WO2012168991A1 - 抗原を検出する方法 - Google Patents

抗原を検出する方法 Download PDF

Info

Publication number
WO2012168991A1
WO2012168991A1 PCT/JP2011/007240 JP2011007240W WO2012168991A1 WO 2012168991 A1 WO2012168991 A1 WO 2012168991A1 JP 2011007240 W JP2011007240 W JP 2011007240W WO 2012168991 A1 WO2012168991 A1 WO 2012168991A1
Authority
WO
WIPO (PCT)
Prior art keywords
buffer
antigen
particles
antibody
cueo
Prior art date
Application number
PCT/JP2011/007240
Other languages
English (en)
French (fr)
Inventor
和晃 西尾
松川 望
吉井 重雄
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012509801A priority Critical patent/JP5011458B1/ja
Priority to US13/536,202 priority patent/US8470549B2/en
Publication of WO2012168991A1 publication Critical patent/WO2012168991A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding

Definitions

  • the present invention relates to a method for detecting an antigen using an antibody and an enzyme.
  • Patent Document 1 Japanese Patent No. 4271866 (hereinafter referred to as Patent Document 1 and this document corresponds to US Patent Application Publication No. 2005/0282237) discloses an enzyme immunoassay method.
  • FIG. 2 shows the sandwich method included in the enzyme immunoassay.
  • the carrier 107 has an antibody 108 on its surface.
  • a sample containing the antigen 109 is supplied to the surface of the carrier 107, resulting in the antigen 109 binding specifically to the antibody 108. Thereafter, the sample containing the unreacted antigen 109 is removed from the carrier by washing.
  • the labeled antibody 111 having the enzyme 110 for detecting the antigen 109 is supplied to the surface of the carrier 107 to form a complex composed of antibody 108-antigen 109-labeled antibody 111. Thereafter, unreacted labeled antibody is removed by washing.
  • the substrate 112 of the enzyme 110 is supplied to the surface of the carrier 107.
  • Enzyme 110 reacts metabolically with substrate 112 to form product 113.
  • the luminescence or absorbance of the product 113 is measured to detect the antigen 109 indirectly.
  • the sandwich method requires not only the antibody 108 but also the labeled antibody 111 having the enzyme 110.
  • Labeled antibody 111 needs to be supplied after the specific reaction that occurs between antibody 108 and antigen 109. Furthermore, unreacted labeled antibody 111 needs to be removed.
  • One of the objects of the present invention is to provide a method for detecting an antigen without using a labeled antibody.
  • the present invention relates to a method for detecting an antigen comprising the following steps: A step (a) of immersing particles in a first buffer solution that is expected to contain the antigen, wherein an antibody and a multi-copper oxidase CueO are immobilized on the surface of the particles; Specifically reacts to A step (b) of recovering the particles obtained in the step (a); Step (c) of mixing the particles recovered in the step (b), a redox indicator (reduced form), and a second buffer to prepare a reaction solution, wherein the second buffer is Contains a substrate for multi-copper oxidase CueO, The second buffer solution has an ionic strength within a range of 0.3 mM to 1.0 mM, Step (d) of measuring the activity of multi-copper oxidase CueO contained in the reaction solution obtained in step (c) by an absorbance measurement method, and the first buffer solution if the following equation is satisfied Step (e) is determined to contain said antigen Activity measured in step
  • the present invention provides a method for detecting an antigen without using a labeled antibody.
  • FIG. 1 shows a reaction flow chart of a method for detecting an antigen according to the present invention.
  • FIG. 2 shows a reaction flowchart of a conventional enzyme immunoassay (sandwich method).
  • FIG. 3 shows an example of a particle carrier on which CueO and an antibody are immobilized.
  • FIG. 4 shows the results of the absorbance measurement performed in Example 1.
  • FIG. 1 shows a reaction flowchart of a method for detecting an antigen according to the present invention.
  • the particles 101 are immersed in a first buffer solution that is expected to contain the antigen 104.
  • each particle 101 has a multi-copper oxidase 102 and an antibody 103 on the surface.
  • the multi-copper oxidase 102 is described as “CueO”.
  • each particle 101 is preferably composed of particles having a diameter of 10 to 20 nanometers.
  • the antibody 103 and the CueO 102 are immobilized on the surface of the particle 101.
  • Antibody 103 reacts specifically with antigen 104.
  • an example of the material of the particle 101 is a noble metal.
  • noble metals are gold, silver and platinum. Gold is preferred.
  • Antibody 103 can be a polyclonal antibody or a monoclonal antibody.
  • An Fab fragment and an F (ab ′) 2 fragment produced by artificially removing an Fc region or a part thereof from an antibody can also be used as the antibody 103.
  • CueO102 is a kind of enzyme that catalyzes a redox reaction. As shown in FIG. 1, CueO102 catalyzes a reaction in which water is produced as product 106 by performing a four-electron reduction of substrate 105 composed of oxygen molecules.
  • the active center of CueO102 is composed of four copper ions having different properties, and each of these copper ions is called type 1, type 2, type 3a, and type 3b.
  • CueO derived from E. coli It is preferable to use CueO derived from E. coli.
  • Method (a) A method using non-specific adsorption by hydrophobic interaction generated between the particle 101 and the antibody 103 or CueO102.
  • antigens 104 detected by the present invention are viruses, bacteria, fungi, proteins, or oligonucleotides. Viruses, bacteria, or fungi are preferred.
  • the first buffer examples include Tris-HCl buffer, Tris buffered saline, or phosphate buffered saline.
  • the first buffer has a pH near neutral.
  • the particles 101 obtained in the step (a) are collected. More specifically, the particles 101 can be recovered by centrifugation. The particles 101 can be recovered using a filter.
  • step (c) particles 101 collected in step (b), a redox indicator (reduced form), and a second buffer are mixed to prepare a reaction solution.
  • the second buffer solution Prior to the addition of the particles 101 to the second buffer solution, the second buffer solution may previously contain a redox indicator (reduced form).
  • an oxidation-reduction reagent (reduced form) can be added to the second buffer solution.
  • the second buffer solution contains a substrate 105 of CueO102.
  • the substrate 105 are oxygen or proton. Oxygen and protons are contained in common commercial buffers.
  • redox indicators are 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), paraphenylenediamine, or 2,6-dimethoxyphenol.
  • ABTS 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)
  • paraphenylenediamine paraphenylenediamine
  • 2,6-dimethoxyphenol 2,6-dimethoxyphenol.
  • ABTS 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)
  • paraphenylenediamine paraphenylenediamine
  • 2,6-dimethoxyphenol 2,6-dimethoxyphenol.
  • the second buffer solution preferably has a pH of 4.5 or more and 5.5 or less.
  • Sodium hydroxide, potassium hydroxide, ammonia, or trimethylammonium is used to adjust the pH of the second buffer.
  • Examples of the second buffer are acetate buffer, citrate buffer, succinate buffer, phthalate buffer, or 2-morpholinoethane sulfonate buffer (MES).
  • MES 2-morpholinoethane sulfonate buffer
  • the second buffer solution is required to have an ionic strength that falls within the range of 0.3 mM to 1.0 mM. If it is less than 0.3 mM, it is difficult to ensure the stability of pH. If it exceeds 1.0 mM, it will be difficult to detect the antibody contained in the first buffer, as will be apparent from the examples described later.
  • step (d) the activity of CueO contained in the reaction solution obtained in step (c) is measured by an absorbance measurement method.
  • an ultraviolet-visible spectrophotometer is preferably used.
  • the activity of CueO is calculated from the amount of change in redox indicator oxidized per unit time and the amount of CueO used for measurement.
  • step (e) if the following equation is satisfied, it is determined that the first buffer contains an antigen.
  • Activity of CueO measured in step (d) ⁇ 1.4 ⁇
  • the blank value is the activity of CueO measured by an absorbance measurement method in which no antigen is used but the particles 101 and the second buffer solution are used.
  • the blank value can be calculated in parallel with step (c). Alternatively, the blank value can be calculated in advance.
  • Example 1 (Preparation of CueO) CueO derived from E. coli (K-12 strain) was produced and purified in E. coli as recombinant CueO as described below.
  • the gene for CueO was amplified by a PCR method using E. coli genomic DNA (LA PCR genomic DNA Set; manufactured by Takara Bio Inc.).
  • a base sequence encoding a histidine tag was added to the oligo DNA primer, and a histidine tag was added to the carboxyl terminal side of the amino acid sequence of CueO.
  • the amplified DNA fragment was cloned into an expression vector (pRSFDuet-1; manufactured by Merck KGaA) (In-Fusion Dry-Down PCR Cloning Kits; Clontech). Laboratories). Escherichia coli (BL21 (DE3); manufactured by Agilent Technologies) was transformed with the expression vector. The transformed E. coli was cultured at 30 ° C. for 16 hours on LB medium containing 1 mM copper sulfate.
  • pRSFDuet-1 manufactured by Merck KGaA
  • Escherichia coli BL21 (DE3); manufactured by Agilent Technologies
  • a periplasmic fraction is extracted from the collected cells, and a histidine tag purification column (TALON CellThru Resin; Clontech Laboratories) and an anion exchange column (HiTrap Q HP 5 mL; GE Healthcare) were used to purify CueO from the extract.
  • TALON CellThru Resin Clontech Laboratories
  • HiTrap Q HP 5 mL HisTrap Q HP 5 mL; GE Healthcare
  • the purified CueO solvent was replaced with 10 mM Tris-HCl buffer (pH 7.5). Thereafter, the CueO solution was concentrated using an ultrafiltration unit (Amicon Ultra-4, MWCO: 30,000; manufactured by Millipore). The concentrated CueO solution had a concentration of 1 mg / mL. The concentration of the CueO solution was measured based on the Bradford method (Protein Assay Kit II; manufactured by Bio-Rad Laboratories) using Bovine Serum Albumin (BSA) as a standard. The resulting CueO solution was stored at 4 ° C.
  • An anti-bovine serum albumin (Bovine Serum Albumin) antibody (anti-BSA antibody [Rabbit], 1 mg / mL; manufactured by Bethyl Laboratories) was used as the antibody 103.
  • the antibody was stored at 4 ° C.
  • a dispersion of gold particles containing CueO, antibody, and polyoxyethylene (20) sorbitan monolaurate was poured into four centrifuge tubes (thick PC tube 3.0 mL; manufactured by Beckman Coulter, Inc.). Each centrifuge tube had 3 milliliters of dispersion.
  • glycerol 0.05 milliliters of glycerol (> 99.5%; Life Technologies) was submerged in the bottom of each dispersion. Glycerol functioned as a cushion.
  • Each centrifuge tube was placed in a rotor (TLA-100.3; manufactured by Beckman Coulter) and set in a centrifuge (Optima TL; manufactured by Beckman Coulter). Four centrifuge tubes were centrifuged at 70,000 rpm, 4 ° C. for 20 minutes.
  • the supernatant was removed from each centrifuge tube to leave a concentrated gold particle dispersion (about 0.01 ml ⁇ 4).
  • Tris-hydrochloric acid buffer solution pH: 8.0, 1 mM, 3 ml
  • 0.01% polyoxyethylene (20) sorbitan monolaurate was added to the concentrated gold particle dispersion (0.01 ml). Added.
  • this procedure is referred to as “procedure A”.
  • the obtained buffer solution is hereinafter referred to as “T buffer solution”.
  • the gold particle dispersion added with T buffer was poured into four centrifuge tubes (3.0 mL thick PC tube; manufactured by Beckman Coulter). Each centrifuge tube had 3 milliliters of dispersion. 0.05 milliliters of glycerol (> 99.5%; manufactured by Life Technologies) was submerged in the bottom of each dispersion. Glycerol functioned as a cushion. Each centrifuge tube was placed in a rotor (TLA-100.3; manufactured by Beckman Coulter) and set in a centrifuge (Optima TL; manufactured by Beckman Coulter). Four centrifuge tubes were centrifuged at 70,000 rpm, 4 ° C. for 20 minutes. The supernatant was removed from each centrifuge tube, leaving a concentrated gold particle dispersion (approximately 0.01 ml ⁇ 4). This procedure is referred to as “procedure B”.
  • Procedure A and procedure B were repeated once more.
  • the gold particle dispersion thus concentrated was collected from four centrifuge tubes, and the volume was adjusted to 1.2 ml by adding T buffer.
  • the concentration of CueO contained in the gold particle dispersion thus obtained was measured by the SDS-PAGE method. The result was 0.02 milligram / milliliter.
  • the gold particle dispersion thus obtained was stored at 4 ° C.
  • ABTS (2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) ammonium salt
  • ABTS (2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) ammonium salt
  • ABTS functioned as a redox indicator.
  • ABTS acetate buffer (pH: 3) having 1.0 mM acetate buffer concentration in ABTS acetate buffer (pH: 6) having 1.0 mM acetate buffer concentration was added to prepare an ABTS acetate buffer solution (pH: 5.5) having an acetate buffer concentration of 1.0 mM.
  • the temperature during pH adjustment was 25 ° C.
  • an ABTS acetate buffer (pH: 4.5) having an acetate buffer concentration of 1.0 mM was prepared.
  • each ABTS acetate buffer solution (pH: 5.5) having a concentration of 0.5 mM, 5 mM, and 10 mM was prepared. Further, each ABTS acetate buffer solution (pH: 4.5) having a concentration of 0.5 mM, 5 mM, and 10 mM was prepared.
  • the activity of CueO was measured by an absorbance measurement method using a redox indicator.
  • An ultraviolet-visible spectrophotometer (UV-1600PC; manufactured by Shimadzu Corporation) was used for absorbance measurement.
  • a cell (disposable cell semi-micro; manufactured by Tecl) having an optical path length of 1 centimeter was used as a measurement container.
  • ABTS acetate buffer (1.0 mM, pH: 4.5, 0.98 ml) was added to the cell, and then the cell was set in an ultraviolet-visible spectrophotometer. Next, a gold particle dispersion (0.02 milliliter) was added to the cell. Absorbance of ABTS acetate buffer was measured continuously (0.1 second interval) for 60 seconds at a wavelength of 420 nanometers. FIG. 4 shows the measurement results.
  • CueO activity (U / mg) was calculated from the amount of change in absorbance measured for 60 seconds based on the following formula.
  • 1U means that the amount of ABTS oxidized in 60 seconds is equal to 1 micromolar.
  • Table 5 to be described later shows the results of CueO activity measurement.
  • A absorbance (nanometer)
  • the molar extinction coefficient of ABTS at a wavelength of 420 nanometers, which is 36,000 (M ⁇ 1 cm ⁇ 1 ) in this example
  • l the optical path length, 1 centimeter in this example
  • B the concentration of CueO, 0.02 milligram / milliliter in this example.
  • T buffer (1 ml) was added to the resulting precipitate to suspend the T buffer.
  • the gold particles were precipitated again by centrifugation (2500 rpm, 23 ° C. for 3 minutes).
  • T buffer solution (0.6 ml) was added to the resulting precipitate and suspended. In this way, an antigen-antibody mixture was prepared.
  • ABTS acetate buffer (1.0 mM, pH: 4.5, 0.98 ml) was added to the cell, and then the cell was set in an ultraviolet-visible spectrophotometer. Next, a gold particle dispersion (0.02 milliliter) was added to the cell. Absorbance of ABTS acetate buffer was measured continuously (0.1 second interval) for 60 seconds at a wavelength of 420 nanometers. From the measurement results, the activity of CueO was calculated as a measured value. The measured values calculated in this way are shown in Table 5 described later.
  • the concentration of the acetate buffer (more precisely, the concentration of acetic acid contained in the ABTS acetate buffer) is 1.0 mM or less, the amplification factor is 1.4 or more. . On the other hand, when the concentration of the acetate buffer was 5 mM or more, the amplification factor was 1.1 at the maximum.
  • the present invention can be used for a biosensor.
  • the present invention is particularly useful for rapid immunodiagnosis by multiplex assay.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明は、抗体および酵素を利用して抗原を検出する方法に関する。具体的には、本発明は、ラベル化抗体を用いずに、抗原を検出する方法を提供する.。この方法は、抗原を含有すると予想される第1の緩衝液に粒子を浸漬させる工程を含み、粒子の表面には抗体およびマルチ銅酸化酵素CueOが固定されており、上記抗体は上記抗原に特異的に反応する。この方法は、さらに、得られた粒子を回収する工程、回収された粒子、酸化還元指示薬(還元体)、および第2の緩衝液を混合し、反応溶液を調製する工程、得られた反応溶液に含有されるマルチ銅酸化酵素CueOの活性度を、吸光度測定法により測定する工程、これに基づいて第1の緩衝液が上記抗原を含有することが決定される工程を含む。

Description

抗原を検出する方法
 本発明は、抗体および酵素を利用して抗原を検出する方法に関する。
 特許第4271086号公報(以下、特許文献1。また、本文献は、米国特許出願公開第2005/0282237号明細書に対応する)は、酵素免疫測定法を開示している。図2は、当該酵素免疫測定法に含まれるサンドイッチ法を示す。
 図2に示されるように、担体107は、抗体108を表面に有する。抗原109を含有する試料が担体107の表面に供給され、抗原109が抗体108に特異的に結合することがもたらされる。その後、未反応の抗原109を含有する試料が洗浄により担体から除去される。
 次に、抗原109を検出する酵素110を具備しているラベル化抗体111が、担体107の表面に供給され、抗体108-抗原109-ラベル化抗体111から構成される複合体を形成する。その後、未反応のラベル化抗体が洗浄により除去される。
 最後に、酵素110の基質112が担体107の表面に供給される。酵素110は基質112と代謝的に反応して、生成物113を形成する。生成物113の発光または吸光度が測定され、抗原109を間接的に検出する。
特許第4271086号公報
 しかし、サンドイッチ法は、抗体108だけでなく、酵素110を具備しているラベル化抗体111をも必要とする。ラベル化抗体111は、抗体108と抗原109との間で生じる特異的反応の後に供給されることを必要とする。さらに、未反応のラベル化抗体111は除去されることを必要とする。
 本発明の目的の1つは、ラベル化抗体を用いずに、抗原を検出する方法を提供することである。
 本発明は、 以下の工程を具備する、抗原を検出する方法に係る:
 前記抗原を含有すると予想される第1の緩衝液に粒子を浸漬させる工程(a)、ここで
  前記粒子の表面には抗体およびマルチ銅酸化酵素CueOが固定されており、そして
  前記抗体は前記抗原に特異的に反応し、
 前記工程(a)において得られた粒子を回収する工程(b)、
 前記工程(b)において回収された粒子、酸化還元指示薬(還元体)、および第2の緩衝液を混合し、反応溶液を調製する工程(c)、ここで
  前記第2の緩衝液は、前記マルチ銅酸化酵素CueOの基質を含有し、
  前記第2の緩衝液は、0.3mM以上1.0mM以下の範囲に収まるイオン強度を有し、
 工程(c)において得られた反応溶液に含有されるマルチ銅酸化酵素CueOの活性度を、吸光度測定法により測定する工程(d)、および
 以下の式が充足されれば前記第1の緩衝液が前記抗原を含有することが決定される工程(e)
  工程(d)において測定された活性度 >= 1.4×(ブランク値)
  ここで、前記ブランク値は、前記抗原は用いられないが、前記粒子および前記第2の緩衝液は用いられる吸光度測定法により測定されたマルチ銅酸化酵素CueOの活性度を表す。
 一態様において、本発明は、ラベル化抗体を用いずに、抗原を検出する方法を提供する。
図1は、本発明による抗原を検出する方法の反応フローチャートを示す。 図2は、従来の酵素免疫測定法(サンドイッチ法)の反応フローチャートを示す。 図3は、CueOおよび抗体が固定された粒子担体の一例を示す。 図4は、実施例1において行われた吸光度測定の結果を示す。
 以下、図面を参照しながら、本発明の例示的な実施の形態が説明される。
 図1は、本発明による抗原を検出する方法の反応フローチャートを示す。
 (工程a)
 工程(a)では、抗原104を含有すると予想される第1の緩衝液に粒子101が浸漬される。
 図3に示されるように、各粒子101は、マルチ銅酸化酵素102および抗体103を表面に具備する。以下、マルチ銅酸化酵素102は、「CueO」と記述される。
 固定される抗体103およびCueO102の量を増加させる観点から、各粒子101は10~20ナノメートルの直径を有する粒子からなることが好ましい。
 図1および図3に示されるように、抗体103およびCueO102が、粒子101の表面に固定されている。抗体103は抗原104と特異的に反応する。
 抗体103およびCueO102が容易に固定化する観点から、粒子101の材料の例は貴金属である。当該貴金属の例は、金、銀および白金である。金が好ましい。
 抗体103は、ポリクローナル抗体またはモノクローナル抗体であり得る。抗体からFc領域またはその一部が人為的に除去されて作製された、FabフラグメントおよびF(ab’)2フラグメントも抗体103として用いられ得る。
 CueO102は、酸化還元反応を触媒する酵素の一種である。図1に示されるように、CueO102は、酸素分子から構成される基質105の4電子還元を行い、そして生成物106として水が生成される反応を触媒する。CueO102の活性中心は、性質の異なる4個の銅イオンから構成され、この銅イオンの各々は、タイプ1、タイプ2、タイプ3a、およびタイプ3bと呼ばれる。
 大腸菌由来のCueOが用いられることが好ましい。
 抗体103及びCueO102を粒子101に固定する方法としては、以下の方法(a)が挙げられる。
 方法(a):粒子101と、抗体103またはCueO102との間で生じる疎水性相互作用による非特異的吸着を利用する方法。
 
 本発明により検出される抗原104の例は、ウイルス、細菌、真菌、タンパク質、またはオリゴヌクレオチドである。ウイルス、細菌、または真菌が好ましい。
 第1の緩衝液の例は、トリス-塩酸緩衝液、トリス緩衝生理食塩水、またはリン酸緩衝生理食塩水である。好ましくは、当該第1の緩衝液は、中性付近のpHを有する。
 浸漬は、抗体103と抗原104との間の特異的結合をもたらす。その後、洗浄により、未反応の抗原104を含有する第1の緩衝液は、粒子101の表面から除去される。
 本発明では、抗原104と抗体103との特異的結合が、CueO102の酵素活性を上昇させる。
 (工程(b))
 工程(b)では、工程(a)において得られた粒子101を回収する。より具体的には、遠心分離法によって粒子101は回収され得る。フィルタを用いて粒子101は回収され得る。
 (工程(c))
 工程(c)では、工程(b)において回収された粒子101、酸化還元指示薬(還元体)、および第2の緩衝液を混合し、反応溶液を調製する。粒子101の第2緩衝液への添加に先だって、第2の緩衝液が酸化還元指示薬(還元体)を予め含有し得る。これに代えて、粒子101を第2の緩衝液に添加した後に、第2の緩衝液に酸化還元試薬(還元体)を添加し得る。
 第2の緩衝液は、CueO102の基質105を含有する。基質105の例は、酸素またはプロトンである。酸素およびプロトンは、市販されている一般的な緩衝液に含まれている。
 酸化還元指示薬の例は2,2‘‐アジノビス(3‐エチルベンゾチアゾリン‐6‐スルホン酸)(ABTS)、パラフェニレンジアミン、または2,6‐ジメトキシフェノールである。ABTSが好ましい。なぜなら、ABTS(還元体)は商業的に入手可能であり、容易に調達できるからである。
 第2の緩衝液は、4.5以上5.5以下のpHを有することが好ましい。水酸化ナトリウム、水酸化カリウム、アンモニア、またはトリメチルアンモニウムが用いられて、第2の緩衝液のpHを調整する。第2の緩衝液の例は、酢酸緩衝液、クエン酸緩衝液、コハク酸緩衝液、フタル酸緩衝液、または2-モルホリノエタンスルホン酸緩衝液(MES)である。酢酸緩衝液が好ましい。
 第2の緩衝液は、0.3mM以上1.0mM以下の範囲に収まるイオン強度を有することを必要とされる。0.3mM未満では、pHの安定性を確保することが困難である。1.0mMを超えると、後述される実施例からも明らかなように、第1の緩衝液に含有される抗体を検出することが困難となる。
 (工程(d))
 工程(d)では、工程(c)において得られた反応溶液に含有されるCueOの活性度を、吸光度測定法により測定する。
 吸光度を測定するために、紫外可視分光光度計が用いられることが好ましい。
 吸光度を測定する具体的な手順を、以下、説明する。まず、工程(c)において第2の緩衝液に粒子101を浸漬した後、吸光度を連続的に一定時間測定し、単位時間あたりの吸光度の変化量を記録する。CueOにより反応溶液に含有される酸化還元指示薬(還元体)は酸化される。酸化状態における酸化還元指示薬の吸光度は、還元状態における酸化還元指示薬の吸光度とは異なるので、酸化還元指示薬の変化量が吸光度から算出される。
 CueOの活性度は、単位時間あたりに酸化された酸化還元指示薬の変化量および測定に使用されたCueOの量から算出される。
 (工程(e))
 工程(e)では、以下の式が充足されれば第1の緩衝液が抗原を含有することが決定される。
  (工程(d)において測定されたCueOの活性)≧1.4×(ブランク値)
  ここで、ブランク値は、抗原は用いられないが、粒子101および第2の緩衝液は用いられる吸光度測定法により測定されたCueOの活性度である。
 ブランク値は、工程(c)と平行して算出され得る。または、ブランク値は、予め算出され得る。
 以下の実施例1を用いて、本発明はより詳細に説明される。
 (実施例1)
 (CueOの調製)
 大腸菌由来(K-12株)のCueOは、以下に記述されるように、組換CueOとして大腸菌内で生産され、精製された。
 CueOの遺伝子は、大腸菌ゲノムDNA(LA PCR用genome DNA Set; タカラバイオ社製)を用いるPCR法により増幅された。
 当該PCRにおいては、ヒスチジンタグをコードする塩基配列がオリゴDNAプライマーに付加され、CueOのアミノ酸配列のカルボキシル末端側にヒスチジンタグを付加した。
 増幅されたDNA断片は、発現ベクター(pRSFDuet-1;Merck KGaA製)にクローニングされた(In-Fusion Dry-Down PCR Cloning Kits;Clontech
laboratories社製)。当該発現ベクターを用いて大腸菌(BL21(DE3);Agilent Technologies社製)が形質転換された。形質転換された大腸菌は、1mMの硫酸銅を含有するLB培地上で30℃、16時間培養された。
 回収した菌体よりペリプラズム画分が抽出され、ヒスチジンタグ精製カラム(TALON CellThru Resin; Clontech
laboratories社製)および陰イオン交換カラム(HiTrap Q HP 5mL; GE Healthcare社製)を用いて、抽出液からCueOが精製された。
 脱塩カラム(HiTrap desalting; GE Healthcare社製)を用いて、精製されたCueOの溶媒が10mM トリス-塩酸緩衝液(pH7.5)に置換された。その後、限外ろ過ユニット(Amicon Ultra-4、MWCO:30,000;Millipore社製)を用いてCueO溶液は濃縮された。濃縮後のCueO溶液は、1mg/mLの濃度を有していた。CueO溶液の濃度は、Bovine Serum Albumin(BSA)をスタンダードとして用いて、Bradford法(プロテインアッセイキットII;Bio-Rad Laboratories社製)に基づいて測定された。得られたCueO溶液は4℃で保管された。
 (抗体の調製)
 抗ウシ血清アルブミン(Bovine Serum Albumin)抗体(抗BSA抗体[Rabbit]、1mg/mL;Bethyl Laboratories社製)が抗体103として用いられた。抗体は4℃で保管された。
 (CueO102及び抗体103の粒子101への固定)
 20ナノメートルの直径を有する金粒子の分散液(Gold Colloid 20nm;BBInternational社製)を用いた。当該金粒子は、粒子101として機能した。この分散液(12ミリリットル)および抗体(0.12ミリリットル)を混合し、23℃で40分間静置した。続いて、CueO溶液(0.12ミリリットル)を加え、23℃で40分間静置した。さらに、ポリオキシエチレン(20)ソルビタンモノラウレート(ANAPOE―20;Affymetrix社製)の10%水溶液(0.12ミリリットル)を添加し、23℃で10分間静置した。
 次に、粒子101に固定されなかったCueOおよび抗体を以下のように、除去した。
 CueO、抗体、およびポリオキシエチレン(20)ソルビタンモノラウレートを含有する金粒子の分散液を4本の遠心管(肉厚PCチューブ3.0mL;ベックマン・コールター社製)に注いだ。各遠心管は、3ミリリットルの分散液を有していた。
 0.05ミリリットルのグリセロール(>99.5%;Life Technologies社製)を各分散液の底部に沈めた。グリセロールは、クッションとして機能した。
 各遠心管をローター(TLA―100.3;ベックマン・コールター社製)に入れ、遠心機(Optima TL;ベックマン・コールター社製)にセットした。4本の遠心管は、70,000rpm、4℃で20分間、遠心された。
 各遠心管から上清を除き、濃縮された金粒子分散液(約0.01ミリリットルx4本)を残した。
 濃縮された金粒子分散液(0.01ミリリットル)に0.01%のポリオキシエチレン(20)ソルビタンモノラウレートを含有するトリス-塩酸緩衝液(pH:8.0、1mM、3ミリリットル)を添加した。以下、この手順を「手順A」という。得られた緩衝液は、以後「T緩衝液」と表記される。
 T緩衝液を添加した金粒子分散液を4本の遠心管(肉厚PCチューブ3.0mL;ベックマン・コールター社製)に注いだ。各遠心管は、3ミリリットルの分散液を有していた。0.05ミリリットルのグリセロール(>99.5%;Life Technologies社製)を各分散液の底部に沈めた。グリセロールは、クッションとして機能した。各遠心管をローター(TLA―100.3;ベックマン・コールター社製)に入れ、遠心機(Optima TL;ベックマン・コールター社製)にセットした。4本の遠心管は、70,000rpm、4℃で20分間、遠心された。各遠心管から上清を除き、濃縮された金粒子分散液(約0.01ミリリットルx4本)を残した。この手順を「手順B」という。
 手順Aおよび手順Bをもう一度繰返した。
 このようにして濃縮された金粒子分散液を4本の遠心管から集め、T緩衝液を加えて容量を1.2ミリリットルに調整した。このようにして得られた金粒子分散液に含有されるCueOの濃度を、SDS-PAGE法により測定した。その結果は、0.02ミリグラム/ミリリットルであった。このようにして得られた金粒子分散液は4℃で保管された。
 (酢酸緩衝液の調製)
 pHメータを用いてpHの値を測定しながら、酢酸に水酸化ナトリウムが加えられて、3のpHを有する1M酢酸緩衝液を調製した。当該酢酸緩衝液は5%に希釈され、50mMの濃度を有する酢酸緩衝液(pH:3)を調製した。同様に、6のpHを有する1M酢酸緩衝液を調製した。さらに、50mMの濃度を有する酢酸緩衝液(pH:6)を調製した。
 (ABTS溶液の調製)
 (2,2’-アジノビス(3-エチルベンゾチアゾリン-6-スルホン酸)アンモニウム塩(549ミリグラム、東京化成工業社製、以下、「ABTS」という)を超純水で溶解して、10ミリリットルのABTS溶液(100mM)を調製した。以下、(2,2’-アジノビス(3-エチルベンゾチアゾリン-6-スルホン酸)アンモニウム塩を「ABTS」という。ABTSは酸化還元指示薬として機能した。
 (ABTS酢酸緩衝液の調製)
 以下の表1に示される液体を混合し、1.0mMの酢酸緩衝液濃度を有するABTS酢酸緩衝液(pH:3)を調製した。同様に1.0mMの酢酸緩衝液濃度を有するABTS酢酸緩衝液(pH:6)を調製した。
Figure JPOXMLDOC01-appb-T000001
 以下の表2に示される液体を混合し、0.5mMの酢酸緩衝液濃度を有するABTS酢酸緩衝液(pH:3)を調製した。同様に0.5mMの酢酸緩衝液濃度を有するABTS酢酸緩衝液(pH:6)を調製した。
Figure JPOXMLDOC01-appb-T000002
 以下の表3に示される液体を混合し、5mMの酢酸緩衝液濃度を有するABTS酢酸緩衝液(pH:3)を調製した。同様に5mMの酢酸緩衝液濃度を有するABTS酢酸緩衝液(pH:6)を調製した。
Figure JPOXMLDOC01-appb-T000003
 以下の表4に示される液体を混合し、10mMの酢酸緩衝液濃度を有するABTS酢酸緩衝液(pH:3)を調製した。同様に10mMの酢酸緩衝液濃度を有するABTS酢酸緩衝液(pH:6)を調製した。
Figure JPOXMLDOC01-appb-T000004
 pHメータを用いてpHを測定しながら、1.0mMの酢酸緩衝液濃度を有するABTS酢酸緩衝液(pH:6)に1.0mMの酢酸緩衝液濃度を有するABTS酢酸緩衝液(pH:3)が添加され、1.0mMの酢酸緩衝液濃度を有するABTS酢酸緩衝液(pH:5.5)を調製した。pH調整時の温度は25℃であった。同様に、1.0mMの酢酸緩衝液濃度を有するABTS酢酸緩衝液(pH:4.5)が調製された。
 同様に、0.5mM、5mM、及び10mMの濃度を有する各ABTS酢酸緩衝液(pH:5.5)を調製した。さらに0.5mM、5mM、及び10mMの濃度を有する各ABTS酢酸緩衝液(pH:4.5)を調製した。
 (吸光度測定法によるCueOの活性度の測定)
 CueOの活性度は、酸化還元指示薬を用いた吸光度測定法により測定された。吸光度測定のために、紫外可視分光光度計(UV-1600PC;島津製作所社製)を使用した。測定容器として、1センチメートルの光路長を有するセル(ディスポーザブル・セル セミミクロ;Kartell社製)が用いられた。
 (ブランク値の測定)
 まず、ブランク値が以下のように測定された。ブランク値の測定においては、抗原は用いられなかった。
 ABTS酢酸緩衝液(1.0mM、pH:4.5、0.98ミリリットル)をセルに加えた後、当該セルを紫外可視分光光度計にセットした。次に、金粒子分散液(0.02ミリリットル)をセルに加えた。波長420ナノメートルにおいてABTS酢酸緩衝液の吸光度を連続的(0.1秒間隔)に60秒間測定した。図4は、測定結果を示す。
 60秒の間測定された吸光度の変化量から、以下の数式に基づいてCueOの活性度(U/mg)を算出した。CeuOの活性度の単位について、1Uとは、60秒間に酸化されたABTSの量が1マイクロモルに等しいことを意味する。後述する表5にCueO活性度測定の結果が示される。
 CueOの活性度(U/mg)=A/εlB
 ここで、
 Aは吸光度(ナノメートル)、
 εは波長420ナノメートルにおけるABTSのモル吸光係数であり、本実施例では36,000(M-1cm-1)であり、
 lは光路長であり、本実施例では1センチメートルであり、そして
 BはCueOの濃度であり、本実施例では0.02ミリグラム/ミリリットルである。
 このようにして、ブランク値が測定された。
 (抗原-抗体混合液の調製)
 金粒子分散液(0.6ミリリットル)に、BSAによって被覆されたシリカビーズ(直径300ナノメートル;25ミリグラム/ミリリットル;micromod
Partikeltechnologie社製)を抗原として0.06mLを加えた後、金粒子分散液を23℃で30分間インキュベートした。抗原を捕捉した金粒子を遠心(2500rpm、23℃、3分間)により沈殿させ、上清を除いた。このようにして得られた沈殿にT緩衝液(1ミリリットル)を加え、緩衝液を懸濁した。得られた懸濁液は、第1の緩衝液に対応する。遠心(2500rpm、23℃、3分間)により、再度、金粒子を沈殿させた。得られた沈殿にT緩衝液(1ミリリットル)を加え、T緩衝液を懸濁した。遠心(2500rpm、23℃で3分間)により、再度、金粒子を沈殿させた。得られた沈殿にT緩衝液(0.6ミリリットル)を加えて懸濁した。このようにして、抗原-抗体混合液を調製した。
 (反応溶液の調製および吸光度の測定)
 ABTS酢酸緩衝液(1.0mM、pH:4.5、0.98ミリリットル)をセルに加えた後、当該セルを紫外可視分光光度計にセットした。次に、金粒子分散液(0.02ミリリットル)をセルに加えた。波長420ナノメートルにおいてABTS酢酸緩衝液の吸光度を連続的(0.1秒間隔)に60秒間測定した。測定結果からCueOの活性度を測定値として算出した。このように算出された測定値は、後述される表5に示される。
 増幅率が以下の等式のように定義された:
 (増幅率)=(測定値)/(ブランク値)。
 1.0mMの酢酸緩衝液濃度を有するABTS酢酸緩衝液(pH:4.5、5.0、および5.5)および10mMの酢酸緩衝液濃度を有するABTS酢酸緩衝液(pH:4.5、5.0、および5.5)を用いて、上記と同様に増幅率が算出された。表5にそれらの結果が示されている。
Figure JPOXMLDOC01-appb-T000005
 表5から明らかなように、酢酸緩衝液の濃度(正確には、ABTS酢酸緩衝液に含有される酢酸の濃度)が1.0mM以下である場合には、増幅率は1.4以上である。一方、酢酸緩衝液の濃度が5mM以上の場合には、増幅率は最大でも1.1であった。
 従って、増幅率が1.4以上であれば、抗原が検出されることを当業者は表5に基づいて理解するであろう。さらに、当業者は、本発明においてラベル化抗体111が用いられていないことを容易に理解し得るであろう。
 本発明は、バイオセンサに用いられ得る。本発明は、マルチプレックスアッセイによる迅速な免疫診断に特に有用である。
101 粒子
102 マルチ銅酸化酵素CueO
103 抗体
104 抗原
105 基質
106 生成物
107 担体
108 抗体
109 抗原
110 酵素
111 ラベル化抗体
112 基質
113 生成物

Claims (6)

  1. 以下の工程を具備する、抗原を検出する方法:
     前記抗原を含有すると予想される第1の緩衝液に粒子を浸漬させる工程(a)、ここで
      前記粒子の表面には抗体およびマルチ銅酸化酵素CueOが固定されており、そして
      前記抗体は前記抗原に特異的に反応し、
     前記工程(a)において得られた粒子を回収する工程(b)、
     前記工程(b)において回収された粒子、酸化還元指示薬(還元体)、および第2の緩衝液を混合し、反応溶液を調製する工程(c)、ここで
      前記第2の緩衝液は、前記マルチ銅酸化酵素CueOの基質を含有し、
      前記第2の緩衝液は、0.3mM以上1.0mM以下の範囲に収まるイオン強度を有し、
     工程(c)において得られた反応溶液に含有されるマルチ銅酸化酵素CueOの活性度を、吸光度測定法により測定する工程(d)、および
     以下の式が充足されれば前記第1の緩衝液が前記抗原を含有することが決定される工程(e)
      工程(d)において測定された活性度 >= 1.4×(ブランク値)
      ここで、前記ブランク値は、前記抗原は用いられないが、前記粒子および前記第2の緩衝液は用いられる吸光度測定法により測定されたマルチ銅酸化酵素CueOの活性度を表す。
  2. 請求項1の方法であって、
     前記粒子は金からなる、方法。
  3. 請求項1の方法であって、
     第1の緩衝液は、トリス-塩酸緩衝液、トリス緩衝生理食塩水、またはリン酸緩衝生理食塩水である、方法。
  4. 請求項1の方法であって、
     前記第2の緩衝液は、4.5以上5.5以下のpHを有する、方法。
  5. 請求項1の方法であって、
     前記第2の緩衝液は、酸素およびプロトンを含有する、方法。
  6. 請求項1の方法であって、
     第2の緩衝液は、酢酸緩衝液、クエン酸緩衝液、コハク酸緩衝液、フタル酸緩衝液、または2-モルホリノエタンスルホン酸緩衝液である、方法。
PCT/JP2011/007240 2011-06-06 2011-12-22 抗原を検出する方法 WO2012168991A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012509801A JP5011458B1 (ja) 2011-06-06 2011-12-22 抗原を検出する方法
US13/536,202 US8470549B2 (en) 2011-06-06 2012-06-28 Method for detecting an antigen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-125972 2011-06-06
JP2011125972 2011-06-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/536,202 Continuation US8470549B2 (en) 2011-06-06 2012-06-28 Method for detecting an antigen

Publications (1)

Publication Number Publication Date
WO2012168991A1 true WO2012168991A1 (ja) 2012-12-13

Family

ID=47295598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007240 WO2012168991A1 (ja) 2011-06-06 2011-12-22 抗原を検出する方法

Country Status (1)

Country Link
WO (1) WO2012168991A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088142A1 (ja) * 2017-10-31 2019-05-09 田中貴金属工業株式会社 バイオアッセイのための検出剤及びそれを用いたシグナルの増幅方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029843A1 (en) * 2006-09-05 2008-03-13 Toyota Jidosha Kabushiki Kaisha Electrode catalyst and enzyme electrode
JP4271086B2 (ja) * 2004-06-08 2009-06-03 株式会社東芝 免疫分析方法
WO2011151964A1 (ja) * 2010-06-03 2011-12-08 パナソニック株式会社 抗原を検出する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4271086B2 (ja) * 2004-06-08 2009-06-03 株式会社東芝 免疫分析方法
WO2008029843A1 (en) * 2006-09-05 2008-03-13 Toyota Jidosha Kabushiki Kaisha Electrode catalyst and enzyme electrode
WO2011151964A1 (ja) * 2010-06-03 2011-12-08 パナソニック株式会社 抗原を検出する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IRINA POZDNYAKOVA: "Non-linear effects of macromolecular crowding on enzymatic activity of multi-copper oxidase", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1804, no. 4, 2 March 2010 (2010-03-02), pages 740 - 744 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088142A1 (ja) * 2017-10-31 2019-05-09 田中貴金属工業株式会社 バイオアッセイのための検出剤及びそれを用いたシグナルの増幅方法
JP2019082446A (ja) * 2017-10-31 2019-05-30 田中貴金属工業株式会社 バイオアッセイのための検出剤及びそれを用いたシグナルの増幅方法
JP7041491B2 (ja) 2017-10-31 2022-03-24 田中貴金属工業株式会社 バイオアッセイのための検出剤及びそれを用いたシグナルの増幅方法

Similar Documents

Publication Publication Date Title
Bui et al. Single-digit pathogen and attomolar detection with the naked eye using liposome-amplified plasmonic immunoassay
Xing et al. Green enzyme-linked immunosorbent assay based on the single-stranded binding protein-assisted aptamer for the detection of mycotoxin
Yanez-Sedeno et al. Gold nanoparticle-based electrochemical biosensors
Keighron et al. Enzyme: nanoparticle bioconjugates with two sequential enzymes: stoichiometry and activity of malate dehydrogenase and citrate synthase on Au nanoparticles
Čunderlová et al. Catalytic nanocrystalline coordination polymers as an efficient peroxidase mimic for labeling and optical immunoassays
Kim et al. Construction of engineered fructosyl peptidyl oxidase for enzyme sensor applications under normal atmospheric conditions
Chen et al. A novel chemiluminescence immunoassay of staphylococcal enterotoxin B using HRP-functionalised mesoporous silica nanoparticle as label
Liu et al. A novel aptamer-mediated CuInS 2 quantum dots@ graphene oxide nanocomposites-based fluorescence “turn off–on” nanosensor for highly sensitive and selective detection of kanamycin
Dou et al. Voltammetric immunoassay for the detection of protein biomarkers
Zhao et al. Uricase-based highly sensitive and selective spectrophotometric determination of uric acid using BSA-stabilized Au nanoclusters as artificial enzyme
Jadhav et al. Enhanced stability of alcohol dehydrogenase by non-covalent interaction with polysaccharides
Mohamad et al. Enzyme-free gold-silver core-shell nanozyme immunosensor for the detection of haptoglobin
JP4872033B1 (ja) 抗原を検出する方法
Zhou et al. A fluorometric and colorimetric method for determination of trypsin by exploiting the gold nanocluster-induced aggregation of hemoglobin-coated gold nanoparticles
Kucherenko et al. Application of zeolites and zeolitic imidazolate frameworks in the biosensor development
JP5011458B1 (ja) 抗原を検出する方法
WO2012168991A1 (ja) 抗原を検出する方法
Caro‐Jara et al. Development of a Bienzymatic Amperometric Glucose Biosensor Using Mesoporous Silica (MCM‐41) for Enzyme Immobilization and Its Application on Liquid Pharmaceutical Formulations
CN104245931B (zh) 胆固醇氧化酶的稳定化方法
Yuan et al. Structure and activity assay of nanozymes prepared by the coimmobilization of practically useful enzymes and hydrophilic block copolymers on gold nanoparticles
US20220205994A1 (en) Aluminum Oxide Surfaces and Interface Molecules
Ortiz et al. Supramolecular amperometric immunosensor for detection of human chorionic gonadotropin
Tang et al. Studies of fluorescence immunosensor using eggshell membrane as immobilization matrix
Ou et al. A turn‐on fluorescence assay for heparin based on DNA‐templated gold nanoclusters via ET
WO2018221446A1 (ja) 糖化ヘモグロビンの測定方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012509801

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867293

Country of ref document: EP

Kind code of ref document: A1