WO2012165081A1 - Condensate of amino-bearing silane coupling agent with metal alkoxide compound, material for laminate base comprising same as main component, laminate base and elecroconductive member, and processes for manufacturing same - Google Patents

Condensate of amino-bearing silane coupling agent with metal alkoxide compound, material for laminate base comprising same as main component, laminate base and elecroconductive member, and processes for manufacturing same Download PDF

Info

Publication number
WO2012165081A1
WO2012165081A1 PCT/JP2012/060592 JP2012060592W WO2012165081A1 WO 2012165081 A1 WO2012165081 A1 WO 2012165081A1 JP 2012060592 W JP2012060592 W JP 2012060592W WO 2012165081 A1 WO2012165081 A1 WO 2012165081A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensate
silane coupling
coupling agent
group
metal alkoxide
Prior art date
Application number
PCT/JP2012/060592
Other languages
French (fr)
Japanese (ja)
Inventor
宏治 井浦
昭博 松林
福永 謙二
Original Assignee
宇部日東化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部日東化成株式会社 filed Critical 宇部日東化成株式会社
Priority to JP2013517927A priority Critical patent/JP5884823B2/en
Publication of WO2012165081A1 publication Critical patent/WO2012165081A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/54Nitrogen-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0709Catalytic ink or adhesive for electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method

Definitions

  • the present invention relates to a condensate of a silane coupling agent having an amino group and a metal alkoxide compound, a laminated substrate material containing the same as a main component, a laminated substrate and a conductive member, and methods for producing them.
  • a high-viscosity conductive resin paste containing silver powder, a resin binder, and an organic solvent has been patterned using a printing method suitable for the high-viscosity paste.
  • attempts to pattern inks or pastes containing metal nanoparticles have been actively performed because of the difficulty in printing fine lines due to the large size of silver powder.
  • the metal nanoparticles are coated with a dispersant, the pattern formed by simply applying and drying does not have electrical conductivity. In order to fuse them, sintering at about 200 ° C. is required.
  • the dispersing agent is removed from the metal nanoparticles in the drying step, the metal nanoparticles are almost only a metal component in the sintered state after drying, and it is difficult to obtain adhesion with the base material.
  • the treatment liquid enters the porous layer and adversely affects the circuit characteristics, or when an ink containing silver as a main component is used.
  • the present invention has been made in view of the problems as described above, and has an adhesive property to a base material of a conductive pattern formed using a conductive ink, particularly an ink or paste containing metal nanoparticles.
  • Highly laminated substrate and conductive member that suppress metal migration and provide excellent conductivity, condensate of amino group-containing silane coupling agent and metal alkoxide compound to obtain them, and main component thereof
  • An object of the present invention is to provide a laminated substrate material and a method for producing them.
  • the present inventors have conducted intensive research, and as a result, the MO repeating unit obtained by hydrolysis-condensation reaction between a silane coupling agent having an amino group and a metal alkoxide compound.
  • a conductive member obtained by laminating a condensate having a main skeleton on a substrate surface as a laminated substrate material is based on a conductive pattern formed using a conductive ink, particularly an ink or paste containing metal nanoparticles.
  • the present inventors have found that adhesion to a material is high, metal migration is suppressed, and excellent conductivity is obtained, and the present invention has been achieved.
  • the present invention provides a condensation having as a main skeleton a MO repeating unit obtained by subjecting a silane coupling agent having an amino group to a metal alkoxide compound represented by the general formula (I) to a hydrolysis-condensation reaction.
  • a silane coupling agent having an amino group to a metal alkoxide compound represented by the general formula (I) to a hydrolysis-condensation reaction.
  • the present invention also relates to a laminated substrate material containing the condensate as a main component.
  • the present invention prints the conductive material containing metal nanoparticles on the surface of the multilayer substrate on which the multilayer substrate material is laminated on the surface of the base material and the multilayer substrate.
  • the present invention relates to a conductive member that is applied to form a conductive pattern.
  • the present invention also provides a first step of obtaining a reaction solution by subjecting a silane coupling agent having an amino group to a condensation reaction in a solvent, a metal alkoxide compound represented by the general formula (I), and the first step. It is related with the manufacturing method of the condensate provided with the 2nd process of mixing and reacting the obtained reaction liquid.
  • the present invention provides a method for producing a laminated substrate in which a condensate is laminated on a base material by applying the condensate on the surface of the base material, and a laminated substrate material for the laminated substrate is laminated. It is related with the manufacturing method of the electroconductive member which prints after apply
  • the conductive ink in particular, the conductive pattern formed using the ink or paste containing metal nanoparticles is highly adhesive to the base material, and metal migration is suppressed.
  • a laminate substrate and a conductive member capable of obtaining excellent conductivity, a condensate of a silane coupling agent having an amino group and a metal alkoxide compound for obtaining them, and a laminate substrate material comprising the same as a main component, and A manufacturing method thereof can be provided.
  • Example 5 it is a photograph of the cross-sectional structure of the sample which performed the electroless nickel plating process with respect to the electroconductive member in which the silver paste was printed.
  • Example 5 it is the result of having investigated the distribution of the nickel element of the sample which performed the electroless nickel plating process with respect to the electroconductive member on which the silver paste was printed.
  • Examples 38-57 it is the graph which put together the relationship between a printing thinning rate and a surface coverage.
  • silane coupling agent having amino group In the condensate according to the present invention, since the silane coupling agent having an amino group can form a coordinate bond with a metal via the amino group, when the layer containing the silane coupling agent is fixed to a substrate, The adhesion between the conductive pattern formed by fusing the ink or paste containing metal nanoparticles through the firing of the metal nanoparticles and the substrate can be greatly improved.
  • silane coupling agent which has an amino group
  • silane coupling agents having an amino group may be used alone or in combination of two or more. Moreover, you may use combining the silane coupling agent which has an amino group, and the silane coupling agent which does not have an amino group.
  • the condensate according to the present invention has heat resistance when considering the formation of a conductive pattern by sintering an ink or paste containing metal nanoparticles on an organic substrate such as a polyimide film at a high temperature. is important. Therefore, it is effective to use a silane coupling agent having high heat resistance as the silane coupling agent as a raw material of the condensate.
  • the condensate of the silane coupling agent does not undergo thermal decomposition or sublimation during high-temperature treatment after printing a conductive material described later, and maintains its film form and its function (heat resistance, basicity, etc.). In many cases, it is required that the adhesiveness to a material or a conductive member does not deteriorate.
  • (aminoethylaminomethyl) phenyltrimethoxysilane is preferable because of its high heat resistance.
  • N- (2-aminoethyl) 3-aminopropyltrimethoxysilane is preferable because of its low cost.
  • the number of amino groups of the silane coupling agent is preferably 2 or more, for example, 2 or 3.
  • silane coupling agents having two or more amino groups in the molecule for example, (aminoethylaminomethyl) phenethyltrimethoxysilane and N- [2- [3- (trimethoxysilyl) propylamino] Ethyl] ethylenediamine is also preferably used.
  • Silane coupling agents having an amino group include (aminoethylaminomethyl) phenyltrimethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane and N- [2- [3- (trimethoxysilyl) propylamino] ethyl]. It is preferable that it is 1 or more types selected from the group which consists of ethylenediamine.
  • the concentration of the silane coupling agent containing an amino group in the condensate according to the present invention is not particularly limited, but is preferably 40 to 99% by mass, more preferably 60 to 98% by mass, and particularly preferably 80 to 95%. % By mass.
  • Metal alkoxide The metal alkoxide compound used for the condensate according to the present invention is represented by the following general formula (I).
  • M is Si, Ti, Al, Zr, Li, Na, Ca, Sr, Ba, Zn, B, Ga, Y, Ge, Pb, P, Sb, V, Ta, W. And at least one metal atom selected from the group of metal atoms of La, Nd, and In.
  • M is preferably Si, Ti, Al, Zr, and particularly preferably Ti because it is generally easy to obtain and synthesize.
  • R 1 represents a non-hydrolyzable group, for example, an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, a (meth) acryloyloxy group, an amino group or an epoxy group.
  • an alkenyl group an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms is preferably one having 1 to 10 carbon atoms, and the alkyl group may be linear, branched or cyclic.
  • functional groups containing substituents such as hydroxyl groups, thiols, and imidazoles can also be mentioned.
  • Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group Octyl group, cyclopentyl group, cyclohexyl group and the like.
  • alkyl group having 1 to 20 carbon atoms having a (meth) acryloyloxy group, amino group or epoxy group an alkyl group having 1 to 10 carbon atoms having the above substituent is preferable, and this alkyl group is linear, It may be either branched or annular.
  • alkyl group having this substituent include ⁇ -acryloyloxypropyl group, ⁇ -methacryloyloxypropyl group, ⁇ -aminopropyl group, 3- (2-aminoethylamino) propyl group, 3-feraminopropyl group. , ⁇ -glycidoxypropyl group, 3,4-epoxycyclohexyl group and the like.
  • the alkenyl group having 2 to 20 carbon atoms is preferably an alkenyl group having 2 to 10 carbon atoms, and this alkenyl group may be linear, branched or cyclic.
  • Examples of the alkenyl group include vinyl group, allyl group, butenyl group, hexenyl group, octenyl group and the like.
  • the aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 10 carbon atoms, and examples thereof include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group.
  • the aralkyl group having 7 to 20 carbon atoms is preferably an aralkyl group having 7 to 10 carbon atoms, and examples thereof include a benzyl group, a phenethyl group, a phenylpropyl group, and a naphthylmethyl group.
  • R 2 is an alkyl group having 1 to 6 carbon atoms, which may be linear, branched or cyclic, and examples thereof include a methyl group, an ethyl group, an n-propyl group, Examples include isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group and the like.
  • m is the valence of the metal atom M and is 3 or 4
  • n is an integer of 0 to 2 when m is 4
  • R 1 are a plurality, each R 1 may be the same as each other or different, and if the OR 2 there are a plurality, each OR 2 may be the same with each other, or different Also good.
  • Examples of the alkoxide compound in the case where M is tetravalent Ti, Si, Zr, m is 4, and n is an integer of 0 to 3 in the metal alkoxide compound represented by the above general formula (I) are tetramethoxy titanium, tetraethoxy titanium, tetra-n-propoxy titanium, tetraisopropoxy titanium (titanium tetraisopropoxide), tetra-n-butoxy titanium, tetraisobutoxy titanium, tetra-sec-butoxy titanium, tetra- tert-butoxy titanium, methyl trimethoxy titanium, methyl triethoxy titanium, methyl tripropoxy titanium, methyl triisopropoxy titanium, ethyl trimethoxy titanium, ethyl triethoxy titanium, propyl triethoxy titanium, butyl trimethoxy titanium, phenyl trimethoxy titanium , Enyltriethoxytitanium, vinyltri
  • metal alkoxide compounds may be used alone or in combination of two or more.
  • the ratio between the silane coupling agent and the metal alkoxide compound is preferably 80:20 to 95: 5 in the case of mass%.
  • the silane coupling agent having an amino group and a metal alkoxide compound are subjected to hydrolysis-condensation reaction by a sol-gel reaction to repeat MO (M is the same as described above; hereinafter the same).
  • MO is the same as described above; hereinafter the same.
  • a condensate having the main skeleton as a unit is prepared.
  • the method for producing a condensate according to the present invention is represented by a first step of obtaining a reaction solution by subjecting a silane coupling agent having an amino group to a condensation reaction in a solvent such as water, and the general formula (I). A second step of mixing and reacting the metal alkoxide compound and the reaction solution obtained in the first step.
  • examples of the solvent include polar solvents such as alcohol-based, cellosolve-based, ketone-based, ether-based, glycol ether-based, preferably glycol ether-based from the viewpoint of compatibility.
  • polar solvents such as alcohol-based, cellosolve-based, ketone-based, ether-based, glycol ether-based, preferably glycol ether-based from the viewpoint of compatibility.
  • ethylene glycol mono-t-butyl ether is used.
  • a silane coupling agent or alkoxide compound having an amino group is used in the above solvent, and water or an acid such as hydrochloric acid, sulfuric acid or nitric acid, or a cation exchange resin as a solid acid, usually at 0 to 70 ° C.
  • the hydrolysis treatment is carried out at a temperature of 20 to 60 ° C., and when a solid acid is used, the solid acid is removed, and then the solvent is distilled off or added as desired.
  • a condensate having a repeating unit of MO as the main skeleton can be obtained.
  • the amino group of the silane coupling agent having an amino group and the OH group generated by hydrolysis of OR 2 in the general formula (I) remain. It also has excellent adhesion to organic materials such as polyimide films, cover materials and bonding sheets, and inorganic materials such as metals.
  • the method for producing a condensate according to the present invention preferably further includes a third step of adding a triazine thiol derivative to the reaction solution obtained in the first step.
  • a third step of adding a triazine thiol derivative to the reaction solution obtained in the first step preferably further includes a third step of adding a triazine thiol derivative to the reaction solution obtained in the first step.
  • the electroconductive member using the condensate in which the triazine thiol derivative is introduced can further increase the adhesion strength.
  • “triazine thiol derivative is introduced into the condensate” mainly means a form in which the triazine thiol derivative is simply contained in the condensate.
  • the triazine thiol derivative chemically reacts with the condensate or is distributed. Forms that form coordinate bonds are also included in the introduction referred to here.
  • the MO repeating unit obtained by hydrolysis-condensation reaction of the silane coupling agent having an amino group and the metal alkoxide compound by sol-gel reaction after the second step is used as the main skeleton. It is preferable to add a triazine thiol derivative to the condensate to be reacted.
  • the silane coupling agent having an amino group, the metal alkoxide compound, and the triazine thiol derivative may be added and reacted simultaneously with the second step.
  • the metal alkoxide compound may be added and reacted before the second step, that is, after the triazine thiol derivative is added and reacted with the silane coupling agent having an amino group.
  • a triazine thiol derivative may be added and reacted simultaneously with the first step, that is, before the silane coupling agent having an amino group undergoes a condensation reaction.
  • triazine thiol derivative examples include compounds represented by the following general formula (II) and / or general formula (III) and / or general formula (IV).
  • R represents —SR 3 , —OR 3 , —NHR 3 , NR 3 R 4 , or the like.
  • R 3 and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, phenyl group, aralkyl group, alkenyl group, cycloalkyl group, unsaturated alkyl group, fluorinated alkyl group, fluorinated phenyl group Represents a fluorinated aralkyl group or a fluorinated unsaturated alkyl group, and R 3 and R 4 may be connected at the other end to form a ring.
  • X 1 and X 2 each independently represent a residue selected from a hydrogen atom, a malonic acid derivative, a succinic acid derivative, a methyl succinic acid derivative, a propionic acid derivative, a ketone derivative, a sulfone derivative, a nitro derivative, and an acetyl derivative.
  • X 1 nor X 2 is a hydrogen atom.
  • triazine thiol derivatives at least 2 of the triazine ring represented by the general formula (II) having a small molecular weight in compatibility with various metal alkoxide condensates, particularly compatibility with high concentration metal alkoxide condensates.
  • Triazine thiol derivatives in which two carbons are substituted with a thiol group (—SH) are preferred.
  • the case where all the carbons of the triazine ring are substituted with sulfur is particularly preferable, and 2,4,6-trimercapto-triazine in which all the carbons are substituted with a thiol group (—SH) is particularly preferable.
  • triazine thiol derivatives can be used alone or in admixture of two or more.
  • the ratio of the triazine thiol derivative silane coupling agent having an amino group, the metal alkoxide compound, and the triazine thiol derivative to the total amount (solid content or active ingredient) is preferably 0.05 to 10% by mass.
  • the method for producing a condensate according to the present invention may further include a fourth step of mixing a filler.
  • a filler preferably has a primary particle size in the range of 30 to 1500 nm.
  • the primary particle size can be obtained by calculating the average particle size of the particles from an electron microscope image obtained by diluting the filler dispersion and observing with a scanning electron microscope.
  • the primary particle size is smaller than 30 nm, the effect on the printability during printing of the conductive material is small.
  • the primary particle diameter is larger than 1500 nm, the particles are likely to settle when a solution is prepared, and it becomes somewhat difficult to form a uniform film.
  • an inorganic filler either an inorganic filler or an organic filler can be used.
  • the inorganic filler include silica, silica fine particles, colloidal silica, alumina, colloidal alumina, colloidal titania, zirconia sol, calcium silicate, zeolite, kaolinite, halloysite, muscovite, talc, calcium carbonate, calcium sulfate, boehmite and the like. be able to.
  • colloidal silica is preferably used.
  • silica examples include LEVASIL series (manufactured by HC Starck Co., Ltd.), methanol silica sol, IPA-ST, MEK-ST, NBA-ST, XBA-ST, DMAC-ST, ST-UP, ST -OUP, ST-20, ST-40, ST-C, ST-N, ST-O, ST-50, ST-OL, MP-2040 (manufactured by Nissan Chemical Industries, Ltd.), Quatron PL series (Fuso Chemical Co., Ltd.), OSCAL series (manufactured by JGC Catalysts & Chemicals Co., Ltd.), and high plesica (manufactured by Ube Nitto Kasei Co., Ltd.).
  • high plesica is most preferably used.
  • a polyimide particle etc. are mentioned as an organic filler.
  • the ratio of the filler to the silane coupling agent having an amino group is preferably in the range of 10 to 80% by mass of filler, more preferably 20 to 70% by mass, and further preferably 30 to 70% by mass.
  • the ratio of the filler to the silane coupling agent having an amino group and the metal alkoxide compound is preferably in the range of 10 to 70% by mass of filler, more preferably 20 to 70% by mass, and even more preferably 30 to 60% by mass. preferable.
  • the sol-gel film of the condensate obtained on the laminated substrate has a porous structure, and the electrical characteristics may be slightly deteriorated. Furthermore, there is a possibility that the liquid stays on the porous membrane surface in the wet process.
  • the surface coverage of the surface of the condensate film using the filler is preferably in the range of 10 to 100%, more preferably 30 to 100%, and even more preferably 50 to 100%.
  • the surface coverage refers to the exclusive rate of the filler with respect to the entire surface of the condensate film.
  • the method for measuring the surface coverage is that an image obtained by observing the surface of the coating film obtained by coating the condensate on a substrate such as a polyimide film with an optical microscope is white and the particle portion is black with image processing software. It is determined by binarizing to black and determining the occupied area ratio (%) of the filler portion.
  • the fourth step was obtained after the second step, that is, a hydrolysis-condensation reaction of a silane coupling agent having an amino group and a metal alkoxide compound by a sol-gel reaction. It is preferable to mix a filler with a condensate having a repeating unit of MO as a main skeleton.
  • the silane coupling agent having an amino group, the metal alkoxide compound, and the filler may be mixed and reacted simultaneously with the second step.
  • the filler may be mixed and reacted simultaneously with the first step, that is, before the silane coupling agent having an amino group undergoes a condensation reaction.
  • the 3rd process made to react by adding a triazine thiol derivative can be abbreviate
  • the 2nd process made to react by adding a metal alkoxide compound can also be abbreviate
  • a method for supplying a triazine thiol derivative and a filler will be described.
  • a filler may be added after the second and third steps, that is, in the reaction of the condensate with the triazine thiol derivative.
  • the triazine thiol derivative may be added to the mixture of the condensate and the filler after the second and fourth steps.
  • the triazine thiol derivative and the filler may be added to the condensate at the same time after the second step.
  • the second, third, and fourth steps may be simultaneously performed, that is, a silane coupling agent having an amino group, a metal alkoxide compound, a triazine thiol derivative, and a filler may be mixed and reacted at the same time.
  • the condensate according to the present invention can be suitably used as a laminated substrate material.
  • the condensate produced by the above production method can be obtained in the form of a coating liquid containing a condensate having a repeating unit of MO as a main skeleton at a predetermined concentration by the hydrolysis-condensation reaction.
  • a coating liquid containing a condensate having a repeating unit of MO as a main skeleton at a predetermined concentration by the hydrolysis-condensation reaction.
  • coat coat to the base-material surface in the state of a coating liquid.
  • the coating liquid can be adjusted to a predetermined concentration after obtaining the condensate.
  • the concentration of the condensate in the coating solution is not particularly limited as long as it is a concentration that can be applied to the surface of the substrate, but is usually 0.05 to 35% by mass, preferably 0.1 to 20% by mass. %, More preferably 0.2 to 10% by mass.
  • concentration of the condensate exceeds 35% by mass, the stability of the liquid is lowered, that is, the liquid is easily gelled, and the storage period (pot life) may be deteriorated. Further, if the concentration of the condensate is less than 0.05% by mass, sufficient effects may not be obtained.
  • the laminated substrate material according to the present invention is produced as described above, and contains the condensate according to the present invention as a main component.
  • a main component means 50 mass% or more of the condensate in the laminated substrate material, for example.
  • the adhesion between the conductive pattern and the substrate can be greatly improved by using the silane coupling agent having an amino group, which is very useful. Although this cause is not necessarily clear, it is estimated that the silane coupling agent which has an amino group forms the coordinate bond with the metal via the amino group. Moreover, the said metal alkoxide compound is effective in order that the said layer laminated
  • the triazine thiol derivative can be immobilized in the coating solution.
  • a coating solution containing a triazine thiol derivative together with an organic base material such as a polyimide film or a metal alkoxide condensate having adhesiveness to a conductive pattern formed by sintering conductive ink as a coating solution.
  • the coating liquid containing only the metal alkoxide condensate the effect of improving the adhesion strength is obtained, and the amount of the metal alkoxide condensate used can be reduced. This is extremely effective not only for reducing costs but also for reducing processing troubles such as coating spots in the coating process.
  • triazine thiol derivatives can be used alone or in admixture of two or more.
  • the triazine thiol derivative is used in an amount sufficient to improve the adhesion between the metal and the organic substrate.
  • the blending amount of the triazine thiol derivative used in the present invention is preferably 0.0001 to 0.3% by mass, and preferably 0.0005 to 0.25% by mass with respect to the total amount of the coating solution. More preferably, the content is 0.001 to 0.2% by mass. When the amount is larger than 0.3% by mass, the adhesion between the metal and the organic substrate tends to be reduced.
  • the triazine thiol derivative has low solubility, and thus is precipitated depending on the solvent composition.
  • the amount is less than 0.0001% by mass, the adhesive force may not be sufficiently improved as compared with the case where the triazine thiol derivative is not used.
  • the condensate having a main skeleton of a MO repeating unit obtained by hydrolysis-condensation reaction between a silane coupling agent having an amino group and a metal alkoxide compound has been described. It is also possible to increase the adhesion of the conductive pattern to the substrate even for the condensate using only the silane coupling agent having an amino group.
  • the silane coupling agent described above can be preferably used.
  • (aminoethylaminomethyl) phenyltrimethoxysilane is more preferably used because of its high heat resistance, and N- (2-aminoethyl) 3-aminopropyltrimethoxysilane is more preferable because of its low cost.
  • (aminoethylaminomethyl) phenyltrimethoxysilane preferable.
  • the number of amino groups in the silane coupling agent is preferably 2 or more from the viewpoint of peel strength.
  • a silane coupling agent having two amino groups (aminoethylaminomethyl) phenyltrimethoxysilane and N- (2-aminoethyl) 3-aminopropyltrimethoxysilane mentioned above are preferable.
  • the adhesion of the conductive pattern to the substrate can be further increased without using a metal alkoxide compound.
  • the number of amino groups of the silane coupling agent is preferably 2 or more, for example, 2 or 3.
  • silane coupling agents having two or more amino groups in the molecule for example, (aminoethylaminomethyl) phenethyltrimethoxysilane and N- [2- [3- (trimethoxysilyl) propylamino] Ethyl] ethylenediamine is also preferably used.
  • (aminoethylaminomethyl) phenethyltrimethoxysilane is particularly preferable from the viewpoint of adhesion. Even when these silane coupling agents are used, the adhesion of the conductive pattern to the substrate can be further increased without using a metal alkoxide compound.
  • Silane coupling agents having an amino group include (aminoethylaminomethyl) phenyltrimethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane and N- [2- [3- (trimethoxysilyl) propylamino] ethyl]. It is preferable that it is 1 or more types selected from the group which consists of ethylenediamine.
  • the present invention is characterized in that the laminated substrate material is a laminated substrate laminated on the surface of a base material.
  • the laminated substrate according to the present invention can be obtained by coating the coating liquid on the substrate surface.
  • the base material to be used is not particularly limited, and any of an organic base material and an inorganic base material can be used as long as the effects of the invention are not impaired.
  • Organic base materials include polyolefin resins such as polyethylene and polypropylene, vinyl chloride resins such as polyvinyl chloride and vinyl chloride copolymers, epoxy resins, polyarylate, polysulfone, polyethersulfone, polyimide, fluororesin, and phenoxy.
  • Examples include resins, triacetyl cellulose, polyethylene terephthalate, polyimide, polyphenylene sulfide, polyethylene naphthalate, polycarbonate, films made of various resins such as cellophane, nylon, polystyrene resin, ABS resin, etc. It is done.
  • the inorganic substrate include quartz glass, alkali-free glass, crystallized transparent glass, and various glasses such as Pyrex (registered trademark).
  • Examples of the substrate include paper, non-woven fabric, cloth, various metals, various ceramics and the like in addition to the above.
  • these base materials can be combined suitably according to a use, for example, the flexible printed circuit board material which laminated
  • a polyimide film is preferable from the viewpoint of heat resistance, dimensional stability, mechanical properties, and the like.
  • a polyimide film preferably has a glass transition temperature (Tg) of 200 ° C. or higher, more preferably 250 ° C. or higher, and particularly preferably 300 ° C. or higher.
  • Tg can be suitably obtained from the peak temperature of tan ⁇ or the peak temperature of the loss elastic modulus E ′′ in the solid viscoelastic spectrum.
  • An aromatic polyimide film can be used as such a polyimide film.
  • a polyimide film can be obtained from the acid anhydride component and diamine component which comprise a polyimide film.
  • the acid anhydride component include, but are not limited to, those containing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride and the like as main components.
  • the diamine component include, but are not limited to, those containing paraphenylenediamine, 4,4-diaminodiphenyl ether as a main component.
  • polyimide film examples include, for example, a trade name “Upilex (S or R)” (registered trademark, manufactured by Ube Industries), a trade name “Kapton” (registered trademark, manufactured by Toray DuPont), and a product.
  • examples thereof include polyimide films such as “Apical” (registered trademark, manufactured by Kaneka Corporation).
  • the thickness of the substrate there is no particular limitation on the thickness of the substrate, and it is appropriately selected depending on the application, but it is usually about 1 to 300 ⁇ m, preferably 2 to 200 ⁇ m, and still more preferably. 3 to 150 ⁇ m. If it is thinner than 1 ⁇ m, the operability tends to be poor, and if it is 300 ⁇ m or more, it becomes rigid and the operability is lowered, the weight is increased, and the cost is further increased.
  • the above-mentioned base material is intended to improve wettability with a coating liquid containing a condensate having a main skeleton of a MO repeating unit obtained by subjecting a metal alkoxide compound formulated on the surface to hydrolysis-condensation reaction.
  • the surface is optionally subjected to corona treatment, plasma treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, Alkali treatment, sandblast treatment, solvent treatment, or primer treatment can be performed.
  • corona treatment, plasma treatment, and alkali treatment are preferably used from the viewpoints of effects and operability.
  • a desired layer can be formed by coating by a die coating method, a gravure coating method, etc., forming a film, and then naturally drying or heat drying.
  • the heating temperature in the case of heating and drying is, for example, preferably 100 to 300 ° C, more preferably 120 to 250 ° C, and further preferably 150 to 200 ° C. When the heating temperature is less than 100 ° C., a long drying time may be required. Moreover, when heating temperature exceeds 300 degreeC, it may become a cost increase on a continuous manufacturing apparatus.
  • the thickness of the layer obtained from the condensate after natural drying or heat drying is usually about 0.01 to 3 ⁇ m, preferably 0.02 to 1 ⁇ m, more preferably 0.05 to 0.5 ⁇ m. If the thickness of the layer is 0.01 ⁇ m or less, sufficient effects cannot be obtained, and if it is 3 ⁇ m or more, defects may be formed in the coating film.
  • the conductive material containing the metal nanoparticles used for the conductive member as the electronic component according to the present invention includes a colloid and an ink containing metal nanoparticles provided to form a known or commercially available conductive pattern Or a paste can be used widely.
  • Examples thereof include silver paste MDot-SLP / H made by Mitsuboshi Belting, NPS typeHP made by Harima Kasei, and CA-2503-4 made by Daiken Chemical.
  • a silver paste MDot-SLP / H made by Mitsuboshi Belting is preferably used because of its adhesion to the condensate film (sol-gel film).
  • Silver or copper is preferably used as the metal of the metal nanoparticles.
  • the film thickness of the ink or paste containing metal nanoparticles after firing is not particularly limited, but is usually 0.1 to 30 ⁇ m, preferably 0.3 to 20 ⁇ m, more preferably 0.5 to 15 ⁇ m. If the thickness of the ink or paste containing metal nanoparticles after baking is less than 0.1 ⁇ m, sufficient performance as a wiring material may not be obtained. Moreover, when the film thickness after baking is thicker than 30 micrometers, a crack may enter.
  • the ink or paste containing metal nanoparticles is formed with a pattern by various printing methods or coating methods.
  • arbitrary linear pattern formation using a dispenser printing method capable of performing linear application arbitrary linear or planar shape using various types of inkjet printing methods such as thermal, piezo, micro pump, static electricity, etc.
  • Pattern formation, letterpress printing method, flexographic printing method, planographic printing method, intaglio printing method, gravure printing method, reverse offset printing method, sheet-fed screen printing method, rotary screen printing method, etc. Can be formed.
  • a pattern as a continuous surface on the entire surface or a part of the laminated substrate, lamination using an intermittent coating die coater, etc.
  • a pattern can be formed as an intermittent surface on the entire surface or part of the substrate, or an ink or paste containing metal nanoparticles can be attached to the entire laminated substrate by using a dip coating method (also referred to as a dip method).
  • More preferable printing methods include an inkjet printing method, a flexographic printing method, a gravure printing method, a reverse offset printing method, a sheet-fed screen printing method, and a rotary screen printing method.
  • the ink or paste containing metal nanoparticles patterned by these methods can be fired to form a conductive pattern.
  • the firing conditions at this time are considerably limited depending on the base material used, but the higher the temperature, the better because the pattern strength increases with the progress of excellent conductivity and sintering.
  • polyimide when polyimide is used as a base material, it is preferably fired at 150 to 550 ° C., and more preferably fired at 200 to 300 ° C. in view of realizing higher conductivity and productivity.
  • the case where ink or paste containing metal nanoparticles is used as the conductive layer is shown.
  • Metal plating can be further performed on the conductive pattern formed on the substrate by a wet plating process.
  • the electrical conductivity of an electroconductive member can further be improved.
  • the metal to be used is not limited as long as it is a metal that can be wet-plated.
  • a generally well-known electroless nickel plating process can be used.
  • only electroless plating may be used, or a metal different from the metal formed by electroless plating may be further formed by electrolytic plating as an electrode layer for electrolytic plating.
  • the conductive member according to the present invention uses the laminated substrate according to the present invention, the adhesion of the conductive pattern to the base material is high, metal migration is suppressed, and excellent conductivity can be obtained. .
  • a coating solution containing a triazine thiol derivative is used, ion migration can be suppressed during conduction, which is effective. About this cause, it is estimated that the functional group of the triazine thiol derivative supplements the liberated metal ion.
  • Another effect of the introduced triazine thiol derivative is that the adhesiveness of the conductive pattern to the substrate is high.
  • the cause of this is that the metal nanoparticles contained in the ink or paste are exchanged through effects such as promoting the surface exposure of the amino group of the silane coupling agent by changing the structure of the inorganic oxide in the firing process. This is presumed to be due to the further improvement of the adhesion between the conductive pattern, which is a metal film formed by fusing, and suppressing peeling due to abrasion or desorption of the adhesive substance.
  • the conductive member according to the present invention is obtained by printing or applying an ink or paste containing metal nanoparticles on a laminated substrate in which a condensate of a silane coupling agent having an amino group according to the present invention and a metal alkoxide compound is laminated. can get.
  • This conductive member is used as a transparent electromagnetic wave shield used by bonding to various flat display panels such as a plasma display panel, an aircraft liquid crystal panel, and a car navigation liquid crystal panel. It can also be used as various antennas used for RFID, wireless LAN, power feeding by electromagnetic induction, electromagnetic wave absorption, and the like. Furthermore, it can be used to manufacture bus circuits and address electrodes used in various flat display panels, or electronic circuits that are produced by repeatedly printing a large number of times using a combination of semiconductor ink, resistance ink, and dielectric ink. .
  • ⁇ Evaluation method 2 of adhesion strength of conductive member cross-cut peeling>
  • the surface of the conductive member printed and baked with ink containing silver nanoparticles is cut into 11 cuts that intersect each other at 1 mm intervals vertically and horizontally, and adhesive tape (“Cello Tape (registered trademark)” manufactured by Nichiban Co., Ltd.) is applied. After peeling, the degree of peeling was measured.
  • Example 2 A condensate 2 solution was prepared in the same manner as in Example 1, 14.8 g of this condensate 2 solution and 4.8 g of ethylene glycol mono-t-butyl ether were mixed, and 2,4,6- Coating solution 2 according to Example 2 was prepared by adding 0.4 g of solution 1 obtained by dissolving 1.6 g of trimercapto-S-triazine in 78.6 g of ethylene glycol mono-t-butyl ether.
  • the ratio of the triazine thiol derivative to the total amount (solid content or active ingredient) of the silane coupling agent having an amino group, the metal alkoxide compound, and the triazine thiol derivative in Example 2 was 2.0% by mass.
  • Example 3 A condensate 2 solution is prepared in the same manner as in Example 1, 14.9 g of this condensate 2 solution is mixed with 4.8 g of ethylene glycol mono-t-butyl ether, and 0.3 g of solution 1 is further added to prepare. Thereby, the coating liquid 3 which concerns on Example 3 was produced.
  • the ratio of the triazine thiol derivative to the total amount (solid content or active ingredient) of the silane coupling agent having an amino group, the metal alkoxide compound, and the triazine thiol derivative in Example 3 was 1.5% by mass.
  • Comparative Example 2 The coating liquid 5 according to Comparative Example 2 was obtained by mixing the coating liquid 4 (9.8 g) obtained in Comparative Example 1 with the solution 1 (0.2 g) used in Example 2.
  • Comparative Example 4 A coating liquid 7 according to Comparative Example 4 was obtained by mixing the solution 1 (0.2 g) used in Example 2 with the coating liquid 5 (9.8 g) obtained in Comparative Example 2.
  • Example 7 Preparation of condensate 1 solution
  • the condensate 1 solution (4.8 g) obtained in Example 1 and ethylene glycol mono-t-butyl ether (25.3 g) were mixed to prepare a coating according to Example 7.
  • a working liquid 8 was produced.
  • Example 8 Preparation of condensate 3 solution N- (2-aminoethyl) -3-aminopropyltrimethoxysilane (18.3 g) was dissolved in ethylene glycol mono-t-butyl ether (79.4 g). Water (2.2 g) was added dropwise thereto, and a condensation reaction was performed at 60 ° C. for 1 hour to prepare a condensate 3 solution. Next, a condensate 3 solution (4.8 g) and ethylene glycol mono-t-butyl ether (25.3 g) were mixed to prepare a coating liquid 9 according to Example 8.
  • Example 11 (Aminoethylaminoethyl) phenethyltrimethoxysilane (5.8 g) was dissolved in ethylene glycol mono-t-butyl ether (28.7 g). Water (0.5 g) was added dropwise thereto, and a condensation reaction was performed at 60 ° C. for 1 hour to prepare a condensate 4 solution. Next, titanium tetraisopropoxide (0.6 g) was dissolved in ethylene glycol mono-t-butyl ether (48.1 g). The condensate 4 solution (11.3 g) was added dropwise thereto, and a condensation reaction was performed at 30 ° C. for 4 hours to prepare a condensate 5 solution. Furthermore, a coating liquid 10 according to Example 11 was prepared by mixing and preparing the condensate 5 solution (60.0 g) and ethylene glycol mono-t-butyl ether (19.5 g).
  • Example 12 N- [2- [3- (Trimethoxysilyl) propylamino] ethyl] ethylenediamine (7.7 g) was dissolved in ethylene glycol mono-t-butyl ether (36.6 g). Water (0.8g) was dripped here, and the condensation reaction was performed at 60 degreeC for 1 hour, and the condensate 6 solution was prepared. Next, the condensate 6 solution (4.8 g) and ethylene glycol mono-t-butyl ether (25.3 g) were mixed to prepare a coating liquid 11 according to Example 12.
  • Example 13 Titanium tetraisopropoxide (0.6 g) was dissolved in ethylene glycol mono-t-butyl ether (48.1 g). The condensate 6 solution (11.3 g) was added dropwise thereto, and a condensation reaction was performed at 30 ° C. for 4 hours to prepare a condensate 7 solution. Furthermore, the coating liquid 12 according to Example 13 was prepared by mixing and preparing the condensation liquid 7 solution (22.6 g) and ethylene glycol mono-t-butyl ether (7.4 g).
  • Example 4 The coating solution 1 according to Example 1 is a Mayer bar (Matsuo Sangyo No. 1 wire linear 2 mil (76.2 ⁇ m), wet film thickness 6 ⁇ m), polyimide film (Ube Industries, Ltd. Upilex SGA, thickness 35 ⁇ m) ) And dried in an oven at 200 ° C. for 90 seconds. Next, a silver paste MDot-SLP / H made by Mitsuboshi Belting is printed by screen printing on the surface of the polyimide film to which the coating liquid 1 is applied, to the surface to which the coating liquid 1 is applied. Was baked at 250 ° C. for 30 minutes to produce a conductive member printed with a silver paste. At this time, the paste thickness after firing was 10 ⁇ m. Table 1 shows the results of evaluation of adhesion according to “Evaluation 1 of adhesion strength of conductive member”.
  • Example 5 Using the coating liquid 2 according to Example 2, a coating film was prepared in the same manner as in Example 4 to produce a conductive member on which a silver paste was printed. At this time, the paste thickness after firing was 10 ⁇ m. The evaluation results are shown in Table 1.
  • Example 6 Using the coating liquid 3 according to Example 3, a coating film was prepared in the same manner as in Example 4 to produce a conductive member on which a silver paste was printed. At this time, the paste thickness after firing was 10 ⁇ m. The evaluation results are shown in Table 1.
  • Example 5 A coating film was prepared by the same method as in Example 4 using the coating liquid 4 according to Comparative Example 1, and a conductive member on which a silver paste was printed was prepared. At this time, the paste thickness after firing was 10 ⁇ m. The evaluation results are shown in Table 1.
  • Example 6 A coating film was prepared by the same method as in Example 4 using the coating liquid 5 according to Comparative Example 2, and a conductive member on which a silver paste was printed was prepared. At this time, the paste thickness after firing was 10 ⁇ m. The evaluation results are shown in Table 1.
  • Example 7 A coating film was prepared by the same method as in Example 4 using the coating liquid 6 according to Comparative Example 3, and a conductive member on which a silver paste was printed was prepared. At this time, the paste thickness after firing was 10 ⁇ m. The evaluation results are shown in Table 1.
  • Example 8 A coating film was prepared in the same manner as in Example 4 using the coating liquid 7 according to Comparative Example 4, and a conductive member on which a silver paste was printed was prepared. At this time, the paste thickness after firing was 10 ⁇ m. The evaluation results are shown in Table 1.
  • Example 9 A coating film was prepared in the same manner as in Example 4 using the coating liquid 8 according to Example 7, and a conductive member on which a silver paste was printed was prepared. At this time, the paste thickness after firing was 10 ⁇ m. The evaluation results are shown in Table 1.
  • Example 10 A coating film was prepared in the same manner as in Example 4 using the coating liquid 9 according to Example 8, and a conductive member on which a silver paste was printed was prepared. At this time, the paste thickness after firing was 10 ⁇ m. The evaluation results are shown in Table 1. The conductivity was 4.5 ⁇ ⁇ cm, indicating a high conductivity. From this result, it was shown that the electroconductive member produced by this method has both excellent adhesion and electroconductivity.
  • Example 14 A coating film was prepared by the same method as in Example 4 using the coating liquid 10 according to Example 11, and a conductive member on which a silver paste was printed was prepared. At this time, the paste thickness after firing was 10 ⁇ m. The formed pattern was not peeled off, and its peel strength was 1.07 N / mm. Moreover, about evaluation of adhesiveness by cross-cut peeling, the formed pattern did not peel and the score was 10 points. Furthermore, the conductivity was 4.5 ⁇ ⁇ cm, indicating a high conductivity. From this result, it was shown that the electroconductive member produced by this method has both excellent adhesion and electroconductivity.
  • Example 15 A coating film was prepared by the same method as in Example 4 using the coating liquid 11 according to Example 12, and a conductive member on which a silver paste was printed was prepared. At this time, the paste thickness after firing was 10 ⁇ m. The formed pattern was not peeled off, and the peel strength was 1.12 N / mm. The conductivity was 4.5 ⁇ ⁇ cm, indicating a high conductivity. From this result, it was shown that the electroconductive member produced by this method has both excellent adhesion and electroconductivity.
  • Example 16 Using the coating liquid 12 according to Example 13, a coating film was prepared in the same manner as in Example 4 to produce a conductive member on which a silver paste was printed. At this time, the paste thickness after firing was 10 ⁇ m. The formed pattern was not peeled off, and its peel strength was 1.09 N / mm. The conductivity was 4.5 ⁇ ⁇ cm, indicating a high conductivity. From this result, it was shown that the electroconductive member produced by this method has both excellent adhesion and electroconductivity.
  • Example 17 A conductive member was formed in the same manner as in Example 14 except that the polyimide film as the base material was changed from Upilex SGA manufactured by Ube Industries, Ltd. to 35 ⁇ m in thickness, to Kapton EN manufactured by Toray DuPont, Inc., and 25 ⁇ m in thickness. Produced. At this time, the paste thickness after firing was 10 ⁇ m. Regarding the evaluation of adhesion by cross-cut peeling, the formed pattern was not peeled, and the score was 10. The conductivity was 4.5 ⁇ ⁇ cm.
  • FIG. 1 shows the result of observation of the cross-sectional structure of the obtained sample with a field emission scanning electron microscope (FE-SEM). Furthermore, the result of examining the distribution of the nickel element in the sample is shown in FIG. From FIG. 1 and FIG. 2, it is confirmed that the nickel layer is formed with a thickness of about 100 nm on the printed silver layer, and the wet plating process can be applied to the conductive pattern formed on the substrate. It was shown that there is.
  • FE-SEM field emission scanning electron microscope
  • Example 18 to 37 Using ethylene glycol mono-t-butyl ether as a solvent, the coating liquid 10 and the silica particle slurry prepared in Example 11 so that the solid content concentration is 2% by mass (“HIPRESSICA” manufactured by Ube Nitto Kasei Co., Ltd.) Were added in the order shown in Table 2 to prepare coating solutions 18 to 37 according to Examples 18 to 37 as condensate solutions, respectively. As shown in Table 2, five types (0.08 ⁇ m, 0.15 ⁇ m, 0.35 ⁇ m, 0.68 ⁇ m, 1.05 ⁇ m) having different average particle diameters were used as the silica particles in the silica particle slurry.
  • Examples 38 to 57 Using the coating liquids 18 to 37 prepared in Examples 18 to 37, respectively, with an automatic bar coater (K control coater manufactured by Matsuo Sangyo Co., Ltd., wet film thickness 5 to 14 ⁇ m), a polyimide film (Upilex SGA manufactured by Ube Industries, Ltd.) , 35 ⁇ m thick), and dried in an oven at 200 ° C. for 90 seconds.
  • K control coater manufactured by Matsuo Sangyo Co., Ltd., wet film thickness 5 to 14 ⁇ m
  • a polyimide film Upilex SGA manufactured by Ube Industries, Ltd.
  • a screen paste is applied to the surface of the polyimide film on which the coating solution is applied, and a silver paste MDot-SLP / H made by Mitsuboshi Belting is 150 ⁇ m pitch (screen plate design: line: 45 ⁇ m / space: 105 ⁇ m) comb-shaped pattern electrodes were printed and then dried at 250 ° C. for 30 minutes using a blower oven to produce a conductive member printed with a silver paste.
  • (line width of the film coated with the coating liquid) is 20 points of the line width ( ⁇ m) of the silver ink pattern of the obtained conductive member observed with an optical microscope (ECLIPCE LV100 manufactured by Nikon Corporation). And calculated from the average value.
  • (line width of the film not coated with the coating solution) is a silver paste printed on the polyimide film in the same manner as in Example 38 except that the coating solution is not used.
  • a conductive member was prepared, and the line width was calculated by the same method.
  • the results are shown in Table 3.
  • the print thinning ratio is smaller than 100%, a circuit with a narrow line width can be manufactured and the integration density can be improved. Therefore, it is determined that the printability is good.
  • the surface coating rate (%) of the obtained conductive member was determined using an optical microscope (ECLIPCE LV100 manufactured by Nikon Corporation). That is, the surface of the laminated substrate in which the coating film of the condensate is laminated on the polyimide film before the silver paste is printed is observed with an optical microscope, and the image is turned black with the image processing software “ImageJ”. In this way, the luminance and contrast were adjusted to binarize into white and black, and the black area, that is, the area of the part where the particles existed was divided by the total area to display a percentage. This was defined as the surface coverage (%) of the particle portion. The results are shown in Table 3. Here, when the surface coverage is small, it indicates that the surface unevenness is relatively small.
  • the laminated substrate formed using the condensate of a silane coupling agent having an amino group and a metal alkoxide compound according to the present invention has high adhesion to a conductive pattern formed using an ink or paste containing metal nanoparticles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Silicon Polymers (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

Provided are: a condensate which can enhance the tight adhesion between a substrate and an electroconductive pattern formed using an electrocoductive ink, particularly, an ink or paste that contains metal nanoparticles; and a process for manufacturing the same. This condensate is a condensate which is obtained by hydrolytic condensation of an amino-bearing silane coupling agent with a metal alkoxide compound represented by general formula (I) and which comprises M-O repeating units as the main skeleton. R1 nM(OR2)m-n ⋅⋅⋅ (I) In general formula (I), R1 is a nonhydrolyzable group; R2 is C1-6 alkyl; M is at least one metal selected from the group consisting of Si, Ti, Al, Zr, Li, Na, Ca, Sr, Ba, Zn, B, Ga, Y, Ge, Pb, P, Sb, V, Ta, W, La, Nd and In; m represents the valence of M and is 3 or 4; when m is 4, n is an integer of 0 to 2, while when m is 3, n is an integer of 0 to 1; and in a case where multiple R1 moieties are present, the R1 moieties may be the same or different from each other, while in a case wherein multiple OR2 moieties are present, the OR2 moieties may be the same or different from each other.

Description

アミノ基を有するシランカップリング剤と金属アルコキシド化合物との縮合物、それを主成分とする積層基板用材料、積層基板および導電性部材、並びにそれらの製造方法Condensate of amino group-containing silane coupling agent and metal alkoxide compound, laminated substrate material comprising the same, laminated substrate and conductive member, and methods for producing them
 本発明は、アミノ基を有するシランカップリング剤と金属アルコキシド化合物との縮合物、それを主成分とする積層基板用材料、積層基板および導電性部材、並びにそれらの製造方法に関する。 The present invention relates to a condensate of a silane coupling agent having an amino group and a metal alkoxide compound, a laminated substrate material containing the same as a main component, a laminated substrate and a conductive member, and methods for producing them.
 近年、金属ナノ粒子を含むインクあるいはペーストを用いたプリンタブルエレクトロニクスが注目されている。 In recent years, printable electronics using ink or paste containing metal nanoparticles has attracted attention.
 印刷による導電性パターンの製造に関し、従来は銀粉と樹脂バインダーおよび有機溶剤とを含む高粘度の導電性樹脂ペーストを、高粘度ペーストに適した印刷方法を用いパターン化していた。しかしながら、銀粉のサイズが大きいために細線の印刷が困難であること等の理由により、近年は金属ナノ粒子を含むインクあるいはペーストをパターン化する試みが盛んになされている。なお、金属ナノ粒子は分散剤により被覆されているため、塗布・乾燥するだけでは形成されたパターンは導電性を有さず、導電性を発現させるためには分散剤を揮散させ金属ナノ粒子同士を融合させるために200℃程度での焼結が必要とされる。さらに、金属ナノ粒子は、乾燥工程で分散剤が除去されるため、乾燥後の焼結状態ではほぼ金属成分のみとなり、基材との密着性を得ることが難しかった。 Regarding the production of a conductive pattern by printing, conventionally, a high-viscosity conductive resin paste containing silver powder, a resin binder, and an organic solvent has been patterned using a printing method suitable for the high-viscosity paste. However, in recent years, attempts to pattern inks or pastes containing metal nanoparticles have been actively performed because of the difficulty in printing fine lines due to the large size of silver powder. In addition, since the metal nanoparticles are coated with a dispersant, the pattern formed by simply applying and drying does not have electrical conductivity. In order to fuse them, sintering at about 200 ° C. is required. Furthermore, since the dispersing agent is removed from the metal nanoparticles in the drying step, the metal nanoparticles are almost only a metal component in the sintered state after drying, and it is difficult to obtain adhesion with the base material.
 印刷に用いられる導電性パターン形成用基材としては従来、ガラス類やセラミック類のみならず、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリイミドフィルム、ポリカーボネートフィルム等の柔軟性および折り曲げ可能な各種フィルムが使用される。しかし、パターンの微細化への対応が難しい。
 そこで、前記基材に加工を施した基材も開示されている。例えば特許文献1には、金属超微粒子層の下側に、あらかじめ無機酸化物微粒子からなる凝集促進層を設け、金属超微粒子溶液を塗布した際に、下層の無機酸化物微粒子により形成された細孔へ主として溶媒が選択的に浸透することで、金属超微粒子の凝集を促進することが出来る導電性パターン形成用基材が開示されている。
Conventionally, not only glass and ceramics but also various flexible and foldable films such as polyethylene terephthalate film, polyethylene naphthalate film, polyimide film, polycarbonate film, etc. have been used as substrates for forming conductive patterns used in printing. Is done. However, it is difficult to cope with pattern miniaturization.
Then, the base material which processed the said base material is also disclosed. For example, in Patent Document 1, an aggregation promoting layer made of inorganic oxide fine particles is previously provided on the lower side of a metal ultrafine particle layer, and when a metal ultrafine particle solution is applied, fine particles formed by the lower inorganic oxide fine particles are formed. A substrate for forming a conductive pattern is disclosed that can promote aggregation of ultrafine metal particles mainly by selectively permeating a solvent into the pores.
特開2003-229653号公報JP 2003-229653 A
 しかしながら、これらの多孔質層を有する基材においては、めっきなどの湿式プロセスにおいて、処理液が多孔質に入り込み、回路特性に悪影響を及ぼすことや、銀を主成分とするインクを用いた場合には導電時のマイグレーションが促進される、および形成された導電性パターンの多孔質層に対する密着性が弱いために、擦過等により導電性パターンが簡単に剥がれる、あるいは断線するといった問題がある。 However, in the base material having these porous layers, in a wet process such as plating, the treatment liquid enters the porous layer and adversely affects the circuit characteristics, or when an ink containing silver as a main component is used. Has a problem in that migration during conduction is promoted, and adhesion of the formed conductive pattern to the porous layer is weak, so that the conductive pattern can be easily peeled off or disconnected due to rubbing or the like.
 本発明は、上記のような問題を鑑みてなされたものであって、導電性インク、その中でも特に金属ナノ粒子を含むインクあるいはペーストを用いて形成された導電性パターンの基材に対する密着性が高く、金属のマイグレーションを抑制し、かつ優れた導電性が得られる積層基板および導電性部材並びにそれらを得るためのアミノ基を有するシランカップリング剤と金属アルコキシド化合物との縮合物およびそれを主成分とする積層基板用材料、並びにそれらの製造方法を提供することを目的とする。 The present invention has been made in view of the problems as described above, and has an adhesive property to a base material of a conductive pattern formed using a conductive ink, particularly an ink or paste containing metal nanoparticles. Highly laminated substrate and conductive member that suppress metal migration and provide excellent conductivity, condensate of amino group-containing silane coupling agent and metal alkoxide compound to obtain them, and main component thereof An object of the present invention is to provide a laminated substrate material and a method for producing them.
 以上の目的を達成するために、本発明者らは鋭意研究を重ねた結果、アミノ基を有するシランカップリング剤と、金属アルコキシド化合物とを加水分解-縮合反応してなるM-Oの繰り返し単位を主骨格とする縮合物を積層基板用材料として基材表面に積層した導電性部材は、導電性インク、その中でも特に金属ナノ粒子を含むインクあるいはペーストを用いて形成された導電性パターンの基材に対する密着性が高く、金属のマイグレーションを抑制し、かつ優れた導電性が得られることを見出し、本発明に至った。 In order to achieve the above object, the present inventors have conducted intensive research, and as a result, the MO repeating unit obtained by hydrolysis-condensation reaction between a silane coupling agent having an amino group and a metal alkoxide compound. A conductive member obtained by laminating a condensate having a main skeleton on a substrate surface as a laminated substrate material is based on a conductive pattern formed using a conductive ink, particularly an ink or paste containing metal nanoparticles. The present inventors have found that adhesion to a material is high, metal migration is suppressed, and excellent conductivity is obtained, and the present invention has been achieved.
 すなわち、本発明は、アミノ基を有するシランカップリング剤と、一般式(I)で表される金属アルコキシド化合物とを、加水分解-縮合反応させたM-Oの繰り返し単位を主骨格とする縮合物に関する。 That is, the present invention provides a condensation having as a main skeleton a MO repeating unit obtained by subjecting a silane coupling agent having an amino group to a metal alkoxide compound represented by the general formula (I) to a hydrolysis-condensation reaction. Related to things.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 また、本発明は、上記縮合物を主成分とする積層基板用材料に関する。 The present invention also relates to a laminated substrate material containing the condensate as a main component.
 さらに、本発明は、上記積層基板用材料が、基材表面に積層された積層基板、および積層基板の積層基板用材料が積層された面に、金属ナノ粒子を含有する導電性材料を印刷又は塗布して導電性パターンが形成された導電性部材に関する。 Furthermore, the present invention prints the conductive material containing metal nanoparticles on the surface of the multilayer substrate on which the multilayer substrate material is laminated on the surface of the base material and the multilayer substrate. The present invention relates to a conductive member that is applied to form a conductive pattern.
 また、本発明は、アミノ基を有するシランカップリング剤を溶媒中で縮合反応させて反応液を得る第1工程と、一般式(I)で表される金属アルコキシド化合物と前記第1工程で得られた反応液とを混合して縮合反応させる第2工程とを備えた縮合物の製造方法に関する。 The present invention also provides a first step of obtaining a reaction solution by subjecting a silane coupling agent having an amino group to a condensation reaction in a solvent, a metal alkoxide compound represented by the general formula (I), and the first step. It is related with the manufacturing method of the condensate provided with the 2nd process of mixing and reacting the obtained reaction liquid.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 さらに、本発明は、上記縮合物を基材表面に塗布することにより縮合物が基材に積層された積層基板を得る積層基板の製造方法、および上記積層基板の積層基板用材料が積層された面に、金属ナノ粒子を含有する導電性材料を印刷又は塗布した後、焼成し、導電性パターンを形成する導電性部材の製造方法に関する。 Furthermore, the present invention provides a method for producing a laminated substrate in which a condensate is laminated on a base material by applying the condensate on the surface of the base material, and a laminated substrate material for the laminated substrate is laminated. It is related with the manufacturing method of the electroconductive member which prints after apply | coating or apply | coats the electroconductive material containing a metal nanoparticle to the surface, and forms and forms an electroconductive pattern.
 以上のように、本発明によれば、導電性インク、その中でも特に金属ナノ粒子を含むインクあるいはペーストを用いて形成された導電性パターンの基材に対する密着性が高く、金属のマイグレーションを抑制し、かつ優れた導電性が得られる積層基板および導電性部材並びにそれらを得るためのアミノ基を有するシランカップリング剤と金属アルコキシド化合物との縮合物およびそれを主成分とする積層基板用材料、並びにそれらの製造方法を提供することが出来る。 As described above, according to the present invention, the conductive ink, in particular, the conductive pattern formed using the ink or paste containing metal nanoparticles is highly adhesive to the base material, and metal migration is suppressed. , And a laminate substrate and a conductive member capable of obtaining excellent conductivity, a condensate of a silane coupling agent having an amino group and a metal alkoxide compound for obtaining them, and a laminate substrate material comprising the same as a main component, and A manufacturing method thereof can be provided.
実施例5において、銀ペーストが印刷された導電性部材に対して無電解ニッケルめっき処理を行なったサンプルの断面構造の写真である。In Example 5, it is a photograph of the cross-sectional structure of the sample which performed the electroless nickel plating process with respect to the electroconductive member in which the silver paste was printed. 実施例5において、銀ペーストが印刷された導電性部材に対して無電解ニッケルめっき処理を行なったサンプルのニッケル元素の分布を調べた結果である。In Example 5, it is the result of having investigated the distribution of the nickel element of the sample which performed the electroless nickel plating process with respect to the electroconductive member on which the silver paste was printed. 実施例38から57において、印刷細線化率と表面被覆率の関係を纏めたグラフである。In Examples 38-57, it is the graph which put together the relationship between a printing thinning rate and a surface coverage.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
(縮合物およびその製造方法)
(アミノ基を有するシランカップリング剤)
 本発明に係る縮合物において、アミノ基を有するシランカップリング剤は、アミノ基を介して、金属と配位結合を形成できるため、該シランカップリング剤を含有する層を基材に固定すると、金属ナノ粒子を含むインクあるいはペーストが焼成を経て金属ナノ粒子が融合し形成された導電性パターンと基材との間の密着性を大幅に向上することができる。
(Condensate and production method thereof)
(Silane coupling agent having amino group)
In the condensate according to the present invention, since the silane coupling agent having an amino group can form a coordinate bond with a metal via the amino group, when the layer containing the silane coupling agent is fixed to a substrate, The adhesion between the conductive pattern formed by fusing the ink or paste containing metal nanoparticles through the firing of the metal nanoparticles and the substrate can be greatly improved.
 アミノ基を有するシランカップリング剤としては、特に限定されず、例えば、以下のものが挙げられる。
N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン
N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン
N-(2-アミノエチル)-3-アミノプロピルメチルジプロポキシシラン
N-(2-アミノエチル)-3-アミノプロピルメチルジイソプロポキシシラン
N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン
N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン
N-(2-アミノエチル)-3-アミノプロピルトリプロポキシシラン
N-(2-アミノエチル)-3-アミノプロピルトリイソプロポキシシラン
N-(2-アミノエチル)-3-アミノイソブチルジメチルメトキシシラン
N-(2-アミノエチル)-3-アミノイソブチルメチルジメトキシシラン
N-(2-アミノエチル)-11-アミノウンデシルトリメトキシシラン
N-(2-アミノエチル)-3-アミノプロピルシラントリオール
3-アミノプロピルトリメトキシシラン
3-アミノプロピルトリエトキシシラン
3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン
N-フェニル-3-アミノプロピルトリメトキシシラン
N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン
(アミノエチルアミノエチル)フェニルトリメトキシシラン
(アミノエチルアミノエチル)フェニルトリエトキシシラン
(アミノエチルアミノエチル)フェニルトリプロポキシシラン
(アミノエチルアミノエチル)フェニルトリイソプロポキシシラン
(アミノエチルアミノメチル)フェニルトリメトキシシラン
(アミノエチルアミノメチル)フェニルトリエトキシシラン
(アミノエチルアミノメチル)フェニルトリプロポキシシラン
(アミノエチルアミノメチル)フェニルトリイソプロポキシシラン
N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン
N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルメチルジメトキシラン
N-β-(N-ビニルベンジルアミノエチル)-N-γ-(N-ビニルベンジル)-γ-アミノプロピルトリメトキシシラン
N-β-(N-ジ(ビニルベンジル)アミノエチル)-γ-アミノプロピルトリメトキシシラン
N-β-(N-ジ(ビニルベンジル)アミノエチル)-N-γ-(N-ビニルベンジル)-γ-アミノプロピルトリメトキシシラン
メチルベンジルアミノエチルアミノプロピルトリメトキシシラン
ジメチルベンジルアミノエチルアミノプロピルトリメトキシシラン
ベンジルアミノエチルアミノプロピルトリメトキシシラン
ベンジルアミノエチルアミノプロピルトリエトキシシラン
3-ウレイドプロピルトリエトキシシラン
3-(N-フェニル)アミノプロピルトリメトキシシラン
N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン
(アミノエチルアミノエチル)フェネチルトリメトキシシラン
(アミノエチルアミノエチル)フェネチルトリエトキシシラン
(アミノエチルアミノエチル)フェネチルトリプロポキシシラン
(アミノエチルアミノエチル)フェネチルトリイソプロポキシシラン
(アミノエチルアミノメチル)フェネチルトリメトキシシラン
(アミノエチルアミノメチル)フェネチルトリエトキシシラン
(アミノエチルアミノメチル)フェネチルトリプロポキシシラン
(アミノエチルアミノメチル)フェネチルトリイソプロポキシシラン
N-[2-[3-(トリメトキシシリル)プロピルアミノ]エチル]エチレンジアミン
N-[2-[3-(トリエトキシシリル)プロピルアミノ]エチル]エチレンジアミン
N-[2-[3-(トリプロポキシシリル)プロピルアミノ]エチル]エチレンジアミン
N-[2-[3-(トリイソプロポキシシリル)プロピルアミノ]エチル]エチレンジアミン
It does not specifically limit as a silane coupling agent which has an amino group, For example, the following are mentioned.
N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldiethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldipropoxysilane N- (2-aminoethyl) -3-aminopropylmethyldiisopropoxysilane N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropyltriethoxysilane N- (2-aminoethyl) -3-aminopropyltripropoxysilane N- (2-aminoethyl) -3-aminopropyltriisopropoxysilane N- (2-aminoethyl) -3-aminoisobutyldimethylmethoxysilane N -(2-Aminoethyl) -3-aminoisobutylmethyldimethoxysilane N (2-aminoethyl) -11-aminoundecyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylsilanetriol 3-aminopropyltrimethoxysilane 3-aminopropyltriethoxysilane 3-triethoxysilyl- N- (1,3-Dimethyl-butylidene) propylamine N-phenyl-3-aminopropyltrimethoxysilane N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine (aminoethylaminoethyl) phenyltrimethoxysilane (Aminoethylaminoethyl) phenyltriethoxysilane (aminoethylaminoethyl) phenyltripropoxysilane (aminoethylaminoethyl) phenyltriisopropoxysilane (aminoethylaminomethyl) phenyltrimethoxysilane ( Minoethylaminomethyl) phenyltriethoxysilane (aminoethylaminomethyl) phenyltripropoxysilane (aminoethylaminomethyl) phenyltriisopropoxysilane N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane N -(Vinylbenzyl) -2-aminoethyl-3-aminopropylmethyldimethoxylane N-β- (N-vinylbenzylaminoethyl) -N-γ- (N-vinylbenzyl) -γ-aminopropyltrimethoxysilane N -Β- (N-di (vinylbenzyl) aminoethyl) -γ-aminopropyltrimethoxysilane N-β- (N-di (vinylbenzyl) aminoethyl) -N-γ- (N-vinylbenzyl) -γ -Aminopropyltrimethoxysilanemethylbenzylaminoethylamino Propyltrimethoxysilane dimethylbenzylaminoethylaminopropyltrimethoxysilane benzylaminoethylaminopropyltrimethoxysilane benzylaminoethylaminopropyltriethoxysilane 3-ureidopropyltriethoxysilane 3- (N-phenyl) aminopropyltrimethoxysilane N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine (aminoethylaminoethyl) phenethyltrimethoxysilane (aminoethylaminoethyl) phenethyltriethoxysilane (aminoethylaminoethyl) phenethyltripropoxysilane (aminoethylaminoethyl) Phenethyl triisopropoxysilane (aminoethylaminomethyl) phenethyl trimethoxysilane (aminoethylaminomethyl) Netyltriethoxysilane (aminoethylaminomethyl) phenethyltripropoxysilane (aminoethylaminomethyl) phenethyltriisopropoxysilane N- [2- [3- (trimethoxysilyl) propylamino] ethyl] ethylenediamine N- [2- [3- (Triethoxysilyl) propylamino] ethyl] ethylenediamine N- [2- [3- (tripropoxysilyl) propylamino] ethyl] ethylenediamine N- [2- [3- (triisopropoxysilyl) propylamino] Ethyl] ethylenediamine
 これらのアミノ基を有するシランカップリング剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、アミノ基を有するシランカップリング剤と、アミノ基を有しないシランカップリング剤とを組み合わせて用いてもよい。
 また、本発明に係る縮合物は、例えばポリイミドフィルムなどの有機基材に金属ナノ粒子を含むインクあるいはペーストを高温で焼結して導電性パターンを形成することを考慮した際に、耐熱性が重要である。そのため、縮合物の原料となるシランカップリング剤は、耐熱性の高いシランカップリング剤を使用することが有効である。すなわち、シランカップリング剤の縮合物は、後述する導電性材料を印刷した後の高温処理においてで熱分解や昇華などが起こらず、膜の形態を保持した上でかつその機能(耐熱性、基材や導電性部材との接着性など)が低下しないことが要求されることが多い。
 この観点から、上記で挙げたシランカップリング剤のうち、耐熱性の高さから(アミノエチルアミノメチル)フェニルトリメトキシシランが好ましい。また、安価であることからN-(2-アミノエチル)3-アミノプロピルトリメトキシシランが好ましい。ポリイミドフィルムなどの有機基材や、導電性材料を焼結して成る導電性パターンに対する接着性、更に耐熱性の高さを総合的に考慮すれば、(アミノエチルアミノメチル)フェニルトリメトキシシランが好ましい。また、導電性パターンに対する接着性の観点から、該シランカップリング剤のアミノ基の数は、2以上、例えば2または3であることが好ましい。このような分子内に2つ以上のアミノ基を有するシランカップリング剤のうち、例えば、(アミノエチルアミノメチル)フェネチルトリメトキシシランおよびN-[2-[3-(トリメトキシシリル)プロピルアミノ]エチル]エチレンジアミンも好ましく用いられる。この中で、密着性の観点から(アミノエチルアミノメチル)フェネチルトリメトキシシランが特に好ましい。
 アミノ基を有するシランカップリング剤は、(アミノエチルアミノメチル)フェニルトリメトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシランおよびN-[2-[3-(トリメトキシシリル)プロピルアミノ]エチル]エチレンジアミンからなる群より選ばれた1種以上であることが好ましい。
These silane coupling agents having an amino group may be used alone or in combination of two or more. Moreover, you may use combining the silane coupling agent which has an amino group, and the silane coupling agent which does not have an amino group.
In addition, the condensate according to the present invention has heat resistance when considering the formation of a conductive pattern by sintering an ink or paste containing metal nanoparticles on an organic substrate such as a polyimide film at a high temperature. is important. Therefore, it is effective to use a silane coupling agent having high heat resistance as the silane coupling agent as a raw material of the condensate. That is, the condensate of the silane coupling agent does not undergo thermal decomposition or sublimation during high-temperature treatment after printing a conductive material described later, and maintains its film form and its function (heat resistance, basicity, etc.). In many cases, it is required that the adhesiveness to a material or a conductive member does not deteriorate.
From this viewpoint, among the silane coupling agents mentioned above, (aminoethylaminomethyl) phenyltrimethoxysilane is preferable because of its high heat resistance. Further, N- (2-aminoethyl) 3-aminopropyltrimethoxysilane is preferable because of its low cost. Considering the overall adhesion to organic substrates such as polyimide films and conductive patterns obtained by sintering conductive materials, and the high heat resistance, (aminoethylaminomethyl) phenyltrimethoxysilane preferable. In addition, from the viewpoint of adhesion to the conductive pattern, the number of amino groups of the silane coupling agent is preferably 2 or more, for example, 2 or 3. Among such silane coupling agents having two or more amino groups in the molecule, for example, (aminoethylaminomethyl) phenethyltrimethoxysilane and N- [2- [3- (trimethoxysilyl) propylamino] Ethyl] ethylenediamine is also preferably used. Among these, (aminoethylaminomethyl) phenethyltrimethoxysilane is particularly preferable from the viewpoint of adhesion.
Silane coupling agents having an amino group include (aminoethylaminomethyl) phenyltrimethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane and N- [2- [3- (trimethoxysilyl) propylamino] ethyl]. It is preferable that it is 1 or more types selected from the group which consists of ethylenediamine.
 本発明に係る縮合物におけるアミノ基を含有するシランカップリング剤の濃度については、特に制限はないが、好ましくは40~99質量%、より好ましくは60~98質量%、特に好ましくは80~95質量%である。 The concentration of the silane coupling agent containing an amino group in the condensate according to the present invention is not particularly limited, but is preferably 40 to 99% by mass, more preferably 60 to 98% by mass, and particularly preferably 80 to 95%. % By mass.
(金属アルコキシド)
 本発明に係る縮合物に用いられる金属アルコキシド化合物は、下記一般式(I)で表される。
(Metal alkoxide)
The metal alkoxide compound used for the condensate according to the present invention is represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記一般式(I)において、Mは、Si、Ti、Al、Zr、Li、Na、Ca、Sr、Ba、Zn、B、Ga、Y、Ge、Pb、P、Sb、V、Ta、W、La、Nd、Inの金属原子群から選ばれる少なくとも1種の金属原子を示す。 In the general formula (I), M is Si, Ti, Al, Zr, Li, Na, Ca, Sr, Ba, Zn, B, Ga, Y, Ge, Pb, P, Sb, V, Ta, W. And at least one metal atom selected from the group of metal atoms of La, Nd, and In.
 一般に入手および合成が容易であるという理由から、Mは、好ましくは、Si、Ti、Al、Zrであり、特に好ましくは、Tiである。 M is preferably Si, Ti, Al, Zr, and particularly preferably Ti because it is generally easy to obtain and synthesize.
 上記一般式(I)において、Rは、非加水分解性基、例えば炭素数1~20のアルキル基、(メタ)アクリロイルオキシ基、アミノ基若しくはエポキシ基を有する炭素数1~20のアルキル基やアルケニル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基又は炭素数7~20のアラルキル基を示す。 In the above general formula (I), R 1 represents a non-hydrolyzable group, for example, an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, a (meth) acryloyloxy group, an amino group or an epoxy group. And an alkenyl group, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms.
 ここで、炭素数1~20のアルキル基としては、炭素数1~10のものが好ましく、またこのアルキル基は直鎖状、分岐状、環状のいずれであってもよい。この他にも、水酸基やチオール、イミダゾールなどの置換基を含む官能基も挙げることが出来る。炭素数1~20のアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。
 (メタ)アクリロイルオキシ基、アミノ基若しくはエポキシ基を有する炭素数1~20のアルキル基としては、上記置換基を有する炭素数1~10のアルキル基が好ましく、またこのアルキル基は直鎖状、分岐状、環状のいずれであってもよい。この置換基を有するアルキル基の例としては、γ-アクリロイルオキシプロピル基、γ-メタクリロイルオキシプロピル基、γ-アミノプロピル基、3-(2-アミノエチルアミノ)プロピル基、3-フェルアミノプロピル基、γ-グリシドキシプロピル基、3,4-エポキシシクロヘキシル基などが挙げられる。
 炭素数2~20のアルケニル基としては、炭素数2~10のアルケニル基が好ましく、また、このアルケニル基は直鎖状、分岐状、環状のいずれであってもよい。このアルケニル基の例としては、ビニル基、アリル基、ブテニル基、ヘキセニル基、オクテニル基などが挙げられる。
 炭素数6~20のアリール基としては、炭素数6~10のアリール基が好ましく、例えばフェニル基、トリル基、キシリル基、ナフチル基などが挙げられる。
 炭素数7~20のアラルキル基としては、炭素数7~10のアラルキル基が好ましく、例えばベンジル基、フェネチル基、フェニルプロピル基、ナフチルメチル基などが挙げられる。
Here, the alkyl group having 1 to 20 carbon atoms is preferably one having 1 to 10 carbon atoms, and the alkyl group may be linear, branched or cyclic. In addition to this, functional groups containing substituents such as hydroxyl groups, thiols, and imidazoles can also be mentioned. Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group Octyl group, cyclopentyl group, cyclohexyl group and the like.
As the alkyl group having 1 to 20 carbon atoms having a (meth) acryloyloxy group, amino group or epoxy group, an alkyl group having 1 to 10 carbon atoms having the above substituent is preferable, and this alkyl group is linear, It may be either branched or annular. Examples of the alkyl group having this substituent include γ-acryloyloxypropyl group, γ-methacryloyloxypropyl group, γ-aminopropyl group, 3- (2-aminoethylamino) propyl group, 3-feraminopropyl group. , Γ-glycidoxypropyl group, 3,4-epoxycyclohexyl group and the like.
The alkenyl group having 2 to 20 carbon atoms is preferably an alkenyl group having 2 to 10 carbon atoms, and this alkenyl group may be linear, branched or cyclic. Examples of the alkenyl group include vinyl group, allyl group, butenyl group, hexenyl group, octenyl group and the like.
The aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 10 carbon atoms, and examples thereof include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group.
The aralkyl group having 7 to 20 carbon atoms is preferably an aralkyl group having 7 to 10 carbon atoms, and examples thereof include a benzyl group, a phenethyl group, a phenylpropyl group, and a naphthylmethyl group.
 一方、Rは、炭素数1~6のアルキル基であって、直鎖状、分岐状、環状のいずれであってもよく、その例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基などが挙げられる。 On the other hand, R 2 is an alkyl group having 1 to 6 carbon atoms, which may be linear, branched or cyclic, and examples thereof include a methyl group, an ethyl group, an n-propyl group, Examples include isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group and the like.
 また、上記一般式(I)で表される金属アルコキシド化合物において、mは、金属原子Mの価数で、3又は4であり、nは、mが4の場合は0~2の整数、mが3の場合は0~1の整数である。Rが複数ある場合、各Rは互いに同一であってもよいし、異なっていてもよく、またORが複数ある場合、各ORは互いに同一であってもよいし、異なっていてもよい。 In the metal alkoxide compound represented by the general formula (I), m is the valence of the metal atom M and is 3 or 4, n is an integer of 0 to 2 when m is 4, m When is 3, it is an integer from 0 to 1. When R 1 are a plurality, each R 1 may be the same as each other or different, and if the OR 2 there are a plurality, each OR 2 may be the same with each other, or different Also good.
 上記一般式(I)で表される金属アルコキシド化合物において、Mが4価のTi、Si、Zrであって、mが4で、nが0~3の整数である場合のアルコキシド化合物の例としては、テトラメトキシチタン、テトラエトキシチタン、テトラ-n-プロポキシチタン、テトライソプロポキシチタン(チタンテトライソプロポキシド)、テトラ-n-ブトキシチタン、テトライソブトキシチタン、テトラ-sec-ブトキシチタン、テトラ-tert-ブトキシチタン、メチルトリメトキシチタン、メチルトリエトキシチタン、メチルトリプロポキシチタン、メチルトリイソプロポキシチタン、エチルトリメトキシチタン、エチルトリエトキシチタン、プロピルトリエトキシチタン、ブチルトリメトキシチタン、フェニルトリメトキシチタン、フェニルトリエトキシチタン、ビニルトリメトキシチタン、ビニルトリエトキシチタン、γ-グリシドキシプロピルトリメトキシチタン、γ-アクリロイルオキシプロピルトリメトキシチタン、γ-メタクリロイルオキシプロピルトリメトキシチタン、ジメチルジメトキシチタン、メチルフェニルジメトキシチタンなど、および上記化合物におけるチタンを、シラン又はジルコニウムに置き換えた化合物を挙げることができる。この中で、チタンテトライソプロポキシドが好ましく用いられる。 Examples of the alkoxide compound in the case where M is tetravalent Ti, Si, Zr, m is 4, and n is an integer of 0 to 3 in the metal alkoxide compound represented by the above general formula (I) Are tetramethoxy titanium, tetraethoxy titanium, tetra-n-propoxy titanium, tetraisopropoxy titanium (titanium tetraisopropoxide), tetra-n-butoxy titanium, tetraisobutoxy titanium, tetra-sec-butoxy titanium, tetra- tert-butoxy titanium, methyl trimethoxy titanium, methyl triethoxy titanium, methyl tripropoxy titanium, methyl triisopropoxy titanium, ethyl trimethoxy titanium, ethyl triethoxy titanium, propyl triethoxy titanium, butyl trimethoxy titanium, phenyl trimethoxy titanium , Enyltriethoxytitanium, vinyltrimethoxytitanium, vinyltriethoxytitanium, γ-glycidoxypropyltrimethoxytitanium, γ-acryloyloxypropyltrimethoxytitanium, γ-methacryloyloxypropyltrimethoxytitanium, dimethyldimethoxytitanium, methylphenyldimethoxy Examples include titanium and the like, and compounds in which titanium in the above compound is replaced with silane or zirconium. Of these, titanium tetraisopropoxide is preferably used.
 また、上記一般式(I)で表される金属アルコキシド化合物において、Mが3価のアルミニウムであって、mが3で、nが0~1の整数である場合のアルコキシド化合物の例としては、トリメトキシアルミニウム、トリエトキシアルミニウム、トリ-n-プロポキシアルミニウム、トリイソプロポキシアルミニウム、トリ-n-ブトキシアルミニウム、トリイソブトキシアルミニウム、トリ-sec-ブトキシアルミニウム、トリ-tert-ブトキシアルミニウム、メチルジメトキシアルミニウム、メチルジエトキシアルミニウム、メチルジプロポキシアルミニウム、エチルジメトキシアルミニウム、エチルジエトキシアルミニウム、プロピルジエトキシアルミニウムなどを挙げることができる。 Examples of the alkoxide compound in the case where the metal alkoxide compound represented by the general formula (I) is trivalent aluminum, m is 3, and n is an integer of 0 to 1, Trimethoxyaluminum, triethoxyaluminum, tri-n-propoxyaluminum, triisopropoxyaluminum, tri-n-butoxyaluminum, triisobutoxyaluminum, tri-sec-butoxyaluminum, tri-tert-butoxyaluminum, methyldimethoxyaluminum, Examples thereof include methyldiethoxyaluminum, methyldipropoxyaluminum, ethyldimethoxyaluminum, ethyldiethoxyaluminum, and propyldiethoxyaluminum.
 これらの金属アルコキシド化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 These metal alkoxide compounds may be used alone or in combination of two or more.
 本発明に係る縮合物において、前記シランカップリング剤と前記金属アルコキシド化合物との割合は、質量%の場合、80:20~95:5であることが好ましい。 In the condensate according to the present invention, the ratio between the silane coupling agent and the metal alkoxide compound is preferably 80:20 to 95: 5 in the case of mass%.
(縮合物の作製)
 本発明においては、前記アミノ基を有するシランカップリング剤と、金属アルコキシド化合物とをゾルゲル反応によって加水分解-縮合反応してM-O(Mは上記と同じである。以下、同じ。)の繰り返し単位を主骨格とする縮合物を作製する。本発明に係る縮合物の製造方法は、アミノ基を有するシランカップリング剤を例えば、水などの溶媒中で縮合反応させて反応液を得る第1工程と、一般式(I)で表される金属アルコキシド化合物と上記第1工程で得られた反応液とを混合して縮合反応させる第2工程とを備える。
(Preparation of condensate)
In the present invention, the silane coupling agent having an amino group and a metal alkoxide compound are subjected to hydrolysis-condensation reaction by a sol-gel reaction to repeat MO (M is the same as described above; hereinafter the same). A condensate having the main skeleton as a unit is prepared. The method for producing a condensate according to the present invention is represented by a first step of obtaining a reaction solution by subjecting a silane coupling agent having an amino group to a condensation reaction in a solvent such as water, and the general formula (I). A second step of mixing and reacting the metal alkoxide compound and the reaction solution obtained in the first step.
 上記第1工程および第2工程における縮合反応において、溶媒としては、例えばアルコール系、セロソルブ系、ケトン系、エーテル系、グリコールエーテル系などの極性溶媒、好ましくは相溶性の観点からグリコールエーテル系、特に好ましくはエチレングリコールモノ-t-ブチルエーテルが用いられる。縮合反応は、上記溶媒中、アミノ基を有するシランカップリング剤やアルコキシド化合物を、水又は水と塩酸、硫酸、硝酸などの酸、あるいは固体酸としてのカチオン交換樹脂を用い、通常0~70℃、好ましくは20~60℃の温度にて加水分解処理し、固体酸を用いた場合には、それを除去したのち、さらに、所望により溶媒を留去又は添加することにより行うことができる。上記反応により、M-Oの繰り返し単位を主骨格とする縮合物を得ることができる。 In the condensation reaction in the first step and the second step, examples of the solvent include polar solvents such as alcohol-based, cellosolve-based, ketone-based, ether-based, glycol ether-based, preferably glycol ether-based from the viewpoint of compatibility. Preferably, ethylene glycol mono-t-butyl ether is used. In the condensation reaction, a silane coupling agent or alkoxide compound having an amino group is used in the above solvent, and water or an acid such as hydrochloric acid, sulfuric acid or nitric acid, or a cation exchange resin as a solid acid, usually at 0 to 70 ° C. Preferably, the hydrolysis treatment is carried out at a temperature of 20 to 60 ° C., and when a solid acid is used, the solid acid is removed, and then the solvent is distilled off or added as desired. By the above reaction, a condensate having a repeating unit of MO as the main skeleton can be obtained.
 上記M-Oの繰り返し単位を主骨格とする縮合物は、アミノ基を有するシランカップリング剤のアミノ基や一般式(I)におけるORの加水分解により生じるOH基が残存しているために、ポリイミドフィルムやカバー材・ボンディングシートなどの有機物や、金属などの無機物に対する接着性にも優れている。 In the condensate having the MO repeating unit as the main skeleton, the amino group of the silane coupling agent having an amino group and the OH group generated by hydrolysis of OR 2 in the general formula (I) remain. It also has excellent adhesion to organic materials such as polyimide films, cover materials and bonding sheets, and inorganic materials such as metals.
 本発明に係る縮合物の製造方法においては、前記第1工程で得られた反応液にトリアジンチオール誘導体を加える第3工程をさらに備えることが好ましい。これにより、トリアジンチオール誘導体が導入された縮合物を使用した導電性部材は、密着強度をさらに大きくすることができる。ここで、「トリアジンチオール誘導体が縮合物に導入される」とは、主にトリアジンチオール誘導体が縮合物に単に含まれる形態をいうが、トリアジンチオール誘導体が縮合物と化学的に反応したり、配位結合を形成する形態も、ここでいう導入に含まれる。 The method for producing a condensate according to the present invention preferably further includes a third step of adding a triazine thiol derivative to the reaction solution obtained in the first step. Thereby, the electroconductive member using the condensate in which the triazine thiol derivative is introduced can further increase the adhesion strength. Here, “triazine thiol derivative is introduced into the condensate” mainly means a form in which the triazine thiol derivative is simply contained in the condensate. However, the triazine thiol derivative chemically reacts with the condensate or is distributed. Forms that form coordinate bonds are also included in the introduction referred to here.
 この第3工程は、第2工程の後、すなわちアミノ基を有するシランカップリング剤と、金属アルコキシド化合物とをゾルゲル反応によって加水分解-縮合反応して得られたM-Oの繰り返し単位を主骨格とする縮合物に、トリアジンチオール誘導体を加えて反応させることが好ましい。また、第3工程は、第2工程と同時、すなわちアミノ基を有するシランカップリング剤と、金属アルコキシド化合物と、トリアジンチオール誘導体とを同時に加えて反応させてもよい。さらに、第3工程は、第2工程の前、すなわちアミノ基を有するシランカップリング剤にトリアジンチオール誘導体を加えて反応させた後に金属アルコキシド化合物を加えて反応させてもよい。さらにまた、第3工程は、第1工程と同時、すなわちアミノ基を有するシランカップリング剤が縮合反応する前にトリアジンチオール誘導体を加えて反応させてもよい。 In the third step, the MO repeating unit obtained by hydrolysis-condensation reaction of the silane coupling agent having an amino group and the metal alkoxide compound by sol-gel reaction after the second step is used as the main skeleton. It is preferable to add a triazine thiol derivative to the condensate to be reacted. In the third step, the silane coupling agent having an amino group, the metal alkoxide compound, and the triazine thiol derivative may be added and reacted simultaneously with the second step. Further, in the third step, the metal alkoxide compound may be added and reacted before the second step, that is, after the triazine thiol derivative is added and reacted with the silane coupling agent having an amino group. Furthermore, in the third step, a triazine thiol derivative may be added and reacted simultaneously with the first step, that is, before the silane coupling agent having an amino group undergoes a condensation reaction.
 トリアジンチオール誘導体としては、例えば下記一般式(II)および/又は一般式(III)および/又は一般式(IV)で表される化合物を挙げることができる。 Examples of the triazine thiol derivative include compounds represented by the following general formula (II) and / or general formula (III) and / or general formula (IV).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記一般式(II)、(III)、(IV)において、Rは-SR、-OR、-NHR、又はNRなどを示す。RおよびRはそれぞれ独立に水素原子又は炭素数が1~18までのアルキル基、フェニル基、アラルキル基、アルケニル基、シクロアルキル基、不飽和アルキル基、フッ素化アルキル基、フッ素化フェニル基、フッ素化アラルキル基又はフッ素化不飽和アルキル基を表し、RとRとは他の端でつながって環を形成してもよい。また、X、Xはそれぞれ独立に水素原子、マロン酸誘導体、琥珀酸誘導体、メチル琥珀酸誘導体、プロピオン酸誘導体、ケトン誘導体、スルホン誘導体、ニトロ誘導体およびアセチル誘導体から選ばれた残基を表すが、X、Xの両者が水素原子であることはない。 In the general formulas (II), (III), and (IV), R represents —SR 3 , —OR 3 , —NHR 3 , NR 3 R 4 , or the like. R 3 and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, phenyl group, aralkyl group, alkenyl group, cycloalkyl group, unsaturated alkyl group, fluorinated alkyl group, fluorinated phenyl group Represents a fluorinated aralkyl group or a fluorinated unsaturated alkyl group, and R 3 and R 4 may be connected at the other end to form a ring. X 1 and X 2 each independently represent a residue selected from a hydrogen atom, a malonic acid derivative, a succinic acid derivative, a methyl succinic acid derivative, a propionic acid derivative, a ketone derivative, a sulfone derivative, a nitro derivative, and an acetyl derivative. However, neither X 1 nor X 2 is a hydrogen atom.
 これらのトリアジンチオール誘導体の中で、各種金属アルコキシド縮合物との相溶性、特に高濃度の金属アルコキシド縮合物に対する相溶性において、分子量が小さい一般式(II)で表される、トリアジン環の少なくとも2つの炭素がチオール基(-SH)で置換されているトリアジンチオール誘導体が好ましい。その中でもトリアジン環のすべての炭素が硫黄で置換されている場合が特に好ましく、すべてがチオール基(-SH)で置換されている2,4,6-トリメルカプト-トリアジンが特に好ましい。この場合、分子量が最も小さいため、低濃度から高濃度までの各種金属アルコキシド縮合物の金属とチオールとの配位が効率的かつ均一に行われる。この様なトリアジンチオール化合物は工業製品として比較的容易に入手でき、材料コストの点でも極めて有効である。 Among these triazine thiol derivatives, at least 2 of the triazine ring represented by the general formula (II) having a small molecular weight in compatibility with various metal alkoxide condensates, particularly compatibility with high concentration metal alkoxide condensates. Triazine thiol derivatives in which two carbons are substituted with a thiol group (—SH) are preferred. Among them, the case where all the carbons of the triazine ring are substituted with sulfur is particularly preferable, and 2,4,6-trimercapto-triazine in which all the carbons are substituted with a thiol group (—SH) is particularly preferable. In this case, since the molecular weight is the smallest, the coordination between the metal and the thiol of various metal alkoxide condensates from a low concentration to a high concentration is performed efficiently and uniformly. Such a triazine thiol compound is relatively easily available as an industrial product and is extremely effective in terms of material cost.
 これらのトリアジンチオール誘導体は単独もしくは2種以上混合して使用できる。トリアジンチオール誘導体のアミノ基を有するシランカップリング剤と金属アルコキシド化合物とトリアジンチオール誘導体との(固形分もしくは有効成分)合計量に対する割合は、0.05~10質量%であることが好ましい。 These triazine thiol derivatives can be used alone or in admixture of two or more. The ratio of the triazine thiol derivative silane coupling agent having an amino group, the metal alkoxide compound, and the triazine thiol derivative to the total amount (solid content or active ingredient) is preferably 0.05 to 10% by mass.
 本発明に係る縮合物の製造方法においては、フィラーを混合する第4工程をさらに備えることができる。これにより、縮合物の膜表面に凹凸構造が構築でき、印刷時の導電性材料の滲みを防止することができる。その結果、細線パターンの印刷が可能となる。フィラーは、その1次粒子径が30~1500nmの範囲であることが好ましい。ここで、1次粒子径は、フィラー分散液を希釈して走査型電子顕微鏡にて観察した電子顕微鏡画像から粒子の平均粒径を計算することで得ることができる。1次粒子径が30nmより小さい場合には、導電性材料印刷時の印刷性に対する効果が小さい。また、1次粒子径が1500nmより大きい場合には、溶液を作製した際に粒子が沈降しやすく、均一な膜を製膜することがやや難しくなる。 The method for producing a condensate according to the present invention may further include a fourth step of mixing a filler. Thereby, an uneven structure can be constructed on the film surface of the condensate, and bleeding of the conductive material during printing can be prevented. As a result, a fine line pattern can be printed. The filler preferably has a primary particle size in the range of 30 to 1500 nm. Here, the primary particle size can be obtained by calculating the average particle size of the particles from an electron microscope image obtained by diluting the filler dispersion and observing with a scanning electron microscope. When the primary particle size is smaller than 30 nm, the effect on the printability during printing of the conductive material is small. Moreover, when the primary particle diameter is larger than 1500 nm, the particles are likely to settle when a solution is prepared, and it becomes somewhat difficult to form a uniform film.
 フィラーとしては、無機フィラーまたは有機フィラーのいずれでも使用することができる。無機フィラーとしては、例えばシリカ、シリカ微粒子、コロイダルシリカ、アルミナ、コロイダルアルミナ、コロイダルチタニア、ジルコニアゾル、珪酸カルシウム、ゼオライト、カオリナイト、ハロイサイト、白雲母、タルク、炭酸カルシウム、硫酸カルシウム、ベーマイト等を挙げることができる。この中で、コロイダルシリカが好ましく用いられる。シリカの具体例としては、例えばLEVASILシリーズ(H.C.Starck(株)製)、メタノールシリカゾル、IPA-ST、MEK-ST、NBA-ST、XBA-ST、DMAC-ST、ST-UP、ST-OUP、ST-20、ST-40、ST-C、ST-N、ST-O、ST-50、ST-OL、MP-2040(以上、日産化学工業株式会社製)、クオートロンPLシリーズ(扶桑化学株式会社製)、OSCALシリーズ(日揮触媒化成株式会社製)、ハイプレシカ(宇部日東化成株式会社製)などが挙げられる。この中で、上記した縮合物の溶液へのフィラーの分散性の観点から、ハイプレシカが最も好適に用いられる。また、有機フィラーとしては、ポリイミド粒子などが挙げられる。 As the filler, either an inorganic filler or an organic filler can be used. Examples of the inorganic filler include silica, silica fine particles, colloidal silica, alumina, colloidal alumina, colloidal titania, zirconia sol, calcium silicate, zeolite, kaolinite, halloysite, muscovite, talc, calcium carbonate, calcium sulfate, boehmite and the like. be able to. Of these, colloidal silica is preferably used. Specific examples of silica include LEVASIL series (manufactured by HC Starck Co., Ltd.), methanol silica sol, IPA-ST, MEK-ST, NBA-ST, XBA-ST, DMAC-ST, ST-UP, ST -OUP, ST-20, ST-40, ST-C, ST-N, ST-O, ST-50, ST-OL, MP-2040 (manufactured by Nissan Chemical Industries, Ltd.), Quatron PL series (Fuso Chemical Co., Ltd.), OSCAL series (manufactured by JGC Catalysts & Chemicals Co., Ltd.), and high plesica (manufactured by Ube Nitto Kasei Co., Ltd.). Among these, from the viewpoint of dispersibility of the filler in the above-mentioned condensate solution, high plesica is most preferably used. Moreover, a polyimide particle etc. are mentioned as an organic filler.
 アミノ基を有するシランカップリング剤に対するフィラーの割合は、フィラーが10~80質量%の範囲であることが好ましく、20~70質量%がより好ましく、30~70質量%がさらに好ましい。アミノ基を有するシランカップリング剤と金属アルコキシド化合物に対するフィラーの割合は、フィラーが10~70質量%の範囲であることが好ましく、20~70質量%がより好ましく、30~60質量%がさらにより好ましい。
 添加するフィラーの割合が、上記割合より小さい場合には、導電性材料印刷時の印刷性に効果が十分に期待できない場合がある。また、添加するフィラーの割合が上記割合より大きい場合には、積層基板に得られる縮合物のゾルゲル膜が多孔構造となり、電気特性がやや低下する場合がある。さらには、湿式工程で液が多孔質の膜表面に留まる可能性がある。
The ratio of the filler to the silane coupling agent having an amino group is preferably in the range of 10 to 80% by mass of filler, more preferably 20 to 70% by mass, and further preferably 30 to 70% by mass. The ratio of the filler to the silane coupling agent having an amino group and the metal alkoxide compound is preferably in the range of 10 to 70% by mass of filler, more preferably 20 to 70% by mass, and even more preferably 30 to 60% by mass. preferable.
When the ratio of the filler to be added is smaller than the above ratio, there may be a case where a sufficient effect cannot be expected on the printability when printing the conductive material. When the ratio of the filler to be added is larger than the above ratio, the sol-gel film of the condensate obtained on the laminated substrate has a porous structure, and the electrical characteristics may be slightly deteriorated. Furthermore, there is a possibility that the liquid stays on the porous membrane surface in the wet process.
 また、フィラーを使用した縮合物の膜の表面の表面被覆率は、10~100%の範囲であることが好ましく、30~100%がより好ましく、50~100%がさらに好ましい。これにより、後述する導電性部材の印刷ラインの細線化を実現することができる。ここで、表面被覆率とは、縮合物の膜の表面全体に対するフィラーの専有率をいう。表面被覆率の測定方法は、縮合物をポリイミドフィルムなどの基材上に塗膜された塗膜表面を光学顕微鏡で観察した画像を、画像処理ソフトで粒子部分が黒色となるように、白色と黒色に二値化し、フィラーの部分の占有面積率(%)を求めることにより決定される。表面被覆率の具体的な測定方法については、実施例の項で述べる。
フィラーを使用した縮合物の膜の表面の表面被覆率が導電性部材の印刷ラインの細線化を実現する理由については必ずしも明らかではないが、フィラー粒子を使用することにより、凹凸構造が縮合物の塗膜表面に形成され、この凹凸構造が印刷された銀ペーストなどのインクの滲みをせき止めているものと考えられる。ただし、湿式プロセスや導電時のマイグレーションを考慮し、多孔質にならないことを条件とする。
Further, the surface coverage of the surface of the condensate film using the filler is preferably in the range of 10 to 100%, more preferably 30 to 100%, and even more preferably 50 to 100%. Thereby, the thinning of the printing line of the electroconductive member mentioned later is realizable. Here, the surface coverage refers to the exclusive rate of the filler with respect to the entire surface of the condensate film. The method for measuring the surface coverage is that an image obtained by observing the surface of the coating film obtained by coating the condensate on a substrate such as a polyimide film with an optical microscope is white and the particle portion is black with image processing software. It is determined by binarizing to black and determining the occupied area ratio (%) of the filler portion. A specific method for measuring the surface coverage will be described in the Examples section.
Although the reason why the surface coverage of the surface of the condensate film using the filler realizes thinning of the printing line of the conductive member is not necessarily clear, by using filler particles, the uneven structure is It is thought that ink bleeding such as silver paste formed on the surface of the coating film and printed with this uneven structure is stopped. However, in consideration of the wet process and migration during conduction, the condition is that it does not become porous.
 本発明に係る縮合物の製造方法において、第4工程は、第2工程の後、すなわちアミノ基を有するシランカップリング剤と金属アルコキシド化合物とをゾルゲル反応によって加水分解-縮合反応して得られたM-Oの繰り返し単位を主骨格とする縮合物に、フィラーを混合することが好ましい。また、第4工程は、第2工程と同時、すなわちアミノ基を有するシランカップリング剤と、金属アルコキシド化合物と、フィラーとを同時に混合して反応させてもよい。さらにまた、第4工程は、第1工程と同時、すなわちアミノ基を有するシランカップリング剤が縮合反応する前にフィラーを混合して反応させてもよい。
 フィラーを混合させる形態については、トリアジンチオール誘導体を加えて反応させる第3工程を省略することができる。また、フィラーを混合させる形態については、金属アルコキシド化合物を加えて反応させる第2工程を省略することもできる。すなわち、アミノ基を有するシランカップリング剤とフィラーとから縮合物を得ることもできる。
In the method for producing a condensate according to the present invention, the fourth step was obtained after the second step, that is, a hydrolysis-condensation reaction of a silane coupling agent having an amino group and a metal alkoxide compound by a sol-gel reaction. It is preferable to mix a filler with a condensate having a repeating unit of MO as a main skeleton. In the fourth step, the silane coupling agent having an amino group, the metal alkoxide compound, and the filler may be mixed and reacted simultaneously with the second step. Furthermore, in the fourth step, the filler may be mixed and reacted simultaneously with the first step, that is, before the silane coupling agent having an amino group undergoes a condensation reaction.
About the form with which a filler is mixed, the 3rd process made to react by adding a triazine thiol derivative can be abbreviate | omitted. Moreover, about the form which mixes a filler, the 2nd process made to react by adding a metal alkoxide compound can also be abbreviate | omitted. That is, a condensate can also be obtained from a silane coupling agent having an amino group and a filler.
 また、本発明に係る縮合物の製造方法において、トリアジンチオール誘導体とフィラーとを供給する方法について説明する。本発明においては、第4工程は、第2および第3工程の後、すなわち前記縮合物とトリアジンチオール誘導体を反応させたものにフィラーを加えてもよい。また、第3工程は、第2および第4工程の後、すなわち前記縮合物とフィラーを混合したものにトリアジンチオール誘導体を加えてもよい。さらに、第3および第4工程は、第2工程の後同時に、すなわち前記縮合物にトリアジンチオール誘導体とフィラーとを同時に加えてもよい。また、第2、第3および第4工程を同時に、すなわちアミノ基を有するシランカップリング剤と、金属アルコキシド化合物と、トリアジンチオール誘導体と、フィラーとを同時に混合して反応させてもよい。 In the method for producing a condensate according to the present invention, a method for supplying a triazine thiol derivative and a filler will be described. In the present invention, in the fourth step, a filler may be added after the second and third steps, that is, in the reaction of the condensate with the triazine thiol derivative. In the third step, the triazine thiol derivative may be added to the mixture of the condensate and the filler after the second and fourth steps. Further, in the third and fourth steps, the triazine thiol derivative and the filler may be added to the condensate at the same time after the second step. Further, the second, third, and fourth steps may be simultaneously performed, that is, a silane coupling agent having an amino group, a metal alkoxide compound, a triazine thiol derivative, and a filler may be mixed and reacted at the same time.
(積層基板用材料)
 本発明に係る縮合物は、積層基板用材料として好適に用いることができる。上記製造方法によって製造された縮合物は、上記加水分解-縮合反応により、M-Oの繰り返し単位を主骨格とする縮合物を所定濃度で含む塗工液の状態として得ることができるため、本発明に係る縮合物を積層基板用材料として用いる場合、塗工液の状態で基材表面に塗布されることが好ましい。また、塗工液は、上記縮合物を得た後に所定濃度に調整することも出来る。当該塗工液における上記縮合物の濃度については、基材表面に塗工可能な濃度であればよく、特に制限はないが、通常0.05~35質量%、好ましくは0.1~20質量%、より好ましくは0.2~10質量%である。縮合物の濃度が、35質量%を超えると、液の安定性が低下する、即ち、液がゲル化しやすくなり、保存期間(ポットライフ)が悪くなる場合がある。また、縮合物の濃度が、0.05質量%未満であると、十分に効果が得られない場合がある。
 本発明に係る積層基板用材料は、上記のように製造され、本発明に係る縮合物を主成分とする。主成分とは、例えば積層基板用材料中の縮合物が50質量%以上をいう。
(Laminated substrate material)
The condensate according to the present invention can be suitably used as a laminated substrate material. The condensate produced by the above production method can be obtained in the form of a coating liquid containing a condensate having a repeating unit of MO as a main skeleton at a predetermined concentration by the hydrolysis-condensation reaction. When using the condensate which concerns on invention as a laminated substrate material, it is preferable to apply | coat to the base-material surface in the state of a coating liquid. Further, the coating liquid can be adjusted to a predetermined concentration after obtaining the condensate. The concentration of the condensate in the coating solution is not particularly limited as long as it is a concentration that can be applied to the surface of the substrate, but is usually 0.05 to 35% by mass, preferably 0.1 to 20% by mass. %, More preferably 0.2 to 10% by mass. When the concentration of the condensate exceeds 35% by mass, the stability of the liquid is lowered, that is, the liquid is easily gelled, and the storage period (pot life) may be deteriorated. Further, if the concentration of the condensate is less than 0.05% by mass, sufficient effects may not be obtained.
The laminated substrate material according to the present invention is produced as described above, and contains the condensate according to the present invention as a main component. A main component means 50 mass% or more of the condensate in the laminated substrate material, for example.
 本発明に係る積層基板用材料において、上記アミノ基を有するシランカップリング剤を用いることにより導電性パターンと基材との密着性を大幅に向上することができるため、非常に有用である。この原因は、必ずしも明らかではないが、アミノ基を有するシランカップリング剤が、アミノ基を介して、金属と配位結合を形成しているためと推定される。また、上記金属アルコキシド化合物は、基材表面に積層される当該層がクラックを発生することなく、一定の厚さで均一に積層されるために効果的である。 In the laminated substrate material according to the present invention, the adhesion between the conductive pattern and the substrate can be greatly improved by using the silane coupling agent having an amino group, which is very useful. Although this cause is not necessarily clear, it is estimated that the silane coupling agent which has an amino group forms the coordinate bond with the metal via the amino group. Moreover, the said metal alkoxide compound is effective in order that the said layer laminated | stacked on the base-material surface may be uniformly laminated | stacked by fixed thickness, without generating a crack.
 本発明に係る積層基板用材料において、上記塗工液中にはトリアジンチオール誘導体を固定化できれば更に好ましい。塗工液として、ポリイミドフィルムなどの有機基材や、導電インクを焼結して成る導電性パターンに対する接着性を有する金属アルコキシド縮合物と共に、トリアジンチオール誘導体を含んだ塗工液を用いる場合には、金属アルコキシド縮合物単独の塗工液の場合に比べて、密着強度が向上する効果が得られ、金属アルコキシド縮合物の使用量が減らせる効果がある。これはコストのみならず、塗工工程における塗工斑等の加工上のトラブル低減に対しても極めて有効である。 In the multilayer substrate material according to the present invention, it is more preferable if the triazine thiol derivative can be immobilized in the coating solution. When using a coating solution containing a triazine thiol derivative together with an organic base material such as a polyimide film or a metal alkoxide condensate having adhesiveness to a conductive pattern formed by sintering conductive ink as a coating solution As compared with the case of the coating liquid containing only the metal alkoxide condensate, the effect of improving the adhesion strength is obtained, and the amount of the metal alkoxide condensate used can be reduced. This is extremely effective not only for reducing costs but also for reducing processing troubles such as coating spots in the coating process.
 これらのトリアジンチオール誘導体は単独もしくは2種以上混合して使用できる。トリアジンチオール誘導体は、金属と有機基材との密着性を改良するために十分となる量で用いられる。本発明に用いるトリアジンチオール誘導体の配合量は、塗工液全量に対して、0.0001~0.3質量%であることが好ましく、0.0005~0.25質量%の割合で用いることがより好ましく、0.001~0.2質量%であることがさらに好ましい。0.3質量%よりも多量であると、金属と有機基材との密着力を低下させてしまう傾向がある。この原因は、必ずしも明らかではないが、トリアジンチオール誘導体は溶解性が低いため、溶媒組成によっては析出することなどにあると推定される。一方、0.0001質量%よりも少量であると、トリアジンチオール誘導体を用いない場合に比べて接着力を十分に改良することができないおそれがある。 These triazine thiol derivatives can be used alone or in admixture of two or more. The triazine thiol derivative is used in an amount sufficient to improve the adhesion between the metal and the organic substrate. The blending amount of the triazine thiol derivative used in the present invention is preferably 0.0001 to 0.3% by mass, and preferably 0.0005 to 0.25% by mass with respect to the total amount of the coating solution. More preferably, the content is 0.001 to 0.2% by mass. When the amount is larger than 0.3% by mass, the adhesion between the metal and the organic substrate tends to be reduced. The reason for this is not necessarily clear, but it is presumed that the triazine thiol derivative has low solubility, and thus is precipitated depending on the solvent composition. On the other hand, when the amount is less than 0.0001% by mass, the adhesive force may not be sufficiently improved as compared with the case where the triazine thiol derivative is not used.
 上記においては、アミノ基を有するシランカップリング剤と、金属アルコキシド化合物とを加水分解-縮合反応してなるM-Oの繰り返し単位を主骨格とする縮合物について述べたが、金属アルコキシド化合物を用いることなく、アミノ基を有するシランカップリング剤のみを使用した縮合物についても導電性パターンの基材に対する密着性を高くすることもできる。 In the above description, the condensate having a main skeleton of a MO repeating unit obtained by hydrolysis-condensation reaction between a silane coupling agent having an amino group and a metal alkoxide compound has been described. It is also possible to increase the adhesion of the conductive pattern to the substrate even for the condensate using only the silane coupling agent having an amino group.
 このようなアミノ基を有するシランカップリング剤の例としては、金属との密着性が期待できる官能基数が多いことから、前で述べたシランカップリング剤を好適に用いることができる。
 更にこの中でも耐熱性の高さから(アミノエチルアミノメチル)フェニルトリメトキシシランが、また安価であることからN-(2-アミノエチル)3-アミノプロピルトリメトキシシランが、より好ましく用いられる。ポリイミドフィルムなどの有機基材や、導電性材料を焼結して成る導電性パターンに対する接着性、更に耐熱性の高さを総合的に考慮すれば、(アミノエチルアミノメチル)フェニルトリメトキシシランが好ましい。
 また、シランカップリング剤のアミノ基の数は、ピール強度の観点から2以上が好ましい。このようなアミノ基を2つ有するシランカップリング剤としては、上で挙げた(アミノエチルアミノメチル)フェニルトリメトキシシランやN-(2-アミノエチル)3-アミノプロピルトリメトキシシランが好ましい。これらのシランカップリング剤を使用した場合には、金属アルコキシド化合物を用いることなく、導電性パターンの基材に対する密着性をより高くすることができる。さらに、導電性パターンに対する接着性の観点から、該シランカップリング剤のアミノ基の数は、2以上、例えば2または3であることが好ましい。このような分子内に2つ以上のアミノ基を有するシランカップリング剤のうち、例えば、(アミノエチルアミノメチル)フェネチルトリメトキシシランおよびN-[2-[3-(トリメトキシシリル)プロピルアミノ]エチル]エチレンジアミンも好ましく用いられる。この中で、密着性の観点から(アミノエチルアミノメチル)フェネチルトリメトキシシランが特に好ましい。これらのシランカップリング剤を使用した場合にも、金属アルコキシド化合物を用いることなく、導電性パターンの基材に対する密着性をより高くすることができる。
 アミノ基を有するシランカップリング剤は、(アミノエチルアミノメチル)フェニルトリメトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシランおよびN-[2-[3-(トリメトキシシリル)プロピルアミノ]エチル]エチレンジアミンからなる群より選ばれた1種以上であることが好ましい。
As an example of such a silane coupling agent having an amino group, since the number of functional groups that can be expected to adhere to a metal is large, the silane coupling agent described above can be preferably used.
Of these, (aminoethylaminomethyl) phenyltrimethoxysilane is more preferably used because of its high heat resistance, and N- (2-aminoethyl) 3-aminopropyltrimethoxysilane is more preferable because of its low cost. Considering the overall adhesion to organic substrates such as polyimide films and conductive patterns obtained by sintering conductive materials, and the high heat resistance, (aminoethylaminomethyl) phenyltrimethoxysilane preferable.
The number of amino groups in the silane coupling agent is preferably 2 or more from the viewpoint of peel strength. As such a silane coupling agent having two amino groups, (aminoethylaminomethyl) phenyltrimethoxysilane and N- (2-aminoethyl) 3-aminopropyltrimethoxysilane mentioned above are preferable. When these silane coupling agents are used, the adhesion of the conductive pattern to the substrate can be further increased without using a metal alkoxide compound. Furthermore, from the viewpoint of adhesiveness to the conductive pattern, the number of amino groups of the silane coupling agent is preferably 2 or more, for example, 2 or 3. Among such silane coupling agents having two or more amino groups in the molecule, for example, (aminoethylaminomethyl) phenethyltrimethoxysilane and N- [2- [3- (trimethoxysilyl) propylamino] Ethyl] ethylenediamine is also preferably used. Among these, (aminoethylaminomethyl) phenethyltrimethoxysilane is particularly preferable from the viewpoint of adhesion. Even when these silane coupling agents are used, the adhesion of the conductive pattern to the substrate can be further increased without using a metal alkoxide compound.
Silane coupling agents having an amino group include (aminoethylaminomethyl) phenyltrimethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane and N- [2- [3- (trimethoxysilyl) propylamino] ethyl]. It is preferable that it is 1 or more types selected from the group which consists of ethylenediamine.
(積層基板およびその製造方法)
 本発明は、上記積層基板用材料が、基材表面に積層された積層基板であることを特徴とする。本発明に係る積層基板は、上記塗工液を基材表面に塗工することによって得ることが出来る。
(Laminated substrate and manufacturing method thereof)
The present invention is characterized in that the laminated substrate material is a laminated substrate laminated on the surface of a base material. The laminated substrate according to the present invention can be obtained by coating the coating liquid on the substrate surface.
 本発明に係る積層基板において、用いられる基材としては、特に限定されるものではなく、発明の効果を阻害しない範囲において、有機基材および無機基材のいずれも用いることができる。有機基材としては、ポリエチレン・ポリプロピレン等のポリオレフィン系樹脂、ポリ塩化ビニル・塩化ビニル共重合体等の塩化ビニル系樹脂、エポキシ樹脂、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリイミド、フッ素樹脂、フェノキシ樹脂、トリアセチルセルロース、ポリエチレンテレフタレート、ポリイミド、ポリフェニレンスルファイド、ポリエチレンナフタレート、ポリカーボネート、ポリメチルメタクリレート等のアクリル樹脂、セロファン、ナイロン、ポリスチレン系樹脂、ABS樹脂等の各種樹脂類よりなるフィルムなどが挙げられる。また、無機基材としては、石英ガラス、無アルカリガラス、結晶化透明ガラス、パイレックス(登録商標)等の各種ガラスなどが挙げられる。基材としては、前記の他に紙、不織布、布、各種金属、各種セラミックス等を挙げることが出来る。また、用途に応じこれら基材を適宜組み合わせることが出来、例えば、銅箔とポリイミドを積層したフレキシブルプリント基板材料や、紙とポリオレフィン樹脂を積層したポリオレフィン樹脂被覆紙を用いることが出来る。更には、これらの樹脂等を使用し、立体形状に成型された物体も支持体として使用可能である。 In the laminated substrate according to the present invention, the base material to be used is not particularly limited, and any of an organic base material and an inorganic base material can be used as long as the effects of the invention are not impaired. Organic base materials include polyolefin resins such as polyethylene and polypropylene, vinyl chloride resins such as polyvinyl chloride and vinyl chloride copolymers, epoxy resins, polyarylate, polysulfone, polyethersulfone, polyimide, fluororesin, and phenoxy. Examples include resins, triacetyl cellulose, polyethylene terephthalate, polyimide, polyphenylene sulfide, polyethylene naphthalate, polycarbonate, films made of various resins such as cellophane, nylon, polystyrene resin, ABS resin, etc. It is done. Examples of the inorganic substrate include quartz glass, alkali-free glass, crystallized transparent glass, and various glasses such as Pyrex (registered trademark). Examples of the substrate include paper, non-woven fabric, cloth, various metals, various ceramics and the like in addition to the above. Moreover, these base materials can be combined suitably according to a use, for example, the flexible printed circuit board material which laminated | stacked copper foil and the polyimide, and the polyolefin resin coating paper which laminated | stacked paper and polyolefin resin can be used. Furthermore, an object molded into a three-dimensional shape using these resins or the like can also be used as a support.
 これらの中でも特に、金属ナノ粒子を含むインクあるいはペーストを焼結する際には、高温で処理することにより低抵抗を実現できること、耐熱性、寸法安定性および機械特性などの観点からポリイミドフィルムが好ましい。
 このようなポリイミドフィルムとしては、ガラス転移温度(Tg)が200℃以上のものが好ましく、250℃以上のものがより好ましく、300℃以上のものが特に好ましい。上記Tgは、固体粘弾性スペクトルにおけるtanδのピーク温度、あるいは損失弾性率E”のピーク温度から好適に得ることができる。
 このようなポリイミドフィルムは、芳香族ポリイミドフィルムを用いることができる。
ポリイミドフィルムは、ポリイミドフィルムを構成する酸無水物成分とジアミン成分とから得ることができる。酸無水物成分としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物などを主成分として含むものが挙げられるが、これに限定されない。また、ジアミン成分としては、パラフェニレンジアミン、4,4-ジアミノジフェニルエーテルなどを主成分として含むものが挙げられるが、これに限定されない。ポリイミドフィルムの具体例としては、例えば、商品名「ユーピレックス(S、又はR)」(登録商標、宇部興産(株)製)、商品名「カプトン」(登録商標、東レ・デュポン社製)、商品名「アピカル」(登録商標、カネカ社製)などのポリイミドフィルムなどを挙げることができる。
Among these, in particular, when an ink or paste containing metal nanoparticles is sintered, a low resistance can be realized by processing at a high temperature, and a polyimide film is preferable from the viewpoint of heat resistance, dimensional stability, mechanical properties, and the like. .
Such a polyimide film preferably has a glass transition temperature (Tg) of 200 ° C. or higher, more preferably 250 ° C. or higher, and particularly preferably 300 ° C. or higher. The Tg can be suitably obtained from the peak temperature of tan δ or the peak temperature of the loss elastic modulus E ″ in the solid viscoelastic spectrum.
An aromatic polyimide film can be used as such a polyimide film.
A polyimide film can be obtained from the acid anhydride component and diamine component which comprise a polyimide film. Examples of the acid anhydride component include, but are not limited to, those containing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride and the like as main components. Examples of the diamine component include, but are not limited to, those containing paraphenylenediamine, 4,4-diaminodiphenyl ether as a main component. Specific examples of the polyimide film include, for example, a trade name “Upilex (S or R)” (registered trademark, manufactured by Ube Industries), a trade name “Kapton” (registered trademark, manufactured by Toray DuPont), and a product. Examples thereof include polyimide films such as “Apical” (registered trademark, manufactured by Kaneka Corporation).
 基材としてプラスチックフィルムを用いた場合、基材の厚さに特に制限はなく、用途に応じて適宜選択されるが、通常1~300μm程度であり、好ましくは、2~200μm、さらにより好ましくは、3~150μmである。1μmより薄い場合は、操作性が悪くなる傾向があり、300μm以上では剛直となり操作性が低下し、重量が増しさらにコストアップになる傾向がある。 When a plastic film is used as the substrate, there is no particular limitation on the thickness of the substrate, and it is appropriately selected depending on the application, but it is usually about 1 to 300 μm, preferably 2 to 200 μm, and still more preferably. 3 to 150 μm. If it is thinner than 1 μm, the operability tends to be poor, and if it is 300 μm or more, it becomes rigid and the operability is lowered, the weight is increased, and the cost is further increased.
 上記基材は、その表面に処方される金属アルコキシド化合物を、加水分解-縮合反応してなるM-Oの繰り返し単位を主骨格とする縮合物を含む塗工液との濡れ性を改善する目的、又は、塗工液の有効成分との密着性を向上させる目的で、所望により該表面に、コロナ処理、プラズマ処理、クロム酸処理(湿式)、火炎処理、熱風処理、オゾン・紫外線照射処理、アルカリ処理、サンドブラスト処理、溶剤処理、あるいはプライマー処理を施すことができる。これらの表面処理法は、基材の種類に応じて適宜選ばれるが、一般的には、コロナ処理、プラズマ処理、アルカリ処理が、効果および操作性などの面から、好ましく用いられる。 The above-mentioned base material is intended to improve wettability with a coating liquid containing a condensate having a main skeleton of a MO repeating unit obtained by subjecting a metal alkoxide compound formulated on the surface to hydrolysis-condensation reaction. Or, for the purpose of improving the adhesion with the active ingredient of the coating liquid, the surface is optionally subjected to corona treatment, plasma treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, Alkali treatment, sandblast treatment, solvent treatment, or primer treatment can be performed. These surface treatment methods are appropriately selected depending on the type of substrate, but generally, corona treatment, plasma treatment, and alkali treatment are preferably used from the viewpoints of effects and operability.
 上記塗工液を基材表面に塗工する方法としては特に制限はなく、従来公知の方法、例えばスピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法などにより塗工し、成膜したのち、自然乾燥又は加熱乾燥することにより、所望の層を形成することができる。加熱乾燥する場合の加熱温度は、例えば100~300℃であることが好ましく、120~250℃がより好ましく、150~200℃がさらに好ましい。加熱温度が100℃未満の場合、長い乾燥時間が必要となる場合がある。また、加熱温度が300℃を超える場合では、連続製造装置上、コストアップとなる場合がある。加熱時間に関しては、例えば60~3600秒が好ましく、75~1800秒がより好ましく、90~180秒がさらにより好ましい。乾燥時間が60秒より短い場合は、乾燥が不十分となり場合があり、3600秒より長い場合は、製造に時間がかかりコストアップとなる場合がある。自然乾燥又は加熱乾燥後の縮合物から得られる層の厚さは、通常0.01~3μm程度、好ましくは0.02~1μm、より好ましくは0.05~0.5μmである。層の厚さが0.01μm以下では、十分な効果が得られず、3μm以上では、塗膜に欠陥が形成される可能性がある。 There is no particular limitation on the method for applying the coating liquid to the substrate surface, and conventionally known methods such as spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, A desired layer can be formed by coating by a die coating method, a gravure coating method, etc., forming a film, and then naturally drying or heat drying. The heating temperature in the case of heating and drying is, for example, preferably 100 to 300 ° C, more preferably 120 to 250 ° C, and further preferably 150 to 200 ° C. When the heating temperature is less than 100 ° C., a long drying time may be required. Moreover, when heating temperature exceeds 300 degreeC, it may become a cost increase on a continuous manufacturing apparatus. With respect to the heating time, for example, 60 to 3600 seconds are preferable, 75 to 1800 seconds are more preferable, and 90 to 180 seconds are even more preferable. When the drying time is shorter than 60 seconds, drying may be insufficient. When the drying time is longer than 3600 seconds, manufacturing may take time and cost may be increased. The thickness of the layer obtained from the condensate after natural drying or heat drying is usually about 0.01 to 3 μm, preferably 0.02 to 1 μm, more preferably 0.05 to 0.5 μm. If the thickness of the layer is 0.01 μm or less, sufficient effects cannot be obtained, and if it is 3 μm or more, defects may be formed in the coating film.
(導電性部材およびその製造方法)
 本発明に係る電子部品としての導電性部材に用いられる金属ナノ粒子を含む導電性材料には、公知あるいは市販の導電性パターンを形成するために供されている金属ナノ粒子が含まれるコロイド、インクあるいはペーストを広く用いることが出来る。例えば、三ツ星ベルト製銀ペーストMDot-SLP/H、ハリマ化成製NPS typeHP、大研化学製CA-2503-4が挙げられる。この中で、縮合物の膜(ゾルゲル膜)との密着性から、三ツ星ベルト製銀ペーストMDot-SLP/Hが好適に用いられる。金属ナノ粒子の金属は、銀又は銅が好適に用いられる。
(Conductive member and manufacturing method thereof)
The conductive material containing the metal nanoparticles used for the conductive member as the electronic component according to the present invention includes a colloid and an ink containing metal nanoparticles provided to form a known or commercially available conductive pattern Or a paste can be used widely. Examples thereof include silver paste MDot-SLP / H made by Mitsuboshi Belting, NPS typeHP made by Harima Kasei, and CA-2503-4 made by Daiken Chemical. Among these, a silver paste MDot-SLP / H made by Mitsuboshi Belting is preferably used because of its adhesion to the condensate film (sol-gel film). Silver or copper is preferably used as the metal of the metal nanoparticles.
 金属ナノ粒子を含むインクあるいはペーストの焼成後の膜厚は、特に限定は無いが、通常0.1~30μm、好ましくは0.3~20μm、より好ましくは0.5~15μmである。金属ナノ粒子を含むインクあるいはペーストの焼成後の膜厚が、0.1μmより薄い場合は、配線材料としての十分な性能が得られない場合がある。また、焼成後の膜厚が30μmより厚い場合はクラックが入ることがある。 The film thickness of the ink or paste containing metal nanoparticles after firing is not particularly limited, but is usually 0.1 to 30 μm, preferably 0.3 to 20 μm, more preferably 0.5 to 15 μm. If the thickness of the ink or paste containing metal nanoparticles after baking is less than 0.1 μm, sufficient performance as a wiring material may not be obtained. Moreover, when the film thickness after baking is thicker than 30 micrometers, a crack may enter.
 本発明において、金属ナノ粒子を含むインクあるいはペーストは、様々な印刷方法あるいは塗布方式によりパターンが形成される。例えば線状の塗布を行うことが出来るディスペンサー印刷方法を用いた任意の線状のパターン形成、サーマル、ピエゾ、マイクロポンプ、静電気等の各種方式のインクジェット印刷方法を用いた任意の線状あるいは面状のパターン形成、凸版印刷方法、フレキソ印刷方法、平版印刷方法、凹版印刷方法、グラビア印刷方法、反転オフセット印刷方法、枚葉スクリーン印刷方法、ロータリースクリーン印刷方法等の公知の各種印刷方法により任意のパターンを形成することが出来る。また、グラビアロール方式、スロットダイ方式、スピンコート方式等、公知の各種塗布方式を用い、積層基板の全面あるいは一部に連続した面としてパターンを形成すること、間欠塗工ダイコーター等を用い積層基板の全面あるいは一部に断続した面としてパターンを形成すること、あるいは浸漬塗布方法(ディップ方式ともいわれる)を用い、積層基板全体に金属ナノ粒子を含むインクあるいはペーストを付着させることも出来る。より好ましい印刷方法としては、インクジェット印刷方法、フレキソ印刷方法、グラビア印刷方法、反転オフセット印刷方法、枚葉スクリーン印刷方法、ロータリースクリーン印刷方法を挙げることが出来る。 In the present invention, the ink or paste containing metal nanoparticles is formed with a pattern by various printing methods or coating methods. For example, arbitrary linear pattern formation using a dispenser printing method capable of performing linear application, arbitrary linear or planar shape using various types of inkjet printing methods such as thermal, piezo, micro pump, static electricity, etc. Pattern formation, letterpress printing method, flexographic printing method, planographic printing method, intaglio printing method, gravure printing method, reverse offset printing method, sheet-fed screen printing method, rotary screen printing method, etc. Can be formed. Also, using various known coating methods such as gravure roll method, slot die method, spin coating method, etc., forming a pattern as a continuous surface on the entire surface or a part of the laminated substrate, lamination using an intermittent coating die coater, etc. A pattern can be formed as an intermittent surface on the entire surface or part of the substrate, or an ink or paste containing metal nanoparticles can be attached to the entire laminated substrate by using a dip coating method (also referred to as a dip method). More preferable printing methods include an inkjet printing method, a flexographic printing method, a gravure printing method, a reverse offset printing method, a sheet-fed screen printing method, and a rotary screen printing method.
 これらの方法によりパターン化された金属ナノ粒子を含むインクあるいはペーストは、加熱により焼成し導電性パターンとすることができる。この時の焼成条件としては、使用する基材によってかなり限定されるものの、優れた導電性および焼結の進行によってパターンの強度が増すため、高温であればあるほどよい。特にポリイミドを基材として用いた場合には、150~550℃で焼成することが好ましく、より優れた導電性の実現と生産性を鑑み、200~300℃で焼成することがより好ましい。 The ink or paste containing metal nanoparticles patterned by these methods can be fired to form a conductive pattern. The firing conditions at this time are considerably limited depending on the base material used, but the higher the temperature, the better because the pattern strength increases with the progress of excellent conductivity and sintering. In particular, when polyimide is used as a base material, it is preferably fired at 150 to 550 ° C., and more preferably fired at 200 to 300 ° C. in view of realizing higher conductivity and productivity.
 ここでは、導電層として金属ナノ粒子を含むインクあるいはペーストを用いる場合を示した。基材上に形成した導電パターンに対して、さらに湿式めっきプロセスによって金属めっきを行うことができる。これにより、導電性部材の導電率をさらに向上させることができる。この際、用いる金属は湿式めっき可能な金属であれば何ら制限されることは無く、例えば一般的に広く知られている無電解ニッケルめっきプロセスを用いることが出来る。さらに、無電解めっきだけでもよいし、電解めっきの電極層として無電解めっきで形成された金属とは異なる金属を電解めっきによりさらに形成してもよい。 Here, the case where ink or paste containing metal nanoparticles is used as the conductive layer is shown. Metal plating can be further performed on the conductive pattern formed on the substrate by a wet plating process. Thereby, the electrical conductivity of an electroconductive member can further be improved. In this case, the metal to be used is not limited as long as it is a metal that can be wet-plated. For example, a generally well-known electroless nickel plating process can be used. Furthermore, only electroless plating may be used, or a metal different from the metal formed by electroless plating may be further formed by electrolytic plating as an electrode layer for electrolytic plating.
 本発明に係る導電性部材は、本発明に係る積層基板を用いているため、導電性パターンの基材に対する密着性が高く、金属のマイグレーションを抑制し、かつ優れた導電性を得ることが出来る。特に、トリアジンチオール誘導体を含む塗工液を用いた場合には、導電時に、イオンマイグレーションを抑制することが出来るため、効果的である。この原因については、トリアジンチオール誘導体の官能基が遊離した金属イオンを補足しているためと推定される。 Since the conductive member according to the present invention uses the laminated substrate according to the present invention, the adhesion of the conductive pattern to the base material is high, metal migration is suppressed, and excellent conductivity can be obtained. . In particular, when a coating solution containing a triazine thiol derivative is used, ion migration can be suppressed during conduction, which is effective. About this cause, it is estimated that the functional group of the triazine thiol derivative supplements the liberated metal ion.
 さらに、導入されたトリアジンチオール誘導体のもう1つの効用として、導電性パターンの基材に対する密着性が高いことが挙げられる。この原因としては、上記焼成過程での無機酸化物の構造を変化させることで、シランカップリング剤のアミノ基の表面露出を促進するなどの効果を通じて、インクあるいはペーストに含有される金属ナノ粒子同士が融合し形成された金属被膜である導電性パターンとの間の密着性のさらなる向上を担い、擦過や粘着性物質の脱着による剥離を抑制しているためと推定される。 Furthermore, another effect of the introduced triazine thiol derivative is that the adhesiveness of the conductive pattern to the substrate is high. The cause of this is that the metal nanoparticles contained in the ink or paste are exchanged through effects such as promoting the surface exposure of the amino group of the silane coupling agent by changing the structure of the inorganic oxide in the firing process. This is presumed to be due to the further improvement of the adhesion between the conductive pattern, which is a metal film formed by fusing, and suppressing peeling due to abrasion or desorption of the adhesive substance.
 本発明に係る導電性部材は、本発明に係るアミノ基を有するシランカップリング剤と金属アルコキシド化合物との縮合物を積層した積層基板に金属ナノ粒子を含むインクあるいはペーストを印刷あるいは塗布することにより得られる。この導電性部材はプラズマディスプレイパネル、航空機用液晶パネル、カーナビゲーション用液晶パネル等、各種のフラットディスプレイパネルに貼合して用いられる透明電磁波シールドとして用いられる。また、RFID、無線LAN、電磁誘導による給電、電磁波吸収等に用いられる種々のアンテナとしても用いることが出来る。さらには、各種フラットディスプレイパネルに用いられるバス電極やアドレス電極、あるいは半導体インクや抵抗インク、誘電体インクを併用し多数回の印刷を重ね作製される電子回路等を製造するために用いることができる。 The conductive member according to the present invention is obtained by printing or applying an ink or paste containing metal nanoparticles on a laminated substrate in which a condensate of a silane coupling agent having an amino group according to the present invention and a metal alkoxide compound is laminated. can get. This conductive member is used as a transparent electromagnetic wave shield used by bonding to various flat display panels such as a plasma display panel, an aircraft liquid crystal panel, and a car navigation liquid crystal panel. It can also be used as various antennas used for RFID, wireless LAN, power feeding by electromagnetic induction, electromagnetic wave absorption, and the like. Furthermore, it can be used to manufacture bus circuits and address electrodes used in various flat display panels, or electronic circuits that are produced by repeatedly printing a large number of times using a combination of semiconductor ink, resistance ink, and dielectric ink. .
 以下、実施例により本発明を詳しく説明するが、本発明の内容は実施例に限られるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the content of the present invention is not limited to the examples.
<導電性部材の密着性の評価1:ピール強度>
 銀ペーストとの密着性を評価するための手順を以下に示す。
 先ず、下記実施例、および比較例で作製した導電性部材(長さ20mm)に、5mm幅にカットした両面テープ(日東電工製 多用途用両面接着テープ No.5015)を銀ペースト側に貼り付け、回転ドラム型支持具を備えた引っ張り試験機(SHIMADZU製 EZ Test/CE)を使用し、回転ドラムのドラム表面に両面テープを固定し、ポリイミドフィルムをチャックに挟み90°方向に500mm/minの速度で引き剥がす(ピールする)ことにより、密着強度を測定した。
<Evaluation of Adhesiveness of Conductive Member 1: Peel Strength>
The procedure for evaluating the adhesion with the silver paste is shown below.
First, double-sided tape (Nitto Denko's multi-use double-sided adhesive tape No. 5015) cut to 5 mm width is pasted on the silver paste side to the conductive member (length 20 mm) prepared in the following examples and comparative examples. Using a tensile tester (EZ Test / CE made by SHIMADZU) equipped with a rotating drum type support, a double-sided tape was fixed to the drum surface of the rotating drum, a polyimide film was sandwiched between chucks, and a 90 mm direction at 500 mm / min. The adhesion strength was measured by peeling (peeling) at a speed.
<導電性部材の密着強度の評価方法2:碁盤目剥離>
 銀ナノ粒子を含むインクを印刷・焼成した導電部材表面に、1mm間隔で縦横互いに直角に交わる各11本の切れ目を入れ、粘着性テープ(ニチバン株式会社製「セロテープ(登録商標)」)を貼った後に剥がし、升目の剥がれの程度で評価した。剥がれの表記方法としては、剥離面積0%=10点、5%未満=8点、5%~15%未満=6点、15%~35%未満=4点、35%~65%未満=2点、65%以上=0点とした。
<Evaluation method 2 of adhesion strength of conductive member: cross-cut peeling>
The surface of the conductive member printed and baked with ink containing silver nanoparticles is cut into 11 cuts that intersect each other at 1 mm intervals vertically and horizontally, and adhesive tape (“Cello Tape (registered trademark)” manufactured by Nichiban Co., Ltd.) is applied. After peeling, the degree of peeling was measured. As a notation method of peeling, peeling area 0% = 10 points, less than 5% = 8 points, 5% to less than 15% = 6 points, 15% to less than 35% = 4 points, 35% to less than 65% = 2 Points, 65% or more = 0 points.
<導電性部材の導電性の評価方法>
 抵抗率計 ロレスタGP(三菱化学アナリテック社製)を用いて、四端子法により、測定電圧を10Vとして導電率を測定した。
<Method for evaluating conductivity of conductive member>
Using a resistivity meter Loresta GP (manufactured by Mitsubishi Chemical Analytech Co., Ltd.), the conductivity was measured by a four-terminal method with a measurement voltage of 10V.
<塗工液調整方法>
(実施例1)
 先ず、アミノ基を有するシランカップリング剤としての(アミノエチルアミノメチル)フェニルトリメトキシシラン10.0gを、エチレングリコールモノ-t-ブチルエーテル50.0gに溶解させた。ここに、水0.9gを滴下して、60℃で1時間縮合反応を行い、縮合物1溶液を調製した。次に、金属アルコキシド化合物としてのチタンテトライソプロポキシド1.9gをエチレングリコールモノ-t-ブチルエーテル160.5gに溶解させた。ここに、縮合物1溶液を37.8g滴下して、30℃で4時間縮合反応を行い、縮合物2溶液を調製した。次いで、得られた縮合物2溶液15.1gとエチレングリコールモノ-t-ブチルエーテル4.9gを混ぜ合わせて調製することで、実施例1に係る塗工液1を作製した。
<Coating solution adjustment method>
Example 1
First, 10.0 g of (aminoethylaminomethyl) phenyltrimethoxysilane as a silane coupling agent having an amino group was dissolved in 50.0 g of ethylene glycol mono-t-butyl ether. Here, 0.9 g of water was dropped, and a condensation reaction was performed at 60 ° C. for 1 hour to prepare a condensate 1 solution. Next, 1.9 g of titanium tetraisopropoxide as a metal alkoxide compound was dissolved in 160.5 g of ethylene glycol mono-t-butyl ether. Here, 37.8 g of the condensate 1 solution was dropped, and a condensation reaction was performed at 30 ° C. for 4 hours to prepare a condensate 2 solution. Subsequently, 15.1 g of the obtained condensate 2 solution was mixed with 4.9 g of ethylene glycol mono-t-butyl ether to prepare a coating liquid 1 according to Example 1.
(実施例2)
 実施例1と同様に縮合物2溶液を調製し、この縮合物2溶液14.8gとエチレングリコールモノ-t-ブチルエーテル4.8gを混ぜ合わせ、さらに、トリアジンチオール誘導体としての2,4,6-トリメルカプト-S-トリアジン1.6gをエチレングリコールモノ-t-ブチルエーテル78.6gに溶解させて得られた溶液1を0.4g添加して調整することで、実施例2に係る塗工液2を作製した。実施例2におけるアミノ基を有するシランカップリング剤と金属アルコキシド化合物とトリアジンチオール誘導体との(固形分もしくは有効成分)合計量に対するトリアジンチオール誘導体の割合は2.0質量%であった。
(Example 2)
A condensate 2 solution was prepared in the same manner as in Example 1, 14.8 g of this condensate 2 solution and 4.8 g of ethylene glycol mono-t-butyl ether were mixed, and 2,4,6- Coating solution 2 according to Example 2 was prepared by adding 0.4 g of solution 1 obtained by dissolving 1.6 g of trimercapto-S-triazine in 78.6 g of ethylene glycol mono-t-butyl ether. Was made. The ratio of the triazine thiol derivative to the total amount (solid content or active ingredient) of the silane coupling agent having an amino group, the metal alkoxide compound, and the triazine thiol derivative in Example 2 was 2.0% by mass.
(実施例3)
 実施例1と同様に縮合物2溶液を調製し、この縮合物2溶液14.9gとエチレングリコールモノ-t-ブチルエーテル4.8gを混ぜ合わせ、さらに、溶液1を0.3g添加して調整することで、実施例3に係る塗工液3を作製した。実施例3におけるアミノ基を有するシランカップリング剤と金属アルコキシド化合物とトリアジンチオール誘導体との(固形分もしくは有効成分)合計量に対するトリアジンチオール誘導体の割合は1.5質量%であった。
(Example 3)
A condensate 2 solution is prepared in the same manner as in Example 1, 14.9 g of this condensate 2 solution is mixed with 4.8 g of ethylene glycol mono-t-butyl ether, and 0.3 g of solution 1 is further added to prepare. Thereby, the coating liquid 3 which concerns on Example 3 was produced. The ratio of the triazine thiol derivative to the total amount (solid content or active ingredient) of the silane coupling agent having an amino group, the metal alkoxide compound, and the triazine thiol derivative in Example 3 was 1.5% by mass.
(比較例1)
 チタンテトライソプロポキシド10.1gをエチレングリコールモノ-t-ブチルエーテル19.9gに溶解した液に、60質量%硝酸1.7g、水0.6gとエチレングリコールモノ-t-ブチルエーテル7.8gの混合溶液を攪拌しながらゆっくり滴下し、その後30℃で4時間攪拌し反応溶液を得た。その液に、エチレングリコールモノ-t-ブチルエーテル102.2gを混合し攪拌することで、比較例1に係る塗工液4を得た。
(Comparative Example 1)
Mixing a solution of 10.1 g of titanium tetraisopropoxide in 19.9 g of ethylene glycol mono-t-butyl ether with 1.7 g of 60% by weight nitric acid, 0.6 g of water and 7.8 g of ethylene glycol mono-t-butyl ether The solution was slowly added dropwise with stirring, and then stirred at 30 ° C. for 4 hours to obtain a reaction solution. The coating solution 4 according to Comparative Example 1 was obtained by mixing 102.2 g of ethylene glycol mono-t-butyl ether with the solution and stirring.
(比較例2)
 比較例1で得られた塗工液4(9.8g)に、実施例2で用いた溶液1(0.2g)を混ぜ合わせることで、比較例2に係る塗工液5を得た。
(Comparative Example 2)
The coating liquid 5 according to Comparative Example 2 was obtained by mixing the coating liquid 4 (9.8 g) obtained in Comparative Example 1 with the solution 1 (0.2 g) used in Example 2.
(比較例3)
 アミノ基を有しないシランカップリング剤としてのメチルトリメトキシシラン71.0gおよびテトラエトキシシラン52.0g、イソプロピルアルコール97.1g、0.1N硝酸9.6gおよび水82.7gを順次混合し、24時間加水分解縮合反応を行った。
得られた反応液をメチルイソブチルケトン1586.1gおよびプロピレングリコールモノメチルエーテル909.2gの混合溶媒で希釈することで、比較例3に係る塗工液6を得た。
(Comparative Example 3)
As a silane coupling agent having no amino group, 71.0 g of methyltrimethoxysilane and 52.0 g of tetraethoxysilane, 97.1 g of isopropyl alcohol, 9.6 g of 0.1N nitric acid and 82.7 g of water were sequentially mixed. A time hydrolysis condensation reaction was performed.
The obtained reaction liquid was diluted with a mixed solvent of 1586.1 g of methyl isobutyl ketone and 909.2 g of propylene glycol monomethyl ether to obtain a coating liquid 6 according to Comparative Example 3.
(比較例4)
 比較例2で得られた塗工液5(9.8g)に、実施例2で用いた溶液1(0.2g)を混ぜ合わせることで、比較例4に係る塗工液7を得た。
(Comparative Example 4)
A coating liquid 7 according to Comparative Example 4 was obtained by mixing the solution 1 (0.2 g) used in Example 2 with the coating liquid 5 (9.8 g) obtained in Comparative Example 2.
(実施例7)
縮合物1溶液の調製
 実施例1で得られた縮合物1溶液(4.8g)とエチレングリコールモノ-t-ブチルエーテル(25.3g)を混ぜ合わせて調製することによって、実施例7に係る塗工液8を作製した。
(Example 7)
Preparation of condensate 1 solution The condensate 1 solution (4.8 g) obtained in Example 1 and ethylene glycol mono-t-butyl ether (25.3 g) were mixed to prepare a coating according to Example 7. A working liquid 8 was produced.
(実施例8)
縮合物3溶液の調製
 N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン(18.3g)をエチレングリコールモノ-t-ブチルエーテル(79.4g)に溶解させた。ここに、水(2.2g)を滴下して、60℃で1時間縮合反応を行い、縮合物3溶液を調製した。次に、縮合物3溶液(4.8g)とエチレングリコールモノ-t-ブチルエーテル(25.3g)を混ぜ合わせて調製することによって、実施例8に係る塗工液9を作製した。
(Example 8)
Preparation of condensate 3 solution N- (2-aminoethyl) -3-aminopropyltrimethoxysilane (18.3 g) was dissolved in ethylene glycol mono-t-butyl ether (79.4 g). Water (2.2 g) was added dropwise thereto, and a condensation reaction was performed at 60 ° C. for 1 hour to prepare a condensate 3 solution. Next, a condensate 3 solution (4.8 g) and ethylene glycol mono-t-butyl ether (25.3 g) were mixed to prepare a coating liquid 9 according to Example 8.
(実施例11)
 (アミノエチルアミノエチル)フェネチルトリメトキシシラン(5.8g)をエチレングリコールモノ-t-ブチルエーテル(28.7g)に溶解させた。ここに、水(0.5g)を滴下して、60℃で1時間縮合反応を行い、縮合物4溶液を調製した。次に、チタンテトライソプロポキシド(0.6g)をエチレングリコールモノ-t-ブチルエーテル(48.1g)に溶解させた。ここに、縮合物4溶液(11.3g)を滴下して、30℃で4時間縮合反応を行い、縮合物5溶液を調製した。さらに、縮合液5溶液(60.0g)とエチレングリコールモノ-t-ブチルエーテル(19.5g)を混ぜ合わせて調製することによって実施例11に係る塗工液10を作製した。
(Example 11)
(Aminoethylaminoethyl) phenethyltrimethoxysilane (5.8 g) was dissolved in ethylene glycol mono-t-butyl ether (28.7 g). Water (0.5 g) was added dropwise thereto, and a condensation reaction was performed at 60 ° C. for 1 hour to prepare a condensate 4 solution. Next, titanium tetraisopropoxide (0.6 g) was dissolved in ethylene glycol mono-t-butyl ether (48.1 g). The condensate 4 solution (11.3 g) was added dropwise thereto, and a condensation reaction was performed at 30 ° C. for 4 hours to prepare a condensate 5 solution. Furthermore, a coating liquid 10 according to Example 11 was prepared by mixing and preparing the condensate 5 solution (60.0 g) and ethylene glycol mono-t-butyl ether (19.5 g).
(実施例12)
 N-[2-[3-(トリメトキシシリル)プロピルアミノ]エチル]エチレンジアミン(7.7g)をエチレングリコールモノ-t-ブチルエーテル(36.6g)に溶解させた。ここに、水(0.8g)を滴下して、60℃で1時間縮合反応を行い、縮合物6溶液を調製した。次に、縮合物6溶液(4.8g)とエチレングリコールモノ-t-ブチルエーテル(25.3g)を混ぜ合わせて調製することによって、実施例12に係る塗工液11を作製した。
(Example 12)
N- [2- [3- (Trimethoxysilyl) propylamino] ethyl] ethylenediamine (7.7 g) was dissolved in ethylene glycol mono-t-butyl ether (36.6 g). Water (0.8g) was dripped here, and the condensation reaction was performed at 60 degreeC for 1 hour, and the condensate 6 solution was prepared. Next, the condensate 6 solution (4.8 g) and ethylene glycol mono-t-butyl ether (25.3 g) were mixed to prepare a coating liquid 11 according to Example 12.
(実施例13)
 チタンテトライソプロポキシド(0.6g)をエチレングリコールモノ-t-ブチルエーテル(48.1g)に溶解させた。ここに、縮合物6溶液(11.3g)を滴下して、30℃で4時間縮合反応を行い、縮合物7溶液を調製した。さらに、縮合液7溶液(22.6g)とエチレングリコールモノ-t-ブチルエーテル(7.4g)を混ぜ合わせて調製することによって実施例13に係る塗工液12を作製した。
(Example 13)
Titanium tetraisopropoxide (0.6 g) was dissolved in ethylene glycol mono-t-butyl ether (48.1 g). The condensate 6 solution (11.3 g) was added dropwise thereto, and a condensation reaction was performed at 30 ° C. for 4 hours to prepare a condensate 7 solution. Furthermore, the coating liquid 12 according to Example 13 was prepared by mixing and preparing the condensation liquid 7 solution (22.6 g) and ethylene glycol mono-t-butyl ether (7.4 g).
<塗工液成膜方法および銀ペースト印刷方法>
(実施例4)
 実施例1に係る塗工液1をマイヤーバー(松尾産業 No.1 ワイヤー線形2ミル(76.2μm)、ウェット膜厚6μm)で、ポリイミドフィルム(宇部興産(株)製 ユーピレックスSGA、厚さ35μm)の片面に塗布し、200℃90秒間オーブンで乾燥した。次に、塗工液1が塗布されたポリイミドフィルムの2つ面のうち、塗工液1が塗布された面へスクリーン印刷により、三ツ星ベルト製銀ペーストMDot-SLP/Hを印刷後、送風オーブンで250℃で30分間焼成することで、銀ペーストが印刷された導電性部材を作製した。このとき、焼成後のペースト厚みは10μmであった。「導電性部材の密着強度の評価1」による密着性の評価結果を表1に示す。
<Coating liquid film forming method and silver paste printing method>
Example 4
The coating solution 1 according to Example 1 is a Mayer bar (Matsuo Sangyo No. 1 wire linear 2 mil (76.2 μm), wet film thickness 6 μm), polyimide film (Ube Industries, Ltd. Upilex SGA, thickness 35 μm) ) And dried in an oven at 200 ° C. for 90 seconds. Next, a silver paste MDot-SLP / H made by Mitsuboshi Belting is printed by screen printing on the surface of the polyimide film to which the coating liquid 1 is applied, to the surface to which the coating liquid 1 is applied. Was baked at 250 ° C. for 30 minutes to produce a conductive member printed with a silver paste. At this time, the paste thickness after firing was 10 μm. Table 1 shows the results of evaluation of adhesion according to “Evaluation 1 of adhesion strength of conductive member”.
(実施例5)
 実施例2に係る塗工液2を用いて、実施例4と同様な方法で塗膜を作成し、銀ペーストが印刷された導電性部材を作製した。このとき、焼成後のペースト厚みは10μmであった。評価結果を表1に示す。
(Example 5)
Using the coating liquid 2 according to Example 2, a coating film was prepared in the same manner as in Example 4 to produce a conductive member on which a silver paste was printed. At this time, the paste thickness after firing was 10 μm. The evaluation results are shown in Table 1.
(実施例6)
 実施例3に係る塗工液3を用いて、実施例4と同様な方法で塗膜を作成し、銀ペーストが印刷された導電性部材を作製した。このとき、焼成後のペースト厚みは10μmであった。評価結果を表1に示す。
(Example 6)
Using the coating liquid 3 according to Example 3, a coating film was prepared in the same manner as in Example 4 to produce a conductive member on which a silver paste was printed. At this time, the paste thickness after firing was 10 μm. The evaluation results are shown in Table 1.
(比較例5)
 比較例1に係る塗工液4を用いて、実施例4と同様な方法で塗膜を作成し、銀ペーストが印刷された導電性部材を作製した。このとき、焼成後のペースト厚みは10μmであった。評価結果を表1に示す。
(Comparative Example 5)
A coating film was prepared by the same method as in Example 4 using the coating liquid 4 according to Comparative Example 1, and a conductive member on which a silver paste was printed was prepared. At this time, the paste thickness after firing was 10 μm. The evaluation results are shown in Table 1.
(比較例6)
 比較例2に係る塗工液5を用いて、実施例4と同様な方法で塗膜を作成し、銀ペーストが印刷された導電性部材を作製した。このとき、焼成後のペースト厚みは10μmであった。評価結果を表1に示す。
(Comparative Example 6)
A coating film was prepared by the same method as in Example 4 using the coating liquid 5 according to Comparative Example 2, and a conductive member on which a silver paste was printed was prepared. At this time, the paste thickness after firing was 10 μm. The evaluation results are shown in Table 1.
(比較例7)
 比較例3に係る塗工液6を用いて、実施例4と同様な方法で塗膜を作成し、銀ペーストが印刷された導電性部材を作製した。このとき、焼成後のペースト厚みは10μmであった。評価結果を表1に示す。
(Comparative Example 7)
A coating film was prepared by the same method as in Example 4 using the coating liquid 6 according to Comparative Example 3, and a conductive member on which a silver paste was printed was prepared. At this time, the paste thickness after firing was 10 μm. The evaluation results are shown in Table 1.
(比較例8)
 比較例4に係る塗工液7を用いて、実施例4と同様な方法で塗膜を作成し、銀ペーストが印刷された導電性部材を作製した。このとき、焼成後のペースト厚みは10μmであった。評価結果を表1に示す。
(Comparative Example 8)
A coating film was prepared in the same manner as in Example 4 using the coating liquid 7 according to Comparative Example 4, and a conductive member on which a silver paste was printed was prepared. At this time, the paste thickness after firing was 10 μm. The evaluation results are shown in Table 1.
(比較例9)
 塗工液を塗布していないポリイミドフィルム(宇部興産株式会社製 ユーピレックスSGA、厚さ35μm)を基材として、実施例4と同様な方法で銀ペーストを印刷し、銀ペーストが印刷された導電性部材を作製した。このとき、焼成後のペースト厚みは10μmであった。評価結果を表1に示す。また、碁盤目剥離による密着性の評価結果については、点数は4点であった。
(Comparative Example 9)
Using a polyimide film not coated with a coating solution (Upilex SGA, Ube Industries, Ltd. Upilex SGA, thickness 35 μm) as a base material, a silver paste was printed in the same manner as in Example 4, and the conductive material on which the silver paste was printed A member was prepared. At this time, the paste thickness after firing was 10 μm. The evaluation results are shown in Table 1. Moreover, about the evaluation result of the adhesiveness by grid peeling, the score was 4 points.
(実施例9)
 実施例7に係る塗工液8を用いて、実施例4と同様な方法で塗膜を作成し、銀ペーストが印刷された導電性部材を作製した。このとき、焼成後のペースト厚みは10μmであった。評価結果を表1に示す。
Example 9
A coating film was prepared in the same manner as in Example 4 using the coating liquid 8 according to Example 7, and a conductive member on which a silver paste was printed was prepared. At this time, the paste thickness after firing was 10 μm. The evaluation results are shown in Table 1.
(実施例10)
 実施例8に係る塗工液9を用いて、実施例4と同様な方法で塗膜を作成し、銀ペーストが印刷された導電性部材を作製した。このとき、焼成後のペースト厚みは10μmであった。評価結果を表1に示す。また、導電率は4.5Ω・cmであり、高い導電率を示した。この結果より、本方法によって作製された導電性部材は、優れた密着性と導電性を両立していることが示された。
(Example 10)
A coating film was prepared in the same manner as in Example 4 using the coating liquid 9 according to Example 8, and a conductive member on which a silver paste was printed was prepared. At this time, the paste thickness after firing was 10 μm. The evaluation results are shown in Table 1. The conductivity was 4.5 Ω · cm, indicating a high conductivity. From this result, it was shown that the electroconductive member produced by this method has both excellent adhesion and electroconductivity.
(実施例14)
 実施例11に係る塗工液10を用いて、実施例4と同様な方法で塗膜を作成し、銀ペーストが印刷された導電性部材を作製した。このとき、焼成後のペースト厚みは10μmであった。形成されたパターンは剥離せず、そのピール強度は1.07N/mmであった。また、碁盤目剥離による密着性の評価については、形成されたパターンは剥離せず、その点数は10点であった。さらに、導電率は4.5Ω・cmであり、高い導電率を示した。この結果より、本方法によって作製された導電性部材は、優れた密着性と導電性を両立していることが示された。
(Example 14)
A coating film was prepared by the same method as in Example 4 using the coating liquid 10 according to Example 11, and a conductive member on which a silver paste was printed was prepared. At this time, the paste thickness after firing was 10 μm. The formed pattern was not peeled off, and its peel strength was 1.07 N / mm. Moreover, about evaluation of adhesiveness by cross-cut peeling, the formed pattern did not peel and the score was 10 points. Furthermore, the conductivity was 4.5 Ω · cm, indicating a high conductivity. From this result, it was shown that the electroconductive member produced by this method has both excellent adhesion and electroconductivity.
(実施例15)
 実施例12に係る塗工液11を用いて、実施例4と同様な方法で塗膜を作成し、銀ペーストが印刷された導電性部材を作製した。このとき、焼成後のペースト厚みは10μmであった。形成されたパターンは剥離せず、そのピール強度は1.12N/mmであった。また、導電率は4.5Ω・cmであり、高い導電率を示した。この結果より、本方法によって作製された導電性部材は、優れた密着性と導電性を両立していることが示された。
(Example 15)
A coating film was prepared by the same method as in Example 4 using the coating liquid 11 according to Example 12, and a conductive member on which a silver paste was printed was prepared. At this time, the paste thickness after firing was 10 μm. The formed pattern was not peeled off, and the peel strength was 1.12 N / mm. The conductivity was 4.5 Ω · cm, indicating a high conductivity. From this result, it was shown that the electroconductive member produced by this method has both excellent adhesion and electroconductivity.
(実施例16)
 実施例13に係る塗工液12を用いて、実施例4と同様な方法で塗膜を作成し、銀ペーストが印刷された導電性部材を作製した。このとき、焼成後のペースト厚みは10μmであった。形成されたパターンは剥離せず、そのピール強度は1.09N/mmであった。また、導電率は4.5Ω・cmであり、高い導電率を示した。この結果より、本方法によって作製された導電性部材は、優れた密着性と導電性を両立していることが示された。
(Example 16)
Using the coating liquid 12 according to Example 13, a coating film was prepared in the same manner as in Example 4 to produce a conductive member on which a silver paste was printed. At this time, the paste thickness after firing was 10 μm. The formed pattern was not peeled off, and its peel strength was 1.09 N / mm. The conductivity was 4.5 Ω · cm, indicating a high conductivity. From this result, it was shown that the electroconductive member produced by this method has both excellent adhesion and electroconductivity.
(実施例17)
 基材としてのポリイミドフィルムを宇部興産株式会社製 ユーピレックスSGA、厚さ35μmから、東レ・デュポン株式会社製 カプトンEN、厚さ25μmに変えた以外は、実施例14と同様な方法により導電性部材を作製した。このとき、焼成後のペースト厚みは10μmであった。碁盤目剥離による密着性の評価については、形成されたパターンは剥離せず、その点数は10点であった。また、導電率は4.5Ω・cmであった。
(Example 17)
A conductive member was formed in the same manner as in Example 14 except that the polyimide film as the base material was changed from Upilex SGA manufactured by Ube Industries, Ltd. to 35 μm in thickness, to Kapton EN manufactured by Toray DuPont, Inc., and 25 μm in thickness. Produced. At this time, the paste thickness after firing was 10 μm. Regarding the evaluation of adhesion by cross-cut peeling, the formed pattern was not peeled, and the score was 10. The conductivity was 4.5 Ω · cm.
(参考例1)
 ポリイミドフィルムを、宇部興産株式会社 ユーピレックスSGA、厚さ35μmから東レ・デュポン株式会社製 カプトンEN、厚さ25μmに変えた以外は比較例9と同様な方法による銀ペーストが印刷された導電性部材を作製した。このとき、焼成後のペースト厚みは10μmであった。碁盤目剥離による密着性の評価結果については、形成されたパターンは全てが剥離し、その点数は0点であった。
(Reference Example 1)
A conductive member on which a silver paste was printed in the same manner as in Comparative Example 9 except that the polyimide film was changed from Ube Industries, Ltd. Upilex SGA, thickness 35 μm to Toray DuPont Kapton EN, thickness 25 μm Produced. At this time, the paste thickness after firing was 10 μm. Regarding the evaluation results of adhesion by cross-cutting, all of the formed patterns were peeled off, and the score was 0 points.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 以上より、アミノ基を有するシランカップリング剤を用いる(実施例4、9、10、14、15、16)と、アミノ基を有しないシランカップリング剤を用いる場合(比較例5、7)に比べて導電性部材の密着強度が大きい。また、トリアジンチオールをさらに用いて作製した縮合物を使用した導電性部材の密着強度(実施例5、6)は、トリアジンチオールを用いない場合(実施例4)に比べて導電性部材の密着強度がさらに大きい。 From the above, when a silane coupling agent having an amino group is used (Examples 4, 9, 10, 14, 15, 16) and when a silane coupling agent having no amino group is used (Comparative Examples 5 and 7). Compared to the adhesion strength of the conductive member. Moreover, the adhesive strength (Examples 5 and 6) of the conductive member using the condensate prepared by further using triazine thiol is higher than that when the triazine thiol is not used (Example 4). Is even bigger.
(絶縁信頼性試験)
 実施例10、14~17の方法で作製した銀ペーストが印刷された導電性部材に対してカバーレイをラミネートした後に、85℃、85%RHの環境下52Vのバイアス電圧を1000時間印加して、絶縁信頼性試験を行なった。判定基準としては、絶縁抵抗値が1MΩ未満となった時点を故障したと判断した。その後光学顕微鏡でデンドライトの観測を行った。その結果、いずれの導電部材も1000時間デンドライトが発生せず、故障しないことを確認した。
(Insulation reliability test)
After laminating a coverlay on the conductive member printed with the silver paste produced by the methods of Examples 10 and 14 to 17, a bias voltage of 52 V was applied for 1000 hours in an environment of 85 ° C. and 85% RH. An insulation reliability test was conducted. As a criterion, it was determined that a failure occurred when the insulation resistance value was less than 1 MΩ. Thereafter, dendrite was observed with an optical microscope. As a result, it was confirmed that none of the conductive members generated dendrite for 1000 hours and failed.
(無電解めっきの評価)
 実施例5の方法で作製された銀ペーストが印刷された導電性部材に対して無電解ニッケルめっき処理を行なった。得られたサンプルの断面構造を電界放出型走査電子顕微鏡(FE-SEM)で観察した結果を図1に示す。さらに、サンプル中のニッケル元素の分布を調べた結果を図2に示す。図1および図2から、印刷された銀層の上にニッケル層が約100nmの厚みで形成されていることが確認され、基材上に形成した導電パターンに対して湿式めっきプロセスが適用可能であることが示された。
(Evaluation of electroless plating)
The electroless nickel plating process was performed with respect to the electroconductive member on which the silver paste produced by the method of Example 5 was printed. FIG. 1 shows the result of observation of the cross-sectional structure of the obtained sample with a field emission scanning electron microscope (FE-SEM). Furthermore, the result of examining the distribution of the nickel element in the sample is shown in FIG. From FIG. 1 and FIG. 2, it is confirmed that the nickel layer is formed with a thickness of about 100 nm on the printed silver layer, and the wet plating process can be applied to the conductive pattern formed on the substrate. It was shown that there is.
 次に、フィラーを使用した縮合物、積層基板および導電性部材の製造について説明する。 Next, the production of the condensate using the filler, the laminated substrate and the conductive member will be described.
<フィラーを添加した塗工液の調整方法>
(実施例18~実施例37)
 溶媒としてエチレングリコールモノ-t-ブチルエーテルを用い、固形分濃度が2質量%となるように、実施例11で作製した塗工液10およびシリカ粒子スラリー(宇部日東化成株式会社製の「ハイプレシカ」)を、この順で表2に示す割合で加えて、縮合物溶液としての実施例18~実施例37それぞれにかかる塗工液18~37を調整した。シリカ粒子スラリーのシリカ粒子は、表2に示すように、平均粒子径が異なる5種類(0.08μm、0.15μm、0.35μm、0.68μm、1.05μm)を使用した。
<Method of adjusting coating liquid with filler added>
(Examples 18 to 37)
Using ethylene glycol mono-t-butyl ether as a solvent, the coating liquid 10 and the silica particle slurry prepared in Example 11 so that the solid content concentration is 2% by mass (“HIPRESSICA” manufactured by Ube Nitto Kasei Co., Ltd.) Were added in the order shown in Table 2 to prepare coating solutions 18 to 37 according to Examples 18 to 37 as condensate solutions, respectively. As shown in Table 2, five types (0.08 μm, 0.15 μm, 0.35 μm, 0.68 μm, 1.05 μm) having different average particle diameters were used as the silica particles in the silica particle slurry.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<フィラーを添加した塗工液の成膜方法および銀ペースト印刷方法>
(実施例38から57)
実施例18から37で作製した塗工液18から37をそれぞれ使用し、自動バーコーター(松尾産業製Kコントロールコーター、ウェット膜厚5~14μm)で、ポリイミドフィルム(宇部興産(株)製ユーピレックスSGA、厚さ35μm)の片面に塗布し、200℃で90秒間オーブンで乾燥した。次に、ポリイミドフィルムの2つの面のうち、塗工液が塗布された面へスクリーン印刷により、三ツ星ベルト製銀ペーストMDot-SLP/Hを150μmピッチ(スクリーン版の設計:ライン:45μm/スペース:105μm)の櫛型パターン電極を印刷後、送風オーブンを用いて、250℃で30分間乾燥することで、銀ペーストが印刷された導電性部材を作製した。
<Film forming method and silver paste printing method of coating liquid with filler added>
(Examples 38 to 57)
Using the coating liquids 18 to 37 prepared in Examples 18 to 37, respectively, with an automatic bar coater (K control coater manufactured by Matsuo Sangyo Co., Ltd., wet film thickness 5 to 14 μm), a polyimide film (Upilex SGA manufactured by Ube Industries, Ltd.) , 35 μm thick), and dried in an oven at 200 ° C. for 90 seconds. Next, a screen paste is applied to the surface of the polyimide film on which the coating solution is applied, and a silver paste MDot-SLP / H made by Mitsuboshi Belting is 150 μm pitch (screen plate design: line: 45 μm / space: 105 μm) comb-shaped pattern electrodes were printed and then dried at 250 ° C. for 30 minutes using a blower oven to produce a conductive member printed with a silver paste.
(印刷性の評価)
 得られた導電性部材の印刷細線化率は、式(印刷細線化率)(%)=(塗工液をしたフィルムのライン幅)×100/(塗工液を塗布していないフィルムのライン幅)に従い、算出した。式中、(塗工液を塗布したフィルムのライン幅)は、得られた導電性部材の銀インクのパターンのライン幅(μm)を光学顕微鏡(株式会社ニコン社製 ECLIPCE LV100)で20点観察し、その平均値から算出した。また、式中、(塗工液を塗布していないフィルムのライン幅)は、別途、塗工液を用いないこと以外、実施例38と同様な方法により、ポリイミドフィルム上に銀ペーストを印刷して導電性部材を作製し、同様の方法によってライン幅を算出した。その結果を表3に示す。ここで、印刷細線化率が100%よりも小さい方がライン幅の細い回路を作製することが可能であり、集積密度を向上できるため、印刷性が良いと判断する。
(Evaluation of printability)
The printed thinning rate of the obtained conductive member is the formula (printing thinning rate) (%) = (line width of the film with the coating liquid) × 100 / (line of the film with no coating liquid applied) It was calculated according to (width). In the formula, (line width of the film coated with the coating liquid) is 20 points of the line width (μm) of the silver ink pattern of the obtained conductive member observed with an optical microscope (ECLIPCE LV100 manufactured by Nikon Corporation). And calculated from the average value. In the formula, (line width of the film not coated with the coating solution) is a silver paste printed on the polyimide film in the same manner as in Example 38 except that the coating solution is not used. A conductive member was prepared, and the line width was calculated by the same method. The results are shown in Table 3. Here, when the print thinning ratio is smaller than 100%, a circuit with a narrow line width can be manufactured and the integration density can be improved. Therefore, it is determined that the printability is good.
(表面被覆率の評価)
実施例38から57において、得られた導電性部材の表面被膜率(%)を光学顕微鏡(株式会社ニコン社製 ECLIPCE LV100)を用いて求めた。すなわち、銀ペーストが印刷される前の、ポリイミドフィルムに縮合物の塗膜が積層された積層基板の表面を光学顕微鏡で観察し、その画像を画像処理ソフト「ImageJ」で粒子部分が黒色となるように輝度やコントラストを調整して白色と黒色に二値化し、黒色の面積即ち粒子が存在する部分の面積を全面積で割ることによって、パーセント表示した。これを粒子の部分の表面被膜率(%)とした。その結果を表3に示す。ここで、表面被覆率が小さい場合は表面の凹凸が比較的少ないことを示している。
(Evaluation of surface coverage)
In Examples 38 to 57, the surface coating rate (%) of the obtained conductive member was determined using an optical microscope (ECLIPCE LV100 manufactured by Nikon Corporation). That is, the surface of the laminated substrate in which the coating film of the condensate is laminated on the polyimide film before the silver paste is printed is observed with an optical microscope, and the image is turned black with the image processing software “ImageJ”. In this way, the luminance and contrast were adjusted to binarize into white and black, and the black area, that is, the area of the part where the particles existed was divided by the total area to display a percentage. This was defined as the surface coverage (%) of the particle portion. The results are shown in Table 3. Here, when the surface coverage is small, it indicates that the surface unevenness is relatively small.
 表3で得られた結果から、印刷細線化率と表面被覆率の関係を纏めたグラフを作成し、それを図3に示した。概ね表面被覆率が大きい場合には、印刷ラインの細線化が実現できる傾向にあることが確認できる。 From the results obtained in Table 3, a graph summarizing the relationship between the print thinning rate and the surface coverage was created and is shown in FIG. When the surface coverage is generally high, it can be confirmed that there is a tendency to make the printing line thinner.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 本発明のアミノ基を有するシランカップリング剤と金属アルコキシド化合物の縮合物を用いて製膜した積層基板は、金属ナノ粒子を含むインクあるいはペーストを用いて形成された導電性パターンに対する密着性が高く、金属のマイグレーションを抑制し、かつ優れた導電性が得られる導電性部材を提供することができる。 The laminated substrate formed using the condensate of a silane coupling agent having an amino group and a metal alkoxide compound according to the present invention has high adhesion to a conductive pattern formed using an ink or paste containing metal nanoparticles. In addition, it is possible to provide a conductive member that suppresses metal migration and provides excellent conductivity.

Claims (16)

  1.  アミノ基を有するシランカップリング剤と、一般式(I)で表される金属アルコキシド化合物とを、加水分解-縮合反応させたM-Oの繰り返し単位を主骨格とする縮合物。
    Figure JPOXMLDOC01-appb-C000001
    A condensate having as a main skeleton a MO repeating unit obtained by subjecting a silane coupling agent having an amino group and a metal alkoxide compound represented by the general formula (I) to a hydrolysis-condensation reaction.
    Figure JPOXMLDOC01-appb-C000001
  2.  前記アミノ基を有するシランカップリング剤と前記金属アルコキシド化合物との割合は、80質量%:20質量%~95質量%:5質量%である請求項1記載の縮合物。 The condensate according to claim 1, wherein a ratio of the amino group-containing silane coupling agent and the metal alkoxide compound is 80% by mass: 20% by mass to 95% by mass: 5% by mass.
  3.  前記アミノ基を有するシランカップリング剤は、(アミノエチルアミノメチル)フェニルトリメトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシランおよびN-[2-[3-(トリメトキシシリル)プロピルアミノ]エチル]エチレンジアミンからなる群より選ばれた1種以上である請求項1又は2記載の縮合物。 The amino group-containing silane coupling agent includes (aminoethylaminomethyl) phenyltrimethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane and N- [2- [3- (trimethoxysilyl) propylamino] ethyl. The condensate according to claim 1 or 2, which is one or more selected from the group consisting of ethylenediamine.
  4.  前記金属アルコキシド化合物のMは、Tiである請求項1から3いずれか記載の縮合物。 The condensate according to any one of claims 1 to 3, wherein M of the metal alkoxide compound is Ti.
  5.  前記縮合物は、トリアジンチオール誘導体がさらに導入され、
     アミノ基を有するシランカップリング剤と金属アルコキシド化合物とトリアジンチオール誘導体との(固形分もしくは有効成分)合計量に対するトリアジンチオール誘導体の割合は0.05~10質量%である請求項1から4いずれか記載の縮合物。
    The condensate is further introduced with a triazine thiol derivative,
    The ratio of the triazine thiol derivative to the total amount (solid content or active ingredient) of the silane coupling agent having an amino group, the metal alkoxide compound, and the triazine thiol derivative is 0.05 to 10% by mass. The condensate described.
  6.  前記縮合物は、フィラーをさらに含む請求項1から5いずれか記載の縮合物。 The condensate according to any one of claims 1 to 5, wherein the condensate further contains a filler.
  7.  請求項1から6いずれか記載の縮合物を主成分とする積層基板用材料。 A laminated substrate material comprising the condensate according to any one of claims 1 to 6 as a main component.
  8.  請求項7記載の積層基板用材料が、基材表面に積層された積層基板。 A laminated substrate in which the laminated substrate material according to claim 7 is laminated on a substrate surface.
  9.  前記基材は、ポリイミドフィルムであり、前記ポリイミドフィルムの厚さは、1~150μmの範囲である請求項8記載の積層基板。 The laminated substrate according to claim 8, wherein the base material is a polyimide film, and the thickness of the polyimide film is in the range of 1 to 150 µm.
  10.  請求項8又は9記載の積層基板の積層基板用材料が積層された面に、導電性材料を印刷又は塗布して導電性パターンが形成された導電性部材。 A conductive member in which a conductive pattern is formed by printing or applying a conductive material on the surface of the multilayer substrate according to claim 8 or 9 on which the multilayer substrate material is laminated.
  11.  前記導電性材料は、金属ナノ粒子を含み、前記金属ナノ粒子の金属は、銀又は銅である請求項10記載の導電性部材。 The conductive member according to claim 10, wherein the conductive material includes metal nanoparticles, and the metal of the metal nanoparticles is silver or copper.
  12.  アミノ基を有するシランカップリング剤を溶媒中で縮合反応させて反応液を得る第1工程と、一般式(I)で表される金属アルコキシド化合物と前記第1工程で得られた反応液とを混合して縮合反応させる第2工程とを備えた縮合物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    A first step of obtaining a reaction solution by subjecting a silane coupling agent having an amino group to a condensation reaction in a solvent, a metal alkoxide compound represented by the general formula (I), and a reaction solution obtained in the first step A method for producing a condensate comprising a second step of mixing and condensation reaction.
    Figure JPOXMLDOC01-appb-C000002
  13.  前記第2工程で得られた縮合物にトリアジンチオール誘導体を加える第3工程をさらに備えた請求項12記載の縮合物の製造方法。 The method for producing a condensate according to claim 12, further comprising a third step of adding a triazine thiol derivative to the condensate obtained in the second step.
  14.  前記第2工程で得られた縮合物にフィラーを混合する第4工程をさらに備えた請求項12又は13記載の縮合物の製造方法。 The method for producing a condensate according to claim 12 or 13, further comprising a fourth step of mixing a filler with the condensate obtained in the second step.
  15.  請求項1から6いずれか記載の縮合物を基材表面に塗布することにより縮合物が基材に積層された積層基板を得る積層基板の製造方法。 A method for producing a laminated substrate, wherein the condensate according to any one of claims 1 to 6 is applied to a substrate surface to obtain a laminated substrate in which the condensate is laminated on the substrate.
  16.  請求項8又は9記載の積層基板の積層基板用材料が積層された面に、導電性材料を印刷又は塗布した後、焼成し、導電性パターンを形成する導電性部材の製造方法。 A method for producing a conductive member, wherein a conductive material is printed or applied on a surface of the multilayer substrate according to claim 8 or 9 that is laminated, and then fired to form a conductive pattern.
PCT/JP2012/060592 2011-06-01 2012-04-19 Condensate of amino-bearing silane coupling agent with metal alkoxide compound, material for laminate base comprising same as main component, laminate base and elecroconductive member, and processes for manufacturing same WO2012165081A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013517927A JP5884823B2 (en) 2011-06-01 2012-04-19 Composition containing condensate of amino group-containing silane coupling agent and metal alkoxide compound, laminated substrate material comprising the same, laminated substrate and conductive member, and production method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011123516 2011-06-01
JP2011-123516 2011-06-01
JP2011-247309 2011-11-11
JP2011247309 2011-11-11

Publications (1)

Publication Number Publication Date
WO2012165081A1 true WO2012165081A1 (en) 2012-12-06

Family

ID=47258945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060592 WO2012165081A1 (en) 2011-06-01 2012-04-19 Condensate of amino-bearing silane coupling agent with metal alkoxide compound, material for laminate base comprising same as main component, laminate base and elecroconductive member, and processes for manufacturing same

Country Status (3)

Country Link
JP (1) JP5884823B2 (en)
TW (1) TW201305290A (en)
WO (1) WO2012165081A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016076538A (en) * 2014-10-03 2016-05-12 株式会社コムラテック Manufacturing method of electronic circuit board, and electronic circuit board obtained thereby
WO2021022024A1 (en) 2019-08-01 2021-02-04 University Of Massachusetts Printable mixture, manufacture, and use

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3708569B1 (en) 2019-03-11 2024-06-12 Evonik Operations GmbH A voc free aqueous and shelf-stable n-vinylbenzylaminalkyl-functional siloxanol and method for producing the same
CN115678018B (en) * 2022-11-04 2023-10-20 海洋化工研究院有限公司 Polyurethane-organic silicon resin prepolymer and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327881A (en) * 2002-05-15 2003-11-19 Matsushita Electric Ind Co Ltd Ink for ink-jet recording, ink cartridge and recorder provided with the ink
JP2004279975A (en) * 2003-03-18 2004-10-07 Ricoh Co Ltd Heat developable diazo copying material
JP2005320472A (en) * 2004-05-11 2005-11-17 Teijin Ltd Proton conductive film, assembly of catalytic electrode and proton conductor and fuel cell
JP2008127405A (en) * 2006-11-16 2008-06-05 Toyota Central R&D Labs Inc Core-shell type spherical silica-based mesoporous body and catalyst and adsorbent using the same
JP2010138422A (en) * 2008-12-09 2010-06-24 Ube Nitto Kasei Co Ltd Metal foil having functional film, flexible metal covered layered plate, electronic component mounting module, and method for manufacturing the same
JP2011108848A (en) * 2009-11-17 2011-06-02 Ube Nitto Kasei Co Ltd Metal foil with insulation function membrane, flexible metal cladded laminated plate, electronic component mounting module, and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152984A (en) * 1990-11-20 1992-10-06 Dow Corning Corporation Hair fixatives
US6344520B1 (en) * 1999-06-24 2002-02-05 Wacker Silicones Corporation Addition-crosslinkable epoxy-functional organopolysiloxane polymer and coating compositions
JP2008231170A (en) * 2007-03-19 2008-10-02 Nagoya Industrial Science Research Inst Photosensitive multi-branched polyimide hybrid precursor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327881A (en) * 2002-05-15 2003-11-19 Matsushita Electric Ind Co Ltd Ink for ink-jet recording, ink cartridge and recorder provided with the ink
JP2004279975A (en) * 2003-03-18 2004-10-07 Ricoh Co Ltd Heat developable diazo copying material
JP2005320472A (en) * 2004-05-11 2005-11-17 Teijin Ltd Proton conductive film, assembly of catalytic electrode and proton conductor and fuel cell
JP2008127405A (en) * 2006-11-16 2008-06-05 Toyota Central R&D Labs Inc Core-shell type spherical silica-based mesoporous body and catalyst and adsorbent using the same
JP2010138422A (en) * 2008-12-09 2010-06-24 Ube Nitto Kasei Co Ltd Metal foil having functional film, flexible metal covered layered plate, electronic component mounting module, and method for manufacturing the same
JP2011108848A (en) * 2009-11-17 2011-06-02 Ube Nitto Kasei Co Ltd Metal foil with insulation function membrane, flexible metal cladded laminated plate, electronic component mounting module, and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016076538A (en) * 2014-10-03 2016-05-12 株式会社コムラテック Manufacturing method of electronic circuit board, and electronic circuit board obtained thereby
TWI716359B (en) * 2014-10-03 2021-01-21 日商小村科技股份有限公司 Manufacturing method of electronic circuit substrate and electronic circuit substrate obtained by the manufacturing method
WO2021022024A1 (en) 2019-08-01 2021-02-04 University Of Massachusetts Printable mixture, manufacture, and use
EP4007795A4 (en) * 2019-08-01 2022-09-21 University Of Massachusetts Printable mixture, manufacture, and use

Also Published As

Publication number Publication date
JP5884823B2 (en) 2016-03-15
TW201305290A (en) 2013-02-01
JPWO2012165081A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP2013173841A (en) Resin composition
EP2305402B1 (en) Method for producing silver-containing powder and conductive paste using the same
JP6048193B2 (en) Resin composition
US20120277360A1 (en) Graphene Compositions
JP4807630B2 (en) Polyimide film with improved surface activity
JP5884823B2 (en) Composition containing condensate of amino group-containing silane coupling agent and metal alkoxide compound, laminated substrate material comprising the same, laminated substrate and conductive member, and production method thereof
JP4921119B2 (en) INK RECEPTION FILM FORMING COATING LIQUID, ITS MANUFACTURING METHOD, INK RECEPTION FILM, LAMINATED SUBSTRATE, WIRING MATERIAL, AND ELECTROMAGNETIC SHIELDING MATERIAL
TWI738705B (en) Prepreg, printed wiring board, semiconductor package, and manufacturing method of printed wiring board
TW201704373A (en) Conductive film composite and production method thereof
JP2015147373A (en) Laminate, and production method thereof
WO2017122820A1 (en) Frp precursor, laminated plate, metal-clad laminate, printed circuit board, semiconductor package, and method for producing same
JP4845214B2 (en) Conductive circuit forming substrate, manufacturing method thereof, conductive circuit substrate and manufacturing method thereof
WO2019189254A1 (en) Dispersion for silicon carbide sintered body, green sheet for silicon carbide sintered body and prepreg material for silicon carbide sintered body using same, and method of producing same
JP6217832B2 (en) Resin composition
JP5772480B2 (en) Ink receiving film, laminated substrate using the same, and conductive member
JP5231884B2 (en) Porous membrane, coating solution for forming porous membrane, laminated substrate and wiring material
JP2013055156A (en) Heat radiation substrate
JP4225133B2 (en) Photocatalyst sheet for resin surface modification, laminate and resin surface modification method
EP4261190A1 (en) Alumina-based composite sol composition, production method therefor, and production method for alumina-based composite thin film
TW201137024A (en) Thermosetting resin composition, cured material thereof, and printed wiring board using cured material
JP2009027155A (en) Coating liquid for forming ink-accepting film, manufacturing method therefor, the ink-accepting film, laminated substrate and wiring material
JP2023028091A (en) Composition and method for producing laminate
JP2009001615A (en) Coating liquid for forming ink receiving film, ink receiving film, laminated substrate and wiring material
JP7052927B2 (en) Laminates, printed wiring boards, flexible printed wiring boards, electromagnetic wave shields and molded products
JP5134293B2 (en) INK RECEPTION FILM-FORMING COATING LIQUID, ITS MANUFACTURING METHOD, INK RECEPTION FILM, LAMINATED SUBSTRATE AND WIRING MATERIAL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517927

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793666

Country of ref document: EP

Kind code of ref document: A1