WO2012159475A1 - 热泵型螺杆式压缩多联中央空调装置 - Google Patents

热泵型螺杆式压缩多联中央空调装置 Download PDF

Info

Publication number
WO2012159475A1
WO2012159475A1 PCT/CN2012/071806 CN2012071806W WO2012159475A1 WO 2012159475 A1 WO2012159475 A1 WO 2012159475A1 CN 2012071806 W CN2012071806 W CN 2012071806W WO 2012159475 A1 WO2012159475 A1 WO 2012159475A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
liquid
pipe
compressor
disposed
Prior art date
Application number
PCT/CN2012/071806
Other languages
English (en)
French (fr)
Inventor
程德威
姜灿华
Original Assignee
宁波奥克斯电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波奥克斯电气有限公司 filed Critical 宁波奥克斯电气有限公司
Priority to JP2014511713A priority Critical patent/JP2014519006A/ja
Publication of WO2012159475A1 publication Critical patent/WO2012159475A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/047Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0251Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve

Definitions

  • the utility model relates to the field of air conditioning systems, in particular to a heat pump type screw type compression multi-unit central air conditioning device. Background technique:
  • VRV is a flexible and intelligent central air-conditioning system that breaks the traditional central air-conditioning mode.
  • An outdoor unit can connect and control multiple indoor units at the same time, and can open and close the indoor unit according to the needs of the air-conditioned room.
  • the AC frequency conversion VRV was born, and the frequency conversion of VRV in the air conditioner industry began.
  • the temperature control accuracy and energy saving of the VRV system have been substantially improved and leapfrogged.
  • Daikin introduced the DC variable frequency VRV using environmentally friendly refrigerant R410A, and applied DC frequency conversion technology to VRV, which further improved the energy saving of VRV.
  • the DC variable frequency multi-unit central air conditioner uses a bismuth boron rare earth permanent magnet brushless DC motor as the compressor motor, and changes the DC motor speed by changing the DC voltage of the common DC motor, thereby overcoming the electromagnetic noise and rotor loss of the AC inverter compressor. Increases compressor efficiency and reduces compressor noise.
  • DC inverter multi-unit central air-conditioner manufacturers are mainly concentrated in Japan, represented by several famous brands such as Toshiba, Daikin, Mitsubishi and Hitachi. With the introduction of VRV air-conditioning technology in the early 1990s, multi-connection technology has been rapidly developed in China. Development, with the deepening of technology research and development and the gradual mastery of key technologies, domestic manufacturers have gradually expanded the production of DC inverter multi-unit central air conditioners, and the market share has also increased year by year.
  • Duo Central Air Conditioning has become more and more widely used, such as apartments, villas, banks, restaurants, KTV, commercial office buildings, stations, shopping malls and other occasions.
  • multi-unit central air-conditioning With the continuous expansion of the application of multi-unit central air-conditioning, the area of large stations, shopping malls, food processing workshops, etc. now reaches tens of thousands of square meters.
  • DC inverter multi-unit central air conditioners With the application of DC inverter multi-unit central air conditioners, its insufficiency has gradually emerged.
  • the main manifestations are: limited by the power of a single outdoor unit, each set of outdoor units is only 64HP. For large-scale occasions, a large number of outdoor units are required to be combined.
  • the outdoor unit of this air-conditioning system has a large footprint, and even in some cases, it is impossible to place all the outdoor units; on the other hand, the more modular modules, the modules The pressure on the reliability of the oil balance is greater.
  • a heat pump type screw compression multi-unit central air-conditioning device with sufficient power and saving installation space is provided.
  • the utility model provides a heat pump type screw compression multi-unit central air conditioner, which comprises at least one compressor, a plurality of parallel indoor units, a liquid accumulator, an oil separator, and at least two condensations. Unit;
  • a main liquid supply pipe is arranged between the indoor unit and the liquid storage device; a connecting pipe is arranged between the oil separator and the condenser component; a liquid pipe is arranged between the adjacent condenser components, and the liquid pipe is arranged a control valve; the compressor is a screw compressor, the plurality of screw compressors are connected in parallel; the main liquid supply pipe is provided with a main liquid supply electromagnetic valve; the oil and gas separator and the condensation A hot gas bypass valve is disposed on the connecting pipe between the components; a shunt pipe is disposed between the accumulator and the condenser assembly; and a reversing valve is disposed between the oil separator and the condenser assembly.
  • the screw compressor has much higher power, can realize large multi-unit air conditioning units with large cooling capacity, and the oil balance risk between modules without module combined air conditioners can reach nearly 400HP, which is far greater than the maximum capacity of conventional multi-connection. 64HP. Therefore, the heat pump type screw compression multi-unit central air conditioner provided by the utility model has outstanding advantages and features.
  • the main supply solenoid valve is used to shut off the main supply line when the unit is shut down, to prevent a large amount of liquid refrigerant from returning to the compressor return port and causing a liquid blow when the next compressor is restarted.
  • FIG. 1 is a schematic diagram of the composition of a refrigeration system of the present invention (cooling operation mode).
  • FIG. 2 is a schematic diagram of a refrigeration cycle in the heating operation mode of the present invention.
  • Figure 3 is a schematic view of the refrigeration cycle of the condenser assembly I of the present invention during defrosting.
  • Fig. 4 is a schematic view showing the refrigeration cycle of the condenser assembly II of the present invention during defrosting.
  • High voltage switch HPSW
  • Exhaust check valve 26.
  • Main four-way reversing valve SV0
  • Condenser part II gas bypass four-way reversing valve SV2
  • Condenser part I gas bypass four-way reversing SV1
  • Condenser part II liquid pipe solenoid valve EMR8
  • Condenser part II bypass liquid pipe solenoid valve EMR10
  • Condenser part I liquid pipe solenoid valve EMR7
  • Condenser component I bypass liquid tube electromagnetic wide ER9
  • condenser part condenser part I, condenser part II
  • 34. condenser part I fan motor 35.
  • the utility model provides a heat pump type screw compression multi-unit central air conditioner, which comprises at least one compressor, a plurality of parallel indoor units 45, a liquid accumulator 43, an oil separator 22, at least two a condenser assembly 33; a main supply pipe is disposed between the indoor unit 45 and the accumulator 43; a connecting pipe is disposed between the oil separator 22 and the condenser assembly 33; an adjacent condenser A liquid pipe is arranged between the components 33, and a control valve is arranged on the liquid pipe; the compressor is a screw compressor 1, and a plurality of screw compressors 1 are connected in parallel; the main liquid supply pipe is provided with a main supply a liquid electromagnetic bypass 44; a hot gas bypass valve is disposed on the connecting pipe between the oil separator 22 and the condenser assembly 33; a shunt pipe is disposed between the liquid accumulator 43 and the condenser group 33; A reversing valve is disposed between the oil separator and the condenser
  • the multi-connected central air-conditioning device of the utility model (also referred to as a heat pump type screw-type compression multi-unit central air-conditioning device) relates to the following components in actual work: a screw compressor 1, a compressor oil injection hole or an oil balance hole 4 , oil heater 5, oil sight glass 6, oil temperature sensor 7, oil level switch 8, liquid or EC0 port 9, oil pressure sensor 10, compressor suction port (with casing, shut-off valve) 11, Intake air temperature sensor 12, oil return solenoid valve 13, compressor exhaust port (with casing, shut-off valve, check width) 14, exhaust temperature sensor 15, capacity adjustment electromagnetic reading 16, liquid thermal expansion valve 17, Spray solenoid valve 18, compressor return air distribution manifold 19, compressor exhaust manifold manifold 20, unload solenoid valve (EVR13) 21, oil separator 22, system high pressure sensor (HPS) 23, high voltage switch (HPSW) 24, exhaust check valve 25, main four-way reversing valve (SV0) 26, condenser part II gas bypass four-way reversing valve (SV2) 27, condenser part I gas
  • Figure 1 shows the refrigeration cycle when the cooling operation mode is as follows:
  • the indoor unit 45 receives the power-on command, it starts up and puts the power-on command into the outdoor electronic control system.
  • the electric control system issues the screw compressor start command, the screw compressor.
  • the opening load of the screw compressor is controlled by the capacity regulating valve 16;
  • the screw compressor exhaust gas enters the oil separator 22, and the lubricating oil separated in the exhaust gas passes through the oil return solenoid valve 13 and the oil level switch 8 Control, returning to the screw compressor (1, 2, 3) return air pipe;
  • the gaseous refrigerant separated by the oil separator is discharged to the oil separator 22, and is converted into the condenser component 33 through the conversion of the main four-way switching valve 26
  • the refrigerant condensed into a liquid high-temperature high-pressure refrigerant the liquid refrigerant discharged from the condenser member 33 enters the high-pressure accumulator 43 and stored therein; the liquid refrigerant discharged from the
  • FIG. 2 shows the refrigeration cycle when the heating mode is as follows:
  • the indoor unit 45 receives the power-on command, it starts up and puts the power-on command into the outdoor electronic control system.
  • the electric control system issues the screw compressor start command, screw compression.
  • the machine is opened according to the capacity requirement, the opening load of the screw compressor is controlled by the capacity regulating valve 16; the screw compressor exhaust gas enters the oil separator 22, and the lubricating oil separated in the exhaust gas passes through the oil return solenoid valve 13 and the oil level switch 8 control, returning to the screw compressor (1, 2, 3) return air pipe; the gaseous refrigerant separated by the oil separator is discharged to the oil separator 22, and is converted into the indoor unit 45 through the conversion of the main four-way switching valve 26
  • the liquid refrigerant condensed into liquid high temperature and high pressure, and the liquid refrigerant condensed in the evaporator of all the indoor units 45 is merged and stored in the high pressure liquid storage unit 43; the liquid refrigerant discharged from
  • the thermal expansion valve (TEX0) 41 After the thermal expansion valve (TEX0) 41 is throttled, it is evaporated into the condenser member 33, and the evaporated gaseous refrigerant enters the gas-liquid separator 51 to be separated.
  • the gaseous refrigerant is returned to the screw compressor (1, 2, 3) of the return air port, the next cycle. Repeatedly, continuous heating increases and maintains the air-conditioned room temperature at the set temperature.
  • FIG 3 shows the system cycle in which the condensing unit I defrosts and the condensing unit II continues to operate in heating mode.
  • the specific working process is as follows: When the defrost entry condition is reached, the defrost process is started, and the defrost adopts the method of alternately defrosting the condensing component I and the condensing component II.
  • Condenser assembly I Defrost process: Open solenoid valve 32, close solenoid valve 31, hot gas bypass four-way selector valve 28 switch flow direction, hot gas bypass into condenser assembly I for defrosting.
  • the defrost exit condition is reached, the defrosting of the condenser assembly I is exited, the hot gas bypass four-way reversing valve 28 is reversed, the electromagnetic wide 31 is opened, and the solenoid valve 32 is closed. Transfer to the defrosting of condenser assembly II.
  • Condenser assembly II Defrost process: Open electromagnetic reading 30, close electromagnetic wide 29, hot gas bypass four-way reversing valve 27 conversion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

一种热泵型螺杆式压缩多联中央空调,包括至少一台压缩机(1)、多台并联的室内机(45)、储液器(43)、油气分离器(22)和至少两个冷凝器组件(33),所述的室内机(45)与储液器(43)之间设有主供液管,该主供液管上设有主供液电磁阀(44),所述的油气分离器(22)与冷凝器组件(33)之间设有连接管道,该连接管道上设有热气旁通阀和换向阀,所述的储液器(43)与冷凝器组件(33)之间设有分流管道。该中央空调可以实现大冷量的大型多联空调机组,而无模块组合空调的模块间油平衡风险。所述主供液电磁阀,用于机组关机时,切断主供液管路,防止下次压缩机再次启动时的大量液态致冷剂回到压缩机回气口而发生液击。所述至少两个冷凝器组件交替除霜,可以保证机组一直处于制热运行模式,避免了常规空调运行模式转换产生的制热效应停止,甚至吹冷风的缺点。

Description

热泵型螺杆式压縮多联中央空调装置
技术领域:
本实用新型涉及空调系统领域, 具体讲是一种热泵型螺杆式压缩多联中央空调装置。 背景技术:
1982年日本大金首次推出 VRV, 开创了楼宇用多联空调新时代。 VRV这种灵活的智能化 中央空调系统打破了传统中央空调模式, 一套室外机可以同时连接和控制多台室内机, 而且 根据空调房间的需要随意开启和关闭室内机。 1987年交流变频 VRV诞生, 开始了 VRV在空调 业界的变频浪潮, VRV系统的温度控制精确性和节能性有了实质性的提升和飞跃。 在 2003年 大金推出采用环保制冷剂 R410A的直流变频 VRV, 将直流变频技术应用到 VRV中, 使 VRV的 节能性有了进一步的提高。
直流变频多联中央空调采用钕硼稀土永磁无刷直流电机作为压缩机电机, 通过改变共给 直流电机的直流电压来改变直流电机转速,从而克服了交流变频压縮机的电磁噪音与转子损 耗,提高了压缩机效率,降低了压縮机噪音。直流变频多联中央空调生产厂家主要集中在日本, 以东芝、大金、三菱、 日立等几个著名品牌为代表, 随着上世纪 90年代初 VRV空调技术引入 国内, 多联技术在国内得到迅猛发展, 国内厂家随着技术研发的深入及逐步掌握关键技术, 也逐步扩大直流变频多联中央空调的生产, 市场份额也逐年增大。
多联中央空调凭借其技术优势,应用场合越来越广泛, 如公寓、别墅、银行、餐饮、 KTV、 商业办公楼、车站、商场等场合。 随着多联中央空调应用领域的不断拓展, 现在大型的车站、 商场、 食品加工车间等的面积达到几万平米。 然而, 随着直流变频多联中央空调的应用, 其 不足指出也逐渐显现出来,主要表现在:受单套室外机动力的限制,每套室外机最大只有 64HP。 对于大型场合, 就需要大批的室外机进行组合, 这种空调系统的室外机占地面积巨大, 甚至 某些场合无法将所有室外机摆放下; 另一方面组合模块越多, 模块之间的油平衡可靠性的压 力就越大。
实用新型内容:
本实用新型要解决的技术问题是: 提供一种动力足、 可节省安装空间的热泵型螺杆式压 缩多联中央空调装置。
为解决上述技术问题, 本实用新型提供一种热泵型螺杆式压缩多联中央空调装置, 它包 括至少一台压缩机、 多台并联的室内机、 储液器、 油气分离器、 至少两个冷凝器组件; 所述
更正页 (细则第 91条) 的室内机与储液器之间设有主供液管; 所述的油气分离器与冷凝器组件之间设有连接管道; 相邻的冷凝器组件之间设有液管, 液管上设有控制阀; 所述的压缩机为螺杆式压缩机, 所述 的多台螺杆式压缩机并联; 所述的主供液管上设有主供液电磁阀; 所述的油气分离器与冷凝 器组件之间的连接管道上设有热气旁通阀; 所述的储液器与冷凝器组件之间设有分流管道; 所述的油气分离器与冷凝器组件之间设有换向阀。
采用本实甩新型技术后, 本实用新型与现有技术相比具有以下优点:
螺杆式压缩机的功率大得多, 可以实现大冷量的大型多联空调机组, 而无模块组合空调 的模块间油平衡风险, 最大能力可以达到近 400HP, 远远大于常规多联机的最大能力 64HP。 因此, 本实用新型提供的热泵型螺杆式压缩多联中央空调具有突出的优势和特点。 主供液电 磁阀, 用于机组关机时, 切断主供液管路, 防止下次压缩机再次启动时的大量液态制冷剂回 到压缩机回气口而发生液击。 冷凝器组件至少有两个, 以实现两组冷凝器组件交替除霜, 这 样可以保证机组可以一直处于制热运行模式, 避免了常规空调运行模式转换产生的制热效应 停止, 甚至吹冷风的缺点。
附图说明:
图 1是本实用新型的制冷系统组成示意图 (制冷运行模式)。
图 2是本实用新型的制热运行模式时制冷循环示意图;
图 3是本实用新型冷凝器组件 I除霜时制冷循环示意图。
图 4是本实用新型冷凝器组件 II除霜时制冷循环示意图。
其中, 1、 2、 3、 螺杆式压缩机; 4. 压縮机注油孔或油平衡孔; 5. 油加热器; 6. 油位 视镜; 7. 油温传感器; 8. 油位开关; 9. 喷液口或 EC0口; 10. 油压传感器; 11. 压缩机吸 气口(带套管、截止阀); 12. 吸气温度传感器; 13. 回油电磁阀; 14. 压縮机排气口(带套管、 截止阀、止回阀); 15. 排气温度传感器; 16. 容量调节电磁阀; 17. 喷液热力膨胀阀; 18. 喷 液电磁阀; 19. 压缩机回气分配分歧管; 20. 压縮机排气汇集分歧管; 21. 卸载电磁阀 (EVR13); 22. 油气分离器; 23. 系统高压传感器 (HPS); 24. 高压开关 (HPSW) ; 25. 排气单 向阀; 26. 主四通换向阀 (SV0) ; 27. 冷凝器部件 II气旁通四通换向阀 (SV2) ; 28. 冷凝器部 件 I气旁通四通换向阓 (SV1) ; 29. 冷凝器部件 II液管电磁阀 (EVR8) ; 30. 冷凝器部件 II旁通 液管电磁阀 (EVR10); 31. 冷凝器部件 I液管电磁阀 (EVR7); 32. 冷凝器部件 I旁通液管电磁 阔 (EVR9) ; 33. 冷凝器部件 (冷凝器部件 I、 冷凝器部件 II ) ; 34. 冷凝器部件 I风机电机; 35. 室外环境温度 (Tainbo) ; 36. 冷凝器部件 I冷中温度传感器 Tcml ; 37. 冷凝器部件 I除 霜控制温度传感器 (Tdefl) ; 38. 冷凝器部件 II风机电机; 39. 冷凝器部件 II冷中温度传感器
更正页 (细则第 91条) Tcm2; 40. 冷凝器部件 II除霜控制温度传感器 (Tdef 2); 41. 系统制热双向热力膨胀阀 (TEX0); 42. 供液管单向阀; 43. 高压储液器; 44. 主供液电磁阀 (EVR11); 45. 室内机; 46. 室内电 子膨胀阀(EEV(i)); 47. 室内蒸发器进口温度(Tin(i)); 48. 室内蒸发器盘管中点温度 (Tcm(i)); 49. 室内蒸发器出口温度 (Tout(i)); 50. 室内环境温度 (Tamb(i)); 51. 气液分 离器; 52. 低压传感器 (LPS); 53. 低压开关 (LPSW); 54. 低负荷回油电磁阀 (EVR12); 具体实 ^式:
下面结合附图和具体实施方式对本实用新型作进一步说明。
如图 1所示, 本实用新型提供的热泵型螺杆式压缩多联中央空调装置, 它包括至少一台 压缩机、 多台并联的室内机 45、 储液器 43、 油气分离器 22、 至少两个冷凝器组件 33; 所述 的室内机 45与储液器 43之间设有主供液管; 所述的油气分离器 22与冷凝器组件 33之间设 有连接管道; 相邻的冷凝器组件 33之间设有液管, 液管上设有控制阀; 所述的压缩机为螺杆 式压缩机 1, 多台螺杆式压缩机 1并联; 所述的主供液管上设有主供液电磁阔 44; 所述的油 气分离器 22与冷凝器组件 33之间的连接管道上设有热气旁通阀;所述的储液器 43与冷凝器 组 33件之间设有分流管道; 所述的油气分离器与冷凝器组件之间设有换向阀。
本实用新型多联中央空调装置(也可称为热泵型螺杆式压缩多联中央空调装置),在实际 工作中涉及到以下部件: 螺杆式压縮机 1、 压缩机注油孔或油平衡孔 4、 油加热器 5、 油位视 镜 6、 油温传感器 7、 油位开关 8、 喷液口或 EC0口 9、 油压传感器 10、 压缩机吸气口(带套 管、截止阀)11、 吸气温度传感器 12、 回油电磁阀 13、 压缩机排气口(带套管、 截止阀、 止回 阔) 14、排气温度传感器 15、容量调节电磁阅 16、 喷液热力膨胀阀 17、 喷液电磁阀 18、压缩 机回气分配分歧管 19、 压缩机排气汇集分歧管 20、 卸载电磁阀 (EVR13)21、 油气分离器 22、 系统高压传感器 (HPS) 23、 高压开关 (HPSW)24、 排气单向阀 25、 主四通换向阀 (SV0)26、 冷凝 器部件 II气旁通四通换向阀 (SV2) 27、 冷凝器部件 I气旁通四通换向阔(SV1) 28、 冷凝器部件 II液管电磁阀 (EVR8)29、冷凝器部件 II旁通液管电磁阔 (EVR10) 30、冷凝器部件 I液管电磁阀 (EVR7)31、冷凝器部件 I旁通液管电磁阀 (EVR9)32、冷凝器部件 (冷凝器部件 I、冷凝器部件 11)33、 冷凝器部件 I风机电机 34、 室外环境温度 (Tamb0)35、 冷凝器部件 I冷中温度传感器 (Tcml)36、 冷凝器部件 I除霜控制温度传感器 (Tdef 1)37、 冷凝器部件 II风机电机 38、 冷凝 器部件 II冷中温度传感器 (Tcm2) 39、冷凝器部件 II除霜控制温度传感器 (Tdef2) 40、系统制热 双向热力膨胀阀 (TEX0)41、 供液管单向阀 42、 高压储液器 43、 主供液电磁阀 (EVR11)44、 室 内机 45、 室内电子膨胀阀 (EEV(i))46、 室内蒸发器进口温度 (Tin(i))47、 室内蒸发器盘管中 点温度 (Tcm(i))48、 室内蒸发器出口温度 (Tout(i))49、 室内环境温度 (Tajnb(i)) 50、 气液分
更正页 (细则第 91条) 离器 51、 低压传感器 (LPS) 52、 低压开关 (LPSW) 53、 低负荷回油电磁阀 (EVR12) 54。
图 1所示的是制冷运行模式时制冷循环过程如下: 当室内机 45得到开机指令后开机,并 将开机指令发挥室外电控系统, 电控系统发出螺杆式压缩机启动指令, 螺杆式压缩机根据能 力需求开启,螺杆式压缩机的开启负载由容量调节阀 16控制;螺杆式压缩机排气进入油气分 离器 22, 排气中分离出的润滑油通过回油电磁阀 13和油位开关 8控制, 回到螺杆式压缩机 (1、 2、 3)回气管; 油气分离器分离出的气态制冷剂排出油气分离器 22, 经过主四通换向阀 26的转换, 进入冷凝器部件 33中冷凝成液态高温高压的制冷剂, 从冷凝器部件 33中排出的 液态制冷剂进入高压储液器 43中存储起来; 从高压储液器 43中出来的液态制冷剂进入室内 机 45中, 经室内电子膨胀阀 46节流成低温低压的两相混合制冷剂, 进入到蒸发器中蒸发, 冷却空调房间的空气, 降低空调房间温度; 所有室内机内蒸发后的气态制冷剂汇合后, 进入 气液分离器 51中, 分离出的气态制冷剂回到螺杆式压缩机的回气口, 进行下一循环过程。如 此反复, 持续制冷降低和维持空调房间温度在设定温度。
图 2所示的是制热运行模式时制冷循环过程如下: 当室内机 45得到开机指令后开机,并 将开机指令发挥室外电控系统, 电控系统发出螺杆式压缩机启动指令, 螺杆式压缩机根据能 力需求开启,螺杆式压缩机的开启负载由容量调节阀 16控制;螺杆式压缩机排气进入油气分 离器 22, 排气中分离出的润滑油通过回油电磁阀 13和油位开关 8控制, 回到螺杆式压缩机 (1、 2、 3)回气管; 油气分离器分离出的气态制冷剂排出油气分离器 22, 经过主四通换向阀 26的转换, 进入室内机 45中冷凝成液态高温高压的制冷剂, 所有室内机 45蒸发器内冷凝的 液态制冷剂汇合后进入高压储液器 43中存储起来; 从高压储液器 43中出来的液态制冷剂经 系统制热双向热力膨胀阀 (TEX0) 41节流后, 进入冷凝器部件 33中蒸发, 蒸发后的气态制冷 剂进入气液分离器 51中, 分离出的气态制冷剂回到螺杆式压缩机 (1、 2、 3)的回气口, 进行 下一循环过程。 如此反复, 持续制热提高和维持空调房间温度在设定温度。
图 3所示是冷凝组件 I除霜,冷凝组件 II继续制热模式运行的系统循环。具体工作过程 如下: 当除霜进入条件达到后, 开始除霜过程, 除霜采取冷凝组件 I和冷凝组件 II交替除霜 的方式。
冷凝器组件 I除霜过程: 开启电磁阀 32, 关闭电磁阀 31, 热气旁通四通换向阀 28转换 流向, 热气旁通进入冷凝器组件 I中, 进行除霜。 当除霜退出条件达到后, 退出冷凝器组件 I的除霜, 热气旁通四通换向阀 28换向, 电磁阔 31开启, 电磁阀 32关闭。 转入冷凝器组件 II的除霜。
冷凝器组件 II除霜过程: 开启电磁阅 30, 关闭电磁阔 29, 热气旁通四通换向阀 27转换
更正页 (细则第 91条) 流向, 热气旁通进入冷凝器组件 π中, 进行除霜。 当除霜退出条件达到后, 退出冷凝器组件
II的除霜, 热气旁通四通换向阀 27换向, 电磁阔 29开启, 电磁阀 30关闭。
更正页 (细则第 9 1条)

Claims

权 利 要 求 书
1、 一种热泵型螺杆式压缩多联中央空调装置, 它包括至少一台压缩机、 多台并联的 室内机 (2)、 储液器 (43)、 油气分离器 (22 )、 至少两个冷凝器组件 (33); 所述的室内 机 (2) 与储液器 (43) 之间设有主供液管; 所述的油气分离器 (22) 与冷凝器组件 (33 ) 之间设有连接管道; 相邻的冷凝器组件 (33) 之间设有液管, 液管上设有控制阀; 其特征 在于: 所述的压缩机为螺杆式压缩机 (1 ), 所述的多台螺杆式压缩机 (1 ) 串联; 所述的 主储液管上设有主供液电磁阀 (44); 所述的油气分离器 (22) 与冷凝器组件 (33 ) 之间 的连接管道上设有热气旁通阀; 所述的储液器 (43) 与冷凝器组件 (33) 之间设有分流管 道; 所述的油气分离器 (22) 与冷凝器组件 (33) 之间设有换向阀。
PCT/CN2012/071806 2011-05-24 2012-03-01 热泵型螺杆式压缩多联中央空调装置 WO2012159475A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014511713A JP2014519006A (ja) 2011-05-24 2012-03-01 ヒートポンプ型スクリュー圧縮マルチセントラル空調装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201120178297.2 2011-05-24
CN2011201782972U CN202101340U (zh) 2011-05-24 2011-05-24 热泵型螺杆式压缩多联中央空调装置

Publications (1)

Publication Number Publication Date
WO2012159475A1 true WO2012159475A1 (zh) 2012-11-29

Family

ID=45387349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071806 WO2012159475A1 (zh) 2011-05-24 2012-03-01 热泵型螺杆式压缩多联中央空调装置

Country Status (3)

Country Link
JP (1) JP2014519006A (zh)
CN (1) CN202101340U (zh)
WO (1) WO2012159475A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104676961A (zh) * 2013-11-28 2015-06-03 财团法人工业技术研究院 复合式冷热共生热泵设备
CN104848599A (zh) * 2015-05-26 2015-08-19 珠海格力电器股份有限公司 空调系统及其控制方法
CN105805986A (zh) * 2016-04-27 2016-07-27 田幼华 一种具有辅助回油的热泵系统
US20180328632A1 (en) * 2015-11-18 2018-11-15 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Heat pump system
CN115235150A (zh) * 2022-06-23 2022-10-25 合肥丰蓝电器有限公司 一种自动切换的压缩机控制系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202101340U (zh) * 2011-05-24 2012-01-04 宁波奥克斯电气有限公司 热泵型螺杆式压缩多联中央空调装置
CN103453692A (zh) * 2012-06-05 2013-12-18 江森自控空调冷冻设备(无锡)有限公司 热泵系统
JP6290724B2 (ja) * 2014-06-24 2018-03-07 ヤンマー株式会社 チラーシステム
CN105987535A (zh) * 2015-02-03 2016-10-05 宁波奈兰环境系统有限公司 一种超远距离输送制冷剂的大容量多联式空调热泵机组
US11009247B2 (en) * 2017-06-27 2021-05-18 Mitsubishi Electric Corporation Air conditioner
CN107975990B (zh) * 2017-10-27 2020-10-13 浙江国祥股份有限公司 一种不停机轮换除霜的多联机系统及除霜控制方法
CN107965937B (zh) * 2017-11-17 2019-07-16 珠海格力电器股份有限公司 一种制冷机组及其抽空停机控制方法
CN109631377B (zh) * 2018-11-21 2021-05-28 青岛海尔空调电子有限公司 蒸发冷却式冷水机组换热系统及其控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771610A (en) * 1986-06-06 1988-09-20 Mitsubishi Denki Kabushiki Kaisha Multiroom air conditioner
US5063752A (en) * 1989-10-06 1991-11-12 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
CN1358966A (zh) * 2000-12-18 2002-07-17 三星电子株式会社 具有压力调节器的空调器及其控制方法
CN101865555A (zh) * 2010-06-29 2010-10-20 广东志高空调有限公司 一种同时制冷和制热的一拖多空调
CN201731678U (zh) * 2010-08-03 2011-02-02 昆山台佳机电有限公司 中央空调制冷剂侧切换的满液式水源热泵机组
CN201819477U (zh) * 2010-09-08 2011-05-04 宁波奥克斯电气有限公司 直流变频多联机多功能空调
CN102192574A (zh) * 2011-05-25 2011-09-21 宁波奥克斯电气有限公司 螺杆式压缩多联中央空调制冷模式启动控制方法
CN102261719A (zh) * 2011-05-25 2011-11-30 宁波奥克斯电气有限公司 螺杆式压缩多联中央空调制热模式启动控制方法
CN202101340U (zh) * 2011-05-24 2012-01-04 宁波奥克斯电气有限公司 热泵型螺杆式压缩多联中央空调装置
CN202126031U (zh) * 2011-05-30 2012-01-25 宁波奥克斯电气有限公司 单冷型螺杆压缩机多联中央空调装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054578B2 (ja) * 1978-02-02 1985-11-30 三洋電機株式会社 冷凍サイクルの除霜装置
JP2839066B2 (ja) * 1993-10-21 1998-12-16 株式会社クボタ ヒートポンプの除霜システム
JP3443507B2 (ja) * 1996-11-06 2003-09-02 株式会社神戸製鋼所 スクリュ冷凍機
JP2009085484A (ja) * 2007-09-28 2009-04-23 Daikin Ind Ltd 空気調和機用室外機

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771610A (en) * 1986-06-06 1988-09-20 Mitsubishi Denki Kabushiki Kaisha Multiroom air conditioner
US5063752A (en) * 1989-10-06 1991-11-12 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
CN1358966A (zh) * 2000-12-18 2002-07-17 三星电子株式会社 具有压力调节器的空调器及其控制方法
CN101865555A (zh) * 2010-06-29 2010-10-20 广东志高空调有限公司 一种同时制冷和制热的一拖多空调
CN201731678U (zh) * 2010-08-03 2011-02-02 昆山台佳机电有限公司 中央空调制冷剂侧切换的满液式水源热泵机组
CN201819477U (zh) * 2010-09-08 2011-05-04 宁波奥克斯电气有限公司 直流变频多联机多功能空调
CN202101340U (zh) * 2011-05-24 2012-01-04 宁波奥克斯电气有限公司 热泵型螺杆式压缩多联中央空调装置
CN102192574A (zh) * 2011-05-25 2011-09-21 宁波奥克斯电气有限公司 螺杆式压缩多联中央空调制冷模式启动控制方法
CN102261719A (zh) * 2011-05-25 2011-11-30 宁波奥克斯电气有限公司 螺杆式压缩多联中央空调制热模式启动控制方法
CN202126031U (zh) * 2011-05-30 2012-01-25 宁波奥克斯电气有限公司 单冷型螺杆压缩机多联中央空调装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104676961A (zh) * 2013-11-28 2015-06-03 财团法人工业技术研究院 复合式冷热共生热泵设备
CN104676961B (zh) * 2013-11-28 2017-04-12 财团法人工业技术研究院 复合式冷热共生热泵设备
CN104848599A (zh) * 2015-05-26 2015-08-19 珠海格力电器股份有限公司 空调系统及其控制方法
US20180328632A1 (en) * 2015-11-18 2018-11-15 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Heat pump system
US10914498B2 (en) * 2015-11-18 2021-02-09 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Heat pump system
CN105805986A (zh) * 2016-04-27 2016-07-27 田幼华 一种具有辅助回油的热泵系统
CN115235150A (zh) * 2022-06-23 2022-10-25 合肥丰蓝电器有限公司 一种自动切换的压缩机控制系统
CN115235150B (zh) * 2022-06-23 2023-08-25 合肥丰蓝电器有限公司 一种自动切换的压缩机控制系统

Also Published As

Publication number Publication date
CN202101340U (zh) 2012-01-04
JP2014519006A (ja) 2014-08-07

Similar Documents

Publication Publication Date Title
WO2012159475A1 (zh) 热泵型螺杆式压缩多联中央空调装置
CN100592007C (zh) 一种空气源热泵型空调器及其除霜方法
CN108759144A (zh) 一种复叠式超低温空气源热泵机组及其控制方法
CN101476801B (zh) 不间断制热除霜的热泵式空调器
CN106288562B (zh) 一种空气源热泵系统的除霜控制装置及其方法
CN107024031B (zh) 一种适用于大温差的三压力高效风冷热泵机组
CN108759138B (zh) 二次节流中间不完全冷却制冷系统的运行方法及系统
CN110425765B (zh) 换热系统及控制方法
CN201314725Y (zh) 一种热泵型房间空调器
CN201779921U (zh) 空调与热泵热水机的多功能切换系统
CN111271893A (zh) 一种空调热泵热水系统及其操控方法
CN109520170A (zh) 一种具有双级过冷和液体脉冲融霜功能的空气源热泵机组
CN111520814B (zh) 一种改进的多联机系统及其控制方法
CN108759157B (zh) 一次节流双级压缩热泵系统
KR20100062405A (ko) 공기조화기 및 그 제어방법
CN203550269U (zh) 空调系统
CN110701819A (zh) 一种三工况系统
CN202928187U (zh) 使用串流蒸发器的空调冷热水机组
CN113864929A (zh) 一种空调系统及其控制方法
CN109668348B (zh) 一种具有液体脉冲除霜功能的高效空气源热泵热水器
CN108759156B (zh) 二次节流中间不完全冷却双级压缩热泵系统
CN108709333B (zh) 二次节流中间完全冷却的制冷系统的运行方法及系统
CN203100311U (zh) 一种自动辅助除霜的制冷系统
CN104180558A (zh) 一种空调热水一体机
CN209386600U (zh) 一种适用于宽温区工况的高效空气源热泵机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014511713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789692

Country of ref document: EP

Kind code of ref document: A1