于可操作性分隔不 同电泳区域的方式包括岡门、 开关、 可阻断性流道。
6. 权利要求 1所述的电泳槽, 其特征在于该电泳槽包括槽体、 阳 极、 阴极和电泳区域; 电泳区域由被琼脂糖凝胶或聚丙烯酰胺凝胶分 隔的三个区域组成, 阳极和阴极分别位于两端的区域中。
7. 权利要求 1所述的电泳槽, 其特征在于该电泳槽包括槽体、 阳 极、 阴极和电泳区域; 电泳区域包括三个独立的区域, 所述区域经电 泳通道连接, 阳极和阴极分别位于两端的独立区域内; 电泳通道带有 可操作的分隔装置。
8. 权利要求 1所述的电泳槽, 其特征在于该电泳槽包括槽体、 阳 极、 阴极和电泳区域; 其中, 电泳区域由两个嵌套的可分离的筒状或 管状结构以及它们之间的连接通道组成。
9. 一种电泳系统, 其特征在于所述电泳系统包括电源以及权利要 求 1 -8任一项所述的电泳槽。
10.权利要求 9所述的电泳系统在大分子的分离、 电洗脱和浓缩中 的应用。
1 1.权利要求 10 所述的应用, 其特征在于所述的大分子包括核酸 分子、 蛋白质分子、 碳水化合物分子、 及病毒颗粒。
12.权利要求 9所述的电泳系统在核酸与蛋白分离中的应用。
PCT/CN2012/000804 2011-06-15 2012-06-12 一种电泳装置及其应用 WO2012171328A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110159893.0 2011-06-15
CN2011101598930A CN102824854A (zh) 2011-06-15 2011-06-15 一种电泳装置及其应用

Publications (1)

Publication Number Publication Date
WO2012171328A1 true WO2012171328A1 (zh) 2012-12-20

Family

ID=47328289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000804 WO2012171328A1 (zh) 2011-06-15 2012-06-12 一种电泳装置及其应用

Country Status (2)

Country Link
CN (1) CN102824854A (zh)
WO (1) WO2012171328A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106621810B (zh) * 2017-03-14 2023-07-04 青岛童医生海洋生物科技股份有限公司 壳寡糖分离纯化装置及其方法
CN107245093A (zh) * 2017-08-09 2017-10-13 赖兵 一种蛋白质等电纯化装置及方法
CN112742547B (zh) * 2020-12-15 2022-04-01 湖北工业大学 一种从粉煤灰中除碳的方法
CN113466315B (zh) * 2021-06-07 2024-05-14 江门市灿明生物科技有限公司 三重电极电泳装置及其电泳槽

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862893A (en) * 1974-07-24 1975-01-28 Scm Corp Electrolytic cell method for transfer of dispersed solids from one liquid electrolyte to another with suppression of transfer of dispersing liquid
CN1127157A (zh) * 1995-01-20 1996-07-24 清华大学 制备型等电点电泳分离方法及设备
CN1460034A (zh) * 2000-09-22 2003-12-03 得克萨斯A&M大学体系 电泳设备和方法
CN1668367A (zh) * 2002-06-05 2005-09-14 得克萨斯A&M大学体系 pH偏移的等电位捕集离析物的方法
CN101716465A (zh) * 2009-12-02 2010-06-02 中国科学院过程工程研究所 一种电场-分离膜耦合的分离方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129828A (en) * 1996-09-06 2000-10-10 Nanogen, Inc. Apparatus and methods for active biological sample preparation
ZA981370B (en) * 1997-02-20 1998-09-07 Cerberus Developments Bv Method and apparatus for continuous flow isoelectric focusing for purifying biological substances
WO2000071999A1 (de) * 1999-05-19 2000-11-30 Bilatec Ag Vorrichtung und verfahren zur isolierung von elektrisch geladenen molekülen
AUPQ697300A0 (en) * 2000-04-18 2000-05-11 Life Therapeutics Limited Separation apparatus
CN1332972C (zh) * 2002-11-28 2007-08-22 爱科来株式会社 浓缩和纯化核酸的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862893A (en) * 1974-07-24 1975-01-28 Scm Corp Electrolytic cell method for transfer of dispersed solids from one liquid electrolyte to another with suppression of transfer of dispersing liquid
CN1127157A (zh) * 1995-01-20 1996-07-24 清华大学 制备型等电点电泳分离方法及设备
CN1460034A (zh) * 2000-09-22 2003-12-03 得克萨斯A&M大学体系 电泳设备和方法
CN1668367A (zh) * 2002-06-05 2005-09-14 得克萨斯A&M大学体系 pH偏移的等电位捕集离析物的方法
CN101716465A (zh) * 2009-12-02 2010-06-02 中国科学院过程工程研究所 一种电场-分离膜耦合的分离方法和装置

Also Published As

Publication number Publication date
CN102824854A (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
Liangsupree et al. Modern isolation and separation techniques for extracellular vesicles
Chen et al. Advances in exosomes technology
Novák et al. Protein extraction and precipitation
JP5221529B2 (ja) 電気泳動を利用してある種のタンパク質および粒子を分離して枯渇させる方法および装置
Lin et al. Sample preconcentration in microfluidic devices
US6586585B1 (en) Method for the size reduction of high-molecular structures
JP5220598B2 (ja) キャピラリーゾーン電気泳動の感度を向上させるための方法及び装置
WO2012171328A1 (zh) 一种电泳装置及其应用
JP4216598B2 (ja) キャピラリー電気泳動によるタンパク質の分離法およびキャピラリー電気泳動用の緩衝組成物
WO2005047881A2 (en) Repetitive reversed-field affinity electrophoresis and uses therefor
WO2010026222A1 (en) Device and process for rapid isolation of a compound in a sample
US10750928B2 (en) Simultaneous extraction and separation of RNA and DNA from single cells using electrophoretic techniques
EP2214809A1 (en) Apparatus for purifying molecules
Shallan et al. Electrokinetics for sample preparation of biological molecules in biological samples using microfluidic systems
US20050072674A1 (en) Method and device for introducing a sample into an electrophoretic apparatus
EP1217367A1 (en) Radial electrophoresis apparatus and method
EP1568705B1 (en) Method and apparatus for concentration and purification of nucleic acid
Bu et al. High-performance gel-free and label-free size fractionation of extracellular vesicles with two-dimensional electrophoresis in a microfluidic artificial sieve
EP3128320A1 (en) Separation medium cassette for sample separation adsorption and analysis device for sample separation adsorption
WO2020079220A1 (en) Methods for extraction of molecules
CN111298109A (zh) 利用多模式层析介质Capto adhere去除乙脑疫苗制品中残留宿主DNA的方法
US11921083B2 (en) Device for capturing macromolecules and methods for manufacturing and using same
US9234875B2 (en) Simultaneous purification of cell components
CN106867994B (zh) 应用于质粒dna提取的快速沉淀缓冲液及其应用
Hayden Research Profile: Nanofluidic sieves ease separation anxiety

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12799954

Country of ref document: EP

Kind code of ref document: A1