WO2012164090A1 - An x-ray tomography device - Google Patents
An x-ray tomography device Download PDFInfo
- Publication number
- WO2012164090A1 WO2012164090A1 PCT/EP2012/060439 EP2012060439W WO2012164090A1 WO 2012164090 A1 WO2012164090 A1 WO 2012164090A1 EP 2012060439 W EP2012060439 W EP 2012060439W WO 2012164090 A1 WO2012164090 A1 WO 2012164090A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- ray
- tomography device
- photon
- ray tomography
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/046—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/40—Imaging
- G01N2223/419—Imaging computed tomograph
Definitions
- the present invention concerns an X-ray tomography device.
- the present invention concerns an X-ray tomography device adapted to petrophysics application, such as to study the flow of fluids into a porous medium.
- the aim is to study the multiphase flow of a mix of two or three fluids inside a porous medium: a mix of any two of water, gas and oil or the three of them.
- the known X-ray tomography systems are adapted to study the morphology of rock pores, to identify the minerals comprised into the rock sample (the porous medium) or the topology of various fluid phases present in the rock sample under static (ie non flowing) conditions.
- these devices are only able to provide static characteristic values inside the porous medium, such as irreducible water saturation or residual oil saturation. They are unable to visualise the flow of a fluid or the flow of a plurality of fluids inside the porous medium.
- Synchrotron X-ray sources provide enough photon flux .
- these devices provide a parallel photon beam having a very small focus spot size, varying about a few mm 2 , that is incompatible with a large field of view needed to observe macroscopic flow of fluids inside a porous medium and especially in realistic porous media where dispersion, anisotropy, viscous fingering requires to be able to record the whole sample view. Additionally, these devices have huge size, are very expensive and they are for scientific use only. It is difficult to have access to such instrument for analysis of a petroleum porous medium where experimental time may require waiting for several weeks up to several months .
- One object of the present invention is to provide an X-ray tomography device that can be used to analyse the flow of fluids inside a porous medium, such as a rock sample of a geological formation.
- the X-ray tomography device is adapted for providing a 3D tomography image of a sample, and it comprises:
- X-ray source emitting a photon beam in the direction of a beam axis, said X-ray source being a near monochromatic source and said photon beam having a solid angle higher than 0.1 degree around said beam axis,
- a cell adapted to include a porous sample to be imaged, said cell being situated inside the photon beam and being able to rotate around a cell axis that is substantially perpendicular to the beam axis, and being adapted to enable the porous sample to be flooded by at least one fluid,
- a photon detector receiving a transmitted photon beam that is transmitted through said cell, said photon detector providing at least one acquired image for each angle of a plurality of cell angles, and said acquired images being taken during a length of time lower than ten minutes, and
- processing unit that computes the tomography image on the basis of the acquired images corresponding to the plurality of cell angles.
- the X-ray tomography device is able to have simultaneously, a high level of photons and a large field of view.
- the volume analysed can be imaged during a length of time lower than ten minutes, which is very competitive with what is achieved with a 3 rd generation synchrotron,
- one and/or other of the following features may optionally be incorporated.
- the monochromatic and highly brilliant X-ray source is a compact light source using a collision between a laser beam and an opposing electron beam.
- the length of time for the volume analysis is lower than one minute.
- the processing unit is computing the tomography image during a time period lower than the length of time of used for producing the acquired images corresponding to the plurality of cell angles.
- the cell has a size comprised in the range of 0.3 cm to 20 cm, and preferably in the range of 0.6 cm to 10 cm.
- the cell is made of a material in a list comprising the beryllium, beryllium alloys, and a carbon-carbon composite.
- the cell comprises means for heating the sample to a temperature higher than 650° Celsius and means for pressuring the cell to a pressure higher than 1000 bars,
- the photon detector comprises a CCD of at least ten megapixels.
- the X-ray tomography device further comprises a grating based interferometer situated between the cell and the photon detector.
- the X-ray tomography device further comprises a microscope situated between the cell and the photon detector.
- FIG. 1 is a schematic view of a X-ray tomography device according to the invention.
- FIG. 2 is an example of a 3D tomography image provided by the device of figure 1.
- the direction Z is a vertical direction.
- a direction X or Y is a horizontal or lateral direction.
- the X-ray tomography device 1 shown on the figure 1 comprises :
- a X-ray source 2 emitting a photon beam PB in the direction of a beam axis BA
- processing unit 5 computing the 3D tomography image on the basis of the acquired images provided by the photon detector 4.
- the X-ray source 2 is preferably a monochromatic source, so that the cell is illuminated with a high level of brilliance by an X-ray beam of small diverging angle.
- the polychromatic sources spread their energy into a wide frequency bandwidth. It is possible to produce a natural monochromatic flux of photons or to filter the photon beam PB to obtain a quasi-monochromatic photon beam. However, this decreases a lot the photon flux.
- the monochromatic source concentrates the energy on a very narrow frequency bandwidth. The length of time needed by a detector for acquiring an image is then very low, and then it is compatible with multiphase flow tracking.
- the photon beam PB generated by said X-ray source 2 is a diverging cone beam having a solid angle SA that is wide, and for example higher than 0.1 degree or a few mrad around the beam axis BA. It is possible to illuminate a complete cell having a size of 10 cm at a distance from the X-ray source 2 that is a small distance, for example lower than 25 m, and preferably lower than 10 m.
- the solid angle SA may be higher than 0.5 degree.
- the X-ray source is able to emit a photon beam having a high level of energy, for example comprised between 10 and 200 KeV.
- the photon flux may be higher than 10 8 photons/s near the photon detector 4, and preferably higher than 10 11 photons/s.
- the device is then able to image thick cells and thick samples (between 0.3 cm and 10 cm) .
- the X-ray source may have a tuneable X-ray energy level.
- the X-ray source 2 may be a compact photon source using collision between a laser beam and an opposing electron beam.
- Such X-ray source 2 preferentially uses Inverse Compton Effect (Thomson scattering) to generate a natural monochromatic photon beam PB having a high level of energy.
- the main advantage of such X-ray sources is that they are very compact compared to classical synchrotron devices.
- Known Table-top synchrotron device using such physical properties are the "Compact Light Source” (CLS) from Lyncean Technologies Inc., but filtering very brilliant polychromatic flux such "Mirrorcle” from Photon Production Lab may produce a quite similar result.
- the X-ray source 2 may be tuneable according to the energy level (brilliance) so as to proceed to various experiments above the porous sample.
- the cell 3 is situated inside the photon beam PB .
- the cell position can be controlled via a rotation mean 8 (Z rotation) and a translation mean 9 (XYZ translations) .
- the cell 3 can be rotated around a cell axis CA substantially parallel to axis Z and perpendicular to the X axis, the beam axis BA on figure 1.
- the cell 3 is rotated of a cell angle around the cell axis CA.
- the detector 4 can then provide images from the cell (sample) from various view angles and the processing unit 5 can compute a 3D tomography image of the sample .
- the cell 3 can be positioned inside the photon beam PB .
- the cell 3 can be placed or positioned between a first distance from the source 2 and a second distance from the source 2.
- the first distance may be short and the cell 3 is close to the X-ray source 2 (see position PI on figure 1) .
- This configuration optimizes the maximal flux in high resolution (stitching mode or local tomography) .
- the second distance is much higher than the first distance, the cell 3 being away from the X-ray source 2
- the acquisition time in this last configuration is less performing than the first one but it permits to analyse the sample in interactive mode
- the cylindrical rock sample contained inside the cell 3 has a size comprised in the range of 0.3 cm to 10 cm.
- the size is preferably in the range 0.6 cm to 3 cm in diameter and in the range of 2 cm to 10 cm in length.
- the size of the rock sample is chosen big enough to study multiphase transport properties at a scale representative of macroscopic transport properties in the said rock and small enough to enable high resolution tomography of the sample in a length of time that allows imaging the whole sample in less than ten minutes: acquiring the images from the plurality of cell angles within said length of time.
- the cell 3 is for example a tube extending along the cell axis CA, said tube receiving the sample of porous medium.
- the cell 3 comprises an input conduct 6 that input the fluid to the cell 3 and an output conduct 7 that outputs the fluid from the cell.
- the cell is adapted to be crossed by the fluid.
- the X-ray tomography device 1 also comprises hydraulic devices to provide the fluid to the input conduct and to get back this fluid from the output conduct. These hydraulic devices can also add physical conditions to the fluid: temperature, pressure. To this end, these hydraulic devices include a thermal regulator, and a pressure regulator. The sample 10 inside the cell 3 can be tested according to the physical conditions of the geologic formation.
- the thermal regulator can heat the sample up to a temperature of 650° Celsius.
- the pressure regulator can pressurize the sample up to a pressure of 1000 bars.
- the cell 3 is a sort of Hassler cell meeting the requirements of X-ray tomography imaging.
- the cell 3 is adapted to enable the porous sample 10 to be flooded by one or several fluids under controlled pressure and temperature conditions .
- the cell 3 is made of a material that is transparent to the X-ray photon beam.
- it is made of beryllium, or beryllium alloy such beryllium aluminium alloy, or a carbon-carbon composite.
- the photon detector 4 can be tuned to have a sensitivity corresponding to the sample and fluids. Small variations of fluid densities can be therefore detected. Oil and water can be distinguished in the acquired images provided by the photon detector 4 using very fast classical absorption mode, or phase mode or dark field mode.
- the photon detector 4 is providing at least one image for each angle of a plurality of cell angles. All these acquired images are taken during a length of time lower than ten minutes for the whole volume to analyse. It is assumed that the state of the sample does not change much during this length of time: the fluid movements inside the porous medium remain very small. All the acquired images from various cell angles are then supposed to represent a unique state of the sample.
- the length of time is lower than one minute.
- the images represent more precisely a unique state of the sample, and the tomography device is acquiring images in real time and stores all these images for the processing unit 5.
- the photon detector 4 can be a flat panel, or an X-ray CCD (Charge-Coupled Device) or a CMOS.
- the photon detector 4 has a high resolution. It is for example a CCD having at least ten megapixels.
- the acquired images are enough accurate to visualise at the same time (simultaneously) the complete field of view of the sample or very small details inside the sample thanks to a stitching mode or local tomography process. In this way several ways are possible to scan the sample, and the acquired image can be taken in a very short length of time and the acquired image is enough exposed to photon flux to show small details and small variations of densities.
- the processing unit 5 is computing the 3D tomography image on the basis of the acquired images corresponding to the plurality of cell angles.
- Such reconstruction method is known and efficient (fast and providing a very good image quality) benefiting from the quasi parallel approximation. Examples of reconstruction methods can be found in the following document:
- the processing unit 5 may comprise parallel computing means so that the 3D tomography image can be computed during a very short time period.
- This high performance for reconstruction time and imaging are mainly due to the quasi parallel beam geometry.
- the time period can be lower than the length of time for acquiring the images from various cell angles of the sample.
- the X-ray tomography device is therefore generating real time 3D tomography images, and can visualize a real time movie showing the fluids movements inside the porous medium.
- the tomography device 1 may comprise a microscope to obtain high (accurate) resolutions.
- the resolution may reach 200 nm of voxel size which is the theoretical limit of microscopes due to Rayleigh criterion.
- the tomography device 1 may also comprise a grating based interferometer, situated between the cell 3 and the microscope or the photon detector 4.
- a grating based interferometer situated between the cell 3 and the microscope or the photon detector 4.
- Such gratings improve the contrast of the acquired images by adding absorption contrast image, phase contrast image and dark field contrast image: materials having similar densities can be distinguished on the acquired images by photon detector 4. In that case, the same resolution than obtained only by the microscope can be obtained.
- the gratings, the microscope and the detector 4 compose an optical station of the X-ray tomography device 1.
- the figure 2 is showing an example of a projection of 3D image 20 provided by the X-ray tomography device 1 of the invention.
- the 3D tomography image comprises various gray levels or various colours, each representing a constituent of the sample.
- the reference 21 represents the porous medium.
- the reference 22 represents a first fluid having a first density.
- the reference 23 represents a second fluid having a second density.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pulmonology (AREA)
- Radiology & Medical Imaging (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/123,000 US20140086385A1 (en) | 2011-06-01 | 2012-06-01 | X-ray tomography device |
RU2013157371/28A RU2585801C2 (en) | 2011-06-01 | 2012-06-01 | Device for x-ray tomography |
AU2012264596A AU2012264596B2 (en) | 2011-06-01 | 2012-06-01 | An x-ray tomography device |
BR112013030647A BR112013030647A2 (en) | 2011-06-01 | 2012-06-01 | x-ray tomography device |
CA2837788A CA2837788A1 (en) | 2011-06-01 | 2012-06-01 | An x-ray tomography device |
EP12725045.4A EP2715324A1 (en) | 2011-06-01 | 2012-06-01 | An x-ray tomography device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161492268P | 2011-06-01 | 2011-06-01 | |
US201161492272P | 2011-06-01 | 2011-06-01 | |
US61/492268 | 2011-06-01 | ||
US61/492272 | 2011-06-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012164090A1 true WO2012164090A1 (en) | 2012-12-06 |
Family
ID=46201672
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/060439 WO2012164090A1 (en) | 2011-06-01 | 2012-06-01 | An x-ray tomography device |
PCT/EP2012/060440 WO2012164091A1 (en) | 2011-06-01 | 2012-06-01 | An x-ray tomography device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/060440 WO2012164091A1 (en) | 2011-06-01 | 2012-06-01 | An x-ray tomography device |
Country Status (7)
Country | Link |
---|---|
US (2) | US9841388B2 (en) |
EP (2) | EP2715324A1 (en) |
AU (2) | AU2012264597B2 (en) |
BR (2) | BR112013030645A2 (en) |
CA (2) | CA2837788A1 (en) |
RU (1) | RU2585801C2 (en) |
WO (2) | WO2012164090A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016087890A1 (en) * | 2014-12-03 | 2016-06-09 | Total Sa | Device for analyzing a fluid in a sample of porous medium, and corresponding method |
WO2017129312A1 (en) * | 2016-01-29 | 2017-08-03 | IFP Energies Nouvelles | System and method for measuring a flow property of a fluid in a porous medium |
WO2017129298A1 (en) * | 2016-01-26 | 2017-08-03 | Siemens Healthcare Gmbh | Method and x-ray device for an interferometric x-ray examination |
JP2020060593A (en) * | 2019-12-26 | 2020-04-16 | トタル エス アー | Device for analyzing fluid in porous medium sample and corresponding method |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2837791C (en) | 2011-06-01 | 2019-08-13 | Total Sa | An x-ray tomography device |
US9841388B2 (en) | 2011-06-01 | 2017-12-12 | Total Sa | X-ray tomography device |
EA201490918A1 (en) * | 2011-11-02 | 2014-10-30 | Джонсон Мэтти Паблик Лимитед Компани | METHOD AND DEVICE SCANNING |
US9129715B2 (en) * | 2012-09-05 | 2015-09-08 | SVXR, Inc. | High speed x-ray inspection microscope |
US10585270B2 (en) * | 2017-10-25 | 2020-03-10 | University Of Vermont And State Agricultural College | Reflected image macroscopy system |
EP3603515A1 (en) | 2018-08-01 | 2020-02-05 | Koninklijke Philips N.V. | Apparatus for generating x-ray imaging data |
WO2022172047A1 (en) * | 2021-02-12 | 2022-08-18 | Totalenergies Onetech | Device for analyzing a fluid ina sample and related method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2185114A (en) * | 1985-12-30 | 1987-07-08 | British Petroleum Co Plc | Pressure vessel for core testing |
US4688238A (en) * | 1986-05-30 | 1987-08-18 | Mobil Oil Corporation | Method for determining lithological characteristics of a porous material |
US7924973B2 (en) * | 2007-11-15 | 2011-04-12 | Csem Centre Suisse D'electronique Et De Microtechnique Sa | Interferometer device and method |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1122951A1 (en) * | 1983-08-29 | 1984-11-07 | Научно-исследовательский институт медицинской радиологии АМН СССР | Method of radiographic investigation of material cavity structure |
US4635197A (en) * | 1983-12-29 | 1987-01-06 | Shell Oil Company | High resolution tomographic imaging method |
JPS62149034A (en) | 1985-12-23 | 1987-07-03 | Canon Inc | Information recording medium |
US4722095A (en) * | 1986-06-09 | 1988-01-26 | Mobil Oil Corporation | Method for identifying porosity and drilling mud invasion of a core sample from a subterranean formation |
US4982086A (en) * | 1988-07-14 | 1991-01-01 | Atlantic Richfield Company | Method of porosity determination in porous media by x-ray computed tomography |
US5063509A (en) * | 1990-01-26 | 1991-11-05 | Mobil Oil Corporation | Method for determining density of samples of materials employing X-ray energy attenuation measurements |
US5164590A (en) * | 1990-01-26 | 1992-11-17 | Mobil Oil Corporation | Method for evaluating core samples from x-ray energy attenuation measurements |
NL9100019A (en) * | 1991-01-09 | 1992-08-03 | Philips Nv | ROENTGEN RESEARCH DEVICE. |
US5635138A (en) | 1995-01-17 | 1997-06-03 | Bell Communications Research, Inc. | Apparatus for in situ x-ray study of electrochemical cells |
US5892808A (en) * | 1996-06-28 | 1999-04-06 | Techne Systems, Inc. | Method and apparatus for feature detection in a workpiece |
DE19628675C2 (en) * | 1996-07-16 | 1999-11-25 | Siemens Ag | Method for increasing the signal-to-noise ratio of a solid-state image sensor which can be occupied with radiation, in particular with X-radiation, and an X-ray diagnostic system for carrying out this method |
US5812629A (en) | 1997-04-30 | 1998-09-22 | Clauser; John F. | Ultrahigh resolution interferometric x-ray imaging |
RU2128411C1 (en) * | 1997-06-27 | 1999-03-27 | Российский федеральный ядерный центр - Всероссийский научно- исследовательский институт экспериментальной физики, Министерство Российской Федерации по атомной энергии | Method for generating soft x-radiation pulses |
US5825847A (en) * | 1997-08-13 | 1998-10-20 | The Board Of Trustees Of The Leland Stanford Junior University | Compton backscattered collimated x-ray source |
US6687333B2 (en) * | 1999-01-25 | 2004-02-03 | Vanderbilt University | System and method for producing pulsed monochromatic X-rays |
US6839402B2 (en) | 2002-02-05 | 2005-01-04 | Kimberly-Clark Worldwide, Inc. | Method and apparatus for examining absorbent articles |
JP4445397B2 (en) | 2002-12-26 | 2010-04-07 | 敦 百生 | X-ray imaging apparatus and imaging method |
DE10347971B3 (en) * | 2003-10-15 | 2005-06-09 | Siemens Ag | Method and device for determining the liquid type of a liquid accumulation in an object |
US7130375B1 (en) | 2004-01-14 | 2006-10-31 | Xradia, Inc. | High resolution direct-projection type x-ray microtomography system using synchrotron or laboratory-based x-ray source |
EP1731099A1 (en) * | 2005-06-06 | 2006-12-13 | Paul Scherrer Institut | Interferometer for quantitative phase contrast imaging and tomography with an incoherent polychromatic x-ray source |
DE102006063048B3 (en) * | 2006-02-01 | 2018-03-29 | Siemens Healthcare Gmbh | Focus / detector system of an X-ray apparatus for producing phase-contrast images |
DE102006017290B4 (en) | 2006-02-01 | 2017-06-22 | Siemens Healthcare Gmbh | Focus / detector system of an X-ray apparatus, X-ray system and method for producing phase-contrast images |
US7471768B2 (en) * | 2006-03-07 | 2008-12-30 | General Electric Company | Systems and methods for estimating presence of a material within a volume of interest using x-ray |
US7684540B2 (en) * | 2006-06-20 | 2010-03-23 | Schlumberger Technology Corporation | Apparatus and method for fluid phase fraction determination using x-rays |
EP1879020A1 (en) * | 2006-07-12 | 2008-01-16 | Paul Scherrer Institut | X-ray interferometer for phase contrast imaging |
KR100901769B1 (en) | 2007-11-15 | 2009-06-11 | 한국전자통신연구원 | Band-gap reference voltage generator for low voltage operation and high precision |
US7706912B2 (en) * | 2007-11-30 | 2010-04-27 | Caterpillar Inc. | Orifice formation control system |
RU2360233C1 (en) * | 2007-12-19 | 2009-06-27 | Открытое акционерное общество "Томский научно-исследовательский и проектный институт нефти и газа Восточной нефтяной компании" ОАО "ТомскНИПИнефть ВНК" | Method of evaluation of oil saturation of rock |
DE102008011301A1 (en) * | 2008-02-27 | 2009-09-03 | Siemens Aktiengesellschaft | Method for initializing preparation of radiographs by radiograph angiography system, involves executing image recording by radiograph angiography system with object storage system in image field |
US8565371B2 (en) | 2008-03-19 | 2013-10-22 | Koninklijke Philips N.V. | Rotational X ray device for phase contrast imaging |
US8068579B1 (en) * | 2008-04-09 | 2011-11-29 | Xradia, Inc. | Process for examining mineral samples with X-ray microscope and projection systems |
DE102008048688B4 (en) * | 2008-09-24 | 2011-08-25 | Paul Scherrer Institut | X-ray CT system for generating tomographic phase-contrast or dark-field images |
CN101413905B (en) | 2008-10-10 | 2011-03-16 | 深圳大学 | X ray differentiation interference phase contrast imaging system |
CN102325498B (en) | 2009-02-05 | 2013-07-10 | 中国科学院高能物理研究所 | Low dose single step grating based X-ray phase contrast imaging |
NL2004297A (en) | 2009-03-20 | 2010-09-21 | Asml Holding Nv | Improving alignment target contrast in a lithographic double patterning process. |
WO2011013164A1 (en) * | 2009-07-27 | 2011-02-03 | 株式会社島津製作所 | Radiographic apparatus |
CN102781327B (en) | 2009-12-10 | 2015-06-17 | 皇家飞利浦电子股份有限公司 | Phase contrast imaging |
US8848863B2 (en) | 2009-12-10 | 2014-09-30 | Koninklijke Philips N.V. | Non-parallel grating arrangement with on-the-fly phase stepping, X-ray system |
JP5548085B2 (en) | 2010-03-30 | 2014-07-16 | 富士フイルム株式会社 | Adjustment method of diffraction grating |
CN102221565B (en) * | 2010-04-19 | 2013-06-12 | 清华大学 | X-ray source grating stepping imaging system and imaging method |
JP5896999B2 (en) * | 2010-06-28 | 2016-03-30 | パウル・シェラー・インスティトゥート | X-ray equipment |
US9841388B2 (en) | 2011-06-01 | 2017-12-12 | Total Sa | X-ray tomography device |
CA2837791C (en) | 2011-06-01 | 2019-08-13 | Total Sa | An x-ray tomography device |
-
2012
- 2012-06-01 US US14/123,018 patent/US9841388B2/en not_active Expired - Fee Related
- 2012-06-01 WO PCT/EP2012/060439 patent/WO2012164090A1/en active Application Filing
- 2012-06-01 EP EP12725045.4A patent/EP2715324A1/en not_active Withdrawn
- 2012-06-01 AU AU2012264597A patent/AU2012264597B2/en not_active Ceased
- 2012-06-01 BR BR112013030645A patent/BR112013030645A2/en not_active Application Discontinuation
- 2012-06-01 RU RU2013157371/28A patent/RU2585801C2/en not_active IP Right Cessation
- 2012-06-01 BR BR112013030647A patent/BR112013030647A2/en not_active Application Discontinuation
- 2012-06-01 EP EP12725423.3A patent/EP2715325A1/en not_active Withdrawn
- 2012-06-01 CA CA2837788A patent/CA2837788A1/en not_active Abandoned
- 2012-06-01 CA CA2837789A patent/CA2837789A1/en not_active Abandoned
- 2012-06-01 WO PCT/EP2012/060440 patent/WO2012164091A1/en active Application Filing
- 2012-06-01 AU AU2012264596A patent/AU2012264596B2/en not_active Ceased
- 2012-06-01 US US14/123,000 patent/US20140086385A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2185114A (en) * | 1985-12-30 | 1987-07-08 | British Petroleum Co Plc | Pressure vessel for core testing |
US4688238A (en) * | 1986-05-30 | 1987-08-18 | Mobil Oil Corporation | Method for determining lithological characteristics of a porous material |
US7924973B2 (en) * | 2007-11-15 | 2011-04-12 | Csem Centre Suisse D'electronique Et De Microtechnique Sa | Interferometer device and method |
Non-Patent Citations (3)
Title |
---|
A. C. KAK; MALCOLM SLANEY: "Principles of Computerized Tornographic Imaging", 1988, IEEE PRESS |
See also references of EP2715324A1 * |
VADIM KARAGODSKY ET AL: "High efficiency x-ray source based on inverse Compton scattering in an optical Bragg structure", PLASMA PHYSICS AND CONTROLLED FUSION, IOP, BRISTOL, GB, vol. 53, no. 1, 1 January 2011 (2011-01-01), pages 14007, XP020186237, ISSN: 0741-3335, DOI: 10.1088/0741-3335/53/1/014007 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016087890A1 (en) * | 2014-12-03 | 2016-06-09 | Total Sa | Device for analyzing a fluid in a sample of porous medium, and corresponding method |
JP2017536555A (en) * | 2014-12-03 | 2017-12-07 | トタル エス アー | Device and corresponding method for analyzing a fluid in a porous media sample |
US10663412B2 (en) | 2014-12-03 | 2020-05-26 | Total Sa | Device for analyzing a fluid in a sample of porous medium, and corresponding method |
WO2017129298A1 (en) * | 2016-01-26 | 2017-08-03 | Siemens Healthcare Gmbh | Method and x-ray device for an interferometric x-ray examination |
WO2017129312A1 (en) * | 2016-01-29 | 2017-08-03 | IFP Energies Nouvelles | System and method for measuring a flow property of a fluid in a porous medium |
FR3047315A1 (en) * | 2016-01-29 | 2017-08-04 | Ifp Energies Now | SYSTEM AND METHOD FOR MEASURING FLOW PROPERTY PROPERTIES WITHIN A POROUS ENVIRONMENT |
US10705068B2 (en) | 2016-01-29 | 2020-07-07 | IFP Energies Nouvelles | System and method for measuring a flow property of a fluid in a porous medium |
JP2020060593A (en) * | 2019-12-26 | 2020-04-16 | トタル エス アー | Device for analyzing fluid in porous medium sample and corresponding method |
Also Published As
Publication number | Publication date |
---|---|
EP2715325A1 (en) | 2014-04-09 |
WO2012164091A1 (en) | 2012-12-06 |
US20140133623A1 (en) | 2014-05-15 |
RU2585801C2 (en) | 2016-06-10 |
US20140086385A1 (en) | 2014-03-27 |
CA2837788A1 (en) | 2012-12-06 |
BR112013030647A2 (en) | 2016-11-29 |
RU2013157371A (en) | 2015-07-20 |
EP2715324A1 (en) | 2014-04-09 |
BR112013030645A2 (en) | 2016-11-29 |
US9841388B2 (en) | 2017-12-12 |
CA2837789A1 (en) | 2012-12-06 |
AU2012264596B2 (en) | 2015-07-30 |
AU2012264597B2 (en) | 2015-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2012264596B2 (en) | An x-ray tomography device | |
AU2012264596A1 (en) | An x-ray tomography device | |
CA2837791C (en) | An x-ray tomography device | |
Endrizzi | X-ray phase-contrast imaging | |
AU2012264598A1 (en) | An X-ray tomography device | |
Dunsmuir et al. | X-ray microtomography: a new tool for the characterization of porous media | |
Fusseis et al. | A brief guide to synchrotron radiation-based microtomography in (structural) geology and rock mechanics | |
AU2012264597A1 (en) | An X-ray tomography device | |
Fernandes et al. | Determination of the representative elementary volume for the study of sandstones and siltstones by X-ray microtomography | |
Coenen et al. | Measurement parameters and resolution aspects of micro X-ray tomography for advanced core analysis | |
Hubert et al. | Efficient correction of wavefront inhomogeneities in X-ray holographic nanotomography by random sample displacement | |
Helfen et al. | Laminographic imaging using synchrotron radiation–challenges and opportunities | |
Sodini et al. | Comparison of different experimental approaches in the tomographic analysis of ancient violins | |
Altapova et al. | Phase contrast laminography based on Talbot interferometry | |
Sun et al. | Confocal X-ray technology based on capillary X-ray optics | |
Wildenschild et al. | Using synchrotron‐based X‐ray microtomography and functional contrast agents in environmental applications | |
Dabagov et al. | X-ray applications and recent advances@ XLab Frascati | |
Hurst et al. | Hierarchically guided in situ nanolaminography for the visualisation of damage nucleation in alloy sheets | |
Gelb et al. | Non-destructive local X-ray tomography for multi-length scale analysis of reservoir rocks: validations and observations | |
Coles et al. | Characterization of reservoir core using computed microtomography | |
Elarnaut et al. | Sporadic absorption tomography using a conical shell X-ray beam | |
Mayo et al. | Characterization of Darai limestone composition and porosity using data-constrained modeling and comparison with Xenon K-edge subtraction imaging | |
Voland et al. | A CT System for the Analysis of Prehistoric Ice cores | |
Buffiere et al. | Hard X-Ray Synchrotron Imaging Techniques and Applications | |
Gelb et al. | Multi-length scale X-ray microscopy: a unique solution for digital rock physics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12725045 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14123000 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2837788 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2012264596 Country of ref document: AU Date of ref document: 20120601 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013157371 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013030647 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013030647 Country of ref document: BR Kind code of ref document: A2 Effective date: 20131128 |