WO2012165540A1 - Sliding member for slide bearing device - Google Patents

Sliding member for slide bearing device Download PDF

Info

Publication number
WO2012165540A1
WO2012165540A1 PCT/JP2012/064067 JP2012064067W WO2012165540A1 WO 2012165540 A1 WO2012165540 A1 WO 2012165540A1 JP 2012064067 W JP2012064067 W JP 2012064067W WO 2012165540 A1 WO2012165540 A1 WO 2012165540A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
sliding
bearing
sliding member
bearing device
Prior art date
Application number
PCT/JP2012/064067
Other languages
French (fr)
Japanese (ja)
Inventor
衛介 小川
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2013518154A priority Critical patent/JP5664777B2/en
Publication of WO2012165540A1 publication Critical patent/WO2012165540A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor
    • F16C13/02Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/043Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6688Lubricant compositions or properties, e.g. viscosity
    • F16C33/6692Liquids other than oil, e.g. water, refrigerants, liquid metal

Definitions

  • the present invention relates to a sliding member constituting a slide bearing device that rotates through a liquid lubricating medium, and more particularly to a molten metal plating apparatus such as a slide bearing device in which molten metal is immersed in a molten metal plating bath acting as a lubricating medium.
  • This invention is suitable for the sliding member which is a member to be incorporated.
  • Patent Document 1 An example of the bearing structure of a roll in a molten metal plating bath according to the above technical field is disclosed in Patent Document 1 below.
  • the bearing structure of a roll in a molten metal plating bath of an apparatus for continuously immersing a steel strip in molten metal and plating treatment, and one or both of a rotary shaft and a bearing of the roll is used.
  • both ends are closed with a bending portion or a bending portion having an angle opened in the rotational direction of the rotating shaft or the sliding direction of the bearing.
  • a bearing structure of a roll in a molten metal plating bath characterized in that a plurality of grooves (hereinafter referred to as central grooves) are provided in a plurality of rows in the rotational direction and / or the sliding direction.
  • the bearing structure of the roll in the molten metal plating bath “the bearing of the roll in the molten metal plating bath can be used stably for a long period of time, and the molten metal plating operation is stabilized and the cost is reduced. Also, even when the plating process is speeded up, a low friction and stable rotational state can be obtained, and such a bearing structure makes it possible to efficiently produce a molten metal plated product of stable quality. ing.
  • the object of the present invention is to provide a sliding member for a sliding bearing, which has been further reduced in wear and improved as compared with the bearing structure described in Patent Document 1 mentioned above.
  • One aspect of the present invention for achieving the above object is a sliding member for a sliding bearing device having at least one sliding surface, which constitutes a bearing portion or a shaft portion of the sliding bearing device rotatably supporting a rotating body.
  • the other end of each of the first groove and the second groove is an opening having an open end, and in the case where the sliding member for a sliding bearing device constitutes a bearing, the rotational direction of the shaft is In each of the first groove and the second groove, the opening of each of the first groove and the second groove is disposed rearward of the connection recess, and in the case where the sliding member for a sliding bearing device constitutes a shaft portion, the shaft portion In the direction of rotation, the openings of each of the first groove and the second groove both More is disposed forward further, the surface of the groove is a slide member for a sliding bearing device
  • the coefficient of friction loss of at least one of the first groove and the second groove is 0.01 to 0.05 when flowing a liquid having a kinematic viscosity of 4890 St measured in accordance with JIS Z 8803 in the groove portion. Is desirable.
  • arithmetic mean roughness Ra according to JIS-B0601 of the surface of the groove part where the minute unevenness is formed be 0.3 to 15.0 ⁇ m.
  • the micro-concavities and convexities be formed on the surface of at least one of the first groove and the second groove, and it is more preferable that the micro-concavities and convexities be formed on the entire surface of the groove.
  • the surface roughness of the first groove or the second groove of the groove is roughened from the opening toward the connection recess.
  • the arithmetic mean roughness Ra according to JIS-B0601 of the surface at the opening of the first groove or the second groove is 0.3 to 5.0 ⁇ m, and the rough at one end of the first groove or the second groove Desirably, the height Ra is 5.0 to 15.0 ⁇ m.
  • the depth of at least one of the first groove and the second groove is deeper from the opening toward the connection recess, and in addition, the first groove and the second groove are Preferably, at least one of the groove widths narrows from the opening toward the connecting recess.
  • the sliding member for a sliding bearing device is made of a ceramic, it is suitable particularly for a sliding bearing device used in a highly corrosive atmosphere such as a molten metal plating device.
  • One specific embodiment of the present invention is a slide bearing in which any one of the slide members for a slide bearing device described above is incorporated as a bearing portion, the sliding surface being along the rotation direction of the shaft portion,
  • a sliding bearing characterized in that a plurality of grooves are formed.
  • a plurality of groove portions are formed in a zigzag shape in parallel with the direction along the center line.
  • the bearing portion has a segment shape that forms a part of an annular ring, and includes a holding portion to which the bearing portion is inserted, and the shaft portion in a state in which the bearing portion is inserted to the holding portion It is desirable to have one end located on the opposite side to the rotational direction of the above, and have a pouring basin disposed outward of one end of the bearing in a state where the bearing is attached to the holding part.
  • the holding portion has an exposed surface which is located outward of one end of the bearing portion in a state where the bearing portion is mounted and is formed on the side on which the bearing portion is mounted.
  • the mounting portion be mounted in a state where it protrudes from one surface of the holding portion, and a reservoir portion is formed on the one surface of the holding portion.
  • one surface of the holding portion has a surface that is inclined toward the sliding surface of the bearing portion.
  • the holding portion has an exposed surface which is located on the outside of one end of the bearing portion while the bearing portion is mounted and is formed on the side where the bearing portion is inserted and attached, and the sliding of the bearing portion
  • the surface is inserted in a state of being positioned inward of one surface of the holding portion in a cross sectional view intersecting the center line, and a step is formed between the exposed surface of the holding portion and the sliding surface. It may be
  • Another specific aspect of the present invention is a rotating body having a shaft portion to which any of the sliding members for a sliding bearing device described above is attached integrally or separately, and the sliding member for a sliding bearing device
  • the outer surface of the sliding surface has a substantially cylindrical shape, and a plurality of the groove portions are formed at the same pitch along the circumferential direction on the sliding surface. It is a body.
  • a plurality of the groove portions be formed in the sliding surface in parallel or in a staggered manner in a direction along the center line.
  • FIG. 4 is a cross-sectional view taken along the line AA of FIG. It is an expanded view of B arrow of FIG.3 (b). It is C arrow line view of Fig.4 (a). It is the elements on larger scale of the groove part of Fig.4 (a). It is the elements on larger scale of the 1st modification of the slot of Drawing 4 (a).
  • FIG. 5 is a cross-sectional view taken along the line F-F in FIG. 4A and is a conceptual diagram illustrating a generation state of dynamic pressure in the slide bearing. It is an expanded view of the 1st modification of the bearing part of Fig.4 (a). It is an expanded view of the 2nd modification of the bearing part of Fig.4 (a). It is the elements on larger scale of the groove part of Fig.8 (a). It is front sectional drawing of the slide bearing which is a 2nd aspect of this invention.
  • FIG. 10 is a cross-sectional view taken along the line DD of FIG. 9 (a). It is front sectional drawing of the sink roll and slide bearing provided with the axial part which is the 3rd aspect of this invention. It is the elements on larger scale of the groove part of Fig.4 (a). It is a top view which shows schematic structure of the measuring apparatus which measures the friction loss coefficient of a 1st groove
  • channel. 11 is a cross-sectional view taken along the line HH of FIG.
  • a hot metal plating apparatus having a slide bearing device incorporating a slide bearing as an example of a slide member for a slide bearing device according to the present invention (hereinafter sometimes referred to as “sliding member").
  • the molten metal plating apparatus 20 is immersed in a plating tank 22 in which a molten metal plating bath (hereinafter simply referred to as “plating bath”) 21 is stored and a surface layer portion of the plating bath 21.
  • plating bath a molten metal plating bath
  • Snout 23 for preventing oxidation of the steel plate W introduced into the plating bath 21, the sink roll 27 disposed in the plating bath 21, and the upper side of the sink roll 27 within the plating bath 21.
  • the external driving force is not applied to the sink roll 27 itself, and is driven counterclockwise as shown by the arrow E by the frictional force due to the contact with the traveling steel plate W.
  • the support roll 28 is also typically a drive roll connected to an external motor (not shown). There is also a non-drive type in which no external driving force is applied to the support roll 28.
  • the sink roll 27 and the pair of support rolls 28, which are rolls for a molten metal plating bath, are each rotatably supported by the slide bearings 1 and 1 attached to the frames 24 and 25 and always integrated in the plating bath 21 integrally. Be soaked.
  • the steel plate W obliquely enters the plating bath 21 through the snout 23 and is allowed to change its traveling direction upward through the sink roll 27.
  • the steel plate W rising in the plating bath 21 is sandwiched between the pair of support rolls 28, and the pass line is maintained, and warpage and vibration are prevented.
  • the gas wiping nozzle 26 sprays high-speed gas onto the steel plate W coming out of the plating bath 21 and uniformly adjusts the thickness of the molten metal plating attached to the steel plate W by the gas pressure of the high-speed gas.
  • the steel plate W to which the molten metal plating has been applied can be obtained.
  • FIG. 2 is a front view showing a part of the sink roll and slide bearing of FIG. 1 in cross section
  • FIG. 3 (a) is an enlarged cross section of the slide bearing of FIG. 1
  • FIG. 3 (b) is FIG. It is AA sectional drawing of (a).
  • 4 (a) is a developed view of arrow B in FIG. 3 (b)
  • FIG. 4 (b) is a arrow C in FIG. 4 (a)
  • FIG. 5 (a) is FIG. 4 (a).
  • FIG. 6 is a cross-sectional view taken along the line F--F of FIG. 4A and is a conceptual view for explaining a generation state of dynamic pressure in the slide bearing.
  • the sliding part 27c of the axial part not shown is also displayed in FIG. 4 (a) for understanding.
  • the slide bearing device is configured by a combination of the shaft portion 27b of the sink roll 27 and the slide bearing 1 including a bearing portion sliding with the shaft portion 27b, including the second and third embodiments described below.
  • a slide bearing device for supporting a sink roll will be described below as an example, the slide bearing and the shaft portion incorporated in the slide bearing device can also be applied to a support roll.
  • the right side sliding bearing 1 and the left side sliding bearing 1 shown in FIG. 2 are the same, the configuration of the right side sliding bearing 1 will be described (a sliding bearing which is a sliding member of the second embodiment described below, The same applies to the shaft portion which is the sliding member of the third aspect).
  • the sink roll 27 having the shaft portion 27b which is a sliding member constituting the slide bearing device will be described with reference to FIGS. 2 and 3 (a).
  • the sink roll 27 has a body 27a having a substantially cylindrical shape and an outer appearance having an outer peripheral surface with which a steel plate traveling in a plating bath contacts for direction change, and is coaxial with the body 27a.
  • the disposed shaft portions 27 b extend from both ends of the trunk portion 27 a in a direction along the center line I of the trunk portion 27 a serving as the rotation center (hereinafter may be referred to as a center line direction).
  • the shaft portion 27b is provided with a substantially cylindrical sliding portion 27c having an outer peripheral surface formed with a predetermined radius around the center line I on the opposite side to the trunk portion 27a in the center line direction.
  • the outer peripheral surface is a sliding surface 27k that slides on the sliding surface 1k of the slide bearing 1.
  • reference numeral 27d denotes a thrust receiving portion for supporting the sink roll 27 in the center line direction.
  • the end of the thrust receiving portion 27d be a convexly curved R surface as illustrated.
  • the material constituting the body 27a and the shaft 27b of the sink roll 27 is not particularly limited as long as it is a material having low chemical reactivity with the plating bath and high corrosion resistance, but as described in detail below, it is particularly suitable for the plating bath It is desirable to form the sink roll 27 with a ceramic excellent in corrosion resistance. On the other hand, ceramics have lower thermal conductivity and fracture toughness than metals. Therefore, when the sink roll 27 is made of ceramics, there is a possibility that the body 27a and the shaft 27b may be broken due to rapid heat and rapid cooling at the time of immersion in a plating bath heated to a high temperature and at the time of pulling up. is there.
  • the body 27a and the shaft 27b are formed into a cylindrical body having a hollow portion as shown in the figure and a direction crossing the center line I of the body 27a In the following, it may be referred to as “radial direction.” It is preferable to use a form having a constant thickness, and for example, the outer peripheral surface or the inner peripheral surface of the shaft portion 27b and the corner portion of the end surface have a gentle R shape. It is desirable to do.
  • the external appearance of the part which contacts a steel plate should just be substantially cylindrical shape, and the trunk
  • drum 27a should be set as appropriate shape in consideration of prevention of adhesion of slag in a plating bath, adjustment of rotation balance, etc. do it.
  • the slide bearing 1 in which a bearing portion, which is a sliding member constituting the slide bearing device, is incorporated with the shaft portion 27b will be described.
  • the slide bearing 1 of the present embodiment has, as main components, a holding portion 1d attached to the tip of a pair of arms 24 extending into the plating bath 21 and a bearing portion 1a attached to the holding portion 1d.
  • the holding portion 1d formed of a metal such as stainless steel having relatively high corrosion resistance to the plating bath 21 is, as shown in FIG. It has a shaft insertion portion 1q extending from the bottom to the center.
  • the shaft insertion portion 1q has a substantially semicircular upper surface on the load side of the force shown by the arrow G, and has a left side surface 1g and a right side surface 1s extending downward from both ends, and the shaft portion The sliding portion 27c of 27b is inserted into the shaft insertion portion 1q.
  • the substantially fan-shaped, segment-shaped bearing portion 1a having a quarter (a part) of a cross section in the radial direction is a quarter of the annular portion.
  • the inner circumferential surface which is the surface of the two ridges 1b, has a strip 1b, and serves as a sliding surface 1k that slides on the sliding surface 27k of the shaft 27b.
  • the number of projections 1b may be one, but in order to prevent uneven wear of the sliding surface 1k in the centerline direction due to the inclination of the shaft 27b during operation, a plurality of projections should be provided. Is desirable.
  • the sliding surface 1k of the bearing portion 1a formed around the center line I with a predetermined radius preferably has a radius larger by 1.0 to 3.0 mm than the sliding surface 27k of the sliding portion 27c.
  • the plating bath 21 functions as a lubricating medium by being interposed at the sliding interface between the sliding surfaces 1k and 27k.
  • the shaft insertion portion 1q has a center line direction corresponding to the sectional view of the bearing portion 1a so as to open on the left side of the substantially semicircular upper surface 1r.
  • a substantially fan-shaped concave groove 1p extending in the shape of a circle is formed.
  • the bearing portion 1a inserted into and attached to the recessed groove 1p is fixed by the fixing member 1f from the center line direction, but in a fixed state, the sliding surface 1k of the bearing portion 1a is the upper surface 1r of the shaft insertion portion 1q. It is located more inward.
  • a step is provided between the sliding surface 1k of the bearing portion 1a and the upper surface 1r of the shaft insertion portion 1q, so that an arrow E is shown while sliding with the sliding surface 1k of the bearing portion 1a.
  • a fixed gap is formed between the sliding surface (peripheral surface) 27k of the sliding portion 27c rotating in the direction, and the top surface 1r and both side surfaces 1g and 1s of the shaft insertion portion 1q. Then, with the rotation of the sliding portion 27c, the plating bath 21 present at the sliding interface between the sliding faces 1k and 27k is discharged into the gap, and the plating bath 21 present in the gap is the sliding face 1k. And 27 k sliding interface.
  • the plating bath 21 present at the sliding interface between the sliding surfaces 1k and 27k is successively replaced, so that, for example, high hardness micro foreign matter such as so-called dross which is a reactant of the plating bath 21 Staying at the interface is suppressed.
  • the bearing portion 1a having a groove portion described later in this manner, the wear of the bearing portion 1a and the shaft portion 27b can be more effectively reduced.
  • a sufficient plating bath 21 be present in the previous stage of the bearing portion 1a, as shown in FIG.
  • the pouring basin 1h of this embodiment is held as described above with the exposed upper surface 1r formed outward in the circumferential direction of the end 1i of the bearing 1a attached to the holding portion 1d.
  • the upper surface 1r of the holding portion 1d is directed to the sliding surface 1k of the bearing portion 1a, preferably. It is desirable to form an inclined surface 1x which is inclined at an inclination angle of 5 to 85 degrees, preferably 30 to 60 degrees with respect to the horizontal direction.
  • the bearing portion 1a is inserted and fixed in the recessed groove 1p provided in the holding portion 1d as described above, it enters the insertion gap between the recessed groove 1p and the bearing portion 1a Since the plating bath 21 is a molten metal, it may solidify after removing the slide bearing 1 from the plating bath 21 and may damage the bearing portion 1a. Therefore, a seal portion is provided to prevent the plating bath from entering the insertion gap between the bearing portion 1a and the recessed groove 1p, or a gap or a groove portion is provided so that the plating bath can be easily discharged when the slide bearing 1 is taken out. Is preferable.
  • reference numeral 1e denotes a thrust receiver disposed at a position opposed to the end of the shaft portion 27b in a state where the sliding portion 27c is disposed in the shaft insertion portion 1q.
  • the thrust receiver 1 e contacts the thrust receiver 27 d of the shaft portion 27 b of the sink roll 27 moving in the center line direction during operation to position the sink roll 27 in the center line direction.
  • the groove 1c of this embodiment is a first groove 1m
  • Each of the first groove 1m and the second groove 1n has a connecting recess 1L connecting the second groove 1n and the inner end (one end) of each of the first groove 1m and the second groove 1n
  • the outer end (the other end) of the is an opening 1 u ⁇ 1 v having an open end.
  • the direction perpendicular to the flow direction of the plating bath may be called the latitudinal direction), which means a range of 10 mm from the other end (outer end) that is the open end
  • “Inner end portion” refers to a range of 10 mm from one end (inner end).
  • the groove portion 1c of this aspect is formed on the sliding surface 1k which is the inner peripheral surface of the protruding portion 1b
  • the groove portion 1t having a concave shape is formed on both sides of the protruding portion 1b in the center line direction. It is arranged. That is, as shown in FIG. 4 (b) which is a CC arrow view of FIG.
  • the bearing portion 1a is disposed at one end of the sliding surface 1k in the center line direction and the sliding surface
  • the first side 1x directly or indirectly intersects with 1k
  • the second side 1y disposed at the other end of the sliding surface 1k and directly or indirectly intersecting with the sliding surface 1k
  • the opening 1u of the first groove 1m has an open end opening to the first side 1x
  • the opening 1v of the second groove 1n has an open end opening to the second side 1y .
  • the openings 1u and 1v of each of the first groove 1m and the second groove 1n thus arranged in the projection 1b each have an opening end through which the plating bath can directly flow into the groove 1c.
  • connection recess is a concave that is connected at the inner end (one end) of each of the groove-shaped first groove and the second groove and that communicates with both grooves. It is an element. Specifically, as shown by hatching in FIG. 5 (a) which is an enlarged view of the groove 1c-1 of FIG.
  • the first groove 1m in the case of the groove 1c of the present embodiment in which the sliding member constitutes the bearing portion 1a, as shown in FIG. 5A, in the rotation direction of the shaft portion indicated by the arrow E, the first groove 1m
  • the openings 1u and 1v of each of the second groove 1n and the second groove 1n are both disposed rearward of the connecting recess 1L.
  • the openings 1u and 1v of the first groove 1m and the second groove 1n are disposed rearward of the connecting recess 1L in the rotational direction of the shaft portion.
  • the flow of the plating bath (lubricating medium) flowing in the same direction so as to be dragged along with the rotation of the shaft in the rotation direction E is the opening of each of the openings 1u and 1v as indicated by the arrows in the groove. It smoothly flows into the first groove 1m and the second groove 1n through the ends, and then merges at the connection recess 1L and flows out from the narrow gap of the sliding interface. Then, the flow speed of the plating bath changes rapidly in the connection recess 1L, a dynamic pressure is generated on the connection recess 1L, and the contact pressure with the bearing 1a is reduced by supporting the shaft by the dynamic pressure. The shaft will rotate.
  • the plating bath that has flowed into the groove 1c with the rotation of the shaft can easily flow into the first groove 1m and the second groove 1n through the openings 1u and 1v, and a sufficient amount of plating bath is connected Join in the recess 1L.
  • higher dynamic pressure is generated in the connection recess 1L as compared with the case where the outer ends of the first groove 1m and the second groove 1n are closed ends, which is the configuration of the prior art disclosed in Patent Document 1 above. Do.
  • the disturbance of the flow of the plating bath (lubricant medium) flowing in the groove portion 1c is small as shown in the following experimental example, and the dynamic pressure generated in the connection concave portion 1L is stabilized. It is possible to suppress the frictional wear due to the contact of the shaft portion and the bearing portion.
  • the friction loss coefficient of at least one of the groove 1m and the second groove 1n is desirably 0.01 to 0.05.
  • This kinematic viscosity corresponds to the kinematic viscosity of a plating bath formed by melting metallic zinc or metallic aluminum which functions as a lubricating medium in the slide bearing of this embodiment.
  • a plating bath heated to a high temperature may be used directly as a liquid to be subjected to the test, but oil, water, an organic solvent, etc. adjusted to have the above-mentioned dynamic viscosity at room temperature are used instead of the plating bath. It is also good.
  • FIG. 11 (a) is a plan view showing a schematic configuration of the measuring apparatus and FIG. 11 (b) which is a HH cross-sectional view of FIG. 11 (a).
  • . 11 (a) is a partially enlarged view of a developed view of a sliding surface 1k originally formed in an arc shape, as in FIG. 4 (a).
  • FIG. 11 shows the case of measuring the friction loss coefficient of the first groove 1m of the groove portion 1c, but the friction loss coefficient of the second groove 1n can be basically measured in the same manner.
  • the friction loss coefficient measuring device 70 is a stainless steel sealing member 70a disposed so as to include one groove portion 1c formed in the sliding surface 1k in plan view.
  • a supply means 70d connected to the sealing member 70a via a conduit 70e connected to connection ports 70g and 70h formed on both sides of the sealing member 70a so as to respectively communicate with the openings 1u and 1v of the groove portion 1c ing.
  • the supply means 70d is stored in a tank that contains a liquid whose temperature and the like are controlled so that the liquid to be tested maintains a predetermined viscosity, and the pressure and flow rate are controlled. It is comprised from the pump etc. which supply a liquid at a predetermined flow rate.
  • the sealing member 70a has a top plate 70k arranged in the centerline direction, and side plates 70L and 70m extending downward from both sides of the top plate 70k.
  • the bottom surface 70f of the top plate 70k is disposed in intimate contact with the sliding surface 1k
  • the inner surface of the side plates 70L and 70m is disposed in intimate contact with the side surfaces 1x and 1y of the sliding surface 1k.
  • a seal member such as an O-ring may be disposed at an appropriate position on the bottom surface 70f of the top plate 70k and the inner surface of the side plates 70L and 70m to ensure sealing of the groove portion 1c.
  • connection ports 70i and 70j capable of communicating with the first groove 1m in a state where the sealing member 70a is disposed with respect to the groove portion 1c
  • the pressure gauges 70b and 70c are connected to the connection ports 70i and 70j, respectively, at the ends of the first groove 1m.
  • the two pressure gauges 70b and 70c measure the pressure on the inlet side and the outlet side of the fluid flowing in the first groove 1m when the liquid is supplied from the supply means 70d and flows in the first groove 1m. It is a thing.
  • the pressure gauge 70b for measuring the pressure on the inlet side is a connection port 70i in which the distance M2 in the longitudinal direction from the outer end of the first groove 1m to the center is 5 mm, which is the center of the opening 1u.
  • the longitudinal distance M2 from the inner end of the first groove 1m to the center is located at the center of the inner end (one end) It is connected and disposed at the 5 mm connection port 70j.
  • the pressure gauges 70b and 70c used in the present measuring device 70 are not particularly limited, and may be appropriately selected from commercially available pressure gauges according to the liquid and other measurement conditions to be provided for measurement.
  • a flow velocity meter 70n that measures the flow velocity of the liquid (fluid) flowing in the longitudinal center of the first groove 1m. Is arranged.
  • the flow velocity meter 70 n used in the present measuring device 70 is not particularly limited and may be appropriately selected from commercially available flow velocity meters according to the liquid and other measurement conditions to be used for measurement, for example, using an ultrasonic wave velocity meter Can.
  • the sealing member 70a into which the pressure gauges 70b and 70c are incorporated is disposed with respect to the predetermined groove portion 1c having the first groove 1m to be measured.
  • the supply means 70d is activated at a predetermined flow rate and pressure to supply the liquid to be tested to the groove 1c.
  • Friction loss coefficient ( ⁇ ) (((P1-P2) ⁇ 2 g) / v 2 ) ⁇ d here, P1: Inlet pressure (unit: MPa) P2: Outlet pressure (unit: MPa) g: Gravity acceleration (unit: m / s 2 ) v: Flow velocity (unit: m / s) d: Equivalent pipe diameter of first groove 1m (unit: m) It is.
  • the equivalent pipe diameter d is calculated by the following equation.
  • the groove depth gradually increases from the opening 1u toward the connection recess 1L, or the second modification described with reference to FIG.
  • the groove width is changing as in the case of the groove 2c of 1
  • the cross-sectional dimension or the cross-sectional shape of the first groove 1m changes in the longitudinal direction, calculate the average value in the longitudinal direction for both S1 and S2 below. You can substitute that value.
  • the arithmetic average roughness Ra according to JIS-B0601 of the surface of the groove portion 1c in which the minute unevenness 1o is disposed is desirably 0.3 to 15.0 ⁇ m.
  • the surface roughness Ra is less than 0.3 ⁇ m or more than 15.0 ⁇ m, the effect of the above-described micro unevenness 1 o may not be sufficiently exhibited in any case, and the effect of suppressing the wear may be low.
  • the surface roughness Ra of more than 15.0 ⁇ m results in unevenness. Because of the notch effect, cracks are likely to occur due to the action of thermal stress, which may lead to the breakage of the bearing portion 1a.
  • the minute asperity 1o is formed on the surface of at least one of the first groove and the second groove, it is desirable that the minute unevenness 1o be disposed on the entire groove 1c including the connecting recess 1L.
  • the surface roughness of the groove 1c is gradually roughened from the openings 1u and 1v toward the connecting recess 1L within the range of the surface roughness Ra, and the first groove 1m is formed.
  • the arithmetic average roughness Ra according to JIS-B0601 of the surface of the opening 1u ⁇ 1v of the second groove 1n is 0.3 to 5.0 ⁇ m, and the inner end of the first groove 1m and the second groove 1n More preferably, the roughness Ra at one end portion) is 5.0 to 15.0 ⁇ m. If the surface roughness at the openings 1u and 1v is rough, foreign matter such as dross contained in the plating bath in which the flow is disturbed immediately after flowing into the groove 1c is easily captured by the minute unevenness 1o, and the openings 1u and 1v It is desirable to reduce the surface roughness Ra to 0.3 to 5.0 ⁇ m because there is a possibility of clogging.
  • the surface roughness Ra at the inner end (one end) of the first groove 1m and the second groove 1n is 5.0 to 15.0 ⁇ m. It is desirable to do. Furthermore, the surface roughness Ra of the connection recess 1L is also preferably 5.0 to 15.0 ⁇ m.
  • micro-concavities and convexities 1o may be formed on either the bottom surface or the side surface of the groove portion 1c on the surface having a large contact area with the plating bath, but it is preferable to form them on both surfaces.
  • the groove part 1c of this aspect has comprised substantially U-shape in planar view at the time of developing and seeing the sliding face 1k.
  • the linear first groove 1m which is extended so that the cross-sectional shape in the short direction is substantially rectangular, and the groove width is the same, has a sliding surface 1k that is inclined downward to the right.
  • a second groove 1n disposed on the left side and having the same groove width and groove depth as the first groove 1m is disposed on the right side of the sliding surface 1k so as to be inclined downward to the left.
  • the two are in line symmetry with respect to a straight line F which divides.
  • the connecting recess 1L having a substantially rectangular cross section connecting the inner end portions of the first groove 1m and the second groove 1n has an arc shape disposed rearward in the rotational direction E of the shaft portion. It has a side r1 and a side r2 having a circular arc shape disposed forward.
  • the cross-sectional shape of the groove part 1c is not limited to a substantially rectangular shape, For example, it can be set as various shapes, such as a substantially semicircular shape, a substantially V shape, or a substantially U shape.
  • the sides h1 and h2 present behind each of the first groove 1m and the second groove 1n are both ends of the side r1 of the connecting recess 1L at each inner end (one end)
  • the sides h3 and h4 present in front of each of the first groove 1m and the second groove 1n are joined to both ends of the side r2 of the connecting recess 1L at each inner end (one end), thereby
  • the “sides” of the first groove and the second groove described above are the inner end (one end) and the outer end (the other end) of the side surfaces of the first groove and the second groove in plan view. And the straight line connecting the same (the same applies to the sides of the first groove and the second groove of the other form described below). Therefore, when the side surfaces are linear as in the first groove 1m and the second groove 1n shown in FIG. 5A, the upper edges of the side surfaces of the first groove 1m and the second groove 1n And the sides will match.
  • the groove width and groove depth of the first groove 1m and the second groove 1n are appropriately set, but, for example, when the curvature radius of the sliding surface 1k is 40 to 80 mm, the groove width is approximately 0.5 to The depth is about 2.0 mm, and the groove depth is about 0.1 to 0.5 mm.
  • the groove width and the groove depth of the first groove and the second groove, and the width and the depth and the shape of the connection recess of the first groove and the second groove are plated It refers to the size and shape in the direction perpendicular to the flow direction of the bath.
  • the groove width t1 and the groove depth of each of the first groove 1m and the second groove 1n are almost the same, but may be different. Furthermore, the lengths of the first groove 1m and the second groove 1n do not have to be the same, and may be different. Further, if each of the openings 1u and 1v of the first groove 1m and the second groove 1n is disposed rearward of the connection recess 1L, the openings 1u and 1v of the first groove 1m and the second groove 1n can be used.
  • the inclination angles j1 and j2 based on the straight line F are not limited, but the crossing angles j1 and j2 are about 5 to 85 °, preferably about 30 to 60 °. Furthermore, the first groove 1m and the second groove 1n do not have to be disposed in line symmetry, and the inclination angles j1 and j2 may be different from each other.
  • the shape of the groove portion 1c in plan view is not limited to the substantially U shape shown in FIG. 5 (a), but may be the shape shown in FIGS. 5 (b) to 5 (e) which is the first to fourth modifications. Can.
  • FIGS. 5B to 5E the same components as those of the groove portion 1c of FIG. 5A are denoted by the same reference numerals, and the detailed description thereof is omitted.
  • the groove portion 5c according to the first modification in which the above-mentioned micro unevenness is formed on the surface has a substantially V shape. That is, the linear first groove 5m extended so as to have the same groove width is disposed on the left side of the sliding surface 1k so as to incline downward to the right, and the groove width and the groove depth The second grooves 5n, which are identical to each other, are disposed on the right side of the sliding surface 1k so as to incline downward to the left. Then, in the groove portion 5c of this aspect, the connection concave portion 5L is formed by directly connecting the first groove portion 5m and the second groove portion 5n. Also in the substantially V-shaped groove portion 5c, as shown by hatching in FIG.
  • connection concave portion 5L is formed of each of the first groove 5m and the second groove 5n in the rotational direction E of the shaft portion. It becomes an area surrounded by straight lines h5 and h6 drawn perpendicularly to the side faces h1 and h2 and the sides of the groove 5c so as to pass through the inner ends of the sides h1 and h2 present behind.
  • the inclination angles of the first groove 5m and the second groove 5n are different based on a straight line F dividing the sliding surface 1k into two in the central line direction. Therefore, in the rotational direction E of the shaft portion, the openings 1u and 1v of each of the first groove 5m and the second groove 5n are both disposed rearward of the connecting recess 5L, but their positions are It is different. The openings 1u and 1v of the first groove 5m and the second groove 5n are disposed rearward of the connecting recess 5L in the rotational direction E of the shaft also by the groove 5c. Since minute asperities are formed on the surface, the same function and effect as the groove portion 1c can be obtained.
  • the groove portion 6c according to the second modification in which the above-mentioned micro unevenness is formed on the surface has a substantially W shape. That is, the groove 6c has a pair of substantially V-shaped V-grooves 6m and 6n arranged in line symmetry via a straight line F dividing the sliding surface 1k into two in the center line direction.
  • the left V groove 6m has a left groove 6m-1 that slopes downward to the right and a groove 6m-2 that slopes to the left, of which the outer end is the opening 1u. Functions as a first groove.
  • the right V groove 6n also has a left groove 6n-1 that slopes to the lower right and a groove 6n-2 that slopes to the lower left, of which the outer end is the opening 1v. -1 functions as a second groove.
  • the inner end portion (one end portion) of each of the first groove 6m-1 and the second groove 6n-1 Is an aspect of being indirectly coupled by the coupling recess 6L-1 or 6L-2.
  • the plating bath flowing from the opening 1v of the second groove 6n-1 is the second groove 6n-.
  • the groove 6n-2 and the groove 6m-2 sequentially flow in the groove 6c, reach the left connection recess 6L-1, and flow from the opening 1u of the first groove 6m-1 and the connection It joins in the recessed part 6L, and generates a dynamic pressure.
  • the V groove 6n on the right side as indicated by the broken line arrow in the groove
  • one groove 6c in this embodiment has two connection recesses 6L-1 and 6L-2 in the center line direction. It is possible to more effectively suppress the friction and wear of the shaft portion and the bearing portion.
  • the groove 8c according to the third modification in which the minute unevenness is formed on the surface is a first groove 1m and a second groove having the same shape and arrangement as the groove 1c. And a connecting recess 8L extending in the direction of the center line connecting the inner end of each of the first groove 1m and the second groove 1n.
  • the openings 1u and 1v of the first groove 1m and the second groove 1n are disposed rearward of the connecting recess 8L in the rotational direction E of the shaft also by the groove 8c. Since micro-concavities and convexities are formed on the surface, the same function and effect as those of the groove 1c can be obtained. Further, with respect to the groove shown in FIGS. Since the length is long, it is possible to more effectively suppress the friction and wear of the shaft portion and the bearing portion.
  • the groove portion 9c according to the fourth modification in which the above-mentioned micro unevenness is formed on the surface is a first groove 9m and a second groove 9m in which both side surfaces are curved in plan view.
  • the first groove 9m is disposed on the right side of the sliding surface 1k so as to incline downward to the left
  • the second groove 9n is disposed on the left side of the sliding surface 1k so as to incline downward to the right It is done.
  • the first groove 9m and the second groove 9n are directly connected to each other as in the substantially V-shaped groove 5c shown in FIG. Is formed.
  • the range of the connection recess 9L is determined as follows. That is, in the rotational direction E of the shaft portion, the inner end (one end) and the outer end (the other end) of the rear side are connected by a straight line, and a side h1 is set, and the inner end and the outer end of the front side are straight Set the tie side h3. Further, the sides h2 and h4 which are straight lines are set similarly for the second groove 9n. Then, like the groove 5c of FIG. 5 (b), the connecting recess 9L of the groove 9c is formed by the first groove 9m and the first groove 9m in the rotational direction E of the shaft as shown by hatching in FIG.
  • the grooves 1c-1 to 5 and the grooves 1c-6 to 10 are arranged at equal intervals (angles), but they may be arranged at unequal intervals, and the grooves 1c-
  • the groove width and groove depth of each of the first groove 1m and the second groove 1n of each of 1 to 5 and the groove portion 1c-6 to 10 and the crossing angle of both do not have to be all the same, It may be set appropriately in consideration of pressure distribution, dross retention and other conditions.
  • the groove portions 1c-1 to 5 formed on the sliding surface 1k of the left projecting portion 1b and the groove portion 1c formed on the sliding surface 1k of the right projecting portion 1b are arranged in parallel, that is, the groove portions 1c serving as a pair are at the same position in the circumferential direction, and the connection recesses overlap.
  • FIG. 6 is a cross-sectional view taken along the line FF of FIG. Note that, for the sake of understanding, FIG. 6 includes a sliding portion 27 c (not shown) in FIG. 4.
  • FIG. 6 includes a sliding portion 27 c (not shown) in FIG. 4.
  • FIG. 6 includes a sliding portion 27 c (not shown) in FIG. 4.
  • the sliding interface 1w of sliding surfaces 1k and 27k is The gap is wide, and a dynamic pressure is generated at a pressure whose maximum pressure is lower than the dynamic pressure G5, which is a pressure distribution shown by the diagrams of G2 and G4.
  • the dynamic pressures G1 and G5 generated as they go away from the top X decrease.
  • the sliding portion (shaft portion) 27c can be sufficiently supported to exert a lubricating effect.
  • the sliding portion 27c is surrounded by the dynamic pressure G1 to G5 generated by the plurality of groove portions 1c-1 to 5 (1c-6 to 10) formed in the circumferential direction.
  • the sliding portion 27c can be supported even when a large load or a fluctuating load is applied, it is preferable.
  • FIG. 7a A developed view of the inner surface of a bearing 7a which is a first modification of the bearing 1a is shown in FIG.
  • the groove formed on the sliding surface of the left ridge and the groove formed on the sliding surface of the right ridge are viewed from the center line direction.
  • the pair of groove portions are at the same position in the circumferential direction, and the connection recesses are arranged so as to completely overlap, but as shown in FIG. 7, they are arranged on the sliding surface 1k of the left ridge 1b.
  • the grooves 7c-6 to 10 arranged on the sliding surface of the right ridge 1b with respect to the grooves 1c-1 to 5c are circumferentially shifted, and the connecting recesses of the grooves 1c are paired by L3 in the circumferential direction Even if 1 L partially overlaps, the same effect as described above can be obtained.
  • the groove depth of the groove portion 1c of this embodiment is the groove depth of the outer end (other end) of the openings 1u and 1v of the first groove 1m and the second groove 1n.
  • the groove depth of the inner end (one end) of the inner end portion of the first groove 1m and the second groove 1n is d2, and specifically, the bottom surface of the groove 1c so that d2> d1. Is formed to be inclined from the openings 1 u and 1 v toward the connecting recess 1 L.
  • the groove depth of the openings 1 u and 1 v shallow, it is possible to suppress the inflow of minute foreign substances such as dross into the groove 1 c, which is preferable.
  • the difference between the groove depths of the openings 1u and 1v of the first groove 1m and the second groove 1n and the inner end is preferably about 0.2 to 0.5 mm.
  • the inner end portions of the first groove 1m and the second groove 1n may be extended as it is, and the groove depth of the connection recess 1L may be deeper than the inner end portion.
  • alumina, zirconia, silica and other oxides are selected according to the thermal shock resistance, corrosion resistance and the like at the request of the atmosphere and other operating conditions in which the bearing portion 1a is used. Ceramics, zirconium boride, titanium boride, boron boride and other boride-based ceramics, silicon carbide, boron carbide and other carbide-based ceramics, or inorganic materials such as carbon may be used. And since the bearing part of this aspect is rapidly heated and rapidly cooled at the time of immersion to a plating bath and taking out, it is necessary to be excellent in thermal shock resistance.
  • silicon nitride, aluminum nitride and other nitride ceramics having high thermal conductivity are preferable as ceramics constituting the bearing portion, and they have high corrosion resistance and wear resistance to the molten metal which is a plating bath.
  • a silicon nitride-based ceramic containing sialon excellent in high temperature strength is particularly preferred.
  • the shaft portion of the sink roll 27 of this embodiment is made of ceramics, the same applies to the slide bearing which is the sliding member of the second embodiment described below and the ceramics which constitutes the shaft portion which is the sliding member of the third embodiment. is there.
  • the bearing portion 1a As a method of forming the groove portion 1c in the bearing portion 1a shown in FIG. 4, when the bearing portion 1a is made of metal, cutting, electric discharge machining, and other known processing methods can be applied. On the other hand, in the case where the bearing portion 1a is made of ceramic which is a hard-to-cut material, for example, a method of forming the groove portion 1c in a compact before sintering and then sintering it; It is possible to apply a method of forming a groove 1c by removing with a grindstone.
  • a mask having an opening corresponding to the groove portion 1c in the sliding surface 1k of the bearing portion 1a after sintering.
  • a laser preferably a fiber laser having a high energy density of a laser spot It is desirable to adopt a method such as a method that can easily create the minute unevenness 1 o.
  • FIG. 8 is a developed view of the sliding surface 1k of the bearing 2a according to the second modified example.
  • the same components as those of the slide bearing 1 and the shaft portion 27b of the first embodiment are given the same reference numerals, and the detailed description will be omitted (second and third embodiments described later) The same applies to the sliding members of
  • the bearing 2a according to the second modification has a substantially U-shaped groove 2c and is basically configured in the same manner as the bearing 1a, but the arrangement of the groove 2c and the first groove It differs from the bearing portion 1a in terms of the shapes of 1 m and the second groove 2n. First, the arrangement of the grooves 2c will be described.
  • connection recess 1L of each groove 2c formed in each of the projecting ridges 1b and 1b is arranged so as not to overlap.
  • the arrangement interval of the groove portions 2c in the circumferential direction is greater than the groove width of the first groove 2m and the second groove 2n. This is particularly effective when the size is small, in which case the dynamic pressure generated by the grooves 2c-1 to 3 formed in the left ridge 1b and the groove 2c-4 and 5 formed in the right ridge 1b are also effective.
  • the generation distribution of the dynamic pressure viewed from the centerline direction can be made similar to the distribution shown in FIG.
  • the groove width t4 at the inner end of the inner end is narrower than the groove width t3 at the outer end of the opening 2u, and the groove width gradually narrows from the outer end toward the inner end.
  • the second groove 2n is disposed on the left side of the sliding surface 1k so as to be inclined and has the same groove width and groove depth as the first groove 2m is disposed on the right side of the sliding surface 1k so as to be inclined downward to the left. Both are in a symmetrical relationship with respect to a straight line F which divides the sliding surface 1k into two in the center line direction.
  • the sides h1 and h2 present behind each of the first groove 2m and the second groove 2n are joined to both ends of the side r1 of the connecting recess 1L at each inner end
  • the sides h3 and h4 present in front of each of the first groove 2m and the second groove 2n are joined to both ends of the side r2 of the connecting recess 1L at each inner end (one end), and one groove portion 2c is It is configured.
  • the groove 2c of the bearing 2a according to the second modification has openings 2u and 2v having a groove width t3 wider than the groove width t4 of the inner end when viewed in a plan view. There is.
  • slide bearing 3 which is a sliding member of the 2nd mode which constitutes a slide bearing device
  • Drawing 9 (a) which is a front sectional view
  • Drawing 9 (b) which are DD sectional views of Drawing 9 (a)
  • the description will be made with reference to.
  • the sliding bearing 3 of the second aspect is different from the sliding bearing 1 of the first aspect in that the bearing portion 3a itself made of ceramic is the sliding bearing 3 and does not have a metal holding portion.
  • the configurations of the sliding surface 1k and the groove 1c are basically the same.
  • the slide bearing 3 (bearing portion 3a) of the second embodiment in which the sectional view along the center line I is substantially U-shaped is formed at the center in the center line direction. It has a hollow portion 3b, and has two ridges 1b juxtaposed in the center line direction so as to project inwardly toward the hollow portion 3b.
  • a plurality of groove portions 1c are formed at equal intervals along the circumferential direction of the sliding surface 1k on the sliding surface 1k, which is the inner peripheral surface of the annular ridge 1b.
  • the sliding portion 27c is inserted from the left side in FIG. 9A into the hollow portion 3b having the sliding surface 1k whose inner diameter is larger than the outer diameter of the sliding portion 27c of the shaft portion.
  • the slide bearing 3 of this embodiment receives the end face of the shaft portion of the sink roll that moves in the horizontal direction during operation to receive the horizontal position.
  • the hollow portion 3b may be extended to the right end without providing the bearing end 3d.
  • the left end of the hollow portion 3b to the bearing end 3d is used to prevent foreign matter such as dross from staying in the slide bearing 3.
  • a plurality of groove portions 1c are provided for each section of the sliding surface 1k indicated by reference numerals F1 to F4 divided by an angle of 90 °. It is done.
  • the shape and the arrangement position of the groove part 1c in each section may be the same or different.
  • the sliding bearing 1 is rotated clockwise by 90 ° and the sliding surface 1k of the next section F2 is used and the sliding surface 1k of the section F2 wears, the sliding of the section F3 and then the section F4 is performed similarly.
  • the moving surface 1k can be used, and the life of the slide bearing 3 can be extended, which is desirable.
  • the positions of the sections F1 to F4 of the slide bearing 3 are changed by setting the shape and the arrangement position of the groove portion 1c in the sections F1 to F4 corresponding to the operating conditions. It is possible to cope with the change of the operating condition by simply carrying out the process and to reduce the number of the slide bearings 3, which is desirable from the viewpoint of cost.
  • FIG. 10 is a front sectional view thereof.
  • the shaft 47b of the present embodiment in which the two projections 47e, which are sliding members, are integrally attached via the recess 4t, on the other hand, sinks It is also the axial part 47b extended in the centerline direction from the both ends of the trunk
  • the axial part 47b of this aspect to which the protruding part 47e was integrally attached is comprised with the same ceramics as the protruding part 47e
  • at least the protruding part 47e which is a sliding member is comprised with ceramics It is enough if it is done. That is, the sliding member may be separately attached to the shaft.
  • a cylindrical body made of ceramics provided with a projecting portion may be fitted and fixed to a shaft made of metal, for example, and two annular projecting portions made of ceramic are prepared. For example, this may be inserted into and fixed to a shaft made of metal.
  • the slide bearing 4 (bearing portion 4a) of this embodiment basically has the same configuration as the slide bearing 1 of the slide bearing device described above, but no groove is formed on the sliding surface 1k.
  • the shaft portion 47b rotating in the direction of the arrow E and having a cylindrical appearance as described above has the two ridges 47e juxtaposed in the center line direction so as to project on the outer peripheral surface thereof. doing.
  • a plurality of grooves 4c are formed at equal intervals along the circumferential direction of the sliding surface 47k on the sliding surface 47k which is the outer peripheral surface of the two ridges 47e.
  • the groove 4c of this embodiment is substantially U-shaped basically like the groove 1c of the first embodiment.
  • the sliding member of this embodiment has the shaft portion, and the first groove 1m and the second groove 1n are formed in the rotation direction E of the shaft portion.
  • Each of the openings 1u and 1v is disposed forward of the connecting recess 1L.
  • the dynamic pressure is continuous continuously at the sliding interface between the sliding surface 47k of the sliding unit 47c and the sliding surface 1k of the sliding bearing 4
  • the grooves 4c are offset in the adjacent rows when viewed in the direction of the center line I, that is, the grooves 4c are arranged in a zigzag.
  • FIG. 10 (a) when the shaft 47b is viewed from the direction of the center line I, the left side in the circumferential direction so that the grooves 4c in adjacent rows do not overlap.
  • the groove 4c of the protrusion 47e on the right side is disposed between the grooves 4c formed in the protrusion 47e.
  • the shape, size, and arrangement of the groove 4c are arbitrary as in the case of the groove 1c in the slide bearing 1 as long as the above effects are exhibited. Further, the whole of the shaft portion 47b does not necessarily have to be a substantially cylindrical shape, as long as the portion where the sliding surface 47k corresponding to the sliding surface 1k of the slide bearing 4 is formed has a substantially cylindrical shape. . Therefore, as long as the slide bearing 4 can be rotatably supported, the shape of the shaft 47b in a cross-sectional view perpendicular to the center line I of the portion other than the sliding surface 47k has portions that do not constitute a circular shape. May be
  • Table 1 shows the shape in plan view of the groove portion and the dimensions of the first groove and the second groove prepared in each experimental example by the known sand blast method.
  • each of the first U-shaped groove 1c and the second U-shaped groove 1n in the rotational direction of the shaft portion has the substantially U-shaped groove 1c shown in FIG.
  • the openings 1u and 1v are both formed to be disposed rearward of the connection recess 1L.
  • the crossing angle of each of the first groove 1m and the second groove 1n with the straight line F is 45 ° in each of Experimental Examples 1 to 13 and 22 to 24, and is 85 ° in each of Experimental Example 14; In Experimental Example 15, it was 30 °.
  • the positions of the outer ends of the sides h3 and h4 of the first groove 1m and the second groove 1n are set 5 mm inward from the side surfaces 1x and 1y of the protruding portion 1b.
  • the outer ends of the first groove 1m and the second groove 1n were closed ends.
  • the numerical value described before "/" indicates the intersecting angle of the first groove 1m
  • the numerical value described later indicates the intersecting angle of the second groove 1n. (It is the same in the following other experimental examples).
  • the intersection angle of the first groove 6m-1 with the groove 6m-2 and the second groove 6n-1 was 90 °, and the groove width and the groove depth of the grooves 6m-2 and 6n-2 were the same as the groove 6m-2 of the first groove 6m-1.
  • the groove part 8c shown in FIG.5 (d) was formed so that the width
  • the groove 2c shown in FIG. 20 in which the groove 2c shown in FIG.
  • the groove width (t3) of the outer end of the opening 1u ⁇ 1v so that the groove width narrows from the opening 1u ⁇ 1v to the connecting recess 1L.
  • the groove width (t4) of the inner end of the inner end was 2.0 mm.
  • the groove width of the first groove 1m and the second groove 1n having a substantially rectangular cross-sectional shape in the width direction is 2.0 mm, and the groove depth is
  • the groove length (d1) of the outer end of the openings 1u and 1v is 0.3 mm so that the groove depth is increased from the openings 1u and 1v toward the connection recess 1L only in the experimental example 16;
  • the groove depth (d2) of the inner end of the inner end portion was 0.5 mm.
  • the width and the depth of the connection recess are the same as the groove width and the groove depth of the inner end of the inner end of the first groove and the second groove.
  • Example 21 in which the subject is a stem, a stem having the shape shown in FIG. 10A was manufactured.
  • the dimensions of each part are as follows.
  • each of the openings 1u and 1v of the first groove 1m and the second groove 1n is the U-shaped groove 4c shown in FIG. 10 (b) in the rotational direction of the shaft. Both were formed to be disposed forward of the connecting recess 1L.
  • the crossing angle of the first groove 1m and the second groove 1n of Experimental Example 21 the groove width and the groove depth of the first groove 1m and the second groove 1n are as shown in Table 1.
  • the surface roughness is an arithmetic mean roughness Ra determined in accordance with JIS-B0601.
  • both the first groove and the second groove have surfaces in the range set in the longitudinal direction in the range of 10 mm from the inner end of the outer end and the inner end of the opening.
  • the three arbitrary points of the above were measured with a laser type roughness measuring device (model: OLS 3000 manufactured by Olympus), and the average value was determined.
  • the same was applied to the surface roughness of the connection recess.
  • the surface roughness of the groove between the opening and the inner end is the surface roughness measured at the opening and the inner end.
  • the surface roughness of the groove between the opening and the inner end changes continuously from the opening to the inner end. It was
  • the friction loss coefficient of the first groove and the second groove of each experimental example was determined using the friction loss coefficient measuring device 70 described with reference to FIG.
  • the mineral oil which adjusted dynamic viscosity measured based on JISZ8803 to 4890 St was used, and it supplied to the groove part at the flow velocity of 0.5 m / s.
  • the friction loss coefficient confirmed in each experimental example is shown in Table 3.
  • a sliding bearing incorporating the bearing of each experimental example and a sink roll incorporating the shaft are both immersed in a hot dip galvanizing bath melted at 460 ° C., and the pressing force per unit area against the sliding surface is 98 MPa
  • the rotation speed of the shaft portion was used at an average of 60 rpm.
  • the amount of wear after one month of using the sliding surfaces of the bearing portion and the shaft portion of each experimental example is shown in Table 4.
  • the amount of wear of the bearing portion is the difference between the height of the bottom surface of the recess 1t and the sliding surface 1k shown in FIG.
  • the amount of wear on the shaft is the radius of the sliding surface before use and the sliding surface after 1 month of use, in micrometers, the circumference of the sliding surface before use and the sliding surface after 1 month of use Measured at various points in the axial direction and central axis direction, subtract the measured values at various points on the sliding surface after one month from the average values at various points on the sliding surface before use It was the amount of wear.
  • the amount of wear of the bearing and the shaft may be automatically measured using, for example, a laser-type length-measuring device disposed at a reference point. You may

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)
  • Coating With Molten Metal (AREA)

Abstract

Provided is a low-abrasion sliding member for a slide bearing device. An almost fan-shaped groove (1p) extending in a direction of a center line corresponding to a shape of a sectional view of a bearing portion (1a) is disposed at a shaft insertion portion (1q) so that an opening is made at a left side of an upper surface (1r) having an almost semicircular shape. The bearing portion (1a) inserted into the groove (1p) is fixed by a fixing member (1f) from the direction of the center line. In this fixed state, a sliding surface (1k) of the bearing portion (1a) is disposed further inward than the upper surface (1r) of the shaft insertion portion (1q). Since a step is disposed between the sliding surface (1k) of the bearing portion (1a) and the upper surface (1r) of the shaft insertion portion (1q), a gap is disposed between a sliding surface (outer circumferential surface, 27k) of a sliding portion (27c) which slides with the sliding surface (1k) of the bearing portion (1a) and rotates in the direction of an arrow (E) and both side surfaces (1g, 1s) and the upper surface (1r) of the shaft insertion portion (1q).

Description

すべり軸受装置用摺動部材Sliding member for sliding bearing device
 本発明は、液状の潤滑媒体を介して回転するすべり軸受装置を構成する摺動部材に関し、特に溶融金属が潤滑媒体として作用する溶融金属めっき浴に浸漬されるすべり軸受装置など溶融金属めっき装置に組み込まれる部材である摺動部材に好適な発明である。 The present invention relates to a sliding member constituting a slide bearing device that rotates through a liquid lubricating medium, and more particularly to a molten metal plating apparatus such as a slide bearing device in which molten metal is immersed in a molten metal plating bath acting as a lubricating medium. This invention is suitable for the sliding member which is a member to be incorporated.
 上記技術分野に係わる溶融金属めっき浴中ロールの軸受構造の一例が下記特許文献1に開示されている。この特許文献1には、「鋼帯を溶融金属中に浸漬させて連続的にめっき処理する装置の溶融金属めっき浴中ロールの軸受構造であってロールの回転軸および軸受のいずれか一方または双方の摺動負荷面の軸方向中央部に溝を付設した軸受構造において、回転軸の回転方向または軸受の摺動方向に開いた角度を有する屈曲部または湾曲部を有して両端部が閉鎖された溝(以下、中央溝という)が、回転方向及び/または摺動方向に複数列付設されていることを特徴とする溶融金属めっき浴中ロールの軸受構造」、が開示されている。そして、かかる溶融金属めっき浴中ロールの軸受構造によれば、「溶融金属めっき浴中ロールの軸受を、長期間にわたり安定して使用することができ、溶融金属めっき操業が安定化しコストも低減する。まためっき処理を高速化した場合でも低摩擦で安定した回転状態が得られる。かかる軸受構造により、安定した品質の溶融金属めっき製品を高効率に生産することが可能となる」、と記載されている。 An example of the bearing structure of a roll in a molten metal plating bath according to the above technical field is disclosed in Patent Document 1 below. According to this patent document 1, "the bearing structure of a roll in a molten metal plating bath of an apparatus for continuously immersing a steel strip in molten metal and plating treatment, and one or both of a rotary shaft and a bearing of the roll is used. In the bearing structure in which a groove is provided at the axial center of the sliding load surface, both ends are closed with a bending portion or a bending portion having an angle opened in the rotational direction of the rotating shaft or the sliding direction of the bearing. There is disclosed a bearing structure of a roll in a molten metal plating bath, characterized in that a plurality of grooves (hereinafter referred to as central grooves) are provided in a plurality of rows in the rotational direction and / or the sliding direction. And, according to the bearing structure of the roll in the molten metal plating bath, “the bearing of the roll in the molten metal plating bath can be used stably for a long period of time, and the molten metal plating operation is stabilized and the cost is reduced. Also, even when the plating process is speeded up, a low friction and stable rotational state can be obtained, and such a bearing structure makes it possible to efficiently produce a molten metal plated product of stable quality. ing.
特開2009-120890号JP, 2009-120890, A
 本発明は、上記特許文献1に記載の軸受構造に対し、更に低磨耗な改善されたすべり軸受用摺動部材を提供することを目的としている。 The object of the present invention is to provide a sliding member for a sliding bearing, which has been further reduced in wear and improved as compared with the bearing structure described in Patent Document 1 mentioned above.
 上記目的を達成する本発明の一態様は、回転体を回転自在に支持するすべり軸受装置の軸受部または軸部を構成する、少なくとも一の摺動面を有するすべり軸受装置用摺動部材であって、摺動面に形成された、第1の溝、第2の溝および当該第1の溝と第2の溝の各々の一端部を直接的または間接的に連結する連結凹部を有する溝部を備え、第1の溝および第2の溝の各々の他端部は、開口端を有する開口部であり、すべり軸受装置用摺動部材が軸受部を構成する場合には、軸部の回転方向において、第1の溝および第2の溝の各々の開口部は、いずれも、連結凹部より後方に配置されており、すべり軸受装置用摺動部材が軸部を構成する場合には、軸部の回転方向において、第1の溝および第2の溝の各々の開口部は、いずれも、連結凹部より前方に配置されており、さらに、溝部の表面には、微小凹凸が形成されていることを特徴とするすべり軸受装置用摺動部材である。上記溝部の平面視の形状は、略V字形状、略U字形状または略W字形状とすることができる。 One aspect of the present invention for achieving the above object is a sliding member for a sliding bearing device having at least one sliding surface, which constitutes a bearing portion or a shaft portion of the sliding bearing device rotatably supporting a rotating body. A groove having a first groove, a second groove, and a connection recess directly or indirectly connecting one end of each of the first groove and the second groove, formed in the sliding surface; The other end of each of the first groove and the second groove is an opening having an open end, and in the case where the sliding member for a sliding bearing device constitutes a bearing, the rotational direction of the shaft is In each of the first groove and the second groove, the opening of each of the first groove and the second groove is disposed rearward of the connection recess, and in the case where the sliding member for a sliding bearing device constitutes a shaft portion, the shaft portion In the direction of rotation, the openings of each of the first groove and the second groove both More is disposed forward further, the surface of the groove is a slide member for a sliding bearing device, characterized in that fine irregularities are formed. The shape of the groove portion in a plan view can be substantially V-shaped, substantially U-shaped or substantially W-shaped.
 なお、溝部に、JIS Z8803に準拠して測定された動粘度が4890Stの液体を流したときの、前記第1の溝および第2の溝少なくとも一方の摩擦損失係数が0.01~0.05であることが望ましい。 The coefficient of friction loss of at least one of the first groove and the second groove is 0.01 to 0.05 when flowing a liquid having a kinematic viscosity of 4890 St measured in accordance with JIS Z 8803 in the groove portion. Is desirable.
 さらに、微小凹凸が形成された溝部の表面のJIS-B0601による算術平均粗さRaが、0.3~15.0μmであることが望ましい。 Furthermore, it is desirable that arithmetic mean roughness Ra according to JIS-B0601 of the surface of the groove part where the minute unevenness is formed be 0.3 to 15.0 μm.
 さらに加えて、微小凹凸は、第1の溝および第2の溝の少なくとも一方の表面に形成されていることが望ましく、溝部の表面の全面に微小凹凸が形成されていることがより望ましい。このように溝部の表面の全面に微小凹凸が形成する場合には、当該溝部の第1の溝または第2の溝の表面の粗さは、開口部から連結凹部に向かい粗くなっていること、特に第1の溝または第2の溝の開口部における表面のJIS-B0601による算術平均粗さRaは0.3~5.0μmであり、第1の溝または第2の溝の一端部における粗さRaは5.0~15.0μmであることが望ましい。 In addition, it is preferable that the micro-concavities and convexities be formed on the surface of at least one of the first groove and the second groove, and it is more preferable that the micro-concavities and convexities be formed on the entire surface of the groove. As described above, when micro unevenness is formed on the entire surface of the groove, the surface roughness of the first groove or the second groove of the groove is roughened from the opening toward the connection recess. In particular, the arithmetic mean roughness Ra according to JIS-B0601 of the surface at the opening of the first groove or the second groove is 0.3 to 5.0 μm, and the rough at one end of the first groove or the second groove Desirably, the height Ra is 5.0 to 15.0 μm.
 さらに加えて、第1の溝および第2の溝のうち少なくとも一方の溝深さは、開口部から連結凹部に向かい深くなっていることが望ましく、加えて第1の溝および第2の溝のうち少なくとも一方の溝幅は、開口部から連結凹部に向かい狭くなっていることが好ましい。 Furthermore, it is desirable that the depth of at least one of the first groove and the second groove is deeper from the opening toward the connection recess, and in addition, the first groove and the second groove are Preferably, at least one of the groove widths narrows from the opening toward the connecting recess.
 さらに、すべり軸受装置用摺動部材が、セラミックスで構成されていれば、特に溶融金属めっき装置など腐食性の高い雰囲気で使用されるすべり軸受装置において好適である。 Furthermore, if the sliding member for a sliding bearing device is made of a ceramic, it is suitable particularly for a sliding bearing device used in a highly corrosive atmosphere such as a molten metal plating device.
 本発明の具体的な一つの態様は、上記いずれかのすべり軸受装置用摺動部材が軸受部として組み込まれたすべり軸受であって、摺動面には、軸部の回転方向に沿い、上記溝部が複数形成されていることを特徴とするすべり軸受である。なお、上記溝部は、その中心線に沿う方向に対し並列した状態でまた千鳥状に、溝部が複数形成されていることが望ましい。 One specific embodiment of the present invention is a slide bearing in which any one of the slide members for a slide bearing device described above is incorporated as a bearing portion, the sliding surface being along the rotation direction of the shaft portion, A sliding bearing characterized in that a plurality of grooves are formed. Preferably, a plurality of groove portions are formed in a zigzag shape in parallel with the direction along the center line.
 ここで、前記軸受部は円環の一部をなすセグメント状をなしており、当該軸受部が挿着される保持部を備え、上記軸受部は、保持部に挿着された状態において軸部の回転方向に対し反対側に位置する一端を備え、軸受部が前記保持部に装着された状態において当該軸受部の一端の外方に配置された湯溜まり部を有することが望ましい。具体的には、上記保持部は、軸受部が装着された状態においてその軸受部の一端の外方に位置するとともに軸受部を装着する側に形成された露出する一面を有し、軸受部は、その中心線に交差する断面視において、保持部の一面から突起した状態で装着され、保持部の一面上に湯溜まり部が形成されていれば好ましい。この場合、保持部の一面は、軸受部の摺動面に向かい傾斜する面を有していれば望ましい。 Here, the bearing portion has a segment shape that forms a part of an annular ring, and includes a holding portion to which the bearing portion is inserted, and the shaft portion in a state in which the bearing portion is inserted to the holding portion It is desirable to have one end located on the opposite side to the rotational direction of the above, and have a pouring basin disposed outward of one end of the bearing in a state where the bearing is attached to the holding part. Specifically, the holding portion has an exposed surface which is located outward of one end of the bearing portion in a state where the bearing portion is mounted and is formed on the side on which the bearing portion is mounted. In a cross-sectional view intersecting the center line, it is preferable that the mounting portion be mounted in a state where it protrudes from one surface of the holding portion, and a reservoir portion is formed on the one surface of the holding portion. In this case, it is preferable that one surface of the holding portion has a surface that is inclined toward the sliding surface of the bearing portion.
 なお、上記保持部は、軸受部が装着された状態において軸受部の一端の外方に位置するとともに軸受部が挿着される側に形成された露出する一面を有し、軸受部の摺動面は、その中心線に交差する断面視において、保持部の一面よりも内方に位置する状態で挿着され、保持部の露出する一面と前記摺動面との間には段差が形成されていてもよい。 The holding portion has an exposed surface which is located on the outside of one end of the bearing portion while the bearing portion is mounted and is formed on the side where the bearing portion is inserted and attached, and the sliding of the bearing portion The surface is inserted in a state of being positioned inward of one surface of the holding portion in a cross sectional view intersecting the center line, and a step is formed between the exposed surface of the holding portion and the sliding surface. It may be
 本発明の具体的な他の態様は、上記いずれかのすべり軸受装置用摺動部材が一体的にまたは別体として付設された軸部を有する回転体であって、すべり軸受装置用摺動部材は、摺動面が外周面である略円柱形状の外観をなしており、摺動面には、その円周方向に沿い、前記溝部が等ピッチで複数形成されていることを特徴とする回転体である。 Another specific aspect of the present invention is a rotating body having a shaft portion to which any of the sliding members for a sliding bearing device described above is attached integrally or separately, and the sliding member for a sliding bearing device The outer surface of the sliding surface has a substantially cylindrical shape, and a plurality of the groove portions are formed at the same pitch along the circumferential direction on the sliding surface. It is a body.
 ここで、上記摺動面には、その中心線に沿う方向に対し並列した状態または千鳥状に、上記溝部が複数形成されていれば望ましい。 Here, it is preferable that a plurality of the groove portions be formed in the sliding surface in parallel or in a staggered manner in a direction along the center line.
 本発明は以上のように構成されているので、本発明の目的を達成することができる。 Since the present invention is configured as described above, the object of the present invention can be achieved.
本発明の第1態様であるすべり軸受が組み込まれた溶融金属めっき装置の概略構成を示す図である。It is a figure which shows schematic structure of the molten metal plating apparatus with which the slide bearing which is the 1st aspect of this invention was integrated. 図1のシンクロールおよびすべり軸受の一部が断面図である正面図である。It is a front view which is a cross-sectional view of a part of the sink roll and slide bearing of FIG. 図1のすべり軸受の部分の拡大断面図である。It is an expanded sectional view of the part of the slide bearing of FIG. 図3(a)のA-A断面図である。FIG. 4 is a cross-sectional view taken along the line AA of FIG. 図3(b)のB矢視の展開図である。It is an expanded view of B arrow of FIG.3 (b). 図4(a)のC矢視図である。It is C arrow line view of Fig.4 (a). 図4(a)の溝部の部分拡大図である。It is the elements on larger scale of the groove part of Fig.4 (a). 図4(a)の溝部の第1変形例の部分拡大図である。It is the elements on larger scale of the 1st modification of the slot of Drawing 4 (a). 図4(a)の溝部の第2変形例の部分拡大図である。It is the elements on larger scale of the 2nd modification of the slot of Drawing 4 (a). 図4(a)の溝部の第3変形例の部分拡大図である。It is the elements on larger scale of the 3rd modification of the slot of Drawing 4 (a). 図4(a)の溝部の第4変形例の部分拡大図である。It is the elements on larger scale of the 4th modification of the slot of Drawing 4 (a). 図4(a)のF-F断面図であり、すべり軸受における動圧の発生状態を説明する概念図である。FIG. 5 is a cross-sectional view taken along the line F-F in FIG. 4A and is a conceptual diagram illustrating a generation state of dynamic pressure in the slide bearing. 図4(a)の軸受部の第1変形例の展開図である。It is an expanded view of the 1st modification of the bearing part of Fig.4 (a). 図4(a)の軸受部の第2変形例の展開図である。It is an expanded view of the 2nd modification of the bearing part of Fig.4 (a). 図8(a)の溝部の部分拡大図である。It is the elements on larger scale of the groove part of Fig.8 (a). 本発明の第2態様であるすべり軸受の正面断面図である。It is front sectional drawing of the slide bearing which is a 2nd aspect of this invention. 図9(a)のD-D断面図である。FIG. 10 is a cross-sectional view taken along the line DD of FIG. 9 (a). 本発明の第3態様である軸部を備えたシンクロールおよびすべり軸受の正面断面図である。It is front sectional drawing of the sink roll and slide bearing provided with the axial part which is the 3rd aspect of this invention. 図4(a)の溝部の部分拡大図である。It is the elements on larger scale of the groove part of Fig.4 (a). 第1の溝または第2の溝の摩擦損失係数を測定する測定装置の概略構成を示す平面図である。It is a top view which shows schematic structure of the measuring apparatus which measures the friction loss coefficient of a 1st groove | channel or a 2nd groove | channel. 図11(a)のH-H断面図である。11 is a cross-sectional view taken along the line HH of FIG.
 以下、本発明について、溶融亜鉛めっき浴・溶融アルミニウムめっき浴その他の溶融金属めっき浴に浸漬されるすべり軸受装置用摺動部材を例として具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to a sliding member for a sliding bearing device, which is immersed in a hot-dip galvanizing bath, a hot-dip aluminum plating bath, or other hot-dip metal plating baths.
[溶融金属めっき装置]
 まず、本発明に係わるすべり軸受装置用摺動部材(以下「摺動部材」と言う場合がある。)の一例であるすべり軸受が組み込まれたすべり軸受装置を有する溶融金属めっき装置について、図1を参照しつつ説明する。図1に示すように、溶融金属めっき装置20は、溶融金属めっき浴(以下単に「めっき浴」と言う場合がある。)21が貯留されるめっき槽22と、めっき浴21の表層部分に浸漬されて、めっき浴21の内に導入される鋼板Wの酸化を防止するためのスナウト23と、めっき浴21の中に配置されたシンクロール27と、めっき浴21の内でシンクロール27の上方に位置する一対のサポートロール28と、めっき浴21の表面より僅か上方に位置するガスワイピングノズル26とを有している。シンクロール27自体には外部駆動力が付与されず、走行する鋼板Wとの接触による摩擦力で矢印Eで示すように反時計回りに駆動される。またサポートロール28は、通例、外部のモーター( 図示せず) に連結された駆動ロールである。なお、サポートロール28には外部駆動力が付与されない無駆動タイプもある。溶融金属めっき浴用ロールであるシンクロール27及び一対のサポートロール28は、フレーム24・25に取り付けられたすべり軸受1・1により各々回転自在に支持されており、常に一体としてめっき浴21の内に浸漬される。
[Mold metal plating system]
First, a hot metal plating apparatus having a slide bearing device incorporating a slide bearing as an example of a slide member for a slide bearing device according to the present invention (hereinafter sometimes referred to as "sliding member"). The description will be made with reference to. As shown in FIG. 1, the molten metal plating apparatus 20 is immersed in a plating tank 22 in which a molten metal plating bath (hereinafter simply referred to as “plating bath”) 21 is stored and a surface layer portion of the plating bath 21. Snout 23 for preventing oxidation of the steel plate W introduced into the plating bath 21, the sink roll 27 disposed in the plating bath 21, and the upper side of the sink roll 27 within the plating bath 21. And a gas wiping nozzle 26 located slightly above the surface of the plating bath 21. The external driving force is not applied to the sink roll 27 itself, and is driven counterclockwise as shown by the arrow E by the frictional force due to the contact with the traveling steel plate W. The support roll 28 is also typically a drive roll connected to an external motor (not shown). There is also a non-drive type in which no external driving force is applied to the support roll 28. The sink roll 27 and the pair of support rolls 28, which are rolls for a molten metal plating bath, are each rotatably supported by the slide bearings 1 and 1 attached to the frames 24 and 25 and always integrated in the plating bath 21 integrally. Be soaked.
 鋼板Wは、スナウト23を経てめっき浴21の内に斜方から進入し、シンクロール27を経由して上方に進行方向を変えられる。めっき浴21の中を上昇する鋼板Wは一対のサポートロール28に挟まれ、パスラインが保たれるとともに、反りや振動が防止される。ガスワイピングノズル26は、めっき浴21から出てきた鋼板Wに高速ガスを吹き付け、高速ガスのガス圧により、鋼板Wに付着した溶融金属めっきの厚さを均一に調整する。このようにして、溶融金属めっきが施された鋼板Wを得ることができる。ここで、シンクロール27には、めっき浴21における浮力および鋼板Wに付与されるテンションにより矢印Gで示すように左上方に向かう力が作用しており、シンクロール27を支持するすべり軸受装置は、その左上方に向かう力を負荷することとなる。 The steel plate W obliquely enters the plating bath 21 through the snout 23 and is allowed to change its traveling direction upward through the sink roll 27. The steel plate W rising in the plating bath 21 is sandwiched between the pair of support rolls 28, and the pass line is maintained, and warpage and vibration are prevented. The gas wiping nozzle 26 sprays high-speed gas onto the steel plate W coming out of the plating bath 21 and uniformly adjusts the thickness of the molten metal plating attached to the steel plate W by the gas pressure of the high-speed gas. Thus, the steel plate W to which the molten metal plating has been applied can be obtained. Here, due to the buoyancy in the plating bath 21 and the tension applied to the steel plate W, a force directed upward and leftward acts on the sink roll 27 as shown by the arrow G, and a slide bearing device for supporting the sink roll 27 The force to the upper left is to be loaded.
[第1実施形態]
 第1態様の摺動部材が組み込まれた図1のすべり軸受1の構成について、図2~4、図5(a)、図6を参照しつつ説明する。ここで、図2は図1のシンクロールおよびすべり軸受の一部を断面で示す正面図、図3(a)は図1のすべり軸受の部分の拡大断面図、図3(b)は図3(a)のA-A断面図である。また、図4(a)は図3(b)のB矢視の展開図、図4(b)は図4(a)のC矢視図、図5(a)は図4(a)の溝部の部分拡大図、図6は図4(a)のF-F断面図であり、すべり軸受における動圧の発生状態を説明する概念図である。なお、図6では、理解のため図4(a)では不図示の軸部の摺動部27cも表示している。
First Embodiment
The configuration of the sliding bearing 1 of FIG. 1 in which the sliding member of the first aspect is incorporated will be described with reference to FIGS. 2 to 4, 5 (a) and 6. Here, FIG. 2 is a front view showing a part of the sink roll and slide bearing of FIG. 1 in cross section, FIG. 3 (a) is an enlarged cross section of the slide bearing of FIG. 1 and FIG. 3 (b) is FIG. It is AA sectional drawing of (a). 4 (a) is a developed view of arrow B in FIG. 3 (b), FIG. 4 (b) is a arrow C in FIG. 4 (a), and FIG. 5 (a) is FIG. 4 (a). FIG. 6 is a cross-sectional view taken along the line F--F of FIG. 4A and is a conceptual view for explaining a generation state of dynamic pressure in the slide bearing. In addition, in FIG. 6, the sliding part 27c of the axial part not shown is also displayed in FIG. 4 (a) for understanding.
 以下説明する第2および第3実施態様も含め、すべり軸受装置は、シンクロール27の軸部27bと当該軸部27bと摺動する軸受部を含むすべり軸受1との組合せにより構成されている。また、以下シンクロールを支持するすべり軸受装置を例として説明するが、当該すべり軸受装置に組み込まれるすべり軸受・軸部は、サポートロールにも適用することができる。また、図2に示す右側のすべり軸受1と左側のすべり軸受1とは同一であるので、右側のすべり軸受1の構成について説明する(以下説明する第2態様の摺動部材であるすべり軸受、第3態様の摺動部材である軸部についても同様である)。 The slide bearing device is configured by a combination of the shaft portion 27b of the sink roll 27 and the slide bearing 1 including a bearing portion sliding with the shaft portion 27b, including the second and third embodiments described below. Although a slide bearing device for supporting a sink roll will be described below as an example, the slide bearing and the shaft portion incorporated in the slide bearing device can also be applied to a support roll. In addition, since the right side sliding bearing 1 and the left side sliding bearing 1 shown in FIG. 2 are the same, the configuration of the right side sliding bearing 1 will be described (a sliding bearing which is a sliding member of the second embodiment described below, The same applies to the shaft portion which is the sliding member of the third aspect).
[シンクロール・軸部]
 まず、すべり軸受装置を構成する摺動部材である軸部27bを有するシンクロール27について、図2および図3(a)を参照し説明する。図2に示すように、シンクロール27は、めっき浴中を走行する鋼板が方向転換のために接触する外周面を有する外観が略円柱形状の胴部27aを有し、胴部27aと同軸に配置された軸部27bは、当該胴部27aの両端から、回転中心となる胴部27aの中心線Iに沿う方向(以下中心線方向と言う場合がある。)に延びている。そして、軸部27bは、中心線方向において胴部27aと反対側に、中心線Iを中心とし、その周りに所定の半径で形成された外周面を有する略円柱形状の摺動部27cを備え、その外周面がすべり軸受1の摺動面1kと摺動する摺動面27kとなる。なお、図3(a)において符号27dは、中心線方向にシンクロール27を支持するスラスト受け部である。シンクロール27の円滑な回転のためには、スラスト受け部27dの端は、図示するように凸に湾曲したR面であることが望ましい。
[Sink roll, shaft part]
First, the sink roll 27 having the shaft portion 27b which is a sliding member constituting the slide bearing device will be described with reference to FIGS. 2 and 3 (a). As shown in FIG. 2, the sink roll 27 has a body 27a having a substantially cylindrical shape and an outer appearance having an outer peripheral surface with which a steel plate traveling in a plating bath contacts for direction change, and is coaxial with the body 27a. The disposed shaft portions 27 b extend from both ends of the trunk portion 27 a in a direction along the center line I of the trunk portion 27 a serving as the rotation center (hereinafter may be referred to as a center line direction). The shaft portion 27b is provided with a substantially cylindrical sliding portion 27c having an outer peripheral surface formed with a predetermined radius around the center line I on the opposite side to the trunk portion 27a in the center line direction. The outer peripheral surface is a sliding surface 27k that slides on the sliding surface 1k of the slide bearing 1. In FIG. 3A, reference numeral 27d denotes a thrust receiving portion for supporting the sink roll 27 in the center line direction. For smooth rotation of the sink roll 27, it is desirable that the end of the thrust receiving portion 27d be a convexly curved R surface as illustrated.
 シンクロール27の胴部27aおよび軸部27bを構成する材料は、めっき浴に対する化学反応性が低く耐蝕性の高い材料であれば特に限定されないが、下記で詳述するようにめっき浴に対し特に耐蝕性に優れたセラミックスでシンクロール27を構成することが望ましい。一方で、セラミックスは金属と比較し熱伝導率および破壊靭性が低い。そのため、シンクロール27をセラミックスで構成した場合には、高温に加熱されためっき浴への浸漬時および引上時における急熱・急冷のために胴部27aおよび軸部27bが割損する可能性がある。そこで、急熱・急冷による過大な温度勾配の発生を抑制するため、胴部27aおよび軸部27bは図示するように中空部を有する円筒体とし、胴部27aの中心線Iに交差する方向(以下、半径方向と言う場合がある。)において一定の厚みを有する形態とすることが好ましく、さらに例えば軸部27bの外周面や内周面とその端面との角部等は緩やかなR形状とすることが望ましい。なお、胴部27aは、鋼板に接触する部分の外観が略円柱形状であればよく、他の部分は、めっき浴中のスラグの付着防止や回転バランスの調整などを考慮し適宜な形状に設定すればよい。 The material constituting the body 27a and the shaft 27b of the sink roll 27 is not particularly limited as long as it is a material having low chemical reactivity with the plating bath and high corrosion resistance, but as described in detail below, it is particularly suitable for the plating bath It is desirable to form the sink roll 27 with a ceramic excellent in corrosion resistance. On the other hand, ceramics have lower thermal conductivity and fracture toughness than metals. Therefore, when the sink roll 27 is made of ceramics, there is a possibility that the body 27a and the shaft 27b may be broken due to rapid heat and rapid cooling at the time of immersion in a plating bath heated to a high temperature and at the time of pulling up. is there. Therefore, in order to suppress the occurrence of an excessive temperature gradient due to rapid heating and rapid cooling, the body 27a and the shaft 27b are formed into a cylindrical body having a hollow portion as shown in the figure and a direction crossing the center line I of the body 27a In the following, it may be referred to as “radial direction.” It is preferable to use a form having a constant thickness, and for example, the outer peripheral surface or the inner peripheral surface of the shaft portion 27b and the corner portion of the end surface have a gentle R shape. It is desirable to do. In addition, the external appearance of the part which contacts a steel plate should just be substantially cylindrical shape, and the trunk | drum 27a should be set as appropriate shape in consideration of prevention of adhesion of slag in a plating bath, adjustment of rotation balance, etc. do it.
[すべり軸受]
 次に、上記軸部27bと伴にすべり軸受装置を構成する摺動部材である軸受部が組み込まれたすべり軸受1について説明する。本態様のすべり軸受1は、主要な構成として、めっき浴21の中に延びる一対のアーム24の先端に取り付けられた保持部1dと、保持部1dに取り付けられた軸受部1aを有している。めっき浴21に対する耐蝕性が比較的高いステンレス等の金属で形成された保持部1dは、図3(b)に示すように、半径方向における断面視が下方開口の大略逆U字形状であり、底面から中央部に向かい延設された軸挿入部1qを有している。この軸挿入部1qは、矢印Gで示す力の負荷側である上方の面が略半円形状であり、その両端から下方に延びた左側面1gおよび右側面1sを有しており、軸部27bの摺動部27cは、軸挿入部1qに挿入される。
[Slide bearing]
Next, the slide bearing 1 in which a bearing portion, which is a sliding member constituting the slide bearing device, is incorporated with the shaft portion 27b will be described. The slide bearing 1 of the present embodiment has, as main components, a holding portion 1d attached to the tip of a pair of arms 24 extending into the plating bath 21 and a bearing portion 1a attached to the holding portion 1d. . The holding portion 1d formed of a metal such as stainless steel having relatively high corrosion resistance to the plating bath 21 is, as shown in FIG. It has a shaft insertion portion 1q extending from the bottom to the center. The shaft insertion portion 1q has a substantially semicircular upper surface on the load side of the force shown by the arrow G, and has a left side surface 1g and a right side surface 1s extending downward from both ends, and the shaft portion The sliding portion 27c of 27b is inserted into the shaft insertion portion 1q.
 半径方向の断面視が円環の四半部(一部)である略扇形状でセグメント状の軸受部1aは、図3(a)に示すように、中心線方向に併設された2条の突条部1bを有しており、この2条の突条部1bの表面である内周面が、軸部27bの摺動面27kと摺動する摺動面1kとなっている。なお、突条部1bは1条であってもよいが、操業中の軸部27bの傾きなどによる中心線方向における摺動面1kの偏磨耗を防止するためには、複数条設けておくことが望ましい。そして、中心線Iの周りに所定の半径で形成された軸受部1aの摺動面1kは、摺動部27cの摺動面27kよりも好ましくは1.0~3.0mm大きな半径となるよう形成されており、めっき浴21は、摺動面1kおよび27kの摺動界面に介在することにより潤滑媒体として機能することとなる。 As shown in FIG. 3A, the substantially fan-shaped, segment-shaped bearing portion 1a having a quarter (a part) of a cross section in the radial direction is a quarter of the annular portion. The inner circumferential surface, which is the surface of the two ridges 1b, has a strip 1b, and serves as a sliding surface 1k that slides on the sliding surface 27k of the shaft 27b. The number of projections 1b may be one, but in order to prevent uneven wear of the sliding surface 1k in the centerline direction due to the inclination of the shaft 27b during operation, a plurality of projections should be provided. Is desirable. The sliding surface 1k of the bearing portion 1a formed around the center line I with a predetermined radius preferably has a radius larger by 1.0 to 3.0 mm than the sliding surface 27k of the sliding portion 27c. The plating bath 21 functions as a lubricating medium by being interposed at the sliding interface between the sliding surfaces 1k and 27k.
 ここで、軸挿入部1qには、図3(b)に示すように、その略半円形状をなす上面1rの左側に開口するよう、軸受部1aの断面視の形状に対応した中心線方向に伸びる略扇形状の凹溝1pが形成されている。この凹溝1pに挿着された軸受部1aは、中心線方向から固定部材1fで固定されるが、固定された状態において、軸受部1aの摺動面1kは、軸挿入部1qの上面1rよりも内方に位置している。このように、軸受部1aの摺動面1kと軸挿入部1qの上面1rとの間に段差が設けられていることにより、軸受部1aの摺動面1kと摺動しつつ矢印Eで示す方向に回転する摺動部27cの摺動面(外周面)27kと、軸挿入部1qの上面1rおよび両側面1g・1sとの間には一定の間隙が形成される。そして、摺動部27cの回転に伴い、摺動面1kと27kとの摺動界面に存在するめっき浴21は上記間隙に排出され、また上記間隙に存在するめっき浴21は、摺動面1kおよび27kの摺動界面に供給されることとなる。このように、摺動面1kと27kとの摺動界面に存在するめっき浴21が次々と入れ替わることにより、例えばめっき浴21の反応物である所謂ドロスなどの高硬度な微小異物が当該摺動界面に滞留することが抑制される。後述する溝部を有する軸受部1aをこのように配置することで、より効果的に、軸受部1aおよび軸部27bの磨耗をより低減せしめることができる。 Here, as shown in FIG. 3 (b), the shaft insertion portion 1q has a center line direction corresponding to the sectional view of the bearing portion 1a so as to open on the left side of the substantially semicircular upper surface 1r. A substantially fan-shaped concave groove 1p extending in the shape of a circle is formed. The bearing portion 1a inserted into and attached to the recessed groove 1p is fixed by the fixing member 1f from the center line direction, but in a fixed state, the sliding surface 1k of the bearing portion 1a is the upper surface 1r of the shaft insertion portion 1q. It is located more inward. In this manner, a step is provided between the sliding surface 1k of the bearing portion 1a and the upper surface 1r of the shaft insertion portion 1q, so that an arrow E is shown while sliding with the sliding surface 1k of the bearing portion 1a. A fixed gap is formed between the sliding surface (peripheral surface) 27k of the sliding portion 27c rotating in the direction, and the top surface 1r and both side surfaces 1g and 1s of the shaft insertion portion 1q. Then, with the rotation of the sliding portion 27c, the plating bath 21 present at the sliding interface between the sliding faces 1k and 27k is discharged into the gap, and the plating bath 21 present in the gap is the sliding face 1k. And 27 k sliding interface. In this way, the plating bath 21 present at the sliding interface between the sliding surfaces 1k and 27k is successively replaced, so that, for example, high hardness micro foreign matter such as so-called dross which is a reactant of the plating bath 21 Staying at the interface is suppressed. By arranging the bearing portion 1a having a groove portion described later in this manner, the wear of the bearing portion 1a and the shaft portion 27b can be more effectively reduced.
 摺動面1kと27kとの摺動界面に円滑にめっき浴21を供給するためには、軸受部1aの前段に十分なめっき浴21が存在することが好ましく、図3(b)おいて符号Eで示す摺動部27cの回転方向、すなわちめっき浴(潤滑媒体)21の流動方向Eに対し、反対側に位置する軸受部1aの端(一端)1iの円周方向において外方に、めっき浴21を貯留する湯溜まり部1hを設けることが好ましい。本態様の湯溜まり部1hは、具体的には、保持部1dに挿着された軸受部1aの端1iの円周方向において外方に形成された露出する上面1rと、上記のように保持部1dに挿着されている軸受部1aの端面1iと、摺動部27cの摺動面27kとで画成された領域であり、好ましくは中心線Iからの距離を右側面1sよりも大きく形成した上面1rの面上に配置されている。なお、めっき浴21をより円滑に摺動界面に供給するためには、図3(b)に示すように、保持部1dの上面1rに、軸受部1aの摺動面1kに向かい、望ましくは水平方向に対する傾斜角度が5~85度、望ましくは30~60度で傾斜する傾斜面1xを形成しておくことが望ましい。 In order to supply the plating bath 21 smoothly to the sliding interface between the sliding surfaces 1k and 27k, it is preferable that a sufficient plating bath 21 be present in the previous stage of the bearing portion 1a, as shown in FIG. Plating outward in the circumferential direction of the end (one end) 1i of the bearing portion 1a located on the opposite side to the rotational direction of the sliding portion 27c indicated by E, that is, the flow direction E of the plating bath (lubricating medium) 21 It is preferable to provide a well portion 1 h for storing the bath 21. Specifically, the pouring basin 1h of this embodiment is held as described above with the exposed upper surface 1r formed outward in the circumferential direction of the end 1i of the bearing 1a attached to the holding portion 1d. It is a region defined by the end face 1i of the bearing portion 1a inserted and attached to the portion 1d and the sliding surface 27k of the sliding portion 27c, preferably the distance from the center line I is larger than the right side surface 1s It is arrange | positioned on the surface of the formed upper surface 1r. In order to supply the plating bath 21 more smoothly to the sliding interface, as shown in FIG. 3B, the upper surface 1r of the holding portion 1d is directed to the sliding surface 1k of the bearing portion 1a, preferably. It is desirable to form an inclined surface 1x which is inclined at an inclination angle of 5 to 85 degrees, preferably 30 to 60 degrees with respect to the horizontal direction.
 本態様のすべり軸受1では、上記のように保持部1dに設けた凹溝1pに軸受部1aを挿着し固定しているが、凹溝1pと軸受部1aとの挿着隙間に浸入しためっき浴21は溶融金属であるため、めっき浴21からすべり軸受1を取出した後に凝固し、軸受部1aを破損させる可能性がある。そのため、軸受部1aおよび凹溝1pの挿着隙間にめっき浴が侵入しないようシール部を設けるか、浸入したとしてもすべり軸受1の取出時に容易にめっき浴が排出される隙間または溝部を設けておくことが好ましい。 In the slide bearing 1 of the present embodiment, although the bearing portion 1a is inserted and fixed in the recessed groove 1p provided in the holding portion 1d as described above, it enters the insertion gap between the recessed groove 1p and the bearing portion 1a Since the plating bath 21 is a molten metal, it may solidify after removing the slide bearing 1 from the plating bath 21 and may damage the bearing portion 1a. Therefore, a seal portion is provided to prevent the plating bath from entering the insertion gap between the bearing portion 1a and the recessed groove 1p, or a gap or a groove portion is provided so that the plating bath can be easily discharged when the slide bearing 1 is taken out. Is preferable.
 図3(a)において符号1eは、摺動部27cが軸挿入部1qに配置された状態において、軸部27bの端に対向する位置に配置されたスラスト受けである。このスラスト受け1eは、操業中に中心線方向に移動するシンクロール27の軸部27bのスラスト受け部27dとの当接することにより、シンクロール27の中心線方向の位置決めを行う。 In FIG. 3A, reference numeral 1e denotes a thrust receiver disposed at a position opposed to the end of the shaft portion 27b in a state where the sliding portion 27c is disposed in the shaft insertion portion 1q. The thrust receiver 1 e contacts the thrust receiver 27 d of the shaft portion 27 b of the sink roll 27 moving in the center line direction during operation to position the sink roll 27 in the center line direction.
 次いで、すべり軸受1の摺動面1kに形成された溝部1cの構成について図4・図5(a)・図6を参照して詳細に説明する。理解しやすいように溝部1cにハッチングを付した図4(a)(以下の説明で参照する図7~10においても同様)に示すように、本態様の溝部1cは、第1の溝1m、第2の溝1nおよび第1の溝1mと第2の溝1nの各々の内端部(一端部)を連結する連結凹部1Lを有し、第1の溝1mおよび第2の溝1nの各々の外端部(他端部)は、開口端を有する開口部1u・1vである。なお、第1の溝1mおよび第2の溝1nの外端部である「開口部」とは、各溝ともに、溝中を流動するめっき浴の流動方向に沿う方向(以下、この方向を長手方向という場合がある。また、めっき浴の流動方向に直交する方向を短手方向という場合がある。)において、開口端である他端(外端)から10mmの範囲を言い、「一端部(内端部)」とは、一端(内端)から10mmの範囲を言う。 Next, the configuration of the groove portion 1c formed in the sliding surface 1k of the slide bearing 1 will be described in detail with reference to FIG. 4, FIG. 5 (a) and FIG. As shown in FIG. 4A (the same applies to FIGS. 7 to 10 referred to in the following description) in which the groove 1c is hatched for easy understanding, the groove 1c of this embodiment is a first groove 1m, Each of the first groove 1m and the second groove 1n has a connecting recess 1L connecting the second groove 1n and the inner end (one end) of each of the first groove 1m and the second groove 1n The outer end (the other end) of the is an opening 1 u · 1 v having an open end. The “opening”, which is the outer end of the first groove 1m and the second groove 1n, refers to the direction along the flow direction of the plating bath flowing in the grooves (hereinafter referred to as “the opening”) In addition, the direction perpendicular to the flow direction of the plating bath may be called the latitudinal direction), which means a range of 10 mm from the other end (outer end) that is the open end, “Inner end portion” refers to a range of 10 mm from one end (inner end).
 具体的には、本態様の溝部1cは、突条部1bの内周面である摺動面1kに形成されているが、中心線方向において突条部1bの両側には凹状の溝部1tが配置されている。すなわち、図4(a)のC-C矢視図である図4(b)に示すように、軸受部1aは、中心線方向において、摺動面1kの一方端に配置され当該摺動面1kと直接的または間接的に交わる第1の側面1xと、摺動面1kの他方端に配置され当該摺動面1kと直接的または間接的に交わる第2の側面1yとを有しており、第1の溝1mの開口部1uは第1の側面1xに開口する開口端を有し、第2の溝1nの開口部1vは第2の側面1yに開口する開口端を有している。このように突状部1bに配置された第1の溝1mおよび第2の溝1nの各々の開口部1u・1vは、各々、溝部1cにめっき浴が直接流入可能な開口端を有する。 Specifically, although the groove portion 1c of this aspect is formed on the sliding surface 1k which is the inner peripheral surface of the protruding portion 1b, the groove portion 1t having a concave shape is formed on both sides of the protruding portion 1b in the center line direction. It is arranged. That is, as shown in FIG. 4 (b) which is a CC arrow view of FIG. 4 (a), the bearing portion 1a is disposed at one end of the sliding surface 1k in the center line direction and the sliding surface The first side 1x directly or indirectly intersects with 1k, and the second side 1y disposed at the other end of the sliding surface 1k and directly or indirectly intersecting with the sliding surface 1k The opening 1u of the first groove 1m has an open end opening to the first side 1x, and the opening 1v of the second groove 1n has an open end opening to the second side 1y . The openings 1u and 1v of each of the first groove 1m and the second groove 1n thus arranged in the projection 1b each have an opening end through which the plating bath can directly flow into the groove 1c.
 また、連結凹部は、図4(b)に示すように、溝状の第1の溝と第2の溝との各々の内端部(一端部)で連結し、両溝に連通する凹状の要素である。具体的には、平面視である図4(a)の溝部1c-1の拡大図である図5(a)においてハッチングで示すように、軸部の回転方向Eにおいて、第1の溝1mおよび第2の溝1nの各々の後方に存在する辺h1・h2の内端を通るように、辺h1・h2に対し垂直に引いた直線h5・h6と、溝部1cの側面で囲まれた領域のことである。 In addition, as shown in FIG. 4 (b), the connection recess is a concave that is connected at the inner end (one end) of each of the groove-shaped first groove and the second groove and that communicates with both grooves. It is an element. Specifically, as shown by hatching in FIG. 5 (a) which is an enlarged view of the groove 1c-1 of FIG. 4 (a) which is a plan view, the first groove 1m and the first groove 1m in the rotational direction E of the shaft Straight lines h5 and h6 drawn perpendicularly to the sides h1 and h2 so as to pass through the inner ends of the sides h1 and h2 present behind each of the second grooves 1n, and a region surrounded by the side surface of the groove portion 1c It is.
 そして、摺動部材が軸受部1aを構成している本態様の溝1cの場合には、図5(a)に示すように、矢印Eで示す軸部の回転方向において、第1の溝1mおよび第2の溝1nの各々の開口部1u・1vは、いずれも、連結凹部1Lより後方に配置されている。かかる態様で配置された溝部1cによれば、軸部の回転方向において、第1の溝1mおよび第2の溝1nの各々の開口部1u・1vは、連結凹部1Lよりも後方に配置されているので、回転方向Eへの軸部の回転に伴い引きずられるように同方向に流動するめっき浴(潤滑媒体)の流れは、溝中の矢印で示すように開口部1u・1vの各々の開口端を通じ第1の溝1mおよび第2の溝1nに円滑に流入し、その後連結凹部1Lで合流し、摺動界面の狭い間隙から流出する。すると、連結凹部1Lにおいてめっき浴の流れの速度が急激に変化し、連結凹部1Lの上で動圧が生じ、当該動圧により軸部を支持することにより軸受部1aとの接触圧力を軽減するよう軸部を回転せしめることとなる。 Then, in the case of the groove 1c of the present embodiment in which the sliding member constitutes the bearing portion 1a, as shown in FIG. 5A, in the rotation direction of the shaft portion indicated by the arrow E, the first groove 1m The openings 1u and 1v of each of the second groove 1n and the second groove 1n are both disposed rearward of the connecting recess 1L. According to the groove portion 1c arranged in this manner, the openings 1u and 1v of the first groove 1m and the second groove 1n are disposed rearward of the connecting recess 1L in the rotational direction of the shaft portion. Therefore, the flow of the plating bath (lubricating medium) flowing in the same direction so as to be dragged along with the rotation of the shaft in the rotation direction E is the opening of each of the openings 1u and 1v as indicated by the arrows in the groove. It smoothly flows into the first groove 1m and the second groove 1n through the ends, and then merges at the connection recess 1L and flows out from the narrow gap of the sliding interface. Then, the flow speed of the plating bath changes rapidly in the connection recess 1L, a dynamic pressure is generated on the connection recess 1L, and the contact pressure with the bearing 1a is reduced by supporting the shaft by the dynamic pressure. The shaft will rotate.
 このように、軸部の回転に伴い溝部1cに流入しためっき浴は、開口部1u・1vを通じ第1の溝1mおよび第2の溝1nの容易に流入でき、十分な量のめっき浴が連結凹部1Lで合流する。これにより、上記特許文献1で開示された従来技術の構成である、第1の溝1mおよび第2の溝1nの外端が閉鎖端である場合に比べ、連結凹部1Lにおいて高い動圧が発生する。 As described above, the plating bath that has flowed into the groove 1c with the rotation of the shaft can easily flow into the first groove 1m and the second groove 1n through the openings 1u and 1v, and a sufficient amount of plating bath is connected Join in the recess 1L. As a result, higher dynamic pressure is generated in the connection recess 1L as compared with the case where the outer ends of the first groove 1m and the second groove 1n are closed ends, which is the configuration of the prior art disclosed in Patent Document 1 above. Do.
 一方で、上記のように第1の溝1mおよび第2の溝1nの各々の外端部を開口部1u・1vとすることにより、十分な流量のめっき浴が溝部1cに流入し、その第1の溝1mおよび第2の溝1nを流動するめっき浴の流れが乱れ、連結凹部1Lで生じる動圧が不安定となる可能性がある。そこで、本態様の溝部1cの表面には、図4(b)に示すように微小凹凸1oを形成してある。かかる微小凹凸1oが形成された溝部1cによれば、下記実験例で示すように溝部1cを流動するめっき浴(潤滑媒体)の流れの乱れが少なく、連結凹部1Lにおいて発生した動圧が安定し、軸部および軸受部の接触による摩擦磨耗を抑制することが可能となる。 On the other hand, by setting the outer end of each of the first groove 1m and the second groove 1n as the openings 1u and 1v as described above, a plating bath having a sufficient flow rate flows into the groove 1c. The flow of the plating bath flowing in the first groove 1m and the second groove 1n may be disturbed, and the dynamic pressure generated in the connection recess 1L may become unstable. Therefore, on the surface of the groove portion 1c of this embodiment, as shown in FIG. 4 (b), the minute unevenness 1o is formed. According to the groove portion 1c in which the minute unevenness 1o is formed, the disturbance of the flow of the plating bath (lubricant medium) flowing in the groove portion 1c is small as shown in the following experimental example, and the dynamic pressure generated in the connection concave portion 1L is stabilized. It is possible to suppress the frictional wear due to the contact of the shaft portion and the bearing portion.
 さらに、溝部1cに流入しためっき浴の乱れを効果的に抑制するためには、当該溝部1cに、JIS Z8803に準拠して測定された動粘度が4890Stの液体を流したときの、第1の溝1mおよび第2の溝1n少なくとも一方の摩擦損失係数が0.01~0.05であることが望ましい。この動粘度は、本態様のすべり軸受において潤滑媒体として機能する金属亜鉛または金属アルミニウムを溶融してなるめっき浴の動粘度に相当する。試験に供する液体としては高温に加熱されためっき浴を直接使用してもよいが、室温下で上記動粘度となるよう調整した油・水・有機溶媒等をめっき浴に代替して使用してもよい。 Furthermore, in order to effectively suppress the disturbance of the plating bath that has flowed into the groove portion 1c, the first flow of the liquid having a dynamic viscosity of 4890 St measured according to JIS Z8803 in the groove portion 1c. The friction loss coefficient of at least one of the groove 1m and the second groove 1n is desirably 0.01 to 0.05. This kinematic viscosity corresponds to the kinematic viscosity of a plating bath formed by melting metallic zinc or metallic aluminum which functions as a lubricating medium in the slide bearing of this embodiment. A plating bath heated to a high temperature may be used directly as a liquid to be subjected to the test, but oil, water, an organic solvent, etc. adjusted to have the above-mentioned dynamic viscosity at room temperature are used instead of the plating bath. It is also good.
 上記摩擦損失係数の測定方法を、測定装置の概略構成を示す平面図である図11(a)、図11(a)のH-H断面図である図11(b)を参照して説明する。なお、図11(a)は、図4(a)と同様に、本来円弧状に形成された摺動面1kを展開した図の部分拡大図である。また、図11は、溝部1cの第1の溝1mの摩擦損失係数を測定する場合を示しているが、第2の溝1nも基本的には同様に摩擦損失係数を測定することができる。 The method of measuring the friction loss coefficient will be described with reference to FIG. 11 (a) which is a plan view showing a schematic configuration of the measuring apparatus and FIG. 11 (b) which is a HH cross-sectional view of FIG. 11 (a). . 11 (a) is a partially enlarged view of a developed view of a sliding surface 1k originally formed in an arc shape, as in FIG. 4 (a). Further, FIG. 11 shows the case of measuring the friction loss coefficient of the first groove 1m of the groove portion 1c, but the friction loss coefficient of the second groove 1n can be basically measured in the same manner.
 図11(a)に示すように、摩擦損失係数の測定装置70は、平面視において、摺動面1kに形成された1条の溝部1cを包含するよう配置されるステンレス製の密閉部材70aと、溝部1cの開口部1u・1vに各々連通するよう密閉部材70aの両側に形成された接続口70g・70hに結合された管路70eを介し密閉部材70aと接続された供給手段70dを有している。ここで、供給手段70dは、具体的には、試験に供する液体が所定の粘度を維持するよう温度等が制御される液体を収納するタンクと、圧力および流量を制御しつつタンクに収納された液体を所定の流速で供給するポンプなどから構成されている。 As shown in FIG. 11A, the friction loss coefficient measuring device 70 is a stainless steel sealing member 70a disposed so as to include one groove portion 1c formed in the sliding surface 1k in plan view. A supply means 70d connected to the sealing member 70a via a conduit 70e connected to connection ports 70g and 70h formed on both sides of the sealing member 70a so as to respectively communicate with the openings 1u and 1v of the groove portion 1c ing. Here, specifically, the supply means 70d is stored in a tank that contains a liquid whose temperature and the like are controlled so that the liquid to be tested maintains a predetermined viscosity, and the pressure and flow rate are controlled. It is comprised from the pump etc. which supply a liquid at a predetermined flow rate.
 図11(b)に示すように、密閉部材70aは、中心線方向に配置された天板70kと、天板70kの両側から各々下方に延びる側板70Lおよび70mを有している。天板70kの底面70fは摺動面1kに、側板70L・70mの内面は摺動面1kの側面1x・1yに、各々密着するように配置されており、もって、溝部1cは、密閉部材70aにより密閉される。なお、上記したように摺動面1kは、本来は円弧状をなしているので、天板70kの底面70fは、摺動面1kの形状に対応した円弧状をなしている。また、天板70kの底面70fおよび側板70L・70mの内面の適宜な位置にOリング等のシール部材を配置し、溝部1cの密閉を確保するようにしてもよい。 As shown in FIG. 11B, the sealing member 70a has a top plate 70k arranged in the centerline direction, and side plates 70L and 70m extending downward from both sides of the top plate 70k. The bottom surface 70f of the top plate 70k is disposed in intimate contact with the sliding surface 1k, and the inner surface of the side plates 70L and 70m is disposed in intimate contact with the side surfaces 1x and 1y of the sliding surface 1k. Sealed by As described above, since the sliding surface 1k is originally in the shape of a circular arc, the bottom surface 70f of the top plate 70k is in the shape of a circular arc corresponding to the shape of the sliding surface 1k. Alternatively, a seal member such as an O-ring may be disposed at an appropriate position on the bottom surface 70f of the top plate 70k and the inner surface of the side plates 70L and 70m to ensure sealing of the groove portion 1c.
 図11に示すように、密閉部材70aの天板70kには、溝部1cに対し密閉部材70aが配置された状態において第1の溝1mと連通可能な略円柱形状の接続口70iおよび70jが、第1の溝1mの両端に形成されており、この接続口70iおよび70jには、各々、圧力計70bおよび70cが接続されている。この2個の圧力計70b・70cは、上記供給手段70dから供給され第1の溝1mに液体を流した場合に、第1の溝1mを流れる流体の入口側と出口側の圧力を測定するものである。したがって、入口側の圧力を測定する圧力計70bは、第1の溝1mの外端から中心までの長手方向の距離M2が、開口部1uの中心である5mmの位置に設置された接続口70iに、出口側の圧力を測定する圧力計70cは、第1の溝1mの内端から中心までの長手方向の距離M2が、内端部(一端部)の中心であるの位置に設置された5mmの接続口70jに、接続され配置される。なお、本測定装置70で使用する圧力計70b・70cは特に限定されることなく、測定に供する液体その他測定条件により市販の圧力計から適宜に選択すればよい。 As shown in FIG. 11, in the top plate 70k of the sealing member 70a, substantially cylindrical connection ports 70i and 70j capable of communicating with the first groove 1m in a state where the sealing member 70a is disposed with respect to the groove portion 1c, The pressure gauges 70b and 70c are connected to the connection ports 70i and 70j, respectively, at the ends of the first groove 1m. The two pressure gauges 70b and 70c measure the pressure on the inlet side and the outlet side of the fluid flowing in the first groove 1m when the liquid is supplied from the supply means 70d and flows in the first groove 1m. It is a thing. Therefore, the pressure gauge 70b for measuring the pressure on the inlet side is a connection port 70i in which the distance M2 in the longitudinal direction from the outer end of the first groove 1m to the center is 5 mm, which is the center of the opening 1u. In the pressure gauge 70c for measuring the pressure on the outlet side, the longitudinal distance M2 from the inner end of the first groove 1m to the center is located at the center of the inner end (one end) It is connected and disposed at the 5 mm connection port 70j. The pressure gauges 70b and 70c used in the present measuring device 70 are not particularly limited, and may be appropriately selected from commercially available pressure gauges according to the liquid and other measurement conditions to be provided for measurement.
 さらに、密閉部材70aの天板70kには、溝部1cに対し密閉部材70aが配置された状態において、第1の溝1mの長手方向の中央を流れる液体(流体)の流速を測定する流速計70nが配置されている。本測定装置70で使用する流速計70nも特に限定されることなく、測定に供する液体その他測定条件により市販の流速計から適宜に選択すればよく、例えば超音波式の流速計などを使用することができる。 Furthermore, in the top plate 70k of the sealing member 70a, in a state where the sealing member 70a is disposed with respect to the groove portion 1c, a flow velocity meter 70n that measures the flow velocity of the liquid (fluid) flowing in the longitudinal center of the first groove 1m. Is arranged. The flow velocity meter 70 n used in the present measuring device 70 is not particularly limited and may be appropriately selected from commercially available flow velocity meters according to the liquid and other measurement conditions to be used for measurement, for example, using an ultrasonic wave velocity meter Can.
 上記測定装置70による測定方法および第1の溝1mの摩擦損失係数の算出方法について説明する。まず、上記説明したように圧力計70b・70cが組み込まれた密閉部材70aを、測定すべき第1の溝1mを有する所定の溝部1cに対し配置する。ついで、所定の流量・圧力で供給手段70dを起動させて試験に供する液体を溝部1cへ供給する。なお、摩擦損失係数を精度よく求めるためには、第1の溝1mを流れる液体の流速が0.3~1.0m/sの範囲になるよう、供給手段70dを調整しておくことが望ましい。そして、図11(a)において符号Gで示す方向に液体が溝部1cの中を流動する状態となった後に、上記圧力計70bおよび70cにより第1の溝1mを流れる液体の入口側の圧力(P1)および出口側の圧力(P2)を求めるとともに流速計70nにより流速(v)を求め、次いで以下の式により摩擦損失係数を算出する。 The measuring method by the measuring device 70 and the method of calculating the friction loss coefficient of the first groove 1m will be described. First, as described above, the sealing member 70a into which the pressure gauges 70b and 70c are incorporated is disposed with respect to the predetermined groove portion 1c having the first groove 1m to be measured. Then, the supply means 70d is activated at a predetermined flow rate and pressure to supply the liquid to be tested to the groove 1c. In order to obtain the friction loss coefficient with high accuracy, it is desirable to adjust the supply means 70d so that the flow velocity of the liquid flowing through the first groove 1m is in the range of 0.3 to 1.0 m / s. . Then, after the liquid flows in the groove 1c in the direction indicated by the symbol G in FIG. 11 (a), the pressure on the inlet side of the liquid flowing in the first groove 1m by the pressure gauges 70b and 70c ( P1) The pressure (P2) on the outlet side is determined, and the flow velocity (v) is determined by the flow meter 70n, and then the friction loss coefficient is calculated by the following equation.
(式1)
 摩擦損失係数(λ)=(((P1-P2)×2g)/v)×d
 ここで、
 P1:入口側圧力(単位:MPa)
 P2:出口側圧力(単位:MPa)
 g:重力加速度(単位:m/s
 v:流速(単位:m/s)
 d:第1の溝1mの等価管直径(単位:m)
 である。
(Formula 1)
Friction loss coefficient (λ) = (((P1-P2) × 2 g) / v 2 ) × d
here,
P1: Inlet pressure (unit: MPa)
P2: Outlet pressure (unit: MPa)
g: Gravity acceleration (unit: m / s 2 )
v: Flow velocity (unit: m / s)
d: Equivalent pipe diameter of first groove 1m (unit: m)
It is.
 上記等価管直径dは、下記の式で算出するものとする。なお、本態様の第1の溝1mのように開口部1uから連結凹部1Lに向けて溝深さが徐々に深くなっている場合や下記図8を参照して説明する第2変形例の第1の溝2cのように溝幅が変化している場合その他第1の溝1mの断面寸法や断面形状が長手方向において変化する場合には、下記S1およびS2ともに長手方向の平均値を求め、その値を代入すればよい。 The equivalent pipe diameter d is calculated by the following equation. As in the first groove 1m of this embodiment, the groove depth gradually increases from the opening 1u toward the connection recess 1L, or the second modification described with reference to FIG. When the groove width is changing as in the case of the groove 2c of 1, if the cross-sectional dimension or the cross-sectional shape of the first groove 1m changes in the longitudinal direction, calculate the average value in the longitudinal direction for both S1 and S2 below. You can substitute that value.
(式2)
 d=(4×S1)/S2
 ここで、
 S1:天板70aの底面70fと第1の溝1mとで区画された断面の断面積(単位:mm
 S2:天板70aの底面70fと第1の溝1mとで区画された断面の周囲の長さ(単位:mm)
 である。
(Formula 2)
d = (4 × S1) / S2
here,
S1: Cross-sectional area (unit: mm 2 ) of the cross section divided by the bottom surface 70 f of the top plate 70 a and the first groove 1 m
S2: Length (unit: mm) around the cross section partitioned by the bottom surface 70f of the top plate 70a and the first groove 1m
It is.
 さらに、微小凹凸1oが配置された溝部1cの表面のJIS-B0601による算術平均粗さRaは、0.3~15.0μmであることが望ましい。表面粗さRaが0.3μm未満、または15.0μmを超える場合には、いずれにおいても、上記した微小凹凸1oの効果が十分に発揮されず、磨耗抑制の効果が低い場合がある。また、本態様のすべり軸受1のように高温に加熱された溶融金属めっき浴に浸漬される摺動部材の場合には、表面粗さRaが15.0μmを超えるような粗面となると、凹凸の切欠効果により熱応力の作用に伴うクラックが生じやすく、軸受部1aの欠損を招来する場合がある。 Further, the arithmetic average roughness Ra according to JIS-B0601 of the surface of the groove portion 1c in which the minute unevenness 1o is disposed is desirably 0.3 to 15.0 μm. When the surface roughness Ra is less than 0.3 μm or more than 15.0 μm, the effect of the above-described micro unevenness 1 o may not be sufficiently exhibited in any case, and the effect of suppressing the wear may be low. In the case of a sliding member immersed in a molten metal plating bath heated to a high temperature as in the slide bearing 1 of the present embodiment, the surface roughness Ra of more than 15.0 μm results in unevenness. Because of the notch effect, cracks are likely to occur due to the action of thermal stress, which may lead to the breakage of the bearing portion 1a.
 さらに、微小凹凸1oは、第1の溝および第2の溝の少なくとも一方の表面に形成すれば十分であるが、連結凹部1Lも含め溝部1cの全体に配置することが望ましい。この場合には、溝部1cの表面粗さは、上記の表面粗さRaの範囲内で、開口部1u・1vから連結凹部1Lに向かい徐々に粗くなっていることが好ましく、第1の溝1mおよび第2の溝1nの開口部1u・1vにおける表面のJIS-B0601による算術平均粗さRaは0.3~5.0μmとし、第1の溝1mおよび第2の溝1nの内端部(一端部)における粗さRaは5.0~15.0μmとすることがより好ましい。開口部1u・1vにおける表面粗さが粗い場合には、溝部1cに流入した直後で流れの乱れためっき浴中に含まれるドロスなど異物が微小凹凸1oに捕捉されやすく、開口部1u・1vを閉塞させるおそれがあるため、表面粗さRaは0.3~5.0μmと小さくすることが望ましい。一方で、連結凹部1Lにおけるめっき浴の流れを安定化させるため、第1の溝1mおよび第2の溝1nの内端部(一端部)における表面粗さRaは5.0~15.0μmとすることが望ましい。さらに、連結凹部1Lの表面の粗さRaも、5.0~15.0μmとすれば、なお望ましい。 Furthermore, although it is sufficient if the minute asperity 1o is formed on the surface of at least one of the first groove and the second groove, it is desirable that the minute unevenness 1o be disposed on the entire groove 1c including the connecting recess 1L. In this case, it is preferable that the surface roughness of the groove 1c is gradually roughened from the openings 1u and 1v toward the connecting recess 1L within the range of the surface roughness Ra, and the first groove 1m is formed. The arithmetic average roughness Ra according to JIS-B0601 of the surface of the opening 1u · 1v of the second groove 1n is 0.3 to 5.0 μm, and the inner end of the first groove 1m and the second groove 1n More preferably, the roughness Ra at one end portion) is 5.0 to 15.0 μm. If the surface roughness at the openings 1u and 1v is rough, foreign matter such as dross contained in the plating bath in which the flow is disturbed immediately after flowing into the groove 1c is easily captured by the minute unevenness 1o, and the openings 1u and 1v It is desirable to reduce the surface roughness Ra to 0.3 to 5.0 μm because there is a possibility of clogging. On the other hand, in order to stabilize the flow of the plating bath in the connecting recess 1L, the surface roughness Ra at the inner end (one end) of the first groove 1m and the second groove 1n is 5.0 to 15.0 μm. It is desirable to do. Furthermore, the surface roughness Ra of the connection recess 1L is also preferably 5.0 to 15.0 μm.
 微小凹凸1oは、溝部1cの底表面および側面いずれかの面において、めっき浴の触れる面積の大きな面に形成しておけばよいが、双方に形成することが望ましい。 The micro-concavities and convexities 1o may be formed on either the bottom surface or the side surface of the groove portion 1c on the surface having a large contact area with the plating bath, but it is preferable to form them on both surfaces.
 次に、好ましい態様である軸受部1aにおける溝部1cの形状について詳細に説明する。図5(a)に示すように、本態様の溝部1cは、摺動面1kを展開して見た場合の平面視において略U字形状をなしている。具体的には、短手方向の断面形状が略矩形状である、溝幅が同一となるよう延設された直線状の第1の溝1mは、右下がりに傾斜するよう摺動面1kの左側に配置され、第1の溝1mと溝幅および溝深さが同一の第2の溝1nは左下がりに傾斜するよう摺動面1kの右側に配置され、中心線方向において摺動面1kを2分する直線Fに対し両者は線対称の関係となっている。また、第1の溝1mと第2の溝1nの各々の内端部を連結する断面が略矩形状の連結凹部1Lは、軸部の回転方向Eにおいて、後方に配置された円弧形状をなす辺r1と、前方に配置された円弧形状をなす辺r2とを有している。なお、溝部1cの断面形状は、略矩形状に限定されず、例えば略半円形状、略V字形状または略U字形状等の各種の形状とすることができる。 Next, the shape of the groove part 1c in the bearing part 1a which is a preferable aspect is demonstrated in detail. As shown to Fig.5 (a), the groove part 1c of this aspect has comprised substantially U-shape in planar view at the time of developing and seeing the sliding face 1k. Specifically, the linear first groove 1m, which is extended so that the cross-sectional shape in the short direction is substantially rectangular, and the groove width is the same, has a sliding surface 1k that is inclined downward to the right. A second groove 1n disposed on the left side and having the same groove width and groove depth as the first groove 1m is disposed on the right side of the sliding surface 1k so as to be inclined downward to the left. The two are in line symmetry with respect to a straight line F which divides. The connecting recess 1L having a substantially rectangular cross section connecting the inner end portions of the first groove 1m and the second groove 1n has an arc shape disposed rearward in the rotational direction E of the shaft portion. It has a side r1 and a side r2 having a circular arc shape disposed forward. In addition, the cross-sectional shape of the groove part 1c is not limited to a substantially rectangular shape, For example, it can be set as various shapes, such as a substantially semicircular shape, a substantially V shape, or a substantially U shape.
 そして、軸部の回転方向Eにおいて、第1の溝1mおよび第2の溝1nの各々の後方に存在する辺h1とh2は、各々の内端(一端)で連結凹部1Lの辺r1の両端に接合し、第1の溝1mおよび第2の溝1nの各々の前方に存在する辺h3とh4は、各々の内端(一端)で連結凹部1Lの辺r2の両端に接合し、これにより辺、つまり側面に段差が無くめっき浴が円滑に流れる平面視が略U字形状の一条の溝部1cが形成され、もって溝部1cを流動するめっき浴の流れの乱れを低減することができる。なお、同様な観点から、図4(b)に示すように、第1の溝1mおよび第2の溝1nの各々の底面と連結凹部1Lと底面との間にも段差が無いことが好ましい。 And in the rotational direction E of the shaft, the sides h1 and h2 present behind each of the first groove 1m and the second groove 1n are both ends of the side r1 of the connecting recess 1L at each inner end (one end) And the sides h3 and h4 present in front of each of the first groove 1m and the second groove 1n are joined to both ends of the side r2 of the connecting recess 1L at each inner end (one end), thereby There is no step on the side, that is, the side surface, and a groove portion 1c having a substantially U shape is formed in a plan view in which the plating bath flows smoothly, whereby disturbance of the flow of the plating bath flowing in the groove 1c can be reduced. From the same point of view, as shown in FIG. 4B, it is preferable that there is no step between the bottom surface of each of the first groove 1m and the second groove 1n, and the connection recess 1L and the bottom surface.
 ここで、上記した第1の溝および第2の溝の「辺」とは、平面視において、第1の溝および第2の溝の各側面の内端(一端)と外端(他端)とを結ぶ直線のことである(以下述べる他の形態の第1の溝および第2の溝の辺について同様である)。したがって、図5(a)に示す第1の溝1mおよび第2の溝1nのように側面が直線状をなす場合には、第1の溝1mおよび第2の溝1nの各側面の上縁と辺とは一致することとなる。 Here, the “sides” of the first groove and the second groove described above are the inner end (one end) and the outer end (the other end) of the side surfaces of the first groove and the second groove in plan view. And the straight line connecting the same (the same applies to the sides of the first groove and the second groove of the other form described below). Therefore, when the side surfaces are linear as in the first groove 1m and the second groove 1n shown in FIG. 5A, the upper edges of the side surfaces of the first groove 1m and the second groove 1n And the sides will match.
 第1の溝1mおよび第2の溝1nの溝幅および溝深さは、適宜設定されるが、例えば摺動面1kの曲率半径が40~80mmの場合、その溝幅は概ね0.5~2.0mm程度であり、溝深さは概ね0.1~0.5mm程度である。なお、下記の変形例および第2・3態様も含め、第1の溝および第2の溝の溝幅および溝深さならびに連結凹部の幅および深さならびに形状は、これらの中を流動するめっき浴の流動方向に直交する方向における寸法・形状のことを言う。 The groove width and groove depth of the first groove 1m and the second groove 1n are appropriately set, but, for example, when the curvature radius of the sliding surface 1k is 40 to 80 mm, the groove width is approximately 0.5 to The depth is about 2.0 mm, and the groove depth is about 0.1 to 0.5 mm. In addition, the groove width and the groove depth of the first groove and the second groove, and the width and the depth and the shape of the connection recess of the first groove and the second groove, including the following modified example and the second and third embodiments, are plated It refers to the size and shape in the direction perpendicular to the flow direction of the bath.
 ここで、通例、第1の溝1mと第2の溝1nの各々の溝幅t1および溝深さは共にほぼ同一とされるが、相違してもよい。さらに、第1の溝1mと第2の溝1nの長さも同一である必要もなく、相違していてもよい。また、第1の溝1mおよび第2の溝1nの各々の開口部1u・1vは、いずれも、連結凹部1Lより後方に配置されていれば、第1の溝1mおよび第2の溝1nの直線Fを基準とした傾斜角度j1・j2は問わないが、交差角度j1・j2は概ね5~85°程度、好ましくは30~60°程度である。さらに、第1の溝1mと第2の溝1nとは線対称に配置されている必要もなく、両者の傾斜角度j1・j2が相違していてもよい。 Here, in general, the groove width t1 and the groove depth of each of the first groove 1m and the second groove 1n are almost the same, but may be different. Furthermore, the lengths of the first groove 1m and the second groove 1n do not have to be the same, and may be different. Further, if each of the openings 1u and 1v of the first groove 1m and the second groove 1n is disposed rearward of the connection recess 1L, the openings 1u and 1v of the first groove 1m and the second groove 1n can be used. The inclination angles j1 and j2 based on the straight line F are not limited, but the crossing angles j1 and j2 are about 5 to 85 °, preferably about 30 to 60 °. Furthermore, the first groove 1m and the second groove 1n do not have to be disposed in line symmetry, and the inclination angles j1 and j2 may be different from each other.
 平面視における溝部1cの形状は、図5(a)に示す略U字形状に限定されず、その第1~第4変形例である図5(b)~(e)に示す形状とすることができる。なお、図5(b)~(e)において、上記図5(a)の溝部1cと同一の構成要素には同一符号を付しており、詳細な説明を省略する。 The shape of the groove portion 1c in plan view is not limited to the substantially U shape shown in FIG. 5 (a), but may be the shape shown in FIGS. 5 (b) to 5 (e) which is the first to fourth modifications. Can. In FIGS. 5B to 5E, the same components as those of the groove portion 1c of FIG. 5A are denoted by the same reference numerals, and the detailed description thereof is omitted.
 上記微小凹凸が表面に形成された第1変形例に係る溝部5cは、図5(b)に示すように、略V字形状をなしている。すなわち、溝幅が同一となるよう延設された直線状の第1の溝5mは、右下がりに傾斜するよう摺動面1kの左側に配置され、第1の溝5mと溝幅および溝深さが同一の第2の溝5nは左下がりに傾斜するよう摺動面1kの右側に配置されている。そして、本態様の溝部5cでは、第1の溝部5mと第2の溝部5nとが直接連結することにより連結凹部5Lが形成されている。この略V字形状の溝部5cにおいても、連結凹部5Lは、図5(b)においてハッチングで示すように、軸部の回転方向Eにおいて、第1の溝5mおよび第2の溝5nの各々の後方に存在する辺h1・h2の内端を通るように、側面h1・h2に対し垂直に引いた直線h5・h6と、溝部5cの辺で囲まれた領域となる。 As shown in FIG. 5B, the groove portion 5c according to the first modification in which the above-mentioned micro unevenness is formed on the surface has a substantially V shape. That is, the linear first groove 5m extended so as to have the same groove width is disposed on the left side of the sliding surface 1k so as to incline downward to the right, and the groove width and the groove depth The second grooves 5n, which are identical to each other, are disposed on the right side of the sliding surface 1k so as to incline downward to the left. Then, in the groove portion 5c of this aspect, the connection concave portion 5L is formed by directly connecting the first groove portion 5m and the second groove portion 5n. Also in the substantially V-shaped groove portion 5c, as shown by hatching in FIG. 5B, the connection concave portion 5L is formed of each of the first groove 5m and the second groove 5n in the rotational direction E of the shaft portion. It becomes an area surrounded by straight lines h5 and h6 drawn perpendicularly to the side faces h1 and h2 and the sides of the groove 5c so as to pass through the inner ends of the sides h1 and h2 present behind.
 なお、本態様の溝部5cにおいて、中心線方向において摺動面1kを2分する直線Fを基準とした第1の溝5mと第2の溝5nの傾斜角度は相違している。もって、軸部の回転方向Eにおいて、第1の溝5mと第2の溝5nの各々の開口部1u・1vは、いずれも、連結凹部5Lよりも後方に配置されているが、その位置は異なっている。かかる溝部5cによっても、軸部の回転方向Eにおいて、第1の溝5mおよび第2の溝5nの各々の開口部1u・1vは、連結凹部5Lよりも後方に配置されており、溝部5cの表面には微小凹凸が形成されているので、上記溝部1cと同様な作用効果を奏することができる。 In the groove portion 5c of the present embodiment, the inclination angles of the first groove 5m and the second groove 5n are different based on a straight line F dividing the sliding surface 1k into two in the central line direction. Therefore, in the rotational direction E of the shaft portion, the openings 1u and 1v of each of the first groove 5m and the second groove 5n are both disposed rearward of the connecting recess 5L, but their positions are It is different. The openings 1u and 1v of the first groove 5m and the second groove 5n are disposed rearward of the connecting recess 5L in the rotational direction E of the shaft also by the groove 5c. Since minute asperities are formed on the surface, the same function and effect as the groove portion 1c can be obtained.
 上記微小凹凸が表面に形成された第2変形例に係る溝部6cは、図5(c)に示すように、略W字形状をなしている。すなわち、溝部6cは、中心線方向において摺動面1kを2分する直線Fを介し線対称に配置された一対の略V字形状のV溝部6m・6nを有している。左側のV溝部6mは、右下がりに傾斜する左側の溝6m-1と左下がりに傾斜する溝6m―2を有し、両者のうち外端部が開口部1uである左側の溝6m-1が第1の溝として機能する。また、右側のV溝部6nも、右下がりに傾斜する左側の溝6n-1と左下がりに傾斜する溝6n―2を有し、両者のうち外端部が開口部1vである右側の溝6n-1が第2の溝として機能する。そして、略V字形状のV溝部6m・6nの組み合わせにより構成された本態様の溝部6cでは、第1の溝6m-1と第2の溝6n-1の各々の内端部(一端部)は、連結凹部6L-1または6L-2により間接的に連結された態様となっている。 As shown in FIG. 5C, the groove portion 6c according to the second modification in which the above-mentioned micro unevenness is formed on the surface has a substantially W shape. That is, the groove 6c has a pair of substantially V-shaped V- grooves 6m and 6n arranged in line symmetry via a straight line F dividing the sliding surface 1k into two in the center line direction. The left V groove 6m has a left groove 6m-1 that slopes downward to the right and a groove 6m-2 that slopes to the left, of which the outer end is the opening 1u. Functions as a first groove. The right V groove 6n also has a left groove 6n-1 that slopes to the lower right and a groove 6n-2 that slopes to the lower left, of which the outer end is the opening 1v. -1 functions as a second groove. And, in the groove portion 6c of the present embodiment configured by a combination of substantially V-shaped V groove portions 6m and 6n, the inner end portion (one end portion) of each of the first groove 6m-1 and the second groove 6n-1 Is an aspect of being indirectly coupled by the coupling recess 6L-1 or 6L-2.
 これを左側のV溝部6mで具体的に説明すると、溝中において実線で示す矢印のように、第2の溝6n-1の開口部1vから流入しためっき浴は、当該第2の溝6n-1、溝6n-2および溝6m-2の順に溝6cの中を流れ、左側の連結凹部6L-1に到達し、第1の溝6m-1の開口部1uから流入しためっき浴と当該連結凹部6Lで合流して動圧を発生せしめる。これは、溝中において破線で示す矢印のように、右側のV溝部6nにおいても同様であり、本態様の一条の溝部6cは、中心線方向に2箇所の連結凹部6L-1および6L-2を有することとなり、より効果的に軸部および軸受部の摩擦磨耗を抑制することが可能となる。 This will be specifically described with the V groove 6m on the left side. As shown by the solid arrows in the groove, the plating bath flowing from the opening 1v of the second groove 6n-1 is the second groove 6n-. 1, the groove 6n-2 and the groove 6m-2 sequentially flow in the groove 6c, reach the left connection recess 6L-1, and flow from the opening 1u of the first groove 6m-1 and the connection It joins in the recessed part 6L, and generates a dynamic pressure. The same applies to the V groove 6n on the right side as indicated by the broken line arrow in the groove, and one groove 6c in this embodiment has two connection recesses 6L-1 and 6L-2 in the center line direction. It is possible to more effectively suppress the friction and wear of the shaft portion and the bearing portion.
 上記微小凹凸が表面に形成された第3変形例に係る溝部8cは、図5(d)に示すように、上記溝部1cと同様な形状・配置である第1の溝1mおよび第2の溝1nを有し、さらに、第1の溝1mと第2の溝1nの各々の内端部を連結する、中心線方向に延びる連結凹部8Lを有している。かかる溝部8cによっても、軸部の回転方向Eにおいて、第1の溝1mおよび第2の溝1nの各々の開口部1u・1vは、連結凹部8Lよりも後方に配置されており、溝部8cの表面には微小凹凸が形成されているので、上記溝部1cと同様な作用効果を奏することができ、さらに図5(a)~(c)に示した溝部に対し、中心線方向における連結凹部8Lの長さが長いので、より効果的に軸部および軸受部の摩擦磨耗を抑制することが可能となる。 As shown in FIG. 5D, the groove 8c according to the third modification in which the minute unevenness is formed on the surface is a first groove 1m and a second groove having the same shape and arrangement as the groove 1c. And a connecting recess 8L extending in the direction of the center line connecting the inner end of each of the first groove 1m and the second groove 1n. The openings 1u and 1v of the first groove 1m and the second groove 1n are disposed rearward of the connecting recess 8L in the rotational direction E of the shaft also by the groove 8c. Since micro-concavities and convexities are formed on the surface, the same function and effect as those of the groove 1c can be obtained. Further, with respect to the groove shown in FIGS. Since the length is long, it is possible to more effectively suppress the friction and wear of the shaft portion and the bearing portion.
 上記微小凹凸が表面に形成された第4変形例に係る溝部9cは、図5(e)に示すように、いずれも平面視において両側面が曲線状をなす第1の溝9mおよび第2の溝9mを有し、第1の溝9mは、左下がりに傾斜するよう摺動面1kの右側に配置され、第2の溝9nは、右下がりに傾斜するよう摺動面1kの左側に配置されている。そして、本態様の溝部9cでも、上記図5(b)で示した略V字形状の溝部5cと同様に、第1の溝部9mと第2の溝部9nとが直接連結することにより連結凹部9Lが形成されている。 As shown in FIG. 5 (e), the groove portion 9c according to the fourth modification in which the above-mentioned micro unevenness is formed on the surface, is a first groove 9m and a second groove 9m in which both side surfaces are curved in plan view. There is a groove 9m, and the first groove 9m is disposed on the right side of the sliding surface 1k so as to incline downward to the left, and the second groove 9n is disposed on the left side of the sliding surface 1k so as to incline downward to the right It is done. Then, in the groove 9c of this embodiment, the first groove 9m and the second groove 9n are directly connected to each other as in the substantially V-shaped groove 5c shown in FIG. Is formed.
 かかる溝部9cのように側面が曲線状の場合には、次のようにして連結凹部9Lの範囲を定める。すなわち、軸部の回転方向Eにおいて、後方の側面の内端(一端)と外端(他端)とを直線で結び辺h1を設定し、前方の側面の内端と外端とを直線で結び辺h3を設定する。また、第2の溝9nについても同様にして、直線である辺h2およびh4を設定する。そして、上記図5(b)の溝部5cと同様に、溝部9cの連結凹部9Lは、図5(e)においてハッチングで示すように、軸部の回転方向Eにおいて、第1の溝9mおよび第2の溝9nの各々の後方に存在する辺h1・h2の内端を通るように、側面h1・h2に対し垂直に引いた直線h5・h6と、溝部9cの側面で囲まれた領域とする。なお、平面視において溝部の側面が直線状ではなく、湾曲状または屈曲状をなしている場合にも同様である。 When the side surface is curved like the groove 9c, the range of the connection recess 9L is determined as follows. That is, in the rotational direction E of the shaft portion, the inner end (one end) and the outer end (the other end) of the rear side are connected by a straight line, and a side h1 is set, and the inner end and the outer end of the front side are straight Set the tie side h3. Further, the sides h2 and h4 which are straight lines are set similarly for the second groove 9n. Then, like the groove 5c of FIG. 5 (b), the connecting recess 9L of the groove 9c is formed by the first groove 9m and the first groove 9m in the rotational direction E of the shaft as shown by hatching in FIG. A straight line h5 · h6 drawn perpendicularly to the side faces h1 · h2 and an area surrounded by the side faces of the groove 9c so as to pass through the inner ends of the sides h1 · h2 present behind the respective grooves 9n . In addition, the same applies to the case where the side surface of the groove in a plan view is not linear but is curved or bent.
 次に、好ましい態様である軸受部1aにおける、溝部1cの配置態様について図6を参照して説明する。上記形状の溝部1cは、摺動面1kに1個配置されていても本発明の効果を奏することができるが、下記のように円周方向に沿い複数配置することが好ましい。すなわち、本態様の軸受部1aは、図4(a)に示すように、中心線方向において溝部1tを介し2条の突条部1b・1bが形成されており、左側の突条部1bの摺動面1kに5本の溝部1c-1~5が、右側の突条部1bの摺動面1kに5本の溝部1c-6~10が、円周方向に沿い並設されている。なお、図4(a)において、溝部1c-1~5および溝部1c-6~10は等間隔(角度)で配置されているが、不等間隔で配置してもよく、また、溝部1c-1~5および溝部1c-6~10の各々の第1の溝1m・第2の溝1nの溝幅および溝深さ並びに双方の交差角度は、全て同一である必要もなく、複数箇所における動圧の分布やドロスの滞留その他諸条件を考慮し適宜設定すればよい。 Next, an arrangement aspect of the groove part 1c in the bearing part 1a which is a preferable aspect will be described with reference to FIG. Even if one groove portion 1c of the above-mentioned shape is arranged on the sliding surface 1k, the effect of the present invention can be exhibited. However, it is preferable to arrange a plurality of groove portions 1c along the circumferential direction as follows. That is, as shown in FIG. 4 (a), in the bearing portion 1a of the present embodiment, two ridges 1b and 1b are formed in the center line direction via the groove 1t, and the left ridge 1b Five grooves 1c-1 to 5 are provided on the sliding surface 1k, and five grooves 1c-6 to 10 are provided in parallel along the circumferential direction on the sliding surface 1k of the right projecting portion 1b. In FIG. 4A, the grooves 1c-1 to 5 and the grooves 1c-6 to 10 are arranged at equal intervals (angles), but they may be arranged at unequal intervals, and the grooves 1c- The groove width and groove depth of each of the first groove 1m and the second groove 1n of each of 1 to 5 and the groove portion 1c-6 to 10 and the crossing angle of both do not have to be all the same, It may be set appropriately in consideration of pressure distribution, dross retention and other conditions.
 さらに、本態様の軸受部1aでは、左側の突条部1bの摺動面1kに形成された溝部1c-1~5と、右側の突条部1bの摺動面1kに形成された溝部1c-6~10とは、中心線方向から眺めた場合に並列した状態、つまり対となる溝部1cが円周方向において同位置となり、連結凹部が重複するように配置されている。以下、かかる配置をした溝部1cの作用について、図4のF-F断面図である図6を参照して説明する。なお、理解のため、図4では不図示の摺動部27cを図6は含んでいる。ここで、図6は、軸部の摺動部27cの摺動面27kが軸受部1aの摺動面1kと摺動しながら回転している際の、各溝部1c-1~5において発生する動圧の圧力分布を示す概念的な模式図であり、符号G1~G5で示す線図が、半径方向を圧力値とした場合の、各溝部1c-1~5で発生する動圧の摺動面1kにおける圧力分布である。 Furthermore, in the bearing portion 1a of this embodiment, the groove portions 1c-1 to 5 formed on the sliding surface 1k of the left projecting portion 1b and the groove portion 1c formed on the sliding surface 1k of the right projecting portion 1b. In the case of -6 to 10, when viewed from the center line direction, they are arranged in parallel, that is, the groove portions 1c serving as a pair are at the same position in the circumferential direction, and the connection recesses overlap. Hereinafter, the operation of the groove portion 1c having such an arrangement will be described with reference to FIG. 6 which is a cross-sectional view taken along the line FF of FIG. Note that, for the sake of understanding, FIG. 6 includes a sliding portion 27 c (not shown) in FIG. 4. Here, FIG. 6 is generated in each of the groove portions 1c-1 to 5 when the sliding surface 27k of the sliding portion 27c of the shaft portion rotates while sliding with the sliding surface 1k of the bearing portion 1a. It is a conceptual schematic diagram showing pressure distribution of dynamic pressure, and a diagram shown by numerals G1 to G5 shows sliding of dynamic pressure generated in each groove 1c-1 to 5 when the pressure value is in the radial direction. It is a pressure distribution in the surface 1k.
 図6に示すように、矢印Gで示す方向から負荷が作用することにより、軸受部1aの摺動面1kと摺動部27cの摺動面27kとがほぼ密着状態となっている位置Xに近い溝部1c-3では、両者の摺動界面1wの間隙が狭く、符号G3の線図で示す圧力分布の動圧が発生する。これに対し、めっき浴21の流動方向Eに対し、溝部1c-5よりも位置Xから離れた位置に配置された溝部1c-2および4では、摺動面1kと27kの摺動界面1wの間隙が広くなっており、符号G2およびG4の線図で示す圧力分布である最高圧力が動圧G5よりも低い圧力の動圧が発生する。同様に、溝部1c-1および5についても、頂部Xから離れるにつれ発生する動圧G1および5の圧力は低くなる。ここで、位置Xの近傍に設けられた溝部1c-3で発生した動圧G3のみでも十分に摺動部(軸部)27cを支持し潤滑効果を発揮可能である。しかしながら、本態様の軸受部1aのように、円周方向において複数形成した溝部1c-1~5(1c-6~10)により発生せしめた動圧G1~G5で摺動部27cを包囲するように支持することにより、例えば大きな負荷や変動する負荷が作用した場合でも摺動部27cを支持することができるので好ましい。 As shown in FIG. 6, when a load acts from the direction shown by the arrow G, the sliding surface 1k of the bearing portion 1a and the sliding surface 27k of the sliding portion 27c are in close contact with each other at a position X In the close groove portion 1c-3, the gap between the sliding interfaces 1w of the two is narrow, and dynamic pressure of a pressure distribution shown by a line G3 is generated. On the other hand, in grooves 1c-2 and 4 arranged at positions farther from position X than groove 1c-5 with respect to flow direction E of plating bath 21, the sliding interface 1w of sliding surfaces 1k and 27k is The gap is wide, and a dynamic pressure is generated at a pressure whose maximum pressure is lower than the dynamic pressure G5, which is a pressure distribution shown by the diagrams of G2 and G4. Similarly, in the grooves 1c-1 and 5, the dynamic pressures G1 and G5 generated as they go away from the top X decrease. Here, even with only the dynamic pressure G3 generated in the groove 1c-3 provided in the vicinity of the position X, the sliding portion (shaft portion) 27c can be sufficiently supported to exert a lubricating effect. However, as in the bearing portion 1a of this embodiment, the sliding portion 27c is surrounded by the dynamic pressure G1 to G5 generated by the plurality of groove portions 1c-1 to 5 (1c-6 to 10) formed in the circumferential direction. For example, since the sliding portion 27c can be supported even when a large load or a fluctuating load is applied, it is preferable.
 上記軸受部1aの第1変形例である軸受部7aの内面の展開図を図7に示す。軸受部1aでは、上述したように左側の突条部の摺動面に形成された溝部と、右側の突条部の摺動面に形成された溝部とは、中心線方向から眺めた場合に対となる溝部が円周方向において同位置となり、連結凹部が完全に重複するように配置されていたが、図7に示すように、左側の突条部1bの摺動面1kに配置された溝部1c-1~5に対し、右側の突条部1bの摺動面に配置された溝部7c-6~10を円周方向にずらし、円周方向においてL3だけ対となる溝部1cの連結凹部1Lが部分的に重複しても、上記と同様な効果を得ることができる。 A developed view of the inner surface of a bearing 7a which is a first modification of the bearing 1a is shown in FIG. In the bearing 1a, as described above, the groove formed on the sliding surface of the left ridge and the groove formed on the sliding surface of the right ridge are viewed from the center line direction. The pair of groove portions are at the same position in the circumferential direction, and the connection recesses are arranged so as to completely overlap, but as shown in FIG. 7, they are arranged on the sliding surface 1k of the left ridge 1b. The grooves 7c-6 to 10 arranged on the sliding surface of the right ridge 1b with respect to the grooves 1c-1 to 5c are circumferentially shifted, and the connecting recesses of the grooves 1c are paired by L3 in the circumferential direction Even if 1 L partially overlaps, the same effect as described above can be obtained.
 次に、溝部1cの好ましい断面形状について図4(b)を参照して説明する。図4(b)に示すように、本態様の溝部1cの溝深さは、第1の溝1mおよび第2の溝1nの開口部1u・1vの外端(他端)の溝深さがd1、第1の溝1mおよび第2の溝1nの内端部の内端(一端)の溝深さがd2であり、d2>d1の関係となるよう、具体的には、溝部1cの底面は、開口部1u・1vから連結凹部1Lに向かい傾斜した状態で形成されている。このように、開口部1u・1vの溝深さを浅くすることにより、ドロスなどの微小異物の溝部1cへの流入を抑制できるので好ましい。なお、第1の溝1mおよび第2の溝1nの開口部1u・1vと内端部の溝深さの差は、概ね0.2~0.5mmであることが好ましい。また、第1の溝1mと第2の溝1nとの内端部をそのまま延長し、連結凹部1Lの溝深さを当該内端部よりも深くしてもよい。 Next, the preferable cross-sectional shape of the groove part 1c is demonstrated with reference to FIG.4 (b). As shown in FIG. 4B, the groove depth of the groove portion 1c of this embodiment is the groove depth of the outer end (other end) of the openings 1u and 1v of the first groove 1m and the second groove 1n. The groove depth of the inner end (one end) of the inner end portion of the first groove 1m and the second groove 1n is d2, and specifically, the bottom surface of the groove 1c so that d2> d1. Is formed to be inclined from the openings 1 u and 1 v toward the connecting recess 1 L. Thus, by making the groove depth of the openings 1 u and 1 v shallow, it is possible to suppress the inflow of minute foreign substances such as dross into the groove 1 c, which is preferable. The difference between the groove depths of the openings 1u and 1v of the first groove 1m and the second groove 1n and the inner end is preferably about 0.2 to 0.5 mm. Alternatively, the inner end portions of the first groove 1m and the second groove 1n may be extended as it is, and the groove depth of the connection recess 1L may be deeper than the inner end portion.
 上記軸受部1aを構成する好ましく材料であるセラミックスとしては、軸受部1aが使用される雰囲気その他の操業条件の要請による耐熱衝撃性・耐蝕性などに応じ、アルミナ・ジルコニア・シリカその他の酸化物系セラミックス、硼化ジルコニウム・硼化チタン・硼化ボロンその他の硼化物系セラミックス、炭化シリコン・炭化ボロンその他の炭化物系セラミックス、またはカーボンなどの無機材料を利用してよい。そして、本態様の軸受部は、めっき浴への浸漬および取出しの際に急熱・急冷されるため、耐熱衝撃性に優れている必要がある。そのため、軸受部を構成するセラミックスとしては、熱伝導率が高い窒化珪素・窒化アルミその他の窒化物系セラミックスが好ましく、めっき浴である溶融金属に対し高い耐溶損性および耐磨耗性を有し、高温強度に優れたサイアロンを含む窒化珪素系セラミックスが特に好ましい。なお、本態様のシンクロール27の軸部をセラミックスで構成する場合、下記第2態様の摺動部材であるすべり軸受、第3態様の摺動部材である軸部を構成するセラミックスについても同様である。 As a ceramic which is a preferable material constituting the bearing portion 1a, alumina, zirconia, silica and other oxides are selected according to the thermal shock resistance, corrosion resistance and the like at the request of the atmosphere and other operating conditions in which the bearing portion 1a is used. Ceramics, zirconium boride, titanium boride, boron boride and other boride-based ceramics, silicon carbide, boron carbide and other carbide-based ceramics, or inorganic materials such as carbon may be used. And since the bearing part of this aspect is rapidly heated and rapidly cooled at the time of immersion to a plating bath and taking out, it is necessary to be excellent in thermal shock resistance. Therefore, silicon nitride, aluminum nitride and other nitride ceramics having high thermal conductivity are preferable as ceramics constituting the bearing portion, and they have high corrosion resistance and wear resistance to the molten metal which is a plating bath. Particularly preferred is a silicon nitride-based ceramic containing sialon excellent in high temperature strength. In the case where the shaft portion of the sink roll 27 of this embodiment is made of ceramics, the same applies to the slide bearing which is the sliding member of the second embodiment described below and the ceramics which constitutes the shaft portion which is the sliding member of the third embodiment. is there.
 図4に示す軸受部1aに溝部1cを形成する方法としては、軸受部1aが金属製である場合には、切削加工、放電加工その他周知の加工方法を適用することができる。一方で、難削材であるセラミックスで軸受部1aを構成した場合には、例えば焼結前の成形体に溝部1cを形成しておきその後焼結する方法、焼結後の軸受部1aをダイヤモンド砥石で除去加工し溝部1cを形成する方法などを適用することができる。しかしながら、本態様の溝部1cのように、その表面に微小凹凸1oを形成する必要がある場合には、焼結後の軸受部1aの摺動面1kに溝部1cに対応する開口部を有するマスクを付着し、ショットブラスト加工で溝部1cを形成する方法、焼結後の軸受部1aの摺動面1kにレーザ、好適にはレーザスポットのエネルギー密度の高いファイバーレーザーを照射し溝部1cを形成する方法など、微小凹凸1oを容易に創生可能な方法を採用することが望ましい。 As a method of forming the groove portion 1c in the bearing portion 1a shown in FIG. 4, when the bearing portion 1a is made of metal, cutting, electric discharge machining, and other known processing methods can be applied. On the other hand, in the case where the bearing portion 1a is made of ceramic which is a hard-to-cut material, for example, a method of forming the groove portion 1c in a compact before sintering and then sintering it; It is possible to apply a method of forming a groove 1c by removing with a grindstone. However, as in the groove portion 1c of the present embodiment, when it is necessary to form the micro unevenness 1o on the surface, a mask having an opening corresponding to the groove portion 1c in the sliding surface 1k of the bearing portion 1a after sintering. To form grooves 1c by shot blasting, forming a groove 1c by irradiating the sliding surface 1k of the bearing 1a after sintering with a laser, preferably a fiber laser having a high energy density of a laser spot It is desirable to adopt a method such as a method that can easily create the minute unevenness 1 o.
 図4を参照して説明した軸受部1aの第2変形例について、当該第2変形例に係わる軸受部2aの摺動面1kを展開した図である図8を参照して説明する。なお、図8において、上記第1態様のすべり軸受1および軸部27bと同一の構成要素については、同一符号を付しており、詳細な説明を省略する(後述する第2態様および第3態様の摺動部材においても同様)。 The second modified example of the bearing 1a described with reference to FIG. 4 will be described with reference to FIG. 8 which is a developed view of the sliding surface 1k of the bearing 2a according to the second modified example. In FIG. 8, the same components as those of the slide bearing 1 and the shaft portion 27b of the first embodiment are given the same reference numerals, and the detailed description will be omitted (second and third embodiments described later) The same applies to the sliding members of
 第2変形例に係る軸受部2aは、略U字形状の溝部2cを有し、基本的に、上記軸受部1aと同様に構成されているが、当該溝部2cの配置形態と第1の溝1mおよび第2の溝2nの形状の点で軸受部1aと相違している。まず、溝部2cの配置形態について説明する。第2変形例の軸受部2aでは、左側の突条部1bの摺動面1kに形成された溝部2c-1~3と、右側の突条部1bの摺動面1kに形成された溝部2c-4・5とは、中心線方向から眺めた場合に千鳥状に、つまり溝部2c-1~3と2c-4・5とが円周方向において異なる位置となるよう配置されており、2条の突条部1b・1bの各々に形成された各溝部2cの連結凹部1Lは重複しない配置形態となっている。 The bearing 2a according to the second modification has a substantially U-shaped groove 2c and is basically configured in the same manner as the bearing 1a, but the arrangement of the groove 2c and the first groove It differs from the bearing portion 1a in terms of the shapes of 1 m and the second groove 2n. First, the arrangement of the grooves 2c will be described. In the bearing 2a of the second modification, the grooves 2c-1 to 3 formed in the sliding surface 1k of the left ridge 1b and the grooves 2c formed on the sliding surface 1k of the right ridge 1b. -4 and 5 are arranged in a zigzag when viewed from the center line direction, that is, groove portions 2c-1 to 3 and 2c-4 and 5 are at different positions in the circumferential direction, The connection recess 1L of each groove 2c formed in each of the projecting ridges 1b and 1b is arranged so as not to overlap.
 このように千鳥状に溝部2cが配置された軸受部2aを有するすべり軸受によれば、円周方向における溝部2cの配置間隔が、第1の溝2mおよび第2の溝2nの溝幅よりも小さい場合に特に有効であり、その場合にも左側の突条部1bに形成した溝部2c-1~3の発生する動圧と、右側の突条部1bに形成した溝部2c-4・5の発生する動圧との合成により、中心線方向から見た動圧の発生分布は、図6で示した分布と同様とすることができる。 Thus, according to the slide bearing having the bearing portions 2a in which the groove portions 2c are arranged in a staggered manner, the arrangement interval of the groove portions 2c in the circumferential direction is greater than the groove width of the first groove 2m and the second groove 2n. This is particularly effective when the size is small, in which case the dynamic pressure generated by the grooves 2c-1 to 3 formed in the left ridge 1b and the groove 2c-4 and 5 formed in the right ridge 1b are also effective. By combining with the generated dynamic pressure, the generation distribution of the dynamic pressure viewed from the centerline direction can be made similar to the distribution shown in FIG.
 次に、第2変形例に係る第1の溝2mおよび第2の溝2nの形状について説明する。開口部2uの外端の溝幅t3に対し内端部の内端の溝幅t4が狭く、外端から内端に向かうにつれ徐々に溝幅が狭くなる第1の溝2mは、右下がりに傾斜するよう摺動面1kの左側に配置され、第1の溝2mと溝幅および溝深さが同一の第2の溝2nは左下がりに傾斜するよう摺動面1kの右側に配置され、中心線方向において摺動面1kを2分する直線Fに対し両者は線対称の関係となっている。そして、軸部の回転方向Eにおいて、第1の溝2mおよび第2の溝2nの各々の後方に存在する辺h1とh2は、各々の内端で連結凹部1Lの辺r1の両端に接合し、第1の溝2mおよび第2の溝2nの各々の前方に存在する辺h3とh4は、各々の内端(一端)で連結凹部1Lの辺r2の両端に接合し、一条の溝部2cが構成されている。このように、第2変形例に係る軸受部2aの溝部2cは、平面視で見たときに、内端部の溝幅t4よりも溝幅がt3と広い開口部2u・2vを有している。このように開口部2u・2vの開口幅t3を広くすることにより、溝部2cへのめっき浴の円滑な流入を図ることが可能となる。 Next, the shapes of the first groove 2m and the second groove 2n according to the second modification will be described. The groove width t4 at the inner end of the inner end is narrower than the groove width t3 at the outer end of the opening 2u, and the groove width gradually narrows from the outer end toward the inner end. The second groove 2n is disposed on the left side of the sliding surface 1k so as to be inclined and has the same groove width and groove depth as the first groove 2m is disposed on the right side of the sliding surface 1k so as to be inclined downward to the left. Both are in a symmetrical relationship with respect to a straight line F which divides the sliding surface 1k into two in the center line direction. Then, in the rotational direction E of the shaft portion, the sides h1 and h2 present behind each of the first groove 2m and the second groove 2n are joined to both ends of the side r1 of the connecting recess 1L at each inner end The sides h3 and h4 present in front of each of the first groove 2m and the second groove 2n are joined to both ends of the side r2 of the connecting recess 1L at each inner end (one end), and one groove portion 2c is It is configured. Thus, the groove 2c of the bearing 2a according to the second modification has openings 2u and 2v having a groove width t3 wider than the groove width t4 of the inner end when viewed in a plan view. There is. By thus widening the opening width t3 of the openings 2u and 2v, it is possible to achieve smooth inflow of the plating bath into the groove 2c.
[第2実施形態]
 すべり軸受装置を構成する第2態様の摺動部材であるすべり軸受3について、その正面断面図である図9(a)および図9(a)のD-D断面図である図9(b)を参照しつつ説明する。第2態様のすべり軸受3は、セラミックスで構成された軸受部3aそのものがすべり軸受3であり、金属製の保持部を有していない点で第1態様のすべり軸受1と相違しているが、摺動面1kおよび溝部1cの構成は基本的に同様である。
Second Embodiment
About slide bearing 3 which is a sliding member of the 2nd mode which constitutes a slide bearing device, Drawing 9 (a) which is a front sectional view, and Drawing 9 (b) which are DD sectional views of Drawing 9 (a) The description will be made with reference to. The sliding bearing 3 of the second aspect is different from the sliding bearing 1 of the first aspect in that the bearing portion 3a itself made of ceramic is the sliding bearing 3 and does not have a metal holding portion. The configurations of the sliding surface 1k and the groove 1c are basically the same.
 図9(a)に示すように、中心線Iに沿う断面視が略コの字状である第2態様のすべり軸受3(軸受部3a)は、中心線方向において、中央部に形成された中空部3bを有し、その中空部3bに内方に向かい突起するよう中心線方向に併設された2条の突条部1bを有している。そして、溝部1cは、円環状の突条部1bの内周面である摺動面1kに、当該摺動面1kの円周方向に沿い、複数、等間隔で形成されている。軸部の摺動部27cの外径よりも大きな内径である摺動面1kを有する中空部3bには、摺動部27cが、図9(a)において左側から挿入される。 As shown in FIG. 9 (a), the slide bearing 3 (bearing portion 3a) of the second embodiment in which the sectional view along the center line I is substantially U-shaped is formed at the center in the center line direction. It has a hollow portion 3b, and has two ridges 1b juxtaposed in the center line direction so as to project inwardly toward the hollow portion 3b. A plurality of groove portions 1c are formed at equal intervals along the circumferential direction of the sliding surface 1k on the sliding surface 1k, which is the inner peripheral surface of the annular ridge 1b. The sliding portion 27c is inserted from the left side in FIG. 9A into the hollow portion 3b having the sliding surface 1k whose inner diameter is larger than the outer diameter of the sliding portion 27c of the shaft portion.
 図9(a)に示すように、本態様のすべり軸受3には、稼動中に水平方向へ移動するシンクロールの軸部の端面を受け水平方向の位置を保持するために、右端に軸受端部3dが配置されているが、軸受端部3dを設けず、中空部3bを右端まで延設してもよい。また、上記のようにすべり軸受3に軸受端部3dを設ける場合には、ドロスなどの異物がすべり軸受3の内部に滞留することを抑制するため、中空部3bの左端から軸受端部3dに至るまでの領域に配置された、中空部3bと比べて内径の大きな液溜部3cと、中心線Iに沿い軸受端部3dを貫通するように形成された開口部3fとを設けておくことが好ましい。この構成により、すべり軸受3に軸部が挿入された場合であっても、めっき浴は液溜部3cに自由に出入りでき、中空部3bを循環する。 As shown in FIG. 9 (a), the slide bearing 3 of this embodiment receives the end face of the shaft portion of the sink roll that moves in the horizontal direction during operation to receive the horizontal position. Although the portion 3d is disposed, the hollow portion 3b may be extended to the right end without providing the bearing end 3d. When the bearing end 3d is provided on the slide bearing 3 as described above, the left end of the hollow portion 3b to the bearing end 3d is used to prevent foreign matter such as dross from staying in the slide bearing 3. Providing a liquid reservoir 3c having a larger inner diameter than the hollow portion 3b and an opening 3f formed along the center line I so as to penetrate the bearing end 3d, which are disposed in the entire area Is preferred. With this configuration, even when the shaft is inserted into the slide bearing 3, the plating bath can freely move in and out of the liquid reservoir 3 c and circulate in the hollow portion 3 b.
 ここで、図9(b)に示すように、本態様のすべり軸受3では、90°の角度で分割された符号F1~F4で示す摺動面1kの区画ごとに、複数の溝部1cが設けられている。なお、各区画における溝部1cの形状や配置位置は、同一であってもよく、相違していてもよい。このように90°の角度で分割した区画ごとに摺動面1kに溝部1cを設けることにより、区画F1~F4ごとに分割された4面の摺動面1kを操業に使用することができる。すなわち、区画F1~F4における操業条件が同一の場合には、区画F1~F4における溝部1cの形状や配置位置を同一とし、区画F1の摺動面1kの磨耗が使用により進んだ場合には、すべり軸受3を時計方向に90°回転させ次の区画F2の摺動面1kを使用し、その区画F2の摺動面1kが磨耗した場合には、同様にして区画F3、次いで区画F4の摺動面1kを使用することができ、すべり軸受3の長寿命化を図ることができるので望ましい。また、複数の異なる操業条件がある場合には、当該操業条件に対応し、区画F1~F4における溝部1cの形状や配置位置を設定することにより、すべり軸受3の区画F1~F4の位置を変更するだけで操業条件の変更に対応でき、すべり軸受3の保有個数を減少させることができコスト面から望ましい。 Here, as shown in FIG. 9 (b), in the sliding bearing 3 of this embodiment, a plurality of groove portions 1c are provided for each section of the sliding surface 1k indicated by reference numerals F1 to F4 divided by an angle of 90 °. It is done. In addition, the shape and the arrangement position of the groove part 1c in each section may be the same or different. By providing the groove portion 1c in the sliding surface 1k for each section divided at an angle of 90 ° in this way, four sliding surfaces 1k divided for each section F1 to F4 can be used for operation. That is, when the operating conditions in the sections F1 to F4 are the same, the shapes and the arrangement positions of the grooves 1c in the sections F1 to F4 are the same, and when the wear of the sliding surface 1k of the section F1 advances due to use, If the sliding bearing 1 is rotated clockwise by 90 ° and the sliding surface 1k of the next section F2 is used and the sliding surface 1k of the section F2 wears, the sliding of the section F3 and then the section F4 is performed similarly. The moving surface 1k can be used, and the life of the slide bearing 3 can be extended, which is desirable. Further, when there are a plurality of different operating conditions, the positions of the sections F1 to F4 of the slide bearing 3 are changed by setting the shape and the arrangement position of the groove portion 1c in the sections F1 to F4 corresponding to the operating conditions. It is possible to cope with the change of the operating condition by simply carrying out the process and to reduce the number of the slide bearings 3, which is desirable from the viewpoint of cost.
[第3実施形態]
 すべり軸受装置を構成する、第3態様の摺動部材が付設された軸部47bについて、その正面断面図である図10を参照しつつ説明する。摺動部材である2条の突条部47eが、凹部4tを介し一体的に付設された本態様の軸部47bは、上記第1態様のシンクロール1で説明したように、一方では、シンクロールの胴部の両端から中心線方向に伸びる軸部47bでもあり、シンクロールを構成する要素を兼ねている。なお、突条部47eが一体的に付設された本態様の軸部47bは、突条部47eと同一のセラミックスで構成されているが、少なくとも摺動部材である突条部47eがセラミックスで構成されていれば足りる。すなわち、摺動部材を別体として軸部に付設してもよい。具体的には、突条部を設けたセラミックスからなる円筒体を、例えば金属からなる軸部に嵌入れ固定してもよく、また、セラミックスからなる円環形状の突条部を2個準備し、これを例えば金属からなる軸部に嵌入れ固定してもよい。
Third Embodiment
The shaft portion 47b, which constitutes the slide bearing device and to which the sliding member of the third aspect is attached, will be described with reference to FIG. 10 which is a front sectional view thereof. As described in the first embodiment, the shaft 47b of the present embodiment, in which the two projections 47e, which are sliding members, are integrally attached via the recess 4t, on the other hand, sinks It is also the axial part 47b extended in the centerline direction from the both ends of the trunk | drum of a roll, and serves as the element which comprises a sink roll. In addition, although the axial part 47b of this aspect to which the protruding part 47e was integrally attached is comprised with the same ceramics as the protruding part 47e, at least the protruding part 47e which is a sliding member is comprised with ceramics It is enough if it is done. That is, the sliding member may be separately attached to the shaft. Specifically, a cylindrical body made of ceramics provided with a projecting portion may be fitted and fixed to a shaft made of metal, for example, and two annular projecting portions made of ceramic are prepared. For example, this may be inserted into and fixed to a shaft made of metal.
 本態様のすべり軸受4(軸受部4a)は、基本的に上記すべり軸受装置のすべり軸受1と同一の構成であるが、その摺動面1kには溝部が形成されていない。一方で、矢印Eの方向に回転する、外観が円柱形状をなす軸部47bは、上記したように、その外周面に突起するよう中心線方向に併設された2条の突条部47eを有している。そして、溝部4cは、上記2条の突条部47eの外周面である摺動面47kに、当該摺動面47kの円周方向に沿い、複数、等間隔で形成されている。 The slide bearing 4 (bearing portion 4a) of this embodiment basically has the same configuration as the slide bearing 1 of the slide bearing device described above, but no groove is formed on the sliding surface 1k. On the other hand, the shaft portion 47b rotating in the direction of the arrow E and having a cylindrical appearance as described above has the two ridges 47e juxtaposed in the center line direction so as to project on the outer peripheral surface thereof. doing. A plurality of grooves 4c are formed at equal intervals along the circumferential direction of the sliding surface 47k on the sliding surface 47k which is the outer peripheral surface of the two ridges 47e.
 ここで、図10(a)の溝部4cの拡大図である図10(b)に示すように、本態様の溝部4cは、基本的に上記第1態様の溝部1cと同様に略U字形状に構成されており、その表面に微小凹凸を有するが、本態様の摺動部材は軸部を構成しているため、軸部の回転方向Eにおいて、第1の溝1mおよび第2の溝1nの各々の開口部1u・1vは、いずれも、連結凹部1Lより前方に配置されている。このように開口部1u・1vを配置することにより、軸部47bの回転にともない開口部1u・1vから流入しためっき浴は、溝中の矢印で示すように連結凹部1Lに向かい流れ、連結凹部1Lで合流して動圧を発生せしめる。 Here, as shown in FIG. 10 (b) which is an enlarged view of the groove 4c of FIG. 10 (a), the groove 4c of this embodiment is substantially U-shaped basically like the groove 1c of the first embodiment. The sliding member of this embodiment has the shaft portion, and the first groove 1m and the second groove 1n are formed in the rotation direction E of the shaft portion. Each of the openings 1u and 1v is disposed forward of the connecting recess 1L. By arranging the openings 1u and 1v in this manner, the plating bath flowing from the openings 1u and 1v with the rotation of the shaft 47b flows toward the connection recess 1L as indicated by the arrow in the groove, and the connection recess Join at 1 L to generate dynamic pressure.
 さらに、本態様のように軸部47bに溝部4cを設ける場合には、摺動部47cの摺動面47kおよびすべり軸受4の摺動面1kとの摺動界面において動圧が切れ目なく連続的に発生するよう、中心線Iの方向から見たとき隣接する列では溝部4cの位置がずれた構成、すなわち溝部4cが千鳥状に配置されていることが好ましい。具体的には、図10(a)に示すように、中心線Iの方向から軸部47bを見た場合に、隣接する列において相互の溝部4cが重複しないよう、円周方向において、左側の突条部47eに形成された溝部4cの間に、右側の突条部47eの溝部4cが配置されていることが好ましい。以上の構成により、軸部47bが回転する際に、動圧が連続的に発生し、当該動圧により軸部47bは常に支持され、その摺動面27kはすべり軸受4の摺動面1kから常に離間した状態となるので、シンクロールの回転が安定し、摩擦による軸部47bおよびすべり軸受4の磨耗の進行を抑制することができる。 Furthermore, in the case where the groove portion 4c is provided in the shaft portion 47b as in the present embodiment, the dynamic pressure is continuous continuously at the sliding interface between the sliding surface 47k of the sliding unit 47c and the sliding surface 1k of the sliding bearing 4 Preferably, the grooves 4c are offset in the adjacent rows when viewed in the direction of the center line I, that is, the grooves 4c are arranged in a zigzag. Specifically, as shown in FIG. 10 (a), when the shaft 47b is viewed from the direction of the center line I, the left side in the circumferential direction so that the grooves 4c in adjacent rows do not overlap. It is preferable that the groove 4c of the protrusion 47e on the right side is disposed between the grooves 4c formed in the protrusion 47e. With the above configuration, when the shaft 47b rotates, dynamic pressure is continuously generated, and the shaft 47b is always supported by the dynamic pressure, and the sliding surface 27k is from the sliding surface 1k of the sliding bearing 4 Since the state is always separated, the rotation of the sink roll is stabilized, and it is possible to suppress the progress of the wear of the shaft portion 47b and the slide bearing 4 due to friction.
 なお、溝部4cの形状・寸法・配置は、上記の効果を奏する限りにおいて、上記すべり軸受1における溝部1cの場合と同様に任意である。また、軸部47bは、必ずしも全体が略円柱形状である必要はなく、すべり軸受4の摺動面1kに対応するその摺動面47kの形成される部分が略円柱形状をなしていればよい。したがって、すべり軸受4を用いて回転自在に支持できる限りにおいて、軸部47bの摺動面47k以外の部分の中心線Iに直角な断面視においる形状は、円形状を構成しない箇所があってもよい。 The shape, size, and arrangement of the groove 4c are arbitrary as in the case of the groove 1c in the slide bearing 1 as long as the above effects are exhibited. Further, the whole of the shaft portion 47b does not necessarily have to be a substantially cylindrical shape, as long as the portion where the sliding surface 47k corresponding to the sliding surface 1k of the slide bearing 4 is formed has a substantially cylindrical shape. . Therefore, as long as the slide bearing 4 can be rotatably supported, the shape of the shaft 47b in a cross-sectional view perpendicular to the center line I of the portion other than the sliding surface 47k has portions that do not constitute a circular shape. May be
[実験例]
 表1に示すように、実験例1~20および22~24では、すべり軸受の軸受部を対象に、実験例21では回転体の軸部を対象として摺動部品を製作した。軸受部の材質は、公知である日立金属製のサイアロン(材質記号:HCN10)である。また、シンクロールの軸部の材質は、公知である日立金属製の窒化珪素セラミックス(材質記号:HSN70)であり、また胴部も同一材質とした。各々の各種特性を表4に示す。
[Example of experiment]
As shown in Table 1, in Experimental Examples 1 to 20 and 22 to 24, sliding parts were manufactured for the bearing portion of the slide bearing and for Experimental Example 21 for the shaft portion of the rotating body. The material of the bearing portion is a known Hitachi Sialon (material symbol: HCN10). Further, the material of the shaft portion of the sink roll is silicon nitride ceramics (material symbol: HSN70) made of Hitachi Metal which is well known, and the body portion is also made of the same material. The various properties of each are shown in Table 4.
 対象が軸受部である実験例1~20および22~24では、いずれも図3(a)・図4(a)に示した形状の軸受部を製作した、各部の寸法は、以下の通りである。なお、軸受部と摺動する軸部は、上記日立金属製の窒化珪素セラミックス(材質記号:HSN70)を使用して製造し、その半径は68mmとした。
  軸受部の外周面の曲率半径:100mm
  摺動面1kの曲率半径:70mm
  突条部1bの幅(L1):30mm
  中央の凹部1tの幅(L2):10mm
  両側の凹部1tの幅(L3):15mm
  各凹部1tの深さ(d3):5mm
  溝部1cの数:5条
  溝部1cの配置角度ピッチ:5°
In Experimental Examples 1 to 20 and 22 to 24 in which the object is a bearing part, bearing parts having the shapes shown in FIGS. 3A and 4A were manufactured, and the dimensions of each part are as follows: is there. The shaft portion sliding with the bearing portion was manufactured using the above-mentioned Hitachi Metals silicon nitride ceramics (material symbol: HSN70), and the radius thereof was 68 mm.
Radius of curvature of outer peripheral surface of bearing: 100 mm
Curvature radius of sliding surface 1k: 70 mm
Width (L1): 30 mm of the protrusion 1b
Width (L2) of central recess 1t: 10 mm
Width (L3) of recess 1t on both sides: 15 mm
Depth of each recess 1t (d3): 5 mm
Number of grooves 1c: 5 arrangement Angle of arrangement of grooves 1c Pitch: 5 °
 公知のサンドブラスト法にて各実験例で作成した溝部の平面視の形状並びに第1の溝および第2の溝の寸法について、表1に示す。実験例1~16および22~24では、図5(a)に示した略U字形状をなす溝部1cを、軸部の回転方向において、第1の溝1mおよび第2の溝1nの各々の開口部1u・1vが、いずれも、連結凹部1Lより後方に配置されるよう形成した。第1の溝1mおよび第2の溝1nの各々の直線Fとの交差角度は、実験例1~13および実験例22~24ではいずれも45°とし、実験例14ではいずれも85°とし、実験例15では30°とした。さらに、実験例24では、第1の溝1mおよび第2の溝1nの各々の辺h3・h4の外端の位置を、突条部1bの側面1xおよび1yから5mm内方の位置とし、第1の溝1mおよび第2の溝1nの外端を閉鎖端とした。なお、交差角度を示す欄に記載された数値において、「/」の前に記載された数値が第1の溝1mの交差角度、後に記載された数値が第2の溝1nの交差角度を示している(以下の他の実験例において同じである。)。 Table 1 shows the shape in plan view of the groove portion and the dimensions of the first groove and the second groove prepared in each experimental example by the known sand blast method. In Experimental Examples 1 to 16 and 22 to 24, each of the first U-shaped groove 1c and the second U-shaped groove 1n in the rotational direction of the shaft portion has the substantially U-shaped groove 1c shown in FIG. The openings 1u and 1v are both formed to be disposed rearward of the connection recess 1L. The crossing angle of each of the first groove 1m and the second groove 1n with the straight line F is 45 ° in each of Experimental Examples 1 to 13 and 22 to 24, and is 85 ° in each of Experimental Example 14; In Experimental Example 15, it was 30 °. Furthermore, in the experimental example 24, the positions of the outer ends of the sides h3 and h4 of the first groove 1m and the second groove 1n are set 5 mm inward from the side surfaces 1x and 1y of the protruding portion 1b. The outer ends of the first groove 1m and the second groove 1n were closed ends. In the numerical values shown in the column indicating the crossing angle, the numerical value described before "/" indicates the intersecting angle of the first groove 1m, and the numerical value described later indicates the intersecting angle of the second groove 1n. (It is the same in the following other experimental examples).
 実験例17~20では、図5(b)~(d)および図8(a)に示した各種の形状をなす溝部を形成した。実験例17~20の第1の溝および第2の溝の交差角度、短手方向の断面形状が略矩形状の第1の溝および第2の溝の溝幅および溝深さは、表1に示すとおりである。 In Experimental Examples 17 to 20, groove portions having various shapes shown in FIGS. 5 (b) to 5 (d) and 8 (a) were formed. The groove widths and groove depths of the first groove and the second groove in the cross-sectional shape of the first groove and the second groove of Experimental Examples 17 to 20 and the cross-sectional shape in the short direction are substantially rectangular. As shown in
 ここで、図5(c)に示す略W字形状の溝部6cを形成した実験例18では、第1の溝6m-1の溝6m-2との交差角度および第2の溝6n-1の溝6n-2との交差角度はいずれも90°とし、溝6m-2および6n-2の溝幅および溝深さは、第1の溝6m-1の溝6m-2と同一とした。また、図5(d)に示す溝部8cを形成した実験例19では、連結凹部8Lの幅が10mmとなるよう溝部8cを形成した。さらに、図8(b)に示す溝部2cを形成した実験例20では、開口部1u・1vから連結凹部1Lに向かい溝幅が狭くなるよう開口部1u・1vの外端の溝幅(t3)を3.0mm、内端部の内端の溝幅(t4)を2.0mmとした。 Here, in the experimental example 18 in which the substantially W-shaped groove portion 6c shown in FIG. 5C is formed, the intersection angle of the first groove 6m-1 with the groove 6m-2 and the second groove 6n-1 The crossing angle with the groove 6n-2 was 90 °, and the groove width and the groove depth of the grooves 6m-2 and 6n-2 were the same as the groove 6m-2 of the first groove 6m-1. Moreover, in Experimental example 19 which formed the groove part 8c shown in FIG.5 (d), the groove part 8c was formed so that the width | variety of the connection recessed part 8L might be 10 mm. Furthermore, in the experimental example 20 in which the groove 2c shown in FIG. 8B is formed, the groove width (t3) of the outer end of the opening 1u · 1v so that the groove width narrows from the opening 1u · 1v to the connecting recess 1L. The groove width (t4) of the inner end of the inner end was 2.0 mm.
 実験例1~15、17~19および22~24では、いずれも、短手方向の断面形状が略矩形状の第1の溝1mおよび第2の溝1nの溝幅は2.0mm、溝深さは0.3mmとし、実験例16のみ、開口部1u・1vから連結凹部1Lに向かい溝深さが深くなるよう開口部1u・1vの外端の溝深さ(d1)を0.3mm、内端部の内端の溝深さ(d2)を0.5mmとした。なお、各実験例ともに連結凹部の幅および深さは、第1の溝および第2の溝の内端部の内端の溝幅および溝深さと同一である。 In each of Experimental Examples 1 to 15, 17 to 19, and 22 to 24, the groove width of the first groove 1m and the second groove 1n having a substantially rectangular cross-sectional shape in the width direction is 2.0 mm, and the groove depth is The groove length (d1) of the outer end of the openings 1u and 1v is 0.3 mm so that the groove depth is increased from the openings 1u and 1v toward the connection recess 1L only in the experimental example 16; The groove depth (d2) of the inner end of the inner end portion was 0.5 mm. In each experimental example, the width and the depth of the connection recess are the same as the groove width and the groove depth of the inner end of the inner end of the first groove and the second groove.
 対象が軸部である実験例21は、図10(a)に示した形状の軸部を製作した。各部の寸法は、以下の通りである。なお、実験例21では、図10(b)に示す略U字形状の溝部4cを、軸部の回転方向において、第1の溝1mおよび第2の溝1nの各々の開口部1u・1vが、いずれも、連結凹部1Lより前方に配置されるよう形成した。実験例21の第1の溝1mおよび第2の溝1nの交差角度、第1の溝1mおよび第2の溝1nの溝幅および溝深さは、表1に示すとおりである。なお、軸部と摺動する軸受部は、溝部が無い以外は、実験例1~16、22~24で使用した軸受部と同一材質および形状の軸受部を使用した。
  摺動面47kの半径:68mm
  突条部47eの幅(L5):30mm
  凹部4tの幅(L6):15mm
  凹部4tの深さ:5mm
  溝部4cの配置角度ピッチ:7°
In Example 21 in which the subject is a stem, a stem having the shape shown in FIG. 10A was manufactured. The dimensions of each part are as follows. In Experimental Example 21, each of the openings 1u and 1v of the first groove 1m and the second groove 1n is the U-shaped groove 4c shown in FIG. 10 (b) in the rotational direction of the shaft. Both were formed to be disposed forward of the connecting recess 1L. The crossing angle of the first groove 1m and the second groove 1n of Experimental Example 21, the groove width and the groove depth of the first groove 1m and the second groove 1n are as shown in Table 1. As the bearing portion sliding with the shaft portion, a bearing portion of the same material and shape as the bearing portion used in Experimental Examples 1 to 16 and 22 to 24 was used except that there was no groove portion.
Radius of sliding surface 47k: 68 mm
Width (L5): 30 mm of protrusion 47e
Width of concave 4t (L6): 15 mm
Depth of recessed part 4t: 5 mm
Arrangement angle pitch of grooves 4c: 7 °
 実験例22以外は、サンドブラストで使用するメディアの大きさや材質または加工条件等を調整するとともに必要に応じマスキング等を施し、第1の溝、第2の溝および連結凹部の表面粗さを調整した各実験例における、第1の溝および第2の溝の開口部および内端部の表面粗さならびに連結凹部の表面粗さを表2に示す。実験例1では、第1の溝および第2の溝ともに研削加工で形成しておき、その後、第1の溝の開口部・内端部のみサンドブラストで所定の粗さとなるよう調整した。また、実験例22では、第1の溝および第2の溝ともに研削加工でのみ形成した。ここで、表面粗さは、JIS-B0601に準拠して求めた算術平均粗さRaである。開口部および内端部の表面粗さについては、第1の溝および第2の溝ともに、その長手方向において開口部の外端・内端部の内端より10mmの範囲に設定した範囲の表面の任意の3箇所をレーザ式粗さ測定装置(オリンパス製 型式:OLS3000)にて測定し、その平均値を求めた。また、連結凹部の表面粗さについても同様にした。なお、実験例7~9以外の第1の溝および第2の溝では、その開口部および内端部の間の溝の表面の粗さは、開口部および内端部で測定された表面粗さの範囲内であった。また、実験例7~9では、第1の溝および第2の溝ともに、開口部および内端部の間の溝の表面の粗さは、開口部から内端部へと連続的に変化していた。 Except for Experimental Example 22, the size, material, processing conditions, etc. of the media used in sandblasting were adjusted and, if necessary, masking etc. were applied to adjust the surface roughness of the first groove, the second groove and the connection recess. The surface roughness of the opening and the inner end of the first groove and the second groove and the surface roughness of the connecting recess in each experimental example are shown in Table 2. In Experimental Example 1, both the first groove and the second groove were formed by grinding, and thereafter, only the opening and the inner end of the first groove were adjusted to have a predetermined roughness by sandblasting. In Experimental Example 22, both the first groove and the second groove were formed only by grinding. Here, the surface roughness is an arithmetic mean roughness Ra determined in accordance with JIS-B0601. With regard to the surface roughness of the opening and the inner end, both the first groove and the second groove have surfaces in the range set in the longitudinal direction in the range of 10 mm from the inner end of the outer end and the inner end of the opening The three arbitrary points of the above were measured with a laser type roughness measuring device (model: OLS 3000 manufactured by Olympus), and the average value was determined. In addition, the same was applied to the surface roughness of the connection recess. In the first and second grooves other than Experimental Examples 7 to 9, the surface roughness of the groove between the opening and the inner end is the surface roughness measured at the opening and the inner end. Within the range of In Experimental Examples 7 to 9, in both the first groove and the second groove, the surface roughness of the groove between the opening and the inner end changes continuously from the opening to the inner end. It was
 さらに、図11を参照して説明した摩擦損失係数の測定装置70を使用して、各実験例の第1の溝および第2の溝の摩擦損失係数を求めた。なお、当該係数を求めるにあたり、JIS Z8803に準拠して測定された動粘度を4890Stに調整した鉱油を使用し、0.5m/sの流速で溝部に供給した。各実験例において確認された摩擦損失係数を表3に示す。 Furthermore, the friction loss coefficient of the first groove and the second groove of each experimental example was determined using the friction loss coefficient measuring device 70 described with reference to FIG. In addition, in order to obtain | require the said coefficient, the mineral oil which adjusted dynamic viscosity measured based on JISZ8803 to 4890 St was used, and it supplied to the groove part at the flow velocity of 0.5 m / s. The friction loss coefficient confirmed in each experimental example is shown in Table 3.
 各実験例の軸受部が組み込まれたすべり軸受および軸部が組み込まれたシンクロールを、いずれも460℃で溶融した溶融亜鉛めっき浴に浸漬し、摺動面に対する単位面積当たりの押圧力が98MPa、軸部の回転数が平均60rpmの条件にて使用した。各実験例の軸受部および軸部の摺動面の1ヶ月使用後の磨耗量を表4に示す。軸受部の摩耗量は、図3(a)に示す凹部1tの底面と摺動面1kの高さの差を、デプスマイクロメータにより、使用前の摺動面および1カ月使用後の摺動面において円周方向および中心軸方向の各所で測定し、使用前の摺動面の各所の測定値の平均値から1カ月使用後の摺動面の各所の測定値を差し引き、そのうちの最大値を軸受部の摩耗量とした。また、軸部の磨耗量は、使用前の摺動面および1カ月使用後の摺動面の半径を、マイクロメータで、使用前の摺動面および1カ月使用後の摺動面において円周方向および中心軸方向の各所で測定し、使用前の摺動面の各所の測定値の平均値から1カ月使用後の摺動面の各所の測定値を差し引き、そのうちの最大値を軸部の摩耗量とした。なお、軸受部および軸部の摩耗量は、上記のようにデプスマイクロメータおよびマイクロメータにより測定する以外に、例えば基準点に配置されたレーザ式測長器等を用いて自動的に測定するようにしてもよい。 A sliding bearing incorporating the bearing of each experimental example and a sink roll incorporating the shaft are both immersed in a hot dip galvanizing bath melted at 460 ° C., and the pressing force per unit area against the sliding surface is 98 MPa The rotation speed of the shaft portion was used at an average of 60 rpm. The amount of wear after one month of using the sliding surfaces of the bearing portion and the shaft portion of each experimental example is shown in Table 4. The amount of wear of the bearing portion is the difference between the height of the bottom surface of the recess 1t and the sliding surface 1k shown in FIG. 3A by the depth micrometer, the sliding surface before use and the sliding surface after one month of use Measured at various points in the circumferential direction and central axis direction in the above, and deducted the measured values at various places of the sliding surface after one month from the average value of measured values at various places of the sliding surface before use, and the maximum value among them It was the amount of wear of the bearing. In addition, the amount of wear on the shaft is the radius of the sliding surface before use and the sliding surface after 1 month of use, in micrometers, the circumference of the sliding surface before use and the sliding surface after 1 month of use Measured at various points in the axial direction and central axis direction, subtract the measured values at various points on the sliding surface after one month from the average values at various points on the sliding surface before use It was the amount of wear. In addition to the measurement by the depth micrometer and micrometer as described above, the amount of wear of the bearing and the shaft may be automatically measured using, for example, a laser-type length-measuring device disposed at a reference point. You may
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、第1の溝および第2の溝の摩擦損失係数が、0.01を下回る実験例22および0・05を超える実験例23の場合、第1の溝および第2の溝の外端が閉鎖端である実験例24の場合には、軸受部の摩耗量が3.0mmを超えた。一方で、第1の溝および第2の溝の少なくとも一方の摩擦損失係数が、0.01~0.05の範囲である実験例1~21の場合には、軸受部および軸部の摩耗量はいずれも3.0mm以下となった。 As shown in Table 3, in the case of Experimental Example 22 where the friction loss coefficient of the first groove and the second groove is less than 0.01 and Experimental Example 23 where the friction loss coefficient is more than 0.05, the first groove and the second groove In the case of Experimental Example 24 in which the outer end of the groove was a closed end, the wear amount of the bearing portion exceeded 3.0 mm. On the other hand, in the case of Experimental Examples 1 to 21 in which the friction loss coefficient of at least one of the first groove and the second groove is in the range of 0.01 to 0.05, the wear amount of the bearing portion and the shaft portion Each became less than 3.0 mm.
 さらに、表面粗さの観点からは、表面粗さRaが0.3μm未満である実験例1~3、15.0μmを超える実験例12・13の場合には、軸受部の磨耗量も大きかった。一方で、溝部1cの表面粗さRaが0.3~15.0μmの範囲である実験例4~11および14~21の場合には、上記実験例1~3および12・13に比べ軸受部および軸部の磨耗量が比較的少なかった。さらに、実験例8・9に示すように、開口部の表面粗さRaを下限付近とし、内端部の表面粗さRaを範囲内とした場合には、軸受部の磨耗量は他の実験例に比べ小さくなった。一方で、実験例7に示すように開口部の表面粗さRaを上限付近とすると、開口部においてスラグが捕捉され開口部がやや閉塞してめっき浴の流量が減少するためか、実験例8・9に対し軸受部の磨耗量は比較的大きくなった。 Furthermore, from the viewpoint of surface roughness, in the cases of Experimental Examples 1 to 3 and Experimental Examples 12 and 13 exceeding 15.0 μm in which the surface roughness Ra is less than 0.3 μm, the wear amount of the bearing portion was also large. . On the other hand, in the case of Experimental Examples 4 to 11 and 14 to 21 in which the surface roughness Ra of the groove portion 1c is in the range of 0.3 to 15.0 μm, the bearing portion is compared with the above Experimental Examples 1 to 3 and 12/13. And the amount of wear on the shaft was relatively small. Furthermore, as shown in Experimental Examples 8 and 9, when the surface roughness Ra of the opening is near the lower limit and the surface roughness Ra of the inner end is in the range, the wear amount of the bearing is another experiment. It became smaller than the example. On the other hand, assuming that the surface roughness Ra of the opening is near the upper limit as shown in Experimental Example 7, slag may be trapped at the opening, and the opening may be slightly closed to reduce the flow rate of the plating bath. • The amount of wear on the bearing portion was relatively large compared to 9.
 さらに、第1の溝、第2の溝および連結凹部の表面粗さが実験例1とほぼ同等の、第1の溝および第2の溝の交差角度を変更した実験例14・15、溝部の形状を種々変更した実験例17~20、および摺動部材を適用する対象を軸部とした実験例21によれば、上記実験例1~13の場合と同様に、第1の溝および第2の溝の摩擦損失係数を0.01~0.05の範囲とすることで、軸受部または軸部の摩耗量が低減されることが確認された。 Furthermore, in the experimental examples 14 and 15 in which the crossing angle of the first groove and the second groove is changed, the surface roughness of the first groove, the second groove and the connection recess is almost equal to that of the experimental example 1. According to Experimental Examples 17 to 20 in which the shapes are variously changed, and Experimental Example 21 in which the object to which the sliding member is applied is the shaft portion, the first groove and the second groove are similar to the experimental examples 1 to 13 above. By setting the friction loss coefficient of the grooves in the range of 0.01 to 0.05, it was confirmed that the wear amount of the bearing portion or the shaft portion was reduced.
 1(3、4)       すべり軸受
 1a(2a、3a、4a) 軸受部
 1b          突条部
 1c(2c~9c)    溝部
 1h           湯溜部
 1k           摺動面
 1L(2L~9L)    連結凹部
 1m           第1の溝
 1n           第2の溝
 1u(1v、2u、2v) 開口部
 20           溶融金属めっき装置
 21           溶融金属めっき浴
 22           めっき槽
 23           スナウト
 26           ワイピングノズル
 27           シンクロール
 27a          胴部
 27b(47b)     軸部
 27c(47c)     摺動部
 47k          突条部
 27k(47k)     摺動面
 28           サポートロール
 E            潤滑媒体(めっき浴)の流動方向
 I           中心線
 W           鋼板
1 (3, 4) Slide bearing 1a (2a, 3a, 4a) Bearing portion 1b Projection portion 1c (2c to 9c) Groove portion 1h Water storage portion 1k Sliding surface 1L (2L to 9L) Coupling recess 1m First groove 1n Second groove 1u (1v, 2u, 2v) Opening 20 Molten metal plating apparatus 21 Molten metal plating bath 22 Plating tank 23 Snout 26 Wiping nozzle 27 Sink roll 27a Body 27b (47b) Shaft 27c (47c) Slide Moving part 47k Projection part 27k (47k) Sliding surface 28 Support roll E Flow direction of lubricating medium (plating bath) I Center line W Steel plate

Claims (21)

  1.  回転体を回転自在に支持するすべり軸受装置の軸受部または軸部を構成する、少なくとも一の摺動面を有するすべり軸受装置用摺動部材であって、
     前記摺動面に形成された、第1の溝、第2の溝および前記第1の溝と第2の溝の各々の一端部を直接的または間接的に連結する連結凹部を有する溝部を備え、前記第1の溝および第2の溝の各々の他端部は、開口端を有する開口部であり、
     前記すべり軸受装置用摺動部材が軸受部を構成する場合には、前記軸部の回転方向において、前記第1の溝および第2の溝の各々の開口部は、いずれも、前記連結凹部より後方に配置されており、
     前記すべり軸受装置用摺動部材が軸部を構成する場合には、前記軸部の回転方向において、前記第1の溝および第2の溝の各々の開口部は、いずれも、前記連結凹部より前方に配置されており、
     さらに、前記溝部の表面には、微小凹凸が形成されていることを特徴とするすべり軸受装置用摺動部材。
    A sliding member for a sliding bearing device having at least one sliding surface, which constitutes a bearing portion or a shaft portion of a sliding bearing device rotatably supporting a rotating body, comprising:
    A groove portion having a first groove, a second groove, and a connection recess for directly or indirectly connecting one end of each of the first groove and the second groove, formed in the sliding surface. The other end of each of the first groove and the second groove is an opening having an open end,
    When the sliding member for a sliding bearing device constitutes a bearing portion, each of the openings of each of the first groove and the second groove in the rotational direction of the shaft portion is formed by the connection recess portion. It is located at the rear,
    In the case where the sliding member for a sliding bearing device constitutes a shaft portion, in the rotation direction of the shaft portion, each of the openings of each of the first groove and the second groove is formed by the connection concave portion. Located in front of the
    The sliding member for a sliding bearing device, wherein minute asperities are formed on the surface of the groove.
  2.  前記溝部は、略V字形状、略U字形状または略W字形状をなしている請求項1に記載のすべり軸受装置用摺動部材。 The sliding member according to claim 1, wherein the groove portion has a substantially V shape, a substantially U shape, or a substantially W shape.
  3.  前記溝部に、JIS Z8803に準拠して測定された動粘度が4890Stの液体を流したときの、前記第1の溝および第2の溝少なくとも一方の摩擦損失係数が0.01~0.05である請求項1または2のいずれかに記載のすべり軸受装置用摺動部材。 The coefficient of friction loss of at least one of the first groove and the second groove is 0.01 to 0.05 when flowing a liquid having a kinematic viscosity of 4890 St measured in accordance with JIS Z8803 in the groove portion. The sliding member for a sliding bearing device according to any one of claims 1 or 2.
  4.  前記微小凹凸が形成された前記溝部の表面のJIS-B0601による算術平均粗さRaが、0.3~15.0μmである請求項1乃至3のいずれかに記載のすべり軸受装置用摺動部材。 The sliding member for a sliding bearing device according to any one of claims 1 to 3, wherein an arithmetic mean roughness Ra according to JIS-B0601 of the surface of the groove portion in which the minute unevenness is formed is 0.3 to 15.0 m. .
  5.  前記微小凹凸は、前記第1の溝および第2の溝の少なくとも一方の表面に形成されている請求項1乃至4のいずれかに記載のすべり軸受装置用摺動部材。 The sliding member for a sliding bearing device according to any one of claims 1 to 4, wherein the minute unevenness is formed on the surface of at least one of the first groove and the second groove.
  6.  前記溝部の表面の全面に前記微小凹凸が形成されている請求項1乃至5のいずれかに記載のすべり軸受装置用摺動部材。 The sliding member for a sliding bearing device according to any one of claims 1 to 5, wherein the minute unevenness is formed on the entire surface of the groove.
  7.  前記第1溝または第2の溝の表面の粗さは、前記開口部から前記連結凹部に向かい粗くなっている請求項6に記載のすべり軸受装置用摺動部材。 The sliding member for a sliding bearing device according to claim 6, wherein the surface roughness of the first groove or the second groove is roughened from the opening to the connection recess.
  8.  前記第1の溝または第2の溝の開口部における表面のJIS-B0601による算術平均粗さRaは0.3~5.0μmであり、前記第1の溝または第2の溝の一端部における粗さRaは5.0~15.0μmである請求項7に記載のすべり軸受装置用摺動部材。 Arithmetic mean roughness Ra according to JIS-B0601 of the surface at the opening of the first groove or the second groove is 0.3 to 5.0 μm, and at one end of the first groove or the second groove The sliding member for a sliding bearing device according to claim 7, wherein the roughness Ra is 5.0 to 15.0 μm.
  9.  前記第1の溝および第2の溝のうち少なくとも一方の溝深さは、前記開口部から連結凹部に向かい深くなっている請求項1乃至8のいずれかに記載のすべり軸受装置用摺動部材。 The sliding member according to any one of claims 1 to 8, wherein a depth of at least one of the first groove and the second groove is deeper from the opening toward the connecting recess. .
  10.  前記第1の溝および第2の溝のうち少なくとも一方の溝幅は、前記開口部から連結凹部に向かい狭くなっている請求項1乃至9のいずれかに記載のすべり軸受装置用摺動部材。 The sliding member according to any one of claims 1 to 9, wherein a groove width of at least one of the first groove and the second groove is narrowed from the opening toward the connecting recess.
  11.  セラミックスで構成されている請求項1乃至10のいずれかに記載のすべり軸受装置用摺動部材。 The sliding member for a sliding bearing device according to any one of claims 1 to 10, wherein the sliding member is made of a ceramic.
  12.  請求項1乃至11のいずれかのすべり軸受装置用摺動部材が軸受部として組み込まれたすべり軸受装置であって、前記摺動面には、前記軸部の回転方向に沿い、前記溝部が複数形成されていることを特徴とするすべり軸受。 A sliding bearing device in which the sliding member for a sliding bearing device according to any one of claims 1 to 11 is incorporated as a bearing portion, wherein the sliding surface has a plurality of the groove portions along the rotation direction of the shaft portion. A slide bearing characterized in that it is formed.
  13.  前記摺動面には、その中心線に沿う方向に対し並列した状態で、前記溝部が複数形成されている請求項12に記載のすべり軸受。 The slide bearing according to claim 12, wherein a plurality of the groove portions are formed in the sliding surface in parallel with a direction along the center line thereof.
  14.  前記摺動面には、その中心線に沿う方向に対し千鳥状に、前記溝部が複数形成されている請求項12に記載のすべり軸受。 The slide bearing according to claim 12, wherein a plurality of the groove portions are formed in a staggered manner in a direction along the center line of the sliding surface.
  15.  前記軸受部は、前記摺動面が円環の一部をなすセグメント状をなしており、当該軸受部が挿着される保持部を備え、前記軸受部は、前記保持部に挿着された状態において前記軸部の回転方向に対し反対側に位置する一端を備え、前記軸受部が前記保持部に装着された状態において当該軸受部の一端の外方に配置された湯溜まり部を有する請求項12乃至14のいずれかに記載のすべり軸受。 The bearing portion has a segment shape in which the sliding surface forms a part of an annular ring, and the bearing portion includes a holding portion to which the bearing portion is inserted. The bearing portion is inserted to the holding portion. In the state, it has one end located on the opposite side to the rotation direction of the shaft portion, and in the state where the bearing portion is mounted to the holding portion, it has a pouring basin disposed outside the one end of the bearing portion. The sliding bearing according to any one of Items 12 to 14.
  16.  前記保持部は、前記軸受部が装着された状態において前記軸受部の一端の外方に位置するとともに前記軸受部が挿着される側に形成された露出する一面を有し、前記軸受部の摺動面は、その中心線に交差する断面視において、前記保持部の一面よりも内方に位置する状態で挿着され、前記保持部の一面上に湯溜まり部が形成されている請求項15に記載のすべり軸受。 The holding portion has an exposed surface which is located outward of one end of the bearing portion in a state where the bearing portion is mounted, and is formed on the side where the bearing portion is inserted and attached. The sliding surface is inserted in a state in which the sliding surface is positioned inward of one surface of the holding portion in a cross-sectional view intersecting the center line, and a pooling portion is formed on the one surface of the holding portion. Slide bearing according to 15.
  17.  前記保持部の一面は、前記軸受部の摺動面に向かい傾斜する面を有する請求項16に記載のすべり軸受。 The slide bearing according to claim 16, wherein one surface of the holding portion has a surface inclined toward the sliding surface of the bearing portion.
  18.  前記保持部は、前記軸受部が装着された状態において前記軸受部の一端の外方に位置するとともに前記軸受部が挿着される側に形成された露出する一面を有し、前記軸受部の摺動面は、その中心線に交差する断面視において、前記保持部の一面よりも内方に位置する状態で挿着され、前記保持部の露出する一面と前記摺動面との間には段差が形成されている請求項12乃至14のいずれかに記載のすべり軸受。 The holding portion has an exposed surface which is located outward of one end of the bearing portion in a state where the bearing portion is mounted, and is formed on the side where the bearing portion is inserted and attached. The sliding surface is inserted in a state of being positioned inward of one surface of the holding portion in a cross sectional view intersecting the center line, and between the one surface where the holding portion is exposed and the sliding surface The slide bearing according to any one of claims 12 to 14, wherein a step is formed.
  19.  請求項1乃至11のいずれかのすべり軸受装置用摺動部材が一体的にまたは別体として付設された軸部を有する回転体であって、前記すべり軸受装置用摺動部材は、前記摺動面が外周面である略円柱形状の外観をなしており、前記摺動面には、前記軸部の回転方向に沿い、前記溝部が等ピッチで複数形成されていることを特徴とする回転体。 A sliding member according to any one of claims 1 to 11, wherein the sliding member is a rotary member having a shaft portion integrally or separately attached, wherein the sliding member for a sliding bearing device is the sliding member. The rotating body is characterized in that the outer surface is an outer surface of a substantially cylindrical shape, and in the sliding surface, a plurality of the groove portions are formed at equal pitches along the rotation direction of the shaft portion. .
  20.  前記摺動面には、その中心線に沿う方向に対し並列した状態で、前記溝が複数形成されている請求項19に記載の回転体。 20. The rotating body according to claim 19, wherein a plurality of the grooves are formed in the sliding surface in parallel to a direction along the center line thereof.
  21.  前記摺道面には、その中心線に沿う方向に対し千鳥状に、前記溝が複数形成されている請求項19に記載の回転体。 20. The rotating body according to claim 19, wherein a plurality of the grooves are formed in a staggered manner in a direction along the center line of the sliding surface.
PCT/JP2012/064067 2011-05-31 2012-05-31 Sliding member for slide bearing device WO2012165540A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013518154A JP5664777B2 (en) 2011-05-31 2012-05-31 Sliding member for slide bearing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-121524 2011-05-31
JP2011121524 2011-05-31

Publications (1)

Publication Number Publication Date
WO2012165540A1 true WO2012165540A1 (en) 2012-12-06

Family

ID=47259392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064067 WO2012165540A1 (en) 2011-05-31 2012-05-31 Sliding member for slide bearing device

Country Status (2)

Country Link
JP (1) JP5664777B2 (en)
WO (1) WO2012165540A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163016A (en) * 1986-12-25 1988-07-06 Kyocera Corp Ceramic rotary shaft
JPH0679740U (en) * 1993-04-26 1994-11-08 新日本製鐵株式会社 Bath support roll for hot metal plating
JPH07138721A (en) * 1993-11-18 1995-05-30 Hitachi Ltd Continuous hot-dip metal plating device and sliding structure used therefor
JP2001003929A (en) * 1999-06-18 2001-01-09 Sony Corp Motor
JP2001128411A (en) * 1999-10-28 2001-05-11 Sony Corp Spindle motor
JP2007333004A (en) * 2006-06-12 2007-12-27 Nippon Densan Corp Hydrodynamic fluid bearing apparatus, spindle motor, and recording disk driving device equipped with this spindle motor
JP2009120890A (en) * 2007-11-13 2009-06-04 Nippon Steel Corp Bearing structure of roll used in molten-metal plating bath

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163016A (en) * 1986-12-25 1988-07-06 Kyocera Corp Ceramic rotary shaft
JPH0679740U (en) * 1993-04-26 1994-11-08 新日本製鐵株式会社 Bath support roll for hot metal plating
JPH07138721A (en) * 1993-11-18 1995-05-30 Hitachi Ltd Continuous hot-dip metal plating device and sliding structure used therefor
JP2001003929A (en) * 1999-06-18 2001-01-09 Sony Corp Motor
JP2001128411A (en) * 1999-10-28 2001-05-11 Sony Corp Spindle motor
JP2007333004A (en) * 2006-06-12 2007-12-27 Nippon Densan Corp Hydrodynamic fluid bearing apparatus, spindle motor, and recording disk driving device equipped with this spindle motor
JP2009120890A (en) * 2007-11-13 2009-06-04 Nippon Steel Corp Bearing structure of roll used in molten-metal plating bath

Also Published As

Publication number Publication date
JPWO2012165540A1 (en) 2015-02-23
JP5664777B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
Coblas et al. Manufacturing textured surfaces: State of art and recent developments
JP6312346B2 (en) Journal bearing, rotating machine
Saha et al. An analytical approach to assess the variation of lubricant supply to the cutting tool during MQL assisted high speed micromilling
Wang et al. Observation and experimental investigation on cavitation effect of friction pair surface texture
KR20120044085A (en) Bearing part of pot roll in galvanizing line and method for coating bearing part of pot roll
CA2266102A1 (en) Bearing having micropores, and design method thereof
WO2012165540A1 (en) Sliding member for slide bearing device
JPWO2004070219A1 (en) Shaft for hydrodynamic bearing, hydrodynamic bearing, and method for manufacturing the shaft
Liang et al. Friction and wear behavior of cemented carbide self-matching pairs under different water lubrication conditions
KR100871278B1 (en) Aerostatic bearing spindle system using unidirectional porous metal
Gimeno et al. Effect of different laser texturing patterns on rolling contact surface and its tribological & fatigue life behavior on 100Cr6 bearing steel
Barmouz et al. Progress in grinding performance by additive manufacturing of grinding wheels integrated with internal venturi cooling channels and surface slots
Yang et al. Design of slip boundary produced by a lotus structure applied to a hydrostatic bearing
Bharath et al. Study on tool wear mechanism and chip morphology during turning of Inconel 713C by textured inserts
KR20170093220A (en) Roller for deflecting or guiding a metal strip, which is to be coated, in a metal melt bath
JP6653104B2 (en) bearing
JP4949207B2 (en) Roller bearing structure in hot metal plating bath
Galda et al. Surface geometry of slide bearings after percussive burnishing
Nikam et al. Feasibility of inducing superhydrophobicity on laser-textured surfaces: development of mathematical model and experimental investigations
US20100018459A1 (en) Immersion bath roll and a method for the manufacture of an immersion bath roll
Li et al. Analytical and experimental investigation of grinding fluid hydrodynamic pressure at wedge-shaped zone
JP2014109061A (en) Bearing for molten metal plating bath
JP2012189184A (en) Sliding member for liquid lubrication sliding bearing device
Sasaki Surface Texturing for Friction Control: A Review on Existing Technology and Prospects
JP2010120044A (en) Method of oscillating die for continuous casting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013518154

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793442

Country of ref document: EP

Kind code of ref document: A1