WO2012169363A1 - Method for producing stereo camera and stereo camera - Google Patents
Method for producing stereo camera and stereo camera Download PDFInfo
- Publication number
- WO2012169363A1 WO2012169363A1 PCT/JP2012/063294 JP2012063294W WO2012169363A1 WO 2012169363 A1 WO2012169363 A1 WO 2012169363A1 JP 2012063294 W JP2012063294 W JP 2012063294W WO 2012169363 A1 WO2012169363 A1 WO 2012169363A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- camera
- stereo camera
- stereo
- imaging
- manufacturing
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B43/00—Testing correct operation of photographic apparatus or parts thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B35/00—Stereoscopic photography
- G03B35/08—Stereoscopic photography by simultaneous recording
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/239—Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/296—Synchronisation thereof; Control thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2213/00—Details of stereoscopic systems
- H04N2213/001—Constructional or mechanical details
Definitions
- the present invention relates to a stereo camera manufacturing method and stereo camera for obtaining stereoscopic image data.
- a so-called stereo camera that can capture a stereoscopic image using two imaging units.
- the same subject can be simultaneously imaged by each imaging unit, and two types of images, a right-eye image and a left-eye image, can be acquired.
- the acquired two types of images are displayed alternately on the image display device, and glasses that are transparent and non-transparent in synchronization with the display image are put in front of the right eye and the left eye so that stereoscopic viewing is possible.
- Some display devices are provided with a lenticular lens or the like on the front surface to enable stereoscopic viewing with the naked eye.
- the two acquired images should have parallax by arranging the optical axes of the two cameras in parallel and spaced apart at a predetermined interval. Is required.
- Patent Document 1 a technique is known in which a circuit board including a lens and an image pickup element is assembled from the front and back to an integral support member, and the position of the circuit board is moved and rotated in the plane. .
- Patent Document 2 two circular openings are formed in one plate, a camera module is inserted into each opening, and a flat portion formed in the camera module is brought into contact with the plate surface. Therefore, a technique for making the optical axes of two camera modules parallel is also known.
- Patent Document 2 is effective for keeping the optical axis parallel, but describes how to deal with the shift in the rotation direction of the two images obtained by the two camera modules. It has not been.
- the present invention makes the adjustment of the two camera modules extremely simple, can reduce the possibility of deviation of the adjustment position due to vibration, impact, aging, etc., and is stable over a long period of time. It is an object of the present invention to provide a method of manufacturing a stereo camera capable of exhibiting performance and a stereo camera manufactured thereby.
- the method for manufacturing a stereo camera according to claim 1 includes a cylindrical lens barrel portion that includes a photographing optical system and an image sensor in order to acquire two images having parallax for stereoscopic viewing.
- a method of manufacturing a stereo camera in which two camera modules are arranged on a support member, The optical axis of the imaging optical system and the imaging surface of the imaging element are orthogonal to each other, and the optical axis of the imaging optical system is positioned on the middle line of two long sides of the outer edge of the effective pixel area of the imaging surface.
- a camera module manufacturing process for manufacturing a camera module An assembling step of inserting and incorporating the lens barrel portions of the two camera modules into two circular openings formed at predetermined intervals in the support member; An adjustment process to be performed after the assembly process, The adjusting step is performed only by rotating at least one of the two camera modules around the optical axis within the circular opening.
- the present inventor mainly aims to give the observer a perspective and stereoscopic effect, so that two images having parallax for stereoscopic viewing are displayed on, for example, a horizontally long display screen.
- the shooting range in the short side direction (up and down direction) of the display screen is substantially the same, and the long side direction ( We focused on the fact that the amount of deviation between the two images in the left-right direction does not require much accuracy for the purpose of obtaining stereoscopic vision.
- the adjustment step by rotating at least one of the camera modules around the optical axis within the circular opening, the shooting range in the short side direction can be substantially matched, and the parallax for stereoscopic viewing only in the long side direction It was found that can be given.
- 3D image shooting equipment it is used in various shooting sites, so it is preferable to have resistance to vibration and impact as much as possible and not change with time. If the lens barrel part is inserted and bonded, the structure can be maintained for a long period of time because it has a resistance to vibration and impact while achieving a simple structure, and can exhibit stable performance. .
- the “circular opening” is sufficient if at least a part of the opening is circular, and may be any structure that can rotate the camera module around the optical axis of the imaging optical system. “To make the optical axis of the imaging optical system orthogonal to the imaging surface of the imaging element” means to make them orthogonal with an error of ⁇ 0.5 degrees or less, and to “two outer edges of the effective pixel area of the imaging surface” “Locating the optical axis of the imaging optical system on the middle line of the long side” means matching within an error of ⁇ 40 ⁇ m.
- the method for manufacturing a stereo camera according to claim 2 is the invention according to claim 1, wherein the adjustment step is performed by photographing the same mark on the surface to be photographed by the two camera modules arranged on the left and right. While displaying the mark images obtained by the photographing of the two camera modules on the observation screen, respectively, at least one of the camera modules is set so that the vertical positions of the mark images displayed on the observation screen are equal. Rotating around the optical axis within a circular opening.
- the image shift obtained by the two camera modules can be made to exist only in the long-side direction (left-right direction) of the display screen by simple adjustment, so that man-hours are not required and costs are reduced.
- the “mark” includes, but is not limited to, a dot or a crosshair, and may be any mark that can be recognized as a target for adjustment.
- the stereo camera according to claim 3 is manufactured by the stereo camera manufacturing method according to claim 1 or 2.
- the stereo camera according to claim 4 is the invention according to claim 3, wherein the support member is also used as a component constituting the stereo camera.
- the support member is also used as a component constituting the stereo camera.
- the weight can be reduced and the number of parts can be reduced.
- the adjustment of the two camera modules can be made extremely simple, the possibility that the adjustment position shifts due to vibration, impact, change with time, etc. can be reduced, and stable performance over a long period of time. It is possible to provide a method of manufacturing a stereo camera that can be exhibited and a stereo camera manufactured thereby.
- FIG. 1 is a block diagram of a stereo camera 10.
- FIG. FIG. 4 is a flowchart showing a manufacturing process of the stereo camera 10. It is an assembly drawing of a camera module. It is principal part sectional drawing of a supporting member and a camera module which shows the assembly process to the supporting member 16 of the camera modules 20L and 20R, (a) is before incorporating a camera module in a supporting member, (b) is after incorporating. Indicates.
- FIG. 6 is a flowchart showing an adjustment process of the stereo camera 10. It is the schematic of the adjustment apparatus used for an adjustment process. It is a figure explaining adjustment process (a)-(g).
- A) is a perspective view which shows the stereo camera concerning the modification manufactured by the manufacturing method of this Embodiment, (b) is the partial cross section figure.
- FIG. 1A and 1B are perspective views of a stereo camera according to the present embodiment.
- FIG. 1A is a rear perspective view
- FIG. 1B is a front perspective view
- FIG. 1C is a perspective view. Only the module is shown, and the internal circuit and the like are not shown.
- the stereo camera 10 has two openings 11L and 11R for taking in subject light on the front side of the housing 11 as shown in FIG.
- the stereo camera 10 has a display unit 12 such as a display on the back side of the casing 111, and function buttons 13 and 14 are provided on the side of the display unit 12. Further, a release button 15 is provided on the upper portion of the housing 11.
- the stereo camera 10 is provided with two camera modules 20L and 20R supported by the support member 16 so as to face the openings 11L and 11R, respectively.
- FIG. 2 is a block diagram showing the relationship between the main parts of the stereo camera 10.
- the control unit 17 supplied with power from the power supply unit 19 inputs image signals from the left-eye camera module 20 ⁇ / b> L and the right-eye camera module 20 ⁇ / b> R in response to the release signal from the release button 15.
- Image data obtained by performing various image processing is input to the display unit 12, and a 3D image is displayed.
- image data is stored in a storage unit 18 such as a memory.
- a stereo shooting / non-stereo shooting switching switch and a moving image / still image switching switch are provided.
- stereo shooting is selected with the stereo shooting / non-stereo shooting switch
- shooting and recording are performed using both the camera modules 20L and 20R
- Shooting / recording is performed by only one of the camera modules 20L and 20R.
- FIG. 3 is a flowchart showing the manufacturing process of the stereo camera 10 according to the present embodiment.
- FIG. 4 is an assembly diagram of the camera module.
- step S101 of FIG. 3 a substrate 21 on which a circuit (not shown) is printed is set, and in step S102, a sensor package SP including an image sensor (sensor) 22 is mounted on the substrate 21.
- step S103 a lens 23 as a photographing optical system is inserted and bonded to the hollow lens barrel portion 24 to form a lens unit LU, and then the center of the image sensor 22 and the optical axis of the lens 23 coincide with each other.
- the lens unit LU is attached to and adhered to the sensor package SP so that the imaging surface of the imaging element 22 is orthogonal to the optical axis of the lens 23. It is assumed that the optical axis of the lens 23 included in the lens barrel portion 24 is parallel to the cylindrical outer peripheral surface 24 a of the lens barrel portion 24 and is orthogonal to the lower end of the lens barrel portion 24.
- the imaging device 22 is photographed with a camera from the imaging surface side, the center of the effective pixel region is obtained from its outer shape, the lens 23 is photographed with the camera from the image surface side, and the center of the lens 23 is obtained from its outer diameter,
- the center of the image sensor 22 and the optical axis of the lens 23 are accurately matched by moving and superimposing the center of the lens 23 and the center of the image pickup surface (effective pixel area) of the image sensor 22 so as to substantially match.
- the lower end of the lens barrel portion 24 is placed on the upper surface of the sensor package SP, so that the imaging device The 22 imaging surfaces are perpendicular to the optical axis of the lens 23 with high accuracy.
- the camera modules 20L and 20R are completed through the inspection process of step S104 in FIG. 3 (step S105).
- the camera modules 20L and 20R are assembled to the support member 16 in step S106 (assembly process).
- FIGS. 5 and 6 are diagrams showing an assembling process of the camera modules 20L and 20R into the support member 16.
- FIG. FIG. 7 is a front view of the support member 16 in which the camera modules 20L and 20R are incorporated.
- the support member 16 is, for example, a rectangular plate material, and circular openings 16L and 16R are formed at predetermined intervals as shown in FIGS. 5 (a) and 6 (a).
- the camera modules 20L and 20R are inserted into the circular openings 16L and 16R from the same side, and the cylindrical outer peripheral surface 24a of the lens barrel portion 24 is fitted. I am letting.
- the circular openings 16L and 16R and the cylindrical outer peripheral surface 24a in FIG. 7 are clearance fitting, they can be rotated relative to each other, and bonding is not performed at this point.
- FIG. 8 is a flowchart showing the adjustment process of the stereo camera 10 and shows the contents of step S107.
- FIG. 9 is a schematic diagram of an adjustment device used in the adjustment process, and
- FIG. 10 is a diagram illustrating the adjustment process.
- step S107a in FIG. 8 the support member 16 to which the camera modules 20L and 20R are attached is set in the adjusting device. More specifically, as shown in FIG. 9, the support member 16 is horizontally attached to the base BS, the optical axes of the camera modules 20L and 20R are directed to the screen SC, and the outputs of the camera modules 20L and 20R are further displayed on the display DP.
- the wirings WL and WR are connected so that they can be output.
- a black dot (mark) BP is formed at the center of the screen SC.
- step S107b the black spot image BP photographed by the camera modules 20L and 20R is displayed on the observation screen of the display DP.
- the horizontal positions of the camera modules 20L and 20R are shifted.
- the black spots BP on the imaging surfaces of the camera modules 20L and 20R are assumed to be shifted from the center of the imaging surface in the x and y directions.
- the horizontal base line (long side middle line) of the imaging surface is HL
- the vertical base line (short side center line) is VL.
- step S107c as shown in FIG. 10D, the camera module 20R is rotated, for example, counterclockwise within the circular opening 16R. Then, since the position of the center of the imaging surface does not change and the imaging surface is tilted, the horizontal base line HL is also tilted. Therefore, the black dot image BPR on the observation screen is relatively displaced as indicated by the arrow. (See the right figure in FIG. 10E).
- step S107d as shown in FIG. 10D, the camera module 20L is rotated, for example, counterclockwise within the circular opening 16L. Then, since the position of the center of the imaging surface does not change and the imaging surface is tilted, the horizontal base line HL is also tilted. Therefore, the black dot image BPL on the observation screen is relatively displaced as indicated by the arrow. (Refer to the left figure of FIG. 10 (e)).
- the imaging surface is inclined with respect to the horizontal.
- the images themselves output from the camera modules 20L and 20R are as shown in FIG.
- the black dot image BPL is horizontal on the observation screen as shown in FIG. Displayed in a state shifted only in the direction.
- step S107e it is determined whether or not the positions of the two black dot images BPL and BPR have the same vertical distance with respect to the horizontal base line HL.
- step S107b If not, the process returns to step S107b and the same steps are repeated.
- the lens barrel 24 of the camera modules 20L and 20R is bonded to the support member 16 in step S107f. The adjustment process is completed.
- step S108 of FIG. 3 the performance of the stereo camera is checked. If the target optical performance is satisfied, the stereo camera is completed.
- the deviation between the two black dot images BPL and BPR is present only in the long side direction (or left and right direction) of the observation screen. Therefore, man-hours are not required and the cost of the stereo camera can be reduced.
- FIG. 11A is a perspective view of a portable terminal having a stereo camera according to a modification manufactured by the manufacturing method of the present embodiment
- FIG. 11B is a partial cross-sectional view thereof.
- the portable terminal MV has a case CA on the back side, but the stereo camera of this modification also uses the case CA as a support member. That is, as shown in FIG. 11B, the case CA has circular openings CAL and CAR, into which the lens barrel portions 24 of the camera modules 20L and 20R are fitted. Other than that, it is the same as that of embodiment mentioned above also including an adjustment process.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Stereoscopic And Panoramic Photography (AREA)
- Studio Devices (AREA)
Abstract
Provided are: a method for producing a stereo camera that causes the adjustment of two camera modules to be as simple as possible, is able to reduce the likelihood of deviation or the like of adjusted position resulting from vibration, shock, or changes over time, and can exert stable performance over the long term; and a stereo camera produced by the method for producing a stereo camera. As it is possible to cause the deviation of two black dot images (BPL, BPR) to lie only in the lengthwise direction (or left-right direction) of an observation screen by means of the simple adjustment of rotating the camera modules (20L, 20R), it is possible to reduce the cost of the stereo camera without an increase in steps.
Description
本発明は、立体視用の画像データを得るステレオカメラの製造方法及びステレオカメラに関する。
The present invention relates to a stereo camera manufacturing method and stereo camera for obtaining stereoscopic image data.
近年、CCD(Charged Coupled Device)型イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサなどの固体撮像素子で撮像した被写体光をデジタルの画像データに変換し、内蔵メモリやメモリカードなどの記憶媒体に記録するデジタルカメラが普及している。
In recent years, subject light imaged by solid-state image sensors such as CCD (Charged Coupled Device) type image sensors and CMOS (Complementary Metal Oxide Semiconductor) type image sensors has been converted into digital image data, and storage media such as built-in memory and memory cards Digital cameras that record data are widely used.
このようなデジタルカメラの一タイプとして、2つの撮像部を用いて立体視用の画像を撮像できる、いわゆるステレオカメラが知られている。このステレオカメラでは、各撮像部によって同一の被写体を同時に撮像し、右眼用画像と左眼用画像との2種類の画像を取得することができる。
As one type of such a digital camera, a so-called stereo camera is known that can capture a stereoscopic image using two imaging units. In this stereo camera, the same subject can be simultaneously imaged by each imaging unit, and two types of images, a right-eye image and a left-eye image, can be acquired.
取得した2種類の画像を画像表示装置上に交互に表示し、右目及び左目の前方に表示画像に同期して透過、非透過とする眼鏡をかけることで、立体視可能とするものや、画像表示装置前面にレンチキュラーレンズ等を配置し裸眼で立体視可能とするものがある。
The acquired two types of images are displayed alternately on the image display device, and glasses that are transparent and non-transparent in synchronization with the display image are put in front of the right eye and the left eye so that stereoscopic viewing is possible. Some display devices are provided with a lenticular lens or the like on the front surface to enable stereoscopic viewing with the naked eye.
ところで、このような立体視可能な画像を撮影するためには、2つのカメラの光軸を平行に且つ所定間隔で離間して配置することによって、取得される2つの画像に視差を持たせることが必要になる。これに対し特許文献1に示すように、一体の支持部材に対しレンズと撮像素子を含む回路基板を表裏から組み付け、回路基板位置を面内で移動及び回転させて調整する技術が知られている。
By the way, in order to shoot such a stereoscopically visible image, the two acquired images should have parallax by arranging the optical axes of the two cameras in parallel and spaced apart at a predetermined interval. Is required. On the other hand, as shown in Patent Document 1, a technique is known in which a circuit board including a lens and an image pickup element is assembled from the front and back to an integral support member, and the position of the circuit board is moved and rotated in the plane. .
又、特許文献2に示すように、1枚のプレートに2つの円形開口を形成し,該開口にそれぞれカメラモジュールを挿入して、カメラモジュールに形成された平坦部をプレート面に当接させることにより、2つのカメラモジュールの光軸を平行とする技術も知られている。
In addition, as shown in Patent Document 2, two circular openings are formed in one plate, a camera module is inserted into each opening, and a flat portion formed in the camera module is brought into contact with the plate surface. Therefore, a technique for making the optical axes of two camera modules parallel is also known.
しかるに、特許文献1の技術によれば、撮像素子を、調整部としてのネジなどを用いてXY方向、θ方向に面内変位させて調整を行うため、工数がかかりコストが増大するという問題がある。又、調整部が多いと、振動、衝撃、経時変化等により、折角調整された撮像素子の調整位置のずれが発生する可能性が高くなり、安定して性能を発揮できないという問題もある。
However, according to the technique of Patent Document 1, adjustment is performed by in-plane displacing the image sensor in the XY direction and the θ direction using a screw or the like as an adjustment unit, which increases man-hours and costs. is there. In addition, when there are a large number of adjustment units, there is a high possibility that the adjustment position of the image sensor that has been adjusted at the folding angle will shift due to vibration, impact, change with time, etc., and the performance cannot be exhibited stably.
一方、特許文献2の技術は、光軸を平行に保つには有効なものであるが、2つのカメラモジュールで得られた2つの画像の回転方向のずれに関しては、どのように対処すべきか記載されていない。
On the other hand, the technique of Patent Document 2 is effective for keeping the optical axis parallel, but describes how to deal with the shift in the rotation direction of the two images obtained by the two camera modules. It has not been.
本発明は、上記問題に鑑み、2つのカメラモジュールの調整を極めて簡素なものとし、振動、衝撃、経時変化等での調整位置のずれ等が発生する可能性を低減でき、長期間にわたって安定した性能を発揮できるステレオカメラの製造方法及びそれにより製造されるステレオカメラを提供することを目的とする。
In view of the above problems, the present invention makes the adjustment of the two camera modules extremely simple, can reduce the possibility of deviation of the adjustment position due to vibration, impact, aging, etc., and is stable over a long period of time. It is an object of the present invention to provide a method of manufacturing a stereo camera capable of exhibiting performance and a stereo camera manufactured thereby.
請求項1に記載のステレオカメラの製造方法は、立体視のための視差を有した2つの画像を取得するために、撮影光学系を内包する円筒形の鏡筒部と撮像素子とをそれぞれ有する2つのカメラモジュールが支持部材に配置されてなるステレオカメラの製造方法において、
前記撮像光学系の光軸と前記撮像素子の撮像面とを直交させると共に、前記撮像面の有効画素領域の外縁の2つの長辺の中線上に前記撮像光学系の光軸を位置させて各カメラモジュールを製造するカメラモジュール製造工程と、
前記支持部材に所定の間隔で形成された2つの円形開口に、前記2つのカメラモジュールの鏡筒部をそれぞれ挿入して組み込む組込工程と、
組込工程後に行う調整工程と、を有し、
前記調整工程は、前記2つのカメラモジュールのうち少なくとも一方の前記カメラモジュールを前記円形開口内で前記光軸周りに回転させることのみで行うことを特徴とする。 The method for manufacturing a stereo camera according to claim 1 includes a cylindrical lens barrel portion that includes a photographing optical system and an image sensor in order to acquire two images having parallax for stereoscopic viewing. In a method of manufacturing a stereo camera in which two camera modules are arranged on a support member,
The optical axis of the imaging optical system and the imaging surface of the imaging element are orthogonal to each other, and the optical axis of the imaging optical system is positioned on the middle line of two long sides of the outer edge of the effective pixel area of the imaging surface. A camera module manufacturing process for manufacturing a camera module;
An assembling step of inserting and incorporating the lens barrel portions of the two camera modules into two circular openings formed at predetermined intervals in the support member;
An adjustment process to be performed after the assembly process,
The adjusting step is performed only by rotating at least one of the two camera modules around the optical axis within the circular opening.
前記撮像光学系の光軸と前記撮像素子の撮像面とを直交させると共に、前記撮像面の有効画素領域の外縁の2つの長辺の中線上に前記撮像光学系の光軸を位置させて各カメラモジュールを製造するカメラモジュール製造工程と、
前記支持部材に所定の間隔で形成された2つの円形開口に、前記2つのカメラモジュールの鏡筒部をそれぞれ挿入して組み込む組込工程と、
組込工程後に行う調整工程と、を有し、
前記調整工程は、前記2つのカメラモジュールのうち少なくとも一方の前記カメラモジュールを前記円形開口内で前記光軸周りに回転させることのみで行うことを特徴とする。 The method for manufacturing a stereo camera according to claim 1 includes a cylindrical lens barrel portion that includes a photographing optical system and an image sensor in order to acquire two images having parallax for stereoscopic viewing. In a method of manufacturing a stereo camera in which two camera modules are arranged on a support member,
The optical axis of the imaging optical system and the imaging surface of the imaging element are orthogonal to each other, and the optical axis of the imaging optical system is positioned on the middle line of two long sides of the outer edge of the effective pixel area of the imaging surface. A camera module manufacturing process for manufacturing a camera module;
An assembling step of inserting and incorporating the lens barrel portions of the two camera modules into two circular openings formed at predetermined intervals in the support member;
An adjustment process to be performed after the assembly process,
The adjusting step is performed only by rotating at least one of the two camera modules around the optical axis within the circular opening.
本発明者は、いわゆる3D画像が、観察者に遠近感、立体感を与えることを主たる目的とするものであるから、立体視のための視差を有する2つの画像を、例えば横長の表示画面の長辺方向(左右方向)に視差を有するように表示した場合、表示画面の短辺方向(上下方向)の撮影範囲が略一致していることが必要であって、表示画面の長辺方向(左右方向)における2つの画像のずれ量は、立体視を得るためだけの目的であれば、さほど正確性を必要としないことに着目した。そこで、調整工程において、少なくとも一方のカメラモジュールを光軸周りに円形開口内で回転させることで、短辺方向の撮影範囲を略一致させることができ、長辺方向にのみ立体視のための視差を与えることができることを見出したのである。一方、3D画像の撮影機材としては、各種の撮影現場で使用されるため、できるだけ振動、衝撃に対する耐力を有し、経時変化等の無いものが好ましいのであるが、支持部材の円形開口にカメラモジュールの鏡筒部を挿入して接着などすれば、簡素な構成を実現しつつも、振動、衝撃に対する耐力があるから、長期間にわたって、その状態を維持することができ、安定した性能を発揮できる。尚、「円形開口」とは、開口の少なくとも一部が円形であれば足り、カメラモジュールを撮像光学系の光軸周りに回転できるよう構成されたものであればよい。「前記撮像光学系の光軸と前記撮像素子の撮像面とを直交させる」とは、誤差±0.5度以下で直交させることをいい、「前記撮像面の有効画素領域の外縁の2つの長辺の中線上に撮像光学系の光軸を位置させる」とは、誤差±40μm以内で一致させることをいう。
The present inventor mainly aims to give the observer a perspective and stereoscopic effect, so that two images having parallax for stereoscopic viewing are displayed on, for example, a horizontally long display screen. When displaying with parallax in the long side direction (left and right direction), it is necessary that the shooting range in the short side direction (up and down direction) of the display screen is substantially the same, and the long side direction ( We focused on the fact that the amount of deviation between the two images in the left-right direction does not require much accuracy for the purpose of obtaining stereoscopic vision. Therefore, in the adjustment step, by rotating at least one of the camera modules around the optical axis within the circular opening, the shooting range in the short side direction can be substantially matched, and the parallax for stereoscopic viewing only in the long side direction It was found that can be given. On the other hand, as 3D image shooting equipment, it is used in various shooting sites, so it is preferable to have resistance to vibration and impact as much as possible and not change with time. If the lens barrel part is inserted and bonded, the structure can be maintained for a long period of time because it has a resistance to vibration and impact while achieving a simple structure, and can exhibit stable performance. . The “circular opening” is sufficient if at least a part of the opening is circular, and may be any structure that can rotate the camera module around the optical axis of the imaging optical system. “To make the optical axis of the imaging optical system orthogonal to the imaging surface of the imaging element” means to make them orthogonal with an error of ± 0.5 degrees or less, and to “two outer edges of the effective pixel area of the imaging surface” “Locating the optical axis of the imaging optical system on the middle line of the long side” means matching within an error of ± 40 μm.
請求項2に記載のステレオカメラの製造方法は、請求項1に記載の発明において、前記調整工程は、左右に配置された前記2つのカメラモジュールにより被撮影面上の同一マークを撮影して、前記2つのカメラモジュールの撮影によって得られたマーク画像を観察画面にそれぞれ表示しながら、前記観察画面に表示されたマーク画像の上下方向の位置が等しくなるように、少なくとも一方の前記カメラモジュールを前記円形開口内で前記光軸周りに回転させることを特徴とする。
The method for manufacturing a stereo camera according to claim 2 is the invention according to claim 1, wherein the adjustment step is performed by photographing the same mark on the surface to be photographed by the two camera modules arranged on the left and right. While displaying the mark images obtained by the photographing of the two camera modules on the observation screen, respectively, at least one of the camera modules is set so that the vertical positions of the mark images displayed on the observation screen are equal. Rotating around the optical axis within a circular opening.
これにより、簡単な調整にて、2つのカメラモジュールにより得られる画像のずれが表示画面の長辺方向(左右方向)にのみ存在するようにできるため、工数がかからず、コスト低減を行うことができる。「マーク」とは、点や十字線などがあるが、これに限られず、調整のためのターゲットであることを認識できるものであればよい。
As a result, the image shift obtained by the two camera modules can be made to exist only in the long-side direction (left-right direction) of the display screen by simple adjustment, so that man-hours are not required and costs are reduced. Can do. The “mark” includes, but is not limited to, a dot or a crosshair, and may be any mark that can be recognized as a target for adjustment.
請求項3に記載のステレオカメラは、請求項1又は2に記載のステレオカメラの製造方法により製造されたことを特徴とする。
The stereo camera according to claim 3 is manufactured by the stereo camera manufacturing method according to claim 1 or 2.
請求項4に記載のステレオカメラは、請求項3に記載の発明において、前記支持部材は、前記ステレオカメラを構成する部品で兼用したことを特徴とする。例えば、ステレオカメラの筐体の一部を支持部材として用いることで、軽量化や部品点数の削減を図れる。
The stereo camera according to claim 4 is the invention according to claim 3, wherein the support member is also used as a component constituting the stereo camera. For example, by using a part of the case of the stereo camera as a support member, the weight can be reduced and the number of parts can be reduced.
本発明によれば、2つのカメラモジュールの調整を極めて簡素なものとでき、振動、衝撃、経時変化等での調整位置のずれ等が発生する可能性を低減でき、長期間にわたって安定した性能を発揮できるステレオカメラの製造方法及びそれにより製造されるステレオカメラを提供することができる。
According to the present invention, the adjustment of the two camera modules can be made extremely simple, the possibility that the adjustment position shifts due to vibration, impact, change with time, etc. can be reduced, and stable performance over a long period of time. It is possible to provide a method of manufacturing a stereo camera that can be exhibited and a stereo camera manufactured thereby.
以下、添付した図面を参照しながら、本発明の実施形態を説明する。図1は、本実施の形態にかかるステレオカメラの斜視図であり、(a)は背面側斜視図、(b)は正面側斜視図、(c)は透視図であるが、支持部材とカメラモジュールのみを示し、内部回路等は図示を省略する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. 1A and 1B are perspective views of a stereo camera according to the present embodiment. FIG. 1A is a rear perspective view, FIG. 1B is a front perspective view, and FIG. 1C is a perspective view. Only the module is shown, and the internal circuit and the like are not shown.
ステレオカメラ10は、図1(b)に示すように、筐体11の正面側に、被写体光取り入れ用の2つの開口11L、11Rを有している。又、ステレオカメラ10は、図1(a)に示すように、筐体111の背面側にディスプレイ等の表示部12を有し、表示部12の側方には、ファンクションボタン13,14が設けられ、更に筐体11の上部には、レリーズボタン15が設けられている。
The stereo camera 10 has two openings 11L and 11R for taking in subject light on the front side of the housing 11 as shown in FIG. As shown in FIG. 1A, the stereo camera 10 has a display unit 12 such as a display on the back side of the casing 111, and function buttons 13 and 14 are provided on the side of the display unit 12. Further, a release button 15 is provided on the upper portion of the housing 11.
更にステレオカメラ10は、図1(c)に示すように、支持部材16により支持された2つのカメラモジュール20L、20Rを、それぞれ開口11L、11Rに対向するようにして設けている。
Further, as shown in FIG. 1C, the stereo camera 10 is provided with two camera modules 20L and 20R supported by the support member 16 so as to face the openings 11L and 11R, respectively.
図2は、ステレオカメラ10の主要部の関係を示すブロック図である。図2において、電源部19から電力を供給された制御部17は、レリーズボタン15からのレリーズ信号に応じて、左目用のカメラモジュール20L、右目用のカメラモジュール20Rから画像信号を入力し、必要な画像処理を行って得られた画像データを表示部12に入力して、3D画像を表示するようになっている。かかる画像データは、メモリ等の記憶部18に記憶されるようになっている。尚、ファンクションボタン13,14の例として、図2では、ステレオ撮影/非ステレオ撮影切り換えスイッチや、動画/静止画切り換えスイッチが設けられている。ステレオ撮影/非ステレオ撮影切り換えスイッチで、ステレオ撮影が選択されている場合には、カメラモジュール20L、20Rの双方を用いて撮影・記録が行われ、非ステレオ撮影が選択されている場合には、カメラモジュール20L、20Rのいずれか一方のみで撮影・記録が行われるようになっている。
FIG. 2 is a block diagram showing the relationship between the main parts of the stereo camera 10. In FIG. 2, the control unit 17 supplied with power from the power supply unit 19 inputs image signals from the left-eye camera module 20 </ b> L and the right-eye camera module 20 </ b> R in response to the release signal from the release button 15. Image data obtained by performing various image processing is input to the display unit 12, and a 3D image is displayed. Such image data is stored in a storage unit 18 such as a memory. As examples of the function buttons 13 and 14, in FIG. 2, a stereo shooting / non-stereo shooting switching switch and a moving image / still image switching switch are provided. When stereo shooting is selected with the stereo shooting / non-stereo shooting switch, shooting and recording are performed using both the camera modules 20L and 20R, and when non-stereo shooting is selected, Shooting / recording is performed by only one of the camera modules 20L and 20R.
図3は、本実施の形態に係るステレオカメラ10の製造工程を示すフローチャート図である。図4は、カメラモジュールの組み立て図である。
FIG. 3 is a flowchart showing the manufacturing process of the stereo camera 10 according to the present embodiment. FIG. 4 is an assembly diagram of the camera module.
図面を参照して、ステレオカメラ10の製造工程を説明する。図3のステップS101にて、図4に示すように、不図示の回路がプリントされた基板21をセットし、ステップS102で撮像素子(センサー)22を含むセンサーパッケージSPを基板21上に実装する。更にステップS103において、中空の鏡筒部24に撮影光学系としてのレンズ23を挿入し接着してレンズユニットLUを構成し、その後、撮像素子22の中心とレンズ23の光軸とが一致し、且つ撮像素子22の撮像面がレンズ23の光軸と直交するように、レンズユニットLUをセンサーパッケージSPに取り付けて接着する。尚、鏡筒部24に内包されるレンズ23の光軸は、鏡筒部24の円筒外周面24aと平行になっており、且つ鏡筒部24の下端と直交しているものとする。
The manufacturing process of the stereo camera 10 will be described with reference to the drawings. In step S101 of FIG. 3, as shown in FIG. 4, a substrate 21 on which a circuit (not shown) is printed is set, and in step S102, a sensor package SP including an image sensor (sensor) 22 is mounted on the substrate 21. . Further, in step S103, a lens 23 as a photographing optical system is inserted and bonded to the hollow lens barrel portion 24 to form a lens unit LU, and then the center of the image sensor 22 and the optical axis of the lens 23 coincide with each other. In addition, the lens unit LU is attached to and adhered to the sensor package SP so that the imaging surface of the imaging element 22 is orthogonal to the optical axis of the lens 23. It is assumed that the optical axis of the lens 23 included in the lens barrel portion 24 is parallel to the cylindrical outer peripheral surface 24 a of the lens barrel portion 24 and is orthogonal to the lower end of the lens barrel portion 24.
レンズユニットLUを精度良くセンサーパッケージSPに取り付ける方法としては、以下の例がある。
(a)センサーパッケージSPの外形に対して、撮像素子22の撮像面(有効画素領域)の中心座標が精度良く位置決めされていることを前提として、鏡筒部24の外周の中心として求められる光軸を、センサーパッケージSPの外形を頼りに上記中心座標に移動させることで、撮像素子22の中心とレンズ23の光軸とを精度良く一致させることができる。又は、
(b)撮像素子22を撮像面側からカメラで撮影し、その外形から有効画素領域の中心を求め、レンズ23を像面側からカメラで撮影し、その外径からレンズ23の中心を求め、レンズ23の中心と撮像素子22の撮像面(有効画素領域)の中心を略一致させるように移動させて重ね合わせて組み付けることで、撮像素子22の中心とレンズ23の光軸とを精度良く一致させることができる。
尚、本実施の形態では、撮像面の有効画素領域の外縁の2つの長辺の中線上に撮像光学系の光軸を位置させれば足りる。 As a method for attaching the lens unit LU to the sensor package SP with high accuracy, there are the following examples.
(A) Light required as the center of the outer periphery of thelens barrel portion 24 on the assumption that the center coordinates of the imaging surface (effective pixel area) of the imaging device 22 are accurately positioned with respect to the outer shape of the sensor package SP. By moving the axis to the center coordinates depending on the outer shape of the sensor package SP, the center of the image sensor 22 and the optical axis of the lens 23 can be matched with high accuracy. Or
(B) Theimaging device 22 is photographed with a camera from the imaging surface side, the center of the effective pixel region is obtained from its outer shape, the lens 23 is photographed with the camera from the image surface side, and the center of the lens 23 is obtained from its outer diameter, The center of the image sensor 22 and the optical axis of the lens 23 are accurately matched by moving and superimposing the center of the lens 23 and the center of the image pickup surface (effective pixel area) of the image sensor 22 so as to substantially match. Can be made.
In the present embodiment, it is sufficient to position the optical axis of the imaging optical system on the middle line of the two long sides of the outer edge of the effective pixel area on the imaging surface.
(a)センサーパッケージSPの外形に対して、撮像素子22の撮像面(有効画素領域)の中心座標が精度良く位置決めされていることを前提として、鏡筒部24の外周の中心として求められる光軸を、センサーパッケージSPの外形を頼りに上記中心座標に移動させることで、撮像素子22の中心とレンズ23の光軸とを精度良く一致させることができる。又は、
(b)撮像素子22を撮像面側からカメラで撮影し、その外形から有効画素領域の中心を求め、レンズ23を像面側からカメラで撮影し、その外径からレンズ23の中心を求め、レンズ23の中心と撮像素子22の撮像面(有効画素領域)の中心を略一致させるように移動させて重ね合わせて組み付けることで、撮像素子22の中心とレンズ23の光軸とを精度良く一致させることができる。
尚、本実施の形態では、撮像面の有効画素領域の外縁の2つの長辺の中線上に撮像光学系の光軸を位置させれば足りる。 As a method for attaching the lens unit LU to the sensor package SP with high accuracy, there are the following examples.
(A) Light required as the center of the outer periphery of the
(B) The
In the present embodiment, it is sufficient to position the optical axis of the imaging optical system on the middle line of the two long sides of the outer edge of the effective pixel area on the imaging surface.
更に、鏡筒部24の下端が、レンズ23の光軸に対して精度良く直交していることを前提として、鏡筒部24の下端をセンサーパッケージSPの上面に載置することで、撮像素子22の撮像面がレンズ23の光軸と精度良く直交することとなる。
Furthermore, on the assumption that the lower end of the lens barrel portion 24 is accurately orthogonal to the optical axis of the lens 23, the lower end of the lens barrel portion 24 is placed on the upper surface of the sensor package SP, so that the imaging device The 22 imaging surfaces are perpendicular to the optical axis of the lens 23 with high accuracy.
以上のカメラモジュール製造工程を通して、レンズユニットLUを精度良くセンサーパッケージSPに取り付けた後、図3のステップS104の検査工程を経て、カメラモジュール20L、20Rが完成することとなる(ステップS105)。次いで、ステップS106(組込工程)で、カメラモジュール20L、20Rを支持部材16に組み付ける。
After attaching the lens unit LU to the sensor package SP with high accuracy through the above camera module manufacturing process, the camera modules 20L and 20R are completed through the inspection process of step S104 in FIG. 3 (step S105). Next, the camera modules 20L and 20R are assembled to the support member 16 in step S106 (assembly process).
図5、6は、カメラモジュール20L、20Rの支持部材16への組込工程を示す図である。図7は、カメラモジュール20L、20Rを組み込まれた支持部材16の正面図である。
FIGS. 5 and 6 are diagrams showing an assembling process of the camera modules 20L and 20R into the support member 16. FIG. FIG. 7 is a front view of the support member 16 in which the camera modules 20L and 20R are incorporated.
支持部材16は、例えば、矩形状の板材であって、図5(a)、図6(a)のように、所定の間隔で円形開口16L、16Rが形成されている。図5(b)、図6(b)のように、同一の側から、円形開口16L、16R内へと、カメラモジュール20L、20Rを挿入し、鏡筒部24の円筒外周面24aを嵌合させている。このとき、図7の円形開口16L、16Rと円筒外周面24aとはスキマ嵌合であるため、互いに相対回転可能となっており、この時点で接着は行わない。
The support member 16 is, for example, a rectangular plate material, and circular openings 16L and 16R are formed at predetermined intervals as shown in FIGS. 5 (a) and 6 (a). As shown in FIGS. 5B and 6B, the camera modules 20L and 20R are inserted into the circular openings 16L and 16R from the same side, and the cylindrical outer peripheral surface 24a of the lens barrel portion 24 is fitted. I am letting. At this time, since the circular openings 16L and 16R and the cylindrical outer peripheral surface 24a in FIG. 7 are clearance fitting, they can be rotated relative to each other, and bonding is not performed at this point.
その後、図3のステップS107にて、調整工程を行う。以下、調整工程を詳細に説明する。図8は、ステレオカメラ10の調整工程を示すフローチャート図であり、ステップS107の内容を示している。図9は調整工程に用いる調整装置の概略図、図10は、調整工程を説明する図である。
Thereafter, an adjustment process is performed in step S107 of FIG. Hereinafter, the adjustment process will be described in detail. FIG. 8 is a flowchart showing the adjustment process of the stereo camera 10 and shows the contents of step S107. FIG. 9 is a schematic diagram of an adjustment device used in the adjustment process, and FIG. 10 is a diagram illustrating the adjustment process.
まず、図8のステップS107aにて、カメラモジュール20L、20Rを取り付けた支持部材16を調整装置にセットする。より具体的には、図9に示すように、支持部材16を台座BSに水平に取り付けて、カメラモジュール20L、20Rの光軸をスクリーンSCに向け、更にカメラモジュール20L、20Rの出力をディスプレイDPに出力できるよう、配線WL、WRを接続する。尚、スクリーンSCには、中央に黒点(マーク)BPが形成されている。
First, in step S107a in FIG. 8, the support member 16 to which the camera modules 20L and 20R are attached is set in the adjusting device. More specifically, as shown in FIG. 9, the support member 16 is horizontally attached to the base BS, the optical axes of the camera modules 20L and 20R are directed to the screen SC, and the outputs of the camera modules 20L and 20R are further displayed on the display DP. The wirings WL and WR are connected so that they can be output. Note that a black dot (mark) BP is formed at the center of the screen SC.
次に、ステップS107bにて、カメラモジュール20L、20Rが撮影した黒点の画像BPを、ディスプレイDPの観察画面上に表示する。このとき、図10(a)に示すように、カメラモジュール20L、20Rの水平位置がずれており、その結果、図10(b)に示すように、カメラモジュール20L、20Rの撮像面における黒点BPの結像位置は、互いに撮像面中心からx方向及びy方向にずれているものとする。ここで、撮像面の水平基線(長辺の中線)をHLとし、垂直基線(短辺の中線)をVLとする。
Next, in step S107b, the black spot image BP photographed by the camera modules 20L and 20R is displayed on the observation screen of the display DP. At this time, as shown in FIG. 10A, the horizontal positions of the camera modules 20L and 20R are shifted. As a result, as shown in FIG. 10B, the black spots BP on the imaging surfaces of the camera modules 20L and 20R. Are assumed to be shifted from the center of the imaging surface in the x and y directions. Here, the horizontal base line (long side middle line) of the imaging surface is HL, and the vertical base line (short side center line) is VL.
更に、2つのカメラモジュール20L、20Rの出力を合成し、水平基線HLと垂直基線VLとが重なるようにすると、図10(c)に示すように、2つの黒点の画像BPL、BPRが観察画面上で異なる位置に表示される。かかる状態では、3D表示に適した適切な視差をステレオカメラに与えることができない。
Further, when the outputs of the two camera modules 20L and 20R are combined so that the horizontal base line HL and the vertical base line VL overlap each other, as shown in FIG. 10C, two black dot images BPL and BPR are displayed on the observation screen. Displayed at different positions on the top. In such a state, an appropriate parallax suitable for 3D display cannot be given to the stereo camera.
そこで、ステップS107cにおいて、図10(d)に示すように、カメラモジュール20Rを、円形開口16R内で例えば反時計回りに回転させる。すると、撮像面中心の位置は変わらず、撮像面が傾くので水平基線HLも傾くこととなるため、観察画面上における黒点の画像BPRは、点線の位置から矢印で示すように相対変位することとなる(図10(e)の右図参照)。
Therefore, in step S107c, as shown in FIG. 10D, the camera module 20R is rotated, for example, counterclockwise within the circular opening 16R. Then, since the position of the center of the imaging surface does not change and the imaging surface is tilted, the horizontal base line HL is also tilted. Therefore, the black dot image BPR on the observation screen is relatively displaced as indicated by the arrow. (See the right figure in FIG. 10E).
更に、ステップS107dにおいて、図10(d)に示すように、カメラモジュール20Lを、円形開口16L内で例えば反時計回りに回転させる。すると、撮像面中心の位置は変わらず、撮像面が傾くので水平基線HLも傾くこととなるため、観察画面上における黒点の画像BPLは、点線の位置から矢印で示すように相対変位することとなる(図10(e)の左図参照)。
Further, in step S107d, as shown in FIG. 10D, the camera module 20L is rotated, for example, counterclockwise within the circular opening 16L. Then, since the position of the center of the imaging surface does not change and the imaging surface is tilted, the horizontal base line HL is also tilted. Therefore, the black dot image BPL on the observation screen is relatively displaced as indicated by the arrow. (Refer to the left figure of FIG. 10 (e)).
このように、カメラモジュール20L、20Rを回転させると、撮像面は水平に対して傾くことになるが、カメラモジュール20L、20Rから出力される画像自体は、図10(f)に示すようなものとなり、更に2つのカメラモジュール20L、20Rの出力を合成して、水平基線HLと垂直基線VLとが重なるようにすると、図10(g)に示すように観察画面上では黒点の画像BPLは水平方向にのみずれた状態で表示されるようになる。
As described above, when the camera modules 20L and 20R are rotated, the imaging surface is inclined with respect to the horizontal. However, the images themselves output from the camera modules 20L and 20R are as shown in FIG. Then, when the outputs of the two camera modules 20L and 20R are combined so that the horizontal base line HL and the vertical base line VL overlap, the black dot image BPL is horizontal on the observation screen as shown in FIG. Displayed in a state shifted only in the direction.
この状態は換言すると、カメラモジュール20L、20Rの撮像光学系の光軸方向から見て、それぞれの撮像素子の水平基線に平行な有効画素領域の外縁が、それぞれの光軸を結ぶ線と略平行となった状態であり、この状態にはカメラモジュールを光軸周りに回転させることのみでおこなうことができる。
In other words, in this state, when viewed from the optical axis direction of the imaging optical system of the camera modules 20L and 20R, the outer edge of the effective pixel region parallel to the horizontal base line of each imaging element is substantially parallel to the line connecting the respective optical axes. This state can be achieved only by rotating the camera module around the optical axis.
すなわち、支持部材16に形成された円形開口16L、16Rの中心位置が支持部材16上で、所定の位置からずれて形成されている場合や、円形開口16L、16Rの径とカメラモジュール20L、20Rの円筒外周面24aの径が嵌合状態以上に大きなガタを有して形成されている場合においても、カメラモジュールを光軸周りに回転させることのみで調整が可能となる。
That is, when the center positions of the circular openings 16L and 16R formed in the support member 16 are shifted from the predetermined positions on the support member 16, or the diameters of the circular openings 16L and 16R and the camera modules 20L and 20R. Even when the diameter of the cylindrical outer peripheral surface 24a is larger than the fitted state, the adjustment can be performed only by rotating the camera module around the optical axis.
また、稀ではあるが、場合によってはカメラモジュール20L、20Rの一方だけを回転させれば調整できる場合もありえる。
Although rare, in some cases, it may be possible to adjust by rotating only one of the camera modules 20L and 20R.
ここで、調整後におけるディスプレイDPの観察画面上に表示される2つの黒点の画像BPL、BPRの位置が、水平基線HLに対して等しい垂直距離Δとなれば(撮像面上、y座標が等しくなれば)、ディスプレイDPの観察画面上では3D表示に適した水平基線HL方向にのみ視差を有した画像の撮影が可能なステレオカメラとすることができる。但し、2つの黒点の画像BPL、BPRの水平基線HL方向の相対距離は無視してよい。よって、ステップS107eで、2つの黒点の画像BPL、BPRの位置が、水平基線HLに対して等しい垂直距離となるか否かを判断し、等しくなければステップS107bに戻り、同様のステップを繰り返す。一方、2つの黒点の画像BPL、BPRの位置が、水平基線HLに対して等しい垂直距離となれば、ステップS107fで、カメラモジュール20L、20Rの鏡筒部24を支持部材16に接着して、調整工程が完了する。
Here, if the positions of the two black dot images BPL and BPR displayed on the observation screen of the display DP after adjustment are equal to the vertical distance Δ with respect to the horizontal base line HL (the y coordinate is equal on the imaging surface). Therefore, a stereo camera capable of capturing an image having a parallax only in the horizontal base line HL direction suitable for 3D display on the observation screen of the display DP can be obtained. However, the relative distance between the two black dot images BPL and BPR in the horizontal base line HL direction may be ignored. Therefore, in step S107e, it is determined whether or not the positions of the two black dot images BPL and BPR have the same vertical distance with respect to the horizontal base line HL. If not, the process returns to step S107b and the same steps are repeated. On the other hand, if the positions of the two black dot images BPL and BPR are equal to the horizontal base line HL, the lens barrel 24 of the camera modules 20L and 20R is bonded to the support member 16 in step S107f. The adjustment process is completed.
その後、図3のステップS108で、ステレオカメラの性能検査を行い、目標の光学性能を満たしていれば、ステレオカメラが完成する。
Thereafter, in step S108 of FIG. 3, the performance of the stereo camera is checked. If the target optical performance is satisfied, the stereo camera is completed.
本実施の形態によれば、カメラモジュール20L、20Rを回転させるという簡単な調整にて、2つの黒点の画像BPL、BPRのずれが観察画面の長辺方向(又は左右方向)にのみ存在するようにできるため、工数がかからず、ステレオカメラのコスト低減を行うことができる。
According to the present embodiment, with the simple adjustment of rotating the camera modules 20L and 20R, the deviation between the two black dot images BPL and BPR is present only in the long side direction (or left and right direction) of the observation screen. Therefore, man-hours are not required and the cost of the stereo camera can be reduced.
図11(a)は、本実施の形態の製造方法により製造された、変形例にかかるステレオカメラを有する携帯端末の斜視図であり、図11(b)は、その一部の断面図である。携帯端末MVは、背面側にケースCAを有しているが、本変形例のステレオカメラは、ケースCAを支持部材として兼用している。即ち、図11(b)に示すように、ケースCAは円形開口CAL、CARを有しており、ここにカメラモジュール20L、20Rの鏡筒部24を嵌合させている。それ以外は、調整工程も含めて上述した実施の形態と同様である。
FIG. 11A is a perspective view of a portable terminal having a stereo camera according to a modification manufactured by the manufacturing method of the present embodiment, and FIG. 11B is a partial cross-sectional view thereof. . The portable terminal MV has a case CA on the back side, but the stereo camera of this modification also uses the case CA as a support member. That is, as shown in FIG. 11B, the case CA has circular openings CAL and CAR, into which the lens barrel portions 24 of the camera modules 20L and 20R are fitted. Other than that, it is the same as that of embodiment mentioned above also including an adjustment process.
本発明は、明細書に記載の実施形態に限定されるものではなく、他の実施形態・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。明細書の記載及び実施形態は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。
The present invention is not limited to the embodiments described in the specification, and it is apparent to those skilled in the art from the examples and ideas described in the present specification that other embodiments and modifications are included. It is. The description and the embodiments are for illustrative purposes only, and the scope of the present invention is indicated by the following claims.
10 ステレオカメラ
11 筐体
11L、11R 開口
12 表示部
13,14 ファンクションボタン
15 レリーズボタン
16 支持部材
16L 円形開口
16R 円形開口
17 制御部
18 記憶部
19 電源部
20L カメラモジュール
20R カメラモジュール
21 基板
22 撮像素子
23 レンズ
24 鏡筒部
24a 円筒外周面
BP 黒点
BPL 黒点の画像
BPR 黒点の画像
BS 台座
CA ケース
CAL,CAR 円形開口
DP ディスプレイ
HL 水平基線
WR 配線
WL 配線
LU レンズユニット
MV 携帯端末
SC スクリーン
SP センサーパッケージ
VL 垂直基線 DESCRIPTION OFSYMBOLS 10 Stereo camera 11 Housing | casing 11L, 11R Opening 12 Display part 13,14 Function button 15 Release button 16 Support member 16L Circular opening 16R Circular opening 17 Control part 18 Memory | storage part 19 Power supply part 20L Camera module 20R Camera module 21 Board | substrate 22 Imaging element 23 Lens 24 Lens barrel portion 24a Cylindrical outer peripheral surface BP Black point BPL Black point image BPR Black point image BS Pedestal CA Case CAL, CAR Circular aperture DP Display HL Horizontal base line WR Wiring WL Wiring LU Lens unit MV Mobile terminal SC Screen SP Sensor package VL Vertical baseline
11 筐体
11L、11R 開口
12 表示部
13,14 ファンクションボタン
15 レリーズボタン
16 支持部材
16L 円形開口
16R 円形開口
17 制御部
18 記憶部
19 電源部
20L カメラモジュール
20R カメラモジュール
21 基板
22 撮像素子
23 レンズ
24 鏡筒部
24a 円筒外周面
BP 黒点
BPL 黒点の画像
BPR 黒点の画像
BS 台座
CA ケース
CAL,CAR 円形開口
DP ディスプレイ
HL 水平基線
WR 配線
WL 配線
LU レンズユニット
MV 携帯端末
SC スクリーン
SP センサーパッケージ
VL 垂直基線 DESCRIPTION OF
Claims (4)
- 立体視のための視差を有した2つの画像を取得するために、撮影光学系を内包する円筒形の鏡筒部と撮像素子とをそれぞれ有する2つのカメラモジュールが支持部材に配置されてなるステレオカメラの製造方法において、
前記撮像光学系の光軸と前記撮像素子の撮像面とを直交させると共に、前記撮像面の有効画素領域の外縁の2つの長辺の中線上に前記撮像光学系の光軸を位置させて各カメラモジュールを製造するカメラモジュール製造工程と、
前記支持部材に所定の間隔で形成された2つの円形開口に、前記2つのカメラモジュールの鏡筒部をそれぞれ挿入して組み込む組込工程と、
前記組込工程後に行う調整工程と、を有し、
前記調整工程は、前記2つのカメラモジュールのうち少なくとも一方の前記カメラモジュールを前記円形開口内で前記光軸周りに回転させることのみで行うことを特徴とするステレオカメラの製造方法。 In order to acquire two images having parallax for stereoscopic viewing, a stereo in which two camera modules each having a cylindrical lens barrel portion including an imaging optical system and an image sensor are arranged on a support member In the manufacturing method of the camera,
The optical axis of the imaging optical system and the imaging surface of the imaging element are orthogonal to each other, and the optical axis of the imaging optical system is positioned on the middle line of two long sides of the outer edge of the effective pixel area of the imaging surface. A camera module manufacturing process for manufacturing a camera module;
An assembling step of inserting and incorporating the lens barrel portions of the two camera modules into two circular openings formed at predetermined intervals in the support member;
An adjustment step performed after the assembly step,
The method of manufacturing a stereo camera, wherein the adjusting step is performed only by rotating at least one of the two camera modules around the optical axis within the circular opening. - 前記調整工程は、左右に配置された前記2つのカメラモジュールにより被撮影面上の同一マークを撮影して、前記2つのカメラモジュールの撮影によって得られたマーク画像を観察画面にそれぞれ表示しながら、前記観察画面に表示されたマーク画像の上下方向の位置が等しくなるように、少なくとも一方の前記カメラモジュールを前記円形開口内で前記光軸周りに回転させることを特徴とする請求項1に記載のステレオカメラの製造方法。 The adjustment step is to shoot the same mark on the surface to be imaged by the two camera modules arranged on the left and right, while displaying the mark images obtained by the imaging of the two camera modules on the observation screen, The at least one camera module is rotated around the optical axis in the circular opening so that the vertical positions of the mark images displayed on the observation screen are equal. Stereo camera manufacturing method.
- 請求項1又は2に記載のステレオカメラの製造方法により製造されたことを特徴とするステレオカメラ。 A stereo camera manufactured by the method for manufacturing a stereo camera according to claim 1 or 2.
- 前記支持部材を、前記ステレオカメラを構成する部品で兼用したことを特徴とする請求項3に記載のステレオカメラ。 4. The stereo camera according to claim 3, wherein the supporting member is also used as a part constituting the stereo camera.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-130062 | 2011-06-10 | ||
JP2011130062 | 2011-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012169363A1 true WO2012169363A1 (en) | 2012-12-13 |
Family
ID=47295931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/063294 WO2012169363A1 (en) | 2011-06-10 | 2012-05-24 | Method for producing stereo camera and stereo camera |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012169363A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021051325A (en) * | 2020-12-15 | 2021-04-01 | 日立Astemo株式会社 | Imaging device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006091177A (en) * | 2004-09-21 | 2006-04-06 | Fuji Photo Film Co Ltd | Stereo camera and stay for stereo camera |
JP2006270264A (en) * | 2005-03-22 | 2006-10-05 | Fuji Photo Film Co Ltd | Compound-eye photographic instrument |
JP2008051925A (en) * | 2006-08-23 | 2008-03-06 | Nikon Corp | Optical axis adjustment method |
JP2009094648A (en) * | 2007-10-04 | 2009-04-30 | Chunichi Denshi Co Ltd | Optical axis adjustment apparatus of compound-eye type camera |
JP2011061301A (en) * | 2009-09-07 | 2011-03-24 | Sony Corp | Imaging apparatus |
-
2012
- 2012-05-24 WO PCT/JP2012/063294 patent/WO2012169363A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006091177A (en) * | 2004-09-21 | 2006-04-06 | Fuji Photo Film Co Ltd | Stereo camera and stay for stereo camera |
JP2006270264A (en) * | 2005-03-22 | 2006-10-05 | Fuji Photo Film Co Ltd | Compound-eye photographic instrument |
JP2008051925A (en) * | 2006-08-23 | 2008-03-06 | Nikon Corp | Optical axis adjustment method |
JP2009094648A (en) * | 2007-10-04 | 2009-04-30 | Chunichi Denshi Co Ltd | Optical axis adjustment apparatus of compound-eye type camera |
JP2011061301A (en) * | 2009-09-07 | 2011-03-24 | Sony Corp | Imaging apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021051325A (en) * | 2020-12-15 | 2021-04-01 | 日立Astemo株式会社 | Imaging device |
JP6995968B2 (en) | 2020-12-15 | 2022-02-21 | 日立Astemo株式会社 | Imaging device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3334145B1 (en) | Multi-lens camera module conjoined stand, multi-lens camera module and application thereof | |
KR101446767B1 (en) | Stereoscopic imaging device | |
US9883166B2 (en) | Three dimensional image pick-up device and manufacturing method thereof | |
US8514291B2 (en) | Digital photo frame having stereo camera module | |
JP4396674B2 (en) | Panorama imaging device | |
CN100521747C (en) | Motion detection imaging device | |
KR20170141823A (en) | Versatile mobile device case / cover integrated with 3D and / or 2D high quality video, camera and camera recording systems for photo and non-electrical 3D / multi-video and still frame viewers | |
JP2008067412A (en) | Imaging apparatus | |
EP2418860A1 (en) | Image sensor for generating stereoscopic images | |
WO2014050282A1 (en) | Stereo camera device | |
CN108141519A (en) | Camara module | |
JP2013201466A (en) | Stereoscopic image pickup device | |
JP2017072821A (en) | Array lens module | |
US11778297B1 (en) | Portable stereoscopic image capturing camera and system | |
CN101588511A (en) | Device and method of stereo camera | |
JP2014157309A (en) | Stereo camera unit | |
CN108464000A (en) | Three-dimensional imaging sensor device and method for manufacturing the imaging sensor pair used in three-dimensional imaging | |
KR20120094668A (en) | Stereo camera and a fabricating method the same | |
JP4693727B2 (en) | 3D beam input device | |
WO2012169363A1 (en) | Method for producing stereo camera and stereo camera | |
JP2011250022A (en) | Camera system | |
CN101916035A (en) | Stereo pick-up device and method | |
CN107431799A (en) | One-eyed stereo camera | |
JP2013074473A (en) | Panorama imaging apparatus | |
WO2012042704A1 (en) | Stereoscopic photographic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12797551 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12797551 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |