WO2012160700A1 - Power control apparatus, vehicle provided with same, and method for controlling electrical discharge of capacitor - Google Patents

Power control apparatus, vehicle provided with same, and method for controlling electrical discharge of capacitor Download PDF

Info

Publication number
WO2012160700A1
WO2012160700A1 PCT/JP2011/062125 JP2011062125W WO2012160700A1 WO 2012160700 A1 WO2012160700 A1 WO 2012160700A1 JP 2011062125 W JP2011062125 W JP 2011062125W WO 2012160700 A1 WO2012160700 A1 WO 2012160700A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
switching element
temperature
control device
capacitor
Prior art date
Application number
PCT/JP2011/062125
Other languages
French (fr)
Japanese (ja)
Inventor
賢司 桐山
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/062125 priority Critical patent/WO2012160700A1/en
Publication of WO2012160700A1 publication Critical patent/WO2012160700A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock

Definitions

  • the present invention relates to a power control device, a vehicle including the power control device, and a capacitor discharge control method, and more particularly to a control technique for discharging a residual charge of a capacitor provided in a power control device mounted on the vehicle.
  • Patent Document 1 discloses a control device for discharging a residual charge of a capacitor (smoothing capacitor) used in an electric vehicle, a hybrid vehicle, or the like at the time of a vehicle collision.
  • the system main relay is turned off when a collision prediction signal is input during traveling of the vehicle.
  • condenser is discharged by controlling the switching element of an inverter circuit so that a torque may not generate
  • the control device disclosed in Japanese Patent Application Laid-Open No. 2005-20952 is useful in that the residual charge of the capacitor can be reliably discharged in the event of a vehicle collision, but from the viewpoint of discharging the residual charge of the capacitor in as short a time as possible. Not specifically considered.
  • an object of the present invention is to discharge a residual charge of a capacitor provided in a power control device mounted on a vehicle in as short a time as possible.
  • the power control device is a power control device mounted on a vehicle, and includes a power conversion device, a power line connected to the power conversion device, a capacitor, a control device, and a temperature sensor.
  • the power conversion device includes at least one power switching element.
  • the capacitor smoothes the voltage of the power line.
  • the control device discharges the residual charge of the capacitor by controlling the power switching element.
  • the temperature sensor detects the temperature of the power switching element.
  • the control device controls the energization state of the power switching element based on the detected temperature of the power switching element when discharging the residual charge of the capacitor.
  • the power control device further includes a collision detection device for detecting a vehicle collision.
  • a collision detection device for detecting a vehicle collision.
  • the capacitor is required to be discharged.
  • control device controls the energization state of the power switching element based on the detected temperature of the power switching element so that the temperature of the power switching element becomes a predetermined set temperature.
  • the predetermined set temperature is determined based on the heat-resistant temperature of the power switching element.
  • control device controls the gate voltage of the power switching element based on the detected temperature of the power switching element.
  • the power conversion device is an inverter that drives an electric motor mounted on the vehicle.
  • the power conversion device is a converter that boosts the voltage of the power line to be higher than the voltage of the power storage device mounted on the vehicle.
  • the power converter is a converter that boosts the output voltage to a voltage higher than the voltage of the power line.
  • the vehicle includes any one of the power control devices described above.
  • the discharge control method is a capacitor discharge control method in a power control device mounted on a vehicle.
  • the power control device includes a power conversion device, a power line connected to the power conversion device, and a capacitor.
  • the power conversion device includes at least one power switching element.
  • the capacitor smoothes the voltage of the power line.
  • the discharge control method includes a step of detecting the temperature of the power switching element, and a step of discharging the residual charge of the capacitor by controlling the energization state of the power switching element based on the detected temperature of the power switching element. including.
  • the discharge control method further includes a step of detecting a vehicle collision.
  • the residual charge of the capacitor is discharged in the step of discharging the residual charge.
  • the step of discharging the residual charge includes a step of controlling the energization state of the power switching element based on the detected temperature of the power switching element so that the temperature of the power switching element becomes a predetermined set temperature. .
  • the predetermined set temperature is determined based on the heat-resistant temperature of the power switching element.
  • the step of discharging the residual charge includes the step of controlling the gate voltage of the power switching element based on the detected temperature of the power switching element.
  • the residual charge of the capacitor is discharged by controlling the power switching element of the power converter to an energized state.
  • the temperature of the power switching element is detected by the temperature sensor, and the energization state of the power switching element is controlled based on the detected temperature.
  • FIG. 1 is an overall configuration diagram of a vehicle equipped with a power control device according to an embodiment of the present invention. It is a functional block diagram of the control apparatus regarding the discharge control of a capacitor
  • FIG. 1 is an overall configuration diagram of a vehicle equipped with a power control apparatus according to an embodiment of the present invention.
  • vehicle 100 includes a power storage device B, system relays SR1 and SR2, a power control unit (hereinafter referred to as “PCU (Power Control Unit)”) 10, an electric motor M, and drive wheels DW. And a control device 20 and a collision sensor 22.
  • PCU Power Control Unit
  • the power storage device B is a direct current power source, and typically includes a secondary battery such as nickel metal hydride or lithium ion, an electric double layer capacitor, or the like.
  • System relay SR1 is connected between the positive terminal of power storage device B and power line 6, and system relay SR2 is connected between the negative terminal of power storage device B and power line 5.
  • System relays SR1 and SR2 are turned on / off by a signal SE from control device 20.
  • PCU 10 includes a converter 12, an inverter 14, capacitors C 0 and C 1, and a voltage sensor 13.
  • Converter 12 includes a reactor L, power semiconductor switching elements Q1, Q2, and diodes D1, D2.
  • Power semiconductor switching elements Q ⁇ b> 1 and Q ⁇ b> 2 are connected in series between power line 7 and power line 5.
  • the power semiconductor switching elements Q1, Q2 are driven by drive signals S1, S2 from the control device 20.
  • switching element As a power semiconductor switching element (hereinafter simply referred to as “switching element”), an IGBT (Insulated Gate Bipolar Transistor), a power MOS (Metal Oxide Semiconductor) transistor, a power bipolar transistor, or the like can be used. . Diodes D1 and D2 are connected in antiparallel to switching elements Q1 and Q2, respectively. Reactor L is connected between a connection node of switching elements Q1, Q2 and power line 6.
  • IGBT Insulated Gate Bipolar Transistor
  • MOS Metal Oxide Semiconductor
  • the capacitor C1 is connected between the power line 6 and the power line 5, and smoothes the voltage between the power lines 6 and 5.
  • Capacitor C0 is connected between power line 7 and power line 5, and smoothes the voltage between power lines 7 and 5.
  • the voltage sensor 13 detects the voltage VH (voltage between the power lines 7 and 5) across the capacitor C0 and outputs the detected value to the control device 20.
  • the inverter 14 includes a U-phase upper and lower arm 15, a V-phase upper and lower arm 16, and a W-phase upper and lower arm 17 that are provided in parallel between the power line 7 and the power line 5.
  • Each phase upper and lower arm is configured by a switching element connected in series between the power line 7 and the power line 5. That is, the U-phase upper and lower arms 15 are composed of switching elements Q3 and Q4, the V-phase upper and lower arms 16 are composed of switching elements Q5 and Q6, and the W-phase upper and lower arms 17 are composed of switching elements Q7 and Q8. Diodes D3 to D8 are connected in antiparallel to switching elements Q3 to Q8, respectively. Switching elements Q3-Q8 are driven by drive signals S3-S8 from control device 20.
  • the inverter 14 includes a temperature sensor 18. Temperature sensor 18 detects temperature T of switching element Q 3 and outputs the detected value to control device 20. Note that temperature sensors may also be provided in the other switching elements Q4 to Q8. In the following, it is assumed that the temperature T is typically detected in the switching element Q3 and used in the control device 20. However, instead of the switching element Q3 or together with the switching element Q3, the detected temperature of other switching elements is controlled by the control device. 20 may be used.
  • the motor M is typically a permanent magnet type three-phase AC synchronous motor, and is configured such that one end of three coils of U, V, and W phases are commonly connected to a neutral point. The other end of each phase coil is connected to the midpoint of each phase upper and lower arms 15-17.
  • the electric motor M is driven by the inverter 14 and generates torque for driving the drive wheels DW.
  • the electric motor M may be configured to have a function of a generator driven by the driving wheels DW when the vehicle is braked.
  • Converter 12 is a current reversible chopper circuit, and boosts voltage VH between power lines 7 and 5 to an output voltage of power storage device B or higher.
  • the step-up operation is performed by supplying the electromagnetic energy accumulated in the reactor L during the ON period of the switching element Q2 to the power line 7 via the diode D1 during the OFF period of the switching element Q2.
  • the voltage VH is stepped down by passing a current from the power line 7 to the power line 6 during the ON period of the switching element Q1.
  • the inverter 14 converts the DC voltage supplied from the power line 7 into an AC voltage and drives the motor M by the switching operation of the switching elements Q3 to Q8 in response to the drive signals S3 to S8 from the control device 20. Further, when braking the vehicle, the inverter 14 converts the AC voltage generated by the electric motor M into a DC voltage by a switching operation in response to the drive signals S3 to S8, and supplies the converted DC voltage to the converter 12.
  • the inverter 14 operates as a discharge device that discharges the residual charges of the capacitors C0 and C1 when a vehicle collision is detected. Specifically, when a vehicle collision is detected, system relays RY1 and RY2 are turned off, and switching elements Q3 and Q4 are energized by controlling the gate voltage of switching elements Q3 and Q4 in inverter 14. Be controlled. As a result, the residual charges in the capacitors C0 and C1 are discharged through the switching elements Q3 and Q4. The residual charge in the capacitor C1 is supplied to the inverter 14 via the diode D1.
  • the capacitors C0 and C1 are typically discharged by controlling the switching elements Q3 and Q4 to the energized state, but the upper arm is replaced with the switching element Q3 or switching. Together with the element Q3, at least one of the switching elements Q5 and Q7 may be used. Also for the lower arm, at least one of the switching elements Q6 and Q8 may be used instead of the switching element Q4 or together with the switching element Q4.
  • the collision sensor 22 outputs a collision detection signal to the control device 20 when a vehicle collision is detected.
  • the collision sensor 22 is typically constituted by an acceleration sensor or the like.
  • the collision sensor 22 may be constituted by a radar sensor or the like so that a vehicle collision is detected in advance and a signal is output to the control device 20.
  • the control device 20 is composed of an electronic control unit (ECU (Electronic Control Unit)), and performs vehicle processing by executing software stored in advance by a CPU (not shown) and / or hardware processing using a dedicated electronic circuit. 100 runs are controlled.
  • ECU Electronic Control Unit
  • control device 20 calculates a torque command value of the electric motor M based on the accelerator opening, the vehicle speed, and the like, and the converter 12 outputs the torque according to the torque command value. And the operation of the inverter 14 is controlled. That is, control device 20 generates drive signals S1 to S8 for controlling converter 12 and inverter 14 and outputs them to converter 12 and inverter 14.
  • control device 20 when receiving a collision detection signal from the collision sensor 22, the control device 20 generates a signal SE instructing opening of the system relays SR1 and SR2, and outputs the signal SE to the system relays SR1 and SR2. Thereafter, control device 20 controls switching elements Q3 and Q4 to be energized by controlling the gate voltage of switching elements Q3 and Q4 of inverter 14. As a result, the residual charges in the capacitors C0 and C1 are discharged through the switching elements Q3 and Q4.
  • the control device 20 controls the gate voltages of the switching elements Q3 and Q4 based on the detected temperature of the temperature sensor 18 that detects the element temperature of the inverter 14. Specifically, the control device 20 controls the gate voltages of the switching elements Q3 and Q4 so that the temperature T detected by the temperature sensor 18 becomes a predetermined set temperature. This set temperature is set to the maximum temperature based on the heat-resistant temperature of switching elements Q3 and Q4. That is, when the capacitors C0 and C1 are discharged, the control device 20 controls the gate voltages of the switching elements Q3 and Q4 so that the temperature of the switching elements Q3 and Q4 becomes maximum within a range in which the switching elements Q3 and Q4 are not destroyed by overheating. To do.
  • the maximum current can be passed through the switching elements Q3 and Q4 within a range in which the switching elements Q3 and Q4 are not destroyed by overheating, and the capacitors C0 and C1 can be discharged in as short a time as possible.
  • FIG. 2 is a functional block diagram of the control device 20 related to the discharge control of the capacitors C0 and C1.
  • control device 20 includes a subtraction unit 32, a controller 34, and a drive signal generation unit 36.
  • the subtracting unit 32 subtracts the detected value of the temperature T from the set temperature TR and outputs the calculation result to the controller 34.
  • set temperature TR is set to the maximum temperature within a range in which switching elements Q3 and Q4 do not cause overheating destruction based on the heat-resistant temperature of switching elements Q3 and Q4.
  • the controller 34 determines the gate voltage VG of the switching elements Q3 and Q4 based on the temperature deviation received from the subtraction unit 32. Specifically, the controller 34 determines the gate voltage VG based on the temperature deviation from the subtracting unit 32 so that the temperature T of the switching elements Q3 and Q4 becomes the set temperature TR when the capacitors C0 and C1 are discharged. As an example, the controller 34 can be configured by a proportional-integral controller that receives the temperature deviation from the subtracting unit 32 as an input. When the temperature T is higher than the set temperature TR, the gate voltage VG is set to 0 (energization amount 0).
  • the drive signal generator 36 generates drive signals S3 and S4 for applying the gate voltage VG to the switching elements Q3 and Q4, and outputs the generated drive signals S3 and S4 to the inverter 14.
  • the remaining switching elements that are not used for discharging the capacitors C0 and C1 are gated (gate voltage 0).
  • FIG. 3 is a diagram showing changes in the temperature T and current I of the switching element Q3 and the voltage VH of the capacitor C0 when the discharge control of the capacitors C0 and C1 is executed.
  • a collision is detected by collision sensor 22 (FIG. 1), and discharging of capacitors C0 and C1 is started.
  • temperature T of switching element Q3 (Q4) is assumed to be lower than set temperature TR.
  • the current I is 0 at time t1 and before, but current may flow at time t1.
  • the gate voltage VG of the switching elements Q3 and Q4 is controlled, so that the residual charges of the capacitors C0 and C1 flow as current I to the switching elements Q3 and Q4.
  • current I increases until temperature T reaches set temperature TR.
  • the upper limit value of the current I of the switching elements Q3 and Q4 is not predetermined, but the temperature T of the switching elements Q3 and Q4 becomes the upper limit temperature (set temperature TR) when the capacitors C0 and C1 are discharged.
  • the energization of the switching elements Q3 and Q4 is controlled.
  • the maximum current can be passed through the switching elements Q3 and Q4 within a range in which the switching elements Q3 and Q4 are not destroyed by overheating, and the capacitors C0 and C1 can be discharged in as short a time as possible.
  • FIG. 4 is a diagram showing changes in the temperature T of the switching element Q3 and the like when executing the discharge control of the capacitors C0 and C1 when the current upper limit of the switching elements Q3 and Q4 is determined.
  • FIG. 4 is shown in comparison with FIG. 3 as a comparative example to this embodiment, and can correspond to the prior art.
  • a collision is detected by collision sensor 22, and discharging of capacitors C0 and C1 is started.
  • the discharge control is started, the residual charges in the capacitors C0 and C1 are made to flow as current I through the switching elements Q3 and Q4.
  • the upper limit IU of the current I of the switching elements Q3 and Q4 is determined so that the switching elements Q3 and Q4 are not destroyed under all conditions, the energization amount of the switching elements Q3 and Q4 is limited to the upper limit IU. .
  • the temperature T of the switching element Q3 (Q4) has a margin up to the upper limit temperature (set temperature TR), and it cannot be said that maximum discharge is performed within a range in which the switching elements Q3 and Q4 are not destroyed by overheating. .
  • the discharge time of the capacitors C0 and C1 becomes long.
  • the energization amount of the switching elements Q3 and Q4 (that is, the capacitance of the capacitors) until the temperature of the switching elements Q3 and Q4 used for discharging the capacitors C0 and C1 reaches the upper limit (set temperature TR). (Discharge rate) can be increased, the discharge current is maximized in a range where the switching elements Q3 and Q4 are not overheated when the capacitors C0 and C1 are discharged, and the discharge time of the capacitors C0 and C1 is shortened.
  • FIG. 5 is a flowchart for explaining a processing procedure of discharge control of the capacitors C0 and C1 by the control device 20 shown in FIG. The process of this flowchart is called from the main routine and executed every certain time or every time a predetermined condition is satisfied.
  • control device 20 determines whether or not a vehicle collision has been detected based on a signal from the collision sensor 22 (step S10). If no collision is detected (NO in step S10), control device 20 proceeds to step S60 without executing a series of subsequent processes.
  • control device 20 If it is determined in step S10 that a vehicle collision has been detected (YES in step S10), control device 20 turns off system relays SR1 and SR2 (step S20). Next, control device 20 receives the detected value of temperature T of switching element Q3 from temperature sensor 18 (step S30).
  • control device 20 performs discharge control of capacitors C0 and C1 by controlling gate voltage VG of switching elements Q3 and Q4 so that temperature T becomes set temperature TR by the method shown in FIG. (Step S40).
  • set temperature TR is set to the maximum temperature within a range in which switching elements Q3 and Q4 do not cause overheating destruction based on the heat-resistant temperature of switching elements Q3 and Q4.
  • control device 20 determines whether or not the voltage VH indicating the voltage of the capacitor C0 is lower than the threshold value (step S50).
  • This threshold value is a set value for determining the end of discharge of the capacitors C0 and C1, and is set to a sufficiently small value.
  • step S50 If it is determined in step S50 that voltage VH is equal to or higher than the threshold value (NO in step S50), control device 20 returns the process to step S30. On the other hand, if it is determined in step S50 that voltage VH is lower than the threshold value (YES in step S50), it is determined that discharging of capacitors C0 and C1 has been completed, and the process proceeds to step S60.
  • the switching elements Q3 and Q4 of the inverter 14 are set to the energized state assuming that the capacitors C0 and C1 are required to be discharged.
  • the residual charges of the capacitors C0 and C1 are discharged.
  • the temperature T of the switching element Q3 is detected by the temperature sensor 18, and the energization state of the switching elements Q3 and Q4 is controlled based on the detected temperature.
  • the maximum current can be supplied to the switching elements Q3 and Q4 within a range where the switching elements Q3 and Q4 are not destroyed by overheating. Therefore, according to this embodiment, the residual charges of the capacitors C0 and C1 can be discharged in as short a time as possible.
  • the capacitors C0 and C1 are discharged by controlling the switching elements Q3 and Q4 of the inverter 14 to be energized, but instead of the upper arm switching element Q3 or In addition to the switching element Q3, at least one of the switching elements Q5 and Q7 of the upper arm may be used. Similarly, at least one of the switching elements Q6 and Q8 of the lower arm may be used instead of or together with the switching element Q4 of the lower arm.
  • the detected value of the temperature sensor provided in the switching element used for discharging is used.
  • the gate voltage of each switching element is detected by the method shown in FIG. 2 using the detection value having the highest temperature. VG can be determined.
  • the control system of FIG. 2 may be configured for each switching element, and the gate voltage VG having the lowest gate voltage may be used as the gate voltage of each switching element.
  • the gate voltage VG of the switching elements Q3 and Q4 is controlled so that the temperature T of the switching element Q3 becomes the set temperature TR.
  • the gate voltage VG is controlled.
  • the voltage VG may be maximized, and the gate voltage VG may be set to 0 when the temperature T reaches or reaches the set temperature TR.
  • the capacitors C0 and C1 are discharged using the inverter 14, but the same discharge control as described above may be performed using the switching elements Q1 and Q2 of the converter 12. Alternatively, discharge control similar to the above can be performed using both the converter 12 and the inverter 14. When the converter 12 is used, the residual charge of the capacitor C1 is discharged by the switching element Q2 of the converter 12.
  • the inverter 14 when used for discharge control of the capacitors C0 and C1, the inverter 14 may be controlled so that a current flows through the coil of the electric motor M. At this time, the mechanical brake may be automatically operated so that the driving wheel DW does not rotate, or the inverter 14 is controlled so that only the d-axis current is generated so that the rotating torque is not generated in the electric motor M. May be.
  • the present invention can also be applied to a system that does not include the converter 12. In this case, the residual charge of the capacitor C0 is discharged by the inverter 14.
  • the present invention can be applied to various vehicles having the basic configuration of the vehicle 100 shown in FIG.
  • the present invention is also applicable to a hybrid vehicle in which an engine is further mounted in the configuration shown in FIG.
  • At least one of inverter 14 and converter 12 corresponds to an embodiment of “power converter” in the present invention
  • at least one of capacitors C0 and C1 is an embodiment of “capacitor” in the present invention
  • Corresponding to The collision sensor 22 corresponds to an example of the “collision detection device” in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

A control apparatus (20) discharges residual charges of capacitors (C0, C1) by controlling switching elements (Q3, Q4) of an inverter (14) to be in a conducting state when vehicle collision is detected by means of a collision sensor (22). A temperature sensor (18) detects the temperature (T) of the switching element (Q3) to be used for the purpose of discharging electricity. When the residual charges of the capacitors (C0, C1) are being discharged, the control apparatus (20) controls the conducting state of the switching elements (Q3, Q4) on the basis of the temperature (T) detected by means of the temperature sensor (18).

Description

電力制御装置およびそれを備える車両、ならびにコンデンサの放電制御方法Power control device, vehicle equipped with the same, and capacitor discharge control method
 この発明は、電力制御装置およびそれを備える車両、ならびにコンデンサの放電制御方法に関し、特に、車両に搭載される電力制御装置に設けられるコンデンサの残留電荷を放電するための制御技術に関する。 The present invention relates to a power control device, a vehicle including the power control device, and a capacitor discharge control method, and more particularly to a control technique for discharging a residual charge of a capacitor provided in a power control device mounted on the vehicle.
 特開2005-20952号公報(特許文献1)は、電気自動車やハイブリッド車等に用いられるコンデンサ(平滑コンデンサ)の残留電荷を車両の衝突時に放電するための制御装置を開示する。この制御装置においては、車両の走行時に衝突予知信号が入力されると、システムメインリレーがオフされる。そして、車両駆動用電動機にトルクが発生しないようにインバータ回路のスイッチング素子が制御することによって、コンデンサの残留電荷を放電させる。 Japanese Patent Laying-Open No. 2005-20952 (Patent Document 1) discloses a control device for discharging a residual charge of a capacitor (smoothing capacitor) used in an electric vehicle, a hybrid vehicle, or the like at the time of a vehicle collision. In this control device, the system main relay is turned off when a collision prediction signal is input during traveling of the vehicle. And the residual charge of a capacitor | condenser is discharged by controlling the switching element of an inverter circuit so that a torque may not generate | occur | produce in the motor for a vehicle drive.
 この制御装置によれば、車両の衝突時においても、高電圧電力が蓄えられたコンデンサによる危険性を完全に排除することができる(特許文献1参照)。 According to this control device, it is possible to completely eliminate the danger caused by the capacitor in which high voltage power is stored even in the event of a vehicle collision (see Patent Document 1).
特開2005-20952号公報JP 2005-20952 A 特開2008-11670号公報JP 2008-11670 A 特開2010-200455号公報JP 2010-200455 A 特開2010-183676号公報JP 2010-183676 A 特開2010-93934号公報JP 2010-93934 A
 車両の衝突時における安全確保の面から、高電圧の電力が蓄えられたコンデンサの残留電荷を車両の衝突時にできる限り短時間で放電させることが要請される。特開2005-20952号公報に開示される制御装置は、車両の衝突時にコンデンサの残留電荷を確実に放電できる点で有用であるが、コンデンサの残留電荷をできる限り短時間で放電させるという観点では、特に検討されていない。 From the aspect of ensuring safety in the event of a vehicle collision, it is required to discharge the residual charge of the capacitor in which high voltage power is stored in as short a time as possible when the vehicle collides. The control device disclosed in Japanese Patent Application Laid-Open No. 2005-20952 is useful in that the residual charge of the capacitor can be reliably discharged in the event of a vehicle collision, but from the viewpoint of discharging the residual charge of the capacitor in as short a time as possible. Not specifically considered.
 それゆえに、この発明の目的は、車両に搭載される電力制御装置に設けられるコンデンサの残留電荷をできる限り短時間で放電させることである。 Therefore, an object of the present invention is to discharge a residual charge of a capacitor provided in a power control device mounted on a vehicle in as short a time as possible.
 この発明によれば、電力制御装置は、車両に搭載される電力制御装置であって、電力変換装置と、電力変換装置に接続される電力線と、コンデンサと、制御装置と、温度センサとを備える。電力変換装置は、少なくとも1つの電力用スイッチング素子を含む。コンデンサは、電力線の電圧を平滑化する。制御装置は、コンデンサの放電が要求されたとき、電力用スイッチング素子を制御することによってコンデンサの残留電荷を放電させる。温度センサは、電力用スイッチング素子の温度を検出する。そして、制御装置は、コンデンサの残留電荷の放電時、電力用スイッチング素子の検出温度に基づいて電力用スイッチング素子の通電状態を制御する。 According to this invention, the power control device is a power control device mounted on a vehicle, and includes a power conversion device, a power line connected to the power conversion device, a capacitor, a control device, and a temperature sensor. . The power conversion device includes at least one power switching element. The capacitor smoothes the voltage of the power line. When the discharge of the capacitor is requested, the control device discharges the residual charge of the capacitor by controlling the power switching element. The temperature sensor detects the temperature of the power switching element. The control device controls the energization state of the power switching element based on the detected temperature of the power switching element when discharging the residual charge of the capacitor.
 好ましくは、電力制御装置は、車両の衝突を検出するための衝突検出装置をさらに備える。そして、衝突検出装置により衝突が検出されると、コンデンサの放電が要求される。 Preferably, the power control device further includes a collision detection device for detecting a vehicle collision. When a collision is detected by the collision detection device, the capacitor is required to be discharged.
 好ましくは、制御装置は、電力用スイッチング素子の温度が所定の設定温度になるように、電力用スイッチング素子の検出温度に基づいて電力用スイッチング素子の通電状態を制御する。 Preferably, the control device controls the energization state of the power switching element based on the detected temperature of the power switching element so that the temperature of the power switching element becomes a predetermined set temperature.
 さらに好ましくは、所定の設定温度は、電力用スイッチング素子の耐熱温度に基づいて決定される。 More preferably, the predetermined set temperature is determined based on the heat-resistant temperature of the power switching element.
 好ましくは、制御装置は、電力用スイッチング素子の検出温度に基づいて電力用スイッチング素子のゲート電圧を制御する。 Preferably, the control device controls the gate voltage of the power switching element based on the detected temperature of the power switching element.
 好ましくは、電力変換装置は、車両に搭載される電動機を駆動するインバータである。
 また、好ましくは、電力変換装置は、電力線の電圧を、車両に搭載される蓄電装置の電圧以上に昇圧するコンバータである。
Preferably, the power conversion device is an inverter that drives an electric motor mounted on the vehicle.
Preferably, the power conversion device is a converter that boosts the voltage of the power line to be higher than the voltage of the power storage device mounted on the vehicle.
 また、好ましくは、電力変換装置は、その出力電圧を電力線の電圧以上に昇圧するコンバータである。 Also preferably, the power converter is a converter that boosts the output voltage to a voltage higher than the voltage of the power line.
 また、この発明によれば、車両は、上述したいずれかの電力制御装置を備える。
 また、この発明によれば、放電制御方法は、車両に搭載される電力制御装置におけるコンデンサの放電制御方法である。電力制御装置は、電力変換装置と、電力変換装置に接続される電力線と、コンデンサとを備える。電力変換装置は、少なくとも1つの電力用スイッチング素子を含む。コンデンサは、電力線の電圧を平滑化する。そして、放電制御方法は、電力用スイッチング素子の温度を検出するステップと、電力用スイッチング素子の検出温度に基づき電力用スイッチング素子の通電状態を制御することによって、コンデンサの残留電荷を放電させるステップとを含む。
According to the invention, the vehicle includes any one of the power control devices described above.
According to the invention, the discharge control method is a capacitor discharge control method in a power control device mounted on a vehicle. The power control device includes a power conversion device, a power line connected to the power conversion device, and a capacitor. The power conversion device includes at least one power switching element. The capacitor smoothes the voltage of the power line. The discharge control method includes a step of detecting the temperature of the power switching element, and a step of discharging the residual charge of the capacitor by controlling the energization state of the power switching element based on the detected temperature of the power switching element. including.
 好ましくは、放電制御方法は、車両の衝突を検出するステップをさらに含む。そして、車両の衝突が検出されると、残留電荷を放電させるステップにおいてコンデンサの残留電荷が放電される。 Preferably, the discharge control method further includes a step of detecting a vehicle collision. When a vehicle collision is detected, the residual charge of the capacitor is discharged in the step of discharging the residual charge.
 好ましくは、残留電荷を放電させるステップは、電力用スイッチング素子の温度が所定の設定温度になるように、電力用スイッチング素子の検出温度に基づいて電力用スイッチング素子の通電状態を制御するステップを含む。 Preferably, the step of discharging the residual charge includes a step of controlling the energization state of the power switching element based on the detected temperature of the power switching element so that the temperature of the power switching element becomes a predetermined set temperature. .
 さらに好ましくは、所定の設定温度は、電力用スイッチング素子の耐熱温度に基づいて決定される。 More preferably, the predetermined set temperature is determined based on the heat-resistant temperature of the power switching element.
 好ましくは、残留電荷を放電させるステップは、電力用スイッチング素子の検出温度に基づいて電力用スイッチング素子のゲート電圧を制御するステップを含む。 Preferably, the step of discharging the residual charge includes the step of controlling the gate voltage of the power switching element based on the detected temperature of the power switching element.
 この発明においては、コンデンサの放電が要求されると、電力変換装置の電力用スイッチング素子を通電状態に制御することによってコンデンサの残留電荷を放電させる。このとき、電力用スイッチング素子の温度が温度センサによって検出され、その検出温度に基づいて電力用スイッチング素子の通電状態が制御される。これにより、コンデンサの残留電荷の放電時に、電力用スイッチング素子が過熱破壊しない範囲で電力用スイッチング素子に最大限の電流を流すことができる。 In the present invention, when the capacitor is required to be discharged, the residual charge of the capacitor is discharged by controlling the power switching element of the power converter to an energized state. At this time, the temperature of the power switching element is detected by the temperature sensor, and the energization state of the power switching element is controlled based on the detected temperature. As a result, at the time of discharging the residual charge of the capacitor, it is possible to allow the maximum current to flow through the power switching element as long as the power switching element is not destroyed by overheating.
 したがって、この発明によれば、車両に搭載される電力制御装置に設けられるコンデンサの残留電荷をできる限り短時間で放電させることが可能となる。 Therefore, according to the present invention, it is possible to discharge the residual charge of the capacitor provided in the power control device mounted on the vehicle in as short a time as possible.
この発明の実施の形態による電力制御装置が搭載された車両の全体構成図である。1 is an overall configuration diagram of a vehicle equipped with a power control device according to an embodiment of the present invention. コンデンサの放電制御に関する制御装置の機能ブロック図である。It is a functional block diagram of the control apparatus regarding the discharge control of a capacitor | condenser. コンデンサの放電制御の実行時におけるスイッチング素子の温度および電流ならびにコンデンサの電圧の変化を示した図である。It is the figure which showed the change of the temperature and electric current of a switching element at the time of execution of discharge control of a capacitor, and the voltage of a capacitor. スイッチング素子の上限電流が定められる場合の、コンデンサの放電制御の実行時におけるスイッチング素子の温度等の変化を示した図である。It is the figure which showed the change of the temperature etc. of a switching element at the time of execution of the discharge control of a capacitor | condenser in case the upper limit electric current of a switching element is defined. 図1に示す制御装置によるコンデンサの放電制御の処理手順を説明するためのフローチャートである。It is a flowchart for demonstrating the process sequence of the discharge control of the capacitor | condenser by the control apparatus shown in FIG.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 図1は、この発明の実施の形態による電力制御装置が搭載された車両の全体構成図である。図1を参照して、車両100は、蓄電装置Bと、システムリレーSR1,SR2と、パワーコントロールユニット(以下「PCU(Power Control Unit)」と称する。)10と、電動機Mと、駆動輪DWと、制御装置20と、衝突センサ22とを備える。 FIG. 1 is an overall configuration diagram of a vehicle equipped with a power control apparatus according to an embodiment of the present invention. Referring to FIG. 1, vehicle 100 includes a power storage device B, system relays SR1 and SR2, a power control unit (hereinafter referred to as “PCU (Power Control Unit)”) 10, an electric motor M, and drive wheels DW. And a control device 20 and a collision sensor 22.
 蓄電装置Bは、直流電源であり、代表的には、ニッケル水素やリチウムイオン等の二次電池や、電気二重層キャパシタ等により構成される。システムリレーSR1は、蓄電装置Bの正極端子と電力線6との間に接続され、システムリレーSR2は、蓄電装置Bの負極端子と電力線5との間に接続される。システムリレーSR1,SR2は、制御装置20からの信号SEによりオン/オフされる。 The power storage device B is a direct current power source, and typically includes a secondary battery such as nickel metal hydride or lithium ion, an electric double layer capacitor, or the like. System relay SR1 is connected between the positive terminal of power storage device B and power line 6, and system relay SR2 is connected between the negative terminal of power storage device B and power line 5. System relays SR1 and SR2 are turned on / off by a signal SE from control device 20.
 PCU10は、コンバータ12と、インバータ14と、コンデンサC0,C1と、電圧センサ13とを含む。コンバータ12は、リアクトルLと、電力用半導体スイッチング素子Q1,Q2と、ダイオードD1,D2とを含む。電力用半導体スイッチング素子Q1,Q2は、電力線7と電力線5の間に直列に接続される。そして、電力用半導体スイッチング素子Q1,Q2は、制御装置20からの駆動信号S1,S2によって駆動される。 PCU 10 includes a converter 12, an inverter 14, capacitors C 0 and C 1, and a voltage sensor 13. Converter 12 includes a reactor L, power semiconductor switching elements Q1, Q2, and diodes D1, D2. Power semiconductor switching elements Q <b> 1 and Q <b> 2 are connected in series between power line 7 and power line 5. The power semiconductor switching elements Q1, Q2 are driven by drive signals S1, S2 from the control device 20.
 なお、電力用半導体スイッチング素子(以下、単に「スイッチング素子」と称する。)としては、IGBT(Insulated Gate Bipolar Transistor)や電力用MOS(Metal Oxide Semiconductor)トランジスタ、電力用バイポーラトランジスタ等を用いることができる。ダイオードD1,D2は、それぞれスイッチング素子Q1,Q2に逆並列に接続される。リアクトルLは、スイッチング素子Q1,Q2の接続ノードと電力線6との間に接続される。 As a power semiconductor switching element (hereinafter simply referred to as “switching element”), an IGBT (Insulated Gate Bipolar Transistor), a power MOS (Metal Oxide Semiconductor) transistor, a power bipolar transistor, or the like can be used. . Diodes D1 and D2 are connected in antiparallel to switching elements Q1 and Q2, respectively. Reactor L is connected between a connection node of switching elements Q1, Q2 and power line 6.
 コンデンサC1は、電力線6と電力線5との間に接続され、電力線6,5間の電圧を平滑化する。コンデンサC0は、電力線7と電力線5との間に接続され、電力線7,5間の電圧を平滑化する。電圧センサ13は、コンデンサC0の両端の電圧VH(電力線7,5間の電圧)を検出し、その検出値を制御装置20へ出力する。 The capacitor C1 is connected between the power line 6 and the power line 5, and smoothes the voltage between the power lines 6 and 5. Capacitor C0 is connected between power line 7 and power line 5, and smoothes the voltage between power lines 7 and 5. The voltage sensor 13 detects the voltage VH (voltage between the power lines 7 and 5) across the capacitor C0 and outputs the detected value to the control device 20.
 インバータ14は、電力線7と電力線5との間に並列に設けられる、U相上下アーム15と、V相上下アーム16と、W相上下アーム17とを含む。各相上下アームは、電力線7と電力線5との間に直列接続されたスイッチング素子によって構成される。すなわち、U相上下アーム15は、スイッチング素子Q3,Q4から成り、V相上下アーム16は、スイッチング素子Q5,Q6から成り、W相上下アーム17は、スイッチング素子Q7,Q8から成る。スイッチング素子Q3~Q8には、それぞれダイオードD3~D8が逆並列に接続される。そして、スイッチング素子Q3~Q8は、制御装置20からの駆動信号S3~S8によって駆動される。 The inverter 14 includes a U-phase upper and lower arm 15, a V-phase upper and lower arm 16, and a W-phase upper and lower arm 17 that are provided in parallel between the power line 7 and the power line 5. Each phase upper and lower arm is configured by a switching element connected in series between the power line 7 and the power line 5. That is, the U-phase upper and lower arms 15 are composed of switching elements Q3 and Q4, the V-phase upper and lower arms 16 are composed of switching elements Q5 and Q6, and the W-phase upper and lower arms 17 are composed of switching elements Q7 and Q8. Diodes D3 to D8 are connected in antiparallel to switching elements Q3 to Q8, respectively. Switching elements Q3-Q8 are driven by drive signals S3-S8 from control device 20.
 また、インバータ14は、温度センサ18を含む。温度センサ18は、スイッチング素子Q3の温度Tを検出し、その検出値を制御装置20へ出力する。なお、他のスイッチング素子Q4~Q8にも温度センサを設けてもよい。以下では、代表的にスイッチング素子Q3において温度Tが検出されて制御装置20で用いられるものとするが、スイッチング素子Q3に代えて、またはスイッチング素子Q3とともに、その他のスイッチング素子の検出温度を制御装置20で用いてもよい。 Further, the inverter 14 includes a temperature sensor 18. Temperature sensor 18 detects temperature T of switching element Q 3 and outputs the detected value to control device 20. Note that temperature sensors may also be provided in the other switching elements Q4 to Q8. In the following, it is assumed that the temperature T is typically detected in the switching element Q3 and used in the control device 20. However, instead of the switching element Q3 or together with the switching element Q3, the detected temperature of other switching elements is controlled by the control device. 20 may be used.
 電動機Mは、代表的には永久磁石型三相交流同期電動機であり、U,V,W相の3つのコイルの一端が中性点に共通接続されて構成される。各相コイルの他端は、各相上下アーム15~17の中間点に接続される。電動機Mは、インバータ14によって駆動され、駆動輪DWを駆動するためのトルクを発生する。なお、電動機Mは、車両の制動時等に駆動輪DWによって駆動される発電機の機能を併せ持つように構成されてもよい。 The motor M is typically a permanent magnet type three-phase AC synchronous motor, and is configured such that one end of three coils of U, V, and W phases are commonly connected to a neutral point. The other end of each phase coil is connected to the midpoint of each phase upper and lower arms 15-17. The electric motor M is driven by the inverter 14 and generates torque for driving the drive wheels DW. The electric motor M may be configured to have a function of a generator driven by the driving wheels DW when the vehicle is braked.
 コンバータ12は、電流可逆チョッパ回路であり、電力線7,5間の電圧VHを蓄電装置Bの出力電圧以上に昇圧する。昇圧動作は、スイッチング素子Q2のオン期間にリアクトルLに蓄積される電磁エネルギを、スイッチング素子Q2のオフ期間にダイオードD1を介して電力線7へ供給することにより行なわれる。なお、電圧VHを降圧するときは、スイッチング素子Q1のオン期間に電力線7から電力線6へ電流を流すことにより行なわれる。コンバータ12における電圧変換比(電力線6,5間の電圧に対する電圧VHの比)は、スイッチング周期に対するスイッチング素子Q1,Q2のオン期間比(デューティ比)により制御される。なお、スイッチング素子Q1,Q2をそれぞれオン,オフに固定すれば、電圧VHを電力線6,5間の電圧にすることもできる(電圧変換比=1.0)。 Converter 12 is a current reversible chopper circuit, and boosts voltage VH between power lines 7 and 5 to an output voltage of power storage device B or higher. The step-up operation is performed by supplying the electromagnetic energy accumulated in the reactor L during the ON period of the switching element Q2 to the power line 7 via the diode D1 during the OFF period of the switching element Q2. Note that the voltage VH is stepped down by passing a current from the power line 7 to the power line 6 during the ON period of the switching element Q1. The voltage conversion ratio (the ratio of voltage VH to the voltage between power lines 6 and 5) in converter 12 is controlled by the on-period ratio (duty ratio) of switching elements Q1 and Q2 with respect to the switching period. If switching elements Q1 and Q2 are fixed to ON and OFF, respectively, voltage VH can be set to a voltage between power lines 6 and 5 (voltage conversion ratio = 1.0).
 インバータ14は、制御装置20からの駆動信号S3~S8に応答したスイッチング素子Q3~Q8のスイッチング動作により、電力線7から供給される直流電圧を交流電圧に変換し、電動機Mを駆動する。また、インバータ14は、車両の制動時には、駆動信号S3~S8に応答したスイッチング動作により、電動機Mにより発電された交流電圧を直流電圧に変換し、その変換した直流電圧をコンバータ12へ供給する。 The inverter 14 converts the DC voltage supplied from the power line 7 into an AC voltage and drives the motor M by the switching operation of the switching elements Q3 to Q8 in response to the drive signals S3 to S8 from the control device 20. Further, when braking the vehicle, the inverter 14 converts the AC voltage generated by the electric motor M into a DC voltage by a switching operation in response to the drive signals S3 to S8, and supplies the converted DC voltage to the converter 12.
 また、インバータ14は、車両の衝突が検出されると、コンデンサC0,C1の残留電荷を放電する放電装置として作動する。具体的には、車両の衝突が検出されると、システムリレーRY1,RY2がオフされ、インバータ14において、スイッチング素子Q3,Q4のゲート電圧が制御されることによりスイッチング素子Q3,Q4が通電状態に制御される。これにより、コンデンサC0,C1の残留電荷がスイッチング素子Q3,Q4を介して放電される。なお、コンデンサC1の残留電荷については、ダイオードD1を介してインバータ14に供給される。 Further, the inverter 14 operates as a discharge device that discharges the residual charges of the capacitors C0 and C1 when a vehicle collision is detected. Specifically, when a vehicle collision is detected, system relays RY1 and RY2 are turned off, and switching elements Q3 and Q4 are energized by controlling the gate voltage of switching elements Q3 and Q4 in inverter 14. Be controlled. As a result, the residual charges in the capacitors C0 and C1 are discharged through the switching elements Q3 and Q4. The residual charge in the capacitor C1 is supplied to the inverter 14 via the diode D1.
 なお、この実施の形態では、代表的にスイッチング素子Q3,Q4を通電状態に制御することによってコンデンサC0,C1の放電を行なうものとしているが、上アームについて、スイッチング素子Q3に代えて、またはスイッチング素子Q3とともに、スイッチング素子Q5,Q7の少なくとも一方を用いてもよい。また、下アームについても、スイッチング素子Q4に代えて、またはスイッチング素子Q4とともに、スイッチング素子Q6,Q8の少なくとも一方を用いてもよい。 In this embodiment, the capacitors C0 and C1 are typically discharged by controlling the switching elements Q3 and Q4 to the energized state, but the upper arm is replaced with the switching element Q3 or switching. Together with the element Q3, at least one of the switching elements Q5 and Q7 may be used. Also for the lower arm, at least one of the switching elements Q6 and Q8 may be used instead of the switching element Q4 or together with the switching element Q4.
 衝突センサ22は、車両の衝突が検出されると、衝突検出信号を制御装置20へ出力する。この衝突センサ22は、代表的には加速度センサ等によって構成される。なお、衝突センサ22をレーダーセンサ等によって構成し、車両の衝突を事前に検出して制御装置20へ信号を出力するようにしてもよい。 The collision sensor 22 outputs a collision detection signal to the control device 20 when a vehicle collision is detected. The collision sensor 22 is typically constituted by an acceleration sensor or the like. The collision sensor 22 may be constituted by a radar sensor or the like so that a vehicle collision is detected in advance and a signal is output to the control device 20.
 制御装置20は、電子制御ユニット(ECU(Electronic Control Unit))により構成され、予め記憶されたプログラムを図示しないCPUで実行することによるソフトウェア処理および/または専用の電子回路によるハードウェア処理により、車両100の走行を制御する。 The control device 20 is composed of an electronic control unit (ECU (Electronic Control Unit)), and performs vehicle processing by executing software stored in advance by a CPU (not shown) and / or hardware processing using a dedicated electronic circuit. 100 runs are controlled.
 代表的な機能として、制御装置20は、アクセル開度や車両速度等に基づいて電動機Mのトルク指令値を算出し、そのトルク指令値に従ったトルクを電動機Mが出力するように、コンバータ12およびインバータ14の動作を制御する。すなわち、制御装置20は、コンバータ12およびインバータ14を制御するための駆動信号S1~S8を生成してコンバータ12およびインバータ14へ出力する。 As a representative function, the control device 20 calculates a torque command value of the electric motor M based on the accelerator opening, the vehicle speed, and the like, and the converter 12 outputs the torque according to the torque command value. And the operation of the inverter 14 is controlled. That is, control device 20 generates drive signals S1 to S8 for controlling converter 12 and inverter 14 and outputs them to converter 12 and inverter 14.
 また、制御装置20は、衝突センサ22から衝突検出信号を受けると、システムリレーSR1,SR2の開放を指示する信号SEを生成してシステムリレーSR1,SR2へ出力する。その後、制御装置20は、インバータ14のスイッチング素子Q3,Q4のゲート電圧を制御することによってスイッチング素子Q3,Q4を通電状態に制御する。これにより、コンデンサC0,C1の残留電荷がスイッチング素子Q3,Q4を介して放電される。 Further, when receiving a collision detection signal from the collision sensor 22, the control device 20 generates a signal SE instructing opening of the system relays SR1 and SR2, and outputs the signal SE to the system relays SR1 and SR2. Thereafter, control device 20 controls switching elements Q3 and Q4 to be energized by controlling the gate voltage of switching elements Q3 and Q4 of inverter 14. As a result, the residual charges in the capacitors C0 and C1 are discharged through the switching elements Q3 and Q4.
 ここで、制御装置20は、インバータ14の素子温度を検出する温度センサ18の検出温度に基づいてスイッチング素子Q3,Q4のゲート電圧を制御する。詳しくは、制御装置20は、温度センサ18によって検出される温度Tが所定の設定温度になるように、スイッチング素子Q3,Q4のゲート電圧を制御する。この設定温度は、スイッチング素子Q3,Q4の耐熱温度に基づいて最大限の温度に設定される。すなわち、コンデンサC0,C1の放電時、制御装置20は、スイッチング素子Q3,Q4が過熱破壊しない範囲でスイッチング素子Q3,Q4の温度が最大になるように、スイッチング素子Q3,Q4のゲート電圧を制御する。これにより、スイッチング素子Q3,Q4が過熱破壊しない範囲でスイッチング素子Q3,Q4に最大の電流を流すことができ、コンデンサC0,C1をできる限り短時間で放電させることができる。 Here, the control device 20 controls the gate voltages of the switching elements Q3 and Q4 based on the detected temperature of the temperature sensor 18 that detects the element temperature of the inverter 14. Specifically, the control device 20 controls the gate voltages of the switching elements Q3 and Q4 so that the temperature T detected by the temperature sensor 18 becomes a predetermined set temperature. This set temperature is set to the maximum temperature based on the heat-resistant temperature of switching elements Q3 and Q4. That is, when the capacitors C0 and C1 are discharged, the control device 20 controls the gate voltages of the switching elements Q3 and Q4 so that the temperature of the switching elements Q3 and Q4 becomes maximum within a range in which the switching elements Q3 and Q4 are not destroyed by overheating. To do. As a result, the maximum current can be passed through the switching elements Q3 and Q4 within a range in which the switching elements Q3 and Q4 are not destroyed by overheating, and the capacitors C0 and C1 can be discharged in as short a time as possible.
 図2は、コンデンサC0,C1の放電制御に関する制御装置20の機能ブロック図である。図2を参照して、制御装置20は、減算部32と、コントローラ34と、駆動信号生成部36とを含む。 FIG. 2 is a functional block diagram of the control device 20 related to the discharge control of the capacitors C0 and C1. Referring to FIG. 2, control device 20 includes a subtraction unit 32, a controller 34, and a drive signal generation unit 36.
 減算部32は、設定温度TRから温度Tの検出値を減算し、その演算結果をコントローラ34へ出力する。なお、設定温度TRは、上述のように、スイッチング素子Q3,Q4の耐熱温度に基づいて、スイッチング素子Q3,Q4が過熱破壊に至らない範囲で最大限の温度に設定される。 The subtracting unit 32 subtracts the detected value of the temperature T from the set temperature TR and outputs the calculation result to the controller 34. As described above, set temperature TR is set to the maximum temperature within a range in which switching elements Q3 and Q4 do not cause overheating destruction based on the heat-resistant temperature of switching elements Q3 and Q4.
 コントローラ34は、減算部32から受ける温度偏差に基づいて、スイッチング素子Q3,Q4のゲート電圧VGを決定する。具体的には、コントローラ34は、減算部32からの温度偏差に基づいて、コンデンサC0,C1の放電時にスイッチング素子Q3,Q4の温度Tが設定温度TRになるようにゲート電圧VGを決定する。一例として、コントローラ34は、減算部32からの温度偏差を入力とする比例積分制御器によって構成することができる。なお、設定温度TRよりも温度Tが高い場合には、ゲート電圧VGは0(通電量0)とされる。 The controller 34 determines the gate voltage VG of the switching elements Q3 and Q4 based on the temperature deviation received from the subtraction unit 32. Specifically, the controller 34 determines the gate voltage VG based on the temperature deviation from the subtracting unit 32 so that the temperature T of the switching elements Q3 and Q4 becomes the set temperature TR when the capacitors C0 and C1 are discharged. As an example, the controller 34 can be configured by a proportional-integral controller that receives the temperature deviation from the subtracting unit 32 as an input. When the temperature T is higher than the set temperature TR, the gate voltage VG is set to 0 (energization amount 0).
 駆動信号生成部36は、スイッチング素子Q3,Q4にゲート電圧VGを印加するための駆動信号S3,S4を生成し、その生成した駆動信号S3,S4をインバータ14へ出力する。なお、コンデンサC0,C1の放電に用いられない残余のスイッチング素子については、ゲート遮断(ゲート電圧0)される。 The drive signal generator 36 generates drive signals S3 and S4 for applying the gate voltage VG to the switching elements Q3 and Q4, and outputs the generated drive signals S3 and S4 to the inverter 14. The remaining switching elements that are not used for discharging the capacitors C0 and C1 are gated (gate voltage 0).
 図3は、コンデンサC0,C1の放電制御の実行時におけるスイッチング素子Q3の温度Tおよび電流IならびにコンデンサC0の電圧VHの変化を示した図である。図3を参照して、時刻t1において、衝突センサ22(図1)によって衝突が検知され、コンデンサC0,C1の放電が開始されるものとする。なお、時刻t1の時点では、スイッチング素子Q3(Q4)の温度Tは設定温度TRよりも低いものとする。また、時刻t1およびそれ以前において電流Iは0としているが、時刻t1の時点で電流が流れていてもよい。 FIG. 3 is a diagram showing changes in the temperature T and current I of the switching element Q3 and the voltage VH of the capacitor C0 when the discharge control of the capacitors C0 and C1 is executed. Referring to FIG. 3, at time t1, a collision is detected by collision sensor 22 (FIG. 1), and discharging of capacitors C0 and C1 is started. At time t1, temperature T of switching element Q3 (Q4) is assumed to be lower than set temperature TR. In addition, the current I is 0 at time t1 and before, but current may flow at time t1.
 時刻t1において放電制御が開始されると、スイッチング素子Q3,Q4のゲート電圧VGが制御されることによって、コンデンサC0,C1の残留電荷が電流Iとしてスイッチング素子Q3,Q4に流れる。この実施の形態においては、温度Tが設定温度TRになるようにスイッチング素子Q3,Q4のゲート電圧VGが制御されるので、温度Tが設定温度TRに達するまで電流Iは上昇する。 When the discharge control is started at time t1, the gate voltage VG of the switching elements Q3 and Q4 is controlled, so that the residual charges of the capacitors C0 and C1 flow as current I to the switching elements Q3 and Q4. In this embodiment, since gate voltage VG of switching elements Q3 and Q4 is controlled so that temperature T becomes set temperature TR, current I increases until temperature T reaches set temperature TR.
 すなわち、この実施の形態では、スイッチング素子Q3,Q4の電流Iの上限値を予め定めるのではなく、コンデンサC0,C1の放電時にスイッチング素子Q3,Q4の温度Tが上限温度(設定温度TR)になるようにスイッチング素子Q3,Q4の通電が制御される。これにより、スイッチング素子Q3,Q4が過熱破壊しない範囲でスイッチング素子Q3,Q4に最大の電流を流すことができ、コンデンサC0,C1をできる限り短時間で放電させることができる。 That is, in this embodiment, the upper limit value of the current I of the switching elements Q3 and Q4 is not predetermined, but the temperature T of the switching elements Q3 and Q4 becomes the upper limit temperature (set temperature TR) when the capacitors C0 and C1 are discharged. Thus, the energization of the switching elements Q3 and Q4 is controlled. As a result, the maximum current can be passed through the switching elements Q3 and Q4 within a range in which the switching elements Q3 and Q4 are not destroyed by overheating, and the capacitors C0 and C1 can be discharged in as short a time as possible.
 図4は、スイッチング素子Q3,Q4の電流上限が定められる場合の、コンデンサC0,C1の放電制御の実行時におけるスイッチング素子Q3の温度T等の変化を示した図である。なお、この図4は、この実施の形態との比較例として図3と対比して示されるものであり、従来技術に相当し得るものである。 FIG. 4 is a diagram showing changes in the temperature T of the switching element Q3 and the like when executing the discharge control of the capacitors C0 and C1 when the current upper limit of the switching elements Q3 and Q4 is determined. FIG. 4 is shown in comparison with FIG. 3 as a comparative example to this embodiment, and can correspond to the prior art.
 図4を参照して、時刻t1において、衝突センサ22によって衝突が検知され、コンデンサC0,C1の放電が開始されるものとする。放電制御が開始されると、コンデンサC0,C1の残留電荷が電流Iとしてスイッチング素子Q3,Q4に流される。ここで、あらゆる条件下でもスイッチング素子Q3,Q4が破壊されないようにスイッチング素子Q3,Q4の電流Iの上限IUが定められている場合、スイッチング素子Q3,Q4の通電量が上限IUに制限される。 Referring to FIG. 4, at time t1, a collision is detected by collision sensor 22, and discharging of capacitors C0 and C1 is started. When the discharge control is started, the residual charges in the capacitors C0 and C1 are made to flow as current I through the switching elements Q3 and Q4. Here, when the upper limit IU of the current I of the switching elements Q3 and Q4 is determined so that the switching elements Q3 and Q4 are not destroyed under all conditions, the energization amount of the switching elements Q3 and Q4 is limited to the upper limit IU. .
 しかしながら、スイッチング素子Q3(Q4)の温度Tについては、上限温度(設定温度TR)まで余裕があり、スイッチング素子Q3,Q4が過熱破壊しない範囲で最大限の放電が行なわれているとは言えない。その結果、コンデンサC0,C1の放電時間は長くなってしまう。 However, the temperature T of the switching element Q3 (Q4) has a margin up to the upper limit temperature (set temperature TR), and it cannot be said that maximum discharge is performed within a range in which the switching elements Q3 and Q4 are not destroyed by overheating. . As a result, the discharge time of the capacitors C0 and C1 becomes long.
 これに対して、この実施の形態では、コンデンサC0,C1の放電に用いられるスイッチング素子Q3,Q4の温度が上限(設定温度TR)に達するまではスイッチング素子Q3,Q4の通電量(すなわちコンデンサの放電レート)を増大できるものとして、コンデンサC0,C1の放電時にスイッチング素子Q3,Q4が過熱破壊しない範囲で放電電流を最大化し、コンデンサC0,C1の放電時間の短縮を図ったものである。 On the other hand, in this embodiment, the energization amount of the switching elements Q3 and Q4 (that is, the capacitance of the capacitors) until the temperature of the switching elements Q3 and Q4 used for discharging the capacitors C0 and C1 reaches the upper limit (set temperature TR). (Discharge rate) can be increased, the discharge current is maximized in a range where the switching elements Q3 and Q4 are not overheated when the capacitors C0 and C1 are discharged, and the discharge time of the capacitors C0 and C1 is shortened.
 図5は、図1に示した制御装置20によるコンデンサC0,C1の放電制御の処理手順を説明するためのフローチャートである。なお、このフローチャートの処理は、一定時間毎または所定の条件が成立する毎にメインルーチンから呼び出されて実行される。 FIG. 5 is a flowchart for explaining a processing procedure of discharge control of the capacitors C0 and C1 by the control device 20 shown in FIG. The process of this flowchart is called from the main routine and executed every certain time or every time a predetermined condition is satisfied.
 図5とともに図1を参照して、制御装置20は、衝突センサ22からの信号に基づいて、車両の衝突が検出されたか否かを判定する(ステップS10)。衝突が検出されていなければ(ステップS10においてNO)、制御装置20は、その後の一連の処理を実行することなく、ステップS60へ処理を移行する。 Referring to FIG. 1 together with FIG. 5, the control device 20 determines whether or not a vehicle collision has been detected based on a signal from the collision sensor 22 (step S10). If no collision is detected (NO in step S10), control device 20 proceeds to step S60 without executing a series of subsequent processes.
 ステップS10において車両の衝突が検出されたと判定されると(ステップS10においてYES)、制御装置20は、システムリレーSR1,SR2をオフにする(ステップS20)。次いで、制御装置20は、スイッチング素子Q3の温度Tの検出値を温度センサ18から受ける(ステップS30)。 If it is determined in step S10 that a vehicle collision has been detected (YES in step S10), control device 20 turns off system relays SR1 and SR2 (step S20). Next, control device 20 receives the detected value of temperature T of switching element Q3 from temperature sensor 18 (step S30).
 そして、制御装置20は、図2に示した方法により、温度Tが設定温度TRになるように、スイッチング素子Q3,Q4のゲート電圧VGを制御することによってコンデンサC0,C1の放電制御を実施する(ステップS40)。なお、上述のように、設定温度TRは、スイッチング素子Q3,Q4の耐熱温度に基づいて、スイッチング素子Q3,Q4が過熱破壊に至らない範囲で最大限の温度に設定される。 Then, control device 20 performs discharge control of capacitors C0 and C1 by controlling gate voltage VG of switching elements Q3 and Q4 so that temperature T becomes set temperature TR by the method shown in FIG. (Step S40). As described above, set temperature TR is set to the maximum temperature within a range in which switching elements Q3 and Q4 do not cause overheating destruction based on the heat-resistant temperature of switching elements Q3 and Q4.
 次いで、制御装置20は、コンデンサC0の電圧を示す電圧VHがしきい値よりも低いか否かを判定する(ステップS50)。なお、このしきい値は、コンデンサC0,C1の放電終了を判定するための設定値であり、十分小さい値に設定される。 Next, the control device 20 determines whether or not the voltage VH indicating the voltage of the capacitor C0 is lower than the threshold value (step S50). This threshold value is a set value for determining the end of discharge of the capacitors C0 and C1, and is set to a sufficiently small value.
 ステップS50において電圧VHがしきい値以上であると判定されると(ステップS50においてNO)、制御装置20は、ステップS30へ処理を戻す。一方、ステップS50において電圧VHがしきい値よりも低いと判定されると(ステップS50においてYES)、コンデンサC0,C1の放電は終了したものとして、ステップS60へ処理が移行される。 If it is determined in step S50 that voltage VH is equal to or higher than the threshold value (NO in step S50), control device 20 returns the process to step S30. On the other hand, if it is determined in step S50 that voltage VH is lower than the threshold value (YES in step S50), it is determined that discharging of capacitors C0 and C1 has been completed, and the process proceeds to step S60.
 以上のように、この実施の形態においては、衝突センサ22により車両の衝突が検出されると、コンデンサC0,C1の放電が要求されたものとして、インバータ14のスイッチング素子Q3,Q4を通電状態に制御することによってコンデンサC0,C1の残留電荷を放電させる。このとき、スイッチング素子Q3の温度Tが温度センサ18によって検出され、その検出温度に基づいてスイッチング素子Q3,Q4の通電状態が制御される。これにより、コンデンサC0,C1の残留電荷の放電時に、スイッチング素子Q3,Q4が過熱破壊しない範囲でスイッチング素子Q3,Q4に最大限の電流を流すことができる。したがって、この実施の形態によれば、コンデンサC0,C1の残留電荷をできる限り短時間で放電させることが可能となる。 As described above, in this embodiment, when a collision of the vehicle is detected by the collision sensor 22, the switching elements Q3 and Q4 of the inverter 14 are set to the energized state assuming that the capacitors C0 and C1 are required to be discharged. By controlling, the residual charges of the capacitors C0 and C1 are discharged. At this time, the temperature T of the switching element Q3 is detected by the temperature sensor 18, and the energization state of the switching elements Q3 and Q4 is controlled based on the detected temperature. Thereby, at the time of discharging the residual charges of the capacitors C0 and C1, the maximum current can be supplied to the switching elements Q3 and Q4 within a range where the switching elements Q3 and Q4 are not destroyed by overheating. Therefore, according to this embodiment, the residual charges of the capacitors C0 and C1 can be discharged in as short a time as possible.
 また、上記の実施の形態においては、インバータ14のスイッチング素子Q3,Q4を通電状態に制御することによってコンデンサC0,C1の放電を行なうものとしているが、上アームのスイッチング素子Q3に代えて、またはスイッチング素子Q3とともに、上アームのスイッチング素子Q5,Q7の少なくとも一方を用いてもよい。同様に、下アームのスイッチング素子Q4に代えて、またはスイッチング素子Q4とともに、下アームのスイッチング素子Q6,Q8の少なくとも一方を用いてもよい。 In the above embodiment, the capacitors C0 and C1 are discharged by controlling the switching elements Q3 and Q4 of the inverter 14 to be energized, but instead of the upper arm switching element Q3 or In addition to the switching element Q3, at least one of the switching elements Q5 and Q7 of the upper arm may be used. Similarly, at least one of the switching elements Q6 and Q8 of the lower arm may be used instead of or together with the switching element Q4 of the lower arm.
 なお、スイッチング素子Q3,Q4に代えてその他のスイッチング素子をコンデンサC0,C1の放電に用いる場合には、放電に用いられるスイッチング素子に設けられる温度センサの検出値が用いられる。また、上アームまたは下アームにおいて複数のスイッチング素子を用いてコンデンサC0,C1の放電を実施する場合には、最も温度の高い検出値を用いて、図2に示す方法で各スイッチング素子のゲート電圧VGを決定することができる。あるいは、スイッチング素子毎に図2の制御系を構成し、ゲート電圧VGが最も低いものを各スイッチング素子のゲート電圧としてもよい。 When other switching elements are used for discharging the capacitors C0 and C1 instead of the switching elements Q3 and Q4, the detected value of the temperature sensor provided in the switching element used for discharging is used. When discharging the capacitors C0 and C1 using a plurality of switching elements in the upper arm or the lower arm, the gate voltage of each switching element is detected by the method shown in FIG. 2 using the detection value having the highest temperature. VG can be determined. Alternatively, the control system of FIG. 2 may be configured for each switching element, and the gate voltage VG having the lowest gate voltage may be used as the gate voltage of each switching element.
 また、上記においては、スイッチング素子Q3の温度Tが設定温度TRになるようにスイッチング素子Q3,Q4のゲート電圧VGを制御するものとしたが、温度Tが設定温度TRを下回っているときはゲート電圧VGを最大とし、設定温度TRまたはその近傍に温度Tが達するとゲート電圧VGを0としてもよい。 In the above description, the gate voltage VG of the switching elements Q3 and Q4 is controlled so that the temperature T of the switching element Q3 becomes the set temperature TR. However, when the temperature T is lower than the set temperature TR, the gate voltage VG is controlled. The voltage VG may be maximized, and the gate voltage VG may be set to 0 when the temperature T reaches or reaches the set temperature TR.
 また、上記においては、インバータ14を用いてコンデンサC0,C1の放電を実施するものとしたが、コンバータ12のスイッチング素子Q1,Q2を用いて上記と同様の放電制御を実施してもよい。あるいは、コンバータ12およびインバータ14の双方を用いて上記と同様の放電制御を実施することも可能である。なお、コンバータ12を用いる場合、コンデンサC1の残留電荷は、コンバータ12のスイッチング素子Q2によって放電される。 In the above description, the capacitors C0 and C1 are discharged using the inverter 14, but the same discharge control as described above may be performed using the switching elements Q1 and Q2 of the converter 12. Alternatively, discharge control similar to the above can be performed using both the converter 12 and the inverter 14. When the converter 12 is used, the residual charge of the capacitor C1 is discharged by the switching element Q2 of the converter 12.
 また、コンデンサC0,C1の放電制御にインバータ14を用いる場合には、電動機Mのコイルに電流が流れるようにインバータ14を制御してもよい。このとき、駆動輪DWが回転しないように、機械式ブレーキを自動的に作動させてもよいし、電動機Mに回転トルクが発生しないように、d軸電流のみが発生するようにインバータ14を制御してもよい。 Further, when the inverter 14 is used for discharge control of the capacitors C0 and C1, the inverter 14 may be controlled so that a current flows through the coil of the electric motor M. At this time, the mechanical brake may be automatically operated so that the driving wheel DW does not rotate, or the inverter 14 is controlled so that only the d-axis current is generated so that the rotating torque is not generated in the electric motor M. May be.
 また、この発明は、コンバータ12を備えないシステムにも適用可能である。なお、この場合には、インバータ14によってコンデンサC0の残留電荷を放電させる。 The present invention can also be applied to a system that does not include the converter 12. In this case, the residual charge of the capacitor C0 is discharged by the inverter 14.
 また、この発明は、図1に示した車両100の基本構成を有する様々な車両に適用可能である。たとえば、図1に示した構成にエンジンをさらに搭載するハイブリッド自動車や、蓄電装置Bに加えて燃料電池を直流電源として搭載する燃料電池自動車等にもこの発明は適用可能である。 Also, the present invention can be applied to various vehicles having the basic configuration of the vehicle 100 shown in FIG. For example, the present invention is also applicable to a hybrid vehicle in which an engine is further mounted in the configuration shown in FIG.
 なお、上記において、インバータ14およびコンバータ12の少なくとも一方は、この発明における「電力変換装置」の一実施例に対応し、コンデンサC0,C1の少なくとも一方は、この発明における「コンデンサ」の一実施例に対応する。また、衝突センサ22は、この発明における「衝突検出装置」の一実施例に対応する。 In the above, at least one of inverter 14 and converter 12 corresponds to an embodiment of “power converter” in the present invention, and at least one of capacitors C0 and C1 is an embodiment of “capacitor” in the present invention. Corresponding to The collision sensor 22 corresponds to an example of the “collision detection device” in the present invention.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 5~7 電力線、10 PCU、12 コンバータ、13 電圧センサ、14 インバータ、15 U相上下アーム、16 V相上下アーム、17 W相上下アーム、18 温度センサ、20 制御装置、22 衝突センサ、32 減算部、34 コントローラ、36 駆動信号生成部、100 車両、B 蓄電装置、SR1,SR2 システムリレー、C0,C1 コンデンサ、Q1~Q8 スイッチング素子、D1~D8 ダイオード、L リアクトル、M 電動機、DW 駆動輪。 5-7 power line, 10 PCU, 12 converter, 13 voltage sensor, 14 inverter, 15 U phase upper and lower arm, 16 V phase upper and lower arm, 17 W phase upper and lower arm, 18 temperature sensor, 20 control device, 22 collision sensor, 32 subtraction Unit, 34 controller, 36 drive signal generation unit, 100 vehicle, B power storage device, SR1, SR2 system relay, C0, C1 capacitor, Q1-Q8 switching element, D1-D8 diode, L reactor, M motor, DW drive wheel.

Claims (14)

  1.  車両に搭載される電力制御装置であって、
     少なくとも1つの電力用スイッチング素子(Q3~Q8;Q1,Q2)を含む電力変換装置(14;12)と、
     前記電力変換装置に接続される電力線(7,5;6,5)と、
     前記電力線の電圧を平滑化するコンデンサ(C0;C1)と、
     前記コンデンサの放電が要求されたとき、前記電力用スイッチング素子を制御することによって前記コンデンサの残留電荷を放電させる制御装置(20)と、
     前記電力用スイッチング素子の温度を検出するための温度センサ(18)とを備え、
     前記制御装置は、前記コンデンサの残留電荷の放電時、前記電力用スイッチング素子の検出温度に基づいて前記電力用スイッチング素子の通電状態を制御する、電力制御装置。
    A power control device mounted on a vehicle,
    A power converter (14; 12) including at least one power switching element (Q3-Q8; Q1, Q2);
    Power lines (7, 5; 6, 5) connected to the power converter;
    A capacitor (C0; C1) for smoothing the voltage of the power line;
    A control device (20) for discharging the residual charge of the capacitor by controlling the power switching element when discharge of the capacitor is required;
    A temperature sensor (18) for detecting the temperature of the power switching element;
    The said control apparatus is an electric power control apparatus which controls the energization state of the said power switching element based on the detection temperature of the said power switching element at the time of discharge of the residual charge of the said capacitor | condenser.
  2.  前記車両の衝突を検出するための衝突検出装置(22)をさらに備え、
     前記衝突検出装置により衝突が検出されると、前記コンデンサの放電が要求される、請求項1に記載の電力制御装置。
    A collision detection device (22) for detecting a collision of the vehicle;
    The power control device according to claim 1, wherein when a collision is detected by the collision detection device, discharging of the capacitor is required.
  3.  前記制御装置は、前記電力用スイッチング素子の温度が所定の設定温度になるように、前記検出温度に基づいて前記通電状態を制御する、請求項1または請求項2に記載の電力制御装置。 The power control device according to claim 1 or 2, wherein the control device controls the energization state based on the detected temperature so that a temperature of the power switching element becomes a predetermined set temperature.
  4.  前記所定の設定温度は、前記電力用スイッチング素子の耐熱温度に基づいて決定される、請求項3に記載の電力制御装置。 The power control device according to claim 3, wherein the predetermined set temperature is determined based on a heat-resistant temperature of the power switching element.
  5.  前記制御装置は、前記検出温度に基づいて前記電力用スイッチング素子のゲート電圧を制御する、請求項1または請求項2に記載の電力制御装置。 The power control device according to claim 1 or 2, wherein the control device controls a gate voltage of the power switching element based on the detected temperature.
  6.  前記電力変換装置は、前記車両に搭載される電動機(M)を駆動するインバータ(14)である、請求項1または請求項2に記載の電力制御装置。 The power control device according to claim 1 or 2, wherein the power conversion device is an inverter (14) that drives an electric motor (M) mounted on the vehicle.
  7.  前記電力変換装置は、前記電力線(7,5)の電圧を、前記車両に搭載される蓄電装置(B)の電圧以上に昇圧するコンバータ(12)である、請求項1または請求項2に記載の電力制御装置。 The said power converter device is a converter (12) which pressure | voltage-rises the voltage of the said power line (7, 5) more than the voltage of the electrical storage apparatus (B) mounted in the said vehicle. Power control device.
  8.  前記電力変換装置は、その出力電圧(VH)を前記電力線(6,5)の電圧以上に昇圧するコンバータ(12)である、請求項1または請求項2に記載の電力制御装置。 The power control device according to claim 1 or 2, wherein the power conversion device is a converter (12) that boosts the output voltage (VH) to a voltage higher than the voltage of the power line (6, 5).
  9.  請求項1または請求項2に記載の電力制御装置を備える車両。 A vehicle comprising the power control device according to claim 1 or 2.
  10.  車両に搭載される電力制御装置におけるコンデンサの放電制御方法であって、
     前記電力制御装置は、
     少なくとも1つの電力用スイッチング素子(Q3~Q8;Q1,Q2)を含む電力変換装置(14;12)と、
     前記電力変換装置に接続される電力線(7,5;6,5)と、
     前記電力線の電圧を平滑化するコンデンサ(C0;C1)とを備え、
     前記放電制御方法は、
     前記電力用スイッチング素子の温度を検出するステップと、
     前記電力用スイッチング素子の検出温度に基づき前記電力用スイッチング素子の通電状態を制御することによって、前記コンデンサの残留電荷を放電させるステップとを含む、コンデンサの放電制御方法。
    A capacitor discharge control method in a power control device mounted on a vehicle,
    The power control device
    A power converter (14; 12) including at least one power switching element (Q3-Q8; Q1, Q2);
    Power lines (7, 5; 6, 5) connected to the power converter;
    A capacitor (C0; C1) for smoothing the voltage of the power line,
    The discharge control method includes:
    Detecting the temperature of the power switching element;
    Discharging the residual charge of the capacitor by controlling the energization state of the power switching element based on the detected temperature of the power switching element.
  11.  前記車両の衝突を検出するステップをさらに含み、
     前記車両の衝突が検出されると、前記残留電荷を放電させるステップにおいて前記残留電荷が放電される、請求項10に記載のコンデンサの放電制御方法。
    Further comprising detecting a collision of the vehicle,
    11. The capacitor discharge control method according to claim 10, wherein when the collision of the vehicle is detected, the residual charge is discharged in the step of discharging the residual charge.
  12.  前記残留電荷を放電させるステップは、前記電力用スイッチング素子の温度が所定の設定温度になるように、前記検出温度に基づいて前記通電状態を制御するステップを含む、請求項10または請求項11に記載のコンデンサの放電制御方法。 The step of discharging the residual charge includes a step of controlling the energization state based on the detected temperature so that a temperature of the power switching element becomes a predetermined set temperature. The capacitor discharge control method described.
  13.  前記所定の設定温度は、前記電力用スイッチング素子の耐熱温度に基づいて決定される、請求項12に記載のコンデンサの放電制御方法。 13. The capacitor discharge control method according to claim 12, wherein the predetermined set temperature is determined based on a heat-resistant temperature of the power switching element.
  14.  前記残留電荷を放電させるステップは、前記検出温度に基づいて前記電力用スイッチング素子のゲート電圧を制御するステップを含む、請求項10または請求項11に記載のコンデンサの放電制御方法。 12. The capacitor discharge control method according to claim 10, wherein the step of discharging the residual charge includes a step of controlling a gate voltage of the power switching element based on the detected temperature.
PCT/JP2011/062125 2011-05-26 2011-05-26 Power control apparatus, vehicle provided with same, and method for controlling electrical discharge of capacitor WO2012160700A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/062125 WO2012160700A1 (en) 2011-05-26 2011-05-26 Power control apparatus, vehicle provided with same, and method for controlling electrical discharge of capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/062125 WO2012160700A1 (en) 2011-05-26 2011-05-26 Power control apparatus, vehicle provided with same, and method for controlling electrical discharge of capacitor

Publications (1)

Publication Number Publication Date
WO2012160700A1 true WO2012160700A1 (en) 2012-11-29

Family

ID=47216802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062125 WO2012160700A1 (en) 2011-05-26 2011-05-26 Power control apparatus, vehicle provided with same, and method for controlling electrical discharge of capacitor

Country Status (1)

Country Link
WO (1) WO2012160700A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011670A (en) * 2006-06-30 2008-01-17 Toyota Motor Corp Inverter system
JP2011036048A (en) * 2009-08-03 2011-02-17 Toyota Motor Corp Electric vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011670A (en) * 2006-06-30 2008-01-17 Toyota Motor Corp Inverter system
JP2011036048A (en) * 2009-08-03 2011-02-17 Toyota Motor Corp Electric vehicle

Similar Documents

Publication Publication Date Title
JP5794301B2 (en) Vehicle and vehicle control method
US10507731B2 (en) Electric power system
JP5454676B2 (en) Motor control device
JP5477339B2 (en) Electric vehicle
EP2733844B1 (en) Vehicle and method for controlling vehicle
JP6119778B2 (en) Inverter control device
WO2010137128A1 (en) Converter control device and electric vehicle using the same
US9374022B2 (en) Control apparatus and control method for voltage conversion apparatus
JP2013207914A (en) Controller of voltage converter
WO2012095946A1 (en) Control device for motor-drive system
JP2009189181A (en) Motor driving system, its control method, and electric vehicle
JP2010178595A (en) Device for controlling vehicle
JP2011091962A (en) Abnormality determination device of current sensor and abnormality determination method
JP5807524B2 (en) Control device for voltage converter
CN112468057A (en) Motor control method and circuit for vehicle, motor drive system and vehicle
JP4905204B2 (en) Load drive device
JP2012135083A (en) Control device of electric vehicle
JP2011109850A (en) Device for controlling power supply system, and vehicle mounting the same
JP5696589B2 (en) Vehicle and vehicle control method
JP2018186684A (en) Automobile
JP5644786B2 (en) Control device for voltage converter
JP6489110B2 (en) Drive device
JP2013207915A (en) Controller of voltage converter
JP2015177698A (en) Power conversion device
WO2012160700A1 (en) Power control apparatus, vehicle provided with same, and method for controlling electrical discharge of capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 11865956

Country of ref document: EP

Kind code of ref document: A1