WO2012163128A1 - 基于射频识别的标签交易方法及系统 - Google Patents
基于射频识别的标签交易方法及系统 Download PDFInfo
- Publication number
- WO2012163128A1 WO2012163128A1 PCT/CN2012/072215 CN2012072215W WO2012163128A1 WO 2012163128 A1 WO2012163128 A1 WO 2012163128A1 CN 2012072215 W CN2012072215 W CN 2012072215W WO 2012163128 A1 WO2012163128 A1 WO 2012163128A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frame data
- antenna
- resource pool
- central controller
- label
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10009—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
- G06K7/10019—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves resolving collision on the communication channels between simultaneously or concurrently interrogated record carriers.
Definitions
- the present invention relates to the field of communications, and in particular to a radio frequency identification based tag transaction method and system.
- ETC Electronic Toll Collection
- OBU On Board Unit
- RSU Roadside Reading and writing device installed in a toll lane
- RSUs Read- Side Units
- the radio frequency identification technology automatically identifies the target and acquires relevant data through the radio frequency signal, and the radio frequency signal is transmitted by using the air interface.
- the reader transmits the modulated RF carrier signal to one or more tags of the communication area.
- the reader transmits and transmits the radio frequency carrier signal to the tag via the wireless channel.
- the tag After receiving the information from the reader, the tag completes decoding, validity judgment, and the like, and transmits the modulated RF carrier signal to the reader through the wireless channel.
- the encoding method adopts FM0 or MANCHESTER, and the modulation mode is amplitude shift keying (ASK) or frequency shift keying (FSK).
- the carrier frequency of the reader is 5.83 GHz or 5.84 GHz
- the carrier frequency of the tag is 5.79 GHz or 5.80 GHz.
- the link through which the reader sends information to the tag is called the downlink, and the link through which the tag sends information to the reader is called the uplink.
- ETC systems mostly use multi-lane multi-reader mode. As shown in Figure 2, it can complete the information communication and transaction processing between the reader and the tag, but there is a problem of adjacent interference, that is, there are multiple readers in the transaction. Interference problems with a tag or multiple tags and a reader.
- the existing ETC system has the following problems: 1. Multiple readers in different lanes work independently, which will result in multiple readers and one label transaction, or multiple labels and one reader transaction. The success rate of one transaction is low. 2.
- the reader may receive the upstream frame of different tags, and the tag may also receive the downlink frame of different readers, and the transaction time is longer.
- the Chinese patent application with the patent application number CN200820152908.4 an electronic toll roadside device with a transparent transmission and integrated application dual interface mode
- the main control module of the patent is limited to only Compatible with the transparent transmission and integrated application dual interface mode transaction process, there is uplink and downlink adjacent channel interference between the tag and the reader, and the transaction success rate is low and the transaction time is long.
- the patent The vehicle carrying the tag is required to complete the transaction in one lane, that is, the vehicle is not allowed to change course during the transaction, otherwise the transaction will fail.
- a radio frequency identification based tag transaction method includes: a central controller transmitting uplink frame data from a tag to a resource pool in a central controller; processing uplink frame data in a resource pool, organizing a downlink After the frame data, the central controller selects an antenna that transmits downlink frame data; the central controller controls the selected antenna to transmit downlink frame data.
- the antenna that the central controller selects to transmit the downlink frame data includes one of: the central controller detects the signal strength of each antenna receiving the uplink frame data, and selects the antenna with the highest signal strength to transmit the downlink frame data; The controller calculates the position information of the tag according to the position of each antenna and the signal strength of the uplink frame data received by each antenna, and selects the antenna to transmit the downlink frame data according to the position information of the tag.
- the selected antenna transmits downlink frame data in the following manner: Time-sharing transmission mode.
- the selected antenna transmits the downlink frame data in a time-sharing manner, including one of the following: the selected antenna detects whether its neighboring antenna is in a transmitting state, and if not in the transmitting state, continues to detect after the first predetermined time. Whether the adjacent antenna is in a transmitting state, if not in a transmitting state, transmitting downlink frame data; if the adjacent antenna is always in a transmitting state, transmitting downlink frame data after a second predetermined time; The time at which the antenna transmits downlink frame data controls the time at which the selected antenna transmits downlink frame data.
- the central controller sends the uplink frame data to the resource pool in the central controller, where: the central controller sends the uplink frame data to the resource pool corresponding to the label, where each label corresponds to the same resource. Pool.
- the method further includes: the central controller allocates a resource pool for the label And recording state information occupied by the resource pool; when the uplink frame data is non-first frame data from the label, before the central controller sends the uplink frame data to the resource pool corresponding to the label, The central controller searches for the resource pool in each resource pool of the central controller according to the identification information of the label.
- a radio frequency identification based tag transaction system includes: a tag and a central controller; the tag, configured to transmit uplink frame data, to receive downlink frame data from a central controller; the central controller includes: The transceiver control unit is configured to send the uplink frame data from the tag to the resource pool, select an antenna that transmits the downlink frame data, and control the selected antenna to transmit the downlink frame data.
- the application processing unit includes: a resource pool, configured to process uplink frame data, and organize downlink frame data.
- the transceiver control unit includes one of the following modules: a first selection module configured to detect a signal strength of each antenna receiving uplink frame data, and an antenna with the highest signal strength to transmit downlink frame data; The module is configured to calculate the position information of the tag according to the position of each antenna and the signal strength of the uplink frame data received by each antenna, and select the antenna to transmit the downlink frame data according to the position information of the tag.
- the system further includes: a selected antenna, configured to send downlink frame data in a time-sharing manner.
- the transceiver control unit includes: a sending module, configured to send uplink frame data to a resource pool corresponding to the label, where each label corresponds to the same resource pool.
- the transceiver control unit further includes: an allocation recording module, configured to allocate a resource pool for the label when the uplink frame data is the first frame data from the label, and record status information of the resource pool being occupied; The module is configured to perform a lookup in each resource pool of the central controller according to the identifier information of the label when the uplink frame data is the non-first frame data from the label, and obtain the resource pool.
- the transceiver control unit further includes: an emptying module, configured to: after the resource pool completes the transaction, clear the identifier information of the label corresponding to the resource pool, and record the information that the resource pool is in an idle state.
- an emptying module configured to: after the resource pool completes the transaction, clear the identifier information of the label corresponding to the resource pool, and record the information that the resource pool is in an idle state.
- the central controller selects an antenna for transmitting the downlink frame data; and controls the selected antenna. Transmitting the downlink frame data, which solves the problem of downlink adjacent channel interference between the tag and the reader in the related art, thereby effectively reducing downlink downlink interference existing between the tag and the reader. Increase the success rate of a transaction and reduce trading time.
- FIG. 1 is a schematic diagram showing the operation principle of a reader and a tag according to the related art
- FIG. 2 is a schematic diagram of a transaction principle of a multi-lane multi-reader according to the related art
- FIG. 3 is a radio frequency identification based on an embodiment of the present invention.
- FIG. 4 is a structural block diagram of a radio frequency identification based tag transaction system in accordance with a preferred embodiment of the present invention
- FIG. 5 is a schematic diagram of a transaction principle of an integrated control mode according to an example of the present invention.
- 6 is a flow chart of a radio frequency identification based tag transaction method in accordance with an embodiment of the present invention
- FIG. 7 is a flow chart of a radio frequency identification based tag transaction method in accordance with a preferred embodiment of the present invention.
- the tag transaction system includes: a tag 10 and a central controller 20; wherein, the tag 10 is configured to transmit uplink frame data, receive downlink frame data from a central controller; 20 may further include: the transceiver control unit 200, configured to send the uplink frame data from the tag to the resource pool, select an antenna that transmits the downlink frame data, and control the selected antenna to transmit the downlink frame data.
- the application processing unit 202 includes: a resource pool, configured to process uplink frame data, and organize downlink frame data.
- the resource pool of the central controller 20 processes the uplink frame data, and after organizing the downlink frame data, the central controller selects an antenna that transmits downlink frame data, and controls the selected antenna.
- the downlink frame data is sent to the tag 10, which can effectively reduce the downlink presence interference between the tag and the reader, improve the success rate of one transaction, and reduce the transaction time.
- it can also solve the problem that the lane change is not allowed in the label transaction process, and the uplink interference of different tags to the reader.
- the transceiver control unit 200 may further include one of the following modules:
- the first selection module 2000 is configured to detect a signal strength of each antenna receiving uplink frame data, and select an antenna with the highest signal strength. Transmitting the downlink frame data;
- the second selecting module 2002 is configured to calculate the position information of the label according to the position of each antenna and the signal strength of the uplink frame data received by each antenna, and select the antenna to send the downlink according to the position information of the label.
- Link frame data may further include: the selected antenna 30, configured to transmit downlink frame data in a time-sharing manner.
- the selected antenna 30 transmits the downlink frame data in a time-sharing manner, which may include, but is not limited to, one of the following processes: Process 1: The selected antenna 30 detects whether its neighboring antenna is in a transmitting state, If not in the transmitting state, continue to detect whether the adjacent antenna is in the transmitting state after the first predetermined time, and transmit the downlink frame data if not in the transmitting state; if the adjacent antenna is always in the transmitting state, then in the second predetermined The downlink frame data is transmitted after the time; Process 2: The central controller controls the time at which the selected antenna transmits the downlink frame data according to the time when the adjacent antenna transmits the downlink frame data. Preferably, as shown in FIG.
- the transceiver control unit 200 may further include: a sending module 2004, configured to send uplink frame data to a resource pool corresponding to the label, where each label corresponds to the same resource pool .
- the transceiver control unit 200 may further include: an allocation recording module 2006 configured to allocate a resource pool for the label when the uplink frame data is the first frame data from the label, and Recording status information of the occupied resource pool; the searching module 2008 is configured to perform searching in the resource pools of the central controller according to the identification information of the label when the uplink frame data is the non-first frame data from the label, Get the resource pool.
- the transceiver control unit 200 only transmits the uplink information with the OBUI to a corresponding resource pool, thereby solving the uplink interference problem and improving the working efficiency.
- the transceiver control unit 200 may further include: an emptying module 2010, configured to clear the identifier information of the label corresponding to the resource pool after the resource pool completes the transaction, and record that the resource pool is idle. Status information.
- the ETC system consists of: a central controller, antennas (the antennas numbered 1, 2, 3, 4 are shown in Figure 5) and labels (numbers 1, 2, 3 are shown) , 4, 5, 6, 7, 8 tags).
- the central controller is processed by a transceiver control unit (corresponding to the above-mentioned transceiver control unit 200), an application processing unit (corresponding to the application processing unit 202 described above), and a point-of-sale secure access module (PSAM).
- PSAM point-of-sale secure access module
- the application processing unit includes a plurality of resource pools, and each resource pool processes the uplink frame information of the tag in parallel.
- the antenna receives the data of the tag and reports it to the transceiver control unit of the central controller.
- the transceiver control unit allocates an application resource pool to the tag, and the resource pool processes the uplink data frame, and sends the processed downlink frame to the transceiver control unit.
- the transceiver control unit selects an antenna to transmit data to the tag.
- the PSAM processing unit supply unit calculates access credentials, information authentication codes, and the like. Communication with the lane computer is accomplished with the lane computer interface unit.
- the central controller controls the antenna to send a command to the tag. After receiving the command, the tag returns to the antenna response data, and the antenna transmits the data to the central controller.
- the antenna performs encoding, modulation, and transmission of downlink information according to the DSRC protocol; and receiving, decoding, and transmitting the decoded data to the central controller.
- the central controller is responsible for application processing, and all downlink commands including the Beacon Service Table (BST) are controlled by it.
- BST Beacon Service Table
- the central controller allocates a resource pool to each reader, that is, each antenna can Work in parallel and avoid mutual interference.
- 6 is a flow chart of a radio frequency identification based tag transaction method in accordance with an embodiment of the present invention. As shown in FIG.
- the RFID-based tag transaction method mainly includes the following processes: Step S602: The central controller sends uplink frame data from the tag to a resource pool in the central controller; Step S604: In the resource pool After processing the uplink frame data and organizing the downlink frame data, the central controller selects an antenna that transmits the downlink frame data; Step S606: The central controller controls the selected antenna to transmit the downlink frame data.
- the resource pool of the central controller processes the uplink frame data, and after organizing the downlink frame data, the central controller selects an antenna that transmits downlink frame data, and controls the selected antenna to transmit downlink.
- the link frame data can effectively reduce the downlink presence interference between the tag and the reader, improve the success rate of one transaction, and reduce the transaction time.
- the antenna that the central controller selects to transmit the downlink frame data includes, but is not limited to, one of the following processes: Process 1: The central controller detects the signal strength of each antenna receiving the uplink frame data, and selects The antenna with the strongest signal strength transmits downlink frame data; Process 2: The central controller calculates the position information of the tag according to the position of each antenna and the signal strength of each antenna receiving the uplink frame data, and selects according to the position information of the tag. The antenna transmits downlink frame data.
- the selected antenna may send downlink frame data in the following manner: Time-sharing mode.
- the selected antenna sends the downlink frame data in a time-sharing manner, which may include, but is not limited to, one of the following processes: Processing 1: The antenna detects whether the adjacent antenna is in the transmitting state, if not in the transmitting state, Then, after the first predetermined time, continue to detect whether the adjacent antenna is in the transmitting state, if not in the transmitting state, send the downlink frame data; if the adjacent antenna is always in the transmitting state, send the downlink after the second predetermined time Frame data; Process 2: The central controller controls the time at which the antenna transmits downlink frame data according to the time when the adjacent antenna transmits the downlink frame data.
- the central controller sends the uplink frame data to the resource pool in the central controller, where the central controller sends the uplink frame data to the resource pool corresponding to the label, where each label corresponds to the same A resource pool.
- the uplink frame data is the first frame data from the label
- the central controller sends the uplink frame data to the resource pool corresponding to the label
- the following processing may also be included:
- the label allocates a resource pool, and records state information occupied by the resource pool; if the uplink frame data is non-first frame data (for example, second frame data, third frame data, etc.) from the label, it may further include The following processing is performed:
- the central controller searches for each resource pool of the central controller according to the identification information of the label, and obtains a resource pool.
- FIG. 7 is a flow chart of a radio frequency identification based tag transaction method in accordance with a preferred embodiment of the present invention. As shown in FIG.
- the RFID-based tag transaction method mainly includes the following processing (step S702 - step S710):
- Step S704 After receiving the data of the antenna, the tag in the communication area sends uplink frame data to the antenna.
- the transceiver control unit transmits the uplink frame data to a corresponding resource pool of the application processing unit (or a resource pool if no resource pool is allocated to the label).
- the application processing unit of the central controller maintains a plurality of resource pools to conduct transactions with the OBUs of each lane in parallel.
- the central controller controls the transaction process with each OBU.
- the transceiver control unit After the antenna and an OBU are chained, the transceiver control unit receives a first frame of OBU uplink frame data, and allocates a resource pool to the OBU according to the OBU ID information. And record that the resource pool is already occupied. The same resource pool and the OBU are used for transactions during the transaction.
- the transceiver control unit searches each resource pool according to the ID information of the OBU, selects a resource pool corresponding to the ID of the OBU, and transmits uplink frame data to the resource pool.
- the central controller when the central controller sends downlink frame data to a tag, the central controller should select a suitable antenna to transmit the downlink frame data.
- the antenna that is most favorable for the tag to receive the downstream frame should be selected.
- the communication range coverage of the antenna must cover the tag. For example, one lane of four lanes, one antenna per lane, when the label is in a lane, the antenna of the lane should be selected for transmission. When the label is located at the intersection of two lanes, one of the lanes is selected to transmit.
- Manner 1 The signal strength of the uplink frame of the receiving antenna of the antenna is detected.
- the intensity reflects the position information of the tag, that is, the receiving strength of the antenna of the tag is large, the receiving strength of the antenna of the tag is small, and the receiving strength of the antenna of the tag is close. Large, and vice versa.
- the central controller selects the antenna with the strongest reception strength to transmit downlink frame data. This method has low complexity but low anti-interference ability. As shown in FIG. 5, the tag 2 transmits an uplink frame to each antenna, and the signal received by the antenna 2 facing the tag has a large signal strength, and the signal strength received by the other antennas is small, and the antenna has the signal strength and the uplink frame.
- the information is sent together to the transceiver control unit of the central controller, and the transceiver control unit selects the antenna 2 having the highest signal strength to transmit the downlink frame data.
- Manner 2 Multiple receiving antennas are placed in each lane, and the tag signal power received by multiple receiving antennas is used to realize positioning of the tag.
- the central controller selects the best antenna transmission based on the position of the tag.
- a plurality of receiving antennas and a transmitting antenna with known positions are placed in one lane. After receiving the uplink frames of the label, the receiving antennas are reported to the central controller's transceiver control unit, and the transceiver control unit is configured according to the positions of the receiving antennas.
- the relative position information of the OBU can be calculated (the basic principle is the same as the first method, and multiple receiving antennas are used to improve the positioning accuracy).
- a certain transmitting antenna can be selected to transmit a downlink frame.
- the central controller selects a transmitting antenna to send a corresponding downlink frame according to the uplink frame data of each OBU, which can solve the lane changing problem in the label transaction process. For example, as shown in FIG. 5, during the transaction, the tag 1 is changed from lane 1 to lane 2. During the lane changing process, uplink frame information is sent to the antenna, and the central controller selects the antenna 1 according to the position of the label.
- antenna 2 transmits a downlink frame.
- the central controller selects an antenna to deliver a certain downlink frame data.
- the coverage of adjacent antennas overlaps.
- antenna 1, antenna 2 When the antenna is simultaneously traded with OBU1, OBU2, and OBU3, there is a downlink interference problem.
- each transmitting antenna can be transmitted in a time division manner. Since the length of each downlink frame data is less than 128 bytes, the downlink rate is 256 Kbps, and the downlink time is less than 4 ms, so that the parallel requirement can be satisfied.
- Mode 1 Detect whether the adjacent antenna is in the transmitting state, which can be implemented by using GPIO.
- the antenna 2 when the antenna 2 needs to send a downlink information frame, it is detected whether the antenna next to it is transmitting (no transmission considers the channel idle), and if the channel is idle, the random delay is for a period of time (about 0-0.5 ms), and then the channel is detected. Whether it is idle, if it is idle, it will be sent immediately; when the channel is busy, the channel detection will be performed. If the downlink frame is still not sent within T (time can be set), the transmission will be forced. Even if the OBU reception fails, there will be a command retransmission. , but increased trading time.
- Method 2 The central controller controls different antennas to transmit time-sharing.
- the transceiver control unit controls each transmitting antenna to transmit a downlink frame, so the central controller can control each transmitting antenna to transmit time-sharing. For example, when the transceiver control unit controls the antenna 2 to transmit one frame of downlink information, it detects the time when the last control antenna 1 and the antenna 3 transmit the downlink frame, and if it is less than a certain threshold, the antenna is delayed for a period of time, and then the antenna is controlled. 2 Send one frame of downlink information. In the second method, the complexity of the central controller is increased, and the time precision is required to be high. The data transmission time of the transceiver control unit to each antenna and the processing time of each antenna may be different, which may affect the specific implementation effect.
- the transmission time of each antenna can be coordinated to avoid interference between downlink frames. If the OBU is unable to receive downlink frame data in real time, the OBU cannot receive other downlink frames during processing of one downlink frame. For this problem, if another downlink frame is sent immediately after one frame is sent, it will cause the OBU to lose the downlink frame. Similarly, if one frame of data is sent by antenna 1, antenna 2 immediately sends another frame of data, which also causes the OBU to lose the downlink frame problem. For example, the second part of the data link layer protocol of the Wuhan Road and Bridge ETC protocol, after the antenna has sent one frame of data, the response information of the OBU should be received within the maximum length of 480us.
- Step S704 to S708 are repeated until the transaction ends, and step S710 is performed.
- the resource pool of the application processing unit after the completion of a transaction (including the end of the transaction failure), notifies the transceiver control unit to release the resource pool, that is, clears the ID information of the OBU corresponding to the resource pool, and records the resource pool. Is idle.
- the resource pool can be used by other OBUs after release.
- the transaction time can also be reduced in the following manner: Method 1: Improve the data transmission speed between the central controller and the antenna.
- Method 2 Reduce the number of command transmissions between the central controller and the antenna. You can reduce the number of commands by linking the commands.
- Manner 3 The receiving antenna and the transmitting antenna are used, and the transmitting antenna performs encoding of the downlink frame, and the receiving antenna is responsible for decoding the uplink frame. This allows the parallel operation of the antenna to be used, reducing the processing time of the central controller. In this way, the ACTION command that requires the OBU response tries to use the link form, and the frame format has a flag bit that distinguishes the ACTION subcommand (subtype).
- a central controller is introduced compared with the prior art, and the central controller can control different readers to work in parallel, thereby effectively improving work efficiency and avoiding adjacent interference. , improve transaction success rate, and reduce trading time. Since each reader works in coordination under the control of the central controller, on the one hand, only one reader for the downlink frame of a certain tag is transmitted, and each transmitting antenna adopts a time-sharing method, thereby avoiding different readers to the label. On the other hand, after receiving the uplink frame data from a tag, only one resource pool corresponding to the tag is selected, which avoids interference of different tags on the reader, and improves the working efficiency of the system. And a transaction success rate.
- modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device so that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
- the above are only the preferred embodiments of the present invention, and are not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明提供了一种基于射频识别的标签交易方法及系统,在上述方法中,中央控制器将来自于标签的上行链路帧数据发送至中央控制器中的资源池;在资源池处理上行链路帧数据,组织下行链路帧数据之后,中央控制器选择发送下行链路帧数据的天线;中央控制器控制选择的天线发送下行链路帧数据。根据本发明提供的技术方案,可以有效解决标签和阅读器之间存在的临道干扰问题,提高了一次交易成功率,减小了交易时间。
Description
基于射频识别的标签交易方法及系统 技术领域 本发明涉及通信领域, 具体而言,涉及一种基于射频识别的标签交易方法及系统。 背景技术 电子不停车收费(Electronic Toll Collection, 简称为 ETC)系统由安装在车辆上的 车载设备 (On Board Unit, 简称为 OBU, 即标签) 与安装在收费车道的路侧读写设备 (Road-Side Units, 简称为 RSU, 即阅读器或称之为天线) 构成。 它们之间通过射频 识别技术进行通信, 完成数据交换, 实现车辆不停车缴费。 射频识别技术通过射频信 号自动识别目标并获取相关数据, 射频信号利用空口传输。 ETC系统中, 阅读器和标签的工作原理如图 1所示。 阅读器向通信区域的一个或 多个标签发送经过调制的射频载波信号。 阅读器通过编码、 调制射频载波信号, 经过 无线信道传送给标签。 标签接收到来自于阅读器的信息后完成解码、 有效性判断等处 理, 通过无线信道向阅读器发送经过调制的射频载波信号。 编码方式采用 FM0 或者 MANCHESTER, 调制方式为幅移键控 (ASK) 或者频移键控 (FSK), 阅读器的载波 频率 5.83 GHz或者 5.84GHz,标签的载波频率 5.79 GHz或者 5.80GHz。阅读器向标签 发送信息的链路称为下行链路, 标签向阅读器发送信息的链路称为上行链路。 目前, ETC系统大多采用多车道多阅读器方式, 如图 2所示, 能够完成阅读器和 标签之间的信息通信以及交易处理等操作, 但存在临道干扰问题, 即交易中存在多阅 读器和一个标签或者多标签和一个阅读器之间的干扰问题。 现有的 ETC系统存在的临道干扰问题表现为以下几个方面: 一、不同车道的多阅 读器独立工作,会导致多个阅读器和一个标签交易, 或者多个标签和一个阅读器交易, 一次交易成功率低。 二、 交易中阅读器可能会接收到不同标签的上行帧, 标签也可能 接收到不同阅读器的下行帧, 交易时间较长。 相关技术中, 专利申请号为 CN200820152908.4 的中国专利申请 "一种具有透明 传输和集成应用双接口模式的电子收费路侧设备", 存在以下不足: 一、该专利的主控 模块局限于只兼容透明传输和集成应用双接口模式的交易流程, 标签和阅读器之间存 在上行链路和下行链路临道干扰问题, 一次交易成功率低、 交易时间长。 二、 该专利
要求携带标签的车辆在一个车道完成交易, 即不允许车辆在交易过程中变道, 否则交 易会出现失败。 发明内容 本发明提供了一种基于射频识别的标签交易方法及系统, 以至少解决相关技术中 标签和阅读器之间存在的下行链路临道干扰等问题。 根据本发明的一个方面, 提供了一种基于射频识别的标签交易方法。 根据本发明的基于射频识别的标签交易方法包括: 中央控制器将来自于标签的上 行链路帧数据发送至中央控制器中的资源池; 在资源池处理上行链路帧数据, 组织下 行链路帧数据之后, 中央控制器选择发送下行链路帧数据的天线; 中央控制器控制选 择的天线发送下行链路帧数据。 优选地, 中央控制器选择发送下行链路帧数据的天线包括以下之一: 中央控制器 检测各个天线接收上行链路帧数据的信号强度, 选择信号强度最大的天线发送下行链 路帧数据; 中央控制器根据各个天线的位置和各个天线接收上行链路帧数据的信号强 度, 计算得出标签的位置信息, 根据标签的位置信息选择天线发送下行链路帧数据。 优选地, 选择的天线采用以下方式发送下行链路帧数据: 分时发送方式。 优选地, 选择的天线采用分时发送方式发送下行链路帧数据包括以下之一: 选择 的天线检测其相邻天线是否处于发送状态, 如果不处于发送状态, 则在第一预定时间 之后继续检测相邻天线是否处于发送状态, 如果不处于发送状态则发送下行链路帧数 据; 如果相邻天线一直处于发送状态, 则在第二预定时间之后发送下行链路帧数据; 中央控制器根据相邻天线发送下行链路帧数据的时间, 控制选择的天线发送下行链路 帧数据的时间。 优选地, 中央控制器将上行链路帧数据发送至中央控制器中的资源池包括: 中央 控制器将上行链路帧数据发送至与标签对应的资源池, 其中, 每个标签对应同一个资 源池。 优选地, 上行链路帧数据为来自于标签的第一帧数据时, 在中央控制器将上行链 路帧数据发送至与标签对应的资源池之前, 还包括: 中央控制器为标签分配资源池, 并记录资源池被占用的状态信息; 上行链路帧数据为来自于标签的非第一帧数据时, 在中央控制器将上行链路帧数据发送至与标签对应的资源池之前, 还包括: 中央控制 器根据标签的标识信息在中央控制器的各个资源池中进行查找, 获取资源池。
优选地, 上述方法还包括: 在资源池完成本次交易后, 中央控制器清空资源池对 应的标签的标识信息, 并记录资源池为空闲状态的信息。 根据本发明的另一方面, 提供了一种基于射频识别的标签交易系统。 根据本发明的基于射频识别的标签交易系统包括: 标签和中央控制器; 上述标签, 设置为发送上行链路帧数据, 接收来自于中央控制器的下行链路帧数据; 上述中央控 制器包括: 收发控制单元, 设置为将来自于标签的上行链路帧数据发送至资源池, 选 择发送下行链路帧数据的天线,控制选择的天线发送下行链路帧数据。应用处理单元, 包括: 资源池, 设置为处理上行链路帧数据, 组织下行链路帧数据。 优选地, 上述收发控制单元包括以下之一的模块: 第一选择模块, 设置为检测各 个天线接收上行链路帧数据的信号强度, 选择信号强度最大的天线发送下行链路帧数 据; 第二选择模块, 设置为根据各个天线的位置和各个天线接收上行链路帧数据的信 号强度, 计算得出标签的位置信息, 根据标签的位置信息选择天线发送下行链路帧数 据。 优选地, 上述系统还包括: 选择的天线, 设置为采用分时发送方式发送下行链路 帧数据。 优选地, 上述收发控制单元包括: 发送模块, 设置为将上行链路帧数据发送至与 标签对应的资源池, 其中, 每个标签对应同一个资源池。 优选地, 上述收发控制单元还包括: 分配记录模块, 设置为在上行链路帧数据为 来自于标签的第一帧数据时, 为标签分配资源池, 并记录资源池被占用的状态信息; 查找模块, 设置为在上行链路帧数据为来自于标签的非第一帧数据时, 根据标签的标 识信息在中央控制器的各个资源池中进行查找, 获取资源池。 优选地, 上述收发控制单元还包括: 清空模块, 设置为在资源池完成本次交易后, 清空资源池对应的标签的标识信息, 并记录资源池为空闲状态的信息。 通过本发明, 在中央控制器的资源池处理所述上行链路帧数据, 组织下行链路帧 数据之后, 所述中央控制器选择发送所述下行链路帧数据的天线; 控制上述选择的天 线发送所述下行链路帧数据, 解决了相关技术中标签和阅读器之间存在的下行链路临 道干扰等问题, 进而可以有效减小标签和阅读器之间存在的下行链路临道干扰, 提高 一次交易成功率, 减小了交易时间。
附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据相关技术的阅读器和标签的工作原理示意图; 图 2是根据相关技术的多车道多阅读器的交易原理示意图; 图 3是根据本发明实施例的基于射频识别的标签交易系统的结构框图; 图 4是根据本发明优选实施例的基于射频识别的标签交易系统的结构框图; 图 5是根据本发明实例的集成控制方式的交易原理示意图。 图 6是根据本发明实施例的基于射频识别的标签交易方法的流程图; 以及 图 7是根据本发明优选实施例的基于射频识别的标签交易方法的流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 3是根据本发明实施例的基于射频识别的标签交易系统的结构框图。 如图 3所 示, 该标签交易系统包括: 标签 10和中央控制器 20; 其中, 标签 10, 设置为发送上行链路帧数据, 接收来自于中央控制器的下行链路 帧数据; 中央控制器 20可以进一步包括: 收发控制单元 200, 设置为将来自于标签的上行 链路帧数据发送至资源池, 选择发送下行链路帧数据的天线, 控制选择的天线发送下 行链路帧数据。 应用处理单元 202, 包括: 资源池, 设置为处理上行链路帧数据, 组 织下行链路帧数据。 相关技术中, 标签和阅读器之间存在上行链路和下行链路临道干扰问题, 一次交 易成功率低、 交易时间长, 且携带标签的车辆只能在一个车道完成交易, 车辆不能变 道。在如图 3所示的系统中, 中央控制器 20的资源池处理上行链路帧数据, 组织下行 链路帧数据之后, 中央控制器选择发送下行链路帧数据的天线, 控制上述选择的天线
发送下行链路帧数据给标签 10, 进而可以有效减小标签和阅读器之间存在的下行链路 临道干扰, 提高了一次交易成功率, 减小了交易时间。 同时, 也可以解决标签交易过 程中不允许变道的问题, 以及不同标签对阅读器的上行链路干扰问题。 优选地, 如图 4所示, 上述收发控制单元 200可以进一步包括以下之一的模块: 第一选择模块 2000, 设置为检测各个天线接收上行链路帧数据的信号强度, 选择信号 强度最大的天线发送下行链路帧数据; 第二选择模块 2002, 设置为根据各个天线的位 置和各个天线接收上行链路帧数据的信号强度, 计算得出标签的位置信息, 根据标签 的位置信息选择天线发送下行链路帧数据。 优选地, 如图 4所示, 标签交易系统还可以包括: 选择的天线 30, 设置为采用分 时发送方式发送下行链路帧数据。 在优选实施过程中,选择的天线 30采用分时发送方式发送下行链路帧数据可以包 括但不限于以下之一的处理: 处理一: 上述选择的天线 30检测其相邻天线是否处于发送状态, 如果不处于发送 状态, 则在第一预定时间之后继续检测相邻天线是否处于发送状态, 如果不处于发送 状态则发送下行链路帧数据; 如果相邻天线一直处于发送状态, 则在第二预定时间之 后发送下行链路帧数据; 处理二: 中央控制器根据相邻天线发送下行链路帧数据的时间, 控制上述选择的 天线发送下行链路帧数据的时间。 优选地,如图 4所示,上述收发控制单元 200还可以进一步包括: 发送模块 2004, 设置为将上行链路帧数据发送至与标签对应的资源池, 其中, 每个标签对应同一个资 源池。 优选地, 如图 4所示, 上述收发控制单元 200还可以进一步包括: 分配记录模块 2006, 设置为在上行链路帧数据为来自于标签的第一帧数据时, 为标签分配资源池, 并记录资源池被占用的状态信息; 查找模块 2008, 设置为在上行链路帧数据为来自于 标签的非第一帧数据时,根据标签的标识信息在中央控制器的各个资源池中进行查找, 获取资源池。 收发控制单元 200只将带有 OBUI的上行链路信息发送给一个对应的资源池, 从 而解决了上行链路干扰问题, 提高了工作效率。
优选地,如图 4所示,上述收发控制单元 200还可以进一步包括:清空模块 2010, 设置为在资源池完成本次交易后, 清空资源池对应的标签的标识信息, 并记录资源池 为空闲状态的信息。 以下结合图 5所示的实例进一步描述上述优选实施方式。 图 5是根据本发明实例的集成控制方式的交易原理示意图。 如图 5所示, 该 ETC 系统包括: 中央控制器、天线(图 5中示出了编号为 1, 2, 3, 4的天线)以及标签(图 中示出了编号为 1, 2, 3, 4, 5, 6, 7, 8的标签)。 其中, 中央控制器由收发控制单 元 (相当于上述收发控制单元 200)、 应用处理单元 (相当于上述应用处理单元 202)、 销售点终端安全存取模块 (Purchase Secure Access Module, 简称为 PSAM) 处理单元 和与车道计算机接口单元组成。 在优选实施过程中, 应用处理单元含有多个资源池, 各资源池并行处理标签的上 行链路帧信息。 天线接收标签的数据, 上报到中央控制器的收发控制单元, 收发控制 单元给该标签分配一个应用资源池, 该资源池处理该上行数据帧, 将处理后的下行帧 发送到收发控制单元。 收发控制单元选择一个天线将数据发送到该标签。 PSAM处理 单元供应用单元计算访问凭证、 信息鉴别码等使用。 与车道计算机接口单元完成与车 道计算机的通信。 中央控制器控制天线给标签发送命令, 标签收到命令后返回给天线 应答数据, 天线将数据传送到中央控制器。 天线按照 DSRC协议完成下行链路信息的 编码、 调制和发送; 以及上行链路帧的接收, 解码并将解码后的数据传送到中央控制 器。中央控制器负责应用处理,包括清点标签命令(Beacon Service Table,简称为 BST) 在内的所有下行链路命令均通过它控制, 中央控制器给每个阅读器分配一个资源池, 即各个天线可以并行工作, 并且可以避免相互干扰。 图 6是根据本发明实施例的基于射频识别的标签交易方法的流程图。如图 6所示, 基于射频识别的标签交易方法主要包括以下处理: 步骤 S602: 中央控制器将来自于标签的上行链路帧数据发送至中央控制器中的资 源池; 步骤 S604: 在资源池处理上行链路帧数据, 组织下行链路帧数据之后, 中央控制 器选择发送下行链路帧数据的天线; 步骤 S606: 中央控制器控制选择的天线发送下行链路帧数据。
采用如图 6所示的方法, 中央控制器的资源池处理上行链路帧数据, 组织下行链 路帧数据之后, 中央控制器选择发送下行链路帧数据的天线, 控制上述选择的天线发 送下行链路帧数据, 进而可以有效减小标签和阅读器之间存在的下行链路临道干扰, 提高了一次交易成功率, 减小了交易时间。 同时, 也可以解决标签交易过程中不允许 变道的问题。 优选地,步骤 S604中,上述中央控制器选择发送下行链路帧数据的天线包括但不 限于以下之一的处理: 处理一: 中央控制器检测各个天线接收上行链路帧数据的信号强度, 选择信号强 度最大的天线发送下行链路帧数据; 处理二: 中央控制器根据各个天线的位置和各个天线接收上行链路帧数据的信号 强度, 计算得出标签的位置信息,根据标签的位置信息选择天线发送下行链路帧数据。 优选地, 上述选择的天线可以采用以下方式发送下行链路帧数据: 分时发送方式。 在优选实施过程中, 选择的天线采用分时发送方式发送下行链路帧数据可以包括 但不限于以下之一的处理: 处理一: 天线检测相邻天线是否处于发送状态, 如果不处于发送状态, 则在第一 预定时间之后继续检测相邻天线是否处于发送状态, 如果不处于发送状态则发送下行 链路帧数据; 如果相邻天线一直处于发送状态, 则在第二预定时间之后发送下行链路 帧数据; 处理二: 中央控制器根据相邻天线发送下行链路帧数据的时间, 控制天线发送下 行链路帧数据的时间。 优选地, 中央控制器将上行链路帧数据发送至中央控制器中的资源池包括以下处 理: 中央控制器将上行链路帧数据发送至与标签对应的资源池, 其中, 每个标签对应 同一个资源池。 优选地, 如果上述上行链路帧数据为来自于标签的第一帧数据, 在中央控制器将 上行链路帧数据发送至与标签对应的资源池之前, 还可以包括以下处理: 中央控制器 为标签分配资源池, 并记录资源池被占用的状态信息; 如果上述上行链路帧数据为来 自于标签的非第一帧数据(例如,第二帧数据,第三帧数据等),还可以包括以下处理: 中央控制器根据标签的标识信息在中央控制器的各个资源池中进行查找,获取资源池。
该方式解决了上行链路的临道干扰问题。 中央控制器接收到来自于某标签的上行 链路帧数据后, 只选择使用该标签对应的一个资源池, 避免了不同标签对阅读器的干 扰, 提高了系统的工作效率和一次交易成功率。 优选地, 在资源池完成本次交易后, 中央控制器需要清空资源池对应的标签的标 识信息, 并记录资源池为空闲状态的信息。 以便于下次交易时, 将该资源池分配给需 要交易的标签。 以下结合图 7进一步描述上述优选实施方式。 图 7是根据本发明优选实施例的基于射频识别的标签交易方法的流程图。 如图 7 所示, 该基于射频识别的标签交易方法主要包括以下处理 (步骤 S702-步骤 S710): 步骤 S702: 中央控制器控制天线向通信区域发送 BST。 在中央控制器的控制下, 各天线周期发送 BST, 某个天线收到标签的建链信息(标签对 BST的响应)后, 表明 该天线的通信区域内存在标签, 收发控制单元控制该天线停止发送 BST, 该天线与标 签建链成功后, 收发控制单元控制恢复该天线周期发送 BST的功能。 该步骤由中央控 制器的收发控制单元完成。 步骤 S704: 通信区域内的标签收到天线的数据后, 向天线发送上行链路帧数据。 步骤 S706: 天线接收到标签的上行链路帧数据后, 上报给中央控制器的收发控制 单元。 收发控制单元将上行链路帧数据发送到应用处理单元的相应资源池 (如果没有 给该标签分配资源池, 则分配一个资源池)。 在优选实施方式中, 中央控制器的应用处理单元维护多个资源池, 以并行地和各 车道的 OBU进行交易。 中央控制器控制与每个 OBU的交易流程, 天线和一个 OBU 建链后, 收发控制单元接收到第一帧 OBU上行链路帧数据后, 根据该 OBU的 ID信 息给该 OBU分配一个资源池, 并记录该资源池已经被占用。 交易过程中均使用同一 个资源池和该 OBU进行交易。 收发控制单元接收到该 OBU的其他上行链路帧数据时, 根据该 OBU的 ID信息 查找各资源池, 选择该 OBU的 ID对应的资源池, 发送上行链路帧数据到该资源池。 步骤 S708: 应用处理单元的对应资源池处理标签的数据, 组织下行链路数据帧 并选择一个天线发送。
在优选实施过程中, 中央控制器下发下行链路帧数据给某标签时, 中央控制器应 选择一个合适的天线发送该下行链路帧数据。 理论上, 应该选择最有利于标签接收下 行帧的天线。 该天线的通信范围覆盖必须覆盖到该标签。 例如, 单向 4车道, 每个车道放置一个天线, 当标签位于某车道时, 应该选择该 车道的天线发送, 当标签位于两个车道的交线位置时, 选择其中一个车道对应天线发 送。 下面介绍两种选择下发天线的方式。 方式一: 检测天线接收标签上行链路帧的信号强度, 该强度反映标签的位置信息, 即正对标签的天线接收强度大, 侧离标签的天线的接收强度小, 距离标签近的天线接 收强度大, 反之接收强度小。 中央控制器选择接收强度最大的天线发送下行链路帧数 据。 该方式复杂度低, 但是抗干扰能力低。 如图 5所示, 标签 2发送上行链路帧到各天线, 正对着标签的天线 2接收到的信 号强度大, 其他天线接收到的信号强度小, 天线将该信号强度和上行链路帧信息一起 发送到中央控制器的收发控制单元, 收发控制单元选择信号强度最大的天线 2发送下 行链路帧数据。 方式二: 每个车道放置多个接收天线,利用多个接收天线接收到的标签信号功率, 实现标签的定位。 中央控制器根据标签的位置选择最佳的天线发射。 在一个车道内放置多个位置已知的接收天线和一个发射天线, 接收天线接收到标 签的上行链路帧后, 均上报到中央控制器的收发控制单元, 收发控制单元根据各接收 天线的位置和各天线接收到的信号强度, 可以计算出 OBU 的相对位置信息 (其基本 原理同方式一, 采用了多个接收天线提高了定位的精度)。 根据 OBU的相对位置信息 和发射天线的位置, 即可选择某个发射天线发送下行链路帧。 通过上述方法, 中央控制器会根据每个 OBU 的上行链路帧数据, 选择一个发射 天线发送相应的下行链路帧, 可以解决标签交易过程中的变道问题。 例如, 如图 5所示, 交易过程中标签 1 由车道 1变道到车道 2, 在变道过程中, 会向天线发送上行链路帧信息, 中央控制器根据标签的位置, 依次选择天线 1和天线 2发送下行链路帧。 在优选实施过程中, 中央控制器会选择一个天线下发某条下行链路帧数据。 为了 防止出现通信盲区, 相邻的天线的覆盖范围存在重叠。 如图 5所示, 天线 1、 天线 2
和天线同时和 OBUl、 OBU2、 OBU3进行交易时, 存在下行链路干扰问题。 解决该问 题可以采用各发射天线分时发送的方式, 由于每条下行链路帧数据的长度小于 128字 节, 下行速率 256Kbps, 下行时间小于 4ms, 因此可以满足并行的要求。 具体可以采 用如下方式: 方式一: 检测相邻天线是否处于发送状态, 可以通过 GPIO的方式实现。 例如, 天线 2需要发送一条下行链路信息帧时, 检测旁边的天线是否正在发射 (没有发射认 为信道空闲), 如果信道空闲, 则随机延时一段时间 (0— 0.5ms左右), 再检测信道是 否空闲, 如果空闲则立即发送; 当信道忙碌则一直进行信道检测, 如果 T (时间可以 设置) 时间内仍未能发送下行帧, 则强制发送, 即使出现 OBU接收失败, 也会有命 令重传, 不过增加了交易时间。 方式二: 由中央控制器控制不同的天线分时发送。 收发控制单元控制各个发射天 线发送下行链路帧, 因此中央控制器可以控制各发射天线分时发送。 例如, 收发控制单元控制天线 2发送一帧下行链路信息时, 检测上次控制天线 1 和天线 3发送下行链路帧的时刻, 如果小于一定的阀值则延时一段时间后, 再控制天 线 2发送一帧下行链路信息。 方式二中, 增加了中央控制器的复杂度, 且时间精度要求较高, 收发控制单元到 各天线的数据传输时间、 各天线的处理时间可能会存在差异, 因而会影响具体实施效 果。 通过上述分时发送方式, 可以协调各天线的发射时间, 避免下行链路帧之间的干 扰。 如果 OBU存在不能够实时接收下行链路帧数据问题, 即 OBU在处理一条下行帧 期间, 不能接收其他的下行帧。 针对该问题, 如果某天线下发一帧之后, 立即下发另 一条下行帧, 会导致 OBU丢失下行帧问题。 同理, 如果天线 1下发一帧数据后, 天 线 2立即下发另一帧数据, 也会导致 OBU丢失下行帧问题。 例如, 武汉路桥 ETC协议第二部分数据链路层协议, 天线下发完一帧数据后, 最 长 480us内应该开始接收 OBU的响应信息。所以, 每个天线的两个相邻的下行帧最短 时间间隔为 480us,天线检测到信道空闲后也要经过 480us之后再发送。重复步骤 S704 至步骤 S708, 直到交易结束, 执行步骤 S710。 步骤 S710: 中央控制器释放该资源池。
在优选实施过程中,应用处理单元的资源池在完成一次交易(包括交易失败结束) 后, 通知收发控制单元, 释放该资源池, 即清空该资源池对应的 OBU的 ID信息, 记 录该资源池为空闲状态。 释放后该资源池可以被其他的 OBU使用。 在优选实施方式中, 还可以采用以下方式减小交易时间: 方式一: 提高中央控制器和天线之间的数据传输速度。 方式二: 减少中央控制器和天线之间的命令传输数目, 可以通过命令的链接减少 命令的个数。 方式三: 使用接收天线和发送天线, 发射天线进行下行链路帧的编码, 接收天线 负责上行链路帧的解码。这样可以利用天线的并行运算,减少中央控制器的处理时间。 这样要求 OBU应答的 ACTION命令尽量使用链接的形式, 而且帧格式中具有区分 ACTION子命令 (subtype) 的标志位。 综上所述, 借助本发明提供的上述实施例, 与现有技术相比, 引入了中央控制器, 中央控制器可以控制不同的阅读器并行工作, 从而可以有效提高工作效率、 避免临道 干扰、 提高交易成功率、 以及减小交易时间。 由于各阅读器在中央控制器的控制下相 协调工作, 一方面保证了针对某标签的下行帧只有一个阅读器发射, 并且各个发射天 线采用分时发送的方式, 避免了不同阅读器对标签的临道干扰问题; 另一方面, 接收 到来自于某标签的上行链路帧数据后, 只选择使用该标签对应的一个资源池, 避免了 不同标签对阅读器的干扰, 提高了系统的工作效率和一次交易成功率。 此外, 也解决 标签交易过程中不允许变道的问题。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而可以将 它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限 制于任何特定的硬件和软件结合。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1. 一种基于射频识别的标签交易方法, 包括:
中央控制器将来自于标签的上行链路帧数据发送至所述中央控制器中的资 源池;
在所述资源池处理所述上行链路帧数据, 组织下行链路帧数据之后, 所述 中央控制器选择发送所述下行链路帧数据的天线;
所述中央控制器控制所述选择的天线发送所述下行链路帧数据。
2. 根据权利要求 1所述的方法, 其中, 所述中央控制器选择发送所述下行链路帧 数据的天线包括以下之一:
所述中央控制器检测各个天线接收所述上行链路帧数据的信号强度, 选择 所述信号强度最大的天线发送所述下行链路帧数据;
所述中央控制器根据各个天线的位置和各个天线接收所述上行链路帧数据 的信号强度, 计算得出所述标签的位置信息, 根据所述标签的位置信息选择天 线发送所述下行链路帧数据。
3. 根据权利要求 1所述的方法, 其中, 所述选择的天线采用以下方式发送所述下 行链路帧数据: 分时发送方式。
4. 根据权利要求 3所述的方法, 其中, 所述选择的天线采用分时发送方式发送所 述下行链路帧数据包括以下之一:
所述选择的天线检测其相邻天线是否处于发送状态,如果不处于发送状态, 则在第一预定时间之后继续检测所述相邻天线是否处于发送状态, 如果不处于 发送状态则发送所述下行链路帧数据; 如果所述相邻天线一直处于发送状态, 则在第二预定时间之后发送所述下行链路帧数据;
所述中央控制器根据所述相邻天线发送所述下行链路帧数据的时间, 控制 所述选择的天线发送所述下行链路帧数据的时间。
5. 根据权利要求 1所述的方法, 其中, 所述中央控制器将所述上行链路帧数据发 送至所述中央控制器中的资源池包括: 所述中央控制器将所述上行链路帧数据发送至与所述标签对应的资源池, 其中, 每个所述标签对应同一个资源池。 根据权利要求 5所述的方法, 其中, 所述上行链路帧数据为来自于所述标签的第一帧数据时, 在所述中央控制 器将所述上行链路帧数据发送至与所述标签对应的资源池之前, 还包括: 所述 中央控制器为所述标签分配所述资源池,并记录所述资源池被占用的状态信息; 所述上行链路帧数据为来自于所述标签的非第一帧数据时, 在所述中央控 制器将所述上行链路帧数据发送至与所述标签对应的资源池之前, 还包括: 所 述中央控制器根据所述标签的标识信息在所述中央控制器的各个资源池中进行 查找, 获取所述资源池。 根据权利要求 6所述的方法, 其中, 还包括:
在所述资源池完成本次交易后, 所述中央控制器清空所述资源池对应的所 述标签的标识信息, 并记录所述资源池为空闲状态的信息。 一种基于射频识别的标签交易系统, 包括: 标签和中央控制器;
所述标签, 设置为发送上行链路帧数据, 接收来自于所述中央控制器的下 行链路帧数据;
所述中央控制器包括:
收发控制单元, 设置为将来自于标签的上行链路帧数据发送至资源池, 选 择发送下行链路帧数据的天线,控制所述选择的天线发送所述下行链路帧数据; 应用处理单元, 包括: 所述资源池, 设置为处理所述上行链路帧数据, 组 织下行链路帧数据。 根据权利要求 8所述的系统, 其中, 所述收发控制单元包括以下之一的模块: 第一选择模块,设置为检测各个天线接收所述上行链路帧数据的信号强度, 选择所述信号强度最大的天线发送所述下行链路帧数据;
第二选择模块, 设置为根据各个天线的位置和各个天线接收所述上行链路 帧数据的信号强度, 计算得出所述标签的位置信息, 根据所述标签的位置信息 选择天线发送所述下行链路帧数据。 根据权利要求 8所述的系统, 其中, 所述系统还包括: 所述选择的天线, 设置为采用分时发送方式发送所述下行链路帧数据。
11. 根据权利要求 8所述的系统, 其中, 所述收发控制单元包括:
发送模块,设置为将所述上行链路帧数据发送至与所述标签对应的资源池, 其中, 每个所述标签对应同一个资源池。
12. 根据权利要求 11所述的系统, 其中, 所述收发控制单元还包括:
分配记录模块, 设置为在所述上行链路帧数据为来自于所述标签的第一帧 数据时, 为所述标签分配所述资源池, 并记录所述资源池被占用的状态信息; 查找模块, 设置为在所述上行链路帧数据为来自于所述标签的非第一帧数 据时, 根据所述标签的标识信息在所述中央控制器的各个资源池中进行查找, 获取所述资源池。
13. 根据权利要求 12所述的系统, 其中, 所述收发控制单元还包括: 清空模块, 设置为在所述资源池完成本次交易后, 清空所述资源池对应的 所述标签的标识信息, 并记录所述资源池为空闲状态的信息。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110145291.XA CN102810219B (zh) | 2011-05-31 | 2011-05-31 | 基于射频识别的标签交易方法及系统 |
CN201110145291.X | 2011-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012163128A1 true WO2012163128A1 (zh) | 2012-12-06 |
Family
ID=47233921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/072215 WO2012163128A1 (zh) | 2011-05-31 | 2012-03-12 | 基于射频识别的标签交易方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102810219B (zh) |
WO (1) | WO2012163128A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105654565B (zh) * | 2016-02-01 | 2017-11-28 | 天津中兴智联科技有限公司 | 一种提升etc交易业务效率的方法 |
CN108233958A (zh) * | 2017-12-27 | 2018-06-29 | 哈尔滨工业大学(威海) | 一种通信方法、通信装置、通信设备及浮标 |
CN109121089A (zh) * | 2018-07-20 | 2019-01-01 | 天津市滨海新区军民融合创新研究院 | 基于射频识别rfid的定位系统和方法 |
CN109800829B (zh) * | 2018-12-04 | 2022-02-18 | 北京千方科技股份有限公司 | 一种用于车辆识别的信号分时发送方法、装置及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1350372A (zh) * | 2000-10-25 | 2002-05-22 | 日本电气株式会社 | 短距离无线连续通信方法及系统 |
CN101299280A (zh) * | 2008-06-06 | 2008-11-05 | 深圳市金溢科技有限公司 | 双制式etc路侧设备及其通信方法 |
US20100295659A1 (en) * | 2009-05-21 | 2010-11-25 | Alcatel-Lucent Usa Inc. | Identifying rfid categories |
CN102045122A (zh) * | 2010-12-10 | 2011-05-04 | 北京快通高速路电子收费系统有限公司 | 多天线协同定位解决邻道干扰问题的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004282591A (ja) * | 2003-03-18 | 2004-10-07 | Nissan Motor Co Ltd | 狭域通信用車載端末 |
JP2005184445A (ja) * | 2003-12-19 | 2005-07-07 | Matsushita Electric Ind Co Ltd | Dsrc通信制御装置および方法 |
JP4894699B2 (ja) * | 2007-09-27 | 2012-03-14 | 株式会社デンソー | 車載用無線通信器、施設側無線通信機、および路車間通信システム |
CN201322948Y (zh) * | 2008-09-10 | 2009-10-07 | 上海东海电脑股份有限公司 | 一种具有透明传输和集成应用双接口模式的电子收费路侧设备 |
CN101751700B (zh) * | 2008-12-10 | 2012-11-14 | 中兴通讯股份有限公司 | 一种并行交易的电子收费系统及方法 |
CN101872495B (zh) * | 2010-06-17 | 2012-12-05 | 北京万集科技股份有限公司 | 一种路测方法、装置及不停车收费系统 |
CN102044092B (zh) * | 2010-12-28 | 2013-04-24 | 北京握奇数据系统有限公司 | 一种obu交易处理装置及方法 |
-
2011
- 2011-05-31 CN CN201110145291.XA patent/CN102810219B/zh active Active
-
2012
- 2012-03-12 WO PCT/CN2012/072215 patent/WO2012163128A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1350372A (zh) * | 2000-10-25 | 2002-05-22 | 日本电气株式会社 | 短距离无线连续通信方法及系统 |
CN101299280A (zh) * | 2008-06-06 | 2008-11-05 | 深圳市金溢科技有限公司 | 双制式etc路侧设备及其通信方法 |
US20100295659A1 (en) * | 2009-05-21 | 2010-11-25 | Alcatel-Lucent Usa Inc. | Identifying rfid categories |
CN102045122A (zh) * | 2010-12-10 | 2011-05-04 | 北京快通高速路电子收费系统有限公司 | 多天线协同定位解决邻道干扰问题的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102810219A (zh) | 2012-12-05 |
CN102810219B (zh) | 2016-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7479896B2 (en) | Adaptive channel bandwidth in an electronic toll collection system | |
CN101872495B (zh) | 一种路测方法、装置及不停车收费系统 | |
CN101150507B (zh) | 无线通信系统和无线通信装置 | |
CN107516057B (zh) | 一种标签防碰撞方法及有源射频识别标签 | |
CN104021595A (zh) | 一种基于dsrc协议的etc路侧单元及并发交易方法 | |
WO2012163128A1 (zh) | 基于射频识别的标签交易方法及系统 | |
JP2008536439A (ja) | 多重プロトコルによるデータ通信のための非接触式icカード及びその通信方法 | |
CN102096952A (zh) | 一种实现不停车收费并发交易的方法和装置 | |
EP2183699B1 (en) | A method and reader to conduct a label query in a radio frequency identification system | |
CN103500348A (zh) | 一种增强的rfid通信方法 | |
WO2012022082A1 (zh) | 射频识别方法和阅读器 | |
US7286504B2 (en) | Radio communication using a plurality of base stations | |
CN105282785A (zh) | 媒介配置时间的方法与其无线传输系统 | |
KR100911036B1 (ko) | Rfid 태그의 충돌 감지 시스템 및 방법 | |
CN105117744B (zh) | 一种采用超高频rfid读写器进行自组网通信的方法 | |
CN102882661B (zh) | 一种数据传输方法 | |
CN1735893A (zh) | 激活对等通信单元的通信模式的方法 | |
CN1319343C (zh) | 一种用于短程无线网络的介质访问控制方法 | |
CN113470203B (zh) | 多车道etc交易方法、通行方法、系统和设备 | |
CN104994463B (zh) | 一种nfc智能识别系统 | |
CN103729894B (zh) | 多义性路径识别单频点双向通信方法和装置及系统 | |
KR100448074B1 (ko) | 능동형 단거리전용통신(dsrc)망을 이용한주차장관리시스템 | |
CN1790362A (zh) | 用于数据传输的方法和装置 | |
CN103632173B (zh) | 标签的访问、访问处理方法及装置 | |
CN102890764B (zh) | 一种防止重复进行射频数据交换的方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12793197 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12793197 Country of ref document: EP Kind code of ref document: A1 |