WO2012170188A2 - Exhaust-gas turbocharger - Google Patents

Exhaust-gas turbocharger Download PDF

Info

Publication number
WO2012170188A2
WO2012170188A2 PCT/US2012/038784 US2012038784W WO2012170188A2 WO 2012170188 A2 WO2012170188 A2 WO 2012170188A2 US 2012038784 W US2012038784 W US 2012038784W WO 2012170188 A2 WO2012170188 A2 WO 2012170188A2
Authority
WO
WIPO (PCT)
Prior art keywords
housing
turbine
side flange
exhaust
gas turbocharger
Prior art date
Application number
PCT/US2012/038784
Other languages
French (fr)
Other versions
WO2012170188A3 (en
Inventor
Robert Lingenauber
Frank Scherrer
Josef-Hans HEMER
Michael Fischer
Original Assignee
Borgwarner Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borgwarner Inc. filed Critical Borgwarner Inc.
Priority to JP2014514478A priority Critical patent/JP6116551B2/en
Priority to CN201280022879.9A priority patent/CN103534459B/en
Priority to DE112012001818.4T priority patent/DE112012001818T5/en
Priority to US14/119,225 priority patent/US10309415B2/en
Priority to KR1020137034178A priority patent/KR101889381B1/en
Publication of WO2012170188A2 publication Critical patent/WO2012170188A2/en
Publication of WO2012170188A3 publication Critical patent/WO2012170188A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/171Steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties

Definitions

  • the invention relates to an exhaust-gas turbocharger as per the preamble of claim
  • An exhaust-gas turbocharger of said type has not only a compressor with a compressor housing, but also a turbine with a turbine housing which is fastened to a bearing housing via a bearing-housing-side flange.
  • an already known generic exhaust-gas turbocharger has a bearing housing produced from a material as a cast part.
  • Said cast material may be composed of a pearlitic micro structure which, when heated to over 450°C, begins to lose its structure because the pearlite breaks down into its constituent parts.
  • a change in volume of the material takes place and, secondly, the bearing housing loses its hardness (HB).
  • Said loss of hardness may be so drastic that, specifically in conjunction with dendritic formation of the matrix of the material, significant crack formations may occur.
  • the bearing housing material is subjected to a very high temperature in particular at the contact surface or the fit with respect to the turbine housing, and is additionally subjected to mechanical loading by the clamping forces of the connecting elements.
  • said crack formation occurs in the bearing- housing-side flange, which results in a direct leakage of exhaust gas at the connecting point between the bearing housing and the turbine housing.
  • the highly loaded contact region between the turbine housing and bearing housing is formed by a material which can be subjected to greater loading.
  • the turbine-side bearing housing flange may be replaced by a separate flange composed of a higher-grade material in relation to the known solution.
  • the material for the fiange to be mounted separately on the bearing housing is matched in terms of its properties to those of the turbine housing.
  • the turbine-housing-side flange may be produced from a high-temperature-resistant ferritic material (for example X22XCrMoV 12-1 (1.4923)) or from an austenitic cast steel (for example GX40MeCrSiNb38-18 (1.4849)).
  • a high-temperature-resistant ferritic material for example X22XCrMoV 12-1 (1.4923)
  • an austenitic cast steel for example GX40MeCrSiNb38-18 (1.4849)
  • connection of the separate turbine-housing-side flange to the bearing housing may be realized by means of screw connections, shrink-fit connections, welded connections, adhesive connections, soldered connections, composite casting or a combination of the above connection types.
  • the machining of the bearing housing can preferably be carried out in the conventional way after the fixing of the separate flange to the bearing housing.
  • figure 1 shows a sectional perspective illustration of an exhaust-gas turbocharger according to the invention
  • figure 2 shows a plan view of the bearing housing of the exhaust-gas turbocharger as viewed from the turbine
  • figure 3 shows a section through the bearing housing along the line A-A in figure
  • figure 4 shows a perspective illustration of a further embodiment of the bearing housing according to the invention
  • figure 5 shows a sectional illustration, corresponding to figure 3, of the bearing housing as per figure 4,
  • figure 6 shows a partial view of the bearing housing as per figure 4,
  • figure 7 shows an illustration, corresponding to figure 4, of a further embodiment of the bearing housing according to the invention
  • figure 8 shows an illustration, corresponding to figure 5, of the bearing housing as per figure 7,
  • figure 9 shows an illustration, corresponding to figure 6, of the bearing housing as per figure 7,
  • figure 10 shows an illustration, corresponding to figure 7, of a further embodiment of the bearing housing according to the invention.
  • figure 11 shows an illustration, corresponding to figure 8, of the bearing housing as per figure 10.
  • Figure 1 illustrates an exhaust-gas turbocharger 1 according to the invention which has a compressor 7 and a compressor housing 2.
  • the exhaust-gas turbocharger 1 also has a turbine 8 with a turbine housing 3 and has a bearing housing 4 which is connected via a compressor-side flange 5 to the compressor 7 and via a turbine-housing-side flange 6 to the turbine 8 or the turbine housing 3.
  • Figures 2 and 3 illustrate a first embodiment of the bearing housing 6 according to the invention of the exhaust-gas turbocharger 1.
  • the view in figure 2 is a view from the direction of the turbine 8, and shows the bearing housing 4 with its turbine-housing-side flange 6, wherein, owing to the selected illustration, it is possible to see an arrangement 9 composed of a bush, a lever and a pin, and also two dowel pins 10 and 11.
  • Figure 3 shows that the turbine-housing-side flange 6, which is formed as a separate component, is formed as a steel flange which can be either screwed or welded to the bearing housing 4.
  • the reference numeral 14 symbolically indicates one of the possible weld points of a multiplicity of weld points.
  • FIGS. 4 to 6 illustrate a further embodiment of the bearing housing 4 according to the invention, wherein all of the features which correspond to figures 2 and 3 are denoted by the same reference numerals.
  • the flange 6 is cast integrally with the bearing housing 4, wherein figure 5 shows that the connection is realized by means of a suitable shaping 17.
  • Figures 4 and 6 furthermore show two recesses 15 and 16 which, in said embodiment, are situated entirely within the surface of the flange 6.
  • Figures 7 to 9 illustrate a further design variant of an integrally cast flange 6, wherein figure 8 again shows the form fit 17. Said embodiment otherwise corresponds to the embodiment as per figures 4 to 6, aside from the fact that figure 9 shows that the recesses 15 and 16 are situated partially in the material of the flange 6 and partially in the material of the bearing housing 4.
  • Figures 10 and 11 show a variant which substantially corresponds to the embodiment as per figures 2 and 3 and in which the flange 6 is screwed to the bearing housing 4 by means of an internal/external thread 13.
  • the recesses 15 and 16 as per figure 9 serve, together with the pressed-in bush 9 or the pressed-in pin 11 (shown in figure 2), as a rotation prevention means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supercharger (AREA)

Abstract

The present invention relates to an exhaust-gas turbocharger (1) having a compressor housing (2); having a turbine housing (3); and having a bearing housing (4) which has a compressor-side flange (5) and which has a turbine-housing-side flange (6), wherein the turbine-housing-side flange (6) is produced from a material which corresponds in terms of its mechanical and thermal properties to the material of the turbine housing (2).

Description

EXHAUST-GAS TURBOCHARGER DESCRIPTION The invention relates to an exhaust-gas turbocharger as per the preamble of claim
1.
An exhaust-gas turbocharger of said type has not only a compressor with a compressor housing, but also a turbine with a turbine housing which is fastened to a bearing housing via a bearing-housing-side flange. Here, an already known generic exhaust-gas turbocharger has a bearing housing produced from a material as a cast part.
Said cast material may be composed of a pearlitic micro structure which, when heated to over 450°C, begins to lose its structure because the pearlite breaks down into its constituent parts. Here, firstly, a change in volume of the material takes place and, secondly, the bearing housing loses its hardness (HB). Said loss of hardness may be so drastic that, specifically in conjunction with dendritic formation of the matrix of the material, significant crack formations may occur.
The bearing housing material is subjected to a very high temperature in particular at the contact surface or the fit with respect to the turbine housing, and is additionally subjected to mechanical loading by the clamping forces of the connecting elements. In conjunction with said loadings, the vibrations resulting from the engine running during use of the exhaust-gas turbocharger, and the different coefficients of expansion of the bearing housing and the turbine housing, said crack formation occurs in the bearing- housing-side flange, which results in a direct leakage of exhaust gas at the connecting point between the bearing housing and the turbine housing.
It is therefore an object of the present invention to provide an exhaust-gas turbocharger of the type specified in the preamble of claim 1, which exhaust-gas turbocharger makes it possible to minimize or eliminate the above-explained problems of the generic turbocharger.
Said object is achieved by means of the features of claim 1.
It is achieved by means of said features that the highly loaded contact region between the turbine housing and bearing housing is formed by a material which can be subjected to greater loading.
Here, the turbine-side bearing housing flange may be replaced by a separate flange composed of a higher-grade material in relation to the known solution. To realize a reliable connection of the bearing housing to the turbine housing with regard to strength and sealing action at high temperatures, the material for the fiange to be mounted separately on the bearing housing is matched in terms of its properties to those of the turbine housing.
Depending on the turbine housing material used, the turbine-housing-side flange may be produced from a high-temperature-resistant ferritic material (for example X22XCrMoV 12-1 (1.4923)) or from an austenitic cast steel (for example GX40MeCrSiNb38-18 (1.4849)).
The subclaims relate to advantageous refinements of the invention.
The connection of the separate turbine-housing-side flange to the bearing housing may be realized by means of screw connections, shrink-fit connections, welded connections, adhesive connections, soldered connections, composite casting or a combination of the above connection types.
The machining of the bearing housing can preferably be carried out in the conventional way after the fixing of the separate flange to the bearing housing.
Further details, features and advantages of the invention will emerge from the following description of exemplary embodiments on the basis of the drawing, in which:
figure 1 shows a sectional perspective illustration of an exhaust-gas turbocharger according to the invention,
figure 2 shows a plan view of the bearing housing of the exhaust-gas turbocharger as viewed from the turbine,
figure 3 shows a section through the bearing housing along the line A-A in figure
2,
figure 4 shows a perspective illustration of a further embodiment of the bearing housing according to the invention,
figure 5 shows a sectional illustration, corresponding to figure 3, of the bearing housing as per figure 4,
figure 6 shows a partial view of the bearing housing as per figure 4,
figure 7 shows an illustration, corresponding to figure 4, of a further embodiment of the bearing housing according to the invention,
figure 8 shows an illustration, corresponding to figure 5, of the bearing housing as per figure 7,
figure 9 shows an illustration, corresponding to figure 6, of the bearing housing as per figure 7,
figure 10 shows an illustration, corresponding to figure 7, of a further embodiment of the bearing housing according to the invention, and
figure 11 shows an illustration, corresponding to figure 8, of the bearing housing as per figure 10.
Figure 1 illustrates an exhaust-gas turbocharger 1 according to the invention which has a compressor 7 and a compressor housing 2.
The exhaust-gas turbocharger 1 also has a turbine 8 with a turbine housing 3 and has a bearing housing 4 which is connected via a compressor-side flange 5 to the compressor 7 and via a turbine-housing-side flange 6 to the turbine 8 or the turbine housing 3.
The design of the turbine-housing-side flange 6 will be explained in detail below on the basis of figures 2 to 11. The exhaust-gas turbocharger illustrated in figure 1 self- evidently also has all the other components of such turbochargers, said components however not being described in detail because they are not required for explaining the principles of the present invention.
Figures 2 and 3 illustrate a first embodiment of the bearing housing 6 according to the invention of the exhaust-gas turbocharger 1.
The view in figure 2 is a view from the direction of the turbine 8, and shows the bearing housing 4 with its turbine-housing-side flange 6, wherein, owing to the selected illustration, it is possible to see an arrangement 9 composed of a bush, a lever and a pin, and also two dowel pins 10 and 11.
Figure 3 shows that the turbine-housing-side flange 6, which is formed as a separate component, is formed as a steel flange which can be either screwed or welded to the bearing housing 4. The reference numeral 14 symbolically indicates one of the possible weld points of a multiplicity of weld points.
Figures 4 to 6 illustrate a further embodiment of the bearing housing 4 according to the invention, wherein all of the features which correspond to figures 2 and 3 are denoted by the same reference numerals.
In said design variant, the flange 6 is cast integrally with the bearing housing 4, wherein figure 5 shows that the connection is realized by means of a suitable shaping 17.
Figures 4 and 6 furthermore show two recesses 15 and 16 which, in said embodiment, are situated entirely within the surface of the flange 6.
Figures 7 to 9 illustrate a further design variant of an integrally cast flange 6, wherein figure 8 again shows the form fit 17. Said embodiment otherwise corresponds to the embodiment as per figures 4 to 6, aside from the fact that figure 9 shows that the recesses 15 and 16 are situated partially in the material of the flange 6 and partially in the material of the bearing housing 4.
Figures 10 and 11 show a variant which substantially corresponds to the embodiment as per figures 2 and 3 and in which the flange 6 is screwed to the bearing housing 4 by means of an internal/external thread 13. The recesses 15 and 16 as per figure 9 serve, together with the pressed-in bush 9 or the pressed-in pin 11 (shown in figure 2), as a rotation prevention means.
All of the above-explained design variants of the bearing housing 4 according to the invention have in common the fact that the flange 6 is matched in terms of its material properties to the material of the turbine housing 3, such that the problems explained in the introduction, in particular with regard to undesired crack formation in the region of the contact point between the bearing housing 4 and the turbine housing 3, can be eliminated.
In addition to the above written disclosure of the invention, reference is hereby made explicitly to the diagrammatic illustration thereof in figures 1 to 11.
LIST OF REFERENCE NUMERALS
1 Exhaust-gas turbocharger
2 Compressor housing
3 Turbine housing
4 Bearing housing
5 Compressor-side flange
6 Turbine-housing-side flange
7 Compressor
8 Turbine
9 Arrangement composed of bush, lever and pin
10, 11 Dowel pins
12 Circumferential collar
14 Weld point
13 Internal thread / external thread
15, 16 Recesses
17 Connecting device with suitable shaping (form fit) which engages into the bearing housing 4

Claims

1. An exhaust-gas turbocharger (1)
having a compressor housing (2);
- having a turbine housing (3); and
having a bearing housing (4)
• which has a compressor-side flange (5) and
• which has a turbine-housing-side flange (6),
wherein
- the turbine-housing-side flange (6) is produced from a material which corresponds in terms of its mechanical and thermal properties to the material of the turbine housing (2).
2. The exhaust-gas turbocharger as claimed in claim 1, wherein the turbine-housing-side flange (6) is a separately produced component which is connected to the bearing housing (4).
3. The exhaust-gas turbocharger as claimed in claim 2, wherein the turbine-housing-side flange (6) is connected to the bearing housing (4) by means of a screw connection, a shrink fit, welding, adhesive bonding, soldering or composite casting or combinations of these connection types.
4. The exhaust-gas turbocharger as claimed in one of claims 1 to 3, wherein the material of the turbine-housing-side flange (6) is a ferritic steel disk.
5. The exhaust-gas turbocharger as claimed in one of claims 1 to 3, wherein the material of the turbine-housing-side flange (6) is an austenitic steel disk.
6. A bearing housing (4) for an exhaust-gas turbocharger (1), having a compressor-housing-side flange (5) and a turbine-housing-side flange (6), wherein the turbine-housing-side flange (6) is produced from a material which corresponds in terms of its mechanical and thermal properties to the material of a turbine housing (3) to be mounted on the turbine-housing-side flange (6).
7. The bearing housing as claimed in claim 5, characterized by at least one of claims 2 to 4.
PCT/US2012/038784 2011-06-06 2012-05-21 Exhaust-gas turbocharger WO2012170188A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014514478A JP6116551B2 (en) 2011-06-06 2012-05-21 Exhaust gas turbocharger
CN201280022879.9A CN103534459B (en) 2011-06-06 2012-05-21 Exhaust turbine supercharger
DE112012001818.4T DE112012001818T5 (en) 2011-06-06 2012-05-21 turbocharger
US14/119,225 US10309415B2 (en) 2011-06-06 2012-05-21 Exhaust-gas turbocharger
KR1020137034178A KR101889381B1 (en) 2011-06-06 2012-05-21 Exhaust-gas turbocharger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011103420.3 2011-06-06
DE102011103420 2011-06-06

Publications (2)

Publication Number Publication Date
WO2012170188A2 true WO2012170188A2 (en) 2012-12-13
WO2012170188A3 WO2012170188A3 (en) 2013-01-31

Family

ID=47296677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/038784 WO2012170188A2 (en) 2011-06-06 2012-05-21 Exhaust-gas turbocharger

Country Status (6)

Country Link
US (1) US10309415B2 (en)
JP (1) JP6116551B2 (en)
KR (1) KR101889381B1 (en)
CN (1) CN103534459B (en)
DE (1) DE112012001818T5 (en)
WO (1) WO2012170188A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117670A (en) * 2013-12-19 2015-06-25 大豊工業株式会社 Turbocharger bearing housing
EP3228838A1 (en) * 2016-03-22 2017-10-11 MTU Aero Engines GmbH Method for the production of a turbomachine casing and casing of a turbomachine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9657596B2 (en) 2014-09-26 2017-05-23 Electro-Motive Diesel, Inc. Turbine housing assembly for a turbocharger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0207697B1 (en) * 1985-06-26 1989-09-06 AlliedSignal Inc. Cast stainless steel alloy and method for its manufacture
US20050011192A1 (en) * 2001-05-10 2005-01-20 Shinjiroh Ohishi Surface-reformed exhaust gas guide assembly of vgs type turbo charger, and method surface-reforming component member thereof
EP1541826A1 (en) * 2003-12-13 2005-06-15 Ford Global Technologies, LLC Turbocharger
US20100054934A1 (en) * 2007-04-16 2010-03-04 Continental Automotive Gmbh Exhaust gas turbocharger

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128243U (en) * 1987-02-16 1988-08-22
JPH05179406A (en) 1991-04-15 1993-07-20 Hitachi Metals Ltd Heat resistant cast steel and its production and parts for internal combustion engine
JPH0749036A (en) * 1993-08-05 1995-02-21 Aisan Ind Co Ltd Turbocharger
JPH07150962A (en) * 1993-11-26 1995-06-13 Aisin Seiki Co Ltd Bearing housing of turbocharger
US7074009B2 (en) * 2000-06-07 2006-07-11 Borgwarner, Inc. Casing assembly for the turbine of an exhaust turbochanger
CN201041073Y (en) * 2007-03-19 2008-03-26 刘忠保 Electronic control injection gasoline engine air inlet system
CN201050387Y (en) * 2007-06-18 2008-04-23 寿光市康跃增压器有限公司 Exhaust-driven turbo-charger central rotor device
JP2010261365A (en) * 2009-05-07 2010-11-18 Otics Corp Bearing housing for supercharger
DE102009025054B4 (en) * 2009-06-10 2015-12-03 Benteler Automobiltechnik Gmbh turbine housing
DE102009042260B4 (en) * 2009-09-22 2015-12-10 Benteler Automobiltechnik Gmbh turbocharger
US10066503B2 (en) * 2011-12-09 2018-09-04 Borgwarner Inc. Bearing housing of an exhaust-gas turbocharger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0207697B1 (en) * 1985-06-26 1989-09-06 AlliedSignal Inc. Cast stainless steel alloy and method for its manufacture
US20050011192A1 (en) * 2001-05-10 2005-01-20 Shinjiroh Ohishi Surface-reformed exhaust gas guide assembly of vgs type turbo charger, and method surface-reforming component member thereof
EP1541826A1 (en) * 2003-12-13 2005-06-15 Ford Global Technologies, LLC Turbocharger
US20100054934A1 (en) * 2007-04-16 2010-03-04 Continental Automotive Gmbh Exhaust gas turbocharger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117670A (en) * 2013-12-19 2015-06-25 大豊工業株式会社 Turbocharger bearing housing
EP3228838A1 (en) * 2016-03-22 2017-10-11 MTU Aero Engines GmbH Method for the production of a turbomachine casing and casing of a turbomachine
US10634008B2 (en) 2016-03-22 2020-04-28 MTU Aero Engines AG Method for manufacturing a housing of a turbomachine and turbomachine housing

Also Published As

Publication number Publication date
JP6116551B2 (en) 2017-04-19
DE112012001818T5 (en) 2014-02-06
KR20140038471A (en) 2014-03-28
KR101889381B1 (en) 2018-08-20
JP2014516139A (en) 2014-07-07
CN103534459B (en) 2017-03-29
US10309415B2 (en) 2019-06-04
US20140099196A1 (en) 2014-04-10
WO2012170188A3 (en) 2013-01-31
CN103534459A (en) 2014-01-22

Similar Documents

Publication Publication Date Title
US8322979B2 (en) Pane arrangement for a turbocharger
US7600969B2 (en) Turbocharger
US8784076B2 (en) Disk spring for a turbocharger
US8851847B2 (en) Rotor for a turbo machine
US10302007B2 (en) Turbine housing and associated exhaust-gas turbocharger
US10240485B2 (en) Turbine housing for an exhaust gas turbocharger
US10302010B2 (en) Valve element for charge-pressure regulation in an exhaust-gas turbocharger
CA2806365C (en) Gas turbine engine case bosses
US20060021221A1 (en) Titanium aluminide wheel and steel shaft connection thereto
US20100129651A1 (en) Hybrid component for a gas-turbine engine
KR20180011452A (en) Turbine wastegate
US10309415B2 (en) Exhaust-gas turbocharger
US20100310364A1 (en) Turbine housing and method for producing a turbine housing
KR20180011451A (en) Turbine wastegate
JP2020513500A (en) Turbocharger
JP6127134B2 (en) Exhaust gas turbocharger
US11015478B2 (en) Exhaust gas turbocharger
JP2016523328A (en) Exhaust gas turbocharger
US9249887B2 (en) Low deflection bi-metal rotor seals
CN209510456U (en) Turbocharger for internal combustion engine
KR20140004648A (en) Exhaust-gas turbocharger
WO2012154424A2 (en) Exhaust-gas turbocharger
US20190063390A1 (en) Fuel injector
KR101262478B1 (en) Turbomachine
US9140141B2 (en) Turbine assembly and method for assembling a turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797647

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014514478

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120018184

Country of ref document: DE

Ref document number: 112012001818

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14119225

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137034178

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12797647

Country of ref document: EP

Kind code of ref document: A2