WO2012163241A1 - 用户设备物理层资源的调度方法及装置 - Google Patents

用户设备物理层资源的调度方法及装置 Download PDF

Info

Publication number
WO2012163241A1
WO2012163241A1 PCT/CN2012/075909 CN2012075909W WO2012163241A1 WO 2012163241 A1 WO2012163241 A1 WO 2012163241A1 CN 2012075909 W CN2012075909 W CN 2012075909W WO 2012163241 A1 WO2012163241 A1 WO 2012163241A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
module
process module
scheduling
priority
Prior art date
Application number
PCT/CN2012/075909
Other languages
English (en)
French (fr)
Inventor
顾鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110145245.XA external-priority patent/CN102811489B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012163241A1 publication Critical patent/WO2012163241A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS

Definitions

  • the present invention relates to the field of communications, and in particular to a method and a device for scheduling physical layer resources of a user equipment. Background technique
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • UE User Equipment
  • the physical layer software is the core control module of the entire TD-SCDMA terminal chip, which is responsible for coordinating various types. Resources (such as hardware accelerators, RF resources, etc.) to implement many functions of the protocol UE, for example, looking for network, system information reading, random access, measurement, service establishment, etc., but at the same time, TD-SCDMA UE physics
  • the design of the layer software is largely dependent on the hardware. Therefore, in order to save hardware costs, a large amount of hardware resource reuse needs to be considered when designing software.
  • the physical layer software implements more and more concurrent processes, requiring the physical layer.
  • the software is designed to be efficient, easy to expand, and easy to debug.
  • the TD-SCDMA physical layer has multiple concurrent processes in the same time period, and there is a problem of resource call conflicts between these concurrent processes. For example, paging reception and inter-frequency measurement of the serving cell need to preempt radio resources. Since the hardware does not support the reception of two different cells, the same frequency neighboring cell broadcast message reception and the serving cell paging reception also have the problem of timing conflict. Conflicts in these resource calls can cause concurrent processes to not perform processing at the same time.
  • the traditional concurrent process design method uses modules to communicate with each other to avoid process conflicts.
  • the neighboring area broadcast message is currently being received. If there is a serving cell paging reception, the neighboring area broadcast message needs to be suspended according to the paging priority principle.
  • the communication between the modules includes: processing the service cell paging receiving process module query processing neighboring area broadcast message receiving The process module occupies the resource, sends a request to the process module, requests it to suspend processing, and then processes the paging module of the serving cell paging to process the paging reception of the serving cell, and then processes the process of receiving the broadcast message of the neighboring cell after the processing is completed. Module.
  • concurrent processes include serving cell paging indication monitoring, serving cell paging message reception, serving cell broadcast message reception, intra-frequency neighbor cell broadcast message reception, and inter-frequency neighbor cell broadcast.
  • Message reception, co-frequency measurement, inter-frequency measurement, frequency sweep, and cell search Etc. the traditional concurrent process control method leads to complex interaction control between modules, and the concurrent timing inside the process is difficult to achieve seamless connection control, which leads to software implementation difficulties and lack of scalability.
  • a method for scheduling a physical layer resource of a user equipment including: a resource scheduling module of a physical layer of a user equipment receives a resource request message sent by a process module; and a resource scheduling module queries a resource requested by a resource request message. Resource description state; The resource scheduling module determines whether to allocate resources for the process module according to the resource description state, and if so, allocates resources for the process module; otherwise, does not allocate resources for the process module.
  • the method further includes: the resource scheduling module divides all resources of the physical layer of the user equipment into different types according to time and resource types in units of subframes.
  • the independent resource records the resource description status of each independent resource.
  • the resource scheduling module queries the resource request message.
  • the current resource description status of the resource includes: The resource scheduling module queries the recorded resource description status of each independent resource, and obtains the resource request message request.
  • the resource scheduling module determines, according to the resource description state, whether to allocate resources for the process module, if the resource description state of the resource indicates that the resource is currently in use and there is a resource conflict, the resource scheduling module determines not to allocate resources for the process module; If the status indicates that the resource has been reserved, and the process module conflicts with the resource of the process module of the reserved resource, it determines whether the priority of the current process module of the requested resource is lower than the priority of the process module of the reserved resource, and if yes, the request is not The resource module of the resource allocates resources, if not, allocates resources for the process module requesting the resource; if the resource description state of the resource indicates that the resource is not currently used, the resource scheduling module allocates resources for the process module requesting the resource.
  • the resource scheduling module determines whether the priority of the current process module of the request resource is lower than the priority of the process module of the reserved resource: the resource scheduling module obtains the priority of the process module of the current reserved resource from the resource description state; The resource request message obtains the description priority of the process module of the current request resource; the resource debugging module compares whether the priority of the current process resource module is lower than the priority of the current process resource. The value of the bit of the corresponding location in the resource description state indicates the priority of the process module of the reserved resource. If the resource scheduling module does not allocate resources for the process module, the method further includes: the process module sending a resource request message to the resource scheduling module every interval of a preset time period.
  • a scheduling apparatus for a physical layer resource of a user equipment including: a receiving module, configured to receive a resource request message sent by a process module of a physical layer of the user equipment; and a query module configured to query a resource request The current resource description state of the resource requested by the message; the determining module is configured to determine whether to allocate resources for the process module according to the resource description state, and if so, trigger the scheduling module; and the scheduling module is configured to allocate resources for the process module.
  • the device further includes: a storage module, configured to record a resource description state of each independent resource divided by time and resource type among all resources of the physical layer of the user equipment.
  • the determining module triggers the scheduling module when the resource description state of the resource indicates that the resource is currently in use but does not have a resource conflict; the determining module indicates that the resource has been reserved in the resource description state of the resource, and the process module and the process of scheduling the resource In the case of a resource conflict of the module, it is further configured to determine whether the priority of the current process resource module is lower than the priority of the process module of the reserved resource, and if not, trigger the scheduling module; or the determining module is determining the resource description of the resource. When the status indicates that the resource is not currently in use, the scheduling module is triggered.
  • the device further includes: a first acquiring module, configured to: when the determining module indicates that the resource has been reserved in the resource description state of the resource, and the process module conflicts with the resource of the process module of the reserved resource, obtain the current state from the resource description state The priority of the process module of the reserved resource; the second obtaining module is configured to obtain the description priority of the process module of the current request resource from the resource request message.
  • a UE resource scheduling conflict processing module is added in the TD-SCDMA physical layer, and the traditional concurrent flow control method is solved, which leads to complicated interaction control between modules, and the concurrent timing inside the process is difficult to achieve seamless connection control, so that Each process module is prone to preemption and conflict when applying for TD-SCDMA physical layer resources, thereby achieving the effect of providing an efficient and concise concurrent process mechanism.
  • FIG. 1 is a flowchart of a method for scheduling physical layer resources of a user equipment according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of definitions of physical layer resources of an L1 user equipment according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the operation of the RF resources occupied by different processes in the process interaction mode according to the prior art
  • FIG. 1 is a flowchart of a method for scheduling physical layer resources of a user equipment according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of definitions of physical layer resources of an L1 user equipment according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the operation of the RF resources occupied by different processes in the process interaction mode according to the prior art
  • FIG. 4 is a schematic diagram of the operation of occupying RF resources by different processes in the resource scheduling mode according to the embodiment of the present invention
  • FIG. FIG. 6 is a schematic diagram of resources occupied by different processes according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a scheduling device structure of user equipment physical layer resources according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a scheduling apparatus of a user equipment physical layer resource according to a preferred embodiment of the present invention.
  • Step S102 The resource scheduling module of the physical layer of the user equipment receives the resource request message sent by the process module.
  • the resource scheduling module may first divide all resources of the physical layer of the user equipment into different types according to time and resource types in units of subframes.
  • An independent resource records the resource description status of each independent resource.
  • the resource description status of each resource can be recorded in the form of a table. For example, the resource description status of each resource can be recorded in the resource table.
  • the granularity unit of the resource is a sub-frame, and the resource can be divided into different independent resources according to time and type.
  • a public resource is a two-dimensional common resource data table.
  • the resources can be divided into time-division resources, for example, according to the TD-SCDMA physical subframe length, and the divided time-division resources have no conflicts at different times.
  • the resource type axis (Y-axis) included in the management it is divided into the following types: 1.
  • RF (radio frequency) resource The basic resource that the radio resource performs for the physical layer function of the UE (user equipment), for example, can be based on The TD-SCDMA physical frame slot structure separates the RF resources into independent RF slot resources.
  • Downlink timing resources Since the hardware does not support slot level timing adjustment, the UE can only use one cell as the downlink in the same subframe. The timing reference of the link, for example, the serving cell PCH (Paging Channel) is received on the TS3 time slot, and the BCH (Broadcast Channel) is received at the TS0, although the radio frequency resources do not conflict, but The same sub-frame cannot receive services from different cells at the same time, causing conflicts in downlink timing resources.
  • CPU resources Different processes are required.
  • CPU resources in the absence of the operating system scheduler In the scenario, CPU processor resources need to be maintained in a unified manner, which can be allocated according to the priority of the process and the duration of the CPU.
  • Extended resources Any common conflict resources can be managed in the public resource database. For example, multiple process modules are used. A hardware interpolator, channel estimator, etc. are required.
  • a descriptor may be used to indicate the usage of each resource (ie, the resource description state of each resource). For example, the descriptor may be represented by 32 bits of data, and the lowest bit is 0, the highest.
  • the bit is 31, the bit mask is used to describe the usage of the resource, and the resource is idle with 0, the non-zero indicates that the resource is occupied, and the non-zero corresponding bit position describes the priority of the requested resource flow, each The priority corresponds to a flow ID, and the higher the bit position in the priority descriptor indicates that the priority of the corresponding bit position process request resource is higher.
  • a multi-bit field is used to describe multiple priority settings of a single process, and the method can well solve the priority adjustment problem.
  • the process A uses the mask 0B0101, 0010 to indicate three priority levels, respectively, priority 1, 4, 6; the process B uses the mask 0B0010, 0100 represents two priority levels, respectively 4, 2.
  • Step S104 The resource scheduling module queries the current resource description state of the resource requested by the resource request message.
  • the resource scheduling module may obtain the resource description state of one or more independent resources corresponding to the resource requested by the resource request message by querying the resource description state of each independently recorded resource. For example, if the resource description status of each independent resource is recorded in the resource table, in an actual application, the resource scheduling module may query, according to the resource requested by the process, whether the resource is reserved (ie, a Shadow state), if After the reservation is made, it is determined whether the resource can be reused. If there is a conflict, the resource cannot be reused, and then the current priority of the process module is used to determine whether the resource can be preempted, thereby determining whether the resource can be allocated for the process of requesting the resource.
  • various states of resources and their corresponding resource usages are shown in Table 1.
  • Step S106 The resource scheduling module determines, according to the resource description state, whether to allocate resources for the process module, and if yes, allocates resources for the process module; otherwise, does not allocate resources for the process module.
  • the resource scheduling module may determine, according to the resource description state, whether to allocate resources for the process module.
  • the resource scheduling module determines not to allocate resources for the process module. If the resource does not have a conflict, the resource scheduling module allocates the process module. If the resource description status of the resource indicates that the resource has been reserved (ie, the Shadow state), and the process module conflicts with the resource of the process module of the reserved resource, it is determined whether the priority of the current process module of the requested resource is lower than the flow of the reserved resource.
  • the priority of the module if yes, does not allocate resources for the process module requesting the resource, if not, allocates resources for the process module requesting the resource; if the resource description status of the resource indicates that the resource is not currently used (ie, Unused state), then
  • the resource scheduling module allocates resources for process modules that request resources.
  • the resource scheduling module needs to obtain the priority of the current process resource reservation module from the resource description state.
  • the resource debugging module obtains the description priority of the current process resource requesting module from the resource request message.
  • the resource debugging module determines whether the priority of the process module of the current request resource is higher than the priority of the process module of the current reserved resource.
  • the resource description state of each resource is the value of the bit through the corresponding location ( That is, the 32-bit data descriptor indicates the priority of the process module of the reserved resource, and the specific correspondence has been exemplified, and details are not described herein again.
  • the scheduling module knows that each resource is in the use state, or the priority of the process of reserving the resource is higher than the priority of the current application resource, the resource scheduling module does not allocate resources for the process module.
  • the process module can only wait for resources, and can send a resource request message to the resource scheduling module every predetermined time period until the resource is applied.
  • the minimum granularity of resources managed by the physical layer common resource concurrent conflict scheduling module is one subframe, and each process of the physical layer requests corresponding resources when activated. If the application is successful, the corresponding device control module is called to work, otherwise waiting Resource allocation; For the process that does not request resources, each sub-frame round adopts the polling mode, and requests resources continuously until the resource request is successful or the process is aborted.
  • FIG. 3 is a schematic diagram of the operation of the RF resources occupied by different processes in the process interaction mode according to the prior art. In the prior art, the RF resource utilization rate is low, as shown in FIG. 3, in the working mode of the process, the RF A waste of one subframe will occur in the resource.
  • FIG. 3 is a schematic diagram of the operation of the RF resources occupied by different processes in the process interaction mode according to the prior art. In the prior art, the RF resource utilization rate is low, as shown in FIG. 3, in the working mode of the process, the RF A waste of one subframe will occur in the resource.
  • FIG. 4 is a schematic diagram of the operation of occupying RF resources in different processes in the resource scheduling mode according to the embodiment of the present invention.
  • the process X/Y of the embodiment is started in advance by one subframe, and one subframe is delayed.
  • the process Y starts the hardware work one subframe in advance after requesting the resource, and the RF resource is not wasted; if according to the processes X and Y
  • the priority order is called to arrange the RF resources, and the X process ends and the Y process is started, so that the utilization of the RF resources is greatly improved.
  • FIG. 4 in the embodiment of the present invention, compared with the prior art working mode shown in FIG. 3, The process X/Y of the embodiment is started in advance by one subframe, and one subframe is delayed.
  • the process Y starts the hardware work one subframe in advance after requesting the resource, and the RF resource is not wasted; if according to the processes X and Y
  • the priority order is called to arrange the RF resources, and the X
  • the resource scheduling module manages all publicities of the physical layer of the UE.
  • Resource the process module of any UE physical layer requests resources from the resource scheduling module. If the resource request is successful, the process executes; if the resource request fails, the process is in a waiting resource description state, and periodically attempts to request the resource.
  • resource management and control are internally encapsulated, which greatly simplifies the internal process design of the UE.
  • the process of occupying the resource is recorded on each allocated resource and correspondingly Priority, high priority can preempt the occupied resources of the low-priority process; at the same time, in order to support the dynamic adjustment of the process priority, the multi-bit domain is used to describe the priority of the process, and the priority of the process is dynamically adjusted.
  • the control method of the control software shown in FIG. 5 can be as follows:
  • the high-priority process cannot preempt the resources being used, and the hardware devices that are being executed are temporarily suspended. 2. The high-priority process can preempt the resources of the Shadow state of the low-priority process.
  • the resource length of any process request can not be too long, to avoid long-term preemption of resources, blocking the execution of other processes;
  • FACH reception of the serving cell of the TD-SCDMA UE physical layer, inter-frequency measurement, BCH reception in the same frequency neighboring area, Frequency measurement is an example, indicating that resource conflicts are limited to RF resources and timing resources.
  • the conventions are as follows:
  • priority order serving cell FACH receiving > co-frequency neighboring BCH receiving > inter-frequency measurement > same
  • the serving cell is the A cell, the frequency point is the F0 frequency point; the same frequency neighboring cell is the B cell; the inter-frequency measurement frequency point is the F1 frequency point; all the measurements are taken as the reference point of the serving cell A timing; 3, the relationship of each process call: the higher priority of the process priority request resource scheduling;
  • A, FACH receiving rules: system frame number% 64 37; TTI is 10ms;
  • B, BCH receiving rules: system frame number% 64 34 ; TTI is 20ms;
  • Inter-frequency measurement scheduling Allows scheduling at any time. In the 66th subframe, 3 subframes are required to complete the inter-frequency.
  • Co-frequency measurement scheduling Allows scheduling at any time. In the 66th subframe, 1 subframe is required to perform the same-frequency measurement to complete the scheduling. Each process is subjected to resource scheduling to form a resource allocation as shown in Figure 6. 1.
  • the serving cell FACH receives the 74th to 75th subframe resources of the reservation; 2, the same frequency BCH receives the reserved 68th to 71th subframe resources;
  • the same frequency measurement reservation 74th subframe resource (the same frequency BCH receives the occupancy of the B cell timing, and the timing resource conflict of the same frequency measurement);
  • the interaction between the modules is controlled by the traditional concurrent flow control method
  • the concurrent timing of the process is difficult to implement the seamless connection control, which leads to the software implementation being difficult and the scalability is not strong.
  • the above method provided by the embodiment of the present invention can solve the traditional concurrent flow control method, resulting in complex interaction control between the modules.
  • FIG. 7 is a schematic structural diagram of a scheduling apparatus for a user equipment physical layer resource according to an embodiment of the present invention.
  • the apparatus includes: a receiving module 10, a querying module 20, a determining module 30, and a scheduling module 40.
  • the apparatus for scheduling physical layer resources of user equipments provided by the foregoing embodiments may be implemented by using the apparatus.
  • the receiving module 10 is configured to receive a resource request message sent by the process module of the physical layer of the user equipment; the query module 20 is connected to the receiving module 10, and is configured to query the current resource description state of the resource requested by the resource request message; And connecting to the query module 20, configured to determine, according to the resource description state, whether to allocate resources for the process module, and if so, triggering the scheduling module; the scheduling module 40, connected to the determining module 30, configured to allocate resources for the process module.
  • the foregoing apparatus may further include a storage module 50 configured to record all physical layers of the user equipment.
  • the determining module 30 triggers the scheduling module 40 when the resource description state of the resource indicates that the resource is currently in use but there is no resource conflict; the determining module 30 is in the resource.
  • the resource description status indicates that the resource has been reserved, and the process module conflicts with the resource of the process module of the reserved resource, and is further configured to determine whether the priority of the current process module of the requested resource is lower than the priority of the process module of the reserved resource. If not, the scheduling module 40 is triggered; or the determining module 30 triggers the scheduling module 40 if it determines that the resource description status of the resource indicates that the resource is not currently used.
  • the resource module 30 when the determining module 30 determines that the resource description state of the resource indicates that the resource is currently in use and there is a resource conflict, the resource module is not allocated to the process module, and the current resource is reserved. Determine the priority of the process that uses the current resource and the priority of the process that requests the current resource. In order to be able to obtain the data of the priority of the process of using the current resource in time, as shown in FIG.
  • the device may further include: a first obtaining module 32, configured to be in the determining module When the resource description status of the resource indicates that the resource has been reserved, and the process module conflicts with the resource of the process module of the reserved resource, the priority of the process module of the current reserved resource is obtained from the resource description state;
  • the device of the priority of the process of the current resource the device may further include: a second obtaining module 34, configured to obtain a description priority of the process module of the current request resource from the resource request message.
  • the above-mentioned first obtaining module 32 and the second obtaining module 34 may be separately set or may be combined and set, and the setting manner is not limited.
  • the traditional concurrent process control method is used to make the interaction control between the modules complex, and the concurrent timings in the process are difficult to implement the seamless connection control, which leads to the software implementation being difficult and the scalability is not strong.
  • the device can solve the traditional concurrent process control method, which leads to complex interaction control between modules, and the concurrent timing inside the process is difficult to achieve seamless connection control, so that each process module is prone to preemption and conflict when applying for TD-SCDMA physical layer resources.
  • the effect of providing an efficient and concise concurrent process processing mechanism is achieved, thereby effectively reducing the conflicts generated by each process module when the UE physical layer resource is invoked, thereby greatly improving the utilization of the radio frequency resource.
  • the present invention achieves the following technical effects: by adding a resource scheduling module to manage and allocate RF resources, the coupling of each process module can be reduced according to the priority of the preset process. Any process only needs to pay attention to the situation of resource request allocation, and does not have to care about the relationship with other processes, so that the process module is easy to design and maintain. At the same time, the flexibility of the process is enhanced, and the priority can be dynamically modified, for example, in idle state.
  • the neighboring BCH receives a higher priority than the measurement priority, but in the paging state.
  • the measurement priority is higher than the neighboring BCH reception.
  • the design only needs to adjust the priority of each process in different states.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种用户设备物理层资源的调度方法及装置,其中,该方法包括:用户设备物理层的资源调度模块接收流程模块发送的资源请求消息;资源调度模块查询资源请求消息请求的资源当前的资源描述状态;资源调度模块根据资源描述状态判断是否为该流程模块分配资源,如果是,则为该流程模块分配资源,否则,不为该流程模块分配资源。通过本发明,有效地降低了各个流程模块在进行UE物理层资源的调用时产生的冲突,从而大大提高了射频资源的利用率。

Description

用户设备物理层资源的调度方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种用户设备物理层资源的调度方法及装 置。 背景技术
TD-SCDMA ( Time Division-Synchronous Code Division Multiple Access, 时分同步 码分多址) UE (User Equipment, 用户设备) 物理层软件是整个 TD-SCDMA终端芯 片的核心控制模块,它负责协调各种不同种类的资源(如:硬件加速器、射频资源等), 来实现协议的 UE诸多功能, 例如, 找网、 系统信息读取、 随机接入、 测量、 业务建 立等功能, 但同时, TD-SCDMA UE物理层软件的设计很大程度上依附于硬件。 因此, 为了节约硬件成本, 进行软件设计时需要考虑大量的硬件资源复用, 同时随着协议的 发展和产品功能需求的增加, 物理层软件实现的并发流程需求也越来越多, 要求物理 层软件设计高效、 易于扩展及易于调试等。 通常情况下, TD-SCDMA物理层在同一个时间段内存在多个并发流程处理, 而这 些并发流程之间存在资源调用冲突的问题。 比如, 服务小区寻呼接收、 异频测量都需 要抢占射频资源。 由于硬件不支持两个不同小区接收, 同频邻区广播消息接收、 服务 小区寻呼接收同样存在定时冲突的问题。 这些资源调用方面的冲突问题都会导致并发 流程不能同时执行处理。 传统的并发流程设计方法采用模块之间相互通信的方式来避免流程冲突, 比如, 当前正在进行邻区广播消息接收, 如果有服务小区寻呼接收, 根据寻呼优先原则, 需 要暂停邻区广播消息接收, 启动寻呼消息接收, 寻呼消息接收完毕之后再恢复邻区广 播消息接收, 在这过程中, 模块之间的通信包括: 处理服务小区寻呼接收的流程模块 查询处理邻区广播消息接收的流程模块占用资源的情况, 向该流程模块发送请求, 请 求其暂停处理, 然后处理服务小区寻呼接收的流程模块处理服务小区寻呼接收, 处理 完后再通知处理邻区广播消息接收的流程模块。 上述控制方式在并发流程较少的情况 下, 逻辑简单, 软件控制容易实现, 但是, 如果并发流程很多且优先级需要动态调整, 那么实现就会变得异常复杂。 比如, 在 TD-SCDMA寻呼态下, 并发的流程有服务小 区寻呼指示监控、 服务小区寻呼消息接收、 服务小区广播消息接收、 同频相邻小区广 播消息接收、 异频相邻小区广播消息接收、 同频测量、 异频测量、 扫频以及小区搜索 等, 采用传统并发流程控制方法导致模块之间交互控制复杂, 流程内部的并发时序难 以做到无缝连接控制, 导致软件实现困难且扩展性不强。 发明内容 本发明提供了一种用户设备物理层资源的调度方法及装置, 以至少解决上述问题 之一。 根据本发明的一个方面, 提供了一种用户设备物理层资源的调度方法, 包括: 用 户设备物理层的资源调度模块接收流程模块发送的资源请求消息; 资源调度模块查询 资源请求消息请求的资源当前的资源描述状态; 资源调度模块根据资源描述状态判断 是否为流程模块分配资源, 如果是, 则为流程模块分配资源, 否则, 不为流程模块分 配资源。 上述用户设备物理层的资源调度模块接收流程模块发送的资源请求消息之前, 该 方法还包括: 资源调度模块以子帧为单位, 将用户设备物理层的所有资源按照时间及 资源的类型划分为不同的独立资源, 记录各个独立资源的资源描述状态; 资源调度模 块查询资源请求消息请求的资源当前的资源描述状态包括: 资源调度模块查询记录的 各个独立资源的资源描述状态, 获取资源请求消息请求的资源对应的一个或多个独立 资源的资源描述状态。 上述资源调度模块根据资源描述状态判断是否为流程模块分配资源包括: 如果资 源的资源描述状态指示资源当前正在使用且存在资源冲突, 则资源调度模块确定不为 流程模块分配资源; 如果资源的资源描述状态指示资源已经被预约, 且流程模块与预 约资源的流程模块的资源冲突, 则判断当前请求资源的流程模块的优先级是否低于预 约资源的流程模块的优先级, 如果是, 则不为请求资源的流程模块分配资源, 如果不 是, 则为请求资源的流程模块分配资源; 如果资源的资源描述状态指示资源当前未使 用, 则资源调度模块为请求资源的流程模块分配资源。 上述资源调度模块判断当前请求资源的流程模块的优先级是否低于预约资源的流 程模块的优先级包括: 资源调度模块从资源描述状态中获取当前预约资源的流程模块 的优先级; 资源调试模块从资源请求消息中获取当前请求资源的流程模块的描述优先 级; 资源调试模块比较当前请求资源的流程模块的优先级是否低于当前预约资源的流 程模块的优先级。 上述资源描述状态中通过对应位置的比特位的值指示预约资源的流程模块的优先 级。 如果资源调度模块不为流程模块分配资源, 该方法还包括: 流程模块每间隔一个 预设的时间周期向资源调度模块发送资源请求消息。 根据本发明的另一方面, 提供了一种用户设备物理层资源的调度装置, 包括: 接 收模块, 设置为接收用户设备物理层的流程模块发送的资源请求消息; 查询模块, 设 置为查询资源请求消息请求的资源当前的资源描述状态; 判断模块, 设置为根据资源 描述状态判断是否为流程模块分配资源, 如果是, 则触发调度模块; 调度模块, 设置 为为流程模块分配资源。 上述装置还包括: 存储模块, 设置为记录用户设备物理层的所有资源中按照时间 及资源的类型划分的各个独立资源的资源描述状态。 上述判断模块在判断资源的资源描述状态指示资源当前正在使用但不存在资源冲 突的情况下, 触发调度模块; 判断模块在资源的资源描述状态指示资源已经被预约, 且流程模块与预约资源的流程模块的资源冲突的情况下, 还设置为判断当前请求资源 的流程模块的优先级是否低于预约资源的流程模块的优先级, 如果不是, 则触发调度 模块; 或者判断模块在判断资源的资源描述状态指示资源当前未使用的情况下, 触发 调度模块。 上述装置还包括: 第一获取模块, 设置为在判断模块在资源的资源描述状态指示 资源已经被预约, 且流程模块与预约资源的流程模块的资源冲突的情况下, 从资源描 述状态中获取当前预约资源的流程模块的优先级; 第二获取模块, 设置为从资源请求 消息中获取当前请求资源的流程模块的描述优先级。 通过本发明,采用在 TD-SCDMA物理层增加一个 UE资源调度冲突处理模块,解 决了传统的并发流程控制方法导致模块之间交互控制复杂, 流程内部的并发时序难以 做到无缝连接控制, 使得各个流程模块在申请 TD-SCDMA物理层资源时容易发生抢 占、 冲突的问题, 进而达到了能够提供高效简洁的并发流程处理机制的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据本发明实施例的用户设备物理层资源的调度方法流程图; 图 2是根据本发明实施例的 L1用户设备物理层资源的定义示意图; 图 3是根据现有技术的流程交互方式下不同流程占用的 RF资源的工作示意图; 图 4是根据本发明实施例的资源调度方式下不同流程占用 RF资源的工作示意图; 图 5是根据本发明实施例的 L1用户设备物理层资源的调度控制软件架构框图; 图 6是根据本发明实施例的不同流程占用的资源示意图; 图 7是根据本发明实施例的用户设备物理层资源的调度装置结构示意图; 以及 图 8是根据本发明优选实施例的用户设备物理层资源的调度装置结构示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 1是根据本发明实施例的用户设备物理层资源的调度方法流程图, 该方法主要 包括以下步骤 (步骤 S102-步骤 S106)。 步骤 S102, 用户设备物理层的资源调度模块接收流程模块发送的资源请求消息。 在本发明实施例中, 资源调度模块在接收流程模块发送的资源请求消息之前, 资 源调度模块可以首先以子帧为单位, 将用户设备物理层的所有资源按照时间及资源的 类型划分为不同的独立资源, 并记录各个独立资源的资源描述状态, 其中, 各个资源 的资源描述状态可以以表格的形式记录, 例如, 可以将各个资源的资源描述状态记录 在资源表中。 例如, 在实际应用中, 资源的粒度单位为子帧, 可以根据时间以及类型 将资源划分为不同的独立资源, 参见图 2, 如图 2所示, 公共资源时一个二维公共资 源数据表。 在图 2中, 从时间轴 (X轴)观察, 资源可以划分为时分资源, 例如, 可以 根据 TD-SCDMA物理子帧长度来划分, 划分后的时分资源在不同时间上的资源是不 存在冲突的; 从纳入管理的资源类型轴 (Y轴)观察, 分为下面几种类型: 1, RF (射 频)资源: 射频资源为 UE (用户设备)物理层功能执行的基本资源, 例如, 可以根据 TD-SCDMA物理帧时隙结构将 RF资源单独划分为独立的 RF时隙资源; 2, 下行定 时资源: 由于硬件不支持时隙级别定时调整, 因此 UE在同一个子帧只能以一个小区 为下行链路的定时基准, 比如, 服务小区 PCH (Paging Channel, 寻呼信道) 在 TS3 时隙上接收, 而同频邻区 BCH (Broadcast Channel, 广播信道) 在 TS0接收, 虽然射 频资源没有冲突, 但是由于同一个子帧不能同时接收不同小区的业务, 导致下行定时 资源存在冲突; 3, CPU资源: 不同的流程都需要占用 CPU资源, 在无操作系统调度 场景下, 需要统一维护 CPU处理器资源, 可以根据流程的优先级以及占用 CPU的时 长分配; 4,扩展资源:任意公共的冲突资源都可以纳入公共资源数据库中管理, 比如, 多个流程模块都需要使用硬件插值器、 信道估计器等。 在本发明实施例中, 可以使用描述符表示每个资源的使用情况 (即各个资源的资 源描述状态), 例如, 描述符可以使用 32比特 (bit) 的数据来表示, 最低位为 0, 最 高位为 31, 使用比特掩码方式来描述该资源的使用情况, 以 0表示该资源空闲, 以 非 0表示该资源被占用, 非 0时对应的 Bit位置描述请求资源流程的优先级, 每个优 先级对应一个流程 Id, 优先级描述符中比特位置越高表示对应比特位置过程请求资源 的优先级越高。 比如, 在本实施例的一个优选实施方式中, 采用多比特域描述单一流 程的多个优先级设置, 此方法能够很好的解决优先级调整问题。 举例说明, 流程 A采 用掩码 0B0101, 0010表示 3种优先级,分别为优先级 1, 4, 6;流程 B采用掩码 0B0010, 0100表示 2种优先级, 分别为 4, 2。 假设在状态 X下, 流程 A使用的优先级为 4, 流程 B使用的优先级为 5 ; 流程 A, B占用的资源互斥; 流程 B在请求资源时, 如果 当前资源描述符为 0B0001 , 0000(第 4比特为 1)那么表示该资源已经被流程 A占用, 由于流程 B 在状态 X 下优先级高, 可以抢占 A 的资源并修改资源描述符为 0B0010,0000; 如果在状态 Υ流程 Α使用的优先级为 4, 流程 B使用的优先级为 2, 由 于 B的优先级低, 只能等待资源。 步骤 S 104, 资源调度模块查询资源请求消息请求的资源当前的资源描述状态。 在本发明实施例中, 资源调度模块可以通过查询记录的各个独立资源的资源描述 状态, 获取资源请求消息请求的资源对应的一个或多个独立资源的资源描述状态。 例 如, 如果各个独立资源的资源描述状态记录在资源表中, 则在实际应用中, 资源调度 模块可以根据流程请求的资源,从资源表中查询该资源是否被预约(即 Shadow状态), 如果被预约, 那么判断该资源是否可以复用, 如果存在冲突不能复用, 再根据流程模 块当前的优先级判断该资源是否可以被抢占, 从而决定能否为请求该资源的流程分配 资源。 在本发明实施例中, 资源的各种状态及其对应的资源使用情况如表 1所示。
表 1
Figure imgf000007_0001
在实际应用中, 为了简化资源分配实现上的复杂度, 对于已经分配的资源不采用 收回制度, 例如, 资源描述符的最高位 1表示当前资源正在使用, 任意有资源冲突的 流程优先级 (范围在 1~31)都不能抢占该资源。 步骤 S106, 资源调度模块根据资源描述状态判断是否为流程模块分配资源, 如果 是, 则为流程模块分配资源, 否则, 不为流程模块分配资源。 在本发明实施例中, 当资源调度模块获取到当前资源的资源描述状态, 就可以根 据资源描述状态判断是否为流程模块分配资源。 例如, 如果资源的资源描述状态指示 资源当前正在使用 (即 Active状态) 且存在资源冲突, 则资源调度模块确定不为流程 模块分配资源, 如果资源不存在冲突, 则资源调度模块为该流程模块分配资源; 如果 资源的资源描述状态指示资源已经被预约 (即 Shadow状态), 且流程模块与预约资源 的流程模块的资源冲突, 则判断当前请求资源的流程模块的优先级是否低于预约资源 的流程模块的优先级, 如果是, 则不为请求资源的流程模块分配资源, 如果不是, 则 为请求资源的流程模块分配资源; 如果资源的资源描述状态指示资源当前未使用 (即 Unused状态), 则资源调度模块为请求资源的流程模块分配资源。 其中, 当前的资源状态为 Active状态, 则资源调度模块需要从资源描述状态中获 取当前预约资源的流程模块的优先级; 资源调试模块从资源请求消息中获取当前请求 资源的流程模块的描述优先级; 资源调试模块判断当前请求资源的流程模块的优先级 是否高于当前预约资源的流程模块的优先级; 在本发明实施例中, 各个资源的资源描 述状态是通过对应位置的比特位的值(即上述 32比特的数据描述符)指示预约资源的 流程模块的优先级的, 具体的对应关系已经举例说明了, 这里不再赘述。 当然, 如果调度模块通过以上判断得知各个资源均处于使用状态, 或者预约资源 的流程的优先级高于当前申请资源的流程的优先级, 则资源调度模块不为流程模块分 配资源, 此时, 流程模块只能等待资源, 并且可以每间隔一个预设的时间周期向资源 调度模块发送资源请求消息, 直到申请到资源。 在实际应用中, 物理层公共资源并发冲突调度模块管理的资源最小粒度为一个子 帧, 物理层各个流程在激活时请求相应的资源, 如果申请成功, 那么调用相应的设备 控制模块工作, 否则等待资源分配; 对于未请求到资源的流程, 每个子帧轮采用询方 式, 不停的请求资源, 直到资源请求成功或流程中止。 图 3是根据现有技术的流程交互方式下不同流程占用的 RF资源的工作示意图, 在现有技术中, RF资源利用率较低, 如图 3所示, 在该流程的工作模式下, RF资源 会出现一个子帧的浪费。 图 4是根据本发明实施例的资源调度方式下不同流程占用 RF资源的工作示意图, 如图 4所示, 在本发明实施例中, 相较于图 3所示的现有技术的工作模式, 本实施例 的流程 X/Y均提前一个子帧启动, 滞后一个子帧结束, 其中, 流程 Y在请求到资源之 后提前一个子帧启动硬件工作, RF资源没有浪费; 如果根据流程 X和 Y的调用优先 级顺序来安排 RF资源, X流程结束再启动 Y流程, 这样, RF资源的利用率大大提高 了。 图 5是利用本发明实施例提供的技术方案, 实现 L1用户设备物理层资源的调度 控制软件架构框图, 如图 5所示, 在本发明实施例中, 资源调度模块管理 UE物理层 所有的公共资源, 任意 UE物理层的流程模块向资源调度模块请求资源, 如果资源请 求成功, 那么流程执行; 如果资源请求失败, 那么流程处于等待资源描述状态, 并周 期性尝试请求资源。 采用这种方案, 对资源的管理和控制进行了内部封装, 可以大大 简化 UE内部流程设计, 同时, 为了增加优先级抢占机制功能, 每个分配的资源上都 记录该资源被占用的流程以及相应的优先级, 高优先级可以抢占低优先级流程的占用 资源; 同时为了支持流程的优先级动态调整,采用多比特域的方式描述流程的优先级, 支持流程的优先级动态调整。 为了简化软件控制复杂性, 同时减少硬件工作的异常终止场景, 可以对图 5所示 的控制软件的控制方法作如下约定:
1, 高优先级的流程不能抢占正在使用的资源,避免正在执行的硬件设备被临时中 止; 2, 高优先级的流程可以抢占低优先级流程的 Shadow状态的资源;
3, 流程需要提前预约 Shadow状态资源;
4, 任意流程一次请求的资源长度不能过长, 避免长时间抢占资源, 堵塞其他流程 的执行; 以 TD-SCDMA UE物理层的服务小区 FACH接收, 异频测量, 同频邻区 BCH接 收, 同频测量为例, 说明资源冲突仅限于 RF资源和定时资源, 约定如下:
1, 优先级顺序: 服务小区 FACH接收 > 同频邻区 BCH接收 >异频测量 > 同
2, 资源定义: 服务小区为 A小区, 频点为 F0频点; 同频相邻小区为 B小区; 异 频测量频点为 F1频点; 所有测量以服务小区 A定时为参考点; 3, 各个流程调用的关系: 优先级越高的流程优先请求资源调度; A, FACH接收规则: 系统帧号 % 64 = 37; TTI为 10ms; B, BCH接收规则: 系统帧号 % 64 = 34; TTI为 20ms;
C, 异频测量调度: 允许任意时刻调度, 在第 66子帧时, 需要 3个子帧完成异频
D, 同频测量调度: 允许任意时刻调度, 在第 66子帧时, 需要 1个子帧同频测量 完成调度; 各个流程经过资源调度, 形成如图 6所示的资源分配情况: 1, 服务小区 FACH接收预约第 74 ~ 75子帧资源; 2, 同频 BCH接收预约第 68~ 71子帧资源;
3, 异频测量预约第 67,72,73子帧资源;
4, 同频测量预约第 74子帧资源 (同频 BCH接收占用 B小区的定时, 和同频测 量的定时资源冲突); 现有技术中, 由于采用传统并发流程控制方法导致模块之间交互控制复杂, 流程 内部的并发时序难以做到无缝连接控制, 导致软件实现困难且扩展性不强, 采用本发 明实施例提供的上述方法可以解决传统的并发流程控制方法导致模块之间交互控制复 杂, 流程内部的并发时序难以做到无缝连接控制, 使得各个流程模块在申请 TD-SCDMA物理层资源时容易发生抢占、冲突的问题, 达到了能够提供高效简洁的并 发流程处理机制的效果, 进而有效地降低了各个流程模块在进行 UE物理层资源的调 用时产生的冲突, 从而大大提高了射频资源的利用率。 图 7是根据本发明实施例的用户设备物理层资源的调度装置结构示意图, 该装置 包括: 接收模块 10、 查询模块 20、 判断模块 30以及调度模块 40。 采用该装置可以实 现上述实施例提供的用户设备物理层资源的调度方法。 其中, 接收模块 10, 设置为接 收用户设备物理层的流程模块发送的资源请求消息;查询模块 20,连接至接收模块 10, 设置为查询资源请求消息请求的资源当前的资源描述状态; 判断模块 30, 连接至查询 模块 20, 设置为根据资源描述状态判断是否为流程模块分配资源, 如果是, 则触发调 度模块; 调度模块 40, 连接至判断模块 30, 设置为为流程模块分配资源。 如图 8所示, 在本发明实施例中, 为了方便资源调度模块在查询并确定各个 UE 物理层资源的使用情况, 上述装置还可以包括一个存储模块 50, 设置为记录用户设备 物理层的所有资源中按照时间及资源的类型划分的各个独立资源的资源描述状态。 其中,在本发明实施例的一个优选实施方式中,判断模块 30在判断资源的资源描 述状态指示该资源当前正在使用但不存在资源冲突的情况下, 触发调度模块 40; 判断 模块 30在资源的资源描述状态指示资源已经被预约,且流程模块与预约资源的流程模 块的资源冲突的情况下, 还设置为判断当前请求资源的流程模块的优先级是否低于预 约资源的流程模块的优先级, 如果不是, 则触发调度模块 40; 或者判断模块 30在判 断资源的资源描述状态指示资源当前未使用的情况下, 触发调度模块 40。 在该实施方 式中,在判断模块 30判断资源的资源描述状态指示该资源当前正在使用且存在资源冲 突的情况下, 则不为所述流程模块分配所述资源 在当前资源被预约状态下, 需要判断使用当前资源的流程的优先级与请求当前资 源的流程的优先级的高低。 为了能够及时获取使用当前资源的流程的优先级的数据, 如图 8所示, 在本发明实施例的一个优选实施方式中, 该装置还可以包括: 第一获取 模块 32, 设置为在判断模块在资源的资源描述状态指示资源已经被预约, 且流程模块 与预约资源的流程模块的资源冲突的情况下, 从该资源描述状态中获取当前预约资源 的流程模块的优先级; 为了能够及时获取请求当前资源的流程的优先级的数据, 该装 置还可以包括: 第二获取模块 34, 设置为从资源请求消息中获取当前请求资源的流程 模块的描述优先级。 以上的第一获取模块 32与第二获取模块 34可以单独设置, 也可 以合体设置, 设置方式不做限制。 相关技术中, 由于采用传统并发流程控制方法导致模块之间交互控制复杂, 流程 内部的并发时序难以做到无缝连接控制, 导致软件实现困难且扩展性不强, 采用本发 明实施例提供的上述装置可以解决传统的并发流程控制方法导致模块之间交互控制复 杂, 流程内部的并发时序难以做到无缝连接控制, 使得各个流程模块在申请 TD-SCDMA物理层资源时容易发生抢占、冲突的问题, 达到了能够提供高效简洁的并 发流程处理机制的效果, 进而有效地降低了各个流程模块在进行 UE物理层资源的调 用时产生的冲突, 从而大大提高了射频资源的利用率。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 通过增设一个资源调 度模块对 RF资源进行管理分配, 根据预先设定的流程的优先级可以将各个流程模块 的耦合性降低, 任意流程只需要关注资源请求分配的情况, 而不必关心和其他流程之 间的关系, 使流程模块易于设计、 维护; 同时, 流程的灵活性增强, 优先级能够动态 修改, 比如, 在空闲状态下, 邻区 BCH接收的优先级高于测量优先级, 而在寻呼态下 测量的优先级高于邻区 BCH接收,设计时仅需要调整一下不同状态下各个流程的优先 级; 从流程扩展性设计而言, 增加新的流程也不影响原有流程的设计, 比如, 在寻呼 态下支持广播服务功能, 只需要确定广播服务请求的资源以及优先级, 流程设计大大 简化, 从而提高了 RF资源的利用率。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种用户设备物理层资源的调度方法, 包括:
用户设备物理层的资源调度模块接收流程模块发送的资源请求消息; 所述资源调度模块查询所述资源请求消息请求的资源当前的资源描述状 态;
所述资源调度模块根据所述资源描述状态判断是否为所述流程模块分配所 述资源, 如果是, 则为所述流程模块分配所述资源, 否则, 不为所述流程模块 分配所述资源。
2. 根据权利要求 1所述的方法, 其中,
在所述用户设备物理层的资源调度模块接收流程模块发送的资源请求消息 之前, 所述方法还包括: 所述资源调度模块以子帧为单位, 将用户设备物理层 的所有资源按照时间及资源的类型划分为不同的独立资源, 记录各个独立资源 的资源描述状态;
所述资源调度模块查询所述资源请求消息请求的资源当前的资源描述状态 包括: 所述资源调度模块查询记录的各个独立资源的资源描述状态, 获取所述 资源请求消息请求的资源对应的一个或多个所述独立资源的资源描述状态。
3. 根据权利要求 1所述的方法, 其中, 所述资源调度模块根据所述资源描述状态 判断是否为所述流程模块分配所述资源包括:
如果所述资源的资源描述状态指示所述资源当前正在使用且存在资源冲 突, 则所述资源调度模块确定不为所述流程模块分配所述资源, 在所述资源的 资源描述状态指示所述资源当前正在使用但不存在资源冲突, 则所述资源调度 模块确定为所述流程模块分配所述资源;
如果所述资源的资源描述状态指示所述资源已经被预约, 且所述流程模块 与预约所述资源的流程模块的资源冲突, 则判断当前请求所述资源的所述流程 模块的优先级是否低于预约所述资源的流程模块的优先级, 如果是, 则不为请 求所述资源的所述流程模块分配所述资源, 如果不是, 则为请求所述资源的所 述流程模块分配所述资源;
如果所述资源的资源描述状态指示所述资源当前未使用, 则所述资源调度 模块为请求所述资源的所述流程模块分配所述资源。
4. 根据权利要求 3所述的方法, 其中, 所述资源调度模块判断当前请求所述资源 的所述流程模块的优先级是否低于预约所述资源的流程模块的优先级包括: 所述资源调度模块从所述资源描述状态中获取当前预约所述资源的流程模 块的优先级;
所述资源调试模块从所述资源请求消息中获取当前请求所述资源的流程模 块的描述优先级;
所述资源调试模块比较当前请求所述资源的流程模块的优先级是否低于当 前预约所述资源的流程模块的优先级。
5. 根据权利要求 4所述的方法, 其中, 所述资源描述状态中通过对应位置的比特 位的值指示预约所述资源的流程模块的优先级。
6. 权利要求 1至 5中任一项所述的方法, 其中, 如果所述资源调度模块不为所述 流程模块分配所述资源, 所述方法还包括:
所述流程模块每间隔一个预设的时间周期向所述资源调度模块发送所述资 源请求消息。
7. 一种用户设备物理层资源的调度装置, 包括:
接收模块, 设置为接收用户设备物理层的流程模块发送的资源请求消息; 查询模块,设置为查询所述资源请求消息请求的资源当前的资源描述状态; 判断模块, 设置为根据所述资源描述状态判断是否为所述流程模块分配所 述资源, 如果是, 则触发调度模块;
所述调度模块, 设置为为所述流程模块分配所述资源。
8. 根据权利要求 7所述的装置, 所述装置还包括: 存储模块, 设置为记录用户设备物理层的所有资源中按照时间及资源的类 型划分的各个独立资源的资源描述状态。
9. 根据权利要求 7所述的装置, 其特征在于, 所述判断模块在判断所述资源的资源描述状态指示所述资源当前正在使用 但不存在资源冲突的情况下, 触发所述调度模块;
所述判断模块在所述资源的资源描述状态指示所述资源已经被预约, 且所 述流程模块与预约所述资源的流程模块的资源冲突的情况下, 还设置为判断当 前请求所述资源的所述流程模块的优先级是否低于预约所述资源的流程模块的 优先级, 如果不是, 则触发所述调度模块; 或者
所述判断模块在判断所述资源的资源描述状态指示所述资源当前未使用的 情况下, 触发所述调度模块。
10. 根据权利要求 9所述的装置, 所述装置还包括: 第一获取模块, 设置为在所述判断模块在所述资源的资源描述状态指示所 述资源已经被预约, 且所述流程模块与预约所述资源的流程模块的资源冲突的 情况下, 从所述资源描述状态中获取当前预约所述资源的流程模块的优先级; 第二获取模块, 设置为从所述资源请求消息中获取当前请求所述资源的流 程模块的描述优先级。
PCT/CN2012/075909 2011-05-31 2012-05-22 用户设备物理层资源的调度方法及装置 WO2012163241A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110145245.XA CN102811489B (zh) 2011-05-31 用户设备物理层资源的调度方法及装置
CN201110145245.X 2011-05-31

Publications (1)

Publication Number Publication Date
WO2012163241A1 true WO2012163241A1 (zh) 2012-12-06

Family

ID=47235035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075909 WO2012163241A1 (zh) 2011-05-31 2012-05-22 用户设备物理层资源的调度方法及装置

Country Status (1)

Country Link
WO (1) WO2012163241A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1538767A (zh) * 2003-10-24 2004-10-20 大唐移动通信设备有限公司 根据无线链路的优先级实现资源抢占的方法和装置
JP2006035558A (ja) * 2004-07-26 2006-02-09 Canon Inc 画像形成装置
CN101282324A (zh) * 2008-04-25 2008-10-08 北京交通大学 基于跨层用于自适应mimo-ofdm系统的联合无线资源管理方法
CN101572918A (zh) * 2008-04-29 2009-11-04 中国移动通信集团设计院有限公司 一种分配无线资源的方法、装置和系统
CN101883436A (zh) * 2010-06-24 2010-11-10 宇龙计算机通信科技(深圳)有限公司 一种资源的并发处理方法、系统及移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1538767A (zh) * 2003-10-24 2004-10-20 大唐移动通信设备有限公司 根据无线链路的优先级实现资源抢占的方法和装置
JP2006035558A (ja) * 2004-07-26 2006-02-09 Canon Inc 画像形成装置
CN101282324A (zh) * 2008-04-25 2008-10-08 北京交通大学 基于跨层用于自适应mimo-ofdm系统的联合无线资源管理方法
CN101572918A (zh) * 2008-04-29 2009-11-04 中国移动通信集团设计院有限公司 一种分配无线资源的方法、装置和系统
CN101883436A (zh) * 2010-06-24 2010-11-10 宇龙计算机通信科技(深圳)有限公司 一种资源的并发处理方法、系统及移动终端

Also Published As

Publication number Publication date
CN102811489A (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
WO2018127239A1 (zh) 随机接入方法及终端
US8990822B2 (en) Data processing arrangement
JP7273197B2 (ja) リソース設定方法及び通信装置
CN110225547B (zh) 一种调度请求发送、接收方法、终端及网络侧设备
CN105376861B (zh) 一种占用非授权载波的发送的方法、系统及接入点
WO2018141244A1 (zh) 一种资源调度方法、装置及系统
WO2016119431A1 (zh) 分组方法、同步失效处理方法、基站、设备和存储介质
US11291037B2 (en) SR/BSR triggering method and device
CN111836370B (zh) 一种基于竞争的资源预约方法及设备
TW201001975A (en) Network system with quality of service management and associated management method
EP3855703A1 (en) Service resource management method and apparatus, network device, and readable storage medium
CN112379994B (zh) 一种多维度用电数据采集调度方法及系统
WO2017118053A1 (zh) 一种信道占用的判决方法及判决装置
WO2020143630A1 (zh) 一种资源配置方法及装置
US10292052B2 (en) Access method and device
CN111836312B (zh) 一种基于竞争的资源预约方法和设备
WO2012092762A1 (zh) 一种终端物理层资源分配方法及系统
CN111970764B (zh) 对sr配置的处理方法及装置、存储介质、终端
WO2013068925A2 (en) Method and apparatus for controlling wireless devices
WO2012163241A1 (zh) 用户设备物理层资源的调度方法及装置
EP4207659A1 (en) Method and device for coordinated communication of multiple access points, and storage medium
WO2021217534A1 (zh) 一种通信方法和装置
WO2020215848A1 (zh) 一种资源共享的方法和装置
WO2018094618A1 (zh) 一种资源分配和传输数据包的方法及设备
CN109121219A (zh) 调度请求的发送方法及装置、存储介质、终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792321

Country of ref document: EP

Kind code of ref document: A1