WO2012164837A1 - Power supply apparatus - Google Patents

Power supply apparatus Download PDF

Info

Publication number
WO2012164837A1
WO2012164837A1 PCT/JP2012/003111 JP2012003111W WO2012164837A1 WO 2012164837 A1 WO2012164837 A1 WO 2012164837A1 JP 2012003111 W JP2012003111 W JP 2012003111W WO 2012164837 A1 WO2012164837 A1 WO 2012164837A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
power supply
assembled battery
battery
supply device
Prior art date
Application number
PCT/JP2012/003111
Other languages
French (fr)
Japanese (ja)
Inventor
細谷 直人
仰 奥谷
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012164837A1 publication Critical patent/WO2012164837A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/517Methods for interconnecting adjacent batteries or cells by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries

Definitions

  • the present invention relates to a power supply device, and more particularly to a power supply device in which assembled batteries including a plurality of single cells are electrically connected to each other.
  • an object of the present invention is to increase the energy density of a power supply device by reducing the volume of an electrical connection portion of a battery unit (assembled battery) and to easily perform electrical connection between assembled batteries. .
  • the assembled battery B includes a plurality of cylindrical unit cells b, an electrode plate ⁇ -1 disposed at the top of the unit cell b, and an electrode plate ⁇ -2 disposed at the bottom of the unit cell b.
  • the bus bar connects the electrode plate ⁇ -1 disposed at the top of the unit cell a and the electrode plate ⁇ -2 disposed at the bottom of the unit cell b, according to [1].
  • [3] The power supply device according to [1] or [2], wherein at least a part of the bus bar is disposed in a gap between the cells b of the assembled battery B.
  • the power supply device according to [1] or [2], wherein the bus bar is copper, iron, nickel, aluminum, or an alloy thereof, or a multilayer plywood containing them.
  • the bus bar is a solid bar having an outer diameter of ⁇ 5 to 20 mm.
  • the bus bar is a hollow bar having an outer diameter of 5 to 20 mm and an inner diameter of 4 to 19 mm.
  • the hollow portion of the bus bar serves as an exhaust passage for gas discharged from the single cell a or the single cell b.
  • the power supply apparatus according to [1] or [2], wherein the assembled battery A or the assembled battery B includes a housing that holds a plurality of single cells, and the bus bar is separated from the housing.
  • the power source according to [1] or [2], wherein a temperature or voltage sensor is disposed in a gap between the single cells a of the assembled battery A or a single cell b of the assembled battery B. apparatus.
  • An assembled battery A in which a plurality of single cells a are arranged on the same plane and an assembled battery B in which a plurality of single cells b are arranged on the same plane are alternately and continuously arranged.
  • 1st battery module which is electrically connected with the electrode of the assembled battery B through the bus bar, and at least a part of the bus bar is disposed in the gap between the cells a, and manufactured in the same manner as the first battery module
  • the first and second battery modules are arranged such that the anode sides face each other, the anode at one end of the first battery module, and the second battery module A power supply device in which a negative electrode at one end is electrically connected via a bus bar.
  • the power supply device according to [11] further including an explosion-proof hood disposed on the anodes of the first and second battery modules.
  • An assembled battery A in which a plurality of single cells a are arranged on the same plane and an assembled battery B in which a plurality of single cells b are arranged on the same plane are alternately and continuously arranged.
  • 1st battery module which is electrically connected with the electrode of the assembled battery B through the bus bar, and at least a part of the bus bar is disposed in the gap between the cells a, and manufactured in the same manner as the first battery module A second battery module, and the anode side of the first battery module and the anode side of the second battery module are arranged to face each other, and the anode at one end of the first battery module
  • the power supply device in which the negative electrode at one end of the second battery module is electrically connected via a bus bar.
  • the power supply device of the present invention has a large capacity by electrically connecting a plurality of assembled batteries having a plurality of single cells. And since the electrical connection part of assembled batteries is compact, the energy density of a power supply device increases. Therefore, it can be used for a power supply device for applications where an increase in capacity and an improvement in energy density are desired.
  • FIG. 1A is a perspective view of an example of an assembled battery constituting a power supply device.
  • FIG. 1B is an exploded perspective view of an example of an assembled battery constituting the power supply device.
  • FIG. 2A is a side view of the assembled battery 100 in FIG. 1A as viewed from the arrow X1 side.
  • FIG. 2B is a side view of the assembled battery 100 in FIG. 1A as viewed from the side of the arrow X2.
  • FIG. 2C is a side view of the assembled battery 100 in FIG. 1A as viewed from the direction of the arrow Y.
  • FIG. 2D is a top view of the assembled battery 100 in FIG. 1A as viewed from the direction of the arrow Z.
  • FIG. 1A is a perspective view of an example of an assembled battery constituting a power supply device.
  • FIG. 1B is an exploded perspective view of an example of an assembled battery constituting the power supply device.
  • FIG. 2A is a side view of the assembled battery 100 in FIG
  • FIG. 3A is a perspective view showing a position where a bus bar is arranged in a case where a group of unit cells is arranged in the closest packing.
  • FIG. 3B is a top view showing a position where the bus bars are arranged when the group of single cells is arranged in the closest packing.
  • FIG. 3C is a perspective view showing a position where a bus bar is arranged when a group of unit cells is arranged in a cube.
  • FIG. 3D is a top view showing a position where the bus bar is arranged when the group of single cells is arranged in a cube.
  • FIG. 4A is a perspective view of an example of an assembled battery constituting a power supply device having an explosion-proof structure.
  • FIG. 4A is a perspective view of an example of an assembled battery constituting a power supply device having an explosion-proof structure.
  • FIG. 4B is an exploded perspective view of an example of an assembled battery constituting a power supply device having an explosion-proof structure. It is a figure which shows the state which connects two assembled batteries.
  • FIG. 6A is an external perspective view of one embodiment of a power supply device.
  • FIG. 6B is an internal perspective view of one embodiment of the power supply device.
  • FIG. 6C is an internal top view of one embodiment of the power supply.
  • FIG. 7 is an internal top view of a modification of the embodiment of the power supply device.
  • the power supply device of the present invention includes two or more assembled batteries, and the assembled batteries are electrically connected to each other.
  • the electrical connection between the assembled batteries may be a series connection or a parallel connection.
  • the battery pack is electrically connected through a bus bar.
  • each unit cell is preferably arranged on the same plane.
  • the battery pack includes a plurality of columnar unit cells, an electrode plate disposed on the column top of the unit cell, and an electrode plate disposed on the column bottom of the unit cell.
  • the electrode plate arranged at the column top of the unit cell is connected to the electrode terminal at the column top of the unit cell.
  • the electrode plate arranged at the column bottom of the unit cell is connected to the electrode terminal at the column bottom of the unit cell.
  • the plurality of single cells included in the assembled battery may be supported by a housing member called a housing.
  • the housing can be, for example, an assembly of pipe-shaped members that can accommodate each unit cell (see the pipe-shaped member 30 in FIG. 1), a casting that has holes that can accommodate each unit cell, and the like.
  • the bus bar may be a conductor member that electrically connects the assembled batteries, and may be a flexible wiring member or a rigid metal bar. However, from the viewpoint of facilitating connection work between the assembled batteries, a rigid metal rod may be used.
  • the metal bar may be a solid bar or a hollow bar. Examples of metals include copper, iron, nickel, aluminum, or alloys thereof.
  • the bus bar may be a multilayer plywood containing those metals.
  • the metal bar constituting the bus bar preferably has an outer diameter of ⁇ 5 to 20 mm. Sufficient strength is obtained by setting the outer diameter ⁇ to 5 mm or more. On the other hand, when the outer diameter ⁇ is 20 mm or less, the assembled batteries can be connected to each other in a space efficient manner. Further, the metal bar constituting the bus bar may be a solid bar or a hollow bar (pipe shape).
  • FIG. 1A is a perspective view of an assembled battery 100 constituting a power supply device.
  • FIG. 1B is an exploded perspective view of the assembled battery 100 constituting the power supply device.
  • the assembled battery 100 includes an electrode plate 10, a holder 20, a housing formed of a plurality of pipe-shaped members 30 (30a, 30b,... 30t), and a plurality of single cells 40 (40a, 40b). ,..., 40t), a holder 50, an electrode plate 60, and a bus bar 70.
  • Each cell 40 is accommodated in the pipe-shaped member 30.
  • the accommodated unit cell 40 is supported by the holder 20 and the holder 50.
  • One electrode 41 of the unit cell is connected to the electrode plate 10, and the other electrode 42 is connected to the electrode plate 60.
  • the bus bar 70 is connected to the electrode plate 10, but is not connected to the electrode plate 60.
  • the bus bar 70 may be inseparably connected to the electrode plate 10 or may be detachably connected. For example, if the bus bar 70 is metallurgically joined to the electrode plate 10, it is usually inseparable. If the bus bar 70 is fixed to the electrode plate 10 with a screw, it is detachably connected.
  • FIG. 2A is a side view of the assembled battery 100 in FIG. 1A as viewed from the arrow X1 side.
  • FIG. 2B is a side view of the assembled battery 100 in FIG. 1A as viewed from the side of the arrow X2.
  • FIG. 2C is a side view of the assembled battery 100 in FIG. 1A as viewed from the direction of the arrow Y.
  • FIG. 2D is a top view of the assembled battery 100 in FIG. 1A as viewed from the direction of the arrow Z.
  • a bus bar 70 is disposed at one end in the length direction of the electrode plate 10 (the assembled battery 100). One end of the bus bar 70 is joined to the electrode plate 10. On the other hand, the other end of the bus bar 70 is not joined to the electrode plate 60 but can be joined to another member.
  • the bus bar 70 is bonded to the electrode plate 10 by mechanical or metallurgical bonding.
  • the cells in the assembled battery are preferably arranged in the same plane.
  • the arrangement is not particularly limited, but it is necessary to provide a gap between the arranged cells.
  • the cells may be arranged in the closest packing.
  • they may be arranged in a cube.
  • FIG. 3A is a perspective view showing a state in which a plurality of unit cells 40 (40a, 40b,... 40t) are arranged in the closest packed arrangement.
  • FIG. 3B is a top view of the plurality of unit cells 40 corresponding to FIG. 3A.
  • the plurality of single cells 40 (40a, 40b,... 40t) are arranged in three rows in a close-packed state.
  • the bus bar 70 is disposed along a dotted line 71 between the cells 40g at the right end of the first row and the cells 40t at the right end of the third row.
  • the bus bar 70 is arranged at the right end in the length (X) direction and the position 72 in the second row in the width (Y) direction of the plurality of unit cells 40. By arranging the bus bar 70 in this way, a part of the bus bar 70 is arranged in the gap between the single cells 40.
  • FIG. 3C is a perspective view showing a state in which a plurality of unit cells 40 (40a, 40b,... 40t) are arranged in a cubic manner.
  • FIG. 3D is a top view of the plurality of unit cells 40 corresponding to FIG. 3C.
  • the plurality of single cells 40 (40a, 40b,... 40t) are arranged in three rows in a cubic arrangement state.
  • the bus bar 70 is arranged along a dotted line 71 between the cells 40g at the right end of the first row and the cells 40t at the right end of the third row. Further, as shown in FIG.
  • the bus bar 70 is disposed at the right end in the length (X) direction and the position 72 in the second row in the width (Y) direction of the plurality of unit cells 40.
  • the bus bar 70 is arranged in this way, a part of the bus bar 70 is arranged in the gap between the single cells 40.
  • the space for arranging the bus bars can be minimized. Therefore, when the power supply device is manufactured by combining the assembled batteries 100A and 100B, the volume of the entire power supply device can be reduced.
  • bus bar 70 should just be arrange
  • FIG. For example, as shown in the dotted lines in FIG. 3B and FIG. 3D, it is only necessary that a part of the bus bar 70 is disposed inside the straight line (common tangent line) connecting the edges of the unit cells. .
  • bus bar 70 is disposed in the gap between the single cells 40, it is preferable that the bus bars 70 are separated without contacting the single cells 40 or the pipe-shaped member 30 covering the single cells 40. This is to prevent heat generation of the assembled battery during power generation by flowing the refrigerant through the separation portion.
  • the bus bar 70 may be a pipe-shaped hollow bar. In that case, you may use the hollow part of a hollow bar as an exhaust flow path.
  • Each unit cell 40 has a possibility of thermal runaway due to some trouble. For such fear, each cell 40 preferably has a safety valve called an explosion-proof valve 43 (see FIG. 4B).
  • the explosion-proof valve 43 prevents the single cell 40 from exploding by releasing the internal pressure when the internal pressure of the single cell 40 increases excessively.
  • the gas when the explosion-proof valve 43 is opened can be exhausted to the outside through a flow path composed of the hollow portions of the explosion-proof hood 80 and the bus bar 70.
  • FIG. 4A and 4B show an assembled battery 100 'having an explosion-proof structure.
  • FIG. 4A is a perspective view of the battery pack 100 ′.
  • FIG. 4B is an exploded perspective view of the battery pack 100 ′.
  • the assembled battery 100 ′ includes an explosion-proof hood 80, an electrode plate 10, a holder 20, a housing including a plurality of pipe-shaped members 30, a plurality of unit cells 40 ′, and a holder 50.
  • the electrode plate 60 and the bus bar 70 are provided.
  • the electrode plate 10, the holder 20, a housing made up of a plurality of pipe-shaped members 30, the holder 50, the electrode plate 60, and the bus bar 70 are the same as those shown in FIG. 1A.
  • the unit cell 40 ′ of the assembled battery 100 ′ has an explosion-proof valve 43. Further, the explosion-proof hood 80 forms a sealed space above the unit cell 40 '. The sealed space formed by the explosion-proof hood 80 communicates with the hollow portion of the bus bar 70. Therefore, if the explosion-proof valve of the unit cell 40 ′ is opened, the exhaust gas is produced outside the assembled battery 100 ′ through the sealed space formed by the explosion-proof hood 80 and the hollow portion of the bus bar 70.
  • FIG. 5 shows a state where two assembled batteries (100A and 100B) are connected via a bus bar.
  • the assembled battery 100A includes a plurality of pipe-shaped members 30A that accommodate the unit cells 40A, and further includes an electrode plate 10A and an electrode plate 60A.
  • the assembled battery 100B includes a plurality of pipe-shaped members 30B that accommodate the unit cells 40B, and includes an electrode plate 10B and an electrode plate 60B.
  • the assembled battery 100A has a bus bar 70A, and one end of the bus bar 70A is connected to the electrode plate 10A, but the other end is not connected to the electrode plate 60A.
  • the electrode plate 60B of the assembled battery 100B has a connection part 61B for connecting the other end of the bus bar 70A.
  • the assembled battery 100B may also have a bus bar 70B (not shown) connected to the electrode plate 10B, similarly to the assembled battery 100A.
  • the bus bar 70B may be connected to the connection portion 61C of the electrode plate 60C of the assembled battery 100C (not shown) to obtain a higher-capacity power supply device.
  • FIG. 6A is an external perspective view of one embodiment of a power supply device.
  • FIG. 6B is an internal perspective view of one embodiment of the power supply device.
  • FIG. 6C is an internal top view of one embodiment of the power supply.
  • the power supply device 200 includes a rectangular parallelepiped main body case 201 and a lid body 202 disposed on the upper surface of the main body case. In the body case 201, as shown in FIG.
  • At least a part of the bus bar is disposed in a gap between the cells a at one end in the length direction of the assembled battery 100A.
  • FIG. 7 is an internal top view of a modification of the embodiment of the power supply device.
  • the first and second battery modules 301 and 302 may be arranged so that the anode side of the first battery module 301 and the negative electrode side of the second battery module 302 face each other. Good.
  • the anode at one end of the first battery module 301 and the anode at one end of the second battery module 302 are preferably electrically connected via the bus bar 70.
  • the arrangement shown in FIG. 6C is preferable. This is because the number of members can be reduced because only one explosion-proof hood is required.
  • the power supply device of the present invention is a large-capacity power supply device because it has a plurality of assembled batteries electrically connected to each other. And since the connection part which electrically connects an assembled battery is compact, it is a power supply device with high energy density. Therefore, it can be used for a power supply device for applications where an increase in capacity and an improvement in energy density are desired.
  • Electrode plate 20 Holder 30, 30A, 30B Pipe-like member 40 Single cell 40 'Single cell with explosion-proof valve 41 Electrode 42 Electrode 43 Explosion-proof valve 50 Holder 60, 60A, 60B Electrode plate 70, 70A, 70B Bus bar 80 Explosion-proof hood 100, 100A, 100B Battery pack 100 'Battery pack having explosion-proof structure 200 Power supply device 201 Main body case 202 Lid 301 First battery module 302 Second battery module

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

This power supply apparatus includes an assembled battery (A) having a plurality of unit batteries (a) disposed on a same plane, and an assembled battery (B) having a plurality of unit batteries (b) disposed on a same plane. In the power supply apparatus, the electrodes of the assembled battery (A), and the electrodes of the assembled battery (B) are electrically connected to each other via a bus bar, and at least a part of the bus bar is disposed in a gap between the unit batteries (a) of the assembled battery (A). In this power supply apparatus having the assembled batteries connected therein, energy density of the power supply apparatus can be easily increased and the assembled batteries can be easily electrically connected to each other by reducing the capacity of an electrically connecting section of the assembled batteries.

Description

電源装置Power supply
 本発明は、電源装置、特に複数の単電池を含む組電池同士を電気接続した電源装置に関する。 The present invention relates to a power supply device, and more particularly to a power supply device in which assembled batteries including a plurality of single cells are electrically connected to each other.
 大容量の電源装置を得るために、複数の単電池を収容する電池ユニット(組電池)を複数電気接続して、電源装置とすることがある(特許文献1を参照)。特許文献1は、各電池ユニットに金属リード板を設けて、金属リード板を介して電池ユニット同士を電気接続することを提案している。このとき、金属リード板同士を直接接触させてもよいし、リード線で接続してもよいし、半田付けして連結してもよいとされている。
 その他にも、例えば、特許文献2,3には、複数の組電池がバスバーを介して直列に接続された電源装置が提案されている。しかし、バスバーを配置するための空間が必要となり、電源装置全体の体積が増大するという問題があった。
In order to obtain a large-capacity power supply device, a plurality of battery units (assembled batteries) that accommodate a plurality of single cells may be electrically connected to form a power supply device (see Patent Document 1). Patent Document 1 proposes that each battery unit is provided with a metal lead plate and the battery units are electrically connected to each other via the metal lead plate. At this time, the metal lead plates may be brought into direct contact with each other, may be connected with lead wires, or may be connected by soldering.
In addition, for example, Patent Documents 2 and 3 propose a power supply device in which a plurality of assembled batteries are connected in series via a bus bar. However, there is a problem that a space for arranging the bus bars is required, and the volume of the entire power supply apparatus is increased.
特開2000-133227号公報JP 2000-133227 A 特開2003-45504号公報JP 2003-45504 A 米国特許出願公開第2011/010455US Patent Application Publication No. 2011/010455
 近年、電源装置の大容量化とともに、その容積を低減すること、つまりエネルギー密度の高い電源装置が求められている。一方で、電源装置を構成する電池ユニット(組電池)の電気接続作業が簡便であることが求められている。 In recent years, there has been a demand for a power supply apparatus having a large energy density, that is, a capacity reduction of the power supply apparatus, that is, a high energy density. On the other hand, the electrical connection work of the battery unit (assembled battery) constituting the power supply device is required to be simple.
 そこで本発明は、電池ユニット(組電池)の電気接続部の容積を低減して電源装置のエネルギー密度を高めること、および組電池同士の電気接続を容易に行えるようにすること、を目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to increase the energy density of a power supply device by reducing the volume of an electrical connection portion of a battery unit (assembled battery) and to easily perform electrical connection between assembled batteries. .
 すなわち本発明は、以下に示す電源装置に関する。
 [1]複数の単電池aを同一平面に配列した組電池Aと、複数の単電池bを同一平面に配列した組電池Bと、を含む電源装置であって、組電池Aの電極と組電池Bの電極とは、バスバーを介して電気接続されており、かつバスバーの少なくとも一部は、組電池Aの単電池a同士の隙間に配置されている、電源装置。
 [2]組電池Aは、複数の円柱状の単電池aと、単電池aの頂部に配置された電極板α-1と、単電池aの底部に配置された電極板α-2とを含み、組電池Bは、複数の円柱状の単電池bと、単電池bの頂部に配置された電極板β-1と、単電池bの底部に配置された電極板β-2とを含み、かつバスバーは、単電池aの頂部に配置された電極板α-1と、単電池bの底部に配置された電極板β-2とを接続する、[1]に記載の電源装置。
 [3]バスバーの少なくとも一部は、組電池Bの単電池b同士の隙間に配置されている、[1]または[2]に記載の電源装置。
That is, this invention relates to the power supply device shown below.
[1] A power supply device including an assembled battery A in which a plurality of unit cells a are arranged on the same plane and an assembled battery B in which a plurality of unit cells b are arranged on the same plane, The battery B is electrically connected to the electrode of the battery B through a bus bar, and at least a part of the bus bar is disposed in the gap between the cells a of the assembled battery A.
[2] The assembled battery A includes a plurality of cylindrical unit cells a, an electrode plate α-1 disposed at the top of the unit cell a, and an electrode plate α-2 disposed at the bottom of the unit cell a. The assembled battery B includes a plurality of cylindrical unit cells b, an electrode plate β-1 disposed at the top of the unit cell b, and an electrode plate β-2 disposed at the bottom of the unit cell b. The bus bar connects the electrode plate α-1 disposed at the top of the unit cell a and the electrode plate β-2 disposed at the bottom of the unit cell b, according to [1].
[3] The power supply device according to [1] or [2], wherein at least a part of the bus bar is disposed in a gap between the cells b of the assembled battery B.
 [4]バスバーは、銅、鉄,ニッケル,アルミニウム、またはそれらの合金、もしくはそれらを含む複層の合板である、[1]または[2]に記載の電源装置。
 [5]バスバーは、外径Φ5~20mmの中実バーである、[1]または[2]に記載の電源装置。
 [6]バスバーは、外径Φ5~20mm、内径4~19mmの中空バーである、[1]または[2]に記載の電源装置。
 [7]バスバーの中空部は、単電池aまたは単電池bから排出されるガスの排気流路となる、[6]に記載の電源装置。
[4] The power supply device according to [1] or [2], wherein the bus bar is copper, iron, nickel, aluminum, or an alloy thereof, or a multilayer plywood containing them.
[5] The power supply device according to [1] or [2], wherein the bus bar is a solid bar having an outer diameter of Φ5 to 20 mm.
[6] The power supply device according to [1] or [2], wherein the bus bar is a hollow bar having an outer diameter of 5 to 20 mm and an inner diameter of 4 to 19 mm.
[7] The power supply device according to [6], wherein the hollow portion of the bus bar serves as an exhaust passage for gas discharged from the single cell a or the single cell b.
 [8]バスバーは、電極板α-1または電極板β-2に、機械的または冶金的に接合されている、[2]に記載の電源装置。 [8] The power supply device according to [2], wherein the bus bar is mechanically or metallurgically joined to the electrode plate α-1 or the electrode plate β-2.
 [9]組電池Aまたは組電池Bは、複数の単電池を保持するハウジングを有し、かつバスバーは、ハウジングと離間している、[1]またま[2]に記載の電源装置。
 [10]組電池Aの単電池a同士の隙間、または組電池Bの単電池b同士の隙間には、温度または電圧のセンサーが配置されている、[1]または[2]に記載の電源装置。
 [11]複数の単電池aが同一平面に配列された組電池Aと複数の単電池bが同一平面に配列された組電池Bとが交互に連続して配置され、組電池Aの電極と組電池Bの電極とがバスバーを介して電気接続され、バスバーの少なくとも一部は単電池a同士の隙間に配置されている、第1の電池モジュールと、第1の電池モジュールと同様にして製造された第2の電池モジュールと、を有し、第1、第2の電池モジュールは、各陽極側が互いに向かい合うように配置され、第1の電池モジュールの一端の陽極と、第2の電池モジュールの一端の負極とがバスバーを介して電気接続されている、電源装置。
 [12]第1、第2の電池モジュールの陽極上に配置された、防爆フードをさらに備える、[11]に記載の電源装置。
 [13]複数の単電池aが同一平面に配列された組電池Aと複数の単電池bが同一平面に配列された組電池Bとが交互に連続して配置され、組電池Aの電極と組電池Bの電極とがバスバーを介して電気接続され、バスバーの少なくとも一部は単電池a同士の隙間に配置されている、第1の電池モジュールと、第1の電池モジュールと同様にして製造された第2の電池モジュールと、を有し、第1の電池モジュールの陽極側と、第2の電池モジュールの負極側とがそれぞれ向かい合うように配置され、第1の電池モジュールの一端の陽極と、第2の電池モジュールの一端の負極とがバスバーを介して電気接続されている、電源装置。
[9] The power supply apparatus according to [1] or [2], wherein the assembled battery A or the assembled battery B includes a housing that holds a plurality of single cells, and the bus bar is separated from the housing.
[10] The power source according to [1] or [2], wherein a temperature or voltage sensor is disposed in a gap between the single cells a of the assembled battery A or a single cell b of the assembled battery B. apparatus.
[11] An assembled battery A in which a plurality of single cells a are arranged on the same plane and an assembled battery B in which a plurality of single cells b are arranged on the same plane are alternately and continuously arranged. 1st battery module which is electrically connected with the electrode of the assembled battery B through the bus bar, and at least a part of the bus bar is disposed in the gap between the cells a, and manufactured in the same manner as the first battery module The first and second battery modules are arranged such that the anode sides face each other, the anode at one end of the first battery module, and the second battery module A power supply device in which a negative electrode at one end is electrically connected via a bus bar.
[12] The power supply device according to [11], further including an explosion-proof hood disposed on the anodes of the first and second battery modules.
[13] An assembled battery A in which a plurality of single cells a are arranged on the same plane and an assembled battery B in which a plurality of single cells b are arranged on the same plane are alternately and continuously arranged. 1st battery module which is electrically connected with the electrode of the assembled battery B through the bus bar, and at least a part of the bus bar is disposed in the gap between the cells a, and manufactured in the same manner as the first battery module A second battery module, and the anode side of the first battery module and the anode side of the second battery module are arranged to face each other, and the anode at one end of the first battery module The power supply device in which the negative electrode at one end of the second battery module is electrically connected via a bus bar.
 本発明の電源装置は、複数の単電池を有する組電池の複数を電気接続することで、大容量化されている。しかも、組電池同士の電気接続部がコンパクトであるので、電源装置のエネルギー密度が高まる。よって、大容量化とともに、エネルギー密度の向上が望まれる用途の電源装置に用いられうる。 The power supply device of the present invention has a large capacity by electrically connecting a plurality of assembled batteries having a plurality of single cells. And since the electrical connection part of assembled batteries is compact, the energy density of a power supply device increases. Therefore, it can be used for a power supply device for applications where an increase in capacity and an improvement in energy density are desired.
図1Aは電源装置を構成する組電池の例の斜視図である。図1Bは電源装置を構成する組電池の例の分解斜視図である。FIG. 1A is a perspective view of an example of an assembled battery constituting a power supply device. FIG. 1B is an exploded perspective view of an example of an assembled battery constituting the power supply device. 図2Aは、図1Aにおける組電池100を矢印X1の側から見た側面図である。図2Bは、図1Aにおける組電池100を矢印X2の側から見た側面図である。図2Cは、図1Aにおける組電池100を矢印Yの方向から見た側面図である。図2Dは、図1Aにおける組電池100を矢印Zの方向から見た上面図である。FIG. 2A is a side view of the assembled battery 100 in FIG. 1A as viewed from the arrow X1 side. FIG. 2B is a side view of the assembled battery 100 in FIG. 1A as viewed from the side of the arrow X2. FIG. 2C is a side view of the assembled battery 100 in FIG. 1A as viewed from the direction of the arrow Y. FIG. 2D is a top view of the assembled battery 100 in FIG. 1A as viewed from the direction of the arrow Z. 図3Aは単電池の群が最密重点配列されている場合のバスバーが配置される位置を示す斜視図である。図3Bは単電池の群が最密重点配列されている場合のバスバーが配置される位置を示す上面図である。図3Cは単電池の群が立方配列されている場合のバスバーが配置される位置を示す斜視図である。図3Dは単電池の群が立方配列されている場合のバスバーが配置される位置を示す上面図である。FIG. 3A is a perspective view showing a position where a bus bar is arranged in a case where a group of unit cells is arranged in the closest packing. FIG. 3B is a top view showing a position where the bus bars are arranged when the group of single cells is arranged in the closest packing. FIG. 3C is a perspective view showing a position where a bus bar is arranged when a group of unit cells is arranged in a cube. FIG. 3D is a top view showing a position where the bus bar is arranged when the group of single cells is arranged in a cube. 図4Aは防爆構造を備える電源装置を構成する組電池の例の斜視図である。図4Bは防爆構造を備える電源装置を構成する組電池の例の分解斜視図である。FIG. 4A is a perspective view of an example of an assembled battery constituting a power supply device having an explosion-proof structure. FIG. 4B is an exploded perspective view of an example of an assembled battery constituting a power supply device having an explosion-proof structure. 2つの組電池を接続する状態を示す図である。It is a figure which shows the state which connects two assembled batteries. 図6Aは、電源装置の1実施形態の外観斜視図である。図6Bは、電源装置の1実施形態の内部斜視図である。図6Cは、電源装置の1実施形態の内部上面図である。FIG. 6A is an external perspective view of one embodiment of a power supply device. FIG. 6B is an internal perspective view of one embodiment of the power supply device. FIG. 6C is an internal top view of one embodiment of the power supply. 図7は、電源装置の1実施形態の変形例の内部上面図である。FIG. 7 is an internal top view of a modification of the embodiment of the power supply device.
 本発明の電源装置は、2以上の組電池を含み、組電池同士が電気接続されている。組電池同士の電気接続は、直列接続であっても、並列接続であってもよい。組電池同士の電気接続を、バスバーを介して行うことを特徴とする。 The power supply device of the present invention includes two or more assembled batteries, and the assembled batteries are electrically connected to each other. The electrical connection between the assembled batteries may be a series connection or a parallel connection. The battery pack is electrically connected through a bus bar.
 組電池において、各単電池は同一平面に配列されていることが好ましい。具体的には、組電池は、複数の円柱状の単電池と、単電池の柱頂部に配置された電極板と、単電池の柱底部に配置された電極板と、を有する。単電池の柱頂部に配置された電極板は、単電池の柱頂部の電極端子と接続している。単電池の柱底部に配置された電極板は、単電池の柱底部の電極端子と接続している。 In the assembled battery, each unit cell is preferably arranged on the same plane. Specifically, the battery pack includes a plurality of columnar unit cells, an electrode plate disposed on the column top of the unit cell, and an electrode plate disposed on the column bottom of the unit cell. The electrode plate arranged at the column top of the unit cell is connected to the electrode terminal at the column top of the unit cell. The electrode plate arranged at the column bottom of the unit cell is connected to the electrode terminal at the column bottom of the unit cell.
 組電池に含まれる複数の単電池は、ハウジングと称される収容部材に支持されていてもよい。ハウジングは、例えば、各単電池を収容可能なパイプ状部材の集合体(図1におけるパイプ状部材30を参照)、各単電池を収容可能な孔を設けた鋳物などでありうる。 The plurality of single cells included in the assembled battery may be supported by a housing member called a housing. The housing can be, for example, an assembly of pipe-shaped members that can accommodate each unit cell (see the pipe-shaped member 30 in FIG. 1), a casting that has holes that can accommodate each unit cell, and the like.
 バスバーは、組電池同士を電気接続させる導体部材であればよく、柔軟な配線部材であってもよいし、剛直な金属棒であってもよい。しかし、組電池同士の接続作業を容易にするという視点から、剛直な金属棒とする場合もある。金属棒は、中実の棒材であってもよく、中空の棒材であってもよい。金属の例には、銅、鉄,ニッケル,アルミニウム、またはそれらの合金が含まれる。バスバーは、それらの金属を含む複層の合板であってもよい。 The bus bar may be a conductor member that electrically connects the assembled batteries, and may be a flexible wiring member or a rigid metal bar. However, from the viewpoint of facilitating connection work between the assembled batteries, a rigid metal rod may be used. The metal bar may be a solid bar or a hollow bar. Examples of metals include copper, iron, nickel, aluminum, or alloys thereof. The bus bar may be a multilayer plywood containing those metals.
 バスバーを構成する金属棒は、外径Φ5~20mmであることが好ましい。外径Φを5mm以上とすることで、十分な強度を得る。一方、外径Φを20mm以下とすることで、組電池同士をスペース効率よく接続させることができる。さらに、バスバーを構成する金属棒は、中実バーであってもよいし、中空バー(パイプ状)であってもよい。 The metal bar constituting the bus bar preferably has an outer diameter of Φ5 to 20 mm. Sufficient strength is obtained by setting the outer diameter Φ to 5 mm or more. On the other hand, when the outer diameter Φ is 20 mm or less, the assembled batteries can be connected to each other in a space efficient manner. Further, the metal bar constituting the bus bar may be a solid bar or a hollow bar (pipe shape).
 図1Aは、電源装置を構成する組電池100の斜視図である。図1Bは、電源装置を構成する組電池100の分解斜視図である。図1Bに示されるように、組電池100は、電極板10と、ホルダー20と、複数のパイプ状部材30(30a,30b,…30t)からなるハウジングと、複数の単電池40(40a,40b,…、40t)と、ホルダー50と、電極板60と、バスバー70とを有する。 FIG. 1A is a perspective view of an assembled battery 100 constituting a power supply device. FIG. 1B is an exploded perspective view of the assembled battery 100 constituting the power supply device. As shown in FIG. 1B, the assembled battery 100 includes an electrode plate 10, a holder 20, a housing formed of a plurality of pipe-shaped members 30 (30a, 30b,... 30t), and a plurality of single cells 40 (40a, 40b). ,..., 40t), a holder 50, an electrode plate 60, and a bus bar 70.
 各単電池40は、パイプ状部材30に収容される。収容された単電池40は、ホルダー20およびホルダー50で支持される。単電池の一方の電極41は電極板10に接続し、他方の電極42は電極板60に接続する。 Each cell 40 is accommodated in the pipe-shaped member 30. The accommodated unit cell 40 is supported by the holder 20 and the holder 50. One electrode 41 of the unit cell is connected to the electrode plate 10, and the other electrode 42 is connected to the electrode plate 60.
 バスバー70は、電極板10には接続しているが、一方で、電極板60には接続していない。バスバー70は、電極板10に一体不可分に接続されていてもよいし、着脱可能に接続されていてもよい。例えば、電極版10にバスバー70を冶金的に接合すれば、通常は一体不可分になる。電極板10にバスバー70をねじで固定すれば、脱着可能に接続される。 The bus bar 70 is connected to the electrode plate 10, but is not connected to the electrode plate 60. The bus bar 70 may be inseparably connected to the electrode plate 10 or may be detachably connected. For example, if the bus bar 70 is metallurgically joined to the electrode plate 10, it is usually inseparable. If the bus bar 70 is fixed to the electrode plate 10 with a screw, it is detachably connected.
 図2Aは、図1Aにおける組電池100を矢印X1の側から見た側面図である。図2Bは、図1Aにおける組電池100を矢印X2の側から見た側面図である。図2Cは、図1Aにおける組電池100を矢印Yの方向から見た側面図である。図2Dは、図1Aにおける組電池100を矢印Zの方向から見た上面図である。 FIG. 2A is a side view of the assembled battery 100 in FIG. 1A as viewed from the arrow X1 side. FIG. 2B is a side view of the assembled battery 100 in FIG. 1A as viewed from the side of the arrow X2. FIG. 2C is a side view of the assembled battery 100 in FIG. 1A as viewed from the direction of the arrow Y. FIG. 2D is a top view of the assembled battery 100 in FIG. 1A as viewed from the direction of the arrow Z.
 図2Aに示されるように、一方の側面のパイプ状部材30g、30t同士の間に、バスバー70が挟まれている。一方、図2Bに示されるように、他方の側面、即ち30a、30n同士の間には、バスバー70は配置されていない。そして、図2Cに示されるように、バスバー70の一部は、パイプ状部材30同士の隙間に入り込んでいる。このように、バスバー70の軸方向と、単電池40の軸方向とは平行していることが好ましい。 As shown in FIG. 2A, a bus bar 70 is sandwiched between the pipe-shaped members 30g and 30t on one side surface. On the other hand, as shown in FIG. 2B, the bus bar 70 is not disposed between the other side surfaces, that is, between 30a and 30n. As shown in FIG. 2C, a part of the bus bar 70 enters the gap between the pipe-shaped members 30. Thus, it is preferable that the axial direction of the bus bar 70 and the axial direction of the unit cell 40 are parallel.
 図2Dに示されるように、電極板10(組電池100)の長さ方向の一端にバスバー70が配置されている。バスバー70の一端は電極板10に接合している。一方、バスバー70の他端は、電極板60に接合しておらず、他の部材に接合することができる。バスバー70の電極板10への接合は、機械的または冶金的接合される。 As shown in FIG. 2D, a bus bar 70 is disposed at one end in the length direction of the electrode plate 10 (the assembled battery 100). One end of the bus bar 70 is joined to the electrode plate 10. On the other hand, the other end of the bus bar 70 is not joined to the electrode plate 60 but can be joined to another member. The bus bar 70 is bonded to the electrode plate 10 by mechanical or metallurgical bonding.
 また、図2Cに示されるように、電極板60は、バスバー70が配置される側とは反対側に、接続部位61を有している。接続部位61は、他の組電極のバスバー70が接続する部位となりうる(図5参照)。 Further, as shown in FIG. 2C, the electrode plate 60 has a connection portion 61 on the side opposite to the side where the bus bar 70 is disposed. The connection part 61 can be a part to which the bus bar 70 of another assembled electrode is connected (see FIG. 5).
 組電池における単電池は、同一平面に配列されていることが好ましい。その配列は特に限定されないが、配列された単電池同士の隙間が設けられる必要がある。単電池は、例えば、図3A、図3Bに示されるように、最密重点配列されていてもよい。また図3C、図3Dに示されるように、立方配列されていてもよい。 The cells in the assembled battery are preferably arranged in the same plane. The arrangement is not particularly limited, but it is necessary to provide a gap between the arranged cells. For example, as shown in FIGS. 3A and 3B, the cells may be arranged in the closest packing. Further, as shown in FIG. 3C and FIG. 3D, they may be arranged in a cube.
 図3Aは複数の単電池40(40a、40b、…40t)が最密充点配列されている状態を示す斜視図である。図3Bは、図3Aに対応する複数の単電池40の上面図である。図3Bに示すように、複数の単電池40(40a、40b、…40t)は、最密充填状態で3列に配置されている。バスバー70は、図3Aに示すように1列目右端の単電池40gと3列目右端の単電池40tの間の点線71に沿って配置されている。またバスバー70は、図3Bに示すように複数の単電池40の長さ(X)方向の右端、幅(Y)方向の2列目の位置72に配置されている。このようにバスバー70を配置することで、バスバー70の一部が、単電池40同士の隙間に配置される。 FIG. 3A is a perspective view showing a state in which a plurality of unit cells 40 (40a, 40b,... 40t) are arranged in the closest packed arrangement. FIG. 3B is a top view of the plurality of unit cells 40 corresponding to FIG. 3A. As shown in FIG. 3B, the plurality of single cells 40 (40a, 40b,... 40t) are arranged in three rows in a close-packed state. As shown in FIG. 3A, the bus bar 70 is disposed along a dotted line 71 between the cells 40g at the right end of the first row and the cells 40t at the right end of the third row. 3B, the bus bar 70 is arranged at the right end in the length (X) direction and the position 72 in the second row in the width (Y) direction of the plurality of unit cells 40. By arranging the bus bar 70 in this way, a part of the bus bar 70 is arranged in the gap between the single cells 40.
 また、図3Cは複数の単電池40(40a、40b、…40t)が立方配列されている状態を示す斜視図である。図3Dは、図3Cに対応する複数の単電池40の上面図である。図3Dに示すように、複数の単電池40(40a、40b、…40t)は、立方配列状態で3列に配置されている。バスバー70は、図3Cに示すように1列目右端の単電池40gと3列目右端の単電池40tの間の点線71に沿って配置されている。またバスバー70は、図3Dに示すように複数の単電池40の長さ(X)方向の右端、幅(Y)方向の2列目の位置72に配置されている。このようにバスバー70を配置することで、バスバー70の一部が、単電池40同士の隙間に配置される。
 以上のように、図3A~図3Dに示すように複数の単電池40を配置することで、バスバーを配置する空間を最小限にすることができる。そのため、組電池100A,100Bを組み合わして、電源装置を製造した際に、電源装置全体の体積を小さくすることができる。
3C is a perspective view showing a state in which a plurality of unit cells 40 (40a, 40b,... 40t) are arranged in a cubic manner. FIG. 3D is a top view of the plurality of unit cells 40 corresponding to FIG. 3C. As shown in FIG. 3D, the plurality of single cells 40 (40a, 40b,... 40t) are arranged in three rows in a cubic arrangement state. As shown in FIG. 3C, the bus bar 70 is arranged along a dotted line 71 between the cells 40g at the right end of the first row and the cells 40t at the right end of the third row. Further, as shown in FIG. 3D, the bus bar 70 is disposed at the right end in the length (X) direction and the position 72 in the second row in the width (Y) direction of the plurality of unit cells 40. By arranging the bus bar 70 in this way, a part of the bus bar 70 is arranged in the gap between the single cells 40.
As described above, by arranging the plurality of single cells 40 as shown in FIGS. 3A to 3D, the space for arranging the bus bars can be minimized. Therefore, when the power supply device is manufactured by combining the assembled batteries 100A and 100B, the volume of the entire power supply device can be reduced.
 バスバー70の一部が、単電池40同士の隙間に配置されていればよい。隙間に配置されるとは、例えば図3Bおよび図3Dの点線に示されるように、単電池の縁を結ぶ直線(共通の接線)よりも内部にバスバー70の一部が配置されていればよい。 A part of bus bar 70 should just be arrange | positioned in the clearance gap between the single cells 40. FIG. For example, as shown in the dotted lines in FIG. 3B and FIG. 3D, it is only necessary that a part of the bus bar 70 is disposed inside the straight line (common tangent line) connecting the edges of the unit cells. .
 バスバー70は、単電池40同士の隙間に配置されるが、単電池40またはそれを覆うパイプ状部材30には接触せずに、離間していることが好ましい。離間部に冷媒を流すことで、発電中の組電池の発熱を抑制するためである。 Although the bus bar 70 is disposed in the gap between the single cells 40, it is preferable that the bus bars 70 are separated without contacting the single cells 40 or the pipe-shaped member 30 covering the single cells 40. This is to prevent heat generation of the assembled battery during power generation by flowing the refrigerant through the separation portion.
 前述の通り、バスバー70はパイプ状の中空バーであってもよい。その場合には、中空バーの中空部分を、排気流路として用いてもよい。各単電池40は、何らかの不具合により、熱暴走が起こる可能性を有している。そのような恐れに対して、各単電池40は、防爆弁43と称される安全弁を有していることが好ましい(図4B参照)。防爆弁43は、単電池40の内部の圧力が過剰に高まったときに、内部圧力を解放することで、単電池40が爆発することを防止する。防爆弁43が開放したときのガスを、防爆フード80とバスバー70の中空部分からなる流路を通して、外部に排気することができる。 As described above, the bus bar 70 may be a pipe-shaped hollow bar. In that case, you may use the hollow part of a hollow bar as an exhaust flow path. Each unit cell 40 has a possibility of thermal runaway due to some trouble. For such fear, each cell 40 preferably has a safety valve called an explosion-proof valve 43 (see FIG. 4B). The explosion-proof valve 43 prevents the single cell 40 from exploding by releasing the internal pressure when the internal pressure of the single cell 40 increases excessively. The gas when the explosion-proof valve 43 is opened can be exhausted to the outside through a flow path composed of the hollow portions of the explosion-proof hood 80 and the bus bar 70.
 図4A、図4Bには、防爆構造を有する組電池100’が示される。図4Aは、組電池100’の斜視図である。図4Bは、組電池100’の分解斜視図である。図4Bに示されるように、組電池100’は、防爆フード80と、電極板10と、ホルダー20と、複数のパイプ状部材30からなるハウジングと、複数の単電池40’と、ホルダー50と、電極板60と、バスバー70とを有する。電極板10と、ホルダー20と、複数のパイプ状部材30からなるハウジングと、ホルダー50と、電極板60と、バスバー70とは、図1Aに示されるものと同様である。 4A and 4B show an assembled battery 100 'having an explosion-proof structure. FIG. 4A is a perspective view of the battery pack 100 ′. FIG. 4B is an exploded perspective view of the battery pack 100 ′. As shown in FIG. 4B, the assembled battery 100 ′ includes an explosion-proof hood 80, an electrode plate 10, a holder 20, a housing including a plurality of pipe-shaped members 30, a plurality of unit cells 40 ′, and a holder 50. The electrode plate 60 and the bus bar 70 are provided. The electrode plate 10, the holder 20, a housing made up of a plurality of pipe-shaped members 30, the holder 50, the electrode plate 60, and the bus bar 70 are the same as those shown in FIG. 1A.
 組電池100’の単電池40’は、防爆弁43を有する。さらに、防爆フード80は、単電池40’の上部に密閉空間を形成する。防爆フード80が形成する密閉空間は、バスバー70の中空部と連通している。従って、仮に単電池40’の防爆弁が開いた場合には、その排ガスは防爆フード80が形成する密閉空間と、バスバー70の中空部とを経て、組電池100’の外部に輩出される。 The unit cell 40 ′ of the assembled battery 100 ′ has an explosion-proof valve 43. Further, the explosion-proof hood 80 forms a sealed space above the unit cell 40 '. The sealed space formed by the explosion-proof hood 80 communicates with the hollow portion of the bus bar 70. Therefore, if the explosion-proof valve of the unit cell 40 ′ is opened, the exhaust gas is produced outside the assembled battery 100 ′ through the sealed space formed by the explosion-proof hood 80 and the hollow portion of the bus bar 70.
 図5には、2つの組電池(100Aと100B)を、バスバーを介して接続する状態が示される。組電池100Aは、単電池40Aを収容するパイプ状部材30Aを複数含み、さらに電極板10Aと電極板60Aを有する。一方、組電池100Bは、単電池40Bを収容するパイプ状部材30Bを複数含み、電極板10Bと電極板60Bを有する。 FIG. 5 shows a state where two assembled batteries (100A and 100B) are connected via a bus bar. The assembled battery 100A includes a plurality of pipe-shaped members 30A that accommodate the unit cells 40A, and further includes an electrode plate 10A and an electrode plate 60A. On the other hand, the assembled battery 100B includes a plurality of pipe-shaped members 30B that accommodate the unit cells 40B, and includes an electrode plate 10B and an electrode plate 60B.
 組電池100Aはバスバー70Aを有しており、バスバー70Aの一端は電極板10Aに接続しているが、他端は電極板60Aに接続していない。一方、組電池100Bの電極板60Bは、バスバー70Aの他端が接続するための接続部位61Bを有する。 The assembled battery 100A has a bus bar 70A, and one end of the bus bar 70A is connected to the electrode plate 10A, but the other end is not connected to the electrode plate 60A. On the other hand, the electrode plate 60B of the assembled battery 100B has a connection part 61B for connecting the other end of the bus bar 70A.
 組電池100Aと組電池100Bとを接続して電源装置とする場合には、組電池100Aのバスバー70Aを、組電池100Bの接続部位61Bに接続すればよい。バスバー70Aは、接続部位61Bに機械的または冶金的に接合されうる。バスバー70Aは剛直体であるので、接続部位61Bに位置あわせしやすく、接続作業が容易である。また、バスバー70Aと接続部位61Bとをねじ固定すれば、容易に再分離することもできるので、電源装置のメンテナンスなども容易になる。 When the assembled battery 100A and the assembled battery 100B are connected to form a power supply device, the bus bar 70A of the assembled battery 100A may be connected to the connection part 61B of the assembled battery 100B. The bus bar 70A can be mechanically or metallurgically joined to the connection portion 61B. Since the bus bar 70A is a rigid body, it is easy to align with the connection part 61B, and the connection work is easy. Further, if the bus bar 70A and the connection part 61B are fixed with screws, the bus bar 70A and the connection part 61B can be easily re-separated.
 さらに、組電池100Bも、組電池100Aと同様に、電極板10Bに接続したバスバー70B(不図示)を有していてもよい。バスバー70Bは、組電池100C(不図示)の電極板60Cの接続部位61Cに接続することで、さらに高容量の電源装置を得てもよい。 Furthermore, the assembled battery 100B may also have a bus bar 70B (not shown) connected to the electrode plate 10B, similarly to the assembled battery 100A. The bus bar 70B may be connected to the connection portion 61C of the electrode plate 60C of the assembled battery 100C (not shown) to obtain a higher-capacity power supply device.
 上述の組電池100A、100Bの使用例として、組電池100A、100Bを備える、電源装置の1実施形態を挙げて説明する。
 図6Aは、電源装置の1実施形態の外観斜視図である。図6Bは、電源装置の1実施形態の内部斜視図である。図6Cは、電源装置の1実施形態の内部上面図である。
 図6Aに示すように、電源装置200は、直方体状の本体ケース201と、本体ケースの上面に配置された蓋体202とを備える。本体ケース201の内部には、図6Bに示すように、複数の単電池aが同一平面に配列された組電池100Aと複数の単電池bが同一平面に配列された組電池100Bとが交互に連続して配置された第1の電池モジュール301と、第1の電池モジュール301と同様に製造された第2の電池モジュール302とが納められている。第1の電池モジュール301と第2の電池モジュール302は、各陽極側が互いに向かい合うように配置されている。第1の電池モジュール301の一端の陽極と、第2の電池モジュール302の一端の負極とはバスバー70を介して電気接続されている。なお、図6Cに示すように、組電池100Aの電極と組電池100Bの電極とはバスバーを介して電気接続されている。バスバーの少なくとも一部は、組電池100Aの長さ方向の一端の単電池a同士の隙間に配置されている。
 図6Cに仮想線で示すように、第1、第2の電池モジュール301、302の陽極上には、防爆フード80を設けることが好ましい。万が一、単電池a(b)が破裂した場合であっても、電源装置200の外部に部品の飛散を防止して、電源装置200の安全性を向上できるからである。
As an example of use of the above-described assembled batteries 100A and 100B, an embodiment of a power supply device including the assembled batteries 100A and 100B will be described.
FIG. 6A is an external perspective view of one embodiment of a power supply device. FIG. 6B is an internal perspective view of one embodiment of the power supply device. FIG. 6C is an internal top view of one embodiment of the power supply.
As shown in FIG. 6A, the power supply device 200 includes a rectangular parallelepiped main body case 201 and a lid body 202 disposed on the upper surface of the main body case. In the body case 201, as shown in FIG. 6B, assembled batteries 100A in which a plurality of single cells a are arranged on the same plane and assembled batteries 100B in which a plurality of single cells b are arranged on the same plane are alternately arranged. A first battery module 301 arranged continuously and a second battery module 302 manufactured in the same manner as the first battery module 301 are housed. The first battery module 301 and the second battery module 302 are arranged so that the anode sides face each other. The anode at one end of the first battery module 301 and the negative electrode at one end of the second battery module 302 are electrically connected via a bus bar 70. 6C, the electrode of the assembled battery 100A and the electrode of the assembled battery 100B are electrically connected via a bus bar. At least a part of the bus bar is disposed in a gap between the cells a at one end in the length direction of the assembled battery 100A.
As indicated by phantom lines in FIG. 6C, it is preferable to provide an explosion-proof hood 80 on the anodes of the first and second battery modules 301 and 302. This is because even if the unit cell a (b) is ruptured, parts can be prevented from being scattered outside the power supply device 200, and the safety of the power supply device 200 can be improved.
 図7は、電源装置の1実施形態の変形例の内部上面図である。図7に示すように、第1、第2の電池モジュール301、302は、第1の電池モジュール301の陽極側と、第2の電池モジュール302の負極側とがそれぞれ向かい合うように配置してもよい。その際は、第1の電池モジュール301の一端の陽極と、第2の電池モジュール302の一端の負極とはバスバー70を介して電気接続されることが好ましい。また図7に仮想線で示すように、第1、第2の電池モジュール301、302のそれぞれの陽極上に、防爆フード80を設けることが好ましい。上述と同様に電源装置200の安全性が向上するからである。
 図6C、図7に示す第1、第2の電池モジュール301、302の配置の中では、図6Cに示す配置が好ましい。防爆フードを1つ配置すればよい点で、部材数を少なくできるからである。
FIG. 7 is an internal top view of a modification of the embodiment of the power supply device. As shown in FIG. 7, the first and second battery modules 301 and 302 may be arranged so that the anode side of the first battery module 301 and the negative electrode side of the second battery module 302 face each other. Good. In that case, the anode at one end of the first battery module 301 and the anode at one end of the second battery module 302 are preferably electrically connected via the bus bar 70. Further, as indicated by phantom lines in FIG. 7, it is preferable to provide an explosion-proof hood 80 on each anode of the first and second battery modules 301 and 302. This is because the safety of the power supply device 200 is improved as described above.
Among the arrangements of the first and second battery modules 301 and 302 shown in FIGS. 6C and 7, the arrangement shown in FIG. 6C is preferable. This is because the number of members can be reduced because only one explosion-proof hood is required.
 本出願は、同出願人により先にされた日本国特許出願、すなわち、特願2011-121640号(出願日2011年5月31日)に基づく優先権主張を伴うものであって、これらの明細書の内容を参照して本発明の一部としてここに組み込むものとする。 This application is accompanied by a priority claim based on a Japanese patent application filed earlier by the same applicant, ie, Japanese Patent Application No. 2011-121640 (filing date: May 31, 2011). The contents of which are incorporated herein as part of the present invention.
 本発明の電源装置は、互いに電気接続された複数の組電池を有するので大容量の電源装置である。しかも、組電池を電気接続する接続部がコンパクトであるので、エネルギー密度の高い電源装置である。よって、大容量化とともに、エネルギー密度の向上が望まれる用途の電源装置に用いられうる。 The power supply device of the present invention is a large-capacity power supply device because it has a plurality of assembled batteries electrically connected to each other. And since the connection part which electrically connects an assembled battery is compact, it is a power supply device with high energy density. Therefore, it can be used for a power supply device for applications where an increase in capacity and an improvement in energy density are desired.
 10,10A,10B 電極板
 20 ホルダー
 30,30A,30B パイプ状部材
 40 単電池
 40’ 防爆弁を有する単電池
 41 電極
 42 電極
 43 防爆弁
 50 ホルダー
 60,60A,60B 電極板
 70,70A,70B バスバー
 80 防爆フード
 100,100A,100B 組電池
 100’ 防爆構造を有する組電池
 200 電源装置
 201 本体ケース
 202 蓋体
 301 第1の電池モジュール
 302 第2の電池モジュール
10, 10A, 10B Electrode plate 20 Holder 30, 30A, 30B Pipe-like member 40 Single cell 40 'Single cell with explosion-proof valve 41 Electrode 42 Electrode 43 Explosion-proof valve 50 Holder 60, 60A, 60B Electrode plate 70, 70A, 70B Bus bar 80 Explosion- proof hood 100, 100A, 100B Battery pack 100 'Battery pack having explosion-proof structure 200 Power supply device 201 Main body case 202 Lid 301 First battery module 302 Second battery module

Claims (13)

  1.  複数の単電池aを同一平面に配列した組電池Aと、複数の単電池bを同一平面に配列した組電池Bと、を含む電源装置であって、
     前記組電池Aの電極と前記組電池Bの電極とは、バスバーを介して電気接続されており、かつ前記バスバーの少なくとも一部は、前記組電池Aの前記単電池a同士の隙間に配置されている、電源装置。
    A power supply device including an assembled battery A in which a plurality of single cells a are arranged on the same plane, and an assembled battery B in which a plurality of single cells b are arranged on the same plane,
    The electrode of the assembled battery A and the electrode of the assembled battery B are electrically connected via a bus bar, and at least a part of the bus bar is disposed in a gap between the unit cells a of the assembled battery A. The power supply.
  2.  前記組電池Aは、複数の円柱状の単電池aと、前記単電池aの頂部に配置された電極板α-1と、前記単電池aの底部に配置された電極板α-2とを含み、
     前記組電池Bは、複数の円柱状の単電池bと、前記単電池bの頂部に配置された電極板β-1と、前記単電池bの底部に配置された電極板β-2とを含み、かつ
     前記バスバーは、前記単電池aの頂部に配置された電極板α-1と、前記単電池bの底部に配置された電極板β-2とを接続する、請求項1に記載の電源装置。
    The assembled battery A includes a plurality of cylindrical unit cells a, an electrode plate α-1 disposed at the top of the unit cell a, and an electrode plate α-2 disposed at the bottom of the unit cell a. Including
    The assembled battery B includes a plurality of cylindrical unit cells b, an electrode plate β-1 disposed at the top of the unit cell b, and an electrode plate β-2 disposed at the bottom of the unit cell b. The bus bar includes: an electrode plate α-1 disposed on a top portion of the unit cell a and an electrode plate β-2 disposed on a bottom portion of the unit cell b. Power supply.
  3.  前記バスバーの少なくとも一部は、前記組電池Bの前記単電池b同士の隙間に配置されている、請求項1または2に記載の電源装置。 The power supply device according to claim 1 or 2, wherein at least a part of the bus bar is disposed in a gap between the unit cells b of the assembled battery B.
  4.  前記バスバーは、銅、鉄,ニッケル,アルミニウム、またはそれらの合金、もしくはそれらを含む複層の合板である、請求項1または2に記載の電源装置。 The power supply device according to claim 1 or 2, wherein the bus bar is copper, iron, nickel, aluminum, an alloy thereof, or a multilayer plywood containing them.
  5.  前記バスバーは、外径Φ5~20mmの中実バーである、請求項1または2に記載の電源装置。 The power supply device according to claim 1 or 2, wherein the bus bar is a solid bar having an outer diameter of Φ5 to 20 mm.
  6.  前記バスバーは、外径Φ5~20mm、内径4~19mmの中空バーである、請求項1または2に記載の電源装置。 3. The power supply device according to claim 1, wherein the bus bar is a hollow bar having an outer diameter of 5 to 20 mm and an inner diameter of 4 to 19 mm.
  7.  前記バスバーの中空部は、前記単電池aまたは前記単電池bから排出されるガスの排気流路となる、請求項6に記載の電源装置。 The power supply device according to claim 6, wherein the hollow portion of the bus bar serves as an exhaust passage for gas discharged from the unit cell a or the unit cell b.
  8.  前記バスバーは、前記電極板α-1または前記電極板β-2に、機械的または冶金的に接合されている、請求項2に記載の電源装置。 The power supply device according to claim 2, wherein the bus bar is mechanically or metallurgically joined to the electrode plate α-1 or the electrode plate β-2.
  9.  前記組電池Aまたは前記組電池Bは、前記複数の単電池を保持するハウジングを有し、かつ
     前記バスバーは、前記ハウジングと離間している、請求項1または2に記載の電源装置。
    3. The power supply device according to claim 1, wherein the assembled battery A or the assembled battery B includes a housing that holds the plurality of unit cells, and the bus bar is separated from the housing.
  10.  前記組電池Aの前記単電池a同士の隙間、または前記組電池Bの前記単電池b同士の隙間には、温度または電圧のセンサーが配置されている、請求項1または2に記載の電源装置。 3. The power supply device according to claim 1, wherein a temperature or voltage sensor is disposed in a gap between the single cells a of the assembled battery A or a gap between the single cells b of the assembled battery B. 4. .
  11.  複数の単電池aが同一平面に配列された組電池Aと複数の単電池bが同一平面に配列された組電池Bとが交互に連続して配置され、前記組電池Aの電極と前記組電池Bの電極とがバスバーを介して電気接続され、前記バスバーの少なくとも一部は前記単電池a同士の隙間に配置されている、第1の電池モジュールと、
     前記第1の電池モジュールと同様にして製造された第2の電池モジュールと、を有し、
     前記第1、第2の電池モジュールは、各陽極側が互いに向かい合うように配置され、前記第1の電池モジュールの一端の陽極と、前記第2の電池モジュールの一端の負極とがバスバーを介して電気接続されている、電源装置。
    An assembled battery A in which a plurality of single cells a are arranged on the same plane and an assembled battery B in which a plurality of single cells b are arranged on the same plane are alternately and continuously arranged, and the electrode of the assembled battery A and the set A first battery module electrically connected to the electrode of the battery B via a bus bar, wherein at least a part of the bus bar is disposed in a gap between the unit cells a;
    A second battery module manufactured in the same manner as the first battery module,
    The first and second battery modules are arranged so that the anode sides face each other, and an anode at one end of the first battery module and an anode at one end of the second battery module are electrically connected via a bus bar. Connected power supply.
  12.  前記第1、第2の電池モジュールの陽極上に配置された、防爆フードをさらに備える、請求項11に記載の電源装置。 The power supply device according to claim 11, further comprising an explosion-proof hood disposed on the anodes of the first and second battery modules.
  13.  複数の単電池aが同一平面に配列された組電池Aと複数の単電池bが同一平面に配列された組電池Bとが交互に連続して配置され、前記組電池Aの電極と前記組電池Bの電極とがバスバーを介して電気接続され、前記バスバーの少なくとも一部は前記単電池a同士の隙間に配置されている、第1の電池モジュールと、
     前記第1の電池モジュールと同様にして製造された第2の電池モジュールと、を有し、
     前記第1の電池モジュールの陽極側と、前記第2の電池モジュールの負極側とがそれぞれ向かい合うように配置され、前記第1の電池モジュールの一端の陽極と、前記第2の電池モジュールの一端の負極とがバスバーを介して電気接続されている、電源装置。
    An assembled battery A in which a plurality of single cells a are arranged on the same plane and an assembled battery B in which a plurality of single cells b are arranged on the same plane are alternately and continuously arranged, and the electrode of the assembled battery A and the set A first battery module electrically connected to the electrode of the battery B via a bus bar, wherein at least a part of the bus bar is disposed in a gap between the unit cells a;
    A second battery module manufactured in the same manner as the first battery module,
    The anode side of the first battery module and the anode side of the second battery module are arranged to face each other, and the anode at one end of the first battery module and the one end of the second battery module are arranged. A power supply device in which the negative electrode is electrically connected via a bus bar.
PCT/JP2012/003111 2011-05-31 2012-05-11 Power supply apparatus WO2012164837A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-121640 2011-05-31
JP2011121640 2011-05-31

Publications (1)

Publication Number Publication Date
WO2012164837A1 true WO2012164837A1 (en) 2012-12-06

Family

ID=47258715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003111 WO2012164837A1 (en) 2011-05-31 2012-05-11 Power supply apparatus

Country Status (2)

Country Link
JP (1) JPWO2012164837A1 (en)
WO (1) WO2012164837A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103280548A (en) * 2013-01-16 2013-09-04 许祎凡 Battery connecting device and battery component using battery connecting device
WO2014119287A1 (en) * 2013-01-29 2014-08-07 三洋電機株式会社 Battery block, battery module, and battery block holder
WO2014125807A1 (en) * 2013-02-14 2014-08-21 三洋電機株式会社 Battery module
WO2015019570A1 (en) * 2013-08-08 2015-02-12 パナソニックIpマネジメント株式会社 Battery unit
JP2015141765A (en) * 2014-01-27 2015-08-03 ダイキョーニシカワ株式会社 battery module
JPWO2014156022A1 (en) * 2013-03-29 2017-02-16 三洋電機株式会社 Battery block
WO2018003467A1 (en) * 2016-06-29 2018-01-04 パナソニックIpマネジメント株式会社 Battery block and battery module
CN108899464A (en) * 2018-07-02 2018-11-27 中兴高能技术有限责任公司 A kind of busbar connector and battery modules of battery modules
CN110752341A (en) * 2019-09-20 2020-02-04 杭州乾代科技有限公司 Parallel terminal suitable for modular lithium battery module and manufacturing method thereof
JP2020522850A (en) * 2017-12-26 2020-07-30 エルジー・ケム・リミテッド Cylindrical battery cell assembly with improved space utilization and safety, and battery module including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114636A (en) * 1975-03-17 1976-10-08 Comp Generale Electricite Battery
JPS57119458A (en) * 1981-01-17 1982-07-24 Sanyo Electric Co Ltd Storage battery
JPS62200250U (en) * 1986-06-10 1987-12-19
JPH02500396A (en) * 1987-07-03 1990-02-08 クローライド サイレント パワー リミテッド battery
JP2000067833A (en) * 1998-08-25 2000-03-03 Nissan Motor Co Ltd Electric automobile battery connection structure and connection structure
JP2009164085A (en) * 2008-01-10 2009-07-23 Hitachi Vehicle Energy Ltd Battery module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114636A (en) * 1975-03-17 1976-10-08 Comp Generale Electricite Battery
JPS57119458A (en) * 1981-01-17 1982-07-24 Sanyo Electric Co Ltd Storage battery
JPS62200250U (en) * 1986-06-10 1987-12-19
JPH02500396A (en) * 1987-07-03 1990-02-08 クローライド サイレント パワー リミテッド battery
JP2000067833A (en) * 1998-08-25 2000-03-03 Nissan Motor Co Ltd Electric automobile battery connection structure and connection structure
JP2009164085A (en) * 2008-01-10 2009-07-23 Hitachi Vehicle Energy Ltd Battery module

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103280548A (en) * 2013-01-16 2013-09-04 许祎凡 Battery connecting device and battery component using battery connecting device
WO2014119287A1 (en) * 2013-01-29 2014-08-07 三洋電機株式会社 Battery block, battery module, and battery block holder
US20150325824A1 (en) * 2013-01-29 2015-11-12 Sanyo Electric Co., Ltd. Battery block, battery module, and battery block holder
JPWO2014119287A1 (en) * 2013-01-29 2017-01-26 三洋電機株式会社 Battery block, battery module and battery block holder
WO2014125807A1 (en) * 2013-02-14 2014-08-21 三洋電機株式会社 Battery module
JPWO2014125807A1 (en) * 2013-02-14 2017-02-02 三洋電機株式会社 Battery module
JP2017224627A (en) * 2013-02-14 2017-12-21 三洋電機株式会社 Battery module
JPWO2014156022A1 (en) * 2013-03-29 2017-02-16 三洋電機株式会社 Battery block
WO2015019570A1 (en) * 2013-08-08 2015-02-12 パナソニックIpマネジメント株式会社 Battery unit
JP2015141765A (en) * 2014-01-27 2015-08-03 ダイキョーニシカワ株式会社 battery module
WO2018003467A1 (en) * 2016-06-29 2018-01-04 パナソニックIpマネジメント株式会社 Battery block and battery module
CN109328407A (en) * 2016-06-29 2019-02-12 松下知识产权经营株式会社 Battery block and battery module
JPWO2018003467A1 (en) * 2016-06-29 2019-04-25 パナソニックIpマネジメント株式会社 Battery block and battery module
US20190305262A1 (en) * 2016-06-29 2019-10-03 Panasonic Intellectual Property Management Co., Ltd. Battery block and battery module
US10910611B2 (en) 2016-06-29 2021-02-02 Panasonic Intellectual Property Management Co., Ltd. Battery block and battery module
CN109328407B (en) * 2016-06-29 2022-01-04 松下知识产权经营株式会社 Battery block and battery module
JP2020522850A (en) * 2017-12-26 2020-07-30 エルジー・ケム・リミテッド Cylindrical battery cell assembly with improved space utilization and safety, and battery module including the same
JP7045597B2 (en) 2017-12-26 2022-04-01 エルジー エナジー ソリューション リミテッド Cylindrical battery cell assembly with improved space utilization and safety, and battery module including it
CN108899464A (en) * 2018-07-02 2018-11-27 中兴高能技术有限责任公司 A kind of busbar connector and battery modules of battery modules
CN110752341A (en) * 2019-09-20 2020-02-04 杭州乾代科技有限公司 Parallel terminal suitable for modular lithium battery module and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2012164837A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
WO2012164837A1 (en) Power supply apparatus
JP2022517213A (en) Battery packs and electric vehicles
JP5172692B2 (en) Manufacturing method of battery core pack
JP5824612B2 (en) Battery module
KR100933425B1 (en) Easy to manufacture battery module
JP5601739B2 (en) High power and large capacity battery pack
JP5490516B2 (en) Battery pack
JP5298031B2 (en) Electrochemical individual cells and batteries for batteries
WO2012073399A1 (en) Battery module and battery pack
JP6004282B2 (en) Battery module
JP4955398B2 (en) Electrical device assembly
JP4199460B2 (en) Square sealed battery
JP2012519362A (en) Electrical energy storage cell and cell block, electrical energy storage device, and vehicle having the device
JP2006252855A (en) Thin secondary battery for high-current discharge and battery module
JP2010211950A (en) Battery pack, method of manufacturing the same, and case for battery pack
WO2019244402A1 (en) Secondary battery module
JP7189227B2 (en) Battery modules and battery packs
EP2704229A1 (en) Secondary battery
KR20190112583A (en) Battery module structure for Indirect water cooling type using heat pipe
JP6625741B2 (en) Battery terminals with integrated springs or flexible pads
JPWO2019003928A1 (en) Bus bar and battery stack
JP2008270350A (en) Device for storing laminated electrical power
US20220069398A1 (en) Power storage device and method of manufacturing same
TWI710156B (en) Collection battery
JP7532788B2 (en) Battery Module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012534888

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12794156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12794156

Country of ref document: EP

Kind code of ref document: A1