WO2012165080A1 - 可変容量圧縮機及び可変容量圧縮機の斜板に作用するバネ付勢力の調整方法 - Google Patents

可変容量圧縮機及び可変容量圧縮機の斜板に作用するバネ付勢力の調整方法 Download PDF

Info

Publication number
WO2012165080A1
WO2012165080A1 PCT/JP2012/060588 JP2012060588W WO2012165080A1 WO 2012165080 A1 WO2012165080 A1 WO 2012165080A1 JP 2012060588 W JP2012060588 W JP 2012060588W WO 2012165080 A1 WO2012165080 A1 WO 2012165080A1
Authority
WO
WIPO (PCT)
Prior art keywords
swash plate
spring
drive shaft
inclination
biasing force
Prior art date
Application number
PCT/JP2012/060588
Other languages
English (en)
French (fr)
Inventor
田口 幸彦
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to DE112012002338.2T priority Critical patent/DE112012002338T5/de
Publication of WO2012165080A1 publication Critical patent/WO2012165080A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • F04B27/1072Pivot mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • F04B27/1063Actuating-element bearing means or driving-axis bearing means

Definitions

  • the present invention includes a swash plate that is used in a vehicle air conditioner system or the like and that rotates with the rotation of a drive shaft and is mounted with a variable inclination angle with respect to the axis of the drive shaft, and by controlling the inclination angle of the swash plate,
  • the present invention relates to a variable capacity compressor that adjusts a stroke amount of a piston that is engaged and reciprocates to change a discharge capacity of a refrigerant.
  • Japanese Patent Application Laid-Open No. H10-228561 includes a tilt-increasing spring that biases the tilt angle of the swash plate in an increasing direction and a tilt-decreasing spring that biases the tilt angle of the swash plate in a decreasing direction. It is disclosed that the minimum inclination angle of the plate is set to be less than a limit angle at which the return to the inclination angle increasing side by the discharge reaction force can be reliably performed.
  • the spring constant of the tilt-increasing spring (return spring 27) is larger than that of the tilt-decreasing spring 26, and the biasing force changes greatly even with a slight displacement.
  • One end of the inclination increasing spring is supported by the spring support member (the circlip 27a) and the other end abuts on the swash plate (22), and the urging force is determined by the position of the spring support member and the position of the swash plate. Yes.
  • the position of the spring support member and the position of the swash plate are defined by a plurality of component dimensions, each dimensional error accumulates and there is a large manufacturing variation in the inclination angle increasing spring itself. The variation in the biasing force of the increasing spring is increased.
  • the dispersion of the resultant force characteristics of the biasing force of the tilt-decreasing spring and the biasing force of the tilt-increasing spring is increased.
  • the resultant force that biases the swash plate in the tilt-increasing direction near the mechanically regulated minimum tilt angle If it becomes too large, there is a problem that the substantial minimum inclination angle regulated by the spring biasing force increases and the variable capacity range is narrowed.
  • the clutchless compressor is operated at the minimum tilt angle to reduce the power consumption when the compressor is turned off.
  • the power consumption increases due to the increase in the minimum tilt angle, and the internal pressure of the crank chamber rises to increase the compressor pressure. There is an adverse effect on durability and reliability.
  • the present invention has been made by paying attention to such a conventional problem. By suppressing variation in the resultant force of the urging force of the inclination decreasing spring and the urging force of the inclination increasing spring, the substantial variable capacity range is expanded. It is an object of the present invention to provide a swash plate type variable capacity compressor that can be used and that does not impair the reliability of capacity recovery.
  • the adjustment method of the spring urging force acting on the swash plate of the variable capacity compressor is: A housing having a suction chamber, a discharge chamber, a crank chamber, and a cylinder bore defined therein, a piston disposed in the cylinder bore, a drive shaft rotatably supported in the housing, and a drive shaft coupled to the drive shaft for synchronization
  • a swash plate that rotates to change the tilt angle with respect to the axis of the drive shaft, a conversion mechanism that converts the rotation of the swash plate into a reciprocating motion of the piston, and a tilt angle that reaches the minimum tilt angle that is mechanically restricted.
  • An inclination-decreasing spring that urges in the decreasing direction, an inclination-increasing spring that overcomes the urging force of the inclination-decreasing spring at the minimum inclination and urges the swash plate in the increasing direction, and a control valve that adjusts the crank chamber pressure;
  • the pressure of the crank chamber is changed by adjusting the opening of the control valve, the stroke of the piston is adjusted by changing the inclination angle of the swash plate, and the refrigerant sucked into the cylinder bore from the suction chamber is compressed.
  • variable displacement compressor which discharges the outlet chamber
  • a method of adjusting the spring bias acting on the swash plate A spring support member that receives one end of the tilt-increasing spring is disposed freely in the axial direction of the drive shaft, The spring support member is moved and positioned in the axial direction of the drive shaft so that the inclination angle of the swash plate matches the predetermined inclination angle while balancing the urging force of the inclination increasing spring and the urging force of the inclination decreasing spring. And a step of adjusting.
  • variable capacity compressor according to the present invention is characterized in that the spring biasing force acting on the swash plate is adjusted by the above method.
  • the inclination angle of the swash plate in a state in which the urging force of the inclination angle increasing spring and the urging force of the inclination angle decreasing spring are balanced is adjusted to coincide with a predetermined inclination angle.
  • the characteristics of the spring biasing force (synthetic force) with respect to can be adjusted with high accuracy.
  • FIG. 6 is a diagram showing a resultant characteristic of a biasing force of a tilt-increasing spring and a biasing force of a tilt-decreasing spring as a target. It is sectional drawing which shows a spring support member periphery same as the above after spring biasing force adjustment. It is the diagram which showed the resultant force characteristic of the urging
  • FIG. 1 shows an internal structure of a variable capacity compressor in which a spring biasing force acting on a swash plate is adjusted by a method according to the present invention.
  • the variable capacity compressor 100 is a clutchless compressor, and includes a cylinder block 101 having a plurality of cylinder bores 101a in the periphery, a front housing 102 connected to one end side of the cylinder block 101, and the other end of the cylinder block 101. And a cylinder head 104 connected to the side through a valve plate 103.
  • a drive shaft 110 is provided across the crank chamber 140 defined by the cylinder block 101 and the front housing 102, and a swash plate 111 is disposed around the axial center of the drive shaft 110. Yes.
  • the swash plate 111 is connected to a rotor 112 fixed to the drive shaft 110 via a link mechanism 120, and the tilt angle with respect to the axis of the drive shaft 110 is variable.
  • the link mechanism 120 includes a first arm 112 a projecting from the rotor 112, a second arm 111 a projecting from the swash plate 111, and one end side rotating with respect to the first arm 112 a via the first connecting pin 122.
  • the link arm 121 is movably connected and the other end side is rotatably connected to the second arm 111a via the second connection pin 123.
  • a through hole 111c formed through the drive shaft 110 of the swash plate 111 is formed in a shape that allows the swash plate 111 to tilt within a range of a maximum tilt angle ( ⁇ max) and a minimum tilt angle ( ⁇ min). That is, the through-hole 111c is formed with a maximum inclination restriction portion that contacts the drive shaft 110 and restricts the maximum inclination angle, and a minimum inclination restriction portion that similarly restricts the minimum inclination angle.
  • the minimum inclination restriction portion of the through hole 111c is formed so that the inclination of the swash plate 111 can be displaced to approximately 0 °.
  • substantially 0 ° indicates a range of 0 ° ⁇ 0.5 °.
  • the drive shaft 110 is fitted with a tilt-decreasing spring 114 that is inserted between the rotor 112 and the swash plate 111 so as to urge the swash plate 111 toward the minimum tilt angle until the minimum tilt angle is reached. Yes.
  • a tilt-increasing spring 115 that biases the tilting angle of the swash plate 111 in a direction to increase the tilt angle is fitted and attached to a portion of the drive shaft 110 between the swash plate 111 and the spring support member 116.
  • the swash plate 111 is located at an inclination angle larger than the minimum inclination angle.
  • One end of the drive shaft 110 extends to the outside through the boss portion 102a protruding to the outside of the front housing 102, and is connected to a power transmission device (not shown).
  • a shaft seal device 130 is inserted between the drive shaft 110 and the boss portion 102a to shut off the inside and the outside.
  • the drive shaft 110 and the rotor 112 are supported by bearings 131 and 132 in the radial direction, and supported by a bearing 133 and a thrust plate 134 in the thrust direction.
  • the power from an external drive source such as a vehicle engine is transmitted to the power transmission device, and the drive shaft 110 can rotate in synchronization with the rotation of the power transmission device. Note that the gap between the contact portion of the thrust plate 134 of the drive shaft 110 and the thrust plate 134 is adjusted to a predetermined gap by the adjusting screw 135.
  • a piston 136 is disposed in the cylinder bore 101a.
  • the outer periphery of the swash plate 111 is accommodated in a recess formed inside the end of the piston 136 protruding toward the crank chamber 140.
  • the shoe 136 is linked to the piston 136. Therefore, the piston 136 can reciprocate in the cylinder bore 101a by the rotation of the swash plate 111.
  • the cylinder head 104 is formed with a suction chamber 141 and a discharge chamber 142 that annularly surrounds the suction chamber 141 at the center, and the suction chamber 141 is connected to the cylinder bore 101a through a communication hole 103a provided in the valve plate 103, and a suction port.
  • the discharge chamber 142 communicates with the cylinder bore 101 a through a discharge valve (not shown) and a communication hole 103 b provided in the valve plate 103.
  • the front housing 102, the cylinder block 101, the valve plate 103, and the cylinder head 104 are fastened by a plurality of through bolts 105 through a gasket (not shown) to form a compressor housing.
  • a muffler is provided in the upper portion of the cylinder block 101 in the drawing, and the muffler is fastened by a bolt through a sealing member (not shown) with a lid member 106 and a forming wall 101b formed in the upper portion of the cylinder block 101. It is formed.
  • a check valve 200 is disposed in the muffler space 143. The check valve 200 is disposed at a connection portion between the communication path 144 and the muffler space 143 and operates in response to a pressure difference between the communication path 144 (upstream side) and the muffler space 143 (downstream side).
  • the discharge chamber 142 is connected to the discharge side refrigerant circuit of the air conditioner system via the discharge passage formed by the communication passage 144, the check valve 200, the muffler space 143, and the discharge port 106a.
  • the cylinder head 104 is formed with a suction port 104a and a communication passage 104b, and the suction chamber 141 is connected to a suction side refrigerant circuit of the air conditioner system through a suction passage formed by the communication passage 104b and the suction port 104a.
  • the suction passage extends linearly from the outside in the radial direction of the cylinder head 104 so as to cross a part of the discharge chamber 142.
  • the cylinder head 104 is further provided with a control valve 300.
  • the control valve 300 adjusts the opening of the communication passage 145 that connects the discharge chamber 142 and the crank chamber 140 to control the amount of discharge gas introduced into the crank chamber 140.
  • the refrigerant in the crank chamber 140 flows to the suction chamber 141 via the communication passage 101 c, the space 146, and the orifice 103 c formed in the valve plate 103.
  • control valve 300 variably controls the discharge capacity of the variable capacity compressor 100 by changing the pressure of the crank chamber 140, that is, the back pressure of the piston 136, and changing the inclination angle of the swash plate 111, that is, the stroke of the piston 136. Can do.
  • the control valve 300 can optimally control the suction pressure according to the external environment.
  • the communication passage 145 is forcibly opened by turning off the energization of the solenoid built in the control valve 300, and the discharge capacity of the variable displacement compressor 100 is increased. Control to the minimum.
  • variable capacity compressor 100 having such a configuration, adjustment of the spring urging force by the inclination decreasing spring 114 and the inclination increasing spring 115 is performed as follows. The adjustment of the spring biasing force will be described with reference to FIGS.
  • the spring support member 116 includes a cylindrical portion 116 a that is fitted on the drive shaft 110 and is movable along the outer periphery of the drive shaft 110, and a spring support portion 116 b that receives one end of the tilt angle increasing spring 115.
  • the spring support member 116 is moved in the axial direction of the drive shaft 110, so that the resultant force of the biasing force of the tilt angle increasing spring 115 and the biasing force of the tilt angle decreasing spring 114 is adjusted.
  • the assembly of the drive shaft 110, the rotor 112, and the swash plate 111 shown in FIG. 3 is rotatably supported on a facility (not shown) that adjusts the spring biasing force, and the spring support member 116 is pressed and moved from the right in the drawing.
  • the swash plate 111 is held at a position where the urging force of both springs acts. At this time the swash plate 111 is greater than the minimum inclination angle, it is located inclination angle theta M biasing force of both the springs are balanced.
  • a displacement measuring device for example, as shown in FIG. 3, laser light is emitted in the direction of the drive axis toward the periphery of the swash plate 111, and reflected light from the swash plate 111 is received, thereby emitting and receiving light. the distance to the swash plate 111 measured from the point, the variation in the distance when rotating the swash plate 111 (deviation of maximum distance and a minimum distance), the apparatus to measure the displacement S M of the swash plate 111 used.
  • the displacement S M is the stroke itself of the piston 136.
  • the pitch circle diameter is D
  • the inclination angle ⁇ M of the swash plate 111 is It can be easily obtained.
  • the rotation speed of the swash plate 111 is preferably in a low rotation region where the displacement can be measured stably and the swash plate bending moment (moment for changing the tilt angle of the swash plate) due to the rotational motion can be ignored ( For example, several tens of rpm).
  • the inclination angle theta T is set to a tilt angle region corresponding to the discharge volume of 2% to 20% is taken as 100% the discharge capacity at the maximum inclination .theta.max.
  • the rotation of the swash plate 111 is stopped, and an external force is applied from the outside of the cylindrical portion 116a of the spring support member 116 to plastically deform the cylindrical portion 116a as shown in FIG. Crimp.
  • An annular groove 110a is formed in the drive shaft 110, and a part of the cylindrical portion 116a protrudes into the annular groove 110a so as to prevent the spring support member 116 from moving in the axial direction.
  • the axial width of the cylindrical portion 116a is set to be larger than the width of the groove so that the annular groove 110a is disposed inside both ends of the cylindrical portion 116a even if the spring support member 116 moves in the axial direction. It has become.
  • Such a spring support structure (spring support member 116 + annular groove 110a) is easy to form and excellent in productivity.
  • the spring support member may be any member that moves in the axial direction of the drive shaft and is adjusted in position.
  • the spring support member may be moved by the screw in the axial direction of the drive shaft or the press-fitting amount may be adjusted.
  • the inclination increasing spring may be a leaf spring or the like in addition to the coil spring.
  • the inclination increasing spring directly biases the swash plate, but it may be connected integrally with the swash plate to bias a member that moves in the axial direction of the drive shaft.
  • the swash plate support (sleeve) is also applied to an apparatus in which the swash plate support (sleeve) is biased by a tilt-increasing spring it can.
  • the present invention can also be applied to a structure in which the blocking body 21 connected to the swash plate support 14 is urged by a capacity return spring 36.
  • the spring support member that is movable in the axial direction of the drive shaft may be positioned and fixed to the cylinder block 1. In this case, the inclination of the swash plate is obtained by directly measuring the piston stroke.
  • the present invention can also be applied to a variable capacity compressor called an oscillating variable capacity compressor as disclosed in Japanese Patent Publication No. 4-28911.
  • a swash plate 401 and a piston 402 are provided in the same manner, but the mechanism for converting the rotational movement of the swash plate 401 into the reciprocating motion of the piston 402 is different.
  • a swing plate 403 is disposed along the inclined surface of the swash plate 401 so as to be freely rotatable relative to the swash plate 401, and the swing plate 403 is disposed on the inner wall of the storage housing 404 along the axial direction.
  • the piston 402 engaged with the guide plate 405 is swung while restraining rotation, and the piston 402 linked to the swing plate 403 via the rod 406 is reciprocated.
  • the function of the swash plate is the same as that of the compressor referred to as the swash plate type variable capacity compressor of the above-described embodiment, and therefore the present invention can be similarly applied.
  • the clutchless compressor is used.
  • the present invention may be applied to a variable capacity compressor equipped with an electromagnetic clutch, and may also be applied to a variable capacity compressor driven by a motor. .
  • the assembly of the drive shaft 110, the rotor 112, and the swash plate 111 is set with the link mechanism 120 positioned at the upper or lower position, and the horizontal direction perpendicular to the drive shaft 110 is set. It is also possible to detect a deviation in the drive shaft 110 direction of the left (or right) edge portion of the upper end and the lower end of the swash plate as a displacement at the outer peripheral edge of the swash plate 111 from the captured image.
  • the position of the member 116 may be adjusted.
  • SYMBOLS 100 Variable capacity compressor, 101 ... Cylinder block, 101a ... Cylinder bore, 102 ... Front housing, 104 ... Cylinder head, 110 ... Drive shaft, 111 ... Swash plate, 111a ... Second arm, 111c ... Through-hole, 112 ... Rotor 112a ... first arm 114 ... tilt angle reducing spring 115 ... tilt angle increasing spring 116 ... spring support member 116a ... cylindrical portion 120 ... link mechanism 121 ... link arm 122 ... first connecting pin 123 ... first 2 connecting pins, 136 ... piston 140 ... crankcase, 141 ... suction chamber, 142 ... discharge chamber, 145 ... communication passage, 300 ... control valve, m ... displacement measuring device, theta T ... inclination aim, S T ... theta Displacement corresponding to T

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

 可変容量圧縮機の斜板に作用するバネ付勢力を下記のようにして調整する。 駆動軸110、ロータ112、斜板111の組立体を回転可能に支持し、図中右方向からバネ支持部材116を押圧して移動させ斜板111に両バネの付勢力がバランスしている状態で斜板111を回転させ、非接触式の変位計測装置mで斜板111の軸方向の変位SMを計測し、該変位SMが、予め設定された斜板111の傾角θTに相当する変位STに近づくようにバネ支持部材116の位置を調整する。

Description

可変容量圧縮機及び可変容量圧縮機の斜板に作用するバネ付勢力の調整方法
 本発明は、車輌エアコンシステム等に使用され、駆動軸の回転と共に回転し駆動軸の軸線に対する傾角を可変に装着された斜板を備え、該斜板の傾角を制御することによって、斜板に係合して往復動するピストンのストローク量を調整して、冷媒の吐出容量を可変な可変容量圧縮機に関する。
 特許文献1には、この種の可変容量圧縮機において、斜板の傾角を増大方向に付勢する傾角増大バネと前記斜板の傾角を減少方向に付勢する傾角減少バネとを備え、斜板の最小傾角が吐出反力による傾角増大側への復帰が確実に可能となる限界角度未満に設定されることが開示されている。
日本国特許公報:特開2000-2180号
 ここで、特許文献1の図10に示されているように、傾角増大バネ(復帰バネ27)のバネ定数は傾角減少バネ26に比べて大きく、僅かな変位でもその付勢力が大きく変化する。
 傾角増大バネは、一端がバネ支持部材(サークリップ27a)に支持され、他端が斜板(22)に当接して、バネ支持部材の位置と、斜板の位置で付勢力が決定されている。
 しかしながらバネ支持部材の位置及び斜板の位置は、複数の部品寸法によって規定されるので、それぞれの寸法誤差が積み重なり、また傾角増大バネ自身の製造上のばらつきも大きいので、斜板の傾角に対する傾角増大バネの付勢力のばらつきが大きくなる。
 このため傾角減少バネの付勢力と傾角増大バネの付勢力との合力特性のばらつきが増大し、例えば機械的に規制される最小傾角近傍で斜板を傾角増大方向に付勢する合力が狙いより過大になりすぎると、バネ付勢力によって規制される実質的な最小傾角が増大して可変容量範囲が狭まってしまうという問題がある。
 特に、クラッチレス圧縮機では圧縮機OFF時に消費動力節減のため最小傾角での運転を行っているが、最小傾角の増大によって消費動力が増大し、かつクランク室の内圧が上昇して圧縮機の耐久信頼性に悪影響がある。
 また逆に傾角増大方向に付勢する合力が狙いより小さくなりすぎると、実質的な最小傾角が小さくなりすぎ通常の作動状態への容量復帰が困難となるという問題が発生する恐れがある。
 最小傾角側からの容量復帰は確実に行なわれなければならず、したがって通常はばらつきを考慮して傾角減少バネの付勢力と傾角増大バネの付勢力の合力の狙いは過大となっている。
 本発明は、このような従来の課題に着目してなされたもので、傾角減少バネの付勢力と傾角増大バネの付勢力の合力のばらつきを抑制することにより、実質的な可変容量範囲を拡大でき、かつ容量復帰の信頼性を損なうことが無い斜板式可変容量圧縮機を提供することを目的とする。
 このため、本発明に係る可変容量圧縮機の斜板に作用するバネ付勢力の調整方法は、
 内部に吸入室、吐出室、クランク室及びシリンダボアが区画形成されたハウジングと、シリンダボアに配設されたピストンと、ハウジング内に回転可能に支持された駆動軸と、該駆動軸に連結して同期回転し該駆動軸の軸線に対する傾角が可変となる斜板と、該斜板の回転を前記ピストンの往復運動に変換する変換機構と、斜板を機械的に規制される最小傾角に至るまで傾角減少方向に付勢する傾角減少バネと、最小傾角において傾角減少バネの付勢力に打ち勝って前記斜板を傾角増大方向に付勢する傾角増大バネと、クランク室の圧力を調整する制御弁と、を備え、制御弁の開度調整によりクランク室の圧力を変化させ、斜板の傾角を変更して前記ピストンのストロークを調整し、吸入室から前記シリンダボアに吸入された冷媒を圧縮して吐出室に吐出する可変容量圧縮機における、斜板に作用するバネ付勢力の調整方法であって、
 傾角増大バネの一端を受けるバネ支持部材を、前記駆動軸の軸線方向に移動自由に配設し、
 傾角増大バネの付勢力と傾角減少バネの付勢力とをバランスさせつつ前記斜板の傾角を、所定の傾角に一致させるように、前記バネ支持部材を前記駆動軸の軸線方向に移動して位置決め調整する工程を含むことを特徴とする。
 また、本発明に係る可変容量圧縮機は、上記方法によって斜板に作用するバネ付勢力が調整されたことを特徴とする。
 かかる構成とすれば、傾角増大バネの付勢力と前記傾角減少バネの付勢力をバランスさせた状態での斜板の傾角が、所定の傾角に一致するように調整されるため、斜板の傾角に対するバネ付勢力(合力)の特性を精度よく調整することができる。
 したがって、最小傾角において容量復帰が確実に行なわれるのに必要最小限程度のバネ付勢力に調整することができ、容量復帰の信頼性を確保しつつ実質的な可変容量範囲を拡大できる。
本発明に係る可変容量圧縮機の内部構造を示す断面図である。 同上の可変容量圧縮機におけるバネ付勢力調整前のバネ支持部材周辺を示す断面図である。 駆動軸、ロータ、斜板の組立体における斜板の傾角測定の概念図である。 狙いとする傾角増大バネの付勢力と傾角減少バネの付勢力の合力特性を示す線図である。 バネ付勢力調整後における同上のバネ支持部材周辺を示す断面図である。 傾角増大バネの付勢力と傾角減少バネの付勢力の合力特性を従来技術と比較して示した線図である。
 以下に、本発明の実施形態を、図に基づいて説明する。図1は、本発明に係る方法で斜板に作用するバネ付勢力が調整された可変容量圧縮機の内部構造を示す。
 可変容量圧縮機100はクラッチレス圧縮機であって、周辺部に複数のシリンダボア101aを備えたシリンダブロック101と、シリンダブロック101の一端側に連結されたフロントハウジング102と、シリンダブロック101の他端側にバルブプレート103を介して連結されたシリンダヘッド104と、を備えている。
 シリンダブロック101と、フロントハウジング102とによって規定されるクランク室140内を横断して、駆動軸110が設けられ、該駆動軸110の軸線方向中央部の周囲には、斜板111が配置されている。斜板111は、駆動軸110に固定されたロータ112にリンク機構120を介して連結し、駆動軸110の軸線に対する傾角が可変に構成されている。
 リンク機構120は、ロータ112から突設された第1アーム112aと、斜板111から突設された第2アーム111aと、一端側が第1連結ピン122を介して第1アーム112aに対して回動自在に連結され、他端側が第2連結ピン123を介して第2アーム111aに対して回動自在に連結されたリンクアーム121と、から構成されている。
 斜板111の駆動軸110を貫通して形成された貫通孔111cは、斜板111が、最大傾角(θmax)と最小傾角(θmin)の範囲で傾動可能となる形状に形成されている。即ち、貫通孔111cには駆動軸110と当接して最大傾角を規制する最大傾角規制部と、同じく最小傾角を規制する最小傾角規制部と、が形成されている。
 斜板111が駆動軸110に対して直交するときの斜板の傾角を0°とした場合、貫通孔111cの最小傾角規制部は、斜板111を略0°まで傾角変位可能なように形成されている。尚、略0°とは0°±0.5°の範囲を指す。
 駆動軸110には、ロータ112と斜板111の間の部分に、斜板111を最小傾角に向けて最小傾角に至るまで傾角減少方向に付勢する傾角減少バネ114が嵌挿して装着されている。一方、駆動軸110の斜板111とバネ支持部材116との間の部分には、斜板111の傾角を増大する方向に付勢する傾角増大バネ115が嵌挿して装着されている。
 最小傾角において傾角増大バネ115の付勢力は傾角減少バネ114の付勢力より大きく設定され、これにより、駆動軸110が回転せず傾角減少バネ114と傾角増大バネ115の付勢力がバランスするとき、斜板111は、最小傾角より大きい傾角に位置する。
 駆動軸110の一端は、フロントハウジング102の外側に突出したボス部102a内を貫通して外側まで延在し、図示しない動力伝達装置に連結されている。尚、駆動軸110とボス部102aとの間には、軸封装置130が挿入され、内部と外部とを遮断している。
 駆動軸110及びロータ112はラジアル方向に軸受131、132で支持され、スラスト方向に軸受133、スラストプレート134で支持されている。
 そして、車両用エンジンなど外部駆動源からの動力が動力伝達装置に伝達され、駆動軸110は動力伝達装置の回転と同期して回転可能となっている。尚、駆動軸110のスラストプレート134の当接部とスラストプレート134との隙間は、調整ネジ135により所定の隙間に調整されている。
 シリンダボア101a内には、ピストン136が配置され、ピストン136のクランク室140側に突出している端部の内側に形成された窪みには、斜板111の外周部が収容され、斜板111は一対のシュー137を介して、ピストン136と連動する構成となっている。したがって斜板111の回転によりピストン136がシリンダボア101a内を往復動することが可能となる。
 シリンダヘッド104には、中央部に吸入室141及び吸入室141を環状に取り囲む吐出室142が区画形成され、吸入室141は、シリンダボア101aとは、バルブプレート103に設けられた連通孔103a、吸入弁(図示せず)を介して連通し、吐出室142は、シリンダボア101aとは、吐出弁(図示せず)、バルブプレート103に設けられた連通孔103bを介して連通している。
 フロントハウジング102、シリンダブロック101、バルブプレート103、シリンダヘッド104が、図示しないガスケットを介して複数の通しボルト105によって締結されて圧縮機ハウジングが形成される。
 またシリンダブロック101の図中上部にはマフラが設けられ、マフラは蓋部材106と、シリンダブロック101上部に区画形成された形成壁101bとが図示しないシール部材を介してボルトにより締結されることにより形成される。マフラ空間143には逆止弁200が配置されている。逆止弁200は連通路144とマフラ空間143との接続部に配置され、連通路144(上流側)とマフラ空間143(下流側)との圧力差に応答して動作し、圧力差が所定値より小さい場合は連通路144を遮断し、圧力差が所定値より大きい場合は連通路144を開放する。したがって吐出室142は、連通路144、逆止弁200、マフラ空間143及び吐出ポート106aで形成される吐出通路を介してエアコンシステムの吐出側冷媒回路と接続されている。
 シリンダヘッド104には、吸入ポート104a、連通路104bが形成され、吸入室141は、連通路104b及び吸入ポート104aで形成される吸入通路を介してエアコンシステムの吸入側冷媒回路と接続されている。吸入通路はシリンダヘッド104の径方向外側から吐出室142の一部を横切るように直線状に伸びている。
 シリンダヘッド104にはさらに制御弁300が設けられている。制御弁300は吐出室142とクランク室140とを連通する連通路145の開度を調整し、クランク室140への吐出ガス導入量を制御する。またクランク室140内の冷媒は、連通路101c、空間146、バルブプレート103に形成されたオリフィス103cを経由して吸入室141へ流れる。
 したがって制御弁300によりクランク室140の圧力、つまりピストン136の背圧を変化させ、斜板111の傾角、つまりピストン136のストロークを変化させることにより可変容量圧縮機100の吐出容量を可変制御することができる。
 エアコン作動時、つまり可変容量圧縮機100の作動状態では、外部信号に基づいて制御弁300に内蔵されるソレノイドの通電量が調整され、吸入室141の圧力が所定値になるように吐出容量が可変制御される。制御弁300は、外部環境に応じて、吸入圧力を最適制御することができる。
 またエアコン非作動時、つまり可変容量圧縮機100の非運転状態では、制御弁300に内蔵されるソレノイドの通電をOFFすることにより連通路145を強制開放し、可変容量圧縮機100の吐出容量を最小に制御する。
 かかる構成を有した可変容量圧縮機100において、傾角減少バネ114及び傾角増大バネ115によるバネ付勢力の調整が以下のように実施される。該バネ付勢力の調整を図2~図6に基づいて説明する。
 図2に示すように、バネ支持部材116は、駆動軸110に嵌挿されて駆動軸110の外周に沿って移動可能な円筒部116aと、傾角増大バネ115の一端を受けるバネ支持部116bから構成されており、バネ支持部材116が駆動軸110の軸方向に移動することにより傾角増大バネ115の付勢力と傾角減少バネ114の付勢力の合力が調整される。
 バネ付勢力を調整する図示しない設備に、図3に示す駆動軸110、ロータ112、斜板111の組立体を回転可能に支持し、図中右方向からバネ支持部材116を押圧して移動させ斜板111に両バネの付勢力が作用する位置で保持する。このとき斜板111は最小傾角より大きく、両バネの付勢力がバランスしている傾角θに位置している。
 この状態で斜板111を回転させ、非接触式の変位計測装置mで斜板111の軸方向の変位Sを計測する。変位計測装置としては、例えば、図3に示すように、斜板111の周辺部に向けてレーザー光を駆動軸方向に発光し、斜板111からの反射光を受光することによって、発・受光点から斜板111までの距離を測定し、斜板111を回転させたときの距離の変化量(最大距離と最小距離の偏差)を、斜板111の変位Sとして計測するような装置が使用される。
 特に、変位計測点(受光点)を各ピストン136の中心軸を通るピッチ円に相当する位置に設定すれば、変位Sはピストン136のストロークそのものとなる。この場合ピッチ円径をDとすれば、斜板111の傾角θと変位Sとの関係はtanθ=S/Dとなり、変位Sを計測すれば斜板111の傾角θを容易に求めることができる。
 尚、斜板111の回転数は、安定に変位計測が可能で、回転運動による斜板変角モーメント(斜板の傾角を変化させるモーメント)が無視できるような低回転領域とすることが望ましい(例えば数十rpm)。
 狙いとする傾角増大バネ115の付勢力と傾角減少バネ114の付勢力の合力特性は、図4に示す通りであり、斜板111を連続的に回転させた状態で、変位計測装置により計測される変位Sが、予め設定された斜板111の傾角θに相当する変位S(=D・tanθ)に近づくようにバネ支持部材116の位置を調整し、その状態でバネ支持部材116を保持する。尚、傾角θは最大傾角θmax時の吐出容量を100%としたときの2%~20%の吐出容量に相当する傾角領域に設定される。
 斜板111の回転を停止させ、図5に示すようにバネ支持部材116の円筒部116aの外側から外力を作用させて円筒部116aを塑性変形させ、バネ支持部材116を駆動軸110の外周に圧着させる。尚駆動軸110には環状溝110aが形成されており、円筒部116aの一部は環状溝110aの内部に突出してバネ支持部材116の軸方向の移動を阻止するようになっている。尚、円筒部116aの軸方向の幅は溝の幅より大きく設定されており、軸方向にバネ支持部材116が移動しても円筒部116aの両端の内側に環状溝110aが配置されるようになっている。このようなバネ支持構造(バネ支持部材116+環状溝110a)は、形成が容易で生産性に優れる。
 このように傾角増大バネ115の付勢力と傾角減少バネ114の付勢力がバランスしている斜板111の傾角が所定の傾角となるようにバネ支持部材116の位置を調整するので、図6に示すように傾角増大バネ115の付勢力と傾角減少バネ114の付勢力の合力特性のばらつきを、付勢力を調整しない従来技術に対し低減できる。
 その結果、従来よりも狙いとする両バネの付勢力の合力特性を傾角の小さいほうにシフトでき、容量復帰の信頼性を損なうこと無く実質的な可変容量範囲を傾角の小さい側、つまり、吐出容量小側に拡大できる。
 これにより、特に、クラッチレス圧縮機では圧縮機OFF運転での消費動力低減に寄与する。
 また、斜板111の位置やバネ付勢力の検出を設備側で行う必要が無く、さらに斜板111を回転させることにより、斜板の軸方向の変位Sに基づいて斜板111の傾角が容易に求められるので、バネ付勢力を調整するための設備が簡素化できる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく、本発明の主旨を逸脱しない範囲内で、以下のように種々の変形が可能である。
 バネ支持部材は駆動軸の軸線方向に移動して位置が調整されるものであれば良く、例えばネジによりバネ支持部材が駆動軸の軸線方向に移動するものや圧入量を調整するものでも良い。
 傾角増大バネは、コイルバネの他、板バネ等であっても良い。
 上記実施形態では傾角増大バネは斜板を直接付勢するものであるが、斜板と一体に連結して駆動軸の軸線方向に動く部材を付勢しても良い。例えば斜板が駆動軸に滑動可能に嵌装された斜板支持体(スリーブ)に支持される斜板構造の場合は斜板支持体(スリーブ)を傾角増大バネで付勢するものにも適用できる。
 また、特開平7-133759号の図9に示すように、斜板支持体14に連結される遮断体21を容量復帰バネ36で付勢するような構造に対しても適用できる。この構造の場合、バネ支持部材は駆動軸の軸線方向に移動可能としたものを、シリンダブロック1に位置決めして固定すれば良い。この場合は、ピストンストロークを直接測定して斜板の傾角を求めることになる。
 さらに、特公平4-28911号等に開示されるような揺動式可変容量圧縮機と称される可変容量圧縮機にも本発明を適用することができる。特公平4-28911号では、図10(A)に示すように、斜板401とピストン402とを同様に備えるが、斜板401の回転運動をピストン402の往復動に変換する機構が相違する。具体的には、斜板401の傾斜面に沿って斜板401に対し相対回転自由に揺動板403を配設し、この揺動板403を収納ハウジング404内壁に軸方向に沿って配設されたガイド板405に係合させて回転を拘束しつつ揺動させ、該揺動板403にロッド406を介して連係したピストン402を往復動させている。この種の圧縮機においても、斜板の機能は上記実施形態の斜板式可変容量圧縮機と称される圧縮機と変わりないので、同様に本発明を適用することができる。
 また、上記実施形態ではクラッチレス圧縮機としたが、電磁クラッチを装着した可変容量圧縮機に本発明を適用しても良く、また、モータで駆動する可変容量圧縮機にも適用することができる。
 また、非接触式の変位計測装置として、リンク機構120を上位または下位に位置させた状態で駆動軸110、ロータ112、斜板111の組立体をセットし、駆動軸110と直角な水平方向から撮像した画像から、斜板の上端及び下端の左側(又は右側)エッジ部分の駆動軸110方向の偏差を斜板111の外周縁における変位として検出することも可能である。この場合は、検出された変位S0が斜板111の外周円の直径D0に対し、傾角θに相当する外周円の変位S0(=D0・tanθ)に近づくようにバネ支持部材116の位置を調整すればよい。
 100…可変容量圧縮機、101…シリンダブロック、101a…シリンダボア、102…フロントハウジング、104…シリンダヘッド、110…駆動軸、111…斜板、111a…第2アーム、111c…貫通孔、112…ロータ、112a…第1アーム、114…傾角減少バネ、115…傾角増大バネ、116…バネ支持部材、116a…円筒部、120…リンク機構、121…リンクアーム、122…第1連結ピン、123…第2連結ピン、136…ピストン、140…クランク室、141…吸入室、142…吐出室、145…連通路、300…制御弁、m…変位計測装置、θ…狙いの傾角、S…θに対応する変位

Claims (6)

  1.  内部に吸入室、吐出室、クランク室及びシリンダボアが区画形成されたハウジングと、前記シリンダボアに配設されたピストンと、前記ハウジング内に回転可能に支持された駆動軸と、該駆動軸に連結して同期回転し該駆動軸の軸線に対する傾角が可変となる斜板と、該斜板の回転を前記ピストンの往復運動に変換する変換機構と、前記斜板を機械的に規制される最小傾角に至るまで傾角減少方向に付勢する傾角減少バネと、前記最小傾角において前記傾角減少バネの付勢力に打ち勝って前記斜板を傾角増大方向に付勢する傾角増大バネと、前記クランク室の圧力を調整する制御弁と、を備え、前記制御弁の開度調整により前記クランク室の圧力を変化させ、前記斜板の傾角を変更して前記ピストンのストロークを調整し、前記吸入室から前記シリンダボアに吸入された冷媒を圧縮して吐出室に吐出する可変容量圧縮機における、前記斜板に作用するバネ付勢力の調整方法であって、
     前記傾角増大バネの一端を受けるバネ支持部材を、前記駆動軸の軸線方向に移動自由に配設し、
     前記傾角増大バネの付勢力と前記傾角減少バネの付勢力とをバランスさせつつ前記斜板の傾角を、所定の傾角に一致させるように、前記バネ支持部材を前記駆動軸の軸線方向に移動して位置決め調整する工程を含むことを特徴とする可変容量圧縮機の斜板に作用するバネ付勢力の調整方法。
  2.  前記斜板を回転させつつ該斜板周辺部の前記駆動軸軸線方向における変位を計測し、該変位の計測値を前記所定の傾角に対応する変位に一致させることによって、前記斜板の傾角を所定の傾角に一致させる、請求項1に記載の可変容量圧縮機の斜板に作用するバネ付勢力の調整方法。
  3.  前記斜板を連続的に回転させつつ該斜板周辺部の前記駆動軸軸線方向における変位を計測する、請求項2に記載の可変容量圧縮機の斜板に作用するバネ付勢力の調整方法。
  4.  前記バネ支持部材は、駆動軸に嵌挿される円筒部を外力により塑性変形させ、前記駆動軸に形成した環状溝に圧着させて位置決め調整される請求項1に記載の可変容量圧縮機の斜板に作用するバネ付勢力の調整方法。
  5.  内部に吸入室、吐出室、クランク室及びシリンダボアが区画形成されたハウジングと、前記シリンダボアに配設されたピストンと、前記ハウジング内に回転可能に支持された駆動軸と、該駆動軸に連結して同期回転し該駆動軸の軸線に対する傾角が可変となる斜板と、該斜板の回転を前記ピストンの往復運動に変換する変換機構と、前記斜板を機械的に規制される最小傾角に至るまで傾角減少方向に付勢する傾角減少バネと、前記最小傾角において前記傾角減少バネの付勢力に打ち勝って前記斜板を傾角増大方向に付勢する傾角増大バネと、前記クランク室の圧力を調整する制御弁と、を備え、前記制御弁の開度調整により前記クランク室の圧力を変化させ、前記斜板の傾角を変更して前記ピストンのストロークを調整し、前記吸入室から前記シリンダボアに吸入された冷媒を圧縮して吐出室に吐出する可変容量圧縮機であって、
     前記傾角増大バネの一端を受けるバネ支持部材を、前記駆動軸の軸線方向に移動自由に配設し、
     前記傾角増大バネの付勢力と前記傾角減少バネの付勢力とをバランスさせつつ前記斜板の傾角を、所定の傾角に一致させるように、前記バネ支持部材を前記駆動軸の軸線方向に移動して位置決め調整する工程を用いて、前記斜板に作用するバネ付勢力が調整された可変容量圧縮機。
  6.  前記駆動軸に環状溝を形成すると共に、前記バネ支持部材に前記環状溝より軸方向の長さが大の円筒部を形成し、前記バネ支持部材は、該円筒部を外力により塑性変形させ、前記環状溝に圧着させて位置決め調整される請求項5に記載の可変容量圧縮機。
PCT/JP2012/060588 2011-05-30 2012-04-19 可変容量圧縮機及び可変容量圧縮機の斜板に作用するバネ付勢力の調整方法 WO2012165080A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112012002338.2T DE112012002338T5 (de) 2011-05-30 2012-04-19 Verstellbarer Kompressor und Verfahren zum Einstellen einer Federspannkraft, die auf eine Taumelscheibe eines verstellbaren Kompressors wirkt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-120170 2011-05-30
JP2011120170A JP5750802B2 (ja) 2011-05-30 2011-05-30 可変容量圧縮機及び可変容量圧縮機の斜板に作用するバネ付勢力の調整方法

Publications (1)

Publication Number Publication Date
WO2012165080A1 true WO2012165080A1 (ja) 2012-12-06

Family

ID=47258944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060588 WO2012165080A1 (ja) 2011-05-30 2012-04-19 可変容量圧縮機及び可変容量圧縮機の斜板に作用するバネ付勢力の調整方法

Country Status (3)

Country Link
JP (1) JP5750802B2 (ja)
DE (1) DE112012002338T5 (ja)
WO (1) WO2012165080A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105673448A (zh) * 2016-03-29 2016-06-15 浙江三田汽车空调压缩机有限公司 变排量压缩机主轴斜盘

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266952A (ja) * 1997-03-25 1998-10-06 Zexel Corp 可変容量型斜板式圧縮機
JP2000186668A (ja) * 1998-12-22 2000-07-04 Toyota Autom Loom Works Ltd 可変容量型圧縮機における容量制御構造
JP2002322981A (ja) * 2001-04-26 2002-11-08 Calsonic Kansei Corp 圧縮機
JP2008075556A (ja) * 2006-09-21 2008-04-03 Shin Caterpillar Mitsubishi Ltd 可変容量型ポンプにおける斜板制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266952A (ja) * 1997-03-25 1998-10-06 Zexel Corp 可変容量型斜板式圧縮機
JP2000186668A (ja) * 1998-12-22 2000-07-04 Toyota Autom Loom Works Ltd 可変容量型圧縮機における容量制御構造
JP2002322981A (ja) * 2001-04-26 2002-11-08 Calsonic Kansei Corp 圧縮機
JP2008075556A (ja) * 2006-09-21 2008-04-03 Shin Caterpillar Mitsubishi Ltd 可変容量型ポンプにおける斜板制御装置

Also Published As

Publication number Publication date
JP2012246861A (ja) 2012-12-13
JP5750802B2 (ja) 2015-07-22
DE112012002338T5 (de) 2014-03-06

Similar Documents

Publication Publication Date Title
KR100215158B1 (ko) 가변용량 압축기 및 그 제어방법
US20110091334A1 (en) Variable Displacement Compressor
US6146107A (en) Variable displacement compressor
US6416297B1 (en) Stopping means for preventing movement of the drive shaft of a variable displacement compressor
JP5750802B2 (ja) 可変容量圧縮機及び可変容量圧縮機の斜板に作用するバネ付勢力の調整方法
KR101558339B1 (ko) 용량 가변형 사판식 압축기
WO2017047720A1 (ja) 容量制御弁
JP4974927B2 (ja) 斜板式圧縮機
EP1052404A2 (en) Hinge mechanism for variable displacement compressors
US10012218B2 (en) Variable displacement compressor and swash place linkage connection
US20170145997A1 (en) Variable displacement type swash plate compressor
US7320576B2 (en) Clutchless variable displacement refrigerant compressor with mechanism for reducing displacement work at increased driven speed during non-operation of refrigerating system including the compressor
JP2000046066A (ja) 動力伝達機構及びその組立方法
US10072648B2 (en) Variable displacement type swash plate compressor
WO1998032969A1 (fr) Compresseur a plateau oscillant a cylindree variable presentant un element ameliore de support de plateau oscillant
US20060222513A1 (en) Swash plate type variable displacement compressor
US9850886B2 (en) Variable displacement swash-plate compressor
JP2006009627A (ja) 可変容量圧縮機
JP2013245632A (ja) 可変容量圧縮機
JP4059743B2 (ja) 可変容量圧縮機
JP2009138533A (ja) 可変容量型斜板式圧縮機
US6912948B2 (en) Swash plate compressor
WO2014112580A1 (ja) 可変容量圧縮機
WO2013179928A1 (ja) 可変容量圧縮機
US9903353B2 (en) Variable displacement swash plate compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012002338

Country of ref document: DE

Ref document number: 1120120023382

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793880

Country of ref document: EP

Kind code of ref document: A1