WO2012169820A2 - Semiconductor storage device memory disk unit with multiple host interfaces - Google Patents

Semiconductor storage device memory disk unit with multiple host interfaces Download PDF

Info

Publication number
WO2012169820A2
WO2012169820A2 PCT/KR2012/004529 KR2012004529W WO2012169820A2 WO 2012169820 A2 WO2012169820 A2 WO 2012169820A2 KR 2012004529 W KR2012004529 W KR 2012004529W WO 2012169820 A2 WO2012169820 A2 WO 2012169820A2
Authority
WO
WIPO (PCT)
Prior art keywords
unit
controller
host
control module
memory disk
Prior art date
Application number
PCT/KR2012/004529
Other languages
French (fr)
Other versions
WO2012169820A3 (en
Inventor
Byungcheol Cho
Original Assignee
Taejin Info Tech Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/155,576 external-priority patent/US20110252250A1/en
Application filed by Taejin Info Tech Co., Ltd. filed Critical Taejin Info Tech Co., Ltd.
Publication of WO2012169820A2 publication Critical patent/WO2012169820A2/en
Publication of WO2012169820A3 publication Critical patent/WO2012169820A3/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/20Handling requests for interconnection or transfer for access to input/output bus
    • G06F13/28Handling requests for interconnection or transfer for access to input/output bus using burst mode transfer, e.g. direct memory access DMA, cycle steal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0658Controller construction arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0683Plurality of storage devices
    • G06F3/0688Non-volatile semiconductor memory arrays

Definitions

  • the present invention relates to a semiconductor storage device(SSD) of a PCI-Express (PCI-e) type. Specifically, the present invention relates to an SSD memory disk unit having multiple (e.g., dual) host interfaces.
  • SSD semiconductor storage device
  • PCI-e PCI-Express
  • the SSD memory disk unit comprises a plurality of host interface units for coupling the SSD memory disk unit to at least one host; a host interface controller unit coupled to each of the plurality of host interface units; a DMA controller coupled to the host interface controller unit; an ECC controller coupled to the DMA controller; a memory controller coupled to the ECC controller; and a memory array coupled to the memory controller, the memory array comprising at least one SSD memory block.
  • the SSD memory disk unit comprises a plurality of host interface units for coupling the SSD memory disk unit to at least one host; a host interface controller unit coupled to each of the plurality of host interface units; a DMA controller coupled to the host interface controller unit; an ECC controller coupled to the DMA controller; a memory controller coupled to the ECC controller; and a memory array coupled to the memory controller, the memory array comprising at least one SSD memory block.
  • a first aspect of the present invention provides a semiconductor storage device (SSD) memory disk unit having multiple host interface units, comprising: a plurality of host interface units for coupling the SSD memory disk unit to at least one host; a host interface controller unit coupled to each of the plurality of host interface units; a DMA controller coupled to the host interface controller unit; an ECC controller coupled to the DMA controller; a memory controller coupled to the ECC controller; and a memory array coupled to the memory controller, the memory array comprising a set of SSD memory blocks.
  • SSD semiconductor storage device
  • a second aspect of the present invention provides a semiconductor storage device (SSD) memory disk unit having multiple host interface units, comprising: a first host interface unit and a second host interface unit coupled to the first host interface unit, the first host interface unit and the second host interface unit for coupling the SSD memory disk unit to at least one host; a host interface controller unit coupled to the first host interface unit and the second host interface unit; a DMA controller coupled to the host interface controller unit; an ECC controller coupled to the DMA controller; a memory controller coupled to the ECC controller; and a memory array coupled to the memory controller, the memory array comprising a set of SSD memory blocks.
  • SSD semiconductor storage device
  • a third aspect of the present invention provides a method for producing a semiconductor storage device (SSD) memory disk unit having multiple host interface units, comprising: providing a plurality of host interface units for coupling the SSD memory disk unit to at least one host; coupling a host interface controller unit to each of the plurality of host interface units; coupling a DMA controller to the host interface controller unit; coupling an ECC controller to the DMA controller; a memory controller coupled to the ECC controller; and coupling a memory array to the memory controller, the memory array comprising a set of SSD memory blocks.
  • SSD semiconductor storage device
  • Fig. 1 is a diagram illustrating a configuration of a storage device of a PCI-Express (PCI-e) type according to an embodiment of the present invention.
  • Fig. 2 is a diagram of the high-speed SSD of Fig. 1 according to an embodiment of the present invention.
  • Fig. 3 is a diagram illustrating a configuration of the controller unit in Fig. 1 having a dual host interface unit according to an embodiment of the present invention.
  • RAID means redundant array of independent disks (originally redundant array of inexpensive disks).
  • RAID technology is a way of storing the same data in different places (thus, redundantly) on multiple hard disks. By placing data on multiple disks, I/O (input/output) operations can overlap in a balanced way, improving performance. Since multiple disks increase the mean time between failures (MTBF), storing data redundantly also increases fault tolerance.
  • PCI-Express PCI-e
  • the SSD memory disk unit comprises a plurality of host interface units for coupling the SSD memory disk unit to at least one host; a host interface controller unit coupled to each of the plurality of host interface units; a DMA controller coupled to the host interface controller unit; an ECC controller coupled to the DMA controller; a memory controller coupled to the ECC controller; and a memory array coupled to the memory controller, the memory array comprising at least one SSD memory block.
  • the SSD memory disk unit comprises a plurality of host interface units for coupling the SSD memory disk unit to at least one host; a host interface controller unit coupled to each of the plurality of host interface units; a DMA controller coupled to the host interface controller unit; an ECC controller coupled to the DMA controller; a memory controller coupled to the ECC controller; and a memory array coupled to the memory controller, the memory array comprising at least one SSD memory block.
  • the storage device of a PCI-Express (PCI-e) type supports a low-speed data processing speed for a host by adjusting synchronization of a data signal transmitted/received between the host and a memory disk during data communications between the host and the memory disk through a PCI-Express interface, and simultaneously supports a high-speed data processing speed for the memory disk, thereby supporting the performance of the memory to enable high-speed data processing in an existing interface environment at the maximum.
  • PCI-Express technology will be utilized in a typical embodiment, other alternatives are possible.
  • the present invention could utilize Serial Attached Small Computer System Interface (SAS)/Serial Advanced Technology Advancement (SATA) technology in which a SAS/SATA type storage device is provided that utilizes a SAS/SATA interface.
  • SAS Serial Attached Small Computer System Interface
  • SATA Serial Advanced Technology Advancement
  • FIG. 1 a diagram schematically illustrating a configuration of a PCI-Express type, RAID controlled semiconductor storage device (e.g., for providing storage for a serially attached computer device) according to an embodiment of the invention is shown. As depicted, Fig.
  • FIG. 1 shows a RAID controlled PCI-Express type storage device 110 according to an embodiment of the invention which includes a SSD memory disk unit 100 (referred to herein as SSD memory disk unit, SSD, and/or SSD memory disk unit) comprising: a plurality of memory disks having a plurality of volatile semiconductor memories/memory units (also referred to herein as high-speed SSD memory disk units 100); a RAID controller 800 coupled to SSD memory disk units 100; an interface unit 200 (e.g., PCI-Express host) which interfaces between the SSD memory disk unit and a host; a controller unit 300; an auxiliary power source unit 400 that is charged to maintain a predetermined power using the power transferred from the host through the PCI-Express host interface unit; a power source control unit 500 that supplies the power transferred from the host through the PCI-Express host interface unit to the controller unit 300, the SSD memory disk units 100, the backup storage unit, and the backup control unit which, when the power transferred from the host through the PCI-Express host interface unit is blocked or an
  • the SSD memory disk unit 100 includes a plurality of memory disks provided with a plurality of volatile semiconductor memories for highspeed data input/output (for example, DDR, DDR2, DDR3, SDRAM, and the like), and inputs and outputs data according to the control of the controller 300.
  • the SSD memory disk unit 100 may have a configuration in which the memory disks are arrayed in parallel.
  • the PCI-Express host interface unit 200 interfaces between a host and the SSD memory disk unit 100.
  • the host may be a computer system or the like, which is provided with a PCI-Express interface and a power source supply device.
  • the controller unit 300 adjusts synchronization of data signals transmitted/received between the PCI-Express host interface unit 200 and the SSD memory disk unit 100 to control a data transmission/reception speed between the PCI-Express host interface unit 200 and the SSD memory disk unit 100.
  • a PCI-e type RAID controller 800 can be directly coupled to any quantity of SSD memory disk units 100. Among other things, this allows for optimum control of SSD memory disk units 100. Among other things, the use of a RAID controller 800:
  • the internal backup controller 700 determines the backup (user's request order or the status monitor detects power supply problems);
  • the internal backup controller 700 requests a data backup to SSD memory disk units
  • the internal backup controller 700 requests internal backup device to backup data immediately;
  • the internal backup controller 700 monitors the status of the backup for the SSD memory disk units and internal backup controller
  • the internal backup controller 700 reports the internal backup controller's status and end-op.
  • the internal backup controller 700 determines the restore (user's request order or the status monitor detects power supply problems);
  • the internal backup controller 700 requests a data restore to the SSD memory disk units
  • the internal backup controller 700 requests an internal backup device to restore data immediately;
  • the internal backup controller 700 monitors the status of the restore for the SSD memory disk units and internal backup controller
  • the internal backup controller 700 reports the internal backup controller status and end-op.
  • SSD memory disk unit 100 comprises: a plurality of host interface units 202A-N coupled to one another (e.g., PCI-Express host) (which can be interface 200 of Fig. 1, or a separate interface as shown) and for coupling/interfacing SSD memory disk unit 100 with at least one host; a host interface controller unit 301 coupled to each host interface units 202A-N for controlling host interface units 202A-N; a Direct Memory Access (DMA) controller 302; an ECC controller 304; and a memory controller 306 for controlling one or more blocks 604 of memory 602 that are used as high-speed storage. Also shown are backup controller 700 coupled to DMA controller and backup storage unit 600A coupled to backup controller 700.
  • PCI-Express host which can be interface 200 of Fig. 1, or a separate interface as shown
  • DMA Direct Memory Access
  • ECC controller 304 ECC controller 304
  • memory controller 306 for controlling one or more blocks 604 of memory 602 that are used as high-speed storage.
  • backup controller 700 coupled to D
  • DMA is a feature of modern computers and microprocessors that allows certain hardware subsystems within the computer to access system memory for reading and/or writing independently of the central processing unit.
  • Many hardware systems use DMA including disk drive controllers, graphics cards, network cards, and sound cards.
  • DMA is also used for intra-chip data transfer in multi-core processors, especially in multiprocessor system-on-chips, where its processing element is equipped with a local memory (often called scratchpad memory) and DMA is used for transferring data between the local memory and the main memory.
  • Computers that have DMA channels can transfer data to and from devices with much less CPU overhead than computers without a DMA channel.
  • a processing element inside a multi-core processor can transfer data to and from its local memory without occupying its processor time and allowing computation and data transfer concurrency.
  • the CPU would initiate the transfer, do other operations while the transfer is in progress, and receive an interrupt from the DMA controller once the operation has been done. This is especially useful in real-time computing applications where not stalling behind concurrent operations is critical.
  • the controller unit 300 of Fig. 1 is shown as comprising: a memory control module 310 which controls data input/output of the SSD memory disk unit 100; a DMA control module 320 which controls the memory control module 310 to store the data in the SSD memory disk unit 100, or reads data from the SSD memory disk unit 100 to provide the data to the host, according to an instruction from the host received through the PCI-Express host interface unit 200; a buffer 330 which buffers data according to the control of the DMA control module 320; a synchronization control module 340 which, when receiving a data signal corresponding to the data read from the SSD memory disk unit 100 by the control of the DMA control module 320 through the DMA control module 320 and the memory control module 310, adjusts synchronization of a data signal so as to have a communication speed corresponding to a PCI-Express communications protocol to transmit the synchronized data signal to the PCI-Express host interface unit 200, and when receiving a data signal from the host through the PCI
  • the high-speed interface module 350 includes a buffer having a double buffer structure and a buffer having a circular queue structure, and processes the data transmitted/received between the synchronization control module 340 and the DMA control module 320 without loss at high speed by buffering the data and adjusting data clocks.
  • auxiliary power source unit 400 may be configured as a rechargeable battery or the like, so that it is normally charged to maintain a predetermined power using power transferred from the host through the PCI-Express host interface unit 200 and supplies the charged power to the power source control unit 500 according to the control of the power source control unit 500.
  • the power source control unit 500 supplies the power transferred from the host through the PCI-Express host interface unit 200 to the controller unit 300, the SSD memory disk unit 100, the backup storage unit 600A-B, and the backup control unit 700.
  • the power source control unit 500 receives power from the auxiliary power source unit 400 and supplies the power to the SSD memory disk unit 100 through the controller unit 300.
  • the backup storage unit 600A-B is configured as a low-speed non-volatile storage device such as a hard disk and stores data of the SSD memory disk unit 100.
  • the backup control unit 700 backs up data stored in the SSD memory disk unit 100 in the backup storage unit 600A-B by controlling the data input/output of the backup storage unit 600A-B and backs up the data stored in the SSD memory disk unit 100 in the backup storage unit 600A-B according to an instruction from the host, or when an error occurs in the power source of the host due to a deviation of the power transmitted from the host deviates from the threshold value.
  • the storage device of a serial-attached small computer system interface/serial advanced technology attachment (PCI-Express) type supports a low-speed data processing speed for a host by adjusting synchronization of a data signal transmitted/received between the host and a memory disk during data communications between the host and the memory disk through a PCI-Express interface, and simultaneously supports a high-speed data processing speed for the memory disk, thereby supporting the performance of the memory to enable high-speed data processing in an existing interface environment at the maximum.
  • PCI-Express serial-attached small computer system interface/serial advanced technology attachment

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Memory System Of A Hierarchy Structure (AREA)
  • Power Sources (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)

Abstract

In general, embodiments of the present invention provide a Semiconductor Storage Device (SSD) memory disk unit having multiple host interface units. Specifically, in a typical embodiment, the SSD memory disk unit comprises a plurality of host interface units for coupling the SSD memory disk unit to at least one host; a host interface controller unit coupled to each of the plurality of host interface units; a DMA controller coupled to the host interface controller unit; an ECC controller coupled to the DMA controller; a memory controller coupled to the ECC controller; and a memory array coupled to the memory controller, the memory array comprising at least one SSD memory block.

Description

SEMICONDUCTOR STORAGE DEVICE MEMORY DISK UNIT WITH MULTIPLE HOST INTERFACES
The present invention relates to a semiconductor storage device(SSD) of a PCI-Express (PCI-e) type. Specifically, the present invention relates to an SSD memory disk unit having multiple (e.g., dual) host interfaces.
CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation-in-part of commonly-owned, co-pending application number 12/758,937, entitled "SEMICONDUCTOR STORAGE DEVICE", filed on April 13, 2010, the entire contents of which are herein incorporated by reference. This application is also related in some aspects to commonly-owned, co-pending application number 13,029,476 entitled "SEMICONDUCTOR STORAGE DEVICE-BASED CACHE STORAGE SYSTEM", filed on February 17, 2011, the entire contents of which are herein incorporated by reference. This application is also related in some aspects to commonly-owned, co-pending application number (to be provided) entitled "SEMICONDUCTOR STORAGE DEVICE MEMORY DISK UNIT WITH PROGRAMMABLE HOST INTERFACE", filed on (to be provided), having attorney docket number SSD-0027, the entire contents of which are herein incorporated by reference.
As the need for more computer storage grows, more efficient solutions are being sought. As is known, there are various hard disk solutions that store/read data in a mechanical manner as a data storage medium. Unfortunately, data processing speed associated with hard disks is often slow. Moreover, existing solutions still use interfaces that cannot catch up with the data processing speed of memory disks having high-speed data input/output performance as an interface between the data storage medium and the host. Therefore, there is a problem in the existing area in that the performance of the memory disk cannot be property utilized.
In general, embodiments of the present invention provide a Semiconductor Storage Device (SSD) memory disk unit having multiple host interface units. Specifically, in a typical embodiment, the SSD memory disk unit comprises a plurality of host interface units for coupling the SSD memory disk unit to at least one host; a host interface controller unit coupled to each of the plurality of host interface units; a DMA controller coupled to the host interface controller unit; an ECC controller coupled to the DMA controller; a memory controller coupled to the ECC controller; and a memory array coupled to the memory controller, the memory array comprising at least one SSD memory block.
A first aspect of the present invention provides a semiconductor storage device (SSD) memory disk unit having multiple host interface units, comprising: a plurality of host interface units for coupling the SSD memory disk unit to at least one host; a host interface controller unit coupled to each of the plurality of host interface units; a DMA controller coupled to the host interface controller unit; an ECC controller coupled to the DMA controller; a memory controller coupled to the ECC controller; and a memory array coupled to the memory controller, the memory array comprising a set of SSD memory blocks.
A second aspect of the present invention provides a semiconductor storage device (SSD) memory disk unit having multiple host interface units, comprising: a first host interface unit and a second host interface unit coupled to the first host interface unit, the first host interface unit and the second host interface unit for coupling the SSD memory disk unit to at least one host; a host interface controller unit coupled to the first host interface unit and the second host interface unit; a DMA controller coupled to the host interface controller unit; an ECC controller coupled to the DMA controller; a memory controller coupled to the ECC controller; and a memory array coupled to the memory controller, the memory array comprising a set of SSD memory blocks.
A third aspect of the present invention provides a method for producing a semiconductor storage device (SSD) memory disk unit having multiple host interface units, comprising: providing a plurality of host interface units for coupling the SSD memory disk unit to at least one host; coupling a host interface controller unit to each of the plurality of host interface units; coupling a DMA controller to the host interface controller unit; coupling an ECC controller to the DMA controller; a memory controller coupled to the ECC controller; and coupling a memory array to the memory controller, the memory array comprising a set of SSD memory blocks.
These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings in which:
Fig. 1 is a diagram illustrating a configuration of a storage device of a PCI-Express (PCI-e) type according to an embodiment of the present invention.
Fig. 2 is a diagram of the high-speed SSD of Fig. 1 according to an embodiment of the present invention.
Fig. 3 is a diagram illustrating a configuration of the controller unit in Fig. 1 having a dual host interface unit according to an embodiment of the present invention.
The drawings are not necessarily to scale. The drawings are merely schematic representations, not intended to portray specific parameters of the invention. The drawings are intended to depict only typical embodiments of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements.
Exemplary embodiments will now be described more fully herein with reference to the accompanying drawings, in which exemplary embodiments are shown. This disclosure may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth therein. Rather, these exemplary embodiments are provided so that this disclosure will be thorough and complete and will fully convey the scope of this disclosure to those skilled in the art. In the description, details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the presented embodiments.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limited to this disclosure. As used herein, the singular forms "a", "an", and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, the use of the terms "a", "an", etc., do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items. It will be further understood that the terms "comprises" and/or "comprising", or "includes" and/or "including", when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof. Moreover, as used herein, the term RAID means redundant array of independent disks (originally redundant array of inexpensive disks). In general, RAID technology is a way of storing the same data in different places (thus, redundantly) on multiple hard disks. By placing data on multiple disks, I/O (input/output) operations can overlap in a balanced way, improving performance. Since multiple disks increase the mean time between failures (MTBF), storing data redundantly also increases fault tolerance.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art. It will be further understood that terms such as those defined in commonly used dictionaries should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Hereinafter, a storage device of a PCI-Express (PCI-e) type according to an embodiment will be described in detail with reference to the accompanying drawings.
In general, embodiments of the present invention provide a Semiconductor Storage Device (SSD) memory disk unit having multiple host interface units. Specifically, in a typical embodiment, the SSD memory disk unit comprises a plurality of host interface units for coupling the SSD memory disk unit to at least one host; a host interface controller unit coupled to each of the plurality of host interface units; a DMA controller coupled to the host interface controller unit; an ECC controller coupled to the DMA controller; a memory controller coupled to the ECC controller; and a memory array coupled to the memory controller, the memory array comprising at least one SSD memory block.
The storage device of a PCI-Express (PCI-e) type supports a low-speed data processing speed for a host by adjusting synchronization of a data signal transmitted/received between the host and a memory disk during data communications between the host and the memory disk through a PCI-Express interface, and simultaneously supports a high-speed data processing speed for the memory disk, thereby supporting the performance of the memory to enable high-speed data processing in an existing interface environment at the maximum. It is understood in advance that although PCI-Express technology will be utilized in a typical embodiment, other alternatives are possible. For example, the present invention could utilize Serial Attached Small Computer System Interface (SAS)/Serial Advanced Technology Advancement (SATA) technology in which a SAS/SATA type storage device is provided that utilizes a SAS/SATA interface.
Referring now to Fig. 1, a diagram schematically illustrating a configuration of a PCI-Express type, RAID controlled semiconductor storage device (e.g., for providing storage for a serially attached computer device) according to an embodiment of the invention is shown. As depicted, Fig. 1 shows a RAID controlled PCI-Express type storage device 110 according to an embodiment of the invention which includes a SSD memory disk unit 100 (referred to herein as SSD memory disk unit, SSD, and/or SSD memory disk unit) comprising: a plurality of memory disks having a plurality of volatile semiconductor memories/memory units (also referred to herein as high-speed SSD memory disk units 100); a RAID controller 800 coupled to SSD memory disk units 100; an interface unit 200 (e.g., PCI-Express host) which interfaces between the SSD memory disk unit and a host; a controller unit 300; an auxiliary power source unit 400 that is charged to maintain a predetermined power using the power transferred from the host through the PCI-Express host interface unit; a power source control unit 500 that supplies the power transferred from the host through the PCI-Express host interface unit to the controller unit 300, the SSD memory disk units 100, the backup storage unit, and the backup control unit which, when the power transferred from the host through the PCI-Express host interface unit is blocked or an error occurs in the power transferred from the host, receives power from the auxiliary power source unit and supplies the power to the SSD memory disk unit through the controller unit; a backup storage unit 600A-B that stores data of the SSD memory disk unit; and a backup control unit 700 that backs up data stored in the SSD memory disk unit in the backup storage unit, according to an instruction from the host or when an error occurs in the power transmitted from the host; and a redundant array of independent disks (RAID) controller 800 coupled to SSD memory disk unit 100, controller 300, and internal backup controller 700.
The SSD memory disk unit 100 includes a plurality of memory disks provided with a plurality of volatile semiconductor memories for highspeed data input/output (for example, DDR, DDR2, DDR3, SDRAM, and the like), and inputs and outputs data according to the control of the controller 300. The SSD memory disk unit 100 may have a configuration in which the memory disks are arrayed in parallel.
The PCI-Express host interface unit 200 interfaces between a host and the SSD memory disk unit 100. The host may be a computer system or the like, which is provided with a PCI-Express interface and a power source supply device.
The controller unit 300 adjusts synchronization of data signals transmitted/received between the PCI-Express host interface unit 200 and the SSD memory disk unit 100 to control a data transmission/reception speed between the PCI-Express host interface unit 200 and the SSD memory disk unit 100.
As depicted, a PCI-e type RAID controller 800 can be directly coupled to any quantity of SSD memory disk units 100. Among other things, this allows for optimum control of SSD memory disk units 100. Among other things, the use of a RAID controller 800:
1. Supports the current backup/restore operations.
2. Provides additional and improved backup function by performing the following:
a) the internal backup controller 700 determines the backup (user's request order or the status monitor detects power supply problems);
b) the internal backup controller 700 requests a data backup to SSD memory disk units;
c) the internal backup controller 700 requests internal backup device to backup data immediately;
d) the internal backup controller 700 monitors the status of the backup for the SSD memory disk units and internal backup controller; and
e) the internal backup controller 700 reports the internal backup controller's status and end-op.
3. Provides additional and improved restore function by performing the following:
a) the internal backup controller 700 determines the restore (user's request order or the status monitor detects power supply problems);
b) the internal backup controller 700 requests a data restore to the SSD memory disk units;
c) the internal backup controller 700 requests an internal backup device to restore data immediately;
d) the internal backup controller 700 monitors the status of the restore for the SSD memory disk units and internal backup controller; and
e) the internal backup controller 700 reports the internal backup controller status and end-op.
Referring now to Fig. 2, a diagram schematically illustrating a configuration of the high-speed SSD 100 is shown. As depicted, SSD memory disk unit 100 comprises: a plurality of host interface units 202A-N coupled to one another (e.g., PCI-Express host) (which can be interface 200 of Fig. 1, or a separate interface as shown) and for coupling/interfacing SSD memory disk unit 100 with at least one host; a host interface controller unit 301 coupled to each host interface units 202A-N for controlling host interface units 202A-N; a Direct Memory Access (DMA) controller 302; an ECC controller 304; and a memory controller 306 for controlling one or more blocks 604 of memory 602 that are used as high-speed storage. Also shown are backup controller 700 coupled to DMA controller and backup storage unit 600A coupled to backup controller 700.
In general, DMA is a feature of modern computers and microprocessors that allows certain hardware subsystems within the computer to access system memory for reading and/or writing independently of the central processing unit. Many hardware systems use DMA including disk drive controllers, graphics cards, network cards, and sound cards. DMA is also used for intra-chip data transfer in multi-core processors, especially in multiprocessor system-on-chips, where its processing element is equipped with a local memory (often called scratchpad memory) and DMA is used for transferring data between the local memory and the main memory.
Computers that have DMA channels can transfer data to and from devices with much less CPU overhead than computers without a DMA channel.
Similarly, a processing element inside a multi-core processor can transfer data to and from its local memory without occupying its processor time and allowing computation and data transfer concurrency.
Without DMA, using programmed input/output (PIO) mode for communication with peripheral devices, or load/store instructions in the case of multi-core chips, the CPU is typically fully occupied for the entire duration of the read or write operation, and is thus unavailable to perform other work.
With DMA, the CPU would initiate the transfer, do other operations while the transfer is in progress, and receive an interrupt from the DMA controller once the operation has been done. This is especially useful in real-time computing applications where not stalling behind concurrent operations is critical.
Referring now to Fig. 3, the controller unit 300 of Fig. 1 is shown as comprising: a memory control module 310 which controls data input/output of the SSD memory disk unit 100; a DMA control module 320 which controls the memory control module 310 to store the data in the SSD memory disk unit 100, or reads data from the SSD memory disk unit 100 to provide the data to the host, according to an instruction from the host received through the PCI-Express host interface unit 200; a buffer 330 which buffers data according to the control of the DMA control module 320; a synchronization control module 340 which, when receiving a data signal corresponding to the data read from the SSD memory disk unit 100 by the control of the DMA control module 320 through the DMA control module 320 and the memory control module 310, adjusts synchronization of a data signal so as to have a communication speed corresponding to a PCI-Express communications protocol to transmit the synchronized data signal to the PCI-Express host interface unit 200, and when receiving a data signal from the host through the PCI-Express host interface unit 200, adjusts synchronization of the data signal so as to have a transmission speed corresponding to a communications protocol (for example, PCI, PCI-x, or PCI-e, and the like) used by the SSD memory disk unit 100 to transmit the synchronized data signal to the SSD memory disk unit 100 through the DMA control module 320 and the memory control module 310; and a high-speed interface module 350 which processes the data transmitted/received between the synchronization control module 340 and the DMA control module 320 at high speed. Here, the high-speed interface module 350 includes a buffer having a double buffer structure and a buffer having a circular queue structure, and processes the data transmitted/received between the synchronization control module 340 and the DMA control module 320 without loss at high speed by buffering the data and adjusting data clocks.
Referring back to Fig. 1, auxiliary power source unit 400 may be configured as a rechargeable battery or the like, so that it is normally charged to maintain a predetermined power using power transferred from the host through the PCI-Express host interface unit 200 and supplies the charged power to the power source control unit 500 according to the control of the power source control unit 500.
The power source control unit 500 supplies the power transferred from the host through the PCI-Express host interface unit 200 to the controller unit 300, the SSD memory disk unit 100, the backup storage unit 600A-B, and the backup control unit 700.
In addition, when an error occurs in a power source of the host because the power transmitted from the host through the PCI-Express host interface unit 200 is blocked, or the power transmitted from the host deviates from a threshold value, the power source control unit 500 receives power from the auxiliary power source unit 400 and supplies the power to the SSD memory disk unit 100 through the controller unit 300.
The backup storage unit 600A-B is configured as a low-speed non-volatile storage device such as a hard disk and stores data of the SSD memory disk unit 100.
The backup control unit 700 backs up data stored in the SSD memory disk unit 100 in the backup storage unit 600A-B by controlling the data input/output of the backup storage unit 600A-B and backs up the data stored in the SSD memory disk unit 100 in the backup storage unit 600A-B according to an instruction from the host, or when an error occurs in the power source of the host due to a deviation of the power transmitted from the host deviates from the threshold value.
The storage device of a serial-attached small computer system interface/serial advanced technology attachment (PCI-Express) type supports a low-speed data processing speed for a host by adjusting synchronization of a data signal transmitted/received between the host and a memory disk during data communications between the host and the memory disk through a PCI-Express interface, and simultaneously supports a high-speed data processing speed for the memory disk, thereby supporting the performance of the memory to enable high-speed data processing in an existing interface environment at the maximum.
While the exemplary embodiments have been shown and described, it will be understood by those skilled in the art that various changes in form and details may be made thereto without departing from the spirit and scope of this disclosure as defined by the appended claims. In addition, many modifications can be made to adapt a particular situation or material to the teachings of this disclosure without departing from the essential scope thereof. Therefore, it is intended that this disclosure not be limited to the particular exemplary embodiments disclosed as the best mode contemplated for carrying out this disclosure, but that this disclosure will include all embodiments falling within the scope of the appended claims.
The foregoing description of various aspects of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed and, obviously, many modifications and variations are possible. Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of the invention as defined by the accompanying claims.

Claims (20)

  1. A semiconductor storage device (SSD) memory disk unit having multiple host interface units, comprising:
    a plurality of host interface units for coupling the SSD memory disk unit to at least one host;
    a host interface controller unit coupled to each of the plurality of host interface units;
    a DMA controller coupled to the host interface controller unit;
    an ECC controller coupled to the DMA controller; a memory controller coupled to the ECC controller; and
    a memory array coupled to the memory controller, the memory array comprising a set of SSD memory blocks.
  2. The SSD memory disk unit of claim 1, further comprising:
    a redundant array of independent disks (RAID) controller coupled to the SSD memory disk unit;
    a controller unit coupled to the RAID controller; and
    a system interface unit coupled to the controller unit.
  3. The SDD memory disk unit of claim 2, the controller unit comprising:
    a memory control module for controlling data input/output of the SSD memory disk unit;
    a DMA control module which controls the memory control module to store data in the SSD memory disk unit or reads data from the SSD memory disk unit to provide the data to the host, according to an instruction from the host received through the host interface unit;
    a buffer which buffers data according to control of the DMA control module;
    a synchronization control module, which when receiving a data signal corresponding to the data read from the SSD memory disk unit by the control of the DMA control module through the DMA control module and the memory control module, adjusts synchronization of a data signal so as to have a communication speed corresponding to a PCI-Express communications protocol to transmit the synchronized data signal to the PCI-Express host interface unit, and when receiving a data signal from the host through the PCIExpress host interface unit, adjusts synchronization of the data signal so as to have a transmission speed corresponding to a communications protocol used by the SSD memory disk unit to transmit the synchronized data signal to the SSD memory disk unit through the DMA control module and the memory control module; and
    a high-speed interface module which processes the data transmitted/received between the synchronization control module and the DMA control module at high speed, includes a buffer having a double buffer structure and a buffer having a circular queue structure, and processes the data transmitted/received between the synchronization control module and the DMA control without loss of high speed by buffering the data communicated between the synchronization control module and the DMA control module using the buffers and adjusting data clocks.
  4. The SSD memory disk unit of claim 2, further comprising:
    a set of backup storage units coupled to the controller unit, the controller unit storing data of the SSD memory disk unit; and
    a backup control unit coupled to the SSD memory disk unit, the backup control unit backing up data stored in the SSD memory disk unit according to at least one of the following: an instruction from the at least one host or when an error occurs in the power transmitted from the at least one host.
  5. The SSD memory disk unit of claim 3, further comprising:
    an auxiliary power source unit coupled to the backup control unit, the auxiliary power source being charged to maintain a predetermined power using the power transferred from the at least one host through the system interface unit; and
    a power source control unit coupled to the auxiliary power source, the power source control unit supplying power transferred from the at least one host through the system interface unit to the controller unit, the memory disk unit, the backup storage unit, and the backup control unit, and when the power transferred from the host through the host interface unit is blocked or an error occurs in the power transferred from the host, receives power from the auxiliary power source unit and supplies the power to the memory disk until through the controller unit.
  6. The SSD memory disk unit of claim 1, further comprising a status monitor coupled to the SSD memory disk unit.
  7. The SSD memory disk unit of claim 1, the set of SSD memory blocks being volatile, and the plurality of host interface units being PCI-Express host interface units.
  8. A semiconductor storage device (SSD) memory disk unit having multiple host interface units, comprising:
    a first host interface unit and a second host interface unit coupled to the first host interface unit, the first host interface unit and the second host interface unit for coupling the SSD memory disk unit to at least one host;
    a host interface controller unit coupled to the first host interface unit and the second host interface unit;
    a DMA controller coupled to the host interface controller unit;
    an ECC controller coupled to the DMA controller;
    a memory controller coupled to the ECC controller; and
    a memory array coupled to the memory controller, the memory array comprising a set of SSD memory blocks.
  9. The SSD memory disk unit of claim 1, further comprising:
    a redundant array of independent disks (RAID) controller coupled to the SSD memory disk unit;
    a controller unit coupled to the RAID controller; and
    a system interface unit coupled to the controller unit.
  10. The SDD memory disk unit of claim 9, the controller unit comprising:
    a memory control module for controlling data input/output of the SSD memory disk unit;
    a DMA control module which controls the memory control module to store data in the SSD memory disk unit or reads data from the SSD memory disk unit to provide the data to the host, according to an instruction from the host received through the host interface unit;
    a buffer which buffers data according to control of the DMA control module;
    a synchronization control module, which when receiving a data signal corresponding to the data read from the SSD memory disk unit by the control of the DMA control module through the DMA control module and the memory control module, adjusts synchronization of a data signal so as to have a communication speed corresponding to a PCI-Express communications protocol to transmit the synchronized data signal to the PCI-Express host interface unit, and when receiving a data signal from the host through the PC-IExpress host interface unit, adjusts synchronization of the data signal so as to have a transmission speed corresponding to a communications protocol used by the SSD memory disk unit to transmit the synchronized data signal to the SSD memory disk unit through the DMA control module and the memory control module; and
    a high-speed interface module which processes the data transmitted/received between the synchronization control module and the DMA control module at high speed, includes a buffer having a double buffer structure and a buffer having a circular queue structure, and processes the data transmitted/received between the synchronization control module and the DMA control without loss of high speed by buffering the data communicated between the synchronization control module and the DMA control module using the buffers and adjusting data clocks.
  11. The SSD memory disk unit of claim 9, further comprising:
    a set of backup storage units coupled to the controller unit, the controller unit storing data of the SSD memory disk unit; and
    a backup control unit coupled to the SSD memory disk unit, the backup control unit backing up data stored in the SSD memory disk unit according to at least one of the following: an instruction from the at least one host or when an error occurs in the power transmitted from the at least one host.
  12. The SSD memory disk unit of claim 11, further comprising:
    an auxiliary power source unit coupled to the backup control unit, the auxiliary power source being charged to maintain a predetermined power using the power transferred from the at least one host through the system interface unit; and
    a power source control unit coupled to the auxiliary power source, the power source control unit supplying power transferred from the at least one host through the system interface unit to the controller unit, the memory disk unit, the backup storage unit, and the backup control unit, and when the power transferred from the host through the host interface unit is blocked or an error occurs in the power transferred from the host, receives power from the auxiliary power source unit and supplies the power to the memory disk until through the controller unit.
  13. The SSD memory disk unit of claim 8, further comprising a status monitor coupled to the SSD memory disk unit.
  14. The SSD memory disk unit of claim 8, the set of SSD memory blocks being volatile, and the plurality of host interface units being PCI-Express host interface units.
  15. A method for producing a semiconductor storage device (SSD) memory disk unit having multiple host interface units, comprising:
    providing a plurality of host interface units for coupling the SSD memory disk unit to at least one host;
    coupling a host interface controller unit to each of the plurality of host interface units;
    coupling a DMA controller to the host interface controller unit;
    coupling an ECC controller to the DMA controller; a memory controller coupled to the ECC controller; and
    coupling a memory array to the memory controller, the memory array comprising a set of SSD memory blocks.
  16. The method of claim 15, further comprising:
    coupling a redundant array of independent disks (RAID) controller to the SSD memory disk unit;
    coupling a controller unit to the RAID controller; and
    coupling a system interface unit cupled to the controller unit.
  17. The method of claim 16, producing the controller unit by:
    providing a memory control module for controlling data input/output of the SSD memory disk unit;
    coupling a DMA control module to the memory control module, the DMA control module controlling the memory control module to store data in the SSD memory disk unit or reads data from the SSD memory disk unit to provide the data to the host, according to an instruction from the host received through the host interface unit;
    coupling a buffer to the DMA control module, the buffer buffering data according to control of the DMA control module;
    coupling a synchronization control module to the buffer, the synchronization control module, which when receiving a data signal corresponding to the data read from the SSD memory disk unit by the control of the DMA control module through the DMA control module and the memory control module, adjusts synchronization of a data signal so as to have a communication speed corresponding to a PCI-Express communications protocol to transmit the synchronized data signal to the PCI-Express host interface unit, and when receiving a data signal from the host through the PCI-Express host interface unit, adjusts synchronization of the data signal so as to have a transmission speed corresponding to a communications protocol used by the SSD memory disk unit to transmit the synchronized data signal to the SSD memory disk unit through the DMA control module and the memory control module; and
    coupling a high-speed interface module to the synchronization control module, the high-speed interface module processing the data transmitted/received between the synchronization control module and the DMA control module at high speed, includes a buffer having a double buffer structure and a buffer having a circular queue structure, and processes the data transmitted/received between the synchronization control module and the DMA control without loss of high speed by buffering the data communicated between the synchronization control module and the DMA control module using the buffers and adjusting data clocks.
  18. The method of claim 16, further comprising:
    coupling a set of backup storage units to the controller unit, the controller unit storing data of the SSD memory disk unit; and
    coupling a backup control unit to the SSD memory disk unit, the backup control unit backing up data stored in the SSD memory disk unit according to at least one of the following: an instruction from the at least one host or when an error occurs in the power transmitted from the at least one host.
  19. The method of claim 18, further comprising:
    coupling an auxiliary power source unit to the backup control unit, the auxiliary power source being charged to maintain a predetermined power using the power transferred from the at least one host through the system interface unit; and
    coupling a power source control unit to the auxiliary power source, the power source control unit supplying power transferred from the at least one host through the system interface unit to the controller unit, the memory disk unit, the backup storage unit, and the backup control unit, and when the power transferred from the host through the host interface unit is blocked or an error occurs in the power transferred from the host, receives power from the auxiliary power source unit and supplies the power to the memory disk until through the controller unit.
  20. The method of claim 15, further comprising coupling a status monitor to the SSD memory disk unit.
PCT/KR2012/004529 2011-06-08 2012-06-08 Semiconductor storage device memory disk unit with multiple host interfaces WO2012169820A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/155,576 2011-06-08
US13/155,576 US20110252250A1 (en) 2010-04-13 2011-06-08 Semiconductor storage device memory disk unit with multiple host interfaces

Publications (2)

Publication Number Publication Date
WO2012169820A2 true WO2012169820A2 (en) 2012-12-13
WO2012169820A3 WO2012169820A3 (en) 2013-03-07

Family

ID=47296617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004529 WO2012169820A2 (en) 2011-06-08 2012-06-08 Semiconductor storage device memory disk unit with multiple host interfaces

Country Status (2)

Country Link
KR (1) KR101212809B1 (en)
WO (1) WO2012169820A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201178A1 (en) * 2013-06-11 2014-12-18 Western Digital Technologies, Inc. Using dual phys to support multiple pcie link widths

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102384773B1 (en) 2017-10-12 2022-04-11 삼성전자주식회사 Storage device, computing system and debugging method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020048414A (en) * 1999-09-22 2002-06-22 네트셀 코포레이션 RAID controller system and method with ATA emulation host interface
KR20080106775A (en) * 2007-06-04 2008-12-09 삼성전자주식회사 Memory system using the interleaving scheme and method having the same
KR100928438B1 (en) * 2008-11-24 2009-11-25 주식회사 태진인포텍 Storage of serial attached small computer system interface/serial advanced technology attachment type

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020048414A (en) * 1999-09-22 2002-06-22 네트셀 코포레이션 RAID controller system and method with ATA emulation host interface
KR20080106775A (en) * 2007-06-04 2008-12-09 삼성전자주식회사 Memory system using the interleaving scheme and method having the same
KR100928438B1 (en) * 2008-11-24 2009-11-25 주식회사 태진인포텍 Storage of serial attached small computer system interface/serial advanced technology attachment type

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201178A1 (en) * 2013-06-11 2014-12-18 Western Digital Technologies, Inc. Using dual phys to support multiple pcie link widths
KR20160019507A (en) * 2013-06-11 2016-02-19 웨스턴 디지털 테크놀로지스, 인코포레이티드 Using dual phys to support multiple pcie link widths
CN105359120A (en) * 2013-06-11 2016-02-24 西部数据技术公司 Using dual PHYs to support multiple PCIE link widths
US9436630B2 (en) 2013-06-11 2016-09-06 Western Digital Technologies, Inc. Using dual phys to support multiple PCIe link widths
KR101895133B1 (en) 2013-06-11 2018-09-04 웨스턴 디지털 테크놀로지스, 인코포레이티드 Using dual phys to support multiple pcie link widths
CN105359120B (en) * 2013-06-11 2018-09-11 西部数据技术公司 The memory and controller of multiple PCIE link widths are supported using double PHY

Also Published As

Publication number Publication date
KR101212809B1 (en) 2012-12-18
WO2012169820A3 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
WO2012108739A2 (en) Alarm-based backup and restoration for a semiconductor storage device
WO2013051862A1 (en) Direct memory access without main memory in a semiconductor storage device-based system
WO2013039318A2 (en) Double data rate controller having shared address and separate data error correction
WO2012177057A2 (en) Semiconductor storage device-based high-speed cache storage system
WO2012124976A2 (en) Hybrid system architecture for random access memory
WO2012169824A2 (en) Raid controller with programmable interface for a semiconductor storage device
WO2012011709A2 (en) Hybrid storage system for a multi-level raid architecture
WO2013051860A1 (en) Cross-boundary hybrid and dynamic storage and memory context-aware cache system
WO2012036470A2 (en) Hybrid raid controller having multi pci bus switching
WO2012105811A2 (en) Raid-based storage control board
WO2011132922A2 (en) Raid controller for a semiconductor storage unit and a method for providing the same
WO2011132923A2 (en) Raid control semiconductor storage device and manufacturing method thereof
WO2012138111A2 (en) Dynamic random access memory for a semiconductor storage device-based system
WO2012105812A2 (en) Raid-based storage control board having fibre channel interface controller
WO2013027997A2 (en) Network-capable raid controller for a semiconductor storage device
WO2012018216A2 (en) Hybrid raid controller
WO2011155739A2 (en) Switch-based hybrid storage system and method for providing same
WO2013005995A2 (en) Redundant array of independent disk (raid) controlled semiconductor storage device (ssd)-based system having a high-speed non-volatile host interface
WO2012018217A2 (en) Raid controller having multi pci bus switching
WO2013066042A1 (en) Asynchronous data shift and backup between asymmetric data sources
US20110252250A1 (en) Semiconductor storage device memory disk unit with multiple host interfaces
US20110252177A1 (en) Semiconductor storage device memory disk unit with programmable host interface
WO2012138109A2 (en) Adaptive cache for a semiconductor storage device-based system
WO2012169820A2 (en) Semiconductor storage device memory disk unit with multiple host interfaces
WO2012169825A2 (en) Two-way raid controller for a semiconductor storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797343

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12797343

Country of ref document: EP

Kind code of ref document: A2