WO2012167553A1 - 确定tdm传输中时隙配置的方法和设备 - Google Patents

确定tdm传输中时隙配置的方法和设备 Download PDF

Info

Publication number
WO2012167553A1
WO2012167553A1 PCT/CN2011/082222 CN2011082222W WO2012167553A1 WO 2012167553 A1 WO2012167553 A1 WO 2012167553A1 CN 2011082222 W CN2011082222 W CN 2011082222W WO 2012167553 A1 WO2012167553 A1 WO 2012167553A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
tdm
time slot
ppp
hdlc
Prior art date
Application number
PCT/CN2011/082222
Other languages
English (en)
French (fr)
Inventor
蓝海青
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11867242.7A priority Critical patent/EP2782295A4/en
Priority to PCT/CN2011/082222 priority patent/WO2012167553A1/zh
Priority to CN201180003005.4A priority patent/CN103503341B/zh
Publication of WO2012167553A1 publication Critical patent/WO2012167553A1/zh
Priority to US13/725,218 priority patent/US8542701B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1623Plesiochronous digital hierarchy [PDH]

Definitions

  • the present invention relates to network communication technologies, and in particular, to a method and apparatus for determining time slot configuration in Time Division Multiplexing (TDM) transmission.
  • TDM Time Division Multiplexing
  • TDM transmission technologies include El, Tl, Jl, and the like.
  • each E1 frame is composed of 32 time slots, except that time slot 0 is used for synchronization and maintenance, and time slot 1 to time slot 31 can be used for all or part of ⁇ .
  • IPover channelized El IP/Peer-Peer Protocol (PPP)/Advanced Data Link Control. (High level Data Link Control, HDLC) / Channelized El, that is, the IP packet is carried by the PPP frame, and the PPP frame is carried by the HDLC frame and mapped into the designated time slot of the E1 frame.
  • HDLC High level Data Link Control
  • the time slots of the E1 frame used by the HDLC frame can be pre-configured in the two devices, but the pre-configuration scheme has many problems of manual participation, large workload, and poor efficiency. Summary of the invention
  • Embodiments of the present invention provide a method and apparatus for determining a time slot configuration in a TDM transmission, which are used to implement automatic identification and configuration of a time slot configuration of a TDM frame.
  • the embodiment of the present invention provides a method for determining a time slot configuration in a TDM transmission, including: receiving a continuously transmitted TDM frame, where at least one TDM frame in the continuously transmitted TDM frame includes a feature word;
  • the feature word is used to not transmit the end-end protocol PPP link establishment request
  • the packet matches the physical layer rate.
  • An embodiment of the present invention provides an apparatus for determining a time slot configuration in a TDM transmission, including: a receiving module, configured to receive a continuously transmitted TDM frame, where at least one TDM frame of the continuously transmitted TDM frame includes a feature word;
  • a determining module configured to determine, according to a case set of a slot set occupied by the feature word in the TDM frame, a slot set configured in the TDM frame for the advanced data link control HDLC frame, where the feature word is used to not transmit the end-to-end
  • the protocol PPP matches the physical layer rate when building the request packet.
  • the embodiment of the present invention can determine the time slot set allocated to the HDLC frame according to the time slot set occupied by the first feature word in the first TDM frame by detecting the received M TDM frames, and the time slot can be implemented. Found that avoiding problems caused by manual pre-configuration. BRIEF DESCRIPTION OF THE DRAWINGS In order to more clearly illustrate the technical solutions in the embodiments of the present invention, a brief description of the drawings to be used in the description of the embodiments will be briefly made. It is obvious that the drawings in the following description are some of the present invention. For the embodiments, those skilled in the art can obtain other drawings according to the drawings without any creative labor.
  • FIG. 1 is a schematic flow chart of a method according to a first embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method according to a second embodiment of the present invention.
  • Figure 3 is a schematic diagram of the system corresponding to Figure 2;
  • FIG. 4 is a schematic flow chart of a method according to a third embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method according to a fourth embodiment of the present invention.
  • Figure 6 is a schematic diagram of the system corresponding to Figure 5;
  • FIG. 7 is a schematic flow chart of a method according to a fifth embodiment of the present invention.
  • Figure 8 is a schematic diagram of the system corresponding to Figure 7;
  • FIG. 9 is a schematic structural diagram of a device according to a sixth embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a device according to a seventh embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a device according to an eighth embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a device according to a ninth embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is apparent that the described embodiments are a part of the embodiments of the invention, rather than all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without departing from the inventive scope are the scope of the present invention.
  • the technology for determining the time slot configuration in the TDM transmission proposed by the embodiment of the present invention is a time slot configuration self-discovery technology, and the proposed new technology may be referred to as an intelligent TDM user block exploration (i-tube) technology.
  • a functional unit that specifically implements the technology may be referred to as a time slot configuration self-discovery unit, and a unit for triggering the time slot configuration from the discovery unit may be referred to as an i-tube control unit.
  • the embodiment of the present invention takes the TDM technology as the E1 technology as an example.
  • the IP packet is encapsulated into a PPP frame
  • the PPP frame is encapsulated into an HDLC frame
  • the unit that transmits the HDLC frame to the E1 frame is called a PPP/HDLC/E1 unit (also called a transceiver unit).
  • the transceiver unit may include a slot configuration subunit and a transceiver subunit.
  • FIG. 1 is a schematic flowchart of a method according to a first embodiment of the present invention, including:
  • Step 11 Receive a continuously transmitted TDM frame, where at least one TDM frame in the continuously transmitted TDM frame includes a feature word;
  • Step 12 Determine a slot set configured in the TDM frame for the HDLC frame according to the case of the slot set occupied by the feature word in the TDM frame, and the feature word is used to match the physics when the end-to-end protocol PPP link request packet is not transmitted. Layer rate.
  • determining, according to the case of the slot set occupied by the feature word in the TDM frame, the set of time slots configured in the TDM frame to the HDLC frame may include: if the second TDM frame exists, the second TDM frame only includes The same feature word, and the same feature word occupied by the same feature word is the same as the time slot set configured for the HDLC, and the time slot set occupied by the feature word in the second TDM frame is determined to be configured in the TDM frame to the HDLC.
  • the set of slots for the frame may include: if the second TDM frame exists, the second TDM frame only includes The same feature word, and the same feature word occupied by the same feature word is the same as the time slot set configured for the HDLC, and the time slot set occupied by the feature word in the second TDM frame is determined to be configured in the TDM frame to the HDLC.
  • the number of consecutively transmitted TDM frames is M, where M is any set value greater than N, and N is the maximum number of TDM frames required to transmit a PPP link establishment request packet; Determining the set of time slots allocated to the HDLC frame in the TDM frame in the case of the set of time slots occupied by the TDM frame, including: determining, according to the M TDM frames, the first TDM frame and the first feature word, where the first TDM frame is a TDM frame containing the most identical feature words, the first feature word being the most feature word included in the first TDM frame; determining the time slot set occupied by the first feature word in the first TDM frame as TDM The set of slots allocated to the HDLC frame in the frame.
  • the executor of the foregoing method may be specifically configured as a time slot configuration self-discovery unit or a device in which the time slot is configured.
  • the time slot configuration self-discovery unit may be located in a device for determining a time slot configuration of an E1 frame. For example, device A needs to determine E1.
  • the time slot configuration self-discovery unit may be located in device A.
  • the above determining the slot configuration of the E1 frame refers to determining which time slots of the E1 frame the HDLC frame is mapped for transmission.
  • the above-mentioned continuously transmitted TDM frame may be sent by the opposite end, and the opposite end refers to a device directly connected to the device where the self-discovery unit is located through the E1, for example, device A and device B are directly connected through E1, and the time slot is directly connected. If the self-discovery unit is located in device A, the peer device can be device B.
  • the direct connection may be a direct fiber connection or a direct microwave connection.
  • the above device A and device B may both be hosts, or one router and one host.
  • the host can be a device in the Ethernet that can be directly connected through TDM technology, such as a base station, a base station controller, and the like.
  • the above PPP link request packet is a data packet transmitted when a PPP connection is established.
  • a PPP link request packet has a maximum length of 49 bytes, and each E1 frame transmits at least one byte of PPP information. Therefore, the above N is 49.
  • M can take any value greater than or equal to 50. It can be understood that the larger the value of M, the better the detection effect.
  • the above-mentioned N corresponding to the PPP link request packet may also be a value equal to or greater than 50.
  • the frame rate of the E1 frame is 8K frames/second, that is, 8000 E1 frames can be transmitted in 1 second, and the period of the PPP link request packet usually exceeds 1 second, that is, A PPP link request packet is sent at most within one second, and a PPP link request packet occupies at most 49 E1 frames. In 1 second, there are still 7951 E1 frames that do not transmit PPP information. In order to match the physical layer rate, idle characters need to be inserted in the 7951 E1 frames, and the time slot set occupied by the idle characters is the time slot set configured for the HDLC frame.
  • the idle character is, for example, 0x7E, and the binary representation is 01111110, and its length is the length of one slot of the E1 frame.
  • each idle character When inserting an idle character, there may be a case of serial shift, such as "01111110” shifted to the left and "11111100", and so on, each idle character corresponds to 8 cases, for example, with an idle character 0x7E For example, one case is “01111110", the other case is “11111100”, and the other case is "11111001” ⁇ .
  • Each case is called a feature word.
  • "01111110” is a feature word
  • "11111100” is a feature word
  • a total of 8 feature words For example, "01111110” is a feature word, "11111100” is a feature word, and a total of 8 feature words.
  • the HDLC frame containing the PPP information is replaced by the feature word, and the slot set occupied by the feature word is configured and configured to the HDLC.
  • the slot set of the frame is the same, and therefore, the set of slots configured for the HDLC frame can be determined according to the set of slots occupied by the feature word.
  • the time slot set allocated to the HDLC frame is occupied by the same feature word, and the time slot set occupied by the same feature word can be directly determined as the time slot set configured for the HDLC frame.
  • the feature words included in the first E1 frame are X and Y, the numbers are 2 and 3, respectively, and the idle characters in the subsequent consecutive E1 of the first E1 frame are usually no longer shifted according to the current protocol.
  • the feature word included in the second E1 frame is Y, and the number is 5, and the E1 frame including the most the same feature word is the second E1 frame, and the most features included in the second E1 frame.
  • the word is ⁇ . That is, the first TDM frame is the second E1 frame, and the first feature word is Y.
  • the present embodiment detects the received M TDM frames according to the first feature word occupied by the first TDM frame.
  • the slot set determines the set of time slots configured for the HDLC frame, and can implement slot self-discovery to avoid problems caused by manual pre-configuration.
  • FIG. 2 is a schematic flow chart of a method according to a second embodiment of the present invention
  • FIG. 3 is a schematic diagram of the system corresponding to FIG. 2.
  • the application scenario of this embodiment may be: device A and device B are directly connected to E1 through IPover; E1 time slot configuration between device A and device B is completed; device A is a device to be configured.
  • Device B is a device that has been configured, that is, device B can perform normal transmission and reception of HDLC frames according to the E1 time slot configuration, and device A needs to identify the E1 time slot configuration, that is, identify which time slots in E1 are used for transmitting HDLC frames, so that The normal transmission and reception of HDLC frames is performed subsequently.
  • Step 21 Device B maps the PPP link request packet to the E1 frame and sends it to device A.
  • device B periodically sends a PPP link request packet to device A.
  • the above-mentioned PPP link has not been established, including: the initial chain-building phase or the re-establishment of the chain after the link is unsuccessful.
  • the E1 carrying the HDLC frame in a scenario has the following features:
  • device B When the PPP link has not been established, device B periodically sends a PPP link request packet to device A.
  • the PPP connection request packet transmission period is greater than 1 second, usually 2 to 5 seconds, that is, a maximum of one PPP link request packet is sent in one second;
  • a PPP link request packet has a maximum length of 49 bytes
  • an E1 frame carries an HDLC frame, at least one time slot is usually used, and one time slot carries one byte of information, that is, each E1 frame carries at least one byte of information;
  • a PPP link request packet can be transmitted as long as 49 E1 frames
  • the frame rate of E 1 frame is 8K frames / sec, that is, 8000 E 1 frames can be transmitted in 1 second;
  • the idle character is sent in the HDLC frame at the slot position corresponding to the PPP information to match the rate of the physical layer.
  • the idle character sent in the HDLC frame may be 0x7E. Its binary representation is: 01111110, its length is equivalent to the length of one slot of the E1 frame.
  • the time slot in which the transmission HDLC frame (or PPP/HDLC) is configured in each E1 frame only carries seven serial shifts of the idle character 0x7E or the idle character 0x7E. .
  • the 0x7E and its serially shifted 7 characters are used as 8 feature words, that is, there are 8 feature words;
  • each E1 The time slot in which the feature word contained in the frame is located is the time slot used by the E1 frame to be allocated to the PPP/HDLC.
  • the time slot in which the most frequently occurring feature word occupies in its corresponding E 1 is the time slot allocated to the HDLC frame by the E 1 frame.
  • the PPP information is configured to be transmitted in the E1 frame to the time slot used by the HDLC frame.
  • the time slot originally allocated to the HDLC frame is used to transmit the feature word.
  • the configuration of one E1 frame only transmits the same feature word in the time slot used by the HDLC frame, and the time slot occupied by the feature word can be directly determined as the time slot allocated to the HDLC frame.
  • the time slot originally allocated to the HDLC frame in an E1 frame may carry two feature words, corresponding to the idle character before the shift and the idle character after the shift;
  • the subsequent consecutive E1 frames will transmit the shifted feature words, that is, follow-up
  • the same feature word is transmitted in consecutive E1 frames.
  • the time slot allocated to the HDLC frame in the E1 frame is finally used to transmit the same feature word. For example, suppose that the feature words included in the first E1 frame are X and Y, and the numbers are 2 and 3, respectively, and the feature word included in the second E1 frame adjacent to the first E1 frame is Y. , the number is 5.
  • the E1 time slot that does not transmit the HDLC frame is not used to transmit eight feature words, or which ones are known in advance, in order to obtain an accurate E1 frame time slot configuration result.
  • the E1 time slot does not transmit HDLC frames, and the E1 time slots are removed from the detected results of the time slots.
  • the feature word can only be transmitted in the time slot configured for the HDLC frame, or the feature word can only be transmitted in the time slot configured for the HDLC frame and in the predetermined time slot.
  • the predetermined time slot also refers to the above-mentioned E1 time slot of the HDLC frame that is not known to be transmitted in advance. At this time, after determining a time slot set according to the feature word, it is necessary to remove the predetermined one in the time slot set. The time slot is followed by the set of time slots assigned to the HDLC frame.
  • Step 22 Device A receives consecutive M E1 frames sent by Device B.
  • M is any value greater than N
  • N is the maximum number of E1s required to transmit a PPP link request packet.
  • M is greater than or equal to 50.
  • the length of the PPP link request packet is increased.
  • the device A determines the E1 frame containing the most identical feature words and the most feature words included in the E1 frame.
  • Step 24 Device A determines the set of slots occupied by the feature word F' in the frame to be the set of slots used by the E1 frame to allocate to the HDLC frame.
  • device A determines the time slot allocated to the HDLC frame in the E1 frame, and completes the slot self-discovery of the HDLC frame in the E1 frame. Further, after the device A determines the E1 time slot configuration, the device A may configure the E1 frame time slot according to the time slot configuration result of the HDLC frame in the E1 frame after the time slot configuration result is detected, and perform high-level PPP negotiation. Building a chain.
  • the PPP negotiation succeeds within a specified time, it indicates that the E1 time slot is successfully detected. Otherwise, the E1 time slot detection fails and the re-detection is started.
  • the problems caused by the pre-manual configuration can be avoided, the self-discovery of the E1 time slot configuration can be realized, and the real automatic IPopen TDM can be automatically opened.
  • Reduce the preparation requirements of the remote equipment before starting the station reduce the skill requirements for on-site station opening, shorten the opening time, and reduce the cost of opening the station.
  • Real-time IPoverTDM remote site maintenance can be achieved by slot self-discovery without manual configuration during site maintenance.
  • the time slot self-discovery automatically obtains the slot configuration of the El frame, and further PPP negotiation or the like according to the automatically configured slot configuration of the E1 frame to determine whether the automatically configured slot configuration of the E1 frame is correct or not.
  • the devices at both ends can also automatically discover the device configuration through time slot self-discovery.
  • this embodiment is a schematic flow chart of a method according to a third embodiment of the present invention. Unlike the second embodiment, the present embodiment further detects the result. Referring to FIG. 4, this embodiment includes:
  • Step 41 The time slot configuration self-discovery unit performs the detection process of the E 1 time slot configuration.
  • Step 42 The time slot configuration is determined by the discovery unit to determine whether the detection is successful. If yes, go to step 43; otherwise, go to step 44.
  • the detection succeeds, otherwise the operation is unsuccessful.
  • the response information of the device A to the PPP connection request is carried in the HDLC frame and mapped to the E1 frame according to the determined time slot configuration. If the device B successfully receives the response information, it indicates that the PPP is successfully established, that is, Device A successfully determines the slot configuration. When device A fails to determine the time slot configuration, the carrying of the response information will not meet the time slot configuration requirements, and device B will not receive the response information. The PPP link will fail.
  • Step 43 The time slot configuration self-discovery unit reports the time slot allocated to the HDLC frame in the E1 frame to the time slot configuration sub-unit.
  • Step 44 The time slot configuration self-discovery unit reports a time slot detection failure message to the time slot configuration sub-unit. You can then repeat step 41 and its subsequent steps.
  • This embodiment can implement self-discovery of time slot configuration.
  • the present embodiment can provide a more accurate time slot configuration result by means of the upper detection result, so as to facilitate further management and maintenance.
  • FIG. 5 is a schematic flowchart of a method according to a fourth embodiment of the present invention
  • FIG. 6 is a schematic diagram of the system corresponding to FIG. 5.
  • This embodiment adds a normal cooperation function with the PPP/HDLC/E1 transmission and reception based on the third embodiment.
  • the slot self-discovery technology is loosely coupled with the standard PPP/HDLC/E1, so that both parties can evolve independently. That is, the present embodiment may include: a time slot configuration self-discovery process and an E1 frame transmission and reception process, where the E1 frame transmission and reception process may include: an E1 frame transmission process and/or an E1 frame reception process.
  • this embodiment includes:
  • the slot self-discovery process includes:
  • Step 501 The PPP protocol module 622 in the PPP/HDLC/E1 unit 62 outputs the PPP link. The status is indicated to the i-tube control unit 63.
  • the PPP link status indication can be "unsuccessful” or “successful,”.
  • Step 502 The i-tube control unit 63 sends a control command to the slot configuration self-discovery unit 64 according to the PPP link status indication to control the slot configuration from the discovery unit 64 to be turned on or off.
  • the i-tube control unit controls the slot self-discovery unit to initiate the slot self-discovery function.
  • the i-tube control unit can control the time slot self-discovery unit to turn off the time slot self-discovery function. Of course, it can also not control the shutdown.
  • Step 503 The slot self-discovery unit 64 performs a slot self-discovery process when the slot self-discovery function is activated.
  • the time slot self discovery process can be as shown in the second embodiment.
  • Step 504 The slot self-discovery unit 64 reports the slot detection result to the slot configuration sub-unit 621. For example, as shown in the third embodiment, when the time slot detection succeeds, the time slot allocated to the HDLC frame in the E1 frame is reported. When the time slot detection fails, the time slot detection failure message is reported.
  • this embodiment can perform the sending of the E1 frame, including:
  • Step 505 The slot configuration sub-unit 621 configures the E1 frame slot set.
  • the PPP/HDLC/E1 unit 62 starts the PPP link establishment process, and the time slot configuration sub-unit 621 configures the initial value of the E1 time slot as follows:
  • the time slot configuration sub-unit 621 When the PPP is successfully established, the time slot configuration sub-unit 621 does not update the E1 time slot configuration, and uses the current time slot configuration data for E1 configuration.
  • the time slot configuration sub-unit 621 first uses the original time slot configuration to perform the PPP chain-building attempt. If the PPP link cannot be established in the specified time, the link is established. The work, time slot configuration sub-unit 621 uses the time slot to update the E1 time slot from the discovered time slot for PPP link establishment attempt.
  • Step 506 The PPP protocol module 622 receives the IP packet sent by the IP layer and the upper layer protocol unit 61, and generates a PPP frame, where the upper layer protocol unit is, for example, a protocol unit of the application layer.
  • Step 507 The HDLC sending module 624 encapsulates the PPP frame into an HDLC frame according to the slot configuration indication output by the slot configuration sub-unit 621.
  • the HDLC sending module needs to know the slot configuration of the E1 frame for rate matching, because the HDLC sending module generates the HDLC data stream and the data stream is the rate matching data stream matching the physical layer rate.
  • Step 508 The designated slot sending module 626 maps the HDLC frame to the E1 frame according to the slot configuration indication output by the slot configuration subunit 621.
  • Step 509 The E1 frame sending module 628 sends the E1 frame to the outside.
  • the TDM frame sending module in this embodiment is specifically the E1 frame sending module
  • the TDM frame receiving module is specifically an E1 frame receiving module
  • the embodiment can also perform the receiving of the E1 frame, including:
  • Step 510 The E1 frame receiving module 627 receives the E1 frame from the outside.
  • Step 511 The designated time slot receiving module 625 extracts the HDLC frame from the E1 frame according to the time slot configuration indication output by the time slot configuration sub-unit 621.
  • Step 512 The HDLC receiving module 623 extracts a PPP frame from the HDLC frame.
  • Step 513 The PPP protocol module 622 implements PPP layer establishment negotiation according to the received PPP frame.
  • the foregoing PPP protocol module, the HDLC transmission module, the designated time slot transmission module, the TDM frame transmission module, the TDM frame receiving module, the designated time slot receiving module, and the HDLC receiving module may form a receiving subunit.
  • the received E1 frame is from the E1 frame receiving module, that is, after receiving the E1 frame, the E1 frame receiving module sends the received E1 frame.
  • the self-discovery unit is configured for the designated time slot receiving module and time slot.
  • the PPP link status indication output by the PPP protocol module can indicate the i-tube control unit, A time slot configuration subunit may also be indicated.
  • This embodiment can implement self-discovery of time slot configuration.
  • the present embodiment can provide more accurate time slot configuration results by performing the above detection results, so as to facilitate further management and maintenance, such as root detection or reconfiguration.
  • the slot self-discovery function and the data-receiving function are included, and the two can be processed relatively independently, that is, the two are loosely coupled, and the two can be independently evolved independently.
  • FIG. 7 is a schematic flowchart of a method according to a fifth embodiment of the present invention
  • FIG. 8 is a schematic diagram of the system corresponding to FIG. 7.
  • the application scenario of this embodiment may be: device A and device B are directly connected to E1 through IPover; E1 time slot configuration between device A and device B is completed; device A and device B are to be configured. device of.
  • both device A and device B need to determine the slot configuration.
  • at least one device is required to perform a full E1 time slot PPP connection attempt, and another device may determine the E1 time slot configuration in the manner of the foregoing embodiment.
  • device A performs a full E1 time slot PPP chaining attempt
  • device B performs a time slot self-discovery as an example.
  • this embodiment includes:
  • Step 71 Device A performs a PPP chaining attempt in all E1 time slots.
  • device A maps the HDLC frame containing the PPP link request packet to all time slots of the E1 frame and sends it to the device through the direct connection ⁇
  • Step 72 Device B performs the slot self-discovery process.
  • device B continuously receives M E1 frames and determines ⁇ and F', and determines the set of slots occupied by F' in ⁇ as the set of slots allocated to the HDLC frame in the E1 frame.
  • device B continuously receives M E1 frames and determines ⁇ and F', and determines the set of slots occupied by F' in ⁇ as the set of slots allocated to the HDLC frame in the E1 frame.
  • the intermediate path between the device A and the device B has been configured, only the time slot data allowed by the time slot configuration can be received by the peer device in all the E1 frames received by the peer device.
  • the allowed time slot data peer device cannot receive it.
  • the device A for the full time slot configuration as an example, even if the HDLC frame is mapped to all the time slots of the E1 frame on the device A side, if the time slot set configured for the HDLC frame is TS1 to TS10, the intermediate bearer network is only allowed.
  • the slots TS1 to TS10 pass, and therefore, in the E1 frame received by the device B, only the data of TS1 to TS10 is transmitted by the device A.
  • the device B performs the slot self-discovery process as an example. It may also be that device B performs full time slot configuration, and device A performs slot self-discovery process. It is also possible that the device A and the device B perform the full slot configuration and the slot self-discovery process respectively. For example, in the tl time period, both device A and device B perform full slot configuration, and both transmit HDLC frame mapping to the other party. E1 frame of the time slot; and in the time period t2, both device A and device B perform slot self-discovery to determine the slot configuration. Where tl>t2.
  • Device B has the opportunity to probe the E1 time slot configuration of the transport network; and, to ensure that device B has the opportunity to perform PPP chaining attempts on all E1 time slots, and device A has the opportunity to probe the E1 time slot configuration of the transport network.
  • Both ends of the embodiment can implement self-discovery of the time slot. After the time slot configuration of the transmission network is changed, the devices at both ends can automatically discover and update the device configuration.
  • FIG. 9 is a schematic structural diagram of a device according to a sixth embodiment of the present invention.
  • the device includes a receiving module 911 and a determining module 912.
  • the receiving module 911 is configured to receive a continuously transmitted TDM frame, and at least one TDM frame included in the continuously transmitted TDM frame is included.
  • the determining module 912 is configured to determine a time slot set allocated to the HDLC frame in the TDM frame according to the case of the time slot set occupied by the feature word in the TDM frame, and the feature word is used to construct the PPP without transmitting the end-to-end protocol Match the physical layer rate when requesting a packet.
  • the device can be specifically a router, a host, or the like.
  • the number of continuously transmitted TDM frames is M, where M is any set value greater than N, and N is the maximum number of TDM frames required to transmit a PPP link request packet, and the determining module 912
  • the first determining submodule is configured to determine, according to the M TDM frames, the first TDM frame and the first feature word, where the first TDM frame is a TDM frame that includes the most the same feature word, and the first feature word is the first The most-defined feature word included in the TDM frame.
  • the second determining sub-module is configured to determine the time slot set occupied by the first feature word in the first TDM frame as the time slot set configured in the TDM frame for the HDLC frame.
  • the determining module 912 is specifically configured to: if the second TDM frame exists, the second TDM frame only includes the same feature word, and the time slot set occupied by the same feature word and the time allocated to the HDLC are included If the slot set is the same, the slot set occupied by the feature words in the second TDM frame is determined as TDM. The set of slots allocated to the HDLC frame in the frame.
  • the above feature words may be eight characters obtained according to idle characters. For example, when the idle character is 0x7E, the eight feature words are "01111110”, “11111100”, “11111001” ... "00111111", respectively.
  • the time slot set occupied by the same feature word is a time slot set allocated to the HDLC frame, or an E1 frame may be inserted.
  • Two different feature words, each of the same feature words occupying one or more time slots, and the set of time slots occupied by the two feature words is a set of time slots allocated to the HDLC frame.
  • the device includes a slot self-discovery unit 91.
  • the foregoing receiving module and determining module may be included in the slot self-discovery unit 91.
  • the device may further include a slot configuration file.
  • the time slot self-discovery unit 91 may further include a processing module 913, where the processing module 913 is configured to perform a PPP chain-building attempt according to the set of time slots allocated to the HDLC frame in the determined TDM frame;
  • the configuration sub-unit 92 reports the set of time slots allocated to the HDLC frame in the determined TDM frame.
  • the probe failure sub-unit 92 reports a probe failure message.
  • the time slot configuration sub-unit 92 is configured to save the set of time slots allocated to the HDLC frame in the determined TDM frame, or to determine the failure of the detection of the time slot set configured for the HDLC frame in the TDM frame.
  • the time slot configuration sub-unit 92 can perform the configuration of the HDLC frame according to the time slot set occupied by the HDLC frame reported by the processing module, and then perform the subsequent process, for example, using the HDLC frame to carry the PPP information for PPP establishment negotiation.
  • the device may further include an i-tube control unit 93; the slot self-discovery unit 91 further includes a trigger module 914; and an i-tube control unit 93, when the PPP link is unsuccessful
  • the command for initiating the slot self-discovery function is output, and the triggering module 914 is configured to start the receiving module 911 and the determining module 912 after receiving the command sent by the i-tube control unit to enable the slot self-discovering function.
  • the device may further include a transceiver subunit 94, where the transceiver subunit 94 is configured to perform E1 frame transmission and reception according to the slot configuration indication output by the slot configuration subunit 92. At least one of them.
  • the transceiver subunit 94 may include a PPP protocol module, an HDLC transmission module designated time slot transmission module, a TDM frame transmission module, a TDM frame receiving module, a designated time slot receiving module, and an HDLC receiving module.
  • the PPP protocol module is configured to receive an IP packet sent by the IP layer and the upper layer protocol unit, and encapsulate the IP packet to generate a PPP frame;
  • the HDLC sending module is configured to: according to the time slot configuration indication output by the time slot configuration subunit, the PPP The PPP frame generated by the protocol module is encapsulated into an HDLC frame;
  • the designated time slot sending module is configured to map the HDLC frame encapsulated by the HDLC transmitting module into the TDM frame according to the time slot configuration indication output by the time slot configuration subunit;
  • the sending module is configured to send the TDM frame obtained by the specified time slot sending module to the outside;
  • the TDM frame receiving module is configured to receive the TDM frame from the external; and the designated time slot receiving module is configured
  • the HDLC receiving module is configured to extract a PPP frame from the HDLC frame extracted by the specified time slot receiving module; the PPP protocol module is further configured to be used according to the The PPP frame extracted by the HDLC receiving module implements PPP layer establishment negotiation.
  • the PPP protocol module can also be used to determine the link status, and output the link status indication to the i-tube control unit 93, so that the i-tube control unit 93 determines whether the PPP link establishment is successful according to the link status indication.
  • the above-mentioned time slots can be independently performed in three aspects: discovery, TDM frame transmission, and TDM frame reception.
  • the steps between the aspects have no timing limitation relationship, so as to realize independent evolution of time slot self-discovery and data transmission and reception.
  • some of the foregoing processes may also be related to each other.
  • the time slot configuration is self-discovery
  • the received E1 frame is from the E1 frame receiving module, that is, after receiving the E1 frame, the E1 frame receiving module sends the received E1 frame.
  • the self-discovery unit is configured for the designated time slot receiving module and time slot.
  • the PPP link status indication output by the PPP protocol module may indicate the i-tube control unit and may also indicate the time slot configuration subunit.
  • the process includes a slot self-discovery function and a data transceiving function, and the two can be processed relatively independently, that is, the two are loosely coupled, and the two can be independently evolved independently.
  • the receiving module 911 is specifically configured to receive the continuously transmitted TDM frame in the t2 time period, where the TDM frame is sent by the peer end according to the full TDM time slot configuration in the tl time, and tl>t2.
  • the process can be applied to the scenario where the devices at both ends of the communication are not configured. For example, if both device A and device B are not configured, both device A and device B need to determine the time slot configuration. At this time, at least one device is required to perform a full E1 time slot PPP link establishment attempt, and another device may determine the E1 time slot configuration in the manner of the foregoing embodiment. Then, for one of the time slots, the TDM frame can be transmitted according to the full TDM time slot configuration in the time t1 through the transceiver subunit, and the TDM frame is received in the t2 time period to determine the time slot configuration of the TDM frame. In the above embodiment, when the TDM frame is an E1 frame, and the length of the PPP link establishment request packet is L1 bytes, the M is any set value greater than or equal to L1+1.
  • the problems caused by the pre-manual configuration can be avoided, the self-discovery of the E1 time slot configuration can be realized, and the real automatic IPopen TDM can be automatically opened.
  • Reduce the preparation requirements of the remote equipment before starting the station reduce the skill requirements for on-site station opening, shorten the opening time, and reduce the cost of opening the station.
  • Real-time IPoverTDM remote site maintenance can be achieved by eliminating the need for manual configuration during station maintenance through time slot self-discovery.
  • the time slot self-discovery automatically obtains the time slot configuration of the E1 frame, and further PPP negotiation or the like according to the automatically obtained time slot configuration of the E1 frame to determine whether the automatically obtained time slot configuration of the E1 frame is correct or not.
  • the devices at both ends can also automatically discover the device configuration through time slot self-discovery.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The foregoing steps of the method embodiment; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Communication Control (AREA)

Abstract

本发明提供一种确定TDM传输中时隙配置的方法和设备。该方法包括接收连续传输的TDM帧,所述连续传输的TDM帧中至少有一个TDM帧内包含特征字;根据特征字在TDM帧内占用的时隙集的情况,确定TDM帧中配置给HDLC帧的时隙集,所述特征字用于在不传输端对端协议PPP建链请求包时匹配物理层速率。本发明实施例可以实现TDM帧时隙配置的自动获取。

Description

确定 TDM传输中时隙配置的方法和设备
技术领域
本发明涉及网络通信技术, 尤其涉及一种确定时分复用 (Time Division Multiplexing, TDM )传输中时隙配置的方法和设备。 背景技术
在因特网 (Internet Protocol, IP ) 时代, 采用 TDM传输技术作为 IP的 底层承载是常见的场景。 TDM传输技术包括 El、 Tl、 Jl等。
以 El为例 , 通常 E1是工作在通道化模式, 即每个 E1帧由 32个时隙组 成, 除了时隙 0用于同步与维护, 时隙 1〜时隙 31可全部或部分用于^载 IP 数据。在 E1工作在通道化模式时, IP数据承载在通道化 E1上(简称为 IPover 通道化 El )对应的协议栈为 IP/端对端协议 ( Peer-Peer Protocol, PPP ) /高级 数据链路控制 ( High level Data Link Control, HDLC ) /通道化 El , 即 IP包由 PPP帧承载 , PPP帧由 HDLC帧承载 , 并映射到 E 1帧的指定时隙中。 此时, 必须在采用 E1通信的两端设备中指定哪几个时隙用于传输 HDLC帧, 以便 正常收发 HDLC帧, 并完成 PPP帧的协商, 从而完成对 IP包的正常传输。
现有技术中可以在两端设备中预配置 HDLC帧使用的 E1帧的时隙, 但 是预配置方案存在人为参与较多, 工作量大、 效率差等问题。 发明内容
本发明实施例是提供一种确定 TDM传输中时隙配置的方法和设备, 用 以实现 TDM帧的时隙配置的自动识别及配置。
本发明实施例提供了一种确定 TDM传输中时隙配置的方法, 包括: 接收连续传输的 TDM帧, 所述连续传输的 TDM帧中至少有一个 TDM 帧内包含特征字;
根据特征字在 TDM帧内占用的时隙集的情况,确定 TDM帧中配置给高级 数据链路控制 HDLC帧的时隙集, 所述特征字用于在不传输端对端协议 PPP建 链请求包时匹配物理层速率。
本发明实施例提供了一种确定 TDM传输中时隙配置的设备, 包括: 接收模块, 用于接收连续传输的 TDM帧, 所述连续传输的 TDM帧中至 少有一个 TDM帧内包含特征字;
确定模块, 用于根据特征字在 TDM帧内占用的时隙集的情况, 确定 TDM 帧中配置给高级数据链路控制 HDLC帧的时隙集, 所述特征字用于在不传输 端对端协议 PPP建链请求包时匹配物理层速率。
由上述技术方案可知, 本发明实施例通过检测接收的 M个 TDM帧, 根 据第一特征字在第一 TDM帧中占用的时隙集确定配置给 HDLC帧的时隙集 , 可以实现时隙自发现, 避免人工预配置引起的问题。 附图说明 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发 明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的 前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明第一实施例的方法流程示意图;
图 2为本发明第二实施例的方法流程示意图;
图 3为图 2对应的系统示意图;
图 4为本发明第三实施例的方法流程示意图;
图 5为本发明第四实施例的方法流程示意图;
图 6为图 5对应的系统示意图;
图 7为本发明第五实施例的方法流程示意图;
图 8为图 7对应的系统示意图;
图 9为本发明第六实施例的设备结构示意图;
图 10为本发明第七实施例的设备结构示意图;
图 11为本发明第八实施例的设备结构示意图;
图 12为本发明第九实施例的设备结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提出的确定 TDM传输中时隙配置的技术是一种时隙配置 自发现技术,该提出的新技术可以称为智能 TDM用户块探测( intelligent TDM user block exploration, i-tube )技术。 具体执行该技术的功能单元可以称为时 隙配置自发现单元, 用于触发该时隙配置自发现单元执行的单元可以称为 i-tube控制单元。
另一方面, 本发明实施例将以 TDM技术为 E1技术为例。 在 E1传输时, 将 IP包封装为 PPP帧, 再将 PPP帧封装为 HDLC帧, 再将 HDLC帧映射到 E1帧上传输的单元称为 PPP/HDLC /E1单元(也称为收发单元 ) , 该收发单 元可以包括时隙配置子单元和收发子单元。
图 1为本发明第一实施例的方法流程示意图, 包括:
步骤 11 :接收连续传输的 TDM帧,该连续传输的 TDM帧中至少有一个 TDM帧内包含特征字;
步骤 12:根据特征字在 TDM帧内占用的时隙集的情况,确定 TDM帧中 配置给 HDLC帧的时隙集, 特征字用于在不传输端对端协议 PPP建链请求包 时匹配物理层速率。
可选的, 根据特征字在 TDM帧内占用的时隙集的情况, 确定 TDM帧中 配置给 HDLC帧的时隙集, 可以包括: 如果存在第二 TDM帧, 该第二 TDM 帧内只包含同一个特征字, 且包含的同一个特征字占用的时隙集与配置给 HDLC的时隙集相同,则将第二 TDM帧中的特征字占用的时隙集确定为 TDM 帧中配置给 HDLC帧的时隙集。
可选的, 连续传输的 TDM帧的个数为 M个, M为大于 N的任一设定 值, N为传输完一个 PPP建链请求包所需的 TDM帧的最大个数; 根据特征 字在 TDM帧内占用的时隙集的情况,确定 TDM帧中配置给 HDLC帧的时隙 集 , 包括: 根据 M个 TDM帧 , 确定第一 TDM帧和第一特征字 , 其中第一 TDM帧为包含最多的同一个特征字的 TDM帧, 第一特征字为第一 TDM帧 中包含的最多的特征字; 将第一特征字在所述第一 TDM帧中占用的时隙集, 确定为 TDM帧中配置给 HDLC帧的时隙集。 其中, 上述方法的执行主体可以具体为时隙配置自发现单元或其所在的 设备, 时隙配置自发现单元可以位于用于确定 E1帧的时隙配置的设备中,例 如, 设备 A需要确定 E1帧的时隙配置以进行正常数据收发时, 该时隙配置 自发现单元可以位于设备 A 中。 上述的确定 E1 帧的时隙配置是指要确定 HDLC帧映射到 E1帧的哪些时隙内传输。
上述的连续传输的 TDM 帧可以是对端发送的, 对端是指与该时隙配置 自发现单元所在的设备通过 E1直连的设备, 例如, 设备 A和设备 B通过 E1 直连, 时隙配置自发现单元位于设备 A中, 则对端可以为设备 B。
该直连可以是光纤直连也可以是微波直连。
上述的设备 A和设备 B可以均是主机, 也可以一个是路由器, 一个是主 机。 该主机可以是以太网中能够通过 TDM技术直连的设备, 例如基站、 基 站控制器等。
上述的 PPP建链请求包是建立 PPP连接时传输的数据包。 现有协议中, 一个 PPP建链请求包的长度最大为 49字节, 每个 E1帧至少会传输一个字节 的 PPP信息, 因此, 上述的 N为 49。 此时, M可以取大于或等于 50的任一 值。 可以理解的是, M取值越大, 探测效果相对较好。 另外, 随着协议的扩 展, PPP建链请求包对应的上述的 N也可能为等于或大于 50的值。
其中, 以 TDM帧为 E1帧为例, E1帧的帧速为 8K帧 /秒, 也就是说, 1 秒内可以传输 8000个 E1帧, 而 PPP建链请求包的周期通常超过 1秒, 即, 一秒内至多发送一个 PPP建链请求包, 而一个 PPP建链请求包至多占用 49 个 E1帧, 则在 1秒内还有 7951个 E1帧不传输 PPP信息。 为了匹配物理层 速率, 该 7951个 E1帧中需要插入空闲字符, 空闲字符占用的时隙集为配置 给 HDLC帧的时隙集。
空闲字符例如为 0x7E, 二进制的表示方法为 01111110, 其长度为 E1帧 一个时隙的长度。
在插入空闲字符时, 可能存在串行移位的情况, 如上述的 "01111110" 向左移位后为 "11111100" , 依此类推, 每个空闲字符对应 8种情况, 例如, 以空闲字符 0x7E为例, 一种情况为 "01111110" , 另一种情况为 "11111100" , 再一种情况为 "11111001" · . ·。 每种情况称为一个特征字, 例如, "01111110" 为一个特征字, "11111100" 为一个特征字, 共 8个特征字。 由于 M大于 N,则接收的 M个 TDM帧中至少有一个 TDM帧内没有 PPP 信息, 而是由特征字替代了包含 PPP信息的 HDLC帧, 且该特征字占用的时 隙集与配置给 HDLC帧的时隙集是相同的, 因此, 可以根据特征字占用的时 隙集确定配置给 HDLC帧的时隙集。
通常, 如果空闲字符不存在移位情况, 则配置给 HDLC帧的时隙集由同 一个特征字占用, 可以直接将该相同的特征字占用的时隙集确定为配置给 HDLC帧的时隙集。
但是,如果空闲字符存在串行移位情况,在一个 E1帧中插入特征字时可 能插入的是两个特征字。 此时不能仅将一个特征字占用的时隙集确定为配置 给 HDLC帧的时隙集。 例如 , 假设第一个 E1帧中包括的特征字为 X和 Y, 个数分别为 2和 3 , 并且按照目前协议该第一个 E1帧后续连续的 E1内的空 闲字符通常不再移位, 此时第二个 E1帧中包括的特征字为 Y, 该个数为 5, 则包括最多的同一个特征字的 E1帧为第二个 E1帧, 第二个 E1帧中包含的 最多的特征字为丫。即上述的第一 TDM帧为第二个 E1帧,第一特征字为 Y。
例如, 将 Υ在第二个 E1帧中占有的时隙集确定为配置给 HDLC帧的时 本实施例通过检测接收的 M个 TDM帧, 根据第一特征字在第一 TDM 帧中占用的时隙集确定配置给 HDLC帧的时隙集, 可以实现时隙自发现, 避 免人工预配置引起的问题。
图 2为本发明第二实施例的方法流程示意图, 图 3为图 2对应的系统示 意图。 参见图 3 , 本实施例的应用场景可以是: 设备 A和设备 B通过 IPover 通道化 E1直连; 设备 A和设备 B之间的 E1时隙配置已完成; 设备 A是待 完成配置的设备, 设备 B为已完成配置的设备, 即, 设备 B可以按照 E1时 隙配置进行 HDLC帧的正常收发, 而设备 A需要识别 E1时隙配置, 即识别 E1中哪些时隙用于传输 HDLC帧, 以便后续进行 HDLC帧的正常收发。
步骤 21: 设备 B将 PPP建链请求包映射到 E1帧中并发送给设备 A。 当设备 B与设备 A之间的 PPP链路尚未建立时, 设备 B会向设备 A周 期性发送 PPP建链请求包。
上述的 PPP链路尚未建立包括: 初始建链阶段或者建链未成功后再次建 链阶段。 在上述的 PPP链路尚未建立时, 一种场景下承载 HDLC帧的 E1具有如 下特征:
( 1 ) PPP链路尚未建立时, 设备 B向设备 A周期性发送 PPP建链请求 包;
(2) PPP建链请求包发送周期大于 1秒, 一般为 2〜5秒, 即, 1秒钟最多发 一个 PPP建链请求包;
(3)一个 PPP建链请求包的长度最多为 49字节;
(4) 由于 E1帧承载 HDLC帧时, 通常至少会使用一个时隙, 一个时隙承 载 1个字节的信息, 即每个 E1帧至少会承载一个字节的信息;
(5)根据前面的第(3)和第(4)点, 只要 49个 E1帧就可以传完一个 PPP 建链请求包;
(6)根据第 (1 )和第 (2) 点, 1秒钟内最多有 49个 E1帧传输 PPP建链 请求包;
( 7 ) E 1帧的帧速为 8K帧 /秒, 即 1秒钟内可以传输 8000个 E 1帧;
(8)根据第 (6)和第 (7) 点, 1秒钟内有 8000-49=7951个 E1帧不传输 PPP信息;
(9)现有技术中, HDLC帧内不发送 PPP信息时, HDLC帧中在对应承载 PPP信息的时隙位置会发送空闲字符来匹配物理层的速率, HDLC帧中发送的 空闲字符可以是 0x7E, 其二进制的表示方法是: 01111110, 其长度等同于 E1 帧一个时隙的长度。
( 10)根据第(8)与第(9)点, 1秒钟内有 7951个 E1帧一直在发送 HDLC 帧的空闲字符 0x7E, 即 1秒钟内有 7951个 El帧, 每个 E1帧中配置传输 PPP/HDLC的时隙只 载发送空闲字符 0x7E。
另外, 考虑到空闲字符的移位现象, 每个 E1帧中配置传输 HDLC帧 (或 称为 PPP/HDLC) 的时隙只^载发送空闲字符 0x7E或该空闲字符 0x7E 的 7个 串行移位。该 0x7E及其串行移位后的 7个字符作为 8个特征字, 即共有 8个特征 字;
( 11 )连续发送空闲字符 0x7E时, 每个 E1帧传输 PPP/HDLC的时隙承载 的特征字相同;
( 12)根据第 ( 10)与第 ( 11 )点, 1秒钟内有 7951个 E1帧, 每个 E1 帧中包含的特征字所在时隙就是 E1帧配置给 PPP/HDLC所使用的时隙。 另 外, 当某个 E1帧中包含的相同特征字出现的次数最多时,该出现次数最多的 特征字在其对应的 E 1中占有的时隙即为 E 1帧配置给 HDLC帧使用的时隙。
也就是说, 在 PPP建链阶段中, PPP信息在 E1帧中配置给 HDLC帧使 用的时隙内传输, 当不传输 PPP信息时, 该原本配置给 HDLC帧使用的时隙 用于传输特征字以匹配物理层速率。 如果空闲字符不存在移位等问题, 则一 个 E1帧的配置给 HDLC帧使用的时隙内只传输同一个特征字, 可以直接将 特征字占有的时隙确定为配置给 HDLC帧的时隙。 但是如果空闲字符存在移 位, 一个 E1帧中原本配置给 HDLC帧使用的时隙可能承载两个特征字, 分 别对应移位前的空闲字符和移位后的空闲字符; 另一方面, 由于连续发送 E1 帧时, 当前 E1帧存在不同的特征字(如包括移位前的特征字和移位后的特征 字 ) 时, 其后续连续的 E1帧将传输移位后的特征字, 即, 后续连续 E1帧中 传输相同的特征字。 换句话说, 在不传输 PPP信息时, E1帧中配置给 HDLC 帧的时隙最终用于传输相同的特征字。例如,假设第一个 E1帧中包括的特征 字为 X和 Y, 个数分别为 2和 3 , 此时与第一个 E1帧相邻连续的第二个 E1 帧中包括的特征字为 Y, 该个数为 5。
另外, 进一步可选的, 如果为了得到准确的 E1帧的时隙配置结果, 本发 明实施例中可以要求: 不传输 HDLC帧的 E1时隙不用于传输 8个特征字, 或者提前知道哪几个 E1时隙不传输 HDLC帧, 在时隙自发现的探测到的结 果中除去那几个 E1时隙。 换句话说, 也就是要求: 特征字在且只能在配置给 HDLC帧的时隙内传输, 或者, 特征字在且只能在配置给 HDLC帧的时隙以 及预先规定的时隙内传输, 该预先规定的时隙也就是指上述的提前知道的不 传输 HDLC帧的 E1时隙, 此时, 在根据特征字确定出一个时隙集后, 需要 在该时隙集内除去该预先规定的时隙后作为配置给 HDLC帧的时隙集。
步骤 22: 设备 A接收设备 B发送的连续的 M个 E1帧。
其中, M为大于 N时的任一值, N为传输完一个 PPP建链请求包所需的 E1的最大个数。例如上述场景下,最多需要 49个 E1帧传输完 PPP建链请求 包, 则该 M大于或等于 50。 当然, 随着协议的扩展, PPP建链请求包的长度 会有所增加, 一般地, 假设 PPP建链请求包长度最大为 L1字节, 则上述的 M为至少为 Ll+1。 步骤 23: 在该 M个 El帧中, 设备 A确定出包含最多的同一个特征字的 E1帧及该 E1帧中包括的最多的特征字。
其中, 假设包含最多的同一个特征字的 E1帧为 ΕΓ , 该 ΕΓ中包含的最 多的特征字为 F'。
可以采用如下方式确定上述的 ΕΓ和 F,:
方案一:
1 )对于每个 E1帧分别检测出有哪几个特征字, 每个特征字出现的次数 是多少, 出现次数最多的特征字为本 E1帧的特征字, 该特征字在本 E1帧出 现的次数为本 E1帧的特征字重复次数;
2 )检测出连续不间断的 M个 E1帧的特征字重复次数, 找到特征字重复 次数最多的 E1帧。
贝 , 包含特征字重复次数最多的 E1 帧为 ΕΓ , ΕΓ中出现次数最多的特 征字为 F'。
方案二:
1 )对于每个特征字, 从 M个 E1帧找出包含该特征字最多的 E1帧;
2 )将包含同一个特征字最多的 E1帧确定为 ΕΓ, ΕΓ中包含的出现次数 最多的特征字确定为 F'。
步骤 24: 设备 A将该特征字 F'在 ΕΓ帧中占用的时隙集确定为 E1帧分 配给 HDLC帧使用的时隙集。
至此, 设备 A确定出 E1帧中配置给 HDLC帧的时隙, 完成了 E1帧内 HDLC帧的时隙自发现。 进一步地, 设备 A确定出 E1时隙配置后, 还可以: 设备 A在探测到时隙配置结果后, 根据 E1帧内 HDLC帧的时隙配置结果对 E1帧时隙进行配置, 进行高层 PPP协商建链。
进一步地, 如在规定的时间内 PPP协商成功, 表明 E1时隙探测成功, 否则, 认为 E1时隙探测失败, 开始重新探测。
本实施例通过检测连续的 E1帧, 根据 E1帧中包含的特征字确定时隙配 置, 可以避免预先人工配置引起的问题, 实现 E1时隙配置的自发现, 实现真 正的 IPoverTDM的远程自动开站, 降低远程设备的开站前的准备要求, 降低 现场开站的技能要求, 缩短开站时间, 降低开站成本。 通过时隙自发现在站 点维护时不需要人工配置, 可以实现真正的 IPoverTDM的远程站点维护。 通 过时隙自发现, 自动得到 El帧的时隙配置, 可以根据该自动得到的 E1帧的 时隙配置进行进一步地 PPP协商等以确定自动得到的 E1帧的时隙配置正确 与否。 当传输网的时隙配置发生变更时, 两端设备也可以通过时隙自发现, 自动更新设备配置。
图 4为本发明第三实施例的方法流程示意图, 与第二实施例不同的是, 本实施例进一步上 探测结果。 参见图 4, 本实施例包括:
步骤 41 : 时隙配置自发现单元进行 E 1时隙配置的探测流程。
具体可以参见第二实施例的内容。
步骤 42: 时隙配置自发现单元判断探测是否成功, 若是, 执行步骤 43 , 否则执行步骤 44。
其中, 上述实施例中, 当设备 A根据确定的时隙配置成功完成 PPP建链 后则表明探测成功, 否则为未成功。 例如, 设备 A向对应 PPP建链请求的响 应信息携带在 HDLC帧内并按照确定的时隙配置映射到 E1帧内,如果设备 B 成功接收到该响应信息, 则表明 PPP建链成功, 也即设备 A成功确定时隙配 置。 当设备 A未成功确定时隙配置时, 响应信息的携带将不满足时隙配置需 求, 设备 B也就不会接收到响应信息, 两者的 PPP建链将会失败。
步骤 43: 时隙配置自发现单元向时隙配置子单元上报 E1 帧中配置给 HDLC帧使用的时隙。
步骤 44:时隙配置自发现单元向时隙配置子单元上报时隙探测失败消息。 之后可以重复执行步骤 41及其后续步骤。
本实施例可以实现时隙配置的自发现。 另外, 本实施例通过上^艮探测结 果, 可以提供更准确的时隙配置结果, 以便于进一步的管理与维护。
图 5为本发明第四实施例的方法流程示意图, 图 6为图 5对应的系统示 意图。本实施例在第三实施例的基础上增加与 PPP/HDLC/E1的收发正常配合 功能, 时隙自发现技术与标准的 PPP/HDLC/E1是松耦合关系, 以便双方可以 独立演进。即,本实施例可以包括:时隙配置自发现流程和 E1帧的收发流程, 其中, E1帧收发流程可以包括: E1帧发送流程和 /或 E1帧接收流程。
参见图 5, 本实施例包括:
一方面, 进行时隙自发现流程, 包括:
步骤 501 : PPP/HDLC/E1单元 62中的 PPP协议模块 622输出 PPP建链 状态指示给 i-tube控制单元 63。
其中, PPP建链状态指示可以为 "未成功" 或者 "成功,, 。
步骤 502: i-tube控制单元 63根据 PPP链路状态指示向时隙配置自发现 单元 64发送控制命令, 以控制时隙配置自发现单元 64开启或关闭。
例如, 当 PPP链路状态指示为 "未成功" 时, i-tube控制单元控制时隙 自发现单元启动时隙自发现功能。 当 PPP链路状态指示为 "成功" 时, i-tube 控制单元可以控制时隙自发现单元关闭时隙自发现功能, 当然, 也可以不控 制其关闭。
步骤 503: 时隙自发现单元 64在启动时隙自发现功能时执行时隙自发现 流程。
该时隙自发现流程可以如第二实施例中所示。
步骤 504:时隙自发现单元 64向时隙配置子单元 621上报时隙探测结果。 例如,如第三实施例所示,当时隙探测成功时,上报 E1帧中配置给 HDLC 帧使用的时隙。 当时隙探测失败时, 上报时隙探测失败消息。
另一方面, 本实施例可以进行 E1帧的发送, 包括:
步骤 505: 时隙配置子单元 621配置 E1帧时隙集。
在不同的时间段可以分别采用如下方式:
1 )设备启动时, PPP/HDLC/E1单元 62启动 PPP建链过程, 时隙配置子 单元 621按以下方式配置 E1时隙初始值:
情况一, 如果有保留的最近的 PPP建链成功的 E1时隙配置, 则以此 E1 时隙配置作为初始值, 在该时隙配置的基础上尝试 PPP建链;
情况二, 如果没有保留的最近的 PPP建链成功的 E1 时隙配置, 则以缺 省配置作为初始值, 在该时隙配置的基础上尝试 PPP建链。
2 ) PPP建链未成功时, 时隙配置子单元 621在接收到时隙配置自发现单 元 64上报探测到的新的时隙配置数据后,时隙配置子单元 621将按照该新的 时隙配置数据配置 E1并尝试 PPP建链。
3 ) 当 PPP建链成功时, 时隙配置子单元 621不更新 E1时隙配置, 采用 当前的时隙配置数据进行 E1配置。
4 ) 当 PPP先建链成功后发生 PPP断链, 时隙配置子单元 621先使用原 来的时隙配置进行 PPP建链尝试, 如果 PPP建链不能在规定的时间内建链成 功, 时隙配置子单元 621使用时隙自发现的时隙更新 E1时隙进行 PPP建链 尝试。
步骤 506: PPP协议模块 622接收 IP层及上层协议单元 61发送的 IP包, 并生成 PPP帧, 其中, 上层协议单元例如为应用层的协议单元。
步骤 507: HDLC发送模块 624根据时隙配置子单元 621输出的时隙配 置指示, 将 PPP帧封装成 HDLC帧。
由于 HDLC发送模块生成 HDLC数据流,且该数据流为物理层速率相匹 配的速率匹配后的数据流,因此, HDLC发送模块需要获知 E1帧的时隙配置, 以进行速率匹配。
步骤 508: 指定时隙发送模块 626按照时隙配置子单元 621输出的时隙 配置指示, 将 HDLC帧映射到 E1帧中。
步骤 509: E1帧发送模块 628将 E1帧对外发送。
其中,由于本实施例是以 TDM帧为 E1帧为例,因此,本实施例中的 TDM 帧发送模块具体为上述的 E1帧发送模块, TDM帧接收模块具体为 E1帧接收 模块。
再一方面, 本实施例还可以进行 E1帧的接收, 包括:
步骤 510: E1帧接收模块 627接收来自外部的 E1帧。
步骤 511 : 指定时隙接收模块 625按照时隙配置子单元 621输出的时隙 配置指示, 从 E1帧中提取出 HDLC帧。
步骤 512: HDLC接收模块 623从 HDLC帧中提取出 PPP帧。
步骤 513: PPP协议模块 622根据接收到的 PPP帧实现 PPP层建链协商。 上述的 PPP协议模块、 HDLC发送模块、 指定时隙发送模块、 TDM帧发 送模块、 TDM帧接收模块、指定时隙接收模块和 HDLC接收模块可以组成收 发子单元。
上述三个方面可以分别独立进行, 各方面间的步骤无时序限制关系, 以 实现时隙自发现与数据收发的独立演进。
当然, 上述流程之间有些也是可以相互关联的, 例如, 时隙配置自发现 时, 接收的 E1帧来自 E1帧接收模块, 即, E1帧接收模块接收到 E1帧后, 将接收的 E1帧发送给指定时隙接收模块和时隙配置自发现单元。
PPP协议模块输出的 PPP链路状态指示可以指示 i-tube控制单元, 同时 也可以指示时隙配置子单元。
本实施例可以实现时隙配置的自发现。 另外, 本实施例通过上^艮探测结 果, 可以提供更准确的时隙配置结果, 以便于进一步的管理与维护, 例如根 新探测或者重新配置。 进一步地, 本实施例中包括时隙自发现功能和数据收 发功能, 两者可以相对独立处理, 即两者是松耦合的关系, 可以实现两者的 分别独立演进。
图 7为本发明第五实施例的方法流程示意图, 图 8为图 7对应的系统示 意图。 参见图 8, 本实施例的应用场景可以是: 设备 A和设备 B通过 IPover 通道化 E1直连; 设备 A和设备 B之间的 E1时隙配置已完成; 设备 A和设 备 B是待完成配置的设备。
由于本实施例中设备 A和设备 B均未完成配置, 则设备 A和设备 B均 需要确定时隙配置。 本实施例中, 至少需要一个设备进行全 E1 时隙 PPP建 链尝试, 另一个设备可以按照上述实施例的方式确定 E1时隙配置。
下面以设备 A进行全 E1时隙 PPP建链尝试, 而设备 B进行时隙自发现 为例。
参见图 7, 本实施例包括:
步骤 71: 设备 A在全 E1时隙进行 PPP建链尝试。
例如 , 设备 A将包含 PPP建链请求包的 HDLC帧映射到 E 1帧的所有时 隙中, 并通过直连发送给设备^
步骤 72: 设备 B进行时隙自发现流程。
例如, 设备 B连续接收 M个 E1帧并确定出 ΕΓ和 F' , 将 F'在 ΕΓ占用 的时隙集确定为 E1帧中配置给 HDLC帧的时隙集。 具体内容可以参见上述 任一实施例。
需要说明的是, 由于设备 A和设备 B之间的中间路径已完成配置, 对端 设备所收到的所有 E1帧中,只有时隙配置允许的时隙数据才能被对端设备收 到,未被允许的时隙数据对端设备无法收到。以设备 A进行全时隙配置为例, 即使在设备 A侧将 HDLC帧映射到 E1帧的全部时隙中, 假设配置给 HDLC 帧的时隙集为 TS1〜TS10, 则中间承载网只允许时隙 TS1〜TS10通过, 因此设 备 B收到的 E1帧中, 只有 TS1〜TS10的数据是由设备 A发送。 上述是以设备 A全时隙配置, 而设备 B进行时隙自发现流程为例。 也可 以是, 设备 B进行全时隙配置, 而设备 A进行时隙自发现流程。 也可以是设 备 A和设备 B分别进行全时隙配置及时隙自发现流程, 例如, 在 tl时间段, 设备 A和设备 B均进行全时隙配置,两者均向对方发送 HDLC帧映射到全部 时隙的 E1帧; 而在 t2时间段, 设备 A和设备 B均进行时隙自发现以确定时 隙配置。 其中 tl>t2。 而设备 B有机会探测传输网的 E1时隙配置; 以及, 保证设备 B有机会在全 E1时隙上进行 PPP建链尝试, 而设备 A有机会探测传输网的 E1时隙配置。 本实施例的两端可以实现时隙自发现, 当传输网的时隙配置发生变更后, 两 端设备可以自动发现并更新设备配置。
上述各实施例是以 E1为例, 对于其他的 TDM也可以参照执行。 对于其 他的 TDM技术需要满足: 假设 PPP帧长度为 L1字节, 帧发送频率为 fl , 任 一 TDM技术的帧长为 L2字节, 帧发送频率为 , 则只需满足 Ll*fl<L2*f2 即可采用前述各实施例, 此时, 共有 L2*8个特征字。
图 9为本发明第六实施例的设备结构示意图, 该设备包括接收模块 911 和确定模块 912; 接收模块 911用于接收连续传输的 TDM帧, 连续传输的 TDM帧中至少有一个 TDM帧内包含特征字; 确定模块 912用于根据特征字 在 TDM帧内占用的时隙集的情况 ,确定 TDM帧中配置给 HDLC帧的时隙集 , 特征字用于在不传输端对端协议 PPP建链请求包时匹配物理层速率。
该设备可以具体为路由器、 主机等。
可选的,连续传输的 TDM帧的个数为 M个, M为大于 N的任一设定值, N为传输完一个 PPP建链请求包所需的 TDM帧的最大个数, 确定模块 912 包括: 第一确定子模块, 用于根据 M个 TDM帧, 确定第一 TDM帧和第一 特征字, 第一 TDM帧为包含最多的同一个特征字的 TDM帧, 第一特征字为 第一 TDM 帧中包含的最多的特征字; 第二确定子模块, 用于将第一特征字 在第一 TDM帧中占用的时隙集 ,确定为 TDM帧中配置给 HDLC帧的时隙集。
可选的,确定模块 912具体用于:如果存在第二 TDM帧,所述第二 TDM 帧内只包含同一个特征字, 且包含的同一个特征字占用的时隙集与配置给 HDLC的时隙集相同,则将第二 TDM帧中的特征字占用的时隙集确定为 TDM 帧中配置给 HDLC帧的时隙集。
上述的特征字可以是 8个根据空闲字符得到的字符, 例如, 空闲字符为 0x7E时, 8个特征字分别为" 01111110"、"11111100"、"11111001" ... "00111111"。
以 TDM帧为 E1帧为例, 一个 E1帧内可能只插入同一个特征字, 该同 一个特征字占用的时隙集为分配给 HDLC帧的时隙集, 或者, 一个 E1帧内 也可能插入两个不同的特征字, 每个相同的特征字占用一个或多个时隙, 两 个特征字占用的时隙集为分配给 HDLC帧的时隙集。
参见图 10, 另一种实施例中, 该设备包括时隙自发现单元 91 , 上述的接 收模块和确定模块可以包含在时隙自发现单元 91中, 另外, 该设备还可以包 括时隙配置子单元 92。 该时隙自发现单元 91还可以包括处理模块 913 , 处理 模块 913用于根据确定的 TDM帧中配置给 HDLC帧的时隙集, 进行 PPP建 链尝试; 在 PPP建链成功时, 向时隙配置子单元 92上报所述确定的 TDM帧 中配置给 HDLC帧的时隙集; 在 PPP建链失败时, 向时隙配置子单元 92上 报探测失败消息。 所述时隙配置子单元 92用于保存确定的 TDM帧中配置给 HDLC帧的时隙集, 或者, 确定对 TDM帧中配置给 HDLC帧的时隙集的探 测失败。
时隙配置子单元 92在获知探测成功后可以根据处理模块上报的 HDLC 帧占用的时隙集进行 HDLC帧的配置, 进而进行后续流程, 例如采用 HDLC 帧承载 PPP信息进行 PPP建链协商。
参见图 11 , 另一实施例中, 该设备还可以包括 i-tube控制单元 93; 时隙 自发现单元 91还包括触发模块 914; i-tube控制单元 93 , 用于在 PPP建链未 成功时, 输出用于开启时隙自发现功能的命令, 触发模块 914用于接收所述 i-tube控制单元发送的用于开启时隙自发现功能的命令后启动所述接收模块 911和确定模块 912。
参见图 12, 另一实施例中, 该设备还可以包括收发子单元 94, 收发子单 元 94用于根据所述时隙配置子单元 92输出的时隙配置指示,进行 E1帧的发 送和接收中的至少一项。
可选地,该收发子单元 94可以包括 PPP协议模块、 HDLC发送模块指定 时隙发送模块、 TDM帧发送模块、 TDM帧接收模块、 指定时隙接收模块和 HDLC接收模块。 PPP协议模块用于接收 IP层及上层协议单元发送的 IP包, 并将所述 IP 包封装生成 PPP帧; HDLC发送模块用于根据时隙配置子单元输出的时隙配 置指示, 将所述 PPP协议模块生成的 PPP帧封装成 HDLC帧; 指定时隙发送 模块用于按照时隙配置子单元输出的时隙配置指示, 将所述 HDLC发送模块 封装得到的 HDLC帧映射到 TDM帧中; TDM帧发送模块用于将指定时隙发 送模块得到的 TDM帧对外发送; TDM帧接收模块用于接收来自外部的 TDM 帧; 指定时隙接收模块用于按照时隙配置子单元输出的时隙配置指示, 从所 述 TDM帧接收模块接收的 TDM帧中提取出 HDLC帧; HDLC接收模块用于 从指定时隙接收模块提取得到的 HDLC帧中提取出 PPP帧;所述 PPP协议模 块还用于根据所述 HDLC接收模块提取得到的 PPP帧实现 PPP层建链协商。
进一步地, PPP 协议模块还可以用于确定链路状态, 并输出链路状态指 示给 i-tube控制单元 93 , 以便 i-tube控制单元 93根据链路状态指示确定 PPP 建链是否成功。
上述时隙自发现、 TDM帧发送、 TDM帧接收三个方面可以分别独立进 行, 各方面间的步骤无时序限制关系, 以实现时隙自发现与数据收发的独立 演进。 当然, 上述流程之间有些也是可以相互关联的, 例如, 时隙配置自发 现时,接收的 E1帧来自 E1帧接收模块, 即, E1帧接收模块接收到 E1帧后, 将接收的 E1帧发送给指定时隙接收模块和时隙配置自发现单元。 PPP协议模 块输出的 PPP链路状态指示可以指示 i-tube控制单元, 同时也可以指示时隙 配置子单元。
该流程包括时隙自发现功能和数据收发功能, 两者可以相对独立处理, 即两者是松耦合的关系, 可以实现两者的分别独立演进。
进一步地, 接收模块 911具体用于在 t2时间段内接收连续传输的 TDM 帧 , 该 TDM帧为对端在 tl时间内根据全 TDM时隙配置发送的 , 且 tl>t2。
该流程可以应用到通信的两端设备均未完成配置的场景内, 例如设备 A 和设备 B均未完成配置, 则设备 A和设备 B均需要确定时隙配置。 此时, 本 至少需要一个设备进行全 E1 时隙 PPP建链尝试, 另一个设备可以按照上述 实施例的方式确定 E1时隙配置。则对于其中一个时隙通过该收发子单元可以 在 tl时间内根据全 TDM时隙配置进行 TDM帧的发送 , 并在 t2时间段内接 收 TDM帧以确定 TDM帧的时隙配置。 上述实施例中, 当所述 TDM帧为 E1帧, 且 PPP建链请求包的长度为 L1字节时, 所述 M为大于或等于 L1+1的任一设定值。
本实施例通过检测连续的 E1帧, 根据 E1帧中包含的特征字确定时隙配 置, 可以避免预先人工配置引起的问题, 实现 E1时隙配置的自发现, 实现真 正的 IPoverTDM的远程自动开站, 降低远程设备的开站前的准备要求, 降低 现场开站的技能要求, 缩短开站时间, 降低开站成本。 通过时隙自发现在站 点维护时不需要人工配置, 可以实现真正的 IPoverTDM的远程站点维护。 通 过时隙自发现, 自动得到 E1帧的时隙配置, 可以根据该自动得到的 E1帧的 时隙配置进行进一步地 PPP协商等以确定自动得到的 E1帧的时隙配置正确 与否。 当传输网的时隙配置发生变更时, 两端设备也可以通过时隙自发现, 自动更新设备配置。
可以理解的是, 上述方法及设备中的相关特征可以相互参考。 另外, 上 述实施例中的 "第一" 、 "第二" 等是用于区分各实施例, 而并不代表各实 施例的优劣。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于计算机可读取 存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的 存储介质包括: ROM, RAM,磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、一种确定时分复用 TDM传输中时隙配置的方法, 其特征在于, 包括: 接收连续传输的 TDM帧, 所述连续传输的 TDM帧中至少有一个 TDM 帧内包含特征字;
根据特征字在 TDM帧内占用的时隙集的情况,确定 TDM帧中配置给高 级数据链路控制 HDLC 帧的时隙集, 所述特征字用于在不传输端对端协议 PPP建链请求包时匹配物理层速率。
2、 根据权利要求 1所述的方法, 其特征在于, 所述连续传输的 TDM帧 的个数为 M个, 所述 M为大于 N的任一设定值, 所述 N为传输完一个 PPP 建链请求包所需的 TDM帧的最大个数;
所述根据特征字在 TDM帧内占用的时隙集的情况,确定 TDM帧中配置 给 HDLC帧的时隙集, 包括:
根据所述 M个 TDM帧 ,确定第一 TDM帧和第一特征字 ,所述第一 TDM 帧为包含最多的同一个特征字的 TDM帧,所述第一特征字为第一 TDM帧中 包含的最多的特征字;
将所述第一特征字在所述第一 TDM帧中占用的时隙集,确定为 TDM帧 中配置给 HDLC帧的时隙集。
3、 根据权利要求 1所述的方法, 其特征在于, 所述根据特征字在 TDM 帧内占用的时隙集的情况, 确定 TDM帧中配置给 HDLC帧的时隙集, 包括: 如果存在第二 TDM帧, 所述第二 TDM帧内只包含同一个特征字, 且包 含的同一个特征字占用的时隙集与配置给 HDLC的时隙集相同, 则将所述第 二 TDM帧中的特征字占用的时隙集确定为 TDM帧中配置给 HDLC帧的时隙
4、 根据权利要求 1-3任一项所述的方法, 其特征在于, 所述根据特征字 在 TDM帧内占用的时隙集的情况 ,确定 TDM帧中配置给 HDLC帧的时隙集 之后, 所述方法还包括:
根据确定的 TDM帧中配置给 HDLC帧的时隙集, 进行 PPP建链尝试; 在所述 PPP建链成功时, 保存所述确定的 TDM帧中配置给 HDLC帧的 时隙集;
在 PPP建链失败时, 确定对 TDM帧中配置给 HDLC帧的时隙集的探测 失败。
5、 根据权利要求 1-4任一项所述的方法, 其特征在于, 所述接收连续传 输的至少一个的 TDM帧之前, 所述方法还包括:
确定 PPP链路状态, 并在所述 PPP链路状态表明 PPP建链未成功时, 开 启时隙自发现功能, 以便在开启时隙自发现功能后接收连续传输的 TDM 帧 并根据特征字在 TDM帧内占用的时隙集的情况确定 TDM帧中配置给 HDLC 帧的时隙集。
6、 根据权利要求 1-5任一项所述的方法, 其特征在于, 还包括: 获取时隙配置指示, 并根据所述时隙配置指示进行 TDM 帧的发送和接 收中的至少一项; 其中,
进行 TDM帧的发送包括:
接收 IP层及上层协议单元发送的 IP包, 并将所述 IP包封装成 PPP帧; 根据所述时隙配置指示, 将所述 PPP帧封装成 HDLC帧; 按照所述时隙配置 指示, 将所述 HDLC帧映射到 TDM帧中; 将所述 TDM帧对外发送;
进行 TDM帧的接收包括:
接收来自外部的 TDM帧; 按照所述时隙配置指示, 从所述 TDM帧中提 取出 HDLC帧;从所述 HDLC帧中提取出 PPP帧;根据所述 PPP帧实现 PPP 层建链协商。
7、根据权利要求 1所述的方法,其特征在于,所述接收连续传输的 TDM 帧, 包括: 在 t2时间段内接收连续传输的 TDM帧, 所述 TDM帧为对端在 tl时间内根据全 TDM时隙配置发送的 , 且 tl>t2。
8、 根据权利要求 2-7任一项所述的方法, 其特征在于, 当所述 TDM帧 为 E1帧,且 PPP建链请求包的长度为 L1字节时,所述 M为大于或等于 L1+1 的任一设定值。
9、一种确定时分复用 TDM传输中时隙配置的设备, 其特征在于, 包括: 接收模块, 用于接收连续传输的 TDM帧, 所述连续传输的 TDM帧中至 少有一个 TDM帧内包含特征字;
确定模块,用于根据特征字在 TDM帧内占用的时隙集的情况,确定 TDM 帧中配置给高级数据链路控制 HDLC帧的时隙集, 所述特征字用于在不传输 端对端协议 PPP建链请求包时匹配物理层速率。
10、根据权利要求 9所述的设备, 其特征在于, 所述连续传输的 TDM帧 的个数为 M个, 所述 M为大于 N的任一设定值, 所述 N为传输完一个 PPP 建链请求包所需的 TDM帧的最大个数, 所述确定模块包括:
第一确定子模块, 用于根据所述 M个 TDM帧, 确定第一 TDM帧和第 一特征字, 所述第一 TDM帧为包含最多的同一个特征字的 TDM帧, 所述第 一特征字为第一 TDM帧中包含的最多的特征字; 和 /或,
第二确定子模块, 用于将所述第一特征字在所述第一 TDM 帧中占用的 时隙集 , 确定为 TDM帧中配置给 HDLC帧的时隙集。
11、 根据权利要求 9所述的设备, 其特征在于, 所述确定模块具体用于: 如果存在第二 TDM帧, 所述第二 TDM帧内只包含同一个特征字, 且包 含的同一个特征字占用的时隙集与配置给 HDLC 的时隙集相同, 则将所述 TDM帧中的特征字占用的时隙集确定为 TDM帧中配置给 HDLC帧的时隙
12、 根据权利要求 9-11任一项所述的设备, 其特征在于, 还包括: 处理 模块和时隙配置子单元;
所述处理模块, 用于根据确定的 TDM帧中配置给 HDLC帧的时隙集, 进行 PPP建链尝试; 在 PPP建链成功时, 向所述时隙配置子单元上报所述确 定的 TDM帧中配置给 HDLC帧的时隙集; 在 PPP建链失败时, 向所述时隙 配置子单元上报探测失败消息;
所述时隙配置子单元用于保存所述确定的 TDM帧中配置给 HDLC帧的 时隙集, 或者, 确定对 TDM帧中配置给 HDLC帧的时隙集的探测失败。
13、 根据权利要求 9-12任一项所述的设备, 其特征在于, 还包括 i-tube 控制单元和触发模块;
所述 i-tube控制单元用于在 PPP建链未成功时, 输出用于开启时隙自发 现功能的命令;
所述触发模块用于接收所述 i-tube控制单元发送的用于开启时隙自发现 功能的命令后启动所述接收模块和确定模块。
14、 根据权利要求 12所述的设备, 其特征在于, 还包括:
收发子单元, 用于根据所述时隙配置子单元输出的时隙配置指示, 进行 E1帧的发送和接收中的至少一项。
15、 根据权利要求 14所述的设备, 其特征在于, 所述收发子单元包括: PPP协议模块, 用于接收 IP层及上层协议单元发送的 IP包, 并将所述
IP包封装生成 PPP帧;
HDLC发送模块, 用于根据所述时隙配置子单元输出的时隙配置指示, 将所述 PPP协议模块生成的 PPP帧封装成 HDLC帧;
指定时隙发送模块 ,用于按照所述时隙配置子单元输出的时隙配置指示 , 将所述 HDLC发送模块封装得到的 HDLC帧映射到 TDM帧中;
TDM帧发送模块, 用于将所述指定时隙发送模块得到的 TDM帧对外发 送;
TDM帧接收模块, 用于接收来自外部的 TDM帧;
指定时隙接收模块,用于按照所述时隙配置子单元输出的时隙配置指示, 从所述 TDM帧接收模块接收的 TDM帧中提取出 HDLC帧;
HDLC接收模块, 用于从所述指定时隙接收模块提取得到的 HDLC帧中 提取出 PPP帧;
所述 PPP协议模块还用于根据所述 HDLC接收模块提取得到的 PPP帧实 现 PPP层建链协商。
16、 根据权利要求 9所述的设备, 其特征在于, 所述接收模块具体用于 在 t2时间段内接收连续传输的 TDM帧 , 所述 TDM帧为对端在 tl时间内根 据全 TDM时隙配置发送的, 且 tl>t2。
PCT/CN2011/082222 2011-11-15 2011-11-15 确定tdm传输中时隙配置的方法和设备 WO2012167553A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11867242.7A EP2782295A4 (en) 2011-11-15 2011-11-15 METHOD AND DEVICE FOR TIMING TIME SLOT CONFIGURATION IN TIME MULTIPLEX MODULATION (TDM) TRANSMISSION
PCT/CN2011/082222 WO2012167553A1 (zh) 2011-11-15 2011-11-15 确定tdm传输中时隙配置的方法和设备
CN201180003005.4A CN103503341B (zh) 2011-11-15 2011-11-15 确定tdm传输中时隙配置的方法和设备
US13/725,218 US8542701B2 (en) 2011-11-15 2012-12-21 Method and device for determining timeslot configuration in TDM transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/082222 WO2012167553A1 (zh) 2011-11-15 2011-11-15 确定tdm传输中时隙配置的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/725,218 Continuation US8542701B2 (en) 2011-11-15 2012-12-21 Method and device for determining timeslot configuration in TDM transmission

Publications (1)

Publication Number Publication Date
WO2012167553A1 true WO2012167553A1 (zh) 2012-12-13

Family

ID=47295404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082222 WO2012167553A1 (zh) 2011-11-15 2011-11-15 确定tdm传输中时隙配置的方法和设备

Country Status (4)

Country Link
US (1) US8542701B2 (zh)
EP (1) EP2782295A4 (zh)
CN (1) CN103503341B (zh)
WO (1) WO2012167553A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579835B (zh) * 2015-01-05 2018-02-16 北京中科网维科技有限公司 一种检测e1链路数据帧中传输通道的方法和装置
CN113949718B (zh) * 2021-10-13 2023-06-27 国网福建省电力有限公司 基于e1及ip混合承载的电力专网调度放号系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101052021A (zh) * 2006-05-15 2007-10-10 华为技术有限公司 一种基于pstn网络构造的ngn网络
CN101136787A (zh) * 2006-08-29 2008-03-05 中兴通讯股份有限公司 实时监听软交换传真的系统及其方法
US20100080212A1 (en) * 2008-09-30 2010-04-01 Alcatel Lucent Impairment reduction for tandem voip calls
CN102223684A (zh) * 2010-04-19 2011-10-19 中国移动通信集团设计院有限公司 一种时隙资源分配方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974031A (en) * 1995-10-25 1999-10-26 Hewlett-Packard Company Automatic detection of a telecommunications fractional channel configuration
DE19549149A1 (de) * 1995-12-29 1997-07-03 Siemens Ag Verfahren zur Steuerung der Übertragung von digitalen Nachrichtensignalen über ein Zeitmultiplex-Übertragungsmedium
US6493352B1 (en) * 1998-05-15 2002-12-10 Paradyne Corporation Automatic configuration system which analyzes HDLC flag data in TDM time slots for determining which time slot(s) is dedicated for frame relay service
US7035247B2 (en) * 1998-07-22 2006-04-25 Synchrodyne Networks, Inc. Link transmission control with common time reference
US6577604B1 (en) * 1999-11-09 2003-06-10 Nortel Networks Limited Determining link capacity utilization for HDLC encoded links
US7626999B2 (en) * 2001-03-16 2009-12-01 Tellabs San Jose, Inc. Apparatus and methods for circuit emulation of a point-to-point protocol operating over a multi-packet label switching network
US20020141411A1 (en) * 2001-04-03 2002-10-03 Jong-Hwan Oh Apparatus for line-concentrating and distributing PPP frame data
US7002967B2 (en) * 2001-05-18 2006-02-21 Denton I Claude Multi-protocol networking processor with data traffic support spanning local, regional and wide area networks
US7729322B2 (en) * 2002-02-28 2010-06-01 Qualcomm Incorporated HDLC hardware accelerator
JP4110964B2 (ja) * 2002-12-25 2008-07-02 日本電気株式会社 伝送システムおよびデータ転送方法
US7515605B2 (en) * 2003-03-24 2009-04-07 Corrigent Systems Ltd Efficient transport of TDM services over packet networks
CN100486142C (zh) * 2003-08-27 2009-05-06 华为技术有限公司 一种链路自动配置的方法
CN100334857C (zh) * 2004-09-27 2007-08-29 华为技术有限公司 一种环网及其业务实现方法
CN1845629B (zh) * 2005-06-20 2010-04-14 华为技术有限公司 一种远程维护3g基站的方法
ITMI20051749A1 (it) * 2005-09-21 2007-03-22 Marconi Comm Spa Adattamento delle frequenze nell'interfaccia di linee asincrone a livello fisico con linee sincrone a livello di connessione
US20070140271A1 (en) * 2005-12-21 2007-06-21 Amante Shane M Method and system for terminating SONET/SDH circuits in an IP network
CN100512485C (zh) * 2006-04-30 2009-07-08 华为技术有限公司 基于串行链路ip传输的基站维护方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101052021A (zh) * 2006-05-15 2007-10-10 华为技术有限公司 一种基于pstn网络构造的ngn网络
CN101136787A (zh) * 2006-08-29 2008-03-05 中兴通讯股份有限公司 实时监听软交换传真的系统及其方法
US20100080212A1 (en) * 2008-09-30 2010-04-01 Alcatel Lucent Impairment reduction for tandem voip calls
CN102223684A (zh) * 2010-04-19 2011-10-19 中国移动通信集团设计院有限公司 一种时隙资源分配方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2782295A4 *
SIMPSON, W.: "PPP in HDLC-like Framing", RFC 1662, July 1994 (1994-07-01), XP002125485 *

Also Published As

Publication number Publication date
US20130121344A1 (en) 2013-05-16
EP2782295A4 (en) 2014-11-12
EP2782295A1 (en) 2014-09-24
CN103503341B (zh) 2016-10-05
CN103503341A (zh) 2014-01-08
US8542701B2 (en) 2013-09-24

Similar Documents

Publication Publication Date Title
CN109302372B (zh) 一种通信方法、设备及存储介质
CN105050083B (zh) 一种智能设备的网络配置方法及系统
CN109155933A (zh) 反射式服务质量控制以及管理
JP5631406B2 (ja) 機械端末機器からの複数のサービス・データを集約する方法およびデバイス
TWI628928B (zh) 數位無線電通訊
US9924558B2 (en) Digital radio communication
EP2751963A1 (en) Topology discovery in a hybrid network
CN102823170B (zh) 终端在无线通信系统中建立分量载波的方法及其装置
EP2445160B1 (en) Method for automatically negotiating type of service and aggregation apparatus therefor
WO2012167553A1 (zh) 确定tdm传输中时隙配置的方法和设备
EP3410637B1 (en) Information transmission method, gateway, and controller
WO2018036421A1 (zh) 网络接入方法、接入设备和终端设备
WO2006058490A1 (fr) Procede de negociation automatique de largeur de bande de canal de communication de donnees
WO2012152007A1 (zh) 设备驱动消息处理方法及装置
WO2014187241A1 (zh) 控制无线网络直连群组中无线设备断开的方法及无线设备
JP2002158730A (ja) 通信方法及び通信装置
WO2024060954A1 (zh) 一种信息传递方法及装置
CN110809276B (zh) 一种互不干扰的户用无线通信系统及其组网方法
KR100648774B1 (ko) 네트워크 전기 기기
KR100638015B1 (ko) 데이터 패킷 처리방법
KR20170112386A (ko) 신뢰성을 고려한 대용량 데이터를 전송하는 센서 네트워크 시스템 및 그 운영방법
TW201503618A (zh) 數位無線電通訊
JP2008206175A (ja) 通信機器、通信システム、通信方法、通信プログラム、通信回路、携帯電話、表示装置、印刷装置、記録装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011867242

Country of ref document: EP