WO2012159469A1 - 一种生物质混流式气化方法及装置 - Google Patents

一种生物质混流式气化方法及装置 Download PDF

Info

Publication number
WO2012159469A1
WO2012159469A1 PCT/CN2012/071557 CN2012071557W WO2012159469A1 WO 2012159469 A1 WO2012159469 A1 WO 2012159469A1 CN 2012071557 W CN2012071557 W CN 2012071557W WO 2012159469 A1 WO2012159469 A1 WO 2012159469A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasification
section
biomass
primary
stage
Prior art date
Application number
PCT/CN2012/071557
Other languages
English (en)
French (fr)
Inventor
吴创之
潘贤齐
周肇秋
苏德仁
阴秀丽
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Publication of WO2012159469A1 publication Critical patent/WO2012159469A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/092Wood, cellulose
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the invention relates to the field of biomass thermochemical conversion, and in particular to a biomass mixed flow gasification method and device. Background technique
  • Biomass gasification can convert biomass into flammable gas, and can be used for gas supply, heat supply, power generation or synthetic liquid fuel. It is one of the important technologies for biomass utilization and has broad application prospects.
  • the gasifier is the core equipment in the biomass gasification process.
  • the biomass gasifiers commonly used at home and abroad mainly include fluidized bed gasifiers (including bubbling fluidized bed and circulating fluidized bed) and fixed bed gasification.
  • Furnace including upper suction fixed bed and lower suction fixed bed.
  • the advantages of fluidized bed are strong continuous operation capability, stable gas quality and high gasification intensity. It is suitable for industrial large-scale production.
  • the disadvantages are high dust content in crude gas and high tar content, and the structure of gasifier is more complicated. The need to use crushed raw materials, equipment investment and operating costs are higher;
  • the main advantage of the downdraft gasifier is the low tar content in the gas, the main disadvantages are low production intensity, weak scale amplification, only suitable for small-scale production.
  • the main advantages of the upper suction gasifier are high gasification efficiency and high scale amplification capability.
  • the main disadvantage is the high tar content in the crude gas. Compared with the fluidized bed gasifier, the lower suction type and the upper suction type.
  • the gasifier has a simple structure, is easy to operate, has strong adaptability to raw materials, and low equipment investment cost, but the disadvantages of the upper suction type and the lower suction type gasification furnace limit its application fields.
  • the Chinese invention patent with the publication number CN1354220A discloses a composite biomass gasification furnace and a gas preparation method thereof, which is connected by a downdraft biomass gasification furnace and a biomass dry distillation furnace.
  • the composition uses the high-temperature gas of the downdraft gasifier to pyrolyze the agricultural and forestry waste in the dry distillation furnace, and at the same time, the agricultural and forestry waste adsorbs and removes the tar in the high-temperature gas to reduce the tar, improve the heat energy conversion efficiency and the gas.
  • the dry distillation furnace in the method is similar to the upper suction gasification furnace. When the high temperature gas passes through the agricultural and forestry waste, part of the tar can be removed by filtration. However, a large amount of tar is also produced during the biomass distillation, and is mixed in the high temperature gas. The tar content of the final outlet gas does not necessarily decrease.
  • the Chinese invention patent with the publication number CN101164866A discloses a method and a device for preparing a synthesis gas by stepwise oxygenation of biomass, using two reactors connected in series to separate the two processes of pyrolysis and downdraft gasification. It can really reduce the tar content in the syngas, but because the pyrolysis reactor requires an external heat source, the operating cost is high, the economy is poor, and the shortcomings of the downdraft gasification production are not solved, which is difficult to be practically applied. in production.
  • the improvement of the fixed bed gasification process is mostly the simple separation or combination of the gasification equipment, and the key features of the downdraft and the upper suction gasification are rarely changed, and the downdraft gasification is not well solved.
  • the problem of low strength and high suction tar content is not practical.
  • the object of the present invention is to provide a biomass mixed-flow gasification method and device, which is characterized by low tar content, large scale amplification capability, and strong gas component regulation ability and economic feasibility.
  • the mixed flow gasification method and apparatus are aimed at solving the problems in the prior art.
  • a biomass mixed-flow gasification device wherein the mixed-flow gasification device comprises a mixed-flow fixed-bed gasification furnace, and the mixed-flow fixed-bed gasification furnace is internally connected by a downdraft gasification section and a suction Gasification section a biomass feeding device and a primary gasifying agent inlet are disposed at an upper end of the downdraft gasification section, and a grate, a primary gasifying agent inlet, and a ash discharging device are disposed at a lower end of the upper suction gasification section;
  • the gasification unit also includes a gas outlet disposed between the primary gasification agent inlet from the downdraft gasification section and the primary gasification agent inlet of the upper suction gasification section.
  • the biomass mixed flow gasification device wherein the downdraft gasification section and the upper suction gasification section are circular sections or square sections, and the inside of the two gasification sections adopts the same section or variable section structure;
  • the downdraft gasification section and the uptake gasification section may be vertical, horizontal or inclined connections.
  • the biomass mixed flow gasification device wherein a vertical distance between a primary gasification agent inlet and a furnace top of the downdraft gasification section is less than 1/2 of a vertical distance between the grate and the furnace top; The vertical distance between the primary gasifier inlet and the top of the gasifier in the suction gasification section is greater than 1/2 of the vertical distance between the grate and the furnace top.
  • a secondary gasifying agent inlet may be disposed between the primary gasifying agent inlet of the downdraft gasification section and the primary gasifying agent inlet of the updraft gasification section.
  • the method for preparing a gas using the biomass mixed-flow gasification device described above comprising the following steps: S100, pre-gasification stage: adding biomass raw material to a downdraft gasification section through a feeding device, and simultaneously passing through a suction type
  • the gasification agent enters the gasification agent at the inlet of the gasification section to perform pyrolysis gasification;
  • the method for preparing a gas wherein, in the pre-gasification stage, the gasifying agent flows downward into the furnace from a primary gasifying agent inlet located at an upper end of the downdraft gasification section; in the post-gasification stage, the gasifying agent is The primary gasification agent inlet located at the lower end of the upper suction gasification section flows upward into the upper suction gasification section.
  • the method for producing a gas wherein a secondary gasifying agent can be bubbled in a secondary gasifying agent inlet in a pre-gasification stage or a post-gasification stage.
  • the method for producing a gas wherein the gasifying agent is air, oxygen or oxygen-enriched air.
  • the method for producing a gas characterized in that water vapor can be added to the gasifying agent.
  • the method for preparing a gas wherein, when the gasification agent is blasted in the pre-gasification stage, the flow rate of the gasification medium is about 50 to 80% of the total flow rate of the gasification medium; when the gasification agent is introduced in the post-gasification stage, The flow rate of the gasification medium is about 20 to 50% of the total flow rate of the gasification medium.
  • the present invention fully utilizes the advantages of down-suction type and up-suction type gasification, and has the characteristics of low tar content, strong gas component regulation ability, strong load adaptability, stable operation, and the like, and has a strong scale.
  • the amplification capability can be widely used in the fields of gasification and gas supply, gasification power generation, synthetic fuel, and hydrogen production.
  • FIG. 1 is a schematic view showing the longitudinal section of a shaft in a biomass mixed-flow gasification apparatus of the present invention.
  • Fig. 1 is the feeding device
  • 2 is the reference height of the gasification furnace top
  • 3 is the primary gasification agent inlet of the lower suction type gasification section
  • 4 is the lower suction type gasification section
  • 5 is the gas outlet
  • 6 is the lower
  • the upper suction type gasification section is divided
  • 7 is the upper suction type gasification section
  • 8 is the grate
  • 9 is the primary gasification agent inlet of the upper suction type gasification section
  • 10 is the reference height of the bottom of the gasification furnace
  • 11 is the ash discharge device .
  • FIG. 2 is a flow chart of a biomass mixed-flow gasification process of the present invention. detailed description
  • the present invention provides a biomass mixed-flow gasification method and apparatus.
  • the present invention will be further described in detail below in order to make the objects, technical solutions and effects of the present invention more clear and clear. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the biomass mixed-flow gasification process method proposed by the invention comprises a pre-gasification stage and a post-gasification stage in the gasification process. In the pre-gasification stage, the biomass material is subjected to pyrolysis gasification by a downdraft gasification process.
  • the biomass material is subjected to pyrolysis gasification by a suction-type gasification process, so that the biomass coke and part of the gas that have not been completely reacted in the pre-gasification stage enter the upper suction gasification device for gas generation. Reaction.
  • the gasification agent with the opposite flow direction is bulged in the pre-gasification stage and the post-gasification stage, and the primary gasification agent that flows in the pre-gasification stage flows downward, and the primary gasification agent that is blown in the post-gasification stage flows upward, so that The gasification gas produced in the gasification stage has the opposite flow direction.
  • the whole gasification process is a mixed-flow gasification process combining the down-suction gasification and the upper-suction gasification, and the resulting gasification gas is from the gas of the two gasification sections. Discharge between the chemical inlets.
  • the process and material flow of the present invention are shown in Figure 2.
  • the material for pyrolysis gasification in the pre-gasification stage is a biomass material, and generally a large-sized block biomass is used, and the particle size is generally controlled in the range of 10 mm to 100 mm;
  • the material for pyrolysis gasification in the stage is biomass coke which is not completely reacted in the pre-gasification stage, and the content of C element in the biomass coke is generally above 8 (kt%).
  • the gasification agent type and the flow ratio ratio can be optimally controlled by the gasification stage before and after the gasification stage, and the two gases can be fully utilized.
  • the advantages of the chemical mode optimize the gas composition, and improve the gasification efficiency.
  • the gasification agent generally uses air, oxygen or oxygen-enriched air, and water vapor can be added to the gasification agent as needed;
  • the gasification medium flow rate in the pre-gasification stage is about 50 to 80% of the total flow rate of the gasification medium, and post-gasification
  • the stage gasification medium flow rate is about 20 ⁇ 50% of the total flow rate of the gasification medium, and the water vapor is generally used in the post gasification stage.
  • the present invention also provides a biomass mixed-flow gasification device, the structure of which is shown in FIG. 1, the mixed-flow gasification device comprises a mixed-flow fixed-bed gasification furnace,
  • the mixed flow fixed bed gasification furnace is composed of an internal suction downdraft gasification section 4 and an upper suction gasification section 7, and a down suction type
  • the gasification section 7 is a pyrolysis gasification reaction of the biomass feedstock
  • the uptake gasification section 4 is mainly a pyrolysis gasification reaction of the biomass coke.
  • a biomass charging device 1 and a primary gasifying agent inlet 3 are provided, and the lower end of the upper suction gasification section 7 is provided with a grate 8, a primary gasifying agent inlet 9 and an ash discharging device 11 a secondary gasification agent inlet may be disposed between the lower gasification section 4 and the primary gasification agent inlet 3 and the primary gasification agent inlet 9 of the upper suction gasification section 7;
  • the down suction gasification section 4 For the pyrolysis gasification reaction of biomass feedstock, the uptake gasification section 7 is mainly a pyrolysis gasification reaction of biomass coke; the gas outlet 5 is set at the primary gasification agent inlet 3 and the primary gasification of the two gasification sections. Between the agent inlets 9 for discharging the gasification gas produced by the downdraft gasification section 4 and the uptake gasification section 7.
  • the biomass raw material is subjected to rapid pyrolysis gasification in the downdraft gasification section 4, and the tar in the gas passes through the high temperature zone in the lower portion of the downdraft gasification section 4, Partially cracked into a small molecule permanent gas, which is beneficial to reduce the tar content in the gas.
  • the grate is not provided in the downdraft gasification section 4, the resistance of the gas flowing in the furnace is higher than that in the conventional downdraft gasifier. Significantly reduced, which is conducive to the amplification of the device.
  • the biomass coke that has not been completely reacted in the downdraft gasification process enters the updraft gasification section 7 to continue the gasification reaction.
  • the C content in the biomass coke is greatly high, 0 and H.
  • the content of elements is greatly reduced, and the tar produced in the updraft gasification process is significantly reduced, overcoming the disadvantages of high tar content in the conventional suction gasifier.
  • the downdraft gasification section 4 and the upper suction type gasification section 7 have a circular section or a square section, and the inside of the two gasification sections may adopt the same section or variable section structure, and the connection of the two gasification sections may adopt the same section or variable.
  • the cross-sectional connection mode; the maximum cross-sectional area in the lower suction type gasification section 4 is greater than or equal to the maximum cross-sectional area in the upper suction type gasification section 7; the lower suction type gasification section 4 and the upper suction type gasification section 7 may For vertical connection, horizontal connection or inclined connection, the bottom of the following suction gasification section 4 is preferably connected vertically to the top of the upper suction gasification section 7.
  • the primary gasifying agent inlet 3 of the downdraft gasification section ⁇ is the gasification agent inlet having the highest vertical height, The vertical distance from the top of the furnace is less than 1/2 of the vertical distance between the grate 8 and the top of the furnace, thereby bubbling the gasifying agent having a downward flow direction; the primary gas of the upper suction type gasification section 4
  • the chemical inlet 9 is the lowest vertical gasification agent inlet, and the vertical distance from the top of the gasifier is greater than 1/2 of the vertical distance between the grate 8 and the top of the furnace, thereby bulging in an upward flow direction.
  • the gasification agent; the lower suction gasification section and the upper suction gasification section may be provided with a secondary gasification agent inlet between the primary gasification agent inlets of the two gasification sections as needed.
  • the gas outlet 5 of the gasification gas is disposed between the primary gasification agent inlets of the two gasification sections, and the gas outlets 5 can be disposed at the same height, and the gas is discharged from the inner side of the gasification furnace, and can also be set at different heights.
  • the port is made by mixing first and then after.
  • Biomass Process and material flow for mixed-flow gasification in the gasification unit is shown in Figure 2.
  • biomass feedstock is fed into the lower suction gasification section 4 by the feeding device 1 for rapid Pyrolysis gasification, the primary gasification agent flows downward into the furnace from the primary gasification agent inlet 3 located at the upper end of the gasification furnace; if the lower suction type gasification section 4 and the upper suction type gasification section 7 are the primary gasification agent inlet 3 and a primary gasifying agent inlet 9 is provided with a secondary gasifying agent inlet, or a secondary gasifying agent may be introduced from the secondary gasifying agent inlet below the primary gasifying agent inlet 3 as needed;
  • the material coke enters the upper suction gasification section 7 and undergoes a reaction in the post gasification stage.
  • the primary gasifying agent flows upward into the furnace from the primary gasifying agent inlet 9 at the lower end of the gasification furnace, or may be introduced into the secondary gasifying agent from above the primary gasifying agent inlet 9 as needed;
  • the gasification gas produced in the gasification stage and the post-gasification stage flows in the opposite direction in the furnace, and can be mixed and discharged from the gas outlet 5 between the primary gasification agent inlet 3 and the primary gasification agent inlet 9 of the two gasification sections, or
  • the gas outlets are respectively disposed in the two gasification sections, and the gas mixture is separately mixed and discharged; the ash obtained in the post gasification stage falls from the grate 8 and is discharged by the ash discharge device 11.
  • the gas produced by the downdraft gasification section and the upper suction gasification section adopts a mixed gas outlet mode, and at the same time effectively solves the high temperature of the outlet gas in the downdraft gasification section and the outlet in the upper suction gasification section.
  • Gas temperature The problem of low pressure improves the gasification efficiency while optimizing the gas composition.
  • the wood piece having an average particle diameter of about 50 mm is used as a raw material, and is added to the lower suction type gasification section 4 through the feeding device 1, the feeding rate is about 300 to 350 kg/h, and the gasification agent inlet port 3 is passed through the downdraft gasification section. blowing air flow rates were approximately 240Nm 3 / h, and 100Nm 3 / h.
  • the wood chips are pyrolyzed and gasified in the downdraft gasification section 4, and the middle temperature of the gasification section is 730 ⁇ 800 ° C; the wood chips are converted into biomass coke through the downdraft gasification section, and the biomass coke which has not been completely reacted Entering the upper suction gasification section to continue gasification, the middle temperature of the gasification section is 750 ⁇ 830 ° C; the gas outlet temperature of the gasification process is 330 ⁇ 400 ° C, and the gas components are roughly in the range of: 11. 7 ⁇ 12. 8vol%, 19. 6 ⁇ 24. 0vol%C0, 8. 3 ⁇ 10.
  • the gasification apparatus 1 the wood chips as raw material to feed rate of about 550 ⁇ 600kg / h, the vertical downdraft gasification stage air flow rates were 400Nm 3 / h, and 180Nm 3 / h or so, to give The temperature distribution and gas composition were substantially the same as in Example 1.
  • Example 1 The gasification apparatus of Example 1 was enlarged, the feeding speed of the chips was increased to 1500 to 1600 kg/h, the gasifying agent was increased in proportion to Example 1, and the other steps were similar to those of Example 1, and the temperature distribution and gas composition obtained by gasification were obtained. It is basically the same as Embodiment 1.
  • the wood sheet is used as a raw material
  • the feeding rate is about 300 to 350 kg/h
  • the oxygen-rich gas is about 46.3% oxygen-rich gas as a gasification medium, and the gas is sucked up and down.
  • Section rich The oxygen gas flow rate is about 10OmVVh and 50Nm 3 /h, respectively, and water vapor at a temperature of about 160 ° C is added to the oxygen-enriched gas in the upper suction gasification section, and the water vapor flow rate is about 100 k g / h.
  • the middle temperature of the suction gasification section is 750 ⁇ 850 °C
  • the middle temperature of the upper suction gasification section is 780 ⁇ 880 °C
  • the gas outlet temperature is 350 ⁇ 450 °C
  • the gas components are roughly in the range of 16.3 ⁇ 18. 4vol%, 28. 6 ⁇ 31. 8vol%C0, 14. 3 ⁇ 16. 6vol%C0 2 , 4. 5 ⁇ 5. lvol%CH 4 , 0. 7 ⁇ 0. 9vol%C 2 H m , 29. 7 ⁇ 33. lvol 0 gas gasification efficiency is 75.0%.
  • the flow rate of water vapor added to the oxygen-enriched gas of the upper suction type gasification section is about 180 kg/h, and the remaining steps are substantially the same as those of the embodiment 4, and the downdraft gasification section is used.
  • the central temperature is 720 ⁇ 800 °C
  • the middle temperature of the upper suction gasification section is 760 ⁇ 840 °C
  • the gas outlet temperature is 320 ⁇ 400 °C
  • the gas components are roughly in the range of 24. 8 ⁇ 27. 4vol% , 25. 6 ⁇ 28. 8vol%C0, 23. 3 ⁇ 25. 6vol%C0 2 , 3. 5 ⁇ 4 ⁇ 2vol%CH 4 , 0. 6 ⁇ 0 ⁇ 8vol%C 2 H m , 18. 7 ⁇ 8% ⁇ Lvol% N 2 , gasification efficiency of 78. 8%.
  • the charcoal having an average particle diameter of about 100 mm is used as a raw material, and the feed rate is about 200 kg/h, and the oxygen-rich gas having an oxygen-rich concentration of about 76.3% is used as a gasification medium.
  • the flow rate of the oxygen-enriched gas in the up-and-down gasification section is about 65 Nm 3 /h and 25 Nm 3 /h, respectively, and the water vapor flow rate added to the oxygen-enriched gas in the upper suction gasification section is about 120 kg/h.
  • the temperature distribution is similar to that of the embodiment 4.
  • the gas components are approximately in the range of 32. 8 ⁇ 36. 3vol%, 34. 6 ⁇ 37. 9vol%C0, 16. 1 ⁇ 18. 6vol%C0 2 , 1. 7 ⁇ 2 ⁇ 2vol%CH 4 , 0. 4 ⁇ 0 ⁇ 8vol%C 2 H m , 6. 7 ⁇ 8 ⁇ lvol%N 2 , the tar content is as low as the hard to detect range.
  • the biomass gasification process is divided into two stages: pre-gasification and post-gasification. In two stages, the gasification process of biomass feedstock and biomass coke, respectively, can realize the partition control and optimization of operating parameters. Increased flexibility and practicality of gasification technology.
  • the gasification form of the lower suction type gasification and the upper suction type gasification compound is adopted, which effectively reduces the tar content of the gas, and has a strong scale amplification capability, which greatly improves the quality of the gas and the applicable range of the gasifier.
  • the whole gasification system has the advantages of strong gas component adjustment ability and flexible temperature adjustment in various zones of the furnace, which greatly improves the application range and stability of the gasification furnace.
  • the method of mixing out gas can optimize the gas composition and improve the gasification efficiency at the same time.
  • the invention fully exerts the advantages of the down-suction type and the up-suction type gasification, and has the characteristics of low tar content, strong gas component regulation ability, strong load adaptability, stable operation, and the like, and has a large scale enlargement. Capability, can be widely used in gasification gas supply, gasification power generation, synthetic fuel, hydrogen preparation and other fields.

Abstract

本发明公开一种生物质混流式气化方法及其装置,其气化过程包括前气化阶段和后气化阶段,在前气化阶段,生物质物料采用下吸式气化工艺进行热解气化,在后气化阶段,生物质物料采用上吸式气化工艺进行热解气化,使在前气化阶段中尚未完全反应的生物质焦炭及部分燃气进入上吸式气化装置一起进行气化反应。应用本发明的生物质混流式气化新方法及其装置,使下吸式气化工艺和上吸式气化工艺得到优化组合,充分发挥了两种气化方式的优点,同时具有焦油含量低、气体组分调控能力强、负荷适应能力强、运行稳定等特点,并具有较强的规模放大能力,可广泛应用于供气、供热、发电、合成液体燃料等领域。

Description

一种生物质混流式气化方法及装置
技术领域
本发明涉及生物质热化学转化领域,尤其涉及一种生物质混流式气化方法及 装置。 背景技术
我国生物质资源储备非常丰富, 作为一种清洁环保的可再生能源, 其利用可 有效减轻对日益枯竭的化石燃料的需求压力,同时减缓大量使用化石燃料带来的 日益严重的环境问题。生物质气化可将生物质转化为可燃气,可进行供气、供热、 发电或合成液体燃料,是当前生物质利用的重要技术之一,具有广阔的应用前景。
气化炉是生物质气化工艺中的核心设备, 目前国内外常用的生物质气化炉主 要有流化床气化炉(包括鼓泡流化床和循环流化床)和固定床气化炉(包括上吸 式固定床和下吸式固定床)。 流化床的优点是连续运行能力强、 燃气质量稳定、 气化强度高, 适用于工业化大规模生产, 其缺点是粗燃气中灰尘含量高, 焦油含 量也偏高, 而且气化炉结构比较复杂, 需要使用粉碎的原料, 设备投资和运行成 本较高; 下吸式气化炉的主要优点是燃气中焦油含量低, 其主要缺点是生产强度 低, 规模放大能力较弱, 只适合小规模生产; 上吸式气化炉的主要优点是气化效 率高, 规模放大能力较强, 其主要缺点是粗燃气中焦油含量高; 与流化床气化炉 相比, 下吸式和上吸式气化炉结构简单, 易于操作, 原料适应性强, 设备投资成 本低, 但上吸式与下吸式气化炉各自的缺点限制了其应用领域。
授权公开号为 CN1354220A的中国发明专利公开了一种复合式生物质气化炉 及其燃气制备方法,该装置由一个下吸式生物质气化炉和一个生物质干馏炉连接 组成,利用下吸式气化炉的高温燃气对干馏炉内的农林废弃物进行热解干馏, 同 时农林废弃物对高温燃气中的焦油进行吸附清除, 以达到降低焦油、提高热能转 换效率和燃气热值的目的。 实际上, 该方法中的干馏炉类似于上吸式气化炉, 高 温燃气通过农林废弃物时, 部分焦油可被过滤清除, 然而, 生物质干馏过程中也 产生大量焦油, 混合于高温燃气中, 最终出口燃气的焦油含量并不一定降低。
授权公开号为 CN101164866A的中国发明专利公布了一种生物质分步式富氧 气化制备合成气的方法和装置,使用两个串联的反应器实现将热解和下吸式气化 两个过程分开,确实可以降低合成气中焦油含量, 但由于热解反应器需要外供热 源, 运行成本高, 经济性较差, 也未解决下吸式气化生产强度低的缺点, 难以真 正应用于实际生产中。
目前固定床气化工艺的改进多是气化设备的简单分离或组合,而很少针对下 吸式和上吸式气化各自的关键特点作改动,未能很好地解决下吸式气化强度低和 上吸式焦油含量高的问题, 所以实用性不强。
因此, 现有技术还有待于改进和发展。 发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种生物质混流式气化方 法及装置, 是一种焦油含量低、 规模放大能力较强、 并且气体组分调控能力强、 经济可行的混流式气化方法和装置, 旨在解决现有技术中所存在的问题。
本发明的技术方案如下:
一种生物质混流式气化装置,其中, 所述混流式气化装置包括混流式固定床 气化炉,所述混流式固定床气化炉由内部连通的下吸式气化段和上吸式气化段组 成; 在下吸式气化段的上端设置有生物质加料装置和一次气化剂入口, 上吸式气 化段的下端设置有炉排、一次气化剂入口和排灰装置; 所述混流式气化装置还包 括燃气出口,设置在从下吸式气化段的一次气化剂入口和上吸式气化段的一次气 化剂入口之间。
所述的生物质混流式气化装置,其中, 所述下吸式气化段和上吸式气化段为 圆截面或方形截面, 两气化段内部采用同截面或变截面结构;
所述下吸式气化段和上吸式气化段可为竖直连接、 水平连接或倾斜连接。 所述的生物质混流式气化装置,其中, 所述下吸式气化段的一次气化剂入口 与炉顶之竖直距离小于炉排与炉顶之竖直距离的 1/2; 所述上吸式气化段的一次 气化剂入口与气化炉顶部之竖直距离大于炉排与炉顶之竖直距离的 1/2。
所述的生物质混流式气化装置,其中, 下吸式气化段的一次气化剂入口与上 吸式气化段的一次气化剂入口之间可设置二次气化剂入口。
使用上述的生物质混流式气化装置的制备燃气的方法,其中,包括以下步骤: S100、前气化阶段: 将生物质原料通过加料装置加入下吸式气化段中, 同时 通过下吸式气化段的一次气化剂进入口鼓入气化剂, 进行热解气化;
S200、后气化阶段: 在前气化阶段尚未反应完全的生物质焦炭进入上吸式气 化段, 同时通过上吸式气化段的一次气化剂进入口鼓入气化剂, 继续热解气化。
所述的制备燃气的方法, 其中, 在前气化阶段, 气化剂由位于下吸式气化段 上端的一次气化剂入口进入炉内向下流动; 在后气化阶段, 气化剂由位于上吸式 气化段下端的一次气化剂入口进入上吸式气化段内向上流动。
所述的制备燃气的方法,其中, 可在前气化阶段或后气化阶段的二次气化剂 入口鼓入二次气化剂。 所述的制备燃气的方法, 其中, 所述气化剂为空气、 氧气或富氧空气。 所述的制备燃气的方法, 其特征在于, 所述气化剂中可添加有水蒸气。 所述的制备燃气的方法, 其中, 前气化阶段鼓入气化剂时, 气化介质流量约 为气化介质总流量的 50〜80%; 在后气化阶段通入气化剂时, 气化介质流量约为 气化介质总流量的 20〜50%。
有益效果: 本发明同时充分发挥了下吸式和上吸式气化的优点, 同时具有焦 油含量低、 气体组分调控能力强、 负荷适应能力强、 运行稳定等特点, 并具有较 强的规模放大能力, 可广泛应用于气化供气、 气化发电、 合成燃料、 氢气制备等 领域。 附图说明
图 1为本发明生物质混流式气化装置中轴纵剖面结构示意图。
图 1中, 1为加料装置, 2为气化炉顶参考高度, 3为下吸式气化段一 次气化剂入口, 4为下吸式气化段, 5为燃气出口, 6为下、 上吸式气化段分界, 7为上吸式气化段, 8为炉排, 9为上吸式气化段一次气化剂入口, 10为气化炉 底部参考高度, 11为排灰装置。
图 2为本发明生物质混流式气化工艺流程图。 具体实施方式
本发明提供一种生物质混流式气化方法及装置, 为使本发明的目的、技术方 案及效果更加清楚、 明确, 以下对本发明进一步详细说明。 应当理解, 此处所描 述的具体实施例仅仅用于解释本发明, 并不用于限定本发明。 本发明所提出的生物质混流式气化工艺方法,其气化过程包括前气化阶段和 后气化阶段, 在前气化阶段, 生物质物料采用下吸式气化工艺进行热解气化, 在 后气化阶段, 生物质物料采用上吸式气化工艺进行热解气化, 使在前气化阶段中 尚未完全反应的生物质焦炭及部分燃气进入上吸式气化装置一起进行气化反应。 前气化阶段和后气化阶段鼓入流动方向相反的气化剂,前气化阶段鼓入的一次气 化剂向下流动,后气化阶段鼓入的一次气化剂向上流动, 使前后气化阶段所产气 化气流动方向相反,整个气化过程为下吸式气化和上吸式气化结合的混流式气化 过程,最后产生的气化气从两气化段的一次气化剂入口之间排出。本发明的工艺 及物料流程如附图 2所示。
在本发明的气化工艺方法中, 前气化阶段进行热解气化的物料为生物质原 料, 通常使用尺寸较大的块状生物质, 粒径一般控制在 10mm〜100mm范围; 后气 化阶段进行热解气化的物料为前气化阶段中未完全反应的生物质焦炭,生物质焦 炭中 C元素含量一般在 8(kt%以上。
在本发明的气化工艺方法中, 可根据两种气化方式的特点及用气系统的要 求,通过前后气化阶段鼓入气化剂种类及流量配比的优化控制, 充分发挥两种气 化方式的优点, 优化气体组分, 提高气化效率。 气化剂一般使用空气、 氧气或富 氧空气,还可以根据需要在气化剂中添加水蒸气; 前气化阶段气化介质流量约为 气化介质总流量的 50〜80%, 后气化阶段气化介质流量约为气化介质总流量的 20〜50%, 水蒸气一般在后气化阶段使用。
为实现上述生物质混流式气化方法,本发明还提供一种生物质混流式气化装 置, 其结构如附图 1所示, 该混流式气化装置包括混流式固定床气化炉, 所述混 流式固定床气化炉由内部连通的下吸式气化段 4和上吸式气化段 7组成,下吸式 气化段 7为生物质原料的热解气化反应,上吸式气化段 4主要为生物质焦炭的热 解气化反应。在下吸式气化段 4的上端设置有生物质加料装置 1和一次气化剂入 口 3, 上吸式气化段 7的下端设置有炉排 8、 一次气化剂入口 9和排灰装置 11, 下吸式气化段 4与上吸式气化段 7的一次气化剂入口 3和一次气化剂入口 9之间 可设置二次气化剂入口; 所述下吸式气化段 4为生物质原料的热解气化反应, 上 吸式气化段 7主要为生物质焦炭的热解气化反应;燃气出口 5设置于两气化段的 一次气化剂入口 3和一次气化剂入口 9之间,用于排出所述下吸式气化段 4和上 吸式气化段 7所产的气化气。
在本发明生物质混流式气化装置中,生物质原料在下吸式气化段 4中进行快 速热解气化,气体中的焦油在经过下吸式气化段 4下部的高温区时, 大部分被裂 解成小分子永久气体,有利于降低燃气中的焦油含量, 由于下吸式气化段 4中未 设置炉排,燃气在炉内流动过程中的阻力比传统下吸式气化炉中明显减小, 有利 于设备的放大。下吸式气化过程中尚未完全反应的生物质焦炭进入上吸式气化段 7继续进行气化反应,与生物质原料相比,生物质焦炭中 C元素含量大幅度很高, 0和 H元素含量大幅度降低, 上吸式气化过程中产生的焦油显著减少, 克服了传 统上吸式气化炉中焦油含量高的缺点。
所述下吸式气化段 4和上吸式气化段 7为圆截面或方形截面,两气化段内部 可采用同截面或变截面结构, 两气化段的连接可采用同截面或变截面连接方式; 所述下吸式气化段 4内最大截面积大于或等于上吸式气化段 7内最大截面积;所 述下吸式气化段 4和上吸式气化段 7可以为竖直连接、水平连接或倾斜连接, 以 下吸式气化段 4底部与上吸式气化段 7顶部竖直连接为优。
所述下吸式气化段 Ί的一次气化剂入口 3为竖直高度最高的气化剂入口,其 与炉顶之竖直距离小于炉排 8与炉顶之竖直距离的 1/2, 由此鼓入的具有向下流 动方向的气化剂;所述上吸式气化段 4的一次气化剂入口 9为竖直高度最低的气 化剂入口, 其与气化炉顶部之竖直距离大于炉排 8与炉顶之竖直距离的 1/2, 由 此鼓入具有向上流动方向的气化剂;下吸式气化段与上吸式气化段可根据需要在 两气化段的一次气化剂入口之间设置二次气化剂入口。
气化气的燃气出口 5设置于两气化段的一次气化剂入口之间,燃气出口 5可 设置于同一高度,采用气化炉内边混合边出气的方式, 也可在不同高度设置出气 口, 采用先出气后混合的方式。
生物质在本气化装置中进行混流式气化的工艺过程和物料流程如附图 2 所 示,在前气化阶段, 生物质原料由加料装置 1加入下吸式气化段 4中进行快速热 解气化, 一次气化剂由位于气化炉上端的一次气化剂入口 3进入炉内向下流动; 若下吸式气化段 4与上吸式气化段 7的一次气化剂入口 3和一次气化剂入口 9之 间设置有二次气化剂入口,也可根据需要从一次气化剂入口 3下方的二次气化剂 入口通入二次气化剂; 尚未完全反应生物质焦炭进入上吸式气化段 7, 进行后气 化阶段的反应。在后气化阶段, 一次气化剂由位于气化炉下端的一次气化剂入口 9进入炉内向上流动, 也可根据需要由一次气化剂入口 9上方通入二次气化剂; 前气化阶段和后气化阶段所产气化气在炉内流向相反,可从两气化段的一次气化 剂入口 3和一次气化剂入口 9之间的燃气出口 5混合排出,也可在两气化段内分 别设置出气口,采用分开出气后混合的方式;后气化阶段所得灰渣从炉排 8落下, 由排灰装置 11排出。
本发明中下吸式气化段与上吸式气化段所产燃气采用混合出气方式,同时有 效地解决了下吸式气化段中出口燃气温度偏高和上吸式气化段中出口燃气温度 偏低的问题, 在优化气体组分的同时提高了气化效率。
实施例 1 :
以平均粒径约 50mm的木片为原料,通过加料装置 1加入下吸式气化段 4中, 加料速度约为 300〜350kg/h, 同时通过下吸式气化段一次气化剂进入口 3鼓入 空气, 流量速率分别为 240Nm3/h和 100Nm3/h左右。 木片在下吸式气化段 4内进 行热解气化, 该气化段中部温度为 730〜800°C ; 木片经过下吸式气化段后转化 为生物质焦炭, 尚未完全反应的生物质焦炭进入上吸式气化段继续气化, 该气化 段中部温度为 750〜830°C ; 该气化过程的燃气出口温度为 330〜400°C, 燃气各 组分大致范围为: 11. 7〜12. 8vol% , 19. 6〜24. 0vol%C0, 8. 3〜10. 6vol%C02, 1· 2〜1· 5vol%CH4, 0· 4〜0· 7vol%C2Hm, 45. 7〜51· lvol%N2, 气体热值为 4· 8〜 5. 4MJ/Nm3, 焦油含量为 613〜968mg/Nm3
实施例 2:
在与实施例 1 相同的气化装置中, 以木片为原料, 加料速度约为 550〜 600kg/h, 上下吸式气化段空气流量速率分别为 400Nm3/h和 180Nm3/h左右, 得到 的温度分布和燃气组分与实施例 1基本相同。
实施例 3:
将实施例 1 的气化装置放大, 木片加料速度增至 1500〜1600kg/h, 气化剂 按实施例 1等比例增加,其他步骤与实施例 1类似, 气化得到的温度分布和燃气 组分与实施例 1基本相同。
实施例 4:
在与实施例 1 相同的气化装置中, 以木片为原料, 加料速度约为 300〜 350kg/h, 以富氧浓度约为 46. 3%的富氧气体作为气化介质, 上下吸式气化段富 氧气体流量速率分别为 lOONmVh和 50Nm3/h左右,并在上吸式气化段的富氧气体 中添加温度约为 160°C的水蒸气, 水蒸气流量速率约为 100kg/h, 下吸式气化段 中部温度为 750〜850°C, 上吸式气化段中部温度为 780〜880°C, 燃气出口温度 为 350〜450°C,燃气各组分大致范围为: 16. 3〜18. 4vol% , 28. 6〜31. 8vol%C0, 14. 3〜16. 6vol%C02, 4. 5〜5. lvol%CH4, 0. 7〜0. 9vol%C2Hm, 29. 7〜33. lvol0氣 气化效率为 75. 0%。
实施例 5:
在与实施例 4相同的气化装置中,上吸式气化段的富氧气体中添加的水蒸气 流量速率约为 180kg/h, 其余步骤与实施例 4基本相同, 下吸式气化段中部温度 为 720〜800°C, 上吸式气化段中部温度为 760〜840°C, 燃气出口温度为 320〜 400 °C , 燃气各组分大致范围为: 24. 8〜27. 4vol% , 25. 6〜28. 8vol%C0, 23. 3〜 25. 6vol%C02, 3. 5〜4· 2vol%CH4, 0. 6〜0· 8vol%C2Hm, 18. 7〜21· lvol%N2, 气化效 率为 78. 8%。
实施例 6:
在与实施例 4相同的气化装置中, 以平均粒径约为 100mm的木炭为原料, 加 料速度约为 200kg/h, 以富氧浓度约为 76. 3%的富氧气体作为气化介质, 上下吸 式气化段富氧气体流量速率分别为 65Nm3/h和 25Nm3/h左右, 上吸式气化段的富 氧气体中添加的水蒸气流量速率约为 120kg/h,得到的温度分布与实施例 4类似, 燃气各组分大致范围为: 32. 8〜36. 3vol% , 34. 6〜 37. 9vol%C0, 16. 1〜 18. 6vol%C02, 1. 7〜2· 2vol%CH4, 0. 4〜0· 8vol%C2Hm, 6. 7〜8· lvol%N2, 焦油含量 低至难以检测范围。
应用于本发明的生物质混流式气化方法及其装置,使下吸式气化工艺和上吸 式气化工艺得到优化组合, 充分发挥了两种气化的优点, 使本发明具有以下突出 特点:
1、 把生物质气化过程分为前气化和后气化两个阶段, 在两个阶段分别是生 物质原料和生物质焦炭的气化过程, 可实现运行参数的分区控制和优化, 大大提 高了气化技术的灵活性和实用性。
2、 采用下吸式气化与上吸式气化复合的气化形式, 有效降低了燃气的焦油 含量,并具有较强的规模放大能力,大大改善了燃气的质量和气化炉的适用范围。
3、 通过气化剂配送系统的优化控制, 使整个气化系统同时具备气体组分调 节能力强和炉内各区域温度调节灵活的优点,大大提高了气化炉的适用范围和稳 定性。
4、 采用混合出气的方式, 可同时实现优化气体组分和提高气化效率。
总之,本发明同时充分发挥了下吸式和上吸式气化的优点, 同时具有焦油含 量低、 气体组分调控能力强、 负荷适应能力强、 运行稳定等特点, 并具有较强的 规模放大能力,可广泛应用于气化供气、气化发电、合成燃料、氢气制备等领域。
应当理解的是,本发明的应用不限于上述的举例, 对本领域普通技术人员来 说, 可以根据上述说明加以改进或变换, 所有这些改进和变换都应属于本发明所 附权利要求的保护范围。

Claims

权 利 要 求
、 一种生物质混流式气化装置, 其特征在于, 所述混流式气化装置包括混流式 固定床气化炉, 所述混流式固定床气化炉由内部连通的下吸式气化段和上吸 式气化段组成; 在下吸式气化段的上端设置有生物质加料装置和一次气化剂 入口, 上吸式气化段的下端设置有炉排、 一次气化剂入口和排灰装置; 所述 混流式气化装置还包括燃气出口, 设置在从下吸式气化段的一次气化剂入口 和上吸式气化段的一次气化剂入口之间。
、 根据权利要求 1所述的生物质混流式气化装置, 其特征在于, 所述下吸式气 化段和上吸式气化段为圆截面或方形截面, 两气化段内部采用同截面或变截 面结构; 所述下吸式气化段和上吸式气化段为竖直连接、 水平连接或倾斜连 接。
、 根据权利要求 1所述的生物质混流式气化装置, 其特征在于, 所述下吸式气 化段的一次气化剂入口与炉顶之竖直距离小于炉排与炉顶之竖直距离的 1/2; 所述上吸式气化段的一次气化剂入口与气化炉顶部之竖直距离大于炉排与炉 顶之竖直距离的 1/2。
、 根据权利要求 1所述的生物质混流式气化装置, 其特征在于, 下吸式气化段 的一次气化剂入口与上吸式气化段的一次气化剂入口之间可设置有二次气化 剂入口。
、 一种使用如权利要求 1所述的生物质混流式气化装置的制备燃气的方法, 其 特征在于, 包括以下步骤:
S100、 前气化阶段: 将生物质原料通过加料装置加入下吸式气化段中, 同时 通过下吸式气化段的一次气化剂进入口鼓入气化剂, 进行热解气化; S200、 后气化阶段: 在前气化阶段尚未反应完全的生物质焦炭进入上吸式气 化段, 同时通过上吸式气化段的一次气化剂进入口鼓入气化剂, 继续热解气 化。
6、 根据权利要求 5所述的制备燃气的方法, 其特征在于, 在前气化阶段, 气化 剂由位于下吸式气化段上端的一次气化剂入口进入下吸式气化段内向下流 动; 在后气化阶段, 气化剂由位于上吸式气化段下端的一次气化剂入口进入 上吸式气化段内向上流动。
7、 根据权利要求 5所述的制备燃气的方法, 其特征在于, 可在前气化阶段或后 气化阶段的二次气化剂入口鼓入二次气化剂。
8、 根据权利要求 5所述的制备燃气的方法, 其特征在于, 所述气化剂为空气、 氧气或富氧空气。
9、 根据权利要求 5所述的制备燃气的方法, 其特征在于, 所述气化剂中可添加 有水蒸气。
10、 根据权利要求 5所述的制备燃气的方法, 其特征在于, 前气化阶段鼓入气 化剂时, 气化介质流量为气化介质总流量的 50〜80%; 在后气化阶段通入气 化剂时, 气化介质流量为气化介质总流量的 20〜50%。
PCT/CN2012/071557 2011-05-20 2012-02-24 一种生物质混流式气化方法及装置 WO2012159469A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110132732.2 2011-05-20
CN2011101327322A CN102226105A (zh) 2011-05-20 2011-05-20 一种生物质混流式气化方法及装置

Publications (1)

Publication Number Publication Date
WO2012159469A1 true WO2012159469A1 (zh) 2012-11-29

Family

ID=44807103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071557 WO2012159469A1 (zh) 2011-05-20 2012-02-24 一种生物质混流式气化方法及装置

Country Status (2)

Country Link
CN (1) CN102226105A (zh)
WO (1) WO2012159469A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103333708A (zh) * 2013-07-10 2013-10-02 湖州师范学院 生物质螺旋振动电磁感应热解反应器及热解处理方法
CN106563505A (zh) * 2016-02-04 2017-04-19 太原理工大学 一种煤气化用催化剂,其制备方法及其应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226105A (zh) * 2011-05-20 2011-10-26 中国科学院广州能源研究所 一种生物质混流式气化方法及装置
WO2015061936A1 (zh) * 2013-10-28 2015-05-07 任杰 一种可调式燃气发生器
CN104017608B (zh) * 2014-05-14 2017-03-15 上海尧兴投资管理有限公司 射流床煤制合成气气化炉
CN104006389A (zh) * 2014-06-17 2014-08-27 芜湖昌能环保技术有限公司 垃圾热解气化焚烧方法及系统
CN104152184B (zh) * 2014-08-11 2016-05-04 哈尔滨工业大学 生物质旋风热解-悬浮燃烧复合气化装置及其气化方法
CN104711027A (zh) * 2015-03-13 2015-06-17 罗世学 预燃除焦油的煤气制备方法
CN107474881A (zh) * 2017-07-13 2017-12-15 吴植仁 带活化段、两次气化的生物质颗粒下吸式气炭炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354220A (zh) * 2000-11-22 2002-06-19 中国科学技术大学 一种复合式生物质气化炉及其燃气制备方法
CN1583956A (zh) * 2004-06-02 2005-02-23 中国科学院广州能源研究所 生物质混合气化工艺方法及其装置
KR100952609B1 (ko) * 2009-09-16 2010-04-15 한국기계연구원 상하향 통풍식 복합 가스화 장치
CN201447461U (zh) * 2009-03-20 2010-05-05 徐州燃控科技股份有限公司 一种带焦油回燃的固定床秸秆气化装置
CN102226105A (zh) * 2011-05-20 2011-10-26 中国科学院广州能源研究所 一种生物质混流式气化方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805638B (zh) * 2010-04-06 2013-07-10 山东省科学院能源研究所 一种生物质气化方法
CN102031150B (zh) * 2010-12-31 2013-05-22 中国科学院广州能源研究所 一种有机固体废弃物双固定床气化装置及其处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354220A (zh) * 2000-11-22 2002-06-19 中国科学技术大学 一种复合式生物质气化炉及其燃气制备方法
CN1583956A (zh) * 2004-06-02 2005-02-23 中国科学院广州能源研究所 生物质混合气化工艺方法及其装置
CN201447461U (zh) * 2009-03-20 2010-05-05 徐州燃控科技股份有限公司 一种带焦油回燃的固定床秸秆气化装置
KR100952609B1 (ko) * 2009-09-16 2010-04-15 한국기계연구원 상하향 통풍식 복합 가스화 장치
CN102226105A (zh) * 2011-05-20 2011-10-26 中国科学院广州能源研究所 一种生物质混流式气化方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103333708A (zh) * 2013-07-10 2013-10-02 湖州师范学院 生物质螺旋振动电磁感应热解反应器及热解处理方法
CN103333708B (zh) * 2013-07-10 2015-03-25 湖州师范学院 生物质螺旋振动电磁感应热解反应器及热解处理方法
CN106563505A (zh) * 2016-02-04 2017-04-19 太原理工大学 一种煤气化用催化剂,其制备方法及其应用

Also Published As

Publication number Publication date
CN102226105A (zh) 2011-10-26

Similar Documents

Publication Publication Date Title
WO2012159469A1 (zh) 一种生物质混流式气化方法及装置
CN101245264B (zh) 单床自热式热解气化燃烧反应器及热解气化燃烧方法
CN103305285B (zh) 一种生物质三段式气化制取低焦油高热值可燃气的装置及方法
CN102703131B (zh) 一种用于宽粒径分布燃料的两段气化方法及其气化装置
CN102676236B (zh) 一种三段分离式生物质气化方法及装置
CN108048140B (zh) 一种热解与气化耦合联产油气的方法和装置
CN102191089A (zh) 两段式高温预热蒸汽生物质气化炉
CN107760377B (zh) 流化床和固定床组合式煤催化气化反应装置及其方法
CN107760384B (zh) 高效的煤催化气化制富甲烷合成气的装置及其方法
CN102277200A (zh) 粉煤分级气化制取煤气的方法
CN102604683A (zh) 一种联产合成气和煤焦油的方法
CN201241071Y (zh) 单床自热式热解气化燃烧反应器
CN106590761A (zh) 煤催化气化制富甲烷合成气的流化床反应装置及反应方法
CN205035331U (zh) 一种用于褐煤气化制还原气的装置
CN207072928U (zh) 一种热解与气化解耦气化炉
CN107760385B (zh) 流化床和熔融床相组合的煤气化装置及其方法
CN110240943B (zh) 一种组合式进料制备合成气的工艺及装置
CN203307297U (zh) 一种生物质三段式气化制取低焦油高热值可燃气的装置
CN107267218A (zh) 固体燃料热解气化的方法及系统
CN205295251U (zh) 固体废弃物两段热解气化系统
KR20140080453A (ko) 열 교환기가 구비된 순환 유동층 가스화기
CN107723009A (zh) 一种固体有机质气化反应器
CN109294625B (zh) 流态化气化的预氧化反应器
CN1118544C (zh) 煤基两段组合式气化工艺及其装置
CN103193202A (zh) 一种生物质链式循环制氢装置及其工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12788708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12788708

Country of ref document: EP

Kind code of ref document: A1