WO2012160174A1 - Verfahren zur herstellung wasserabsorbierender polymerpartikel - Google Patents

Verfahren zur herstellung wasserabsorbierender polymerpartikel Download PDF

Info

Publication number
WO2012160174A1
WO2012160174A1 PCT/EP2012/059777 EP2012059777W WO2012160174A1 WO 2012160174 A1 WO2012160174 A1 WO 2012160174A1 EP 2012059777 W EP2012059777 W EP 2012059777W WO 2012160174 A1 WO2012160174 A1 WO 2012160174A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer particles
water
kneader
monomer
weight
Prior art date
Application number
PCT/EP2012/059777
Other languages
English (en)
French (fr)
Inventor
Matthias Weismantel
Ulrich Riegel
Markus Braun
Martin Wendker
Thomas Gieger
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to JP2014511890A priority Critical patent/JP6253575B2/ja
Priority to EP12723208.0A priority patent/EP2714104B1/de
Priority to CN201280025625.2A priority patent/CN103561782B/zh
Publication of WO2012160174A1 publication Critical patent/WO2012160174A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F2035/98Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • B01F27/701Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms comprising two or more shafts, e.g. in consecutive mixing chambers
    • B01F27/702Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms comprising two or more shafts, e.g. in consecutive mixing chambers with intermeshing paddles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/40Mixers with shaking, oscillating, or vibrating mechanisms with an axially oscillating rotary stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/92Heating or cooling systems for heating the outside of the receptacle, e.g. heated jackets or burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/95Heating or cooling systems using heated or cooled stirrers

Definitions

  • the present invention relates to a process for the preparation of water-absorbing polymer particles by polymerization of an aqueous monomer solution in a kneader having at least two waves rotating parallel to the axis, wherein the reaction mixture is transported in the axial direction and the region is accompanied by heating at the beginning of the kneader.
  • Water-absorbing polymer particles are used in the manufacture of diapers, tampons, sanitary napkins and other sanitary articles, but also as water-retaining agents in agricultural horticulture.
  • the water-absorbing polymer particles are also referred to as superabsorbers.
  • the preparation of water-absorbing polymer particles is described in the monograph "Modern Supersorbent Polymer Technology", F.L. Buchholz and AT. Graham, Wiley-VCH, 1998, pages 71-103.
  • the properties of the water-absorbing polymer particles can be adjusted, for example, via the amount of crosslinker used. As the amount of crosslinker increases, the centrifuge retention capacity (CRC) decreases and the absorption under a pressure of 21.0 g / cm 2 (AUL 0.3 psi) goes through a maximum.
  • CRC centrifuge retention capacity
  • water-absorbing polymer particles are generally surface-postcrosslinked.
  • the degree of crosslinking of the particle surface increases, whereby the absorption under a pressure of 49.2 g / cm 2 (AUL0.7 psi) and the centrifuge retention capacity (CRC) can be at least partially decoupled.
  • This surface postcrosslinking can be carried out in aqueous gel phase.
  • dried, ground and sieved polymer particles base polymer
  • Crosslinkers suitable for this purpose are compounds which can form covalent bonds with at least two carboxylate groups of the water-absorbing polymer particles.
  • WO 01/038402 A1 the heat of reaction is removed by at least 25% by evaporation of water.
  • WO 03/022896 A1 teaches that at least part of the water metered into the kneader is supplied as water vapor.
  • WO 2006/034806 A1 relates to further aspects of the polymerization, such as the degree of filling of the kneader, the inhibitor content of the monomer solution, the temperature in the reaction zone and the backmixing during the polymerization.
  • the object of the present invention was to provide an improved process for producing water-absorbing polymer particles, in particular water-absorbent polymer particles having a high centrifuge retention capacity (CRC) and low-extractable fractions (extractables).
  • CRC centrifuge retention capacity
  • extracttables extractable fractions
  • the object was achieved by a process for preparing water-absorbing polymer particles by polymerization of a monomer solution or suspension comprising a) an ethylenically unsaturated, acid group-carrying monomer which may be at least partially neutralized,
  • the monomer solution preferably contains from 0.02 to 0.18 wt .-%, particularly preferably from 0.04 to 0.16 wt .-%, most preferably from 0.05 to 0.15 wt .-%, initiator c ), in each case based on unneutralized monomer a).
  • the initiator c) is preferably at least 50% by weight, more preferably at least 70% by weight, most preferably at least 80% by weight, of a peroxide. In a very particularly preferred embodiment of the present invention, the initiator c) is preferably at least 50% by weight, particularly preferably at least 70% by weight, very particularly preferably at least 80% by weight, of sodium peroxodisulfate.
  • the temperature of the companion is preferably at least 1 15 ° C, more preferably at least 1 18 ° C, most preferably at least 120 ° C.
  • the reactor volume is therefore preferably at least 0.5 m 3 , particularly preferably at least 1 m 3 , very particularly preferably at least 2 m 3 , the reactor volume being the filling volume of the reactor.
  • the front portion of the kneader outer wall preferably comprises the front 50%, more preferably the front 70%, most preferably the front 90%, of the kneader outer wall, the percentages being the length percent of the kneader starting from the side of the inlet including the end wall. It is important that in particular the front area of the kneader is accompanied by heating. As a result, the reaction temperatures are raised early and many start radicals formed. It can also be heated by the entire outer wall.
  • the reactor outer wall is preferably accompanied by a double jacket.
  • a heat carrier hot water and heating steam are suitable.
  • heating steam is preferred, since the temperature of the heating steam can be adjusted very easily via the pressure. This can be done for example by relaxation of higher-tensioned water vapor with subsequent saturation of the superheated steam thus generated.
  • the heating steam has a pressure of preferably 1, 4 to 16 bar, more preferably from 1, 8 to 1 1 bar, most preferably from 2 to 4 bar, on.
  • the tracer heating according to the invention allows the polymerization at much higher temperatures.
  • the heat tracing is adjusted so that the maximum temperature of the reaction mixture is preferably at least 105 ° C., particularly preferably at least 108 ° C., very particularly preferably at least 110 ° C.
  • the high reaction temperatures lead to no measurable deterioration of the product properties.
  • the kneaders which can be used in the method according to the invention have at least two waves which rotate in parallel to the axis, wherein a plurality of kneading and transport elements are usually located on the shafts.
  • Kneaders which can be used in the process according to the invention are obtainable, for example, from List AG (Arrisdorf, Switzerland) and in CH 664 704 A5, EP 0 517 068 A1, WO 97/12666 A1, DE 21 23 956 A1, EP 0 603 525 A1 DE 195 36 944 A1 and DE 41 18 884 A1.
  • Such kneaders with at least two shafts achieve a high self-cleaning through the arrangement of the kneading and transport elements, which is an important requirement for continuous polymerization.
  • the two waves rotate in opposite directions to each other.
  • the disk segments are arranged like a propeller.
  • wall-mounted mixing bars and L-shaped or U-shaped shaped tops are suitable as kneading and transporting elements.
  • the water-absorbing polymer particles are prepared by polymerization of a monomer solution or suspension and are usually water-insoluble.
  • the monomers a) are preferably water-soluble, i. the solubility in water at 23 ° C. is typically at least 1 g / 100 g of water, preferably at least 5 g / 100 g of water, more preferably at least 25 g / 100 g of water, most preferably at least 35 g / 100 g of water.
  • Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
  • Suitable monomers a) are, for example, ethylenically unsaturated sulfonic acids, such as styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS).
  • sulfonic acids such as styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS).
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • Impurities can have a significant influence on the polymerization. Therefore, the raw materials used should have the highest possible purity. It is therefore often advantageous to purify the monomers a) specifically. Suitable purification processes are described, for example, in WO 02/055469 A1, WO 03/078378 A1 and WO 2004/035514 A1.
  • a suitable monomer a) is, for example, an acrylic acid purified according to WO 2004/035514 A1 with 99.8460% by weight of acrylic acid, 0.0950% by weight of acetic acid, 0.0332% by weight of water, 0.0203% by weight % Propionic acid, 0.0001% by weight of furfurals, 0.0001% by weight of maleic anhydride, 0.0003% by weight of diacrylic acid and 0.0050% by weight of hydroquinone monomethyl ether.
  • the proportion of acrylic acid and / or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, particularly preferably at least 90 mol%, very particularly preferably at least 95 mol%.
  • the monomers a) usually contain polymerization inhibitors, preferably hydroquinone half ethers, as storage stabilizer.
  • the monomer solution preferably contains up to 250 ppm by weight, preferably at most
  • hydroquinone 10 ppm by weight, particularly preferably at least 30 ppm by weight, in particular by 50 ppm by weight, hydroquinone, in each case based on the unneutralized monomer a).
  • an ethylenically unsaturated, acid group-carrying monomer having a corresponding content of hydroquinone half-ether can be used to prepare the monomer solution.
  • Preferred hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and / or alpha tocopherol (vitamin E).
  • Suitable crosslinkers b) are compounds having at least two groups suitable for crosslinking. Such groups are, for example, ethylenically unsaturated groups which can be radically copolymerized into the polymer chain, and functional groups which can form covalent bonds with the acid groups of the monomer a). Furthermore, polyvalent metal salts which can form coordinative bonds with at least two acid groups of the monomer a) are also suitable as crosslinking agents b).
  • Crosslinkers b) are preferably compounds having at least two polymerizable groups which can be incorporated in the polymer network in free-radically polymerized form.
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallylammonium chloride, tetraallyloxyethane, as described in EP 0 530 438 A1, di- and triacrylates, as in
  • Preferred crosslinkers b) are pentaerythritol triallyl ether, tetraallyloxyethane, methylenebismethacrylamide, 15-tuply ethoxylated trimethylolpropane triacrylate, polyethylene glycol diacrylate, trimethylolpropane triacrylate and triallylamine.
  • Very particularly preferred crosslinkers b) are polyethoxylated and / or propoxylated glycerols which have been esterified with acrylic acid or methacrylic acid to give diioder triacrylates, as they are are described for example in WO 03/104301 A1.
  • Particularly advantageous are di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol.
  • diacrylates or triacrylates of 1 to 5 times ethoxylated and / or propoxylated glycerol.
  • Most preferred are the triacrylates of 3 to 5 times ethoxylated and / or propoxylated glycerol, in particular the triacrylate of 3-times ethoxylated glycerol.
  • the amount of crosslinker b) is preferably from 0.05 to 1, 5 wt .-%, particularly preferably 0.1 to 1 wt .-%, most preferably 0.2 to 0.6 wt .-%, each based on unneutralized monomer a).
  • the centrifuge retention capacity decreases and the absorption under a pressure of 21.0 g / cm 2 passes through a maximum.
  • initiators c) it is possible to use all compounds which generate free radicals under the polymerization conditions, for example thermal initiators, redox initiators, photoinitiators.
  • Suitable redox initiators are sodium peroxodisulfate / ascorbic acid, hydrogen peroxide / ascorbic acid, sodium peroxodisulfate / sodium bisulfite and hydrogen peroxide / sodium bisulfite.
  • thermal initiators and redox initiators are used, such as sodium peroxodisulfate / hydrogen peroxide / ascorbic acid.
  • the reducing component used is preferably a mixture of the sodium salt of 2-hydroxy-2-sulfinatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid and sodium bisulfite.
  • Such mixtures are available as Brüggolite® FF6 and Brüggolite® FF7 (Brüggemann Chemicals, Heilbronn, Germany).
  • acrylamide, methacrylamide, hydroxyethyl acrylate, hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminopropyl acrylate, diethylaminopropyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate are ethylenically unsaturated monomers d) which are copolymerizable with the ethylenically unsaturated acid group-carrying monomers a).
  • water-soluble polymers e it is possible to use polyvinyl alcohol, polyvinylpyrrolidone, starch, starch derivatives, modified cellulose, such as methylcellulose or hydroxyethylcellulose, gelatin, polyglycols or polyacrylic acids, preferably starch, starch derivatives and modified cellulose.
  • an aqueous monomer solution is used.
  • the water content of the monomer solution is preferably from 40 to 75% by weight, particularly preferably from 45 to 70% by weight, very particularly preferably from 50 to 65% by weight.
  • monomer suspensions ie monomer solutions with excess monomer a), for example sodium acrylate.
  • the preferred polymerization inhibitors require dissolved oxygen for optimum performance. Therefore, the monomer solution can be freed from dissolved oxygen prior to polymerization by inerting, ie, flowing through with an inert gas, preferably nitrogen or carbon dioxide.
  • the oxygen content of the monomer solution prior to the polymerization is preferably reduced to less than 1 ppm by weight, more preferably to less than 0.5 ppm by weight, very particularly preferably to less than 0.1 ppm by weight.
  • the resulting comminuted polymer gel may additionally be extruded.
  • the acid groups of the polymer gels obtained are usually partially neutralized.
  • the neutralization is preferably carried out at the stage of the monomers. This is usually done by mixing the neutralizing agent as an aqueous solution or preferably as a solid.
  • the degree of neutralization is preferably from 25 to 95 mol%, particularly preferably from 30 to 80 mol%, very particularly preferably from 40 to 75 mol%, wherein the customary neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or Alkalimetallhydrogenkarbonate and mixtures thereof.
  • alkali metal salts and ammonium salts can be used.
  • Sodium and potassium are particularly preferred as alkali metals, but most preferred are sodium hydroxide, sodium carbonate or sodium bicarbonate and mixtures thereof.
  • the polymer gel is at least partially neutralized after the polymerization, the polymer gel is preferably comminuted mechanically, for example by means of an extruder, wherein the neutralizing agent can be sprayed, sprinkled or poured on and then thoroughly mixed in. For this purpose, the gel mass obtained can be extruded several times for homogenization.
  • the polymer gel is then preferably dried with a belt dryer until the residual moisture content is preferably from 0.5 to 15% by weight, particularly preferably from 1 to 10% by weight, very particularly preferably from 2 to 8% by weight, where Residual moisture content according to the test method No. WSP 230.2-05 "Mass Loss Upon Heating" recommended by the EDA-NA. If the residual moisture content is too high, the dried polymer gel has too low a glass transition temperature T g and is difficult to process further.
  • the dried polymer gel is too brittle, and in the subsequent comminution steps undesirably large amounts of polymer particles with too small particle size ("fines") are produced 90 wt .-%, particularly preferably from 35 to 70 wt .-%, most preferably from 40 to 60 wt .-%.
  • a fluidized bed dryer or a paddle dryer can be used for drying.
  • the dried polymer gel is then ground and classified, wherein for grinding usually one- or multi-stage roller mills, preferably two- or three-stage roller mills, pin mills, hammer mills or vibratory mills, can be used.
  • the mean particle size of the polymer particles separated off as product fraction is preferably at least 200 ⁇ m, more preferably from 250 to 600 ⁇ m, very particularly from 300 to 500 ⁇ m.
  • the mean particle size of the product fraction can be determined by means of the EDANA recommended test method No. WSP 220.2-05 "Particle Size Distribution", in which the mass fractions of the sieve fractions are cumulatively applied and the average particle size is determined graphically.
  • the average particle size here is the value of the mesh size, which results for a cumulative 50% by weight.
  • the proportion of particles having a particle size of greater than 150 ⁇ m is preferably at least 90% by weight, particularly preferably at least 95% by weight, very particularly preferably at least 98% by weight.
  • Polymer particles which are too small are therefore usually separated off and returned to the process. This is preferably done before, during or immediately after the polymerization, i. before drying the polymer gel.
  • the too small polymer particles can be moistened with water and / or aqueous surfactant before or during the recycling.
  • the excessively small polymer particles are preferably added during the last third of the polymerization.
  • the polymer particles which are too small are added very early, for example already to the monomer solution, this lowers the centrifuge retention capacity (CRC) of the resulting water-absorbing polymer particles. However, this can be compensated for example by adjusting the amount of crosslinker b). If the polymer particles which are too small are added very late, for example only in an apparatus downstream of the polymerization reactor, for example an extruder, then the polymer particles which are too small can only be incorporated into the resulting polymer gel with difficulty. Insufficiently incorporated too small polymer particles, however, dissolve again during the grinding of the dried polymer gel, are therefore separated again during classification and increase the amount of recycled too small polymer particles.
  • CRC centrifuge retention capacity
  • the proportion of particles having a particle size of at most 850 ⁇ m is preferably at least 90% by weight, more preferably at least 95% by weight, most preferably at least 98% by weight.
  • the proportion of particles having a particle size of at most 600 ⁇ m is preferably at least 90% by weight, more preferably at least 95% by weight, most preferably at least 98% by weight.
  • Polymer particles with too large particle size reduce the swelling rate. Therefore, the proportion of polymer particles too large should also be low.
  • Too large polymer particles are therefore usually separated and recycled to the grinding of the dried polymer gel.
  • the polymer particles can be surface-post-crosslinked to further improve the properties.
  • Suitable surface postcrosslinkers are compounds containing groups that can form covalent bonds with at least two carboxylate groups of the polymer particles. Examples of suitable compounds are polyfunctional amines, polyfunctional amidoamines, polyfunctional epoxides, as described in EP 0 083 022 A2, EP 0 543 303 A1 and US Pat
  • EP 0 937 736 A2 di- or polyfunctional alcohols, as described in DE 33 14 019 A1, DE 35 23 617 A1 and EP 0 450 922 A2, or ⁇ -hydroxyalkylamides, as described in
  • DE 40 20 780 C1 also discloses cyclic carbonates, in DE 198 07 502 A1 2-oxazolidinone and its derivatives, such as 2-hydroxyethyl-2-oxazolidinone, in DE 198 07 992 C1 bis- and poly-2-oxazolidinones , in DE 198 54 573 A1 2-oxotetrahydro-1,3-oxazine and its derivatives, in DE 198 54 574 A1 N-acyl-2-oxazolidinones, in DE 102 04 937 A1 cyclic ureas, in DE 103 34 584 A1 bicyclic Amidoacetals, in EP 1 199 327 A2 oxetanes and cyclic ureas and described in WO 03/031482 A1 morpholine-2,3-dione and its derivatives as suitable surface postcrosslinkers.
  • Preferred surface postcrosslinkers are ethylene carbonate, ethylene glycol diglycidyl ether, reaction products of polyamides with epichlorohydrin and mixtures of propylene glycol and 1,4-butanediol.
  • Very particularly preferred surface postcrosslinkers are 2-hydroxyethyl-2-oxazolidinone, 2-oxazolidinone and 1,3-propanediol.
  • the amount of surface postcrosslinker is preferably 0.001 to 2 wt .-%, more preferably 0.02 to 1 wt .-%, most preferably 0.05 to 0.2 wt .-%, each based on the polymer particles.
  • polyvalent cations are applied to the particle surface in addition to the surface postcrosslinkers before, during or after the surface postcrosslinking.
  • the polyvalent cations which can be used in the process according to the invention are, for example, divalent cations, such as the cations of zinc, magnesium, calcium, iron and strontium, trivalent cations, such as the cations of aluminum, iron, chromium, rare earths and manganese, tetravalent cations, such as the cations of Titanium and zirconium.
  • hydroxide, chloride, bromide, sulfate, hydrogen sulfate, carbonate, bicarbonate, nitrate, phosphate, hydrogen phosphate, dihydrogen phosphate and carboxylate, such as acetate, citrate and lactate are possible.
  • salts with different counterions for example basic aluminum salts, such as aluminum monoacetate or aluminum monolactate. Aluminum sulfate, aluminum monoacetate and aluminum lactate are preferred.
  • polyamines can also be used as polyvalent cations.
  • the amount of polyvalent cation used is, for example, 0.001 to 1.5% by weight, preferably 0.005 to 1% by weight, particularly preferably 0.02 to 0.8% by weight, based in each case on the polymer particles.
  • the surface postcrosslinking is usually carried out in such a way that a solution of the surface postcrosslinker is sprayed onto the dried polymer particles. Following spraying, the surface postcrosslinker coated polymer particles are thermally dried, with the surface postcrosslinking reaction occurring both before and during drying.
  • the spraying of a solution of the surface postcrosslinker is preferably carried out in mixers with moving mixing tools, such as screw mixers, disk mixers and paddle mixers.
  • moving mixing tools such as screw mixers, disk mixers and paddle mixers.
  • horizontal mixers such as paddle mixers
  • vertical mixers very particularly preferred are vertical mixers.
  • horizontal mixer and vertical mixer is made by the storage of the mixing shaft, ie horizontal mixers have a horizontally mounted mixing shaft and vertical mixers have a vertically mounted mixing shaft.
  • Suitable mixers are, for example, horizontal ploughshare mixers (Gebr. Lödige Maschi).
  • the surface postcrosslinkers are typically used as an aqueous solution.
  • the penetration depth of the surface postcrosslinker into the polymer particles can be adjusted by the content of nonaqueous solvent or total solvent amount. If only water is used as the solvent, it is advantageous to add a surfactant. As a result, the wetting behavior is improved and the tendency to clog is reduced.
  • solvent mixtures for example isopropanol / water, 1,3-propanediol / water and propylene glycol / water, the mixing mass ratio preferably being from 20:80 to 40:60.
  • the thermal drying is preferably carried out in contact dryers, more preferably paddle dryers, very particularly preferably disk dryers.
  • Suitable dryers are, for example, Hosokawa Bepex® Horizontal Paddle Dryer (Hosokawa Micron GmbH, Leingart, Germany), Hosokawa Bepex® Disc Dryer (Hosokawa Micron GmbH, Leingart, Germany), Holo-Flite® dryers (Metso Minerals Industries, Inc., Danville, USA ) and Nara
  • Paddle Dryer (NARA Machinery Europe, Frechen, Germany). Moreover, fluidized bed dryers can also be used.
  • the drying can take place in the mixer itself, by heating the jacket or blowing hot air.
  • a downstream dryer such as a hopper dryer, a rotary kiln or a heatable screw. Particularly advantageous is mixed and dried in a fluidized bed dryer.
  • Preferred drying temperatures are in the range 100 to 250 ° C, preferably 120 to 220 ° C, more preferably 130 to 210 ° C, most preferably 150 to 200 ° C.
  • the preferred residence time at this temperature in the reaction mixer or dryer is preferably at least 10 minutes, more preferably at least 20 minutes, most preferably at least 30 minutes, and usually at most 60 minutes.
  • the water-absorbing polymer particles are cooled after the thermal drying.
  • the cooling is preferably carried out in contact coolers, particularly preferably blade coolers, very particularly preferably disk coolers.
  • Suitable coolers are, for example, Hosokawa Bepex® Horizontal Paddle Cooler (Hosokawa Micron GmbH, Leingart, Germany), Hosokawa Bepex® Disc Cooler (Hosokawa Micron GmbH, Leingart, Germany), Holo-Flite® coolers (Metso Minerals Industries, Inc., Danville, USA ) and Nara Paddle Cooler (NARA Machinery Europe, Frechen, Germany).
  • fluidized bed coolers can also be used.
  • the water-absorbing polymer particles to 20 to 150 ° C, preferably 30 to 120 ° C, more preferably 40 to 100 ° C, most preferably 50 to 80 ° C, cooled. Subsequently, the surface-postcrosslinked polymer particles can be classified again, wherein too small and / or too large polymer particles are separated and recycled to the process.
  • the surface-postcrosslinked polymer particles can be coated or rehydrated to further improve the properties.
  • the post-wetting is preferably carried out at 30 to 80 ° C, more preferably at 35 to 70 ° C, most preferably at 40 to 60 ° C. If the temperatures are too low, the water-absorbing polymer particles tend to agglomerate and water evaporates appreciably at higher temperatures.
  • the amount of water used for the rewetting is preferably from 1 to 10 wt .-%, particularly preferably from 2 to 8 wt .-%, most preferably from 3 to 5 wt .-%.
  • the post-humidification is carried out in the cooler after the thermal drying.
  • Suitable coatings for improving the swelling rate and the permeability are, for example, inorganic inert substances, such as water-insoluble metal salts, organic polymers, cationic polymers and di- or polyvalent metal cations.
  • Suitable coatings for dust binding are, for example, polyols.
  • Suitable coatings against the unwanted caking tendency of the polymer particles are, for example, fumed silica, such as Aerosil® 200, and surfactants, such as Span® 20.
  • the water-absorbing polymer particles produced by the process according to the invention have a moisture content of preferably 0 to 15 wt .-%, particularly preferably 0.2 to 10 wt .-%, most preferably 0.5 to 8 wt .-%, wherein the Moisture content according to the EDANA recommended test method No. WSP 230.2-05 "Mass Loss Upon Heating".
  • the water-absorbing polymer particles produced by the process according to the invention have a proportion of particles having a particle size of from 300 to 600 ⁇ m, preferably at least 30% by weight, more preferably at least 50% by weight, very particularly preferably at least 70% by weight.
  • the water-absorbing polymer particles produced according to the process of the invention have a centrifuge retention capacity (CRC) of typically at least 15 g / g, preferably at least 20 g / g, preferably at least 22 g / g, more preferably at least 24 g / g, most preferably at least 26 g / g, on.
  • the centrifuge reti- onskapaztician (CRC) of the water-absorbing polymer particles is usually less than 60 g / g.
  • Centrifuge Retention Capacity (CRC) is determined according to the EDANA recommended Test Method No. WSP 241.2-05 "Fluid Retention Capacity in Saline, After Centrifugation".
  • the water-absorbing polymer particles produced by the process according to the invention have an absorption under a pressure of 49.2 g / cm 2 of typically at least 15 g / g, preferably at least 20 g / g, preferably at least 22 g / g, particularly preferably at least 24 g / g, most preferably at least 26 g / g, on.
  • the absorption under a pressure of 49.2 g / cm 2 of the water-absorbing polymer particles is usually less than 35 g / g.
  • the absorption under a pressure of 49.2 g / cm 2 is determined analogously to the EDANA recommended test method no. WSP 242.2-05 "Absorption Under Pressure, Gravimetric Determination", wherein instead of a pressure of 21, 0 g / cm 2 a Pressure of 49.2 g / cm 2 is set.
  • Saline Flow Conductivity (SFC) of a swollen gel layer under pressure of 0.3 psi (2070 Pa) is determined, as described in EP 0 640 330 A1, as gel layer permeability of a swollen gel layer of water-absorbing polymer particles.
  • the punch (39) consists of the same plastic material as the cylinder (37) and now over the entire Support surface evenly distributed 21 holes of equal size. The procedure and evaluation of the measurement remains unchanged compared to EP 0 640 330 A1. The flow is automatically detected.
  • Fluid transfer (SFC) is calculated as follows:
  • the pH of the water-absorbing polymer particles is determined according to the EDANA recommended Test Method No. WSP 200.2-02 "pH of Polyacrylates (PA) Powders".
  • the content of residual monomer of the water-absorbing polymer particles is determined according to the EDANA recommended test method WSP No. 210.2-02 "Residual Monomers”.
  • the moisture content of the water-absorbing polymer particles is determined according to the EDANA recommended test method no. WSP 230.2-02 "Mass Loss Upon Heating”. Centrifuge Retention Capacity
  • Centrifuge Retention Capacity is determined according to the EDANA recommended Test Method No. WSP 241.2-05 "Fluid Retention Capacity in Saline, After Centrifugation".
  • the absorption under a pressure of 49.2 g / cm 2 (AUL0.7 psi) is determined analogously to the EDANA recommended test method no. WSP 242.2-05 "Absorption Under Pressure, Gravimetric Dermatation", whereby instead of a pressure of 21 , 0 g / cm 2 (AUL0.3psi) a pressure of 49.2 g / cm 2 (AUL0.7psi) is set.
  • Extractable The content of extractables of the water-absorbing polymer particles is determined according to the EDANA recommended test method No. WSP 270.2-05 "Extractable".
  • an acrylic acid / sodium acrylate solution was prepared so that the degree of neutralization was 71.0 mol%.
  • the solids content of the monomer solution was 42.0% by weight.
  • the crosslinker used was 3-times ethoxylated glycerol triacrylate (about 85% strength by weight). The amount used was 0.383% by weight, based on unneutralized acrylic acid.
  • the monomer solution was rendered inert with nitrogen.
  • the citric acid was added just before the reactor and the ascorbic acid first in the reactor.
  • the reaction was carried out in a List ORP 250 Contikneter type reactor (LIST AG, Arisdorf, Switzerland).
  • the throughput of the monomer solution was 1200 kg / h.
  • the reaction solution had a temperature of 33 ° C. at the inlet.
  • the temperature of the water in the jacket of the reactor was adjusted to 95 ° C.
  • the maximum temperature of the reaction mixture was 104 ° C.
  • the residence time of the reaction mixture in the reactor was 9 minutes.
  • the resulting polymer gel was applied to a belt dryer. On the belt dryer, the polymer gel was continuously circulated with an air / gas mixture and dried at 175 ° C.
  • the residence time in the belt dryer was 43 minutes.
  • the dried polymer gel was ground and sieved to a particle size fraction of 200 to 850 ⁇ .
  • the base polymer thus obtained had the following properties:
  • Residual monomers 300 ppm
  • the surface postcrosslinking solution contained 2.0% by weight of N-hydroxyethyl-2-oxazolidinone, 2.0% by weight of 1,3-propanediol, 35.6% by weight of isopropanol , 60.4% by weight of deionized water and 0.03% by weight of sorbitan monolaurate.
  • the surface postcrosslinked polymer particles were then cooled to about 60 ° C. in a NARA paddle cooler of the type NPD 3W9 (GMF Gouda, Waddinxveen, Netherlands), rewetted with 2.06 kg / h of water and then again to 200 to 850 ⁇ m sieved.
  • NPD 3W9 GMF Gouda, Waddinxveen, Netherlands
  • the surface-postcrosslinked water-absorbing polymer particles used had the following property profile:
  • Example 2 The procedure was as in Example 1. The temperature of the reactor double jacket was adjusted to 120 ° C by means of heating steam. The maximum temperature of the reaction mixture was 12 ° C. The amount of initiator sodium peroxodisulfate was lowered in three stages. The results are summarized in Tables 1 and 2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Verfahren zur Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation einer wässrigen Monomerlösung in einem Kneter mit mindestens zwei achsparallel rotierenden Wellen, wobei die Reaktionsmischung in axialer Richtung transportiert und der Bereich am Anfang des Kneters begleitbeheizt wird.

Description

Verfahren zur Herstellung wasserabsorbierender Polymerpartikel Beschreibung Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation einer wässrigen Monomerlösung in einem Kneter mit mindestens zwei achsparallel rotierenden Wellen, wobei die Reaktionsmischung in axialer Richtung transportiert und der Bereich am Anfang des Kneters begleitbeheizt wird. Wasserabsorbierende Polymerpartikel werden zur Herstellung von Windeln, Tampons, Damenbinden und anderen Hygieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet. Die wasserabsorbierenden Polymerpartikel werden auch als Superabsorber bezeichnet. Die Herstellung wasserabsorbierender Polymerpartikel wird in der Monographie "Modern Supe- rabsorbent Polymer Technology", F.L. Buchholz und AT. Graham, Wiley-VCH, 1998, Seiten 71 bis 103, beschrieben.
Die Eigenschaften der wasserabsorbierenden Polymerpartikel können beispielsweise über die verwendete Vernetzermenge eingestellt werden. Mit steigender Vernetzermenge sinkt die Zent- rifugenretentionskapazität (CRC) und die Absorption unter einem Druck von 21 ,0 g/cm2 (AUL0.3psi) durchläuft ein Maximum.
Zur Verbesserung der Anwendungseigenschaften, wie beispielsweise Permeabilität des gequol- lenen Gelbetts (SFC) in der Windel und Absorption unter einem Druck von 49,2 g/cm2
(AUL0.7psi), werden wasserabsorbierende Polymerpartikel im allgemeinen oberflächennach- vernetzt. Dadurch steigt der Vernetzungsgrad der Partikeloberfläche, wodurch die Absorption unter einem Druck von 49,2 g/cm2 (AUL0.7psi) und die Zentrifugenretentionskapazität (CRC) zumindest teilweise entkoppelt werden können. Diese Oberflächennachvernetzung kann in wässriger Gelphase durchgeführt werden. Vorzugsweise werden aber getrocknete, gemahlene und abgesiebte Polymerpartikel (Grundpolymer) an der Oberfläche mit einem Oberflächen- nachvernetzer beschichtet und thermisch oberflächennachvernetzt. Dazu geeignete Vernetzer sind Verbindungen, die mit mindestens zwei Carboxylatgruppen der wasserabsorbierenden Polymerpartikel kovalente Bindungen bilden können.
Die Herstellung wasserabsorbierender Polymerpartikel in einem Kneter mit mindestens zwei achsparallel rotierenden Wellen wird beispielsweise in WO 01/038402 A1 , WO 03/022896 A1 und WO 2006/034806 A1 beschrieben.
Gemäß WO 01/038402 A1 wird die Reaktionswärme zu mindestens 25% durch Verdampfung von Wasser abgeführt. WO 03/022896 A1 lehrt, dass zumindest ein Teil des in den Kneter dosierten Wassers als Wasserdampf zugeführt wird.
Die WO 2006/034806 A1 betrifft weitere Aspekte der Polymerisation wie den Füllgrad des Kne- ters, den Inhibitorgehalt der Monomerlösung, die Temperatur in der Reaktionszone und die Rückvermischung während der Polymerisation.
Aufgabe der vorliegenden Erfindung war die Bereitstellung eines verbesserten Verfahrens zur Herstellung wasserabsorbierender Polymerpartikel, insbesondere von wasserabsorbierenden Polymerpartikeln mit hoher Zentrifugenretentionskapazität (CRC) und wenig extrahierbaren Anteilen (Extrahierbaren).
Gelöst wurde die Aufgabe durch ein Verfahren zur Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation einer Monomerlösung oder -Suspension, enthaltend a) ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zumindest teilweise neutralisiert sein kann,
b) mindestens einen Vernetzer,
c) mindestens einen Initiator,
d) optional ein oder mehrere mit den unter a) genannten Monomeren copolymerisierbare ethylenisch ungesättigte Monomere und
e) optional ein oder mehrere wasserlösliche Polymere, in einem Kneter mit einem Reaktionsvolumen von mindestens 0,1 m3 und mindestens zwei achsparallel rotierenden Wellen, wobei sich auf den Wellen mehrere Knet- und Transportelemente befinden, die eine Förderung der am Anfang des Kneters zugegebenen Reaktionsmischung in axialer Richtung zum Ende des Kneters bewirken, dadurch gekennzeichnet, dass die Monomerlösung von 0,01 bis 0,2 Gew.-% Initiator c), bezogen auf unneutralisiertes Monomer a), enthält, die Kneteraußenwand im Bereich des Zulaufs begleitbeheizt wird und die Tempera- tur der Begleitheizung mindestens 1 10°C beträgt.
Die Monomerlösung enthält vorzugsweise von 0,02 bis 0,18 Gew.-%, besonders bevorzugt von 0,04 bis 0,16 Gew.-%, ganz besonders bevorzugt von 0,05 bis 0,15 Gew.-%, Initiator c), jeweils bezogen auf unneutralisiertes Monomer a).
In eine besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist der Initiator c) zu vorzugsweise mindestens 50 Gew.-%, besonders bevorzugt zu mindestens 70 Gew.-%, ganz besonders bevorzugt zu mindestens 80 Gew.-%, ein Peroxid. In einer ganz besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist der Initiator c) zu vorzugsweise mindestens 50 Gew.-%, besonders bevorzugt zu mindestens 70 Gew.-%, ganz besonders bevorzugt zu mindestens 80 Gew.-%, Natriumperoxodisulfat. Die Temperatur der Begleitheitzung beträgt vorzugsweise mindestens 1 15°C, besonders bevorzugt mindestens 1 18°C, ganz besonders bevorzugt mindestens 120°C.
Durch die Begleitheizung im vorderen Bereich des Kneters zerfallen die meisten Initiatoren möglicherweise bereits in der Nähe des Zulaufs. Bei einer damit verbundenen entsprechend längeren Verweilzeit der frühzeitig gebildeten Startradikale kann bereits mit weniger Initiator ein hoher Monomerumsatz erreicht werden. Durch weniger Initiator wiederum wird das Verhältnis von Zentrifugenretentionskapazität (CRC) und extrahierbaren Anteilen (Extrahierbaren) günstig beeinflusst. Peroxide wie Natriumperoxodisulfat zerfallen thermisch und können daher beson- ders leicht durch entsprechende Temperaturkontrolle beeinflusst werden.
Eine ebenfalls mögliche Verlängerung der Verweilzeit im Kneter würde zwar auch zu einem hohen Monomerumsatz führen, aber gleichzeitig in unerwünschter Weise die Kapazität senken. Diese Wirkung hängt möglicherweise auch vom Reaktions- bzw. Reaktorvolumen ab. Das Reaktorvolumen beträgt daher vorzugsweise mindestens 0,5 m3, besonders bevorzugt mindestens 1 m3, ganz besonders bevorzugt mindestens 2 m3, wobei das Reaktorvolumen das Füllvolumen des Reaktors ist. Der vordere Bereich der Kneteraußenwand umfasst vorzugsweise die vorderen 50%, besonders bevorzugt die vorderen 70%, ganz besonders bevorzugt die vorderen 90%, der Kneteraußenwand, wobei die Prozentangaben die Längenprozente des Kneters beginnend mit der Seite des Zulaufs einschließlich der Stirnwand bedeuten. Es ist wichtig, dass insbesondere der vordere Bereich des Kneters entsprechend begleitbeheizt wird. Dadurch werden die Reaktionstemperaturen bereits frühzeitig angehoben und viele Startradikale gebildet. Es kann auch die gesamte Außenwand begleitbeheizt werden.
Die Reaktoraußenwand wird vorzugsweise mittels eines Doppelmantels begleitbeheizt. Als Wärmeträger sind Warmwasser und Heizdampf geeignet. Hierbei ist Heizdampf bevorzugt, da die Temperatur des Heizdampfes sehr einfach über den Druck eingestellt werden kann. Dies kann beispielsweise durch Entspannung von höher gespanntem Wasserdampf mit anschließender Sättigung des so erzeugten überhitzten Wasserdampfes erfolgen. Der Heizdampf weist einen Druck von vorzugsweise 1 ,4 bis 16 bar, besonders bevorzugt von 1 ,8 bis 1 1 bar, ganz besonders bevorzugt von 2 bis 4 bar, auf.
Die erfindungsgemäße Begleitheizung ermöglicht die Polymerisation bei deutlich höheren Temperaturen. Die Begleitheizung wird dabei so eingestellt, dass die maximale Temperatur der Re- aktionsmischung vorzugsweise mindestens 105°C, besonders bevorzugt mindestens 108°C, ganz besonders bevorzugt mindestens 1 10°C, beträgt. Überraschenderweise führen die hohen Reaktionstemperaturen zu keiner messbaren Verschlechterung der Produkteigenschaften. Die im erfindungsgemäßen Verfahren einsetzbaren Kneter weisen mindestens zwei achsparallel rotierende Wellen auf, wobei sich auf den Wellen üblicherweise mehrere Knet- und Transportelemente befinden. Im erfindungsgemäßen Verfahren einsetzbare Kneter sind beispielsweise von der List AG (A- risdorf; Schweiz) erhältlich und in der CH 664 704 A5, EP 0 517 068 A1 , WO 97/12666 A1 , DE 21 23 956 A1 , EP 0 603 525 A1 , DE 195 36 944 A1 und DE 41 18 884 A1 beschrieben.
Solche Kneter mit mindestens zwei Wellen erzielen durch die Anordnung der Knet- und Trans- portelemente eine hohe Selbstreinigung, die für eine kontinuierliche Polymerisation eine wichtige Anforderung ist. Vorzugsweise rotieren die beiden Wellen gegenläufig zueinander.
Auf der Rührwelle sind die Scheibensegmente propellerartig angeordnet. Als Knet- und Transportelemente sind beispielsweise wandgängige Mischbarren sowie L- oder U-förmig ausgeform- te Aufsätze geeignet.
Im Folgenden wird die Herstellung der wasserabsorbierenden Polymerpartikel näher erläutert:
Die wasserabsorbierenden Polymerpartikel werden durch Polymerisation einer Monomerlösung oder -Suspension hergestellt und sind üblicherweise wasserunlöslich.
Die Monomeren a) sind vorzugsweise wasserlöslich, d.h. die Löslichkeit in Wasser bei 23°C beträgt typischerweise mindestens 1 g/100 g Wasser, vorzugsweise mindestens 5 g/100 g Wasser, besonders bevorzugt mindestens 25 g/100 g Wasser, ganz besonders bevorzugt min- destens 35 g/100 g Wasser.
Geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acryl- säure, Methacrylsäure, und Itaconsäure. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevorzugt ist Acrylsäure.
Weitere geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Sulfonsäuren, wie Styrolsulfonsäure und 2-Acrylamido-2-methylpropansulfonsäure (AMPS).
Verunreinigungen können einen erheblichen Einfluss auf die Polymerisation haben. Daher soll- ten die eingesetzten Rohstoffe eine möglichst hohe Reinheit aufweisen. Es ist daher oft vorteilhaft die Monomeren a) speziell zu reinigen. Geeignete Reinigungsverfahren werden beispielsweise in der WO 02/055469 A1 , der WO 03/078378 A1 und der WO 2004/035514 A1 beschrieben. Ein geeignetes Monomer a) ist beispielsweise eine gemäß WO 2004/035514 A1 gereinigte Acrylsäure mit 99,8460 Gew.-% Acrylsäure, 0,0950 Gew.-% Essigsäure, 0,0332 Gew.-% Was- ser, 0,0203 Gew.-% Propionsäure, 0,0001 Gew.-% Furfurale, 0,0001 Gew.-% Maleinsäureanhydrid, 0,0003 Gew.-% Diacrylsäure und 0,0050 Gew.-% Hydrochinonmonomethylether. Der Anteil an Acrylsäure und/oder deren Salzen an der Gesamtmenge der Monomeren a) beträgt vorzugsweise mindestens 50 mol-%, besonders bevorzugt mindestens 90 mol-%, ganz besonders bevorzugt mindestens 95 mol-%. Die Monomere a) enthalten üblicherweise Polymerisationsinhibitoren, vorzugsweise Hydrochi- nonhalbether, als Lagerstabilisator.
Die Monomerlösung enthält vorzugsweise bis zu 250 Gew.-ppm, bevorzugt höchstens
130 Gew.-ppm, besonders bevorzugt höchstens 70 Gew.-ppm, bevorzugt mindestens
10 Gew.-ppm, besonders bevorzugt mindestens 30 Gew.-ppm, insbesondere um 50 Gew.-ppm, Hydrochinonhalbether, jeweils bezogen auf das unneutralisierte Monomer a). Beispielsweise kann zur Herstellung der Monomerlösung ein ethylenisch ungesättigtes, säuregruppentragen- des Monomer mit einem entsprechenden Gehalt an Hydrochinonhalbether verwendet werden. Bevorzugte Hydrochinonhalbether sind Hydrochinonmonomethylether (MEHQ) und/oder alpha- Tocopherol (Vitamin E).
Geeignete Vernetzer b) sind Verbindungen mit mindestens zwei zur Vernetzung geeigneten Gruppen. Derartige Gruppen sind beispielsweise ethylenisch ungesättigte Gruppen, die in die Polymerkette radikalisch einpolymerisiert werden können, und funktionelle Gruppen, die mit den Säuregruppen des Monomeren a) kovalente Bindungen ausbilden können. Weiterhin sind auch polyvalente Metallsalze, die mit mindestens zwei Säuregruppen des Monomeren a) koordinative Bindungen ausbilden können, als Vernetzer b) geeignet. Vernetzer b) sind vorzugsweise Verbindungen mit mindestens zwei polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können. Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldiacrylat, Polyethylenglykoldi- acrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Triallylamin, Tetraallylammoniumchlorid, Tetraallyloxyethan, wie in EP 0 530 438 A1 beschrieben, Di- und Triacrylate, wie in
EP 0 547 847 A1 , EP 0 559 476 A1 , EP 0 632 068 A1 , WO 93/21237 A1 , WO 03/104299 A1 , WO 03/104300 A1 , WO 03/104301 A1 und DE 103 31 450 A1 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in
DE 103 31 456 A1 und DE 103 55 401 A1 beschrieben, oder Vernetzermischungen, wie beispielsweise in DE 195 43 368 A1 , DE 196 46 484 A1 , WO 90/15830 A1 und WO 02/032962 A2 beschrieben.
Bevorzugte Vernetzer b) sind Pentaerythrittriallylether, Tetraallyloxyethan, Methylenbismethac- rylamid, 15-fach ethoxyliertes Trimethylolpropantriacrylat, Polyethylenglykoldiacrylat, Trimethylolpropantriacrylat und Triallylamin.
Ganz besonders bevorzugte Vernetzer b) sind die mit Acrylsäure oder Methacrylsäure zu Dioder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierten Glyzerine, wie sie beispielsweise in WO 03/104301 A1 beschrieben sind. Besonders vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1 - bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Am meisten bevorzugt sind die Triacrylate des 3- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins, insbesondere das Triacrylat des 3-fach ethoxylierten Glyzerins.
Die Menge an Vernetzer b) beträgt vorzugsweise 0,05 bis 1 ,5 Gew.-%, besonders bevorzugt 0,1 bis 1 Gew.-%, ganz besonders bevorzugt 0,2 bis 0,6 Gew.-%, jeweils bezogen auf unneut- ralisiertes Monomer a). Mit steigendem Vernetzergehalt sinkt die Zentrifugenretentionskapazitat (CRC) und die Absorption unter einem Druck von 21 ,0 g/cm2 durchläuft ein Maximum.
Als Initiatoren c) können sämtliche unter den Polymerisationsbedingungen Radikale erzeugende Verbindungen eingesetzt werden, beispielsweise thermische Initiatoren, Redox-Initiatoren, Photoinitiatoren. Geeignete Redox-Initiatoren sind Natriumperoxodisulfat/Ascorbinsäure, Was- serstoffperoxid/Ascorbinsäure, Natriumperoxodisulfat/Natriumbisulfit und Wasserstoffpero- xid/Natriumbisulfit. Vorzugsweise werden Mischungen aus thermischen Initiatoren und Redox- Initiatoren eingesetzt, wie Natriumperoxodisulfat/Wasserstoffperoxid/Ascorbinsäure. Als reduzierende Komponente wird aber vorzugsweise ein Gemisch aus dem Natriumsalz der 2-Hy- droxy-2-sulfinatoessigsäure, dem Dinatriumsalz der 2-Hydroxy-2-sulfonatoessigsäure und Nat- riumbisulfit eingesetzt. Derartige Gemische sind als Brüggolite® FF6 und Brüggolite® FF7 (Brüggemann Chemicals; Heilbronn; Deutschland) erhältlich.
Mit den ethylenisch ungesättigten, säuregruppentragenden Monomeren a) copolymerisierbare ethylenisch ungesättigte Monomere d) sind beispielsweise Acrylamid, Methacrylamid, Hydroxy- ethylacrylat, Hydroxyethylmethacrylat, Dimethylaminoethylmethacrylat, Dimethylaminoethylacry- lat, Dimethylaminopropylacrylat, Diethylaminopropylacrylat, Dimethylaminoethylmethacrylat, Diethylaminoethylmethacrylat.
Als wasserlösliche Polymere e) können Polyvinylalkohol, Polyvinylpyrrolidon, Stärke, Stärkede- rivate, modifizierte Cellulose, wie Methylcellulose oder Hydroxyethylcellulose, Gelatine, Polygly- kole oder Polyacrylsäuren, vorzugsweise Stärke, Stärkederivate und modifizierte Cellulose, eingesetzt werden.
Üblicherweise wird eine wässrige Monomerlösung verwendet. Der Wassergehalt der Monomer- lösung beträgt vorzugsweise von 40 bis 75 Gew.-%, besonders bevorzugt von 45 bis 70 Gew.- %, ganz besonders bevorzugt von 50 bis 65 Gew.-%. Es ist auch möglich Monomersuspensio- nen, d.h. Monomerlösungen mit überschüssigem Monomer a), beispielsweise Natriumacrylat, einzusetzen. Mit steigendem Wassergehalt steigt der Energieaufwand bei der anschließenden Trocknung und mit sinkendem Wassergehalt kann die Polymerisationswärme nur noch unge- nügend abgeführt werden. Die bevorzugten Polymerisationsinhibitoren benötigen für eine optimale Wirkung gelösten Sauerstoff. Daher kann die Monomerlösung vor der Polymerisation durch Inertisierung, d.h. Durchströmen mit einem inerten Gas, vorzugsweise Stickstoff oder Kohlendioxid, von gelöstem Sauerstoff befreit werden. Vorzugsweise wird der Sauerstoffgehalt der Monomerlösung vor der Po- lymerisation auf weniger als 1 Gew.-ppm, besonders bevorzugt auf weniger als 0,5 Gew.-ppm, ganz besonders bevorzugt auf weniger als 0,1 Gew.-ppm, gesenkt.
Zur Verbesserung der Trocknungseigenschaften kann das erhaltene zerkleinerte Polymergel zusätzlich extrudiert werden.
Die Säuregruppen der erhaltenen Polymergele sind üblicherweise teilweise neutralisiert. Die Neutralisation wird vorzugsweise auf der Stufe der Monomeren durchgeführt. Dies geschieht üblicherweise durch Einmischung des Neutralisationsmittels als wässrige Lösung oder bevorzugt auch als Feststoff. Der Neutralisationsgrad beträgt vorzugsweise von 25 bis 95 mol-%, besonders bevorzugt von 30 bis 80 mol-%, ganz besonders bevorzugt von 40 bis 75 mol-%, wobei die üblichen Neutralisationsmittel verwendet werden können, vorzugsweise Alkalimetall- hydroxide, Alkalimetalloxide, Alkalimetallkarbonate oder Alkalimetallhydrogenkarbonate sowie deren Mischungen. Statt Alkalimetallsalzen können auch Ammoniumsalze verwendet werden. Natrium und Kalium sind als Alkalimetalle besonders bevorzugt, ganz besonders bevorzugt sind jedoch Natriumhydroxid, Natriumkarbonat oder Natriumhydrogenkarbonat sowie deren Mischungen.
Es ist aber auch möglich die Neutralisation nach der Polymerisation auf der Stufe des bei der Polymerisation entstehenden Polymergeis durchzuführen. Weiterhin ist es möglich bis zu 40 mol-%, vorzugsweise 10 bis 30 mol-%, besonders bevorzugt 15 bis 25 mol-%, der Säuregruppen vor der Polymerisation zu neutralisieren indem ein Teil des Neutralisationsmittels bereits der Monomerlösung zugesetzt und der gewünschte Endneutralisationsgrad erst nach der Polymerisation auf der Stufe des Polymergeis eingestellt wird. Wird das Polymergel zumindest teilweise nach der Polymerisation neutralisiert, so wird das Polymergel vorzugsweise mecha- nisch zerkleinert, beispielsweise mittels eines Extruders, wobei das Neutralisationsmittel aufgesprüht, übergestreut oder aufgegossen und dann sorgfältig untergemischt werden kann. Dazu kann die erhaltene Gelmasse noch mehrmals zur Homogenisierung extrudiert werden.
Das Polymergel wird dann vorzugsweise mit einem Bandtrockner getrocknet bis der Restfeuch- tegehalt vorzugsweise 0,5 bis 15 Gew.-%, besonders bevorzugt 1 bis 10 Gew.-%, ganz besonders bevorzugt 2 bis 8 Gew.-%, beträgt, wobei der Restfeuchtegehalt gemäß der von der EDA- NA empfohlenen Testmethode Nr. WSP 230.2-05 "Mass Loss Upon Heating" bestimmt wird. Bei einer zu hohen Restfeuchte weist das getrocknete Polymergel eine zu niedrige Glasübergangstemperatur Tg auf und ist nur schwierig weiter zu verarbeiten. Bei einer zu niedrigen Rest- feuchte ist das getrocknete Polymergel zu spröde und in den anschließenden Zerkleinerungsschritten fallen unerwünscht große Mengen an Polymerpartikeln mit zu niedriger Partikelgröße („fines") an. Der Feststoffgehalt des Gels beträgt vor der Trocknung vorzugsweise von 25 und 90 Gew.-%, besonders bevorzugt von 35 bis 70 Gew.-%, ganz besonders bevorzugt von 40 bis 60 Gew.-%. Wahlweise kann zur Trocknung aber auch ein Wirbelbetttrockner oder ein Schaufeltrockner verwendet werden. Das getrocknete Polymergel wird hiernach gemahlen und klassiert, wobei zur Mahlung üblicherweise ein- oder mehrstufige Walzenstühle, bevorzugt zwei- oder dreistufige Walzenstühle, Stiftmühlen, Hammermühlen oder Schwingmühlen, eingesetzt werden können.
Die mittlere Partikelgröße der als Produktfraktion abgetrennten Polymerpartikel beträgt vor- zugsweise mindestens 200 μηη, besonders bevorzugt von 250 bis 600 μηη, ganz besonders von 300 bis 500 μηη. Die mittlere Partikelgröße der Produktfraktion kann mittels der von der EDANA empfohlenen Testmethode Nr. WSP 220.2-05 "Partikel Size Distribution" ermittelt werden, wobei die Massenanteile der Siebfraktionen kumuliert aufgetragen werden und die mittlere Partikelgröße graphisch bestimmt wird. Die mittlere Partikelgröße ist hierbei der Wert der Maschen- weite, der sich für kumulierte 50 Gew.-% ergibt.
Der Anteil an Partikeln mit einer Partikelgröße von größer 150 μηη beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindesten 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%.
Polymerpartikel mit zu niedriger Partikelgröße senken die Permeabilität (SFC). Daher sollte der Anteil zu kleiner Polymerpartikel („fines") niedrig sein.
Zu kleine Polymerpartikel werden daher üblicherweise abgetrennt und in das Verfahren rückge- führt. Dies geschieht vorzugsweise vor, während oder unmittelbar nach der Polymerisation, d.h. vor der Trocknung des Polymergeis. Die zu kleinen Polymerpartikel können vor oder während der Rückführung mit Wasser und/oder wässrigem Tensid angefeuchtet werden.
Es ist auch möglich in späteren Verfahrensschritten zu kleine Polymerpartikel abzutrennen, bei- spielsweise nach der Oberflächennachvernetzung oder einem anderen Beschichtungsschritt. In diesem Fall sind die rückgeführten zu kleinen Polymerpartikel oberflächennachvernetzt bzw. anderweitig beschichtet, beispielsweise mit pyrogener Kieselsäure.
Bei der Polymerisation in einem Knetreaktor werden die zu kleinen Polymerpartikel vorzugswei- se während des letzten Drittels der Polymerisation zugesetzt.
Werden die zu kleinen Polymerpartikel sehr früh zugesetzt, beispielsweise bereits zur Monomerlösung, so wird dadurch die Zentrifugenretentionskapazität (CRC) der erhaltenen wasserabsorbierenden Polymerpartikel gesenkt. Dies kann aber beispielsweise durch Anpassung der Einsatzmenge an Vernetzer b) kompensiert werden. Werden die zu kleinen Polymerpartikel sehr spät zugesetzt, beispielsweise erst in einem dem Polymerisationsreaktor nachgeschalteten Apparat, beispielsweise einem Extruder, so lassen sich die zu kleinen Polymerpartikel nur noch schwer in das erhaltene Polymergel einarbeiten. Unzureichend eingearbeitete zu kleine Polymerpartikel lösen sich aber während der Mahlung wieder von dem getrockneten Polymergel, werden beim Klassieren daher erneut abgetrennt und erhöhen die Menge rückzuführender zu kleiner Polymerpartikel.
Der Anteil an Partikeln mit einer Partikelgröße von höchstens 850 μηη, beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindesten 95 Gew.-%, ganz besonders bevor- zugt mindestens 98 Gew.-%.
Der Anteil an Partikeln mit einer Partikelgröße von höchstens 600 μηη, beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindesten 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%.
Polymerpartikel mit zu großer Partikelgröße senken die Anquellgeschwindigkeit. Daher sollte der Anteil zu großer Polymerpartikel ebenfalls niedrig sein.
Zu große Polymerpartikel werden daher üblicherweise abgetrennt und in die Mahlung des ge- trockneten Polymergeis rückgeführt.
Die Polymerpartikel können zur weiteren Verbesserung der Eigenschaften oberflächennachver- netzt werden. Geeignete Oberflächennachvernetzer sind Verbindungen, die Gruppen enthalten, die mit mindestens zwei Carboxylatgruppen der Polymerpartikel kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise polyfunktionelle Amine, polyfunktionelle Amidoamine, polyfunktionelle Epoxide, wie in EP 0 083 022 A2, EP 0 543 303 A1 und
EP 0 937 736 A2 beschrieben, di- oder polyfunktionelle Alkohole, wie in DE 33 14 019 A1 , DE 35 23 617 A1 und EP 0 450 922 A2 beschrieben, oder ß-Hydroxyalkylamide, wie in
DE 102 04 938 A1 und US 6,239,230 beschrieben.
Des weiteren sind in DE 40 20 780 C1 zyklische Karbonate, in DE 198 07 502 A1 2-Oxazoli- dinon und dessen Derivate, wie 2-Hydroxyethyl-2-oxazolidinon, in DE 198 07 992 C1 Bis- und Poly-2-oxazolidinone, in DE 198 54 573 A1 2-Oxotetrahydro-1 ,3-oxazin und dessen Derivate, in DE 198 54 574 A1 N-Acyl-2-Oxazolidinone, in DE 102 04 937 A1 zyklische Harnstoffe, in DE 103 34 584 A1 bizyklische Amidoacetale, in EP 1 199 327 A2 Oxetane und zyklische Harnstoffe und in WO 03/031482 A1 Morpholin-2,3-dion und dessen Derivate als geeignete Oberflächennachvernetzer beschrieben.
Bevorzugte Oberflächennachvernetzer sind Ethylenkarbonat, Ethylenglykoldiglycidylether, Um- Setzungsprodukte von Polyamiden mit Epichlorhydrin und Gemische aus Propylenglykol und 1 ,4-Butandiol. Ganz besonders bevorzugte Oberflächennachvernetzer sind 2-Hydroxyethyl-2-oxazolidinon, 2-Oxazolidinon und 1 ,3-Propandiol.
Weiterhin können auch Oberflächennachvernetzer eingesetzt werden, die zusätzliche polymeri- sierbare ethylenisch ungesättigte Gruppen enthalten, wie in DE 37 13 601 A1 beschrieben
Die Menge an Oberflächennachvernetzer beträgt vorzugsweise 0,001 bis 2 Gew.-%, besonders bevorzugt 0,02 bis 1 Gew.-%, ganz besonders bevorzugt 0,05 bis 0,2 Gew.-%, jeweils bezogen auf die Polymerpartikel.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden vor, während oder nach der Oberflächennachvernetzung zusätzlich zu den Oberflächennachvernetzern polyvalente Kationen auf die Partikeloberfläche aufgebracht. Die im erfindungsgemäßen Verfahren einsetzbaren polyvalenten Kationen sind beispielsweise zweiwertige Kationen, wie die Kationen von Zink, Magnesium, Kalzium, Eisen und Strontium, dreiwertige Kationen, wie die Kationen von Aluminium, Eisen, Chrom, Seltenerden und Mangan, vierwertige Kationen, wie die Kationen von Titan und Zirkonium. Als Gegenion sind Hydroxid, Chlorid, Bromid, Sulfat, Hydrogensulfat, Carbonat, Hydrogencarbonat, Nitrat, Phosphat, Hydrogenphosphat, Dihydrogenphosphat und Carboxylat, wie Acetat, Citrat und Lactat, möglich. Es sind auch Salze mit unterschiedlichen Gegenionen möglich, beispielsweise basische Aluminiumsalze, wie Aluminiummonoacetat oder Aluminiummonolaktat. Aluminiumsulfat, Alu- miniummonoacetat und Aluminiumlaktat sind bevorzugt. Außer Metallsalzen können auch Poly- amine als polyvalente Kationen eingesetzt werden.
Die Einsatzmenge an polyvalentem Kation beträgt beispielsweise 0,001 bis 1 ,5 Gew.-%, vorzugsweise 0,005 bis 1 Gew.-%, besonders bevorzugt 0,02 bis 0,8 Gew.-%, jeweils bezogen auf die Polymerpartikel. Die Oberflächennachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des O- berflächennachvernetzers auf die getrockneten Polymerpartikel aufgesprüht wird. Im Anschluss an das Aufsprühen werden die mit Oberflächennachvernetzer beschichteten Polymerpartikel thermisch getrocknet, wobei die Oberflächennachvernetzungsreaktion sowohl vor als auch während der Trocknung stattfinden kann.
Das Aufsprühen einer Lösung des Oberflächennachvernetzers wird vorzugsweise in Mischern mit bewegten Mischwerkzeugen, wie Schneckenmischer, Scheibenmischer und Schaufelmischer, durchgeführt. Besonders bevorzugt sind Horizontalmischer, wie Schaufelmischer, ganz besonders bevorzugt sind Vertikalmischer. Die Unterscheidung in Horizontalmischer und Verti- kalmischer erfolgt über die Lagerung der Mischwelle, d.h. Horizontalmischer haben eine horizontal gelagerte Mischwelle und Vertikalmischer haben eine vertikal gelagerte Mischwelle. Geeignete Mischer sind beispielsweise Horizontale Pflugschar® Mischer (Gebr. Lödige Maschi- nenbau GmbH; Paderborn; Deutschland), Vrieco-Nauta Continuous Mixer (Hosokawa Micron BV; Doetinchem; Niederlande), Processall Mixmill Mixer (Processall Incorporated; Cincinnati; USA) und Schugi Flexomix® (Hosokawa Micron BV; Doetinchem; Niederlande). Es ist aber auch möglich die Oberflächennachvernetzerlösung in einem Wirbelbett aufzusprühen.
Die Oberflächennachvernetzer werden typischerweise als wässrige Lösung eingesetzt. Über den Gehalt an nichtwässrigem Lösungsmittel bzw. Gesamtlösungsmittelmenge kann die Eindringtiefe des Oberflächennachvernetzers in die Polymerpartikel eingestellt werden. Wird ausschließlich Wasser als Lösungsmittel verwendet, so wird vorteilhaft ein Tensid zugesetzt. Dadurch wird das Benetzungsverhalten verbessert und die Verklumpungsneigung vermindert. Vorzugsweise werden aber Lösungsmittelgemische eingesetzt, beispielsweise Isopro- panol/Wasser, 1 ,3-Propandiol/Wasser und Propylenglykol/Wasser, wobei das Mischungsmassenverhältnis vorzugsweise von 20:80 bis 40:60 beträgt.
Die thermische Trocknung wird vorzugsweise in Kontakttrocknern, besonders bevorzugt Schaufeltrocknern, ganz besonders bevorzugt Scheibentrocknern, durchgeführt. Geeignete Trockner sind beispielsweise Hosokawa Bepex® Horizontal Paddle Dryer (Hosokawa Micron GmbH; Leingarten; Deutschland), Hosokawa Bepex® Disc Dryer (Hosokawa Micron GmbH; Leingarten; Deutschland), Holo-Flite® dryers (Metso Minerals Industries Inc.; Danville; USA) und Nara
Paddle Dryer (NARA Machinery Europe; Frechen; Deutschland). Überdies können auch Wirbelschichttrockner eingesetzt werden.
Die Trocknung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner, wie beispielsweise ein Hordentrockner, ein Drehrohrofen oder eine beheizbare Schnecke. Besonders vorteilhaft wird in einem Wirbelschichttrockner gemischt und getrocknet.
Bevorzugte Trocknungstemperaturen liegen im Bereich 100 bis 250°C, bevorzugt 120 bis 220°C, besonders bevorzugt 130 bis 210°C, ganz besonders bevorzugt 150 bis 200°C. Die bevorzugte Verweilzeit bei dieser Temperatur im Reaktionsmischer oder Trockner beträgt vorzugsweise mindestens 10 Minuten, besonders bevorzugt mindestens 20 Minuten, ganz besonders bevorzugt mindestens 30 Minuten, und üblicherweise höchstens 60 Minuten. In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden die wasserabsorbierenden Polymerpartikel nach der thermischen Trocknung gekühlt. Die Kühlung wird vorzugsweise in Kontaktkühlern, besonders bevorzugt Schaufelkühlern, ganz besonders bevorzugt Scheibenkühlern, durchgeführt. Geeignete Kühler sind beispielsweise Hosokawa Bepex® Horizontal Paddle Cooler (Hosokawa Micron GmbH; Leingarten; Deutschland), Hosokawa Bepex® Disc Cooler (Hosokawa Micron GmbH; Leingarten; Deutschland), Holo-Flite® coolers (Metso Minerals Industries Inc.; Danville; USA) und Nara Paddle Cooler (NARA Machinery Europe; Frechen; Deutschland). Überdies können auch Wirbelschichtkühler eingesetzt werden. Im Kühler werden die wasserabsorbierenden Polymerpartikel auf 20 bis 150°C, vorzugsweise 30 bis 120°C, besonders bevorzugt 40 bis 100°C, ganz besonders bevorzugt 50 bis 80°C, abgekühlt. Anschließend können die oberflächennachvernetzten Polymerpartikel erneut klassiert werden, wobei zu kleine und/oder zu große Polymerpartikel abgetrennt und in das Verfahren rückgeführt werden.
Die oberflächennachvernetzten Polymerpartikel können zur weiteren Verbesserung der Eigen- schaften beschichtet oder nachbefeuchtet werden.
Die Nachbefeuchtung wird vorzugsweise bei 30 bis 80°C, besonders bevorzugt bei 35 bis 70°C, ganz besonders bevorzugt bei 40 bis 60°C, durchgeführt. Bei zu niedrigen Temperaturen neigen die wasserabsorbierenden Polymerpartikel zum Verklumpen und bei höheren Temperatu- ren verdampft bereits merklich Wasser. Die zur Nachbefeuchtung eingesetzte Wassermenge beträgt vorzugsweise von 1 bis 10 Gew.-%, besonders bevorzugt von 2 bis 8 Gew.-%, ganz besonders bevorzugt von 3 bis 5 Gew.-%. Durch die Nachbefeuchtung wird die mechanische Stabilität der Polymerpartikel erhöht und deren Neigung zur statischen Aufladung vermindert. Vorteilhaft wird die Nachbefeuchtung im Kühler nach der thermischen Trocknung durchgeführt.
Geeignete Beschichtungen zur Verbesserung der Anquellgeschwindigkeit sowie der Permeabilität (SFC) sind beispielsweise anorganische inerte Substanzen, wie wasserunlösliche Metallsalze, organische Polymere, kationische Polymere sowie zwei- oder mehrwertige Metallkationen. Geeignete Beschichtungen zur Staubbindung sind beispielsweise Polyole. Geeignete Beschich- tungen gegen die unerwünschte Verbackungsneigung der Polymerpartikel sind beispielsweise pyrogene Kieselsäure, wie Aerosil® 200, und Tenside, wie Span® 20.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymerpartikel weisen einen Feuchtegehalt von vorzugsweise 0 bis 15 Gew.-%, besonders bevorzugt 0,2 bis 10 Gew.-%, ganz besonders bevorzugt 0,5 bis 8 Gew.-%, auf, wobei der Feuchtegehalt gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 230.2-05 "Mass Loss Upon Heating" bestimmt wird.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymer- partikel haben einen Anteil an Partikeln mit einer Partikelgröße von 300 bis 600 μηη von vorzugsweise mindestens 30 Gew.-%, besonders bevorzugt mindesten 50 Gew.-%, ganz besonders bevorzugt mindestens 70 Gew.-%.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymer- partikel weisen eine Zentrifugenretentionskapazität (CRC) von typischerweise mindestens 15 g/g, vorzugsweise mindestens 20 g/g, bevorzugt mindestens 22 g/g, besonders bevorzugt mindestens 24 g/g, ganz besonders bevorzugt mindestens 26 g/g, auf. Die Zentrifugenretenti- onskapazität (CRC) der wasserabsorbierenden Polymerpartikel beträgt üblicherweise weniger als 60 g/g. Die Zentrifugenretentionskapazität (CRC) wird gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 241.2-05 "Fluid Retention Capacity in Saline, After Centrifugation" bestimmt.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymerpartikel weisen eine Absorption unter einem Druck von 49,2 g/cm2 von typischerweise mindestens 15 g/g, vorzugsweise mindestens 20 g/g, bevorzugt mindestens 22 g/g, besonders bevorzugt mindestens 24 g/g, ganz besonders bevorzugt mindestens 26 g/g, auf. Die Absorption un- ter einem Druck von 49,2 g/cm2 der wasserabsorbierenden Polymerpartikel beträgt üblicherweise weniger als 35 g/g. Die Absorption unter einem Druck von 49,2 g/cm2 wird analog der von der EDANA empfohlenen Testmethode Nr. WSP 242.2-05 "Absorption Under Pressure, Gravimetrie Determination" bestimmt, wobei statt eines Drucks von 21 ,0 g/cm2 ein Druck von 49,2 g/cm2 eingestellt wird.
Methoden:
Die nachfolgend beschriebenen, mit„WSP" bezeichneten Standard-Testmethoden werden beschrieben in:„Standard Test Methods for the Nonwovens Industry", Ausgabe 2005, gemeinsam herausgegeben von den„Worldwide Strategie Partners" EDANA (Avenue Eugene Plasky, 157, 1030 Brüssel, Belgien, www.edana.org) und INDA (1 100 Crescent Green, Suite 1 15, Cary, North Carolina 27518, U.S.A., www.inda.org). Diese Veröffentlichung ist sowohl von EDANA als auch von INDA erhältlich. Die Messungen sollten, wenn nicht anders angegeben, bei einer Umgebungstemperatur von 23 ± 2 °C und einer relativen Luftfeuchte von 50 ± 10 % durchgeführt werden. Die wasserabsorbierenden Polymerpartikel werden vor der Messung gut durchmischt.
Quellgeschwindigkeit (Free Swell Rate)
Zur Bestimmung der Quellgeschwindigkeit (FSR) werden 1 ,00 g (= W1 ) der wasserabsorbierenden Polymerpartikel in ein 25 ml Becherglas eingewogen und gleichmäßig auf dessen Boden verteilt. Dann werden 20 ml einer 0,9 gew.-%igen Kochsalzlösung mittels eines Dispensers in ein zweites Becherglas dosiert und der Inhalt dieses Glases wird dem ersten zügig hinzuge- fügt und eine Stoppuhr gestartet. Sobald der letzte Tropfen Salzlösung absorbiert wird, was man am Verschwinden der Reflexion auf der Flüssigkeitsoberfläche erkennt, wird die Stoppuhr angehalten. Die genaue Flüssigkeitsmenge, die aus dem zweiten Becherglas ausgegossen und durch das Polymer im ersten Becherglas absorbiert wurde, wird durch Rückwägung des zweiten Becherglases genau bestimmt (=W2). Die für die Absorption benötigte Zeitspanne, die mit der Stoppuhr gemessen wurde, wird als t bezeichnet. Das Verschwinden des letzten Flüssigkeitstropfens auf der Oberfläche wird als Zeitpunkt t bestimmt. Daraus errechnet sich die Quellgeschwindigkeit (FSR) wie folgt:
FSR [g/g s] = W2/(W1xt) Wenn der Feuchtegehalt der wasserabsorbierenden Polymerpartikel jedoch mehr als 3 Gew.-% beträgt, so ist das Gewicht W1 um diesen Feuchtegehalt zu korrigieren.
Flüssigkeitsweiterleitung (Saline Flow Conductivity) Die Flüssigkeitsweiterleitung (SFC) einer gequollenen Gelschicht unter Druckbelastung von 0,3 psi (2070 Pa) wird, wie in EP 0 640 330 A1 beschrieben, als Gel-Layer-Permeability einer gequollenen Gelschicht aus wasserabsorbierenden Polymerpartikeln bestimmt, wobei die in zuvor genannter Patentanmeldung auf Seite 19 und in Figur 8 beschriebene Apparatur dahingehend modifiziert wurde, dass die Glasfritte (40) nicht mehr verwendet wird, der Stempel (39) aus gleichem Kunststoffmaterial besteht wie der Zylinder (37) und jetzt über die gesamte Auflagefläche gleichmäßig verteilt 21 gleichgroße Bohrungen enthält. Die Vorgehensweise sowie Auswertung der Messung bleibt unverändert gegenüber EP 0 640 330 A1. Der Durchfluss wird automatisch erfasst. Die Flüssigkeitsweiterleitung (SFC) wird wie folgt berechnet:
SFC [cm3s/g] = (Fg(t=0)xL0)/(dxAxWP), wobei Fg(t=0) der Durchfluss an NaCI-Lösung in g/s ist, der anhand einer linearen Regressi- onsanalyse der Daten Fg(t) der Durchflussbestimmungen durch Extrapolation gegen t=0 erhalten wird, L0 die Dicke der Gelschicht in cm, d die Dichte der NaCI-Lösung in g/cm3, A die Fläche der Gelschicht in cm2 und WP der hydrostatische Druck über der Gelschicht in dyn/cm2. pH-Wert
Der pH-Wert der wasserabsorbierenden Polymerpartikel wird gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 200.2-02 "pH of Polyacrylate (PA) Powders" bestimmt.
Restmonomer
Der Gehalt an Restmonomer der wasserabsorbierenden Polymerpartikel wird gemäß der von der EDANA empfohlenen Testmethode WSP Nr. 210.2-02 "Residual Monomers" bestimmt.
Feuchtegehalt
Der Feuchtegehalt der wasserabsorbierenden Polymerpartikel wird gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 230.2-02 "Mass Loss Upon Heating" bestimmt. Zentrifugenretentionskapazität (Centrifuge Retention Capacity)
Die Zentrifugenretentionskapazität (CRC) wird gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 241.2-05 "Fluid Retention Capacity in Saline, After Centrifugation" bestimmt.
Absorption unter einem Druck von 49,2 g/cm2 (Absorption under Load)
Die Absorption unter einem Druck von 49,2 g/cm2 (AUL0.7psi) wird analog der von der EDANA empfohlenen Testmethode Nr. WSP 242.2-05 "Absorption Under Pressure, Gravimetrie Deter- mination" bestimmt, wobei statt eines Drucks von 21 ,0 g/cm2 (AUL0.3psi) ein Druck von 49,2 g/cm2 (AUL0.7psi) eingestellt wird.
Extrahierbare Der Gehalt an extrahierbaren Bestandteilen der wasserabsorbierenden Polymerpartikel wird gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 270.2-05 "Extractable" bestimmt.
Beispiel 1 (Vergleichsbeispiel)
Durch kontinuierliches Mischen von entionisiertem Wasser, 50gew.-%iger Natronlauge und Ac- rylsäure wurde eine Acrylsäure/Natriumacrylatlösung hergestellt, so dass der Neutralisationsgrad 71 ,0 mol-% entsprach. Der Feststoffgehalt der Monomerlösung betrug 42,0 Gew.-%. Als Vernetzer wurde 3-fach ethoxiliertes Glyzerintriacrylat (ca. 85gew.-%ig) verwendet. Die Ein- satzmenge betrug 0,383 Gew.-%, bezogen auf unneutralisierte Acrylsäure.
Zur Initiierung der radikalischen Polymerisation wurden 0,0023 Gew.-% Ascorbinsäure, 0,2 Gew.-% Natriumperoxodisulfat und 0,0006 Gew.-% Wasserstoffperoxid, jeweils bezogen auf unneutralisierte Acrylsäure, eingesetzt. Zusätzlich wurden 0,04 Gew.-% Zitronensäure, be- zogen auf unneutralisierte Acrylsäure, in die Monomerlosung dosiert.
Zwischen dem Zugabepunkt für Vernetzer und den Zugabestellen für die Wasserstoffpero- xid/Natriumperoxodisulfat wurde die Monomerlösung mit Stickstoff inertisiert. Die Zitronensäure wurde unmittelbar vor dem Reaktor und die Ascorbinsäure erst im Reaktor zugesetzt.
Die Reaktion wurde in einem Reaktor vom Typ List ORP 250 Contikneter, (LIST AG; Arisdorf; Schweiz) durchgeführt. Der Durchsatz der Monomerlösung betrug 1200 kg/h. Die Reaktionslösung hatte am Zulauf eine Temperatur von 33°C. Die Temperatur des Wassers im Doppelmantel des Reaktors wurde auf 95°C eingestellt. Die maximale Temperatur der Reaktionsmischung betrug 104°C. Die Verweilzeit der Reaktionsmischung im Reaktor betrug 9 Minuten. Das erhaltene Polymergel wurde auf einen Bandtrockner aufgegeben. Auf dem Bandtrockner wurde das Polymergel kontinuierlich mit einem Luft/Gasgemisch umströmt und bei 175°C getrocknet. Die Verweilzeit im Bandtrockner betrug 43 Minuten.
Das getrocknete Polymergel wurde gemahlen und auf eine Partikelgrößenfraktion von 200 bis 850μηη abgesiebt. Das so erhaltene Grundpolymer hatte folgende Eigenschaften:
CRC: 36,3 g/g
Extrahierbare: 13,9 Gew.-%
Feuchtegehalt: 2,1 Gew.-%
Restmonomere: 300 ppm
In einem Schugi Flexomix® vom Typ: FX 160 (Hosokawa-Micron B.V.; Doetinchem; Niederlande) wurde das Grundpolymer mittels getrennter Zweistoffdüsen mit einer Oberflächennachver- netzungslösung und einer Aluminiumlaktatlösung beschichtet und anschließend direkt in einem NARA-Paddle-Dryer vom Typ NPD 5W8 (GMF Gouda; Waddinxveen; Niederlande) 45 Minuten bei 195°C getrocknet.
Es wurden folgende Mengen in den Schugi Flexomix® dosiert:
500 kg/h Grundpolymer
15,3 kg/h Oberflächennachvernetzungslösung
3,00 kg/h 25gew.-%ige wässrige Aluminiumlaktatlösung Die Oberflächennachvernetzungslösung enthielt 2.0 Gew.-% N-Hydroxyethyl-2-oxazolidinon, 2,0 Gew.-% 1 ,3-Propandiol, 35,6 Gew.-% Isopropanol, 60,4 Gew.-% entionisiertes Wasser und 0,03 Gew.-% Sorbitanmonolaurat.
Die oberflächennachvernetzten Polymerpartikel wurden anschließend in einem NARA-Paddle- Cooler vom Typ NPD 3W9 (GMF Gouda; Waddinxveen; Niederlande) auf ca. 60°C abgekühlt, mit 2,06 kg/h Wasser nachbefeuchtet und anschließend noch einmal auf 200 bis 850 μηη abgesiebt.
Die verwendeten oberflächennachvernetzten wasserabsorbierenden Polymerpartikel hatten folgendes Eigenschaftsprofil:
CRC: 29,3 g/g
AUL0.7psi: 24,3 g/g
SFC: 41 x10"7 cm3s/g
FSR 0,15 g/gs
pH-Wert 6,1 Extrahierbare: 9,7 Gew.-%
Feuchtegehalt 0,2 Gew.-%
Restmonomer 350 ppm
Beispiel 2
Es wurde verfahren wie unter Beispiel 1. Die Temperatur des Reaktordoppelmantels wurde mittels Heizdampfes auf 120°C eingestellt. Die maximale Temperatur der Reaktionsmischung betrug 1 12°C. Die Menge des Initiators Natriumperoxodisulfat wurde in drei Stufen gesenkt. Die Ergebnisse sind in den Tabellen 1 und 2 zusammengefasst.
Tab. 1 : Grundpolymer
Figure imgf000018_0001
bezogen auf unneutralisierte Acrylsäure
Tab. 2: Endprodukt
Figure imgf000018_0002
bezogen auf unneutralisierte Acrylsäure
Die Ergebnisse zeigen, dass sich die Initiatormenge durch die Begleitheizung bei nahezu gleichbleibend niedrigem Gehalt an Restmonomeren deutlich senken lässt. Gleichzeitig verbessert sich das Verhältnis CRC/Extrahierbare zu deutlich günstigeren Werten.

Claims

Patentansprüche
Verfahren zur Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation einer Monomerlösung oder -Suspension, enthaltend a) ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zumindest teilweise neutralisiert sein kann,
b) mindestens einen Vernetzer,
c) mindestens einen Initiator,
d) optional ein oder mehrere mit den unter a) genannten Monomeren copolymerisierbare ethylenisch ungesättigte Monomere und
e) optional ein oder mehrere wasserlösliche Polymere, in einem Kneter mit einem Reaktionsvolumen von mindestens 0,1 m3 und mindestens zwei achsparallel rotierenden Wellen, wobei sich auf den Wellen mehrere Knet- und Transportelemente befinden, die eine Förderung der am Anfang des Kneters zugegebenen Reaktionsmischung in axialer Richtung zum Ende des Kneters bewirken, dadurch gekennzeichnet, dass die Monomerlösung von 0,01 bis 0,2 Gew.-% Initiator c), bezogen auf unneutralisiertes Monomer a), enthält, die Kneteraußenwand im Bereich des Zulaufs begleitbeheizt wird und die Temperatur der Begleitheizung mindestens 1 10°C beträgt.
Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass der Initiator c) zu mindestens 50 Gew.-% ein Peroxid ist.
Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Initiator c) zu mindestens 50 Gew.-% Natriumperoxodisulfat ist.
Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die vorderen 50% der Kneteraußenwand begleitbeheizt werden.
Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die gesamte Kneteraußenwand begleitbeheizt wird.
Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Kneteraußenwand mittels eines Doppelmantels begleitbeheizt wird.
Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass die Kneteraußenwand mittels Heizdampf begleitbeheizt wird.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass der Heizdampf einen Druck von 1 ,4 bis 16 bar aufweist.
9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, dass die maximale Temperatur der Reaktionsmischung mindestens 105°C beträgt.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass Monomer a) zu mindestens 50 mol-% teilweise neutralisierte Acrylsäure ist.
1 1 . Verfahren gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Monomer a) zu 25 bis 85 mol-% neutralisiert ist.
12. Verfahren gemäß einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass die Monomerlösung von 0,05 bis 1 ,5 Gew.-% Vernetzer b), bezogen auf das unneutralisierte Monomer a), enthält.
13. Verfahren gemäß einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die was- serabsorbierenden Polymerpartikel so klassiert werden, dass mindestens 90 Gew.-% der
Partikel eine Partikelgröße von größer 150 bis 850 μηη aufweisen.
14. Verfahren gemäß einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die wasserabsorbierenden Polymerpartikel zusätzlich oberflächennachvernetzt werden.
PCT/EP2012/059777 2011-05-26 2012-05-24 Verfahren zur herstellung wasserabsorbierender polymerpartikel WO2012160174A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014511890A JP6253575B2 (ja) 2011-05-26 2012-05-24 吸水性ポリマー粒子の製造法
EP12723208.0A EP2714104B1 (de) 2011-05-26 2012-05-24 Verfahren zur herstellung wasserabsorbierender polymerpartikel
CN201280025625.2A CN103561782B (zh) 2011-05-26 2012-05-24 制备吸水性聚合物颗粒的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11167609.4 2011-05-26
EP11167609 2011-05-26

Publications (1)

Publication Number Publication Date
WO2012160174A1 true WO2012160174A1 (de) 2012-11-29

Family

ID=46148887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/059777 WO2012160174A1 (de) 2011-05-26 2012-05-24 Verfahren zur herstellung wasserabsorbierender polymerpartikel

Country Status (4)

Country Link
EP (1) EP2714104B1 (de)
JP (1) JP6253575B2 (de)
CN (1) CN103561782B (de)
WO (1) WO2012160174A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118024A1 (de) * 2013-01-29 2014-08-07 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher quellgeschwindigkeit und hoher zentrifugenretentionskapazität bei gleichzeitig hoher permeabilität des gequollenen gelbetts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272868B2 (ja) 2019-05-31 2023-05-12 ファナック株式会社 モータ制御装置及び工作機械

Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2123956A1 (de) 1970-05-20 1971-12-02 List H Mehrspindeliger Misch-Kneter
EP0083022A2 (de) 1981-12-30 1983-07-06 Seitetsu Kagaku Co., Ltd. Wasserabsorbierendes Harz mit verbesserter Wasserabsorbierbarkeit und Wasserdispergierbarkeit und Verfahren zur Herstellung
DE3314019A1 (de) 1982-04-19 1984-01-12 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Absorbierender gegenstand
DE3523617A1 (de) 1984-07-02 1986-01-23 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Wasserabsorbierendes mittel
CH664704A5 (en) 1984-03-21 1988-03-31 List Ind Verfahrenstech Double-shafted kneading and mixing machine - inserts plates into element gaps to adjust kneading intensity
DE3713601A1 (de) 1987-04-23 1988-11-10 Stockhausen Chem Fab Gmbh Verfahren zur herstellung eines stark wasserabsorbierenden polymerisats
WO1990015830A1 (en) 1989-06-12 1990-12-27 Weyerhaeuser Company Hydrocolloid polymer
DE4020780C1 (de) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
EP0450922A2 (de) 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Verfahren zur Herstellung von flüssigkeitsstabilem Aggregat
EP0517068A1 (de) 1991-06-07 1992-12-09 List Ag Mischkneter
EP0530438A1 (de) 1991-09-03 1993-03-10 Hoechst Celanese Corporation Superabsorbierendes Polymer mit verbesserten Absorbiereigenschaften
EP0543303A1 (de) 1991-11-22 1993-05-26 Hoechst Aktiengesellschaft Hydrophile, hochquellfähige Hydrogele
EP0547847A1 (de) 1991-12-18 1993-06-23 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines wasserabsorbierenden Harzes
EP0559476A1 (de) 1992-03-05 1993-09-08 Nippon Shokubai Co., Ltd. Verfahren zu Herstellung eines absorbierenden Harzes
WO1993021237A1 (en) 1992-04-16 1993-10-28 The Dow Chemical Company Crosslinked hydrophilic resins and method of preparation
EP0603525A1 (de) 1992-11-24 1994-06-29 List Ag Mischkneter
EP0632068A1 (de) 1993-06-18 1995-01-04 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines absorbierenden Harzes
EP0640330A1 (de) 1993-06-30 1995-03-01 The Procter & Gamble Company Absorbtionsfähigen Hygieneprodukten
WO1997012666A1 (de) 1995-10-04 1997-04-10 List Ag Mischkneter
DE19646484A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
DE19543368A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19807992C1 (de) 1998-02-26 1999-07-15 Clariant Gmbh Verfahren zur Vernetzung von Hydrogelen mit Bis- und Poly-2-oxazolidinonen
EP0937736A2 (de) 1998-02-24 1999-08-25 Nippon Shokubai Co., Ltd. Vernetzen eines wasserspeichernden Produktes
DE19807502A1 (de) 1998-02-21 1999-09-16 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen
DE19854574A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit N-Acyl-2-Oxazolidinonen
DE19854573A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen
DE19955861A1 (de) * 1999-11-20 2001-05-23 Basf Ag Verfahren zur kontinuierlichen Herstellung von vernetzten feinteiligen gelförmigen Polymerisaten
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
EP1199327A2 (de) 2000-10-20 2002-04-24 Nippon Shokubai Co., Ltd. Wasserabsorbierendes Mittel und Verfahren zu seiner Herstellung
WO2002032962A2 (en) 2000-10-20 2002-04-25 Millennium Pharmaceuticals, Inc. Compositions of human proteins and method of use thereof
WO2002055469A1 (de) 2001-01-12 2002-07-18 Degussa Ag Kontinuierliches verfahren zur herstellung und aufreinigung von (meth) acrylsäure
WO2003022896A1 (en) 2001-09-12 2003-03-20 Dow Global Technologies Inc. A continuous polymerization process for the manufacture of superabsorbent polymers
WO2003031482A1 (de) 2001-10-05 2003-04-17 Basf Aktiengesellschaft Verfahren zur vernetzung von hydrogelen mit morpholin-2,3-dionen
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
DE10204937A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit Harnstoffderivaten
WO2003078378A1 (de) 2002-03-15 2003-09-25 Stockhausen Gmbh (meth)acrylsäurekristall und verfahren zur herstellung und aufreinigung von wässriger (meth)acrylsäure
WO2003104300A1 (de) 2002-06-01 2003-12-18 Basf Aktiengesellschaft (meth)acrylester von polyalkoxyliertem trimethylolpropan
WO2003104299A1 (de) 2002-06-11 2003-12-18 Basf Aktiengesellschaft Verfahren zur herstellung von estern von polyalkoholen
WO2003104301A1 (de) 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylester von polyalkoxyliertem glycerin
WO2004035514A1 (de) 2002-10-10 2004-04-29 Basf Aktiengesellschaft Verfahren zur herstellung von acrylsäure
WO2004069915A2 (en) * 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent
WO2004069404A1 (en) * 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
DE10331450A1 (de) 2003-07-10 2005-01-27 Basf Ag (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung
DE10334584A1 (de) 2003-07-28 2005-02-24 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit bicyclischen Amidacetalen
DE10331456A1 (de) 2003-07-10 2005-02-24 Basf Ag (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung
DE10355401A1 (de) 2003-11-25 2005-06-30 Basf Ag (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung
WO2006034806A1 (de) 2004-09-28 2006-04-06 Basf Aktiengesellschaft Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4805490B2 (ja) * 2000-08-03 2011-11-02 株式会社日本触媒 吸水性樹脂の製造方法
JP4084648B2 (ja) * 2001-12-19 2008-04-30 株式会社日本触媒 吸水性樹脂の製造方法
DE102005042038A1 (de) * 2005-09-02 2007-03-08 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
JP2011515520A (ja) * 2008-03-20 2011-05-19 ビーエーエスエフ ソシエタス・ヨーロピア 低い遠心分離保持容量を有する吸水性ポリマー粒子の製造方法
EP2300060B1 (de) * 2008-07-11 2013-09-04 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
US20100247916A1 (en) * 2009-03-24 2010-09-30 Basf Se Process for Producing Surface Postcrosslinked Water-Absorbing Polymer Particles
US8481159B2 (en) * 2009-09-04 2013-07-09 Basf Se Water-absorbent porous polymer particles having specific sphericity and high bulk density

Patent Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2123956A1 (de) 1970-05-20 1971-12-02 List H Mehrspindeliger Misch-Kneter
EP0083022A2 (de) 1981-12-30 1983-07-06 Seitetsu Kagaku Co., Ltd. Wasserabsorbierendes Harz mit verbesserter Wasserabsorbierbarkeit und Wasserdispergierbarkeit und Verfahren zur Herstellung
DE3314019A1 (de) 1982-04-19 1984-01-12 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Absorbierender gegenstand
CH664704A5 (en) 1984-03-21 1988-03-31 List Ind Verfahrenstech Double-shafted kneading and mixing machine - inserts plates into element gaps to adjust kneading intensity
DE3523617A1 (de) 1984-07-02 1986-01-23 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Wasserabsorbierendes mittel
DE3713601A1 (de) 1987-04-23 1988-11-10 Stockhausen Chem Fab Gmbh Verfahren zur herstellung eines stark wasserabsorbierenden polymerisats
WO1990015830A1 (en) 1989-06-12 1990-12-27 Weyerhaeuser Company Hydrocolloid polymer
EP0450922A2 (de) 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Verfahren zur Herstellung von flüssigkeitsstabilem Aggregat
DE4020780C1 (de) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
EP0517068A1 (de) 1991-06-07 1992-12-09 List Ag Mischkneter
DE4118884A1 (de) 1991-06-07 1992-12-10 List Ag Mischkneter
EP0530438A1 (de) 1991-09-03 1993-03-10 Hoechst Celanese Corporation Superabsorbierendes Polymer mit verbesserten Absorbiereigenschaften
EP0543303A1 (de) 1991-11-22 1993-05-26 Hoechst Aktiengesellschaft Hydrophile, hochquellfähige Hydrogele
EP0547847A1 (de) 1991-12-18 1993-06-23 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines wasserabsorbierenden Harzes
EP0559476A1 (de) 1992-03-05 1993-09-08 Nippon Shokubai Co., Ltd. Verfahren zu Herstellung eines absorbierenden Harzes
WO1993021237A1 (en) 1992-04-16 1993-10-28 The Dow Chemical Company Crosslinked hydrophilic resins and method of preparation
EP0603525A1 (de) 1992-11-24 1994-06-29 List Ag Mischkneter
EP0632068A1 (de) 1993-06-18 1995-01-04 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines absorbierenden Harzes
EP0640330A1 (de) 1993-06-30 1995-03-01 The Procter & Gamble Company Absorbtionsfähigen Hygieneprodukten
WO1997012666A1 (de) 1995-10-04 1997-04-10 List Ag Mischkneter
DE19536944A1 (de) 1995-10-04 1997-04-10 List Ag Mischkneter
DE19646484A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
DE19543368A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19807502A1 (de) 1998-02-21 1999-09-16 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen
EP0937736A2 (de) 1998-02-24 1999-08-25 Nippon Shokubai Co., Ltd. Vernetzen eines wasserspeichernden Produktes
DE19807992C1 (de) 1998-02-26 1999-07-15 Clariant Gmbh Verfahren zur Vernetzung von Hydrogelen mit Bis- und Poly-2-oxazolidinonen
DE19854574A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit N-Acyl-2-Oxazolidinonen
DE19854573A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
DE19955861A1 (de) * 1999-11-20 2001-05-23 Basf Ag Verfahren zur kontinuierlichen Herstellung von vernetzten feinteiligen gelförmigen Polymerisaten
WO2001038402A1 (de) 1999-11-20 2001-05-31 Basf Aktiengesellschaft Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten
EP1199327A2 (de) 2000-10-20 2002-04-24 Nippon Shokubai Co., Ltd. Wasserabsorbierendes Mittel und Verfahren zu seiner Herstellung
WO2002032962A2 (en) 2000-10-20 2002-04-25 Millennium Pharmaceuticals, Inc. Compositions of human proteins and method of use thereof
WO2002055469A1 (de) 2001-01-12 2002-07-18 Degussa Ag Kontinuierliches verfahren zur herstellung und aufreinigung von (meth) acrylsäure
WO2003022896A1 (en) 2001-09-12 2003-03-20 Dow Global Technologies Inc. A continuous polymerization process for the manufacture of superabsorbent polymers
WO2003031482A1 (de) 2001-10-05 2003-04-17 Basf Aktiengesellschaft Verfahren zur vernetzung von hydrogelen mit morpholin-2,3-dionen
DE10204937A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit Harnstoffderivaten
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
WO2003078378A1 (de) 2002-03-15 2003-09-25 Stockhausen Gmbh (meth)acrylsäurekristall und verfahren zur herstellung und aufreinigung von wässriger (meth)acrylsäure
WO2003104300A1 (de) 2002-06-01 2003-12-18 Basf Aktiengesellschaft (meth)acrylester von polyalkoxyliertem trimethylolpropan
WO2003104299A1 (de) 2002-06-11 2003-12-18 Basf Aktiengesellschaft Verfahren zur herstellung von estern von polyalkoholen
WO2003104301A1 (de) 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylester von polyalkoxyliertem glycerin
WO2004035514A1 (de) 2002-10-10 2004-04-29 Basf Aktiengesellschaft Verfahren zur herstellung von acrylsäure
WO2004069915A2 (en) * 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent
WO2004069404A1 (en) * 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
DE10331450A1 (de) 2003-07-10 2005-01-27 Basf Ag (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung
DE10331456A1 (de) 2003-07-10 2005-02-24 Basf Ag (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung
DE10334584A1 (de) 2003-07-28 2005-02-24 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit bicyclischen Amidacetalen
DE10355401A1 (de) 2003-11-25 2005-06-30 Basf Ag (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung
WO2006034806A1 (de) 2004-09-28 2006-04-06 Basf Aktiengesellschaft Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F.L. BUCHHOLZ; A.T. GRAHAM: "Modern Superabsorbent Polymer Technology", 1998, WILEY-VCH, pages: 71 - 103

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118024A1 (de) * 2013-01-29 2014-08-07 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher quellgeschwindigkeit und hoher zentrifugenretentionskapazität bei gleichzeitig hoher permeabilität des gequollenen gelbetts
CN104936989A (zh) * 2013-01-29 2015-09-23 巴斯夫欧洲公司 制备具有高自由溶胀率和高离心保留容量且同时具有高溶胀凝胶床渗透性的吸水性聚合物颗粒的方法
JP2016506981A (ja) * 2013-01-29 2016-03-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 膨潤したゲル床の高い透過性と同時に、速い膨潤速度、かつ高い遠心分離保持容量を有する吸水性ポリマー粒子の製造方法
US9822203B2 (en) 2013-01-29 2017-11-21 Basf Se Method for producing water-absorbing polymer particles with high swelling rate and high centrifuge retention capacity with simultaneously high permeability of the swollen gel bed
CN104936989B (zh) * 2013-01-29 2019-04-16 巴斯夫欧洲公司 制备具有高自由溶胀率、高离心保留容量和高溶胀凝胶床渗透性的吸水性聚合物颗粒的方法

Also Published As

Publication number Publication date
JP6253575B2 (ja) 2017-12-27
CN103561782A (zh) 2014-02-05
JP2014515414A (ja) 2014-06-30
EP2714104B1 (de) 2015-07-29
CN103561782B (zh) 2016-11-16
EP2714104A1 (de) 2014-04-09

Similar Documents

Publication Publication Date Title
EP2951212B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher quellgeschwindigkeit und hoher zentrifugenretentionskapazität bei gleichzeitig hoher permeabilität des gequollenen gelbetts
EP2411422B1 (de) Verfahren zur herstellung oberflächennachvernetzter wasserabsorbierender polymerpartikel
WO2014079785A2 (de) Verfahren zur herstellung von superabsorbern auf basis nachwachsender rohstoffe
EP3140325B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP3497141B1 (de) Verfahren zur herstellung von superabsorbern
WO2012107432A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher anquellgeschwindigkeit
EP2870183A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbessertem eigenschaftsprofil
EP2814854B1 (de) Wasserabsorbierende polymerpartikel mit hoher quellgeschwindigkeit und hoher permeabilität
WO2011117245A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2705075B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2714104B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP3140326B1 (de) Wasserabsorbierende polymerpartikel
WO2017207330A1 (de) Verfahren zur herstellung von superabsorbern
EP2714755B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2861631B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel in einem polymerisationsreaktor mit mindestens zwei achsparallel rotierenden wellen
EP2485773B1 (de) Verwendung von heizdampfkondensat zur herstellung wasserabsorbierender polymerpartikel
EP2714103B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP3755730A1 (de) Verfahren zur herstellung von superabsorberpartikeln
WO2020020675A1 (de) Verfahren zur herstellung von superabsorbern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12723208

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012723208

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014511890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE