WO2012171270A1 - 在微波通信网中发送、接收e1业务的方法和系统 - Google Patents

在微波通信网中发送、接收e1业务的方法和系统 Download PDF

Info

Publication number
WO2012171270A1
WO2012171270A1 PCT/CN2011/078719 CN2011078719W WO2012171270A1 WO 2012171270 A1 WO2012171270 A1 WO 2012171270A1 CN 2011078719 W CN2011078719 W CN 2011078719W WO 2012171270 A1 WO2012171270 A1 WO 2012171270A1
Authority
WO
WIPO (PCT)
Prior art keywords
rate adjustment
clock
code rate
service
frequency
Prior art date
Application number
PCT/CN2011/078719
Other languages
English (en)
French (fr)
Inventor
刘巍
程文
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012171270A1 publication Critical patent/WO2012171270A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/07Synchronising arrangements using pulse stuffing for systems with different or fluctuating information rates or bit rates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation
    • H04J3/0691Synchronisation in a TDM node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1623Plesiochronous digital hierarchy [PDH]

Definitions

  • the present invention relates to the field of network communications, and in particular, to transmitting and receiving in a microwave communication network.
  • Microwave communication technology has been around for more than half a century, and together with fiber optics and satellites, it is called the three pillars of modern communication transmission. It is a communication method in which a microwave frequency is used as a carrier-carrying information, and a relay (relay) between line-of-sight is performed through a radio wave space.
  • microwave transmission equipment is mainly applied to 2G/3G mobile Backhaul bearer networks to provide voice and data service transmission for mobile operators.
  • microwave transmission is also performed by traditional time division multiplexing (Time Division Multiplex).
  • TDM time division multiplexing
  • Hybrid Hybrid
  • Packet full packet
  • the E1 service transmitted on the communication channel contains clock information, so the clock needs to be recovered from the data at the end of the communication before the data can be recovered. Due to external interference, data transmitted on various communication interfaces always introduces certain jitter. Therefore, a technique is needed to insert some time stamp information on the transmission end of the service transmission, and then use the time stamp information to recover the service at the transmission end. .
  • E1 service circuit simulation technology is popular.
  • 1 is a schematic diagram of a circuit emulation technology of an E1 service in the prior art.
  • the technology encapsulates a service payload in an E1 service buffer with a special circuit emulation header, and carries E1 service data in a special packet header.
  • the frame format, the alarm information, the signaling information, and the timing synchronization information are then executed at the egress of the transmission end, and the service data is timely processed by the adaptive clock recovery module by using the timing synchronization information carried in the special packet header.
  • the clock came back.
  • the transmission technology of the E1 service is mainly used to implement the transmission of the E1 service in the packet transmission network, which is difficult to implement, complicated in process, and relatively expensive.
  • the service clock recovered at the receiving end of the service needs to quickly keep up with the service clock of the service entering the service sender.
  • the method and system for transmitting and receiving E1 services in a microwave communication network provided by the present invention solve the technical problem of how to transmit E1 services in a simple and reliable manner.
  • the present invention provides the following technical solutions:
  • a method for transmitting an E1 service in a microwave communication network comprising:
  • the method further has the following feature: the rate adjustment clock adapts a rate range of the E1 service code stream.
  • a method for receiving an E1 service in a microwave communication network comprising:
  • the E1 service clock and data are recovered from the E1 service payload.
  • the method further has the following feature: extracting E1 service static from the code rate adjustment frame according to the indication information of three insertion flag bits in the frame rate adjustment frame based on the code rate adjustment clock Dutch, including:
  • the method further has the following features: adjusting the amplitude according to the determined frequency, adjusting the frequency of the code rate adjustment clock, including:
  • a system for transmitting an E1 service in a microwave communication network comprising:
  • a packaging device configured to: encapsulate the E1 service code stream into a code rate adjustment frame based on a preset code rate adjustment clock, where each code rate adjustment frame includes one insertion bit and is used to indicate the Whether the data of the inserted bit is 3 insertion flag bits of valid data;
  • the transmitting device is configured to: perform transmission processing on the code rate adjustment frame.
  • the system further has the following feature:
  • the code rate adjustment clock used by the encapsulation device adapts the rate range of the E1 service code stream.
  • a system for receiving an E1 service in a microwave communication network comprising:
  • a first level recovery device configured to: after obtaining the code rate adjustment frame, obtain a code rate adjustment clock corresponding to the rate adjustment frame;
  • An extracting device configured to: extract, according to the code rate adjustment clock, the indication information of three insertion flag bits in the frame rate adjustment frame, and extract an E1 service static load from the code rate adjustment frame;
  • the second level recovery device is configured to: recover the E1 service clock and data from the E1 service static load based on the 2.048 MHz clock.
  • the extracting device comprises:
  • Determining the module set to: based on the water level information of the data stored in the first in first out (FIFO), Determining an adjustment range of a frequency of the code rate adjustment clock;
  • Adjusting the module setting: adjusting the frequency of the code rate adjustment clock according to the frequency adjustment amplitude;
  • the obtaining module is configured to: adjust the frequency of the clock by using the code rate, and obtain the E1 service static load from the code rate adjustment frame.
  • the system further has the following features:
  • the adjusting module is further configured to: adjust a frequency of the rate adjustment clock by performing an operation of adding/decreasing a pulse of an output clock of the code rate adjustment clock, where the same number of clock outputs are adjusted for the code rate
  • the output clock the higher the frequency adjustment amplitude, the more times the add/subtract pulse operation is performed on the output clock.
  • the transmission method and system provided by the embodiments of the present invention provide a speed information of an E1 service rate in each frame by encapsulating one insertion bit and three insertion flag bits in each rate adjustment frame, which is simple and reliable.
  • the receiving method and system provided by the embodiment of the present invention recovers the code rate adjustment code stream by using an adaptive clock recovery technology, and then recovers the service code stream by using the second adaptive clock recovery, and does not need to be used at the service exit.
  • the complex clock recovery technology is simple, reliable, and easy to implement in the TDM service transmission network, and can better meet the performance specifications specified by the relevant standards of the E1 service.
  • FIG. 1 is a schematic diagram of a circuit simulation technique of an E1 service in the prior art
  • FIG. 2 is a schematic flow chart of an embodiment of a method for transmitting an E1 service in a microwave communication network according to the present invention
  • FIG. 3 is a schematic flow chart of an embodiment of a method for receiving an E1 service in a microwave communication network according to the present invention
  • FIG. 4 is a schematic structural diagram of a microwave transmission system provided by an application example of the present invention.
  • FIG. 5 is a schematic structural diagram of a code rate adjustment frame provided by the present invention.
  • 6 is a schematic diagram of the working principle of the adaptive clock recovery technology in the present invention
  • 7 is a schematic structural diagram of an embodiment of a system for transmitting an El service in a microwave communication network according to the present invention
  • FIG. 8 is a schematic structural diagram of an embodiment of a system for receiving an E1 service in a microwave communication network according to the present invention.
  • FIG 9 is a block diagram showing the structure of the extracting device 802 in the embodiment shown in Figure 8.
  • Preferred embodiment of the invention
  • FIG. 2 is a schematic flow chart of an embodiment of a method for transmitting an E1 service in a microwave communication network according to the present invention.
  • the method embodiment shown in Figure 2 includes:
  • Step 201 Encapsulate the E1 service code stream into a code rate adjustment frame based on a preset code rate adjustment clock, where each code rate adjustment frame includes one insertion bit and data for indicating the insertion bit. Whether it is 3 insertion flag bits of valid data;
  • Step 202 Perform a transmission process on the code rate adjustment frame.
  • the used rate adjustment clock in order to ensure the rate of the frame rate adjustment frame after adding 4 bits, the used rate adjustment clock must be adapted to the speed range of the E1 service code stream, that is, 2.048 Mbps to 50 ppm.
  • the speed information of the E1 service rate is included in each frame, which is simple and reliable.
  • FIG. 3 is a flow chart of an embodiment of a method for receiving an E1 service in a microwave communication network according to the present invention Intention.
  • the method embodiment shown in FIG. 3 includes:
  • Step 301 After obtaining a code rate adjustment frame, obtain a code rate adjustment clock corresponding to the code rate adjustment frame.
  • Step 302 The instruction information of the three insertion flag bits in the frame is adjusted according to the code rate adjustment clock, and the E1 service static load is extracted from the code rate adjustment frame.
  • FIFO first in first out
  • the adjusting the frequency of the rate adjustment clock according to the determined frequency adjustment amplitude includes: adjusting, by using an operation of adding/decreasing a pulse of the output clock of the code rate adjustment clock, adjusting the rate adjustment clock Frequency, wherein for the same number of output clocks of the clock rate adjustment clock output, the higher the frequency adjustment amplitude, the more times the add/subtract pulse operation is performed on the output clock.
  • Step 303 Restore the E1 service clock and data from the E1 service static load based on the 2.048 MHz clock.
  • the embodiment of the receiving method provided by the present invention recovers the code rate adjustment code stream by using an adaptive clock recovery technology, and then recovers the service code stream by using the second adaptive clock recovery, without using complicated services at the service exit.
  • the clock recovery technology is simple, reliable, and easy to implement in the TDM service transmission network, and can better meet the performance specifications specified by the relevant standards of the E1 service.
  • FIG. 4 is a schematic structural diagram of a microwave transmission system provided by an application example according to the present invention, where the system includes: a rate adjustment unit, a packet buffer unit, a service packet unit, a service unpacking unit, an unpacking buffer unit, a first-level recovery unit, and E1 net. a storage unit and a secondary recovery unit, wherein:
  • Step A The rate adjustment unit, the processing of the 2.048 Mbps E1 service code stream through the rate adjustment unit is encapsulated into a code rate adjustment frame, and each frame data includes 292 E1 service bits and 3 insertion flag ratios. And 1 insertion bit, a total of 296 bits.
  • the principle of inserting the service rate related information is: performing the rate judgment of the E1 service code stream when receiving the E1 service code stream, and setting the three insertion flag bits when the rate of the E1 service code stream continues to be less than 2.048 Mbps for a period of time. Indicates that data-independent bits need to be inserted now.
  • the three insertion flag bits are set to 0 to indicate that the current insertion bit is inserted with valid service data, so that the code stream Information about the E1 service rate has been included.
  • FIG. 5 is a schematic structural diagram of a code rate adjustment frame provided by the present invention.
  • Cl ⁇ 3 is the insertion flag bit
  • VI is the insertion bit.
  • the rate adjustment processing clock does not necessarily need to use the 2.072 Mbps clock.
  • the rate adjustment clock only needs to be able to adapt to the speed range of E1.
  • the ideal rate adjustment clock should enable 2.048MHZ is in the middle of its rate adjustment frequency range.
  • the present invention uses the 2.072 MHz clock because such a clock can be obtained very easily in the system.
  • Step B The packet buffer unit is configured to store the serialized and converted code rate adjustment frame.
  • Step C The service packet unit adds a packet header and a 4-byte CRC check for each rate adjustment frame, and the packet header is replaced with the service cross information.
  • Step D The service packet is finally sent to the air interface through the service crossover and modulation module.
  • Step E The service demodulation and cross unit regenerates and crosses the service packets in the air interface to the unpacking unit in the service processing module.
  • Step F The unpacking unit disconnects the service package in the transmission network, extracts the code rate adjustment frame, and stores it in the unpacking buffer unit.
  • Step G The level recovery unit uses the code rate adjustment frame information stored in the unpacking buffer unit to recover the code rate adjustment clock by using an adaptive clock recovery technique based on the 2.072 MHz clock generated by the fractional division module.
  • the 2.072 MHz clock is adjusted at the transmission end of the transmission network.
  • the rate adjustment clock is used to perform the de-plug operation, and the rate-related information inserted during the rate adjustment is removed, and the E1 service static load is extracted and stored in the E1 payload storage unit.
  • the culling the rate related information inserted when the code rate is adjusted refers to:
  • the three insertion flag bits indicate that the one insertion bit is valid data, the three insertion flag bits are culled; otherwise, three insertion flag bits and one insertion bit are eliminated.
  • Step H The secondary recovery unit uses the payload information stored in the E1 payload storage unit, and recovers the E1 service clock based on the 2.048 MHz clock generated by the fractional divider module through adaptive clock recovery technology, and finally utilizes the E1 service.
  • the clock reads the data from the cache to restore the service.
  • the above-mentioned fractional frequency division module uses the Sigma-Delta algorithm to implement the hourly frequency division circuit, and uses the high frequency clock to divide the frequency to obtain a reference clock of 2.072 MHz and 2.048 MHz for the level 2 clock recovery.
  • FIG. 6 is a schematic diagram of the working principle of the adaptive clock recovery technology in the present invention.
  • the clock recovery needs to use the data lead lag information (the amount of data stored in the FIFO) carried by the data FIFO. If the depth of the FIFO is 1000, then the data intermediate line is 500, the data is generally 550, and the data is seriously ahead of the line. 800, the data generally has a hysteresis line of 450, and the data has a severe hysteresis line of 200.
  • the data water level is between the general lead line and the general lag line, indicating that the leading lag of the current data is not obvious, and no clock adjustment is needed; the data water level is between the severe lead line and the general lead line or between the severe lag line and the general lag line. It means that the data has lead or lag, but it is not serious, and the recovery clock needs to be adjusted or slowed down moderately; the data water level is above the serious lead line or the severe lag line indicates that the data is very advanced, and a large clock frequency is required. Adjust the speed at which the recovered clock keeps up with the data.
  • the clock frequency adjustment in the above adaptive clock recovery process is implemented by adding and subtracting pulses.
  • a frequency-adjustable 2.048 can be realized by adding or extracting a high-frequency clock pulse (125 MHz clock used here) on the clock period of the 2.048 MHz clock with a duty ratio of 1:1.
  • the MHZ clock with the control of the adjustment frequency, can achieve different clock adjustments.
  • the operation of adding and subtracting pulses with each 2.048MHZ clock is used as a high-profile clock and is added once every 100 2.048MHZ clocks.
  • the adjustment of the subtraction pulse is a low key. When the data level is generally ahead or generally lagging, use low-key mode to use high-profile mode when the data level is seriously advanced or severely delayed.
  • the application example of the present invention inserts the advanced lag information of the E1 service clock into the service code stream by performing a rate adjustment operation on the E1 service, and obtains the adjustment code stream, and then encapsulates the adjustment code stream into a service packet for transmission in the microwave network. Finally, the adaptive clock recovery is first used at the end of the transmission.
  • the complex technique recovers the adjusted code stream, and then recovers the service code stream by using the second adaptive clock recovery.
  • the invention does not need to encapsulate the time information into the packet header packet of the service packet, and does not need to use the complex clock recovery technology at the service exit, is simple, reliable, easy to implement in the TDM service transmission network, and can better satisfy the E1. Performance metrics specified by the relevant standards of the business.
  • FIG. 7 is a schematic structural diagram of an embodiment of a system for transmitting an E1 service in a microwave communication network according to the present invention.
  • the system embodiment shown in FIG. 7 includes:
  • the encapsulating device 701 is configured to encapsulate the E1 service code stream into a code rate adjustment frame based on a preset code rate adjustment clock, where each rate adjustment frame includes one insertion bit and is used to indicate the insertion Whether the bit data is 3 insertion flag bits of valid data;
  • the transmitting device 702 is configured to perform transmission processing on the code rate adjustment frame.
  • the rate adjustment clock used by the encapsulating device 701 is adapted to the rate range of the E1 service code stream.
  • the speed information of the E1 service rate is included in each frame, which is simple and reliable.
  • FIG. 8 is a schematic structural diagram of an embodiment of a system for receiving an E1 service in a microwave communication network according to the present invention.
  • the system embodiment shown in FIG. 8 includes:
  • a first level recovery device 801 configured to recover a code rate adjustment clock corresponding to the rate adjustment frame after obtaining the code rate adjustment frame;
  • the extracting device 802 is connected to the first level recovery device 801, and is configured to adjust, according to the code rate adjustment clock, instruction information of three insertion flag bits in the frame according to the code rate, from the code rate. Extracting the E1 service static load from the adjustment frame;
  • the second level recovery device 803 is coupled to the extraction device 802 for recovering the E1 service clock and data from the E1 service payload using the 2.048 MHz clock as a reference.
  • Figure 9 is a block diagram showing the structure of the extracting device 802 in the embodiment shown in Figure 8.
  • the system embodiment shown in Figure 9 includes:
  • the adjusting module 902 is connected to the determining module 901, configured to adjust the amplitude according to the frequency, and adjust a frequency of the rate adjusting clock;
  • the obtaining module 903 is connected to the adjusting module 902, and is configured to adjust the frequency of the clock by using the code rate, and obtain the E1 service static load from the rate adjusting frame.
  • the adjusting module 902 is configured to adjust a frequency of the rate adjustment clock by performing an operation of adding/decreasing an output clock of the code rate adjustment clock, where the clock output is the same for the code rate adjustment.
  • the receiving system embodiment provided by the present invention recovers the code rate adjustment code stream by using an adaptive clock recovery technology, and then recovers the service code stream by using the second adaptive clock recovery, without using complicated services at the service exit.
  • the clock recovery technology is simple, reliable, and easy to implement in the TDM service transmission network, and can better meet the performance specifications specified by the relevant standards of the E1 service.
  • all or part of the steps of the foregoing embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the invention is not limited to any particular combination of hardware and software.
  • the various devices/function modules/functional units in the above embodiments may be implemented using a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • Each device/function module/functional unit in the above embodiment can be stored in a computer readable storage medium when implemented in the form of a software function module and sold or used as a stand-alone product.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the transmission method and system provided by the embodiments of the present invention provide a speed information of an E1 service rate in each frame by encapsulating one insertion bit and three insertion flag bits in each code rate adjustment frame. reliable.
  • the receiving method and system provided by the embodiment of the present invention recovers the code rate adjustment code stream by using an adaptive clock recovery technology, and then recovers the service code stream by using the second adaptive clock recovery, and does not need to be used at the service exit.
  • the complex clock recovery technology is simple, reliable, and easy to implement in the TDM service transmission network, and can better meet the performance specifications specified by the relevant standards of the E1 service.

Abstract

本发明提供一种在微波通信网中发送、接收E1业务的方法和系统,所述在微波通信网中发送E1业务的方法,包括:以预先设置的码率调整时钟为基准,将所述E1业务码流封装成码率调整帧,其中每个码率调整帧包括1个插入比特和用于指示所述插入比特的数据是否为有效数据的3个插入标志比特;对所述码率调整帧进行发送处理。本发明实现简单可靠,能够较好地满足E1业务的相关标准规定的性能指标。

Description

在微波通信网中发送、 接收 E1业务的方法和系统
技术领域
本发明涉及网络通信领域, 尤其涉及一种在微波通信网中发送、 接收
E1业务的方法和系统。
背景技术
微波通信技术已经问世半个多世纪了, 和光纤, 卫星一起被称为现代通 信传输的三大支柱。 它是一种利用微波频率作载波携带信息, 通过无线电波 空间进行视距间的中继 (接力) 的通信方式。
目前, 微波传输设备主要应用于 2G/3G移动 Backhaul承载网络, 为移动 运营商提供语音和数据业务的传输, 随着移动无线网络技术的发展, 微波传 输也由传统的时分复用 ( Time Division Multiplex, TDM )业务传输逐步发展 为现今的混合( Hybrid )业务传输, 并最终向全分组( Packet )业务传输演进。
在通信信道上传输的 E1 业务中包含着时钟信息, 因此在通信末端就需 要将时钟从数据中恢复出来, 然后才能够恢复出数据。 由于外界的干扰, 各 种通信接口上传输的数据总是会引入一定的抖动, 因而需要一种技术在业务 传输发送端打入一些时间标志信息, 然后在传输末端利用这些时间标志信息 将业务恢复。
当前 E1业务的传输技术有多种, 目前比较流行的是 E1业务电路仿真技 术。 图 1为现有技术中 E1业务的电路仿真技术的示意图, 该技术用特殊的电 路仿真报文头将 E1 业务緩存中的业务净荷进行封装, 在特殊报文头中携带 有 E1 业务数据的帧格式、 告警信息、 信令信息以及定时同步信息, 然后在 传输末端的出口处再执行解封装的过程, 利用特殊报文头中携带的定时同步 信息通过自适应时钟恢复模块将业务的数据及时钟恢复出来。 该 E1 业务的 传输技术主要用于在包传输网络中实现 E1 业务的传输, 其实现难度大, 过 程比较复杂, 成本相对昂贵。
在现代微波技术方案下, 实现 E1业务的透明传输需要解决如下问题: 业务在空中传输时引入的抖动较大, 尤其是在开启自适应编码调制
( Adaptive Code and Modulation , ACM )切换时, 业务抖动更为明显, 如何 在传输末端出口处恢复业务时钟与业务数据;
在业务的接收端恢复出的业务时钟需要快速跟上业务进入业务发送端的 业务时钟。
发明内容
本发明提供的在微波通信网中发送、 接收 E1 业务的方法和系统, 要解 决的技术问题是如何以简单可靠的方式进行 E1业务的传输。
为解决上述技术问题, 本发明提供了如下技术方案:
一种在微波通信网中发送 E1业务的方法, 包括:
以预先设置的码率调整时钟为基准, 将所述 E1 业务码流封装成码率调 整帧, 其中每个码率调整帧包括 1个插入比特和用于指示所述插入比特的数 据是否为有效数据的 3个插入标志比特;
对所述码率调整帧进行发送处理。
优选地, 所述方法还具有如下特点: 所述码率调整时钟适配所述 E1 业 务码流的速率范围。
一种在微波通信网中接收 E1业务的方法, 包括:
在获取到码率调整帧后, 恢复所述码率调整帧所对应的码率调整时钟; 以所述码率调整时钟为基准, 根据所述码率调整帧中的 3个插入标志比 特的指示信息, 从所述码率调整帧中提取 E1业务静荷;
釆用 2.048MHz的时钟为基准, 从所述 E1业务静荷恢复 E1业务时钟和 数据。
优选地, 所述方法还具有如下特点: 以所述码率调整时钟为基准, 根据 所述码率调整帧中的 3个插入标志比特的指示信息从所述码率调整帧中提取 E1业务静荷, 包括:
根据先进先出 (FIFO ) 中所存储的数据的水位信息, 确定对所述码率调 整时钟的频率的调整幅度;
根据所述频率调整幅度, 调整所述码率调整时钟的频率;
釆用所述码率调整时钟的频率, 从所述码率调整帧中获取所述 E1 业务 静荷。
优选地, 所述方法还具有如下特点: 根据确定的频率调整幅度, 调整所 述码率调整时钟的频率, 包括:
通过对所述码率调整时钟的输出时钟进行加 /减脉冲的操作, 调整所述 码率调整时钟的频率, 其中对于所述码率调整时钟输出的相同个数的输出时 钟, 所述频率调整幅度越高, 对所述输出时钟进行加 /减脉冲操作的次数越 多。
一种在微波通信网中发送 E1业务的系统, 包括:
封装装置, 其设置为: 以预先设置的码率调整时钟为基准, 将所述 E1 业务码流封装成码率调整帧, 其中每个码率调整帧包括 1个插入比特和用于 指示所述插入比特的数据是否为有效数据的 3个插入标志比特; 以及
发送装置, 其设置为: 对所述码率调整帧进行发送处理。
优选地, 所述系统还具有如下特点: 所述封装装置所使用的码率调整时 钟适配所述 E1业务码流的速率范围。
一种在微波通信网中接收 E1业务的系统, 包括:
第一级恢复装置, 其设置为: 在获取到码率调整帧后, 获取所述码率调 整帧所对应的码率调整时钟;
提取装置, 其设置为: 以所述码率调整时钟为基准, 根据所述码率调整 帧中的 3个插入标志比特的指示信息, 从所述码率调整帧中提取 E1 业务静 荷; 以及
第二级恢复装置, 其设置为: 釆用 2.048MHz的时钟为基准, 从所述 E1 业务静荷恢复 E1业务时钟和数据。
优选地, 所述系统还具有如下特点: 所述提取装置包括:
确定模块, 设置为:根据先进先出(FIFO )中所存储的数据的水位信息, 确定对所述码率调整时钟的频率的调整幅度;
调整模块, 设置为: 根据所述频率调整幅度, 调整所述码率调整时钟的 频率;
获取模块, 设置为: 釆用所述码率调整时钟的频率, 从所述码率调整帧 中获取所述 E1业务静荷。
优选地, 所述系统还具有如下特点:
所述调整模块还设置为: 通过对所述码率调整时钟的输出时钟进行加 /减 脉冲的操作, 调整所述码率调整时钟的频率, 其中对于所述码率调整时钟输 出的相同个数的输出时钟, 所述频率调整幅度越高, 对所述输出时钟进行加 /减脉冲操作的次数越多。
本发明实施例提供的发送方法和系统, 通过在每个码率调整帧中封装 1 个插入比特以及 3个插入标志比特, 使各帧中均包括 E1 业务速率的速度信 息, 实现简单可靠。
本发明实施例提供的接收方法和系统, 利用一次自适应时钟恢复技术恢 复出码率调整码流, 然后再利用第二次自适应时钟恢复恢复出业务码流, 不 需要在业务出口处釆用复杂的时钟恢复技术, 在 TDM业务传输网中简单可 靠、 易于实现, 并且能够较好地满足 E1业务的相关标准规定的性能指标。 附图概述
图 1为现有技术中 E1业务的电路仿真技术的示意图;
图 2为本发明提供的在微波通信网中发送 E1业务的方法实施例的流程示 意图;
图 3为本发明提供的在微波通信网中接收 E1业务的方法实施例的流程示 意图;
图 4为本发明应用实例提供的微波传输系统的结构示意图;
图 5为本发明提供的码率调整帧的结构示意图;
图 6为本发明中自适应时钟恢复技术的工作原理示意图; 图 7为本发明提供的在微波通信网中发送 El业务的系统实施例的结构示 意图;
图 8为本发明提供的在微波通信网中接收 E1业务的系统实施例的结构示 意图;
图 9为图 8所示实施例中提取装置 802的结构示意图。 本发明的较佳实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图及具体 实施例对本发明作进一步的详细描述。 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
图 2为本发明提供的在微波通信网中发送 E1业务的方法实施例的流程示 意图。 图 2所示方法实施例, 包括:
步骤 201、 以预先设置的码率调整时钟为基准, 将所述 E1业务码流封装 成码率调整帧; 其中每个码率调整帧包括 1个插入比特和用于指示所述插入 比特的数据是否为有效数据的 3个插入标志比特;
具体来说, 如果一段时间内 E1业务码流的速率小于 2.048Mbps, 则该 1 个插入比特应为无效数据, 如果一段时间内 E1 业务码流的速率大于 2.048Mbps, 则该 1个插入比特应为有效数据; 如果一段时间内 E1业务码流 的速率等于所述 2.048Mbps, 则第 i帧中插入比特为有效数据, 第 i+1帧中插 入比特为无效数据, 其中 i=l,2,3... ... N, 其中 N为自然数。
步骤 202、 对所述码率调整帧进行发送处理。
需要说明的是, 为了保证在增加 4个比特后的码率调整帧的速率, 所使 用的码率调整时钟必须适配所述 E1 业务码流的速度范围, 即 2.048Mbps士 50ppm。
本发明实施例提供的发送方法实施例, 通过在每个码率调整帧中封装 1 个插入比特以及 3个插入标志比特, 使各帧中均包括 E1 业务速率的速度信 息, 实现简单可靠。
图 3为本发明提供的在微波通信网中接收 E1业务的方法实施例的流程示 意图。 图 3所示方法实施例, 包括:
步骤 301、 在获取到码率调整帧后, 获取所述码率调整帧所对应的码率 调整时钟;
步骤 302、 以所述码率调整时钟为基准, 根据所述码率调整帧中的 3个 插入标志比特的指示信息, 从所述码率调整帧中提取 E1业务静荷;
具体的, 根据先进先出 (FIFO ) 中所存储的数据的水位信息, 确定对所 述码率调整时钟的频率的调整幅度; 根据所述频率调整幅度, 调整所述码率 调整时钟的频率; 釆用所述码率调整时钟的频率, 从所述码率调整帧中获取 所述 E1业务静荷。
其中, 所述根据确定的频率调整幅度, 调整所述码率调整时钟的频率, 包括: 通过对所述码率调整时钟的输出时钟进行加 /减脉冲的操作, 调整所 述码率调整时钟的频率, 其中对于所述码率调整时钟输出的相同个数的输出 时钟, 所述频率调整幅度越高, 对所述输出时钟进行加 /减脉冲操作的次数 越多。
步骤 303、 釆用 2.048MHz的时钟为基准, 从所述 E1业务静荷恢复 E1 业务时钟和数据。
本发明提供的接收方法实施例, 利用一次自适应时钟恢复技术恢复出码 率调整码流, 然后再利用第二次自适应时钟恢复恢复出业务码流, 不需要在 业务出口处釆用复杂的时钟恢复技术, 在 TDM业务传输网中简单可靠、 易 于实现, 并且能够较好地满足 E1业务的相关标准规定的性能指标。
下面对本发明提供的方法实施例作进一步说明:
下面以一个应用实例对上述方法作进一步说明:
图 4 为本发明应用实例提供的微波传输系统的结构示意图, 该系统包 括: 码率调整单元、 封包緩存单元、 业务封包单元、 业务解包单元、 拆包緩 存单元、 一级恢复单元、 E1净荷存储单元和二级恢复单元, 其中:
1 )在传输网的发送端
步骤 A. 码率调整单元, 2.048Mbps的 E1业务码流经码率调整单元的处 理被封装成码率调整帧, 每帧数据包含 292个 E1业务比特、 3个插入标志比 特和 1个插入比特, 共 296个比特。 其插入业务速率相关信息的原理是: 在 接收 E1业务码流时进行 E1业务码流的速率判断, 当 E1业务码流的速率持 续一段时间小于 2.048Mbps时, 将 3个插入标志比特置 1来表示现在需要插 入数据无关比特, 当 E1业务码流的速率持续一段时间大于 2.048Mbps时, 将 3个插入标志比特置 0来指示当前插入比特中插入的是有效的业务数据, 这 样, 该码流中已经包含 E1业务速率的相关信息了。
图 5为本发明提供的码率调整帧的结构示意图。 图 5所示结构中 Cl~3 为插入标志比特, VI为插入比特。
同时, 如果利用一个 2.072MHZ的时钟来进行速率调整的处理, 根据上 述的调整过程, 就能够适配 2.044Mbps-2.051Mbps的数据速率范围, 因此也 适合于 E1 的 2.048Mbps ± 50ppm的速率范围。 另夕卜, 值得一提的是速率调 整的处理时钟, 此处并不一定需要使用 2.072Mbps时钟, 速率调整时钟只需 要能保证能适配 E1的速率范围即可, 理想速率调整时钟应该能使 2.048MHZ 在其速率调整频率范围正中间。 本发明使用了 2.072MHZ时钟是因为系统中 能非常容易的得到这样一个时钟。
步骤 B. 封包緩存单元用于存储串并转换后的码率调整帧。
步骤 C. 业务封包单元为每一个码率调整帧增加一个报文头和 4字节 CRC校验, 报文头中包换有业务的交叉信息。
步骤 D. 业务包最终通过业务交叉和调制模块被发送至空口。
2 )在传输网的末端
步骤 E. 业务解调和交叉单元将空口中的业务包再生并交叉至业务处理 模块中的解包单元。
步骤 F. 解包单元将传输网络中的业务包拆开, 提取出码率调整帧, 并 将至存放至拆包緩存单元中。
步骤 G. —级恢复单元利用拆包緩存单元中存储的码率调整帧的信息, 通过自适应时钟恢复技术, 以小数分频模块产生的 2.072MHZ时钟为基准, 恢复出码率调整时钟, 即在传输网发送端进行码率调整的 2.072MHZ时钟。 然后利用码率调整时钟进行去塞入操作, 将码率调整时插入的速率相关信息 剔除, 提取出 E1业务静荷, 存至 E1净荷存储单元。 其中, 所述将码率调整时插入的速率相关信息剔除是指:
如果所述 3个插入标志比特指示该 1个插入比特为有效数据, 则剔除该 3个插入标志比特; 否则, 剔除 3个插入标志比特和 1个插入比特。
步骤 H. 二级恢复单元利用 E1净荷存储单元存储的净荷信息, 通过自适 应时钟恢复技术, 以小数分频模块产生的 2.048MHZ时钟为基准, 恢复出 E1 业务时钟, 并最终利用 E1业务时钟将数据从緩存中读出, 实现业务的恢复。
上述小数分频模块利用 Sigma-Delta算法实现小时分频电路,利用高频时 钟分频得到 2.072MHZ和 2.048MHZ的基准时钟用于 2级时钟恢复。
图 6为本发明中自适应时钟恢复技术的工作原理示意图。 首先时钟恢复 需要利用到数据 FIFO所携带的数据超前滞后信息( FIFO中存储的数据数量 ), 如果 FIFO的深度为 1000, 那么数据中间线为 500, 数据一般超前线为 550, 数据严重超前线为 800, 数据一般滞后线为 450, 数据严重滞后线为 200。 数 据水位处于一般超前线和一般滞后线之间表示当前数据的超前滞后不明显, 不需要进行时钟调整; 数据水位处于严重超前线和一般超前线之间或者严重 滞后线和一般滞后线之间, 则表示数据有超前或滞后, 但不严重, 需要将恢 复时钟适度调快或调慢; 数据水位处于严重超前线以上或严重滞后线之间表 示数据超前之后很严重, 需要进行大幅度的时钟频率调整使恢复时钟跟上数 据的速度。
上述自适应时钟恢复过程中的时钟频率调整利用加减脉冲的方式实现。 以 2.048MHZ时钟为例进行说明, 在占空比为 1 : 1的 2.048MHZ时钟的时钟 周期上增加或者抠出一个高频时钟脉冲 (这里用的 125MHZ时钟)就能实现 一个频率可调整的 2.048MHZ时钟, 在加上对调整频度的控制就能实现不同 的时钟调整力度, 以每个 2.048MHZ时钟进行一次加减脉冲的操作作为时钟 作为高调,并以每 100个 2.048MHZ时钟进行一次加减脉冲的调节作为低调。 在数据水位一般超前或者一般滞后时, 釆用低调方式, 在数据水位严重超前 或者严重滞后时釆用高调方式。
本发明应用实例通过对 E1业务进行一次码率调整操作, 将 E1业务时钟 的超前滞后信息插入到业务码流中, 得到调整码流, 然后将调整码流封装成 业务包在微波网络中进行传输, 最终在传输末端首先利用一次自适应时钟恢 复技术恢复出调整码流, 然后再利用第二次自适应时钟恢复恢复出业务码 流。 本发明不需要将时间信息封装到业务包的包头报文, 也不需要在业务出 口处釆用复杂的时钟恢复技术, 在 TDM 业务传输网中简单可靠、 易于实 现, 并且能够较好地满足 E1业务的相关标准规定的性能指标。
图 7为本发明提供的在微波通信网中发送 E1业务的系统实施例的结构示 意图。 结合图 2所示的方法实施例, 图 7所示系统实施例包括:
封装装置 701 , 用于以预先设置的码率调整时钟为基准, 将所述 E1业务 码流封装成码率调整帧, 其中每个码率调整帧包括 1个插入比特和用于指示 所述插入比特的数据是否为有效数据的 3个插入标志比特;
发送装置 702, 用于对所述码率调整帧进行发送处理。
其中, 所述封装装置 701所使用的码率调整时钟适配所述 E1业务码流的 速率范围。
本发明提供的发送系统实施例, 通过在每个码率调整帧中封装 1个插入 比特以及 3个插入标志比特, 使各帧中均包括 E1业务速率的速度信息, 实现 简单可靠。
图 8为本发明提供的在微波通信网中接收 E1业务的系统实施例的结构示 意图。 结合图 3所示的方法实施例, 图 8所示系统实施例包括:
第一级恢复装置 801 , 用于在获取到码率调整帧后, 恢复所述码率调整 帧所对应的码率调整时钟;
提取装置 802, 与所述第一级恢复装置 801相连, 用于以所述码率调整 时钟为基准, 根据所述码率调整帧中的 3个插入标志比特的指示信息, 从所 述码率调整帧中提取 E1业务静荷;
第二级恢复装置 803 , 与所述提取装置 802相连, 用于釆用 2.048MHz的 时钟为基准, 从所述 E1业务静荷恢复 E1业务时钟和数据。
图 9为图 8所示实施例中提取装置 802的结构示意图。 图 9所示系统实 施例包括:
确定模块 901 , 用于根据先进先出 ( FIFO )中所存储的数据的水位信息, 确定对所述码率调整时钟的频率的调整幅度;
调整模块 902 , 与所述确定模块 901 相连, 用于根据所述频率调整幅 度, 调整所述码率调整时钟的频率;
获取模块 903 , 与所述调整模块 902相连, 用于釆用所述码率调整时钟 的频率, 从所述码率调整帧中获取所述 E1业务静荷。
其中, 所述调整模块 902 , 用于通过对所述码率调整时钟的输出时钟进 行加 /减脉冲的操作, 调整所述码率调整时钟的频率, 其中对于所述码率调 整时钟输出的相同个数的输出时钟, 所述频率调整幅度越高, 对所述输出时 钟进行加 /减脉冲操作的次数越多。
本发明提供的接收系统实施例, 利用一次自适应时钟恢复技术恢复出码 率调整码流, 然后再利用第二次自适应时钟恢复恢复出业务码流, 不需要在 业务出口处釆用复杂的时钟恢复技术, 在 TDM业务传输网中简单可靠、 易 于实现, 并且能够较好地满足 E1业务的相关标准规定的性能指标。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计 算机程序流程来实现, 所述计算机程序可以存储于一计算机可读存储介质 中, 所述计算机程序在相应的硬件平台上(如系统、 设备、 装置、 器件等) 执行, 在执行时, 包括方法实施例的步骤之一或其组合。
可选地, 上述实施例的全部或部分步骤也可以使用集成电路来实现, 这 些步骤可以被分别制作成一个个集成电路模块, 或者将它们中的多个模块或 步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬 件和软件结合。
上述实施例中的各装置 /功能模块 /功能单元可以釆用通用的计算装置来 实现, 它们可以集中在单个的计算装置上, 也可以分布在多个计算装置所组 成的网络上。
上述实施例中的各装置 /功能模块 /功能单元以软件功能模块的形式实现 并作为独立的产品销售或使用时, 可以存储在一个计算机可读取存储介质 中。 上述提到的计算机可读取存储介质可以是只读存储器, 磁盘或光盘等。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以权利要求所述的保护范围为准。
工业实用性 本发明实施例提供的发送方法和系统, 通过在每个码率调整帧中封装 1 个插入比特以及 3个插入标志比特, 使各帧中均包括 E1 业务速率的速度信 息, 实现简单可靠。
本发明实施例提供的接收方法和系统, 利用一次自适应时钟恢复技术恢 复出码率调整码流, 然后再利用第二次自适应时钟恢复恢复出业务码流, 不 需要在业务出口处釆用复杂的时钟恢复技术, 在 TDM业务传输网中简单可 靠、 易于实现, 并且能够较好地满足 E1业务的相关标准规定的性能指标。

Claims

权 利 要 求 书
1、 一种在微波通信网中发送 El业务的方法, 包括:
以预先设置的码率调整时钟为基准, 将所述 E1 业务码流封装成码率调 整帧, 其中, 每个码率调整帧包括 1个插入比特和用于指示所述插入比特的 数据是否为有效数据的 3个插入标志比特;
对所述码率调整帧进行发送处理。
2、 根据权利要求 1所述的方法, 其中, 所述码率调整时钟适配所述 E1 业务码流的速率范围。
3、 一种在微波通信网中接收 E1业务的方法, 包括:
在获取到码率调整帧后, 恢复所述码率调整帧所对应的码率调整时钟; 以所述码率调整时钟为基准, 根据所述码率调整帧中的 3个插入标志比 特的指示信息, 从所述码率调整帧中提取 E1业务静荷;
釆用 2.048MHz的时钟为基准, 从所述 E1业务静荷恢复 E1业务时钟和 数据。
4、 根据权利要求 3 所述的方法, 其中, 以所述码率调整时钟为基准, 根据所述码率调整帧中的 3个插入标志比特的指示信息从所述码率调整帧中 提取 E1业务静荷, 包括:
根据先进先出 (FIFO ) 中所存储的数据的水位信息, 确定对所述码率调 整时钟的频率的调整幅度;
根据所述频率调整幅度, 调整所述码率调整时钟的频率;
釆用所述码率调整时钟的频率, 从所述码率调整帧中获取所述 E1 业务 静荷。
5、 根据权利要求 4 所述的方法, 其中, 根据确定的频率调整幅度, 调 整所述码率调整时钟的频率, 包括:
通过对所述码率调整时钟的输出时钟进行加 /减脉冲的操作, 调整所述 码率调整时钟的频率, 其中, 对于所述码率调整时钟输出的相同个数的输出 时钟, 所述频率调整幅度越高, 对所述输出时钟进行加 /减脉冲操作的次数 越多。
6、 一种在微波通信网中发送 E1业务的系统, 包括:
封装装置, 其设置为:以预先设置的码率调整时钟为基准, 将 E1业务码 流封装成码率调整帧, 其中, 每个码率调整帧包括 1个插入比特和用于指示 所述插入比特的数据是否为有效数据的 3个插入标志比特; 以及
发送装置, 其设置为: 对所述码率调整帧进行发送处理。
7、 根据权利要求 1 所述的方法, 其中, 所述封装装置所使用的码率调 整时钟适配所述 E1业务码流的速率范围。
8、 一种在微波通信网中接收 E1业务的系统, 包括:
第一级恢复装置, 其设置为: 在获取到码率调整帧后, 获取所述码率调 整帧所对应的码率调整时钟;
提取装置, 其设置为: 以所述码率调整时钟为基准, 根据所述码率调整 帧中的 3个插入标志比特的指示信息, 从所述码率调整帧中提取 E1 业务静 荷; 以及
第二级恢复装置, 其设置为: 釆用 2.048MHz的时钟为基准, 从所述 E1 业务静荷恢复 E1业务时钟和数据。
9、 根据权利要求 8所述的系统, 其中, 所述提取装置包括:
确定模块, 设置为:根据先进先出(FIFO )中所存储的数据的水位信息, 确定对所述码率调整时钟的频率的调整幅度;
调整模块, 设置为: 根据所述频率调整幅度, 调整所述码率调整时钟的 频率;
获取模块, 设置为: 釆用所述码率调整时钟的频率, 从所述码率调整帧 中获取所述 E1业务静荷。
10、 根据权利要求 9所述的系统, 其中, 所述调整模块还设置为: 通过对所述码率调整时钟的输出时钟进行加 /减 脉冲的操作, 调整所述码率调整时钟的频率, 其中, 对于所述码率调整时钟 输出的相同个数的输出时钟, 所述频率调整幅度越高, 对所述输出时钟进行 加 /减脉冲操作的次数越多。
PCT/CN2011/078719 2011-06-17 2011-08-22 在微波通信网中发送、接收e1业务的方法和系统 WO2012171270A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110163792.0A CN102832990B (zh) 2011-06-17 2011-06-17 在微波通信网中发送、接收e1业务的方法和系统
CN201110163792.0 2011-06-17

Publications (1)

Publication Number Publication Date
WO2012171270A1 true WO2012171270A1 (zh) 2012-12-20

Family

ID=47335978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078719 WO2012171270A1 (zh) 2011-06-17 2011-08-22 在微波通信网中发送、接收e1业务的方法和系统

Country Status (2)

Country Link
CN (1) CN102832990B (zh)
WO (1) WO2012171270A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946017A (zh) * 2006-10-09 2007-04-11 华为技术有限公司 在包交换网络中发送端和接收端进行时钟同步的方法和系统
CN101335751A (zh) * 2007-06-29 2008-12-31 华为技术有限公司 将以太网编码块映射到光传输网络传输的方法及装置
CN101345700A (zh) * 2007-07-10 2009-01-14 华为技术有限公司 将以太网编码块映射到光传输网络传输的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946017A (zh) * 2006-10-09 2007-04-11 华为技术有限公司 在包交换网络中发送端和接收端进行时钟同步的方法和系统
CN101335751A (zh) * 2007-06-29 2008-12-31 华为技术有限公司 将以太网编码块映射到光传输网络传输的方法及装置
CN101345700A (zh) * 2007-07-10 2009-01-14 华为技术有限公司 将以太网编码块映射到光传输网络传输的方法及装置

Also Published As

Publication number Publication date
CN102832990A (zh) 2012-12-19
CN102832990B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
EP2443908B1 (en) Remote radio data transmission over ethernet
CN100544459C (zh) 远程射频单元与集中式基站的接口方法
US20220416895A1 (en) Data transmission method and apparatus, terminal device and storage medium
US7457315B1 (en) System and method for compressing information in a communications environment
JP6603816B2 (ja) 近端装置と遠端装置との間でフレームデータ伝送を行う方法及び装置
CA2559225A1 (en) Transport stream dejitterer
CN108353314A (zh) 切换用于通过提供回程和前传两者(xhaul)连接性的传输网络的传输的至少两个类型的数据信号
US8737389B2 (en) Egress clock domain synchronization to multiple ingress clocks
WO2008022578A1 (fr) Procédé et dispositif pour transporter un service hiérarchisé numérique synchrone dans un réseau optique passif
WO2014194517A1 (zh) 一种传输数据的方法及设备
JP5597765B2 (ja) Sdh/sonetセクション・オーバーヘッド・バイトを伝送する方法、装置およびシステム
CN106921641B (zh) 传输报文的方法和装置
CN101415276A (zh) 一种发送和接收数据的方法及其设备
CN101686185A (zh) 一种在分组网络中传送tdm业务的方法、装置及系统
EP2760173B1 (en) Data transmission method, device and system
CN102437944B (zh) 一种局域网之间相互通信的系统、设备及方法
CN102340365B (zh) 一种基于时戳的时钟恢复方法及装置
US8934364B2 (en) Method and system for aligning each dispatching service in optical transfer networks
CN113949718B (zh) 基于e1及ip混合承载的电力专网调度放号系统及方法
WO2012171270A1 (zh) 在微波通信网中发送、接收e1业务的方法和系统
CN106961390A (zh) 一种e1结构化时隙压缩模式分组传送的方法及装置
CN102412923B (zh) 一种在epon系统中实现olt与onu之间时钟同步的方法
CN208128259U (zh) 一种基于Dante网络连接的多通道数字功放系统
CN105530065B (zh) 用于prp/hsr的ieee1588对时系统及方法
WO2020248865A1 (zh) 控制字的传输方法、装置和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867949

Country of ref document: EP

Kind code of ref document: A1