WO2012157861A2 - Electromagnetic continuous casting apparatus for producing a silicon ingot - Google Patents

Electromagnetic continuous casting apparatus for producing a silicon ingot Download PDF

Info

Publication number
WO2012157861A2
WO2012157861A2 PCT/KR2012/003429 KR2012003429W WO2012157861A2 WO 2012157861 A2 WO2012157861 A2 WO 2012157861A2 KR 2012003429 W KR2012003429 W KR 2012003429W WO 2012157861 A2 WO2012157861 A2 WO 2012157861A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat resistant
heat
continuous casting
electromagnetic continuous
connecting member
Prior art date
Application number
PCT/KR2012/003429
Other languages
French (fr)
Korean (ko)
Other versions
WO2012157861A3 (en
Inventor
이재홍
이재욱
조성대
장용수
Original Assignee
주식회사 케이씨씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이씨씨 filed Critical 주식회사 케이씨씨
Publication of WO2012157861A2 publication Critical patent/WO2012157861A2/en
Publication of WO2012157861A3 publication Critical patent/WO2012157861A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/001Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/007Mechanisms for moving either the charge or the heater
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2277/00Applications of particle accelerators
    • H05H2277/14Portable devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a structure for connecting electrodes of a transported plasma arc torch used as an auxiliary heat source in an electromagnetic continuous casting device producing silicon ingots. More specifically, the present invention relates to an electromagnetic continuous casting device that connects an electrode of a transfer plasma arc torch to a heat resistant member and limits the height of the heat resistant member to improve the quality of the silicon ingot.
  • a silicon wafer used as a substrate of a solar cell is manufactured by thinly cutting a unidirectional solidified ingot of silicon, the quality and cost of the silicon wafer depends on the quality and cost of the silicon ingot. Therefore, in order to improve the quality of the silicon wafer and lower the cost, it is necessary to lower the cost of manufacturing a high quality one-way solidified silicon ingot, and as a method thereof, an electromagnetic continuous casting method without loss of mold is used.
  • the electromagnetic continuous casting method uses a bottom open type continuous casting cold crucible made of an induction coil and a conductive material (typically using oxygen-free copper).
  • the cold crucible has a structure in which at least a portion thereof is divided into several segments by longitudinal slits in the circumferential direction, and has a water-cooled structure in which cooling water passes inside to solidify the molten metal and protect the cold crucible.
  • the slit formed in the longitudinal direction transmits the magnetic field generated by the high frequency current flowing through the induction coil to the inside of the crucible to generate the induction current in the melted raw material.
  • electromagnetic force is generated toward the inside of the cold crucible to reduce the contact between the raw material and the inner wall of the cold crucible.
  • the unidirectional solidification ingot of silicon can be continuously produced by lowering the dissolved silicon solution while solidifying it under the cold crucible and continuing supplying the raw material.
  • silicon which is a raw material
  • silicon is a semiconductor material having a very high melting point and low electrical conductivity, and has a large cooling effect due to radiant heat emission, but a small heating effect due to induction heating, so that the charging raw material can be efficiently continuous.
  • Effective dissolution of the heating source is required.
  • the auxiliary solid heat source for the plasma arc is applied to heat the charged solid material to 1414 ° C, which is the melting temperature. The heating and melting process up to the melting temperature of the charging material should be carried out continuously.
  • an electrode In order to use the transported plasma arc torch as an auxiliary heat source, an electrode must be connected.
  • one of the electrodes is connected to the torch, and the other is directly connected to the solidified silicon ingot through the portion where the slow cooling furnace is located. .
  • this method can generate an arc between the silicon ingot and the electrode.
  • a portion of the slow cooling furnace is not located at the portion where the electrode is connected, so that it is impossible to impart proper slow cooling conditions to the silicon ingot. As a result, damage or contamination may occur to the silicon ingot, and the purity of the silicon ingot may be caused.
  • the present invention has been made to solve the above problems, the first object of the present invention is to prevent the electrode of the transfer plasma arc torch is in direct contact with the silicon ingot to prevent cracking and contamination of the silicon ingot, silicon ingot It is to provide an electromagnetic continuous casting device for imparting the appropriate slow cooling conditions.
  • a second object of the present invention is to provide an electromagnetic continuous casting apparatus for producing high quality silicon ingots while limiting the height of the heat resistant member supporting the grown silicon ingots while reducing the investment cost of the production equipment of the silicon ingots.
  • Electromagnetic continuous casting device according to an embodiment of the present invention
  • a heat resistant member (silicon supplied to the upper surface of the heat resistant member) Raw material is melted and solidified to grow silicon ingot);
  • a connection member connected to the heat resistant member to extend downward from the heat resistant member;
  • a drawing device connected to the connection member to move the heat resistant member up and down, wherein an electrode of the transfer plasma arc torch is connected to the heat resistant member, and the drawing device includes the heat resistant member as the silicon ingot grows. It characterized in that to move downward.
  • the electromagnetic continuous casting device may further include an insulating layer positioned between the heat resistant member and the connection member to electrically insulate them.
  • connection member may include: a first connection member connected to the heat resistant member under the heat resistant member; And a second connecting member connected to the first connecting member under the first connecting member, wherein the electromagnetic continuous casting apparatus is located between the first connecting member and the second connecting member to electrically connect them. It may further include an insulating layer to insulate.
  • the electromagnetic continuous casting apparatus further includes cooling means provided in the connecting member to cool the connecting member, and the height h of the heat resistant member is preferably 300 to 2000 mm.
  • the heat resistant member may include a heat resistant nonmetal part having an upper surface contacting the silicon ingot; And a heat resistant metal part having an upper part connected to the heat resistant non-metal part and a lower part connected to the connection member.
  • the electrode of the transfer plasma arc torch may be connected to the heat resistant non-metal part.
  • the electromagnetic continuous casting apparatus may further include an insulating layer positioned between the heat resistant non-metal part and the heat resistant metal part to electrically insulate them.
  • the electromagnetic continuous casting apparatus may further include an insulating layer positioned between the heat resistant metal part and the connection member to electrically insulate them.
  • connection member may include: a first connection member connected to the heat resistant metal part under the heat resistant metal part; And a second connecting member connected to the first connecting member under the first connecting member, wherein the electromagnetic continuous casting apparatus is located between the first connecting member and the second connecting member to electrically connect them. It may further include an insulating layer to insulate.
  • the electrode of the transfer plasma arc torch may be connected to the heat resistant metal part.
  • the electromagnetic continuous casting apparatus may further include an insulating layer positioned between the heat resistant metal part and the connection member to electrically insulate them.
  • connection member may include: a first connection member connected to the heat resistant metal part under the heat resistant metal part; And a second connecting member connected to the first connecting member under the first connecting member, wherein the electromagnetic continuous casting apparatus is located between the first connecting member and the second connecting member to electrically connect them. It may further include an insulating layer to insulate.
  • the said heat resistant nonmetal part contains carbon, graphite, or these compounds.
  • the heat resistant metal part includes molybdenum (Mo), tungsten (W) or stainless steel.
  • a heat resistant member (silicon supplied to the upper surface of the heat resistant member) Raw material is melted and solidified to grow silicon ingot);
  • a first connection member connected to the heat resistant member to extend downward from the heat resistant member;
  • a second connecting member connected to the first connecting member to extend downward from the first connecting member;
  • a drawing device connected to the second connecting member to move the heat resistant member up and down, wherein an electrode of the transfer plasma arc torch is connected to the first connecting member, and the drawing device is formed by a silicon ingot growing. Accordingly, the heat resistant member is moved downward.
  • the electromagnetic continuous casting apparatus may further include an insulating layer positioned between the first connection member and the second connection member to electrically insulate them.
  • the electromagnetic continuous casting device Due to the configuration as described above, the electromagnetic continuous casting device according to an embodiment of the present invention has the following effects.
  • the electrodes of the transfer plasma arc torch are not in direct contact with the silicon ingot so that cracking and contamination of the silicon ingot can be prevented.
  • FIG. 1 is a view showing the configuration of an electromagnetic continuous casting device according to an embodiment of the present invention.
  • FIG. 2 is a view showing a configuration in which the electrode of the transfer plasma arc torch in the electromagnetic continuous casting apparatus according to another embodiment of the present invention.
  • FIG 3 is a view showing a configuration in which the electrode of the transfer plasma arc torch in the electromagnetic continuous casting apparatus according to another embodiment of the present invention.
  • FIG. 4 is a graph showing a change in plasma voltage and an ingot crack ratio according to a height of a heat resistant member in an electromagnetic continuous casting apparatus according to an exemplary embodiment of the present invention.
  • FIG. 1 is a view showing the configuration of an electromagnetic continuous casting device according to an embodiment of the present invention.
  • a casting atmosphere is maintained in the chamber 1, and inert gas is circulated through the gas inlet 13 and the gas outlet 14.
  • the crucible 3 can be made of a conductive material such as oxygen-free copper, has a structure in which cooling water can flow through the inside, and uses an induction coil 2 and a plurality of plasma arc torches 10 as heating sources. .
  • the raw material inlet 11 is disposed above the bottomless crucible 3, and the silicon raw material 5 is adjusted at an appropriate speed and charged into the bottomless crucible 3.
  • the plurality of plasma arc torch 10 is disposed above the bottom crucible 3 and may be configured to be transferable and / or non-transferable.
  • the heat source by the plasma jet gas applied from the plurality of plasma arc torches 10 to the surface of the molten metal 4 applies the heat of fusion necessary for dissolving the continuously charged raw material 5 evenly to the surface.
  • the initial raw material 5 is dissolved by plasma arc heating to form the surface of the molten metal 4, and the center portion of the surface of the molten metal 4 is affected by the electromagnetic pressure caused by the induction coil 2. Elevated The silicon ingot 6 is cooled past the lower end of the induction coil 2 to form a shell by radiative cooling of the crucible 3, wherein the silicon ingot 6 is concave with a liquid-liquid interface.
  • the silicon ingot 6 grows on the upper surface of the heat resistant member 7.
  • the heat resistant member 7 is positioned inside the slow cooling furnace 12, and the initial raw material 5 is disposed on the upper surface of the heat resistant member 7.
  • the heat-resistant member 7 is connected to the extraction apparatus 18 which can move the heat-resistant member 7 up and down.
  • connection member 15 which connects the heat resistant member 7 and the drawing device 18, and on the connecting member 15 cooling means for cooling it (not shown) Not included).
  • the cooling means various known methods may be used, and the cooling means may be a channel or a jacket for cooling the connection member 15 with cooling water.
  • the cooling water used in the cooling means provided in the connecting member 15 is preferably 1 M ⁇ or more.
  • the connection member 15 may include a first connection member 16 connected to the heat resistant member 7 at the top and a second connection member 17 connected to the first connection member 16 at the top.
  • the initial raw material 5 is melted by the heat source of the plasma arc torch 10
  • an induction current is applied to the induction coil 2 so that the silicon melt 4 located inside the crucible is heated, and the raw material inlet 11 of the upper part is heated.
  • the silicon raw material 5 may be continuously introduced through the same, and the heat resistant member 7 may be taken out by the extraction device 18 to maintain a constant height of the molten silicon 4.
  • the electrode 20 of the transfer plasma arc torch 10 is connected to a heat resistant member 7. As a result, arcing is prevented between the electrode 20 and the silicon ingot 6, and a part of the slow cooling furnace 12 does not need to be omitted, so that appropriate slow cooling conditions can be given to the silicon ingot.
  • the insulating layer 19 which electrically insulates the heat resistant member 7 and the extraction apparatus 18 is provided.
  • the insulating layer 19 is shown between the heat resistant member 7 and the connecting member 15, but the insulating layer 19 includes the first connecting member 16 and the second connecting member 17.
  • the insulating layer 19 may be located at any position for insulating the current flowing to the drawing device 18.
  • the insulating layer 19 may be made of a known material to insulate electricity.
  • the heat resistant member 7 consists of a heat resistant non-metal part 8 which contacts the silicon ingot 6 at the upper part, and the heat resistant metal part 9 which is connected with the 1st connection member 16 in the lower part.
  • the heat resistant nonmetal part 8 consists of carbon, graphite, or a compound thereof
  • the heat resistant metal part 9 consists of molybdenum (Mo), tungsten (W), or stainless steel.
  • the electrode 20 of the transportable plasma arc torch 10 penetrates the heat resistant metal part 9 from below and is connected with the heat resistant nonmetal part 8.
  • the electrode 20 does not penetrate the heat resistant metal part 9 and is directly heat resistant. It may be connected to the nonmetal part 8.
  • the electrode 20 may be connected to the heat resistant metal part 9.
  • an insulating layer 19 is positioned between the heat resistant non-metal part 8 and the extraction device 18 to prevent a current flowing into the drawing device 18. That is, the insulating layer 19 may be formed between the heat resistant non-metal part 8 and the heat resistant metal part 9, between the heat resistant metal part 9 and the connection member 15, or between the first connection member 16 and the second connection member ( 17) may be located between.
  • the insulating layer 19 is between the heat resistant metal part 9 and the connection member 15 or the first connection member 16 and the second connection member 17. ) May be positioned between.
  • FIG. 3 is a view showing a configuration in which the electrode 20 of the transfer plasma arc torch 10 is connected in the electromagnetic continuous casting apparatus according to another embodiment of the present invention.
  • the electrode 20 of the transfer plasma arc torch 10 is connected to the first connecting member 16.
  • the insulating layer 19 must be positioned between the first connecting member 16 and the second connecting member 17.
  • the height h of the heat resistant member 7 is preferably 300 to 2000 mm.
  • the silicon ingot 6 is adjacent to the cooling means of the connecting member 15, so that it can be quenched under the cooling effect, so that the internal crack is May occur.
  • the height h of the heat resistant member 7 is longer than 2000 mm, the height h of the heat resistant member 7 increases, and the investment cost and operating cost which enter into an installation increase.
  • FIG. 4 is a graph showing a change in plasma voltage and an ingot crack ratio according to the height h of the heat resistant member 7 in the electromagnetic continuous casting apparatus according to an embodiment of the present invention.
  • Comparative Examples and Examples will be described. The effect according to the height h of the heat resistant member 7 is examined through.
  • a plasma heating source composed of four plasma arc torch 10 bundles was placed on the top of the crucible 3 and a raw material inlet 11 having an outer diameter of 45 mm was disposed at the center of the four plasma arc torch 10.
  • Each plasma arc torch 10 has an outer diameter of 60 mm and a length of 800 mm and is capable of both feed and / or non-feed operation.
  • Each torch is positioned so that the nozzle bottom of each torch is spaced 260 mm from the bottom of the crucible 3, the crucible 3 has a dimension of 345 ⁇ 345 mm, a height of 540 mm, and 48 slits.
  • the solid silicon block for forming the initial molten metal 4 has a dimension of 300 ⁇ 150 mm, a height of 140 mm, and two initial raw materials 5 are disposed on the top surface of the heat resistant member 7 in the crucible 3.
  • the heat-resistant nonmetal part 8 for contacting the electrode 20 of the transfer plasma arc torch 10 was made of graphite material.
  • the heat resistant non-metal part 8 can be drawn into the bottom crucible 3 and has a dimension of 344.5 x 344.5 mm.
  • the heat resistant metal part 9 was located at the bottom, and the sum h of the heights of the heat resistant nonmetal part 8 and the heat resistant metal part 9 was 2,000 mm, 800 mm, and 300 mm, respectively.
  • the electrical state of the heat resistant non-metal part 8 and the heat resistant metal part 9 is an insulated state, and the connection member 15 is located at the bottom of the heat resistant metal part 9.
  • the height h of the heat resistant non-metal part 8 and the heat resistant metal part 9 was 245 mm, 200 mm, and 150 mm, respectively.
  • the results according to FIG. 4 show that the charging and casting at a rate of 2.0 mm / min, the total length of the silicon ingot 6 to 1,000 mm, and the total length of the plasma voltage V and the silicon ingot 6 at the same current Measure the ingot crack ratio for, but exclude the 200mm of the upper part including the length of the section of the total withdrawal material loading and withdrawal.
  • the crack ratio (%) of the silicon ingot 6 according to the sum (h) of the heights of the heat resistant non-metal part 8 and the heat resistant metal part 9 did not occur at 300 mm, 800 mm, and 2,000 mm in the examples. In the 150 mm, 200 mm, and 250 mm sections of the example, it can be observed that as the sum (h) of the heights of the heat resistant nonmetal part 8 and the heat resistant metal part 9 decreases, the ratio of cracks increases.
  • the sum h of the heights of the heat resistant non-metal part 8 and the heat resistant metal part 9 is 300 to 300. It is preferable to comprise 2000mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention relates to a structure for connecting an electrode of a transportable plasma arc torch used as an auxiliary heat source in an electromagnetic continuous casting apparatus for producing a silicon ingot. The According to one embodiment of the electromagnetic continuous casting apparatus of the present invention, in which a silicon ingot is produced using a transportable plasma arc torch as an auxiliary heat source when a silicon raw material is supplied from a raw material input hole defined in an upper portion of a chamber, includescomprises: a heat heat-resistant member (the supplied silicon raw material is melted and coagulated on a top surface of the heat said heat-resistant member to grow form a silicon ingot); a connection member connected to said heat-the heat resistant member to extend downward from said heat-the heat resistant member; and a withdrawal device connected to the said connection member to vertically move said heat-the heat resistant member. The Said electrode of the transportable plasma arc torch is connected to said heat-the heat resistant member, and the said withdrawal device moves said heat-the heat resistant member downward as the silicon ingot is grownformed.

Description

실리콘 잉곳을 생산하는 전자기 연속 주조 장치Electromagnetic Continuous Casting Device to Produce Silicon Ingots
본 발명은 실리콘 잉곳을 생산하는 전자기 연속 주조 장치에서 보조 열원으로 사용되는 이송식 플라즈마 아크 토치의 전극을 연결하는 구조에 관한 것이다. 보다 구체적으로, 본 발명은 이송식 플라즈마 아크 토치의 전극을 내열성 부재에 연결하고, 내열성 부재의 높이를 한정하여 실리콘 잉곳의 품질을 향상시키는 전자기 연속 주조 장치에 관한 것이다.The present invention relates to a structure for connecting electrodes of a transported plasma arc torch used as an auxiliary heat source in an electromagnetic continuous casting device producing silicon ingots. More specifically, the present invention relates to an electromagnetic continuous casting device that connects an electrode of a transfer plasma arc torch to a heat resistant member and limits the height of the heat resistant member to improve the quality of the silicon ingot.
태양전지의 기판으로 사용되는 실리콘 웨이퍼는 실리콘의 일 방향 응고 잉곳을 얇게 절단하여 제조되므로, 실리콘 웨이퍼의 품질 및 비용은 실리콘 잉곳의 품질 및 비용에 의해 좌우된다. 따라서, 실리콘 웨이퍼의 품질을 높이고, 비용을 낮추기 위해서는 고품질의 일 방향 응고 실리콘 잉곳을 제조하는 비용을 낮추어야 하며, 이에 대한 방법으로서 주형의 손실이 없는 전자기 연속 주조법이 사용되고 있다.Since a silicon wafer used as a substrate of a solar cell is manufactured by thinly cutting a unidirectional solidified ingot of silicon, the quality and cost of the silicon wafer depends on the quality and cost of the silicon ingot. Therefore, in order to improve the quality of the silicon wafer and lower the cost, it is necessary to lower the cost of manufacturing a high quality one-way solidified silicon ingot, and as a method thereof, an electromagnetic continuous casting method without loss of mold is used.
전자기 연속 주조법은 유도코일과 도전성 소재(일반적으로 무산소동을 사용함)로 제작한 하부 개방형의 연속 주조용 냉도가니가 사용된다. 냉도가니는 둘레 방향으로 적어도 일부분이 종 방향의 슬릿들에 의해 여러 개의 세그먼트로 분할된 구조이며, 용탕의 응고와 냉도가니의 보호를 위하여 내부로 냉각수가 통과하는 수냉 구조로 되어 있다. 이와 같이 종 방향으로 형성된 슬릿은 유도코일에 흐르는 고주파의 전류에 의해 발생하는 자기장을 냉도가니 내부까지 투과시켜 용해원료에 유도전류를 발생시키게 되는데, 이에 따른 주울 가열효과로 연속적으로 공급되는 장입 원료를 가열하여 용해시킬 뿐 아니라, 냉도가니의 내부 쪽으로 전자기력을 발생시켜 용해원료와 냉도가니 내측 벽면의 접촉을 경감시킨다. 용해된 실리콘 용액을 냉도가니의 하방으로 응고시키면서 하강시키고, 원료를 계속 공급함으로써 실리콘의 일방향 응고 잉곳이 연속적으로 제조될 수 있다.The electromagnetic continuous casting method uses a bottom open type continuous casting cold crucible made of an induction coil and a conductive material (typically using oxygen-free copper). The cold crucible has a structure in which at least a portion thereof is divided into several segments by longitudinal slits in the circumferential direction, and has a water-cooled structure in which cooling water passes inside to solidify the molten metal and protect the cold crucible. The slit formed in the longitudinal direction transmits the magnetic field generated by the high frequency current flowing through the induction coil to the inside of the crucible to generate the induction current in the melted raw material. In addition to heating and dissolving, electromagnetic force is generated toward the inside of the cold crucible to reduce the contact between the raw material and the inner wall of the cold crucible. The unidirectional solidification ingot of silicon can be continuously produced by lowering the dissolved silicon solution while solidifying it under the cold crucible and continuing supplying the raw material.
이러한 전자기 연속 주조법에 있어서, 원료인 실리콘은 융점이 매우 높고, 전기전도도가 낮은 반도체 재료로서, 복사열 방출로 인한 냉각효과는 크지만, 유도 발열로 인한 가열효과는 작기 때문에, 장입 원료를 효율적으로 연속 용해하기 위해 가열원의 효과적인 공급이 필요하다. 가열원의 공급을 위해 플라즈마 아크 병용의 보조열원을 인가하여 장입된 고상의 소재를 용융온도인 1414℃까지 가열하고, 이후 표면에 용융이 발생하면 액상으로 상변화를 일으키는 융해열을 가하여 지속적으로 투입되는 장입 원료의 용융온도까지의 가열 및 융해과정이 연속적으로 이루어지도록 해야 한다.In this electromagnetic continuous casting method, silicon, which is a raw material, is a semiconductor material having a very high melting point and low electrical conductivity, and has a large cooling effect due to radiant heat emission, but a small heating effect due to induction heating, so that the charging raw material can be efficiently continuous. Effective dissolution of the heating source is required. In order to supply the heating source, the auxiliary solid heat source for the plasma arc is applied to heat the charged solid material to 1414 ° C, which is the melting temperature. The heating and melting process up to the melting temperature of the charging material should be carried out continuously.
보조 열원으로서 이송식 플라즈마 아크 토치를 사용하기 위해서는 전극이 연결되어야 하는데, 종래에는 전극 중 한쪽을 토치에 연결하고, 나머지 한쪽은 서냉로가 위치하는 부분을 통해 응고된 실리콘 잉곳과 직접 접촉되도록 연결하였다. 그러나, 이러한 방법은 실리콘 잉곳과 전극 간에 아크를 발생시킬 수 있다. 또한, 전극이 연결되는 부분에는 서냉로의 일부가 위치하지 못하게 되어 실리콘 잉곳에 적절한 서냉 조건을 부여하지 못하게 된다. 이에 의해 실리콘 잉곳에 손상 또는 오염이 발생할 수 있고, 실리콘 잉곳의 순도 저하를 초래할 수도 있다.In order to use the transported plasma arc torch as an auxiliary heat source, an electrode must be connected. In the related art, one of the electrodes is connected to the torch, and the other is directly connected to the solidified silicon ingot through the portion where the slow cooling furnace is located. . However, this method can generate an arc between the silicon ingot and the electrode. In addition, a portion of the slow cooling furnace is not located at the portion where the electrode is connected, so that it is impossible to impart proper slow cooling conditions to the silicon ingot. As a result, damage or contamination may occur to the silicon ingot, and the purity of the silicon ingot may be caused.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 제1목적은 이송식 플라즈마 아크 토치의 전극이 실리콘 잉곳에 직접 접촉되지 않게 하여 실리콘 잉곳의 크랙 및 오염을 방지하고, 실리콘 잉곳에 대해 적절한 서냉 조건을 부여하는 전자기 연속 주조 장치를 제공하는 것이다.The present invention has been made to solve the above problems, the first object of the present invention is to prevent the electrode of the transfer plasma arc torch is in direct contact with the silicon ingot to prevent cracking and contamination of the silicon ingot, silicon ingot It is to provide an electromagnetic continuous casting device for imparting the appropriate slow cooling conditions.
본 발명의 제2목적은 성장되는 실리콘 잉곳을 지지하는 내열성 부재의 높이를 한정하여 실리콘 잉곳의 생산 설비 투자비용을 절감하면서 고품질의 실리콘 잉곳을 생산하는 전자기 연속 주조 장치를 제공하는 것이다.A second object of the present invention is to provide an electromagnetic continuous casting apparatus for producing high quality silicon ingots while limiting the height of the heat resistant member supporting the grown silicon ingots while reducing the investment cost of the production equipment of the silicon ingots.
본 발명의 일 실시예에 따른 전자기 연속 주조 장치는,Electromagnetic continuous casting device according to an embodiment of the present invention,
챔버 상부의 원료 투입구로부터 공급되는 실리콘 원료의 융액 형성시 이송식 플라즈마 아크 토치를 보조 열원으로 사용하여 실리콘 잉곳을 생산하는 전자기 연속 주조 장치에 있어서, 내열성 부재(상기 내열성 부재의 상부면에는 공급된 실리콘 원료가 용융 및 응고되어 실리콘 잉곳이 성장한다); 상기 내열성 부재로부터 하향으로 연장되도록 상기 내열성 부재와 연결된 연결 부재; 및 상기 연결 부재와 연결되어 상기 내열성 부재를 상하로 이동시키는 인출 장치를 포함하되, 상기 이송식 플라즈마 아크 토치의 전극은 상기 내열성 부재에 연결되며, 상기 인출 장치는 실리콘 잉곳이 성장함에 따라 상기 내열성 부재를 하향으로 이동시키는 것을 특징으로 한다.In the electromagnetic continuous casting apparatus for producing a silicon ingot using a transfer plasma arc torch as an auxiliary heat source when forming a melt of the silicon raw material supplied from the raw material inlet in the upper portion of the chamber, a heat resistant member (silicon supplied to the upper surface of the heat resistant member) Raw material is melted and solidified to grow silicon ingot); A connection member connected to the heat resistant member to extend downward from the heat resistant member; And a drawing device connected to the connection member to move the heat resistant member up and down, wherein an electrode of the transfer plasma arc torch is connected to the heat resistant member, and the drawing device includes the heat resistant member as the silicon ingot grows. It characterized in that to move downward.
상기 전자기 연속 주조 장치는, 상기 내열성 부재와 상기 연결 부재 사이에 위치하여 이들을 전기적으로 절연시키는 절연층을 더 포함할 수 있다.The electromagnetic continuous casting device may further include an insulating layer positioned between the heat resistant member and the connection member to electrically insulate them.
상기 연결 부재는, 상기 내열성 부재의 하부에서 상기 내열성 부재와 연결되는 제1연결 부재; 및 상기 제1연결 부재의 하부에서 상기 제1연결 부재와 연결되는 제2연결 부재를 포함하되, 상기 전자기 연속 주조 장치는, 상기 제1연결 부재와 상기 제2연결 부재 사이에 위치하여 이들을 전기적으로 절연시키는 절연층을 더 포함할 수 있다.The connection member may include: a first connection member connected to the heat resistant member under the heat resistant member; And a second connecting member connected to the first connecting member under the first connecting member, wherein the electromagnetic continuous casting apparatus is located between the first connecting member and the second connecting member to electrically connect them. It may further include an insulating layer to insulate.
상기 전자기 연속 주조 장치는, 상기 연결 부재에 구비되어 상기 연결 부재를 냉각시키는 냉각 수단을 더 포함하되, 상기 내열성 부재의 높이(h)는, 300 내지 2000mm인 것이 바람직하다.The electromagnetic continuous casting apparatus further includes cooling means provided in the connecting member to cool the connecting member, and the height h of the heat resistant member is preferably 300 to 2000 mm.
상기 내열성 부재는, 상부면이 상기 실리콘 잉곳과 접촉하는 내열성 비금속부; 및 상부가 상기 내열성 비금속부에 연결되고, 하부가 상기 연결 부재와 연결되는 내열성 금속부를 포함할 수 있다.The heat resistant member may include a heat resistant nonmetal part having an upper surface contacting the silicon ingot; And a heat resistant metal part having an upper part connected to the heat resistant non-metal part and a lower part connected to the connection member.
상기 이송식 플라즈마 아크 토치의 전극은, 상기 내열성 비금속부에 연결될 수 있다.The electrode of the transfer plasma arc torch may be connected to the heat resistant non-metal part.
상기 전자기 연속 주조 장치는, 상기 내열성 비금속부와 상기 내열성 금속부 사이에 위치하여 이들을 전기적으로 절연시키는 절연층을 더 포함할 수 있다.The electromagnetic continuous casting apparatus may further include an insulating layer positioned between the heat resistant non-metal part and the heat resistant metal part to electrically insulate them.
상기 전자기 연속 주조 장치는, 상기 내열성 금속부와 상기 연결 부재 사이에 위치하여 이들을 전기적으로 절연시키는 절연층을 더 포함할 수 있다.The electromagnetic continuous casting apparatus may further include an insulating layer positioned between the heat resistant metal part and the connection member to electrically insulate them.
상기 연결 부재는, 상기 내열성 금속부의 하부에서 상기 내열성 금속부와 연결되는 제1연결 부재; 및 상기 제1연결 부재의 하부에서 상기 제1연결 부재와 연결되는 제2연결 부재를 포함하되, 상기 전자기 연속 주조 장치는, 상기 제1연결 부재와 상기 제2연결 부재 사이에 위치하여 이들을 전기적으로 절연시키는 절연층을 더 포함할 수 있다.The connection member may include: a first connection member connected to the heat resistant metal part under the heat resistant metal part; And a second connecting member connected to the first connecting member under the first connecting member, wherein the electromagnetic continuous casting apparatus is located between the first connecting member and the second connecting member to electrically connect them. It may further include an insulating layer to insulate.
상기 이송식 플라즈마 아크 토치의 전극은, 상기 내열성 금속부에 연결될 수 있다.The electrode of the transfer plasma arc torch may be connected to the heat resistant metal part.
상기 전자기 연속 주조 장치는, 상기 내열성 금속부와 상기 연결 부재 사이에 위치하여 이들을 전기적으로 절연시키는 절연층을 더 포함할 수 있다.The electromagnetic continuous casting apparatus may further include an insulating layer positioned between the heat resistant metal part and the connection member to electrically insulate them.
상기 연결 부재는, 상기 내열성 금속부의 하부에서 상기 내열성 금속부와 연결되는 제1연결 부재; 및 상기 제1연결 부재의 하부에서 상기 제1연결 부재와 연결되는 제2연결 부재를 포함하되, 상기 전자기 연속 주조 장치는, 상기 제1연결 부재와 상기 제2연결 부재 사이에 위치하여 이들을 전기적으로 절연시키는 절연층을 더 포함할 수도 있다.The connection member may include: a first connection member connected to the heat resistant metal part under the heat resistant metal part; And a second connecting member connected to the first connecting member under the first connecting member, wherein the electromagnetic continuous casting apparatus is located between the first connecting member and the second connecting member to electrically connect them. It may further include an insulating layer to insulate.
상기 내열성 비금속부는, 탄소, 흑연 또는 이들의 화합물을 포함하는 것이 바람직하다.It is preferable that the said heat resistant nonmetal part contains carbon, graphite, or these compounds.
또한, 상기 내열성 금속부는, 몰리브덴(Mo), 텅스텐(W) 또는 스테인리스 강을 포함하는 것이 바람직하다.In addition, it is preferable that the heat resistant metal part includes molybdenum (Mo), tungsten (W) or stainless steel.
본 발명의 다른 실시예에 따른 전자기 연속 주조 장치에 있어서,In the electromagnetic continuous casting device according to another embodiment of the present invention,
챔버 상부의 원료 투입구로부터 공급되는 실리콘 원료의 융액 형성시 이송식 플라즈마 아크 토치를 보조 열원으로 사용하여 실리콘 잉곳을 생산하는 전자기 연속 주조 장치에 있어서, 내열성 부재(상기 내열성 부재의 상부면에는 공급된 실리콘 원료가 용융 및 응고되어 실리콘 잉곳이 성장한다); 상기 내열성 부재로부터 하향으로 연장되도록 상기 내열성 부재와 연결된 제1연결 부재; 상기 제1연결 부재로부터 하향으로 연장되도록 상기 제1연결 부재와 연결된 제2연결 부재; 및 상기 제2연결 부재와 연결되어 상기 내열성 부재를 상하로 이동시키는 인출 장치를 포함하되, 상기 이송식 플라즈마 아크 토치의 전극은 상기 제1연결 부재에 연결되며, 상기 인출 장치는 실리콘 잉곳이 성장함에 따라 상기 내열성 부재를 하향으로 이동시키는 것을 특징으로 한다.In the electromagnetic continuous casting apparatus for producing a silicon ingot using a transfer plasma arc torch as an auxiliary heat source when forming a melt of the silicon raw material supplied from the raw material inlet in the upper portion of the chamber, a heat resistant member (silicon supplied to the upper surface of the heat resistant member) Raw material is melted and solidified to grow silicon ingot); A first connection member connected to the heat resistant member to extend downward from the heat resistant member; A second connecting member connected to the first connecting member to extend downward from the first connecting member; And a drawing device connected to the second connecting member to move the heat resistant member up and down, wherein an electrode of the transfer plasma arc torch is connected to the first connecting member, and the drawing device is formed by a silicon ingot growing. Accordingly, the heat resistant member is moved downward.
상기 전자기 연속 주조 장치는, 상기 제1연결 부재와 상기 제2연결 부재 사이에 위치하여 이들을 전기적으로 절연시키는 절연층을 더 포함할 수 있다.The electromagnetic continuous casting apparatus may further include an insulating layer positioned between the first connection member and the second connection member to electrically insulate them.
상기와 같은 구성으로 인해, 본 발명의 일 실시예에 따른 전자기 연속 주조 장치는 하기와 같은 효과를 가진다.Due to the configuration as described above, the electromagnetic continuous casting device according to an embodiment of the present invention has the following effects.
(1) 이송식 플라즈마 아크 토치의 전극이 실리콘 잉곳에 직접 접촉하지 않게 되어 실리콘 잉곳의 크랙 및 오염이 방지될 수 있다.(1) The electrodes of the transfer plasma arc torch are not in direct contact with the silicon ingot so that cracking and contamination of the silicon ingot can be prevented.
(2) 이송식 플라즈마 아크 토치의 전극이 서냉로를 통과하지 않고 내열성 부재 등에 연결되기 때문에 서냉로의 일부가 생략될 필요가 없게 되어 실리콘 잉곳에 적절한 서냉 조건을 부여할 수 있고, 이에 의해 고품질의 실리콘 잉곳이 생산될 수 있다.(2) Since the electrode of the transfer plasma arc torch is connected to a heat-resistant member or the like without passing through the slow cooling furnace, a part of the slow cooling furnace does not need to be omitted, so that an appropriate slow cooling condition can be imparted to the silicon ingot. Silicon ingots can be produced.
(3) 실리콘 잉곳을 지지하는 내열성 부재의 높이를 한정하여 실리콘 잉곳의 생산 설비 투자비용을 절감할 수 있고, 실리콘 잉곳에 대해 적합한 서냉 조건을 부여하여 고품질의 실리콘 잉곳이 생산될 수 있다.(3) By limiting the height of the heat-resistant member supporting the silicon ingot, it is possible to reduce the investment cost of the production equipment of the silicon ingot, and to give a suitable slow cooling condition for the silicon ingot, high quality silicon ingot can be produced.
도 1은 본 발명의 일 실시예에 따른 전자기 연속 주조 장치의 구성을 도시하는 도면이다.1 is a view showing the configuration of an electromagnetic continuous casting device according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 전자기 연속 주조 장치에서 이송식 플라즈마 아크 토치의 전극이 연결되는 구성을 도시하는 도면이다.2 is a view showing a configuration in which the electrode of the transfer plasma arc torch in the electromagnetic continuous casting apparatus according to another embodiment of the present invention.
도 3은 본 발명의 또 다른 실시예에 따른 전자기 연속 주조 장치에서 이송식 플라즈마 아크 토치의 전극이 연결되는 구성을 도시하는 도면이다.3 is a view showing a configuration in which the electrode of the transfer plasma arc torch in the electromagnetic continuous casting apparatus according to another embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 전자기 연속 주조 장치에서 내열성 부재의 높이에 따른 플라즈마 전압의 변화와 잉곳 크랙 비율을 도시하는 그래프이다.4 is a graph showing a change in plasma voltage and an ingot crack ratio according to a height of a heat resistant member in an electromagnetic continuous casting apparatus according to an exemplary embodiment of the present invention.
이하, 첨부된 도면을 참조하면서 예시적인 실시예를 통해 본 발명을 상세히 설명하기로 하며, 본 발명은 이에 한정되지 않는다. 또한, 본 발명의 요지를 흐리게 할 수 있는 공지의 기능 및 구성에 대한 상세한 설명은 생략될 것이다.Hereinafter, the present invention will be described in detail through exemplary embodiments with reference to the accompanying drawings, and the present invention is not limited thereto. In addition, detailed descriptions of well-known functions and configurations that may blur the gist of the present invention will be omitted.
도 1은 본 발명의 일 실시예에 따른 전자기 연속 주조 장치의 구성을 도시하는 도면이다.1 is a view showing the configuration of an electromagnetic continuous casting device according to an embodiment of the present invention.
챔버(1) 내에는 주조 분위기가 유지되며, 가스 유입구(13) 및 가스 배출구(14)를 통해 비활성 가스가 순환된다.A casting atmosphere is maintained in the chamber 1, and inert gas is circulated through the gas inlet 13 and the gas outlet 14.
무저 도가니(3)는 무산소동 등의 도전성 재료로 이루어질 수 있고, 내부를 통하여 냉각수가 흐를 수 있는 구조를 구비하며, 유도 코일(2)과 복수의 플라즈마 아크 토치(10)를 가열원으로 사용한다.The crucible 3 can be made of a conductive material such as oxygen-free copper, has a structure in which cooling water can flow through the inside, and uses an induction coil 2 and a plurality of plasma arc torches 10 as heating sources. .
원료 투입구(11)는 무저 도가니(3)의 상방에 배치되고, 실리콘 원료(5)를 적정한 속도로 조절하며 무저 도가니(3) 내부로 장입한다.The raw material inlet 11 is disposed above the bottomless crucible 3, and the silicon raw material 5 is adjusted at an appropriate speed and charged into the bottomless crucible 3.
복수의 플라즈마 아크 토치(10)는 무저 도가니(3)의 상방에 배치되며, 이송식 및/또는 비이송식으로 구성될 수 있다. 복수의 플라즈마 아크 토치(10)에서 용탕(4) 표면으로 인가되는 플라즈마 제트 가스에 의한 열원은 지속적으로 장입되는 원료(5)의 용해에 필요한 융해열을 표면에 고르게 가한다.The plurality of plasma arc torch 10 is disposed above the bottom crucible 3 and may be configured to be transferable and / or non-transferable. The heat source by the plasma jet gas applied from the plurality of plasma arc torches 10 to the surface of the molten metal 4 applies the heat of fusion necessary for dissolving the continuously charged raw material 5 evenly to the surface.
사각의 무저 도가니(3)에서는 플라즈마 아크 발열에 의해 초기원료(5)가 용해되어 용탕(4) 표면이 형성되고, 유도 코일(2)에 의한 전자기압의 영향으로 용탕(4) 표면의 중앙부가 고조된다. 실리콘 잉곳(6)은 유도 코일(2) 하단부를 지나 냉각되어 무저 도가니(3)의 복사 냉각으로 쉘(shell)을 형성하게 되고, 이때 실리콘 잉곳(6)에는 고액계면이 오목하게 형성된다.In the square annealing crucible 3, the initial raw material 5 is dissolved by plasma arc heating to form the surface of the molten metal 4, and the center portion of the surface of the molten metal 4 is affected by the electromagnetic pressure caused by the induction coil 2. Elevated The silicon ingot 6 is cooled past the lower end of the induction coil 2 to form a shell by radiative cooling of the crucible 3, wherein the silicon ingot 6 is concave with a liquid-liquid interface.
내열성 부재(7)의 상부면에 실리콘 잉곳(6)이 성장한다. 공정 초기에는 내열성 부재(7)가 서냉로(12)의 내부에 위치되고, 내열성 부재(7) 상부면에 초기 원료(5)가 배치된다.The silicon ingot 6 grows on the upper surface of the heat resistant member 7. At the beginning of the process, the heat resistant member 7 is positioned inside the slow cooling furnace 12, and the initial raw material 5 is disposed on the upper surface of the heat resistant member 7.
내열성 부재(7)에는 내열성 부재(7)를 상하로 이동시킬 수 있는 인출 장치(18)가 연결된다.The heat-resistant member 7 is connected to the extraction apparatus 18 which can move the heat-resistant member 7 up and down.
내열성 부재(7)와 인출 장치(18) 사이에는 내열성 부재(7)와 인출 장치(18)를 연결하는 연결 부재(15)가 위치되며, 연결 부재(15)에는 이를 냉각시키는 냉각 수단(도시되지 않음)이 구비된다. 냉각 수단은 공지된 다양한 방법이 사용될 수 있으며, 냉각수로 연결 부재(15)를 냉각시키는 유로나 자켓이 될 수 있다. 연결 부재(15)에 구비되는 냉각 수단에서 사용되는 냉각수는 1MΩ 이상의 이온수인 것이 바람직하다. 연결 부재(15)는 상부에서 내열성 부재(7)와 연결되는 제1연결 부재(16) 및 상부에서 제1연결 부재(16)와 연결되는 제2연결 부재(17)를 포함할 수 있다.Between the heat resistant member 7 and the drawing device 18 is a connecting member 15 which connects the heat resistant member 7 and the drawing device 18, and on the connecting member 15 cooling means for cooling it (not shown) Not included). As the cooling means, various known methods may be used, and the cooling means may be a channel or a jacket for cooling the connection member 15 with cooling water. The cooling water used in the cooling means provided in the connecting member 15 is preferably 1 MΩ or more. The connection member 15 may include a first connection member 16 connected to the heat resistant member 7 at the top and a second connection member 17 connected to the first connection member 16 at the top.
플라즈마 아크 토치(10)의 열원에 의해 초기원료(5)가 용융되면 유도 코일(2)에 유도전류를 인가하여 도가니 내부에 위치한 실리콘 용탕(4)이 가열되도록 하고, 상부의 원료 투입구(11)를 통해 실리콘 원료(5)를 지속적으로 투입하고, 인출 장치(18)로 내열성 부재(7)를 인출하여 일정한 실리콘 용탕(4)의 높이를 유지할 수 있다.When the initial raw material 5 is melted by the heat source of the plasma arc torch 10, an induction current is applied to the induction coil 2 so that the silicon melt 4 located inside the crucible is heated, and the raw material inlet 11 of the upper part is heated. The silicon raw material 5 may be continuously introduced through the same, and the heat resistant member 7 may be taken out by the extraction device 18 to maintain a constant height of the molten silicon 4.
도 1을 참조하면, 이송식 플라즈마 아크 토치(10)의 전극(20)은 내열성 부재(7)에 연결된다. 이에 의해 전극(20)과 실리콘 잉곳(6) 간에 아크의 발생이 방지되고, 서냉로(12)의 일부를 생략할 필요가 없게 되어 실리콘 잉곳에 적절한 서냉 조건을 부여할 수 있게 된다.Referring to FIG. 1, the electrode 20 of the transfer plasma arc torch 10 is connected to a heat resistant member 7. As a result, arcing is prevented between the electrode 20 and the silicon ingot 6, and a part of the slow cooling furnace 12 does not need to be omitted, so that appropriate slow cooling conditions can be given to the silicon ingot.
그러나, 이와 같은 구성에 의한다면, 인출 장치(18)로 전류가 흘러 감전 사고가 발생할 수 있다. 따라서, 내열성 부재(7)와 인출 장치(18)를 전기적으로 절연시키는 절연층(19)이 구비되는 것이 바람직하다. 도 1에서는 내열성 부재(7)와 연결 부재(15) 사이에 절연층(19)이 위치되는 것으로 도시되어 있지만, 절연층(19)이 제1연결 부재(16)와 제2연결 부재(17) 사이에 위치될 수도 있으며, 인출 장치(18)로 흐르는 전류를 절연하기 위한 어느 위치라도 절연층(19)이 위치될 수 있다. 절연층(19)은 전기를 절연하는 공지의 물질로 구성될 수 있다.However, according to such a configuration, electric current may flow into the drawing device 18, and an electric shock accident may occur. Therefore, it is preferable that the insulating layer 19 which electrically insulates the heat resistant member 7 and the extraction apparatus 18 is provided. In FIG. 1, the insulating layer 19 is shown between the heat resistant member 7 and the connecting member 15, but the insulating layer 19 includes the first connecting member 16 and the second connecting member 17. The insulating layer 19 may be located at any position for insulating the current flowing to the drawing device 18. The insulating layer 19 may be made of a known material to insulate electricity.
도 2는 본 발명의 다른 실시예에 따른 전자기 연속 주조 장치에서 이송식 플라즈마 아크 토치(10)의 전극(20)이 연결되는 구성을 도시하는 도면이다. 내열성 부재(7)는 상부에서 실리콘 잉곳(6)과 접촉하는 내열성 비금속부(8)와 하부에서 제1연결 부재(16)와 연결되는 내열성 금속부(9)로 이루어져 있다. 내열성 부재(7)의 하부를 금속으로 구성함으로써, 제1연결 부재(16)와의 연결을 용이하게 할 수 있다. 내열성 비금속부(8)는 탄소, 흑연 또는 이들의 화합물로 이루어지고, 내열성 금속부(9)는 몰리브덴(Mo), 텅스텐(W) 또는 스테인리스 강으로 이루어지는 것이 바람직하다.2 is a view showing a configuration in which the electrode 20 of the transfer plasma arc torch 10 is connected in the electromagnetic continuous casting apparatus according to another embodiment of the present invention. The heat resistant member 7 consists of a heat resistant non-metal part 8 which contacts the silicon ingot 6 at the upper part, and the heat resistant metal part 9 which is connected with the 1st connection member 16 in the lower part. By forming the lower part of the heat resistant member 7 with a metal, the connection with the 1st connection member 16 can be made easy. It is preferable that the heat resistant nonmetal part 8 consists of carbon, graphite, or a compound thereof, and the heat resistant metal part 9 consists of molybdenum (Mo), tungsten (W), or stainless steel.
도 2에 따른 전자기 연속 주조 장치에서 이송식 플라즈마 아크 토치(10)의 전극(20)은 내열성 금속부(9)를 하부에서 관통하여 내열성 비금속부(8)와 연결된다. 도 2에서는 전극(20)이 내열성 금속부(9)를 관통하여 내열성 비금속부(8)와 연결이 된 것으로 도시되어 있지만, 전극(20)이 내열성 금속부(9)를 관통하지 않고 직접적으로 내열성 비금속부(8)와 연결될 수도 있다. 또한, 전극(20)이 내열성 금속부(9)와 연결되는 것도 가능하다. In the electromagnetic continuous casting device according to FIG. 2, the electrode 20 of the transportable plasma arc torch 10 penetrates the heat resistant metal part 9 from below and is connected with the heat resistant nonmetal part 8. In FIG. 2, although the electrode 20 penetrates the heat resistant metal part 9 and is connected to the heat resistant nonmetal part 8, the electrode 20 does not penetrate the heat resistant metal part 9 and is directly heat resistant. It may be connected to the nonmetal part 8. In addition, the electrode 20 may be connected to the heat resistant metal part 9.
전극(20)이 내열성 비금속부(8)와 연결된 경우에는, 인출 장치(18)로 흐르는 전류를 막기 위해 내열성 비금속부(8)와 인출 장치(18) 사이에 절연층(19)이 위치된다. 즉, 절연층(19)은 내열성 비금속부(8)와 내열성 금속부(9) 사이, 내열성 금속부(9)와 연결 부재(15) 사이 또는 제1연결 부재(16)와 제2연결 부재(17) 사이에 위치될 수 있다. 전극(20)이 내열성 금속부(9)와 연결된 경우에는, 절연층(19)이 내열성 금속부(9)와 연결 부재(15) 사이 또는 제1연결 부재(16)와 제2연결 부재(17) 사이에 위치될 수 있다.When the electrode 20 is connected with the heat resistant non-metal part 8, an insulating layer 19 is positioned between the heat resistant non-metal part 8 and the extraction device 18 to prevent a current flowing into the drawing device 18. That is, the insulating layer 19 may be formed between the heat resistant non-metal part 8 and the heat resistant metal part 9, between the heat resistant metal part 9 and the connection member 15, or between the first connection member 16 and the second connection member ( 17) may be located between. When the electrode 20 is connected to the heat resistant metal part 9, the insulating layer 19 is between the heat resistant metal part 9 and the connection member 15 or the first connection member 16 and the second connection member 17. ) May be positioned between.
도 3은 본 발명의 또 다른 실시예에 따른 전자기 연속 주조 장치에서 이송식 플라즈마 아크 토치(10)의 전극(20)이 연결되는 구성을 도시하는 도면이다. 도 3에서는 이송식 플라즈마 아크 토치(10)의 전극(20)이 제1연결 부재(16)에 연결된다. 이 구성에 의한다면, 제1연결 부재(16)와 제2연결 부재(17) 사이에 절연층(19)이 위치되어야 한다.3 is a view showing a configuration in which the electrode 20 of the transfer plasma arc torch 10 is connected in the electromagnetic continuous casting apparatus according to another embodiment of the present invention. In FIG. 3, the electrode 20 of the transfer plasma arc torch 10 is connected to the first connecting member 16. According to this configuration, the insulating layer 19 must be positioned between the first connecting member 16 and the second connecting member 17.
본 발명의 일 실시예에 따른 전자기 연속 주조 장치에서 내열성 부재(7)의 높이(h)는 300~2000mm인 것이 바람직하다. 내열성 부재(7)의 높이(h)가 300mm보다 작을 경우에는, 실리콘 잉곳(6)이 연결 부재(15)의 냉각 수단에 인접하기 때문에 냉각효과를 받아 급냉이 될 수 있고, 그 결과 내부 크랙이 발생할 수 있다. 또한, 내열성 부재(7)의 높이(h)가 2000mm보다 길 경우에는, 내열성 부재(7)의 높이(h)가 증가됨으로써 설비에 들어가는 투자비용 및 운용 비용이 증가한다.In the electromagnetic continuous casting apparatus according to the embodiment of the present invention, the height h of the heat resistant member 7 is preferably 300 to 2000 mm. When the height h of the heat resistant member 7 is smaller than 300 mm, the silicon ingot 6 is adjacent to the cooling means of the connecting member 15, so that it can be quenched under the cooling effect, so that the internal crack is May occur. In addition, when the height h of the heat resistant member 7 is longer than 2000 mm, the height h of the heat resistant member 7 increases, and the investment cost and operating cost which enter into an installation increase.
도 4는 본 발명의 일 실시예에 따른 전자기 연속 주조 장치에서 내열성 부재(7)의 높이(h)에 따른 플라즈마 전압의 변화와 잉곳 크랙 비율을 도시하는 그래프로서, 이하에서는, 비교예와 실시예를 통하여 내열성 부재(7)의 높이(h)에 따른 효과를 검토한다.4 is a graph showing a change in plasma voltage and an ingot crack ratio according to the height h of the heat resistant member 7 in the electromagnetic continuous casting apparatus according to an embodiment of the present invention. Hereinafter, Comparative Examples and Examples will be described. The effect according to the height h of the heat resistant member 7 is examined through.
실시예Example
4개의 플라즈마 아크 토치(10) 다발로 구성된 플라즈마 가열원을 무저 도가니(3) 상부에 위치시키고, 4개의 플라즈마 아크 토치(10) 중앙부에 외경 45mm의 원료 투입구(11)를 배치하였다. 각각의 플라즈마 아크 토치(10)는 외경 60mm, 길이 800mm이며, 이송식 및/또는 비이송식 운전이 모두 가능하다. 각 토치는 각 토치의 노즐 하단이 무저 도가니(3) 하부로부터 260mm 이격되도록 위치되고, 무저 도가니(3)의 치수는 345×345mm이며, 높이는 540mm이고, 슬릿은 48개이다.A plasma heating source composed of four plasma arc torch 10 bundles was placed on the top of the crucible 3 and a raw material inlet 11 having an outer diameter of 45 mm was disposed at the center of the four plasma arc torch 10. Each plasma arc torch 10 has an outer diameter of 60 mm and a length of 800 mm and is capable of both feed and / or non-feed operation. Each torch is positioned so that the nozzle bottom of each torch is spaced 260 mm from the bottom of the crucible 3, the crucible 3 has a dimension of 345 × 345 mm, a height of 540 mm, and 48 slits.
초기 용탕(4) 형성을 위한 고상 실리콘 블록의 치수는 300×150mm이고, 높이는 140mm이며, 무저 도가니(3) 내의 내열성 부재(7) 상단면에 2개의 초기 원료(5)를 배치하였다. 이송식 플라즈마 아크 토치(10)의 전극(20)의 접촉을 위한 내열성 비금속부(8)는 흑연 소재로 하였다. 내열성 비금속부(8)는 무저 도가니(3) 안으로 인입이 가능하고, 치수는 344.5×344.5mm이다. 내열성 금속부(9)를 하단에 위치시켰으며, 내열성 비금속부(8)와 내열성 금속부(9)의 높이의 합(h)을 각각 2,000mm, 800mm, 300mm로 하였다. 내열성 비금속부(8)와 내열성 금속부(9)의 전기적 상태는 절연 상태이며 내열성 금속부(9) 하단에 연결 부재(15)가 위치된다.The solid silicon block for forming the initial molten metal 4 has a dimension of 300 × 150 mm, a height of 140 mm, and two initial raw materials 5 are disposed on the top surface of the heat resistant member 7 in the crucible 3. The heat-resistant nonmetal part 8 for contacting the electrode 20 of the transfer plasma arc torch 10 was made of graphite material. The heat resistant non-metal part 8 can be drawn into the bottom crucible 3 and has a dimension of 344.5 x 344.5 mm. The heat resistant metal part 9 was located at the bottom, and the sum h of the heights of the heat resistant nonmetal part 8 and the heat resistant metal part 9 was 2,000 mm, 800 mm, and 300 mm, respectively. The electrical state of the heat resistant non-metal part 8 and the heat resistant metal part 9 is an insulated state, and the connection member 15 is located at the bottom of the heat resistant metal part 9.
비교예Comparative example
상기 실시예와 모두 동일하며, 다만 내열성 비금속부(8)와 내열성 금속부(9)의 높이(h)를 각각 245mm, 200mm, 150mm로 하였다.The same as in the above embodiment, except that the height h of the heat resistant non-metal part 8 and the heat resistant metal part 9 was 245 mm, 200 mm, and 150 mm, respectively.
도 4에 따른 결과는, 2.0mm/min의 속도로 장입 및 주조하고, 실리콘 잉곳(6)의 전체 길이를 1,000mm로 하였으며, 동일한 전류에서 플라즈마 전압(V) 및 실리콘 잉곳(6)의 전체 길이에 대한 잉곳 크랙 비율을 측정하되, 총 인출 길이 중 소재의 장입 및 인출이 마무리되는 구간의 길이를 포함한 상부의 200mm를 제외한 데이터이다.The results according to FIG. 4 show that the charging and casting at a rate of 2.0 mm / min, the total length of the silicon ingot 6 to 1,000 mm, and the total length of the plasma voltage V and the silicon ingot 6 at the same current Measure the ingot crack ratio for, but exclude the 200mm of the upper part including the length of the section of the total withdrawal material loading and withdrawal.
플라즈마 전압(V) 변화의 경우, 동일한 전류에서 내열성 비금속부(8)와 내열성 금속부(9)의 높이의 합(h)이 감소함에 따라 전압이 감소하는 경향을 보였으나, 이는 공정에 영향을 미칠 정도의 변화는 아닌 것으로 판단된다. 그러나, 내열성 비금속부(8)와 내열성 금속부(9)의 높이의 합(h)이 길어짐에 따라 인출 길이의 확보를 위한 설비의 구조 변경이 필요하게 되고, 길이가 늘어난 만큼 연속 주조 장치의 길이가 길어진다는 문제점이 있다. 이는 실리콘 잉곳(6)의 생산 설비 투자비용을 증가시킨다는 것을 의미한다.In the case of the plasma voltage (V) change, the voltage tended to decrease as the sum (h) of the heights of the heat-resistant nonmetal part 8 and the heat-resistant metal part 9 decreased at the same current, but this affected the process. It is not a change of the madness. However, as the sum (h) of the heights of the heat-resistant nonmetal parts 8 and the heat-resistant metal parts 9 becomes long, it is necessary to change the structure of the equipment for securing the draw-out length, and the length of the continuous casting apparatus as the length increases. There is a problem that is long. This means that the production equipment investment cost of the silicon ingot 6 is increased.
내열성 비금속부(8)와 내열성 금속부(9)의 높이의 합(h)에 따른 실리콘 잉곳(6)의 크랙 비율(%)은 실시예에서의 300mm, 800mm, 2,000mm에서는 발생하지 않았으며 비교예의 150mm, 200mm, 250mm 구간에서는 내열성 비금속부(8)와 내열성 금속부(9)의 높이의 합(h)이 감소함에 따라 크랙의 비율이 증가함을 관찰할 수 있다. 이는 실리콘 융액과 접촉하는 내열성 비금속부(8) 및 내열성 금속부(9)는 비냉각 구조로 이루어져 있고, 하부의 연결 부재(15)는 수냉 구조를 이루고 있어 내열성 비금속부(8)와 내열성 금속부(9)의 높이의 합(h)이 감소함에 따라 연결 부재(15)의 냉각 요인에 영향을 받는 것으로 판단할 수 있다. 실제로 250mm와 200mm의 잉곳 크랙 비율과 250mm와 150mm의 잉곳 크랙 비율의 결과를 관찰하면 실리콘 잉곳(6)과 연결 부재(15)가 가까울수록 실리콘 잉곳(6)의 크랙 발생에 더 큰 영향을 주는 것을 확인할 수 있다. The crack ratio (%) of the silicon ingot 6 according to the sum (h) of the heights of the heat resistant non-metal part 8 and the heat resistant metal part 9 did not occur at 300 mm, 800 mm, and 2,000 mm in the examples. In the 150 mm, 200 mm, and 250 mm sections of the example, it can be observed that as the sum (h) of the heights of the heat resistant nonmetal part 8 and the heat resistant metal part 9 decreases, the ratio of cracks increases. This is because the heat-resistant non-metal part 8 and the heat-resistant metal part 9 which are in contact with the silicon melt have an uncooled structure, and the connecting member 15 at the lower part has a water-cooled structure, so that the heat-resistant non-metal part 8 and the heat-resistant metal part As the sum (h) of the heights of (9) decreases, it can be judged that the cooling factor of the connecting member 15 is affected. In fact, the results of the 250 mm and 200 mm ingot crack ratios and the 250 mm and 150 mm ingot crack ratios show that the closer the silicon ingot 6 and the connecting member 15 are, the greater the influence on the crack generation of the silicon ingot 6 is. You can check it.
따라서, 실리콘 잉곳(6)의 생산 설비 투자비용을 감소시키면서 실리콘 잉곳(6)의 크랙 발생을 방지하기 위하여 내열성 비금속부(8)와 내열성 금속부(9)의 높이의 합(h)은 300 내지 2000mm로 구성하는 것이 바람직하다.Therefore, in order to prevent the occurrence of cracking of the silicon ingot 6 while reducing the production equipment investment cost of the silicon ingot 6, the sum h of the heights of the heat resistant non-metal part 8 and the heat resistant metal part 9 is 300 to 300. It is preferable to comprise 2000mm.
이상, 본 발명을 상기 실시예를 들어 설명하였으나, 본 발명은 이에 제한되는 것이 아니다. 당업자라면 본 발명의 취지 및 범위를 벗어나지 않고 수정, 변경을 할 수 있으며 이러한 수정과 변경 또한 본 발명에 속하는 것임을 알 수 있을 것이다.As mentioned above, although this invention was demonstrated to the said Example, this invention is not limited to this. Those skilled in the art can make modifications and changes without departing from the spirit and scope of the present invention, and it will be appreciated that such modifications and changes also belong to the present invention.

Claims (16)

  1. 챔버 상부의 원료 투입구로부터 공급되는 실리콘 원료의 융액 형성시 이송식 플라즈마 아크 토치를 보조 열원으로 사용하여 실리콘 잉곳을 생산하는 전자기 연속 주조 장치에 있어서,In the electromagnetic continuous casting apparatus for producing a silicon ingot using a transfer plasma arc torch as an auxiliary heat source when forming the melt of the silicon raw material supplied from the raw material inlet in the upper chamber,
    내열성 부재(상기 내열성 부재의 상부면에는 공급된 실리콘 원료가 용융 및 응고되어 실리콘 잉곳이 성장한다);A heat resistant member (on the upper surface of the heat resistant member, the supplied silicon raw material is melted and solidified to grow a silicon ingot);
    상기 내열성 부재로부터 하향으로 연장되도록 상기 내열성 부재와 연결된 연결 부재; 및A connection member connected to the heat resistant member to extend downward from the heat resistant member; And
    상기 연결 부재와 연결되어 상기 내열성 부재를 상하로 이동시키는 인출 장치를 포함하되,A drawing device connected to the connection member to move the heat resistant member up and down,
    상기 이송식 플라즈마 아크 토치의 전극은 상기 내열성 부재에 연결되며, 상기 인출 장치는 실리콘 잉곳이 성장함에 따라 상기 내열성 부재를 하향으로 이동시키는 것을 특징으로 하는 전자기 연속 주조 장치.An electrode of the transfer plasma arc torch is connected to the heat resistant member, and the drawer moves the heat resistant member downward as the silicon ingot grows.
  2. 제1항에 있어서, 상기 전자기 연속 주조 장치는,The method of claim 1, wherein the electromagnetic continuous casting device,
    상기 내열성 부재와 상기 연결 부재 사이에 위치하여 이들을 전기적으로 절연시키는 절연층을 더 포함하는 것을 특징으로 하는 전자기 연속 주조 장치.And an insulating layer positioned between the heat resistant member and the connecting member to electrically insulate them.
  3. 제1항에 있어서, 상기 연결 부재는,The method of claim 1, wherein the connecting member,
    상기 내열성 부재의 하부에서 상기 내열성 부재와 연결되는 제1연결 부재; 및A first connection member connected to the heat resistant member under the heat resistant member; And
    상기 제1연결 부재의 하부에서 상기 제1연결 부재와 연결되는 제2연결 부재를 포함하되,A second connection member connected to the first connection member under the first connection member,
    상기 전자기 연속 주조 장치는,The electromagnetic continuous casting device,
    상기 제1연결 부재와 상기 제2연결 부재 사이에 위치하여 이들을 전기적으로 절연시키는 절연층을 더 포함하는 것을 특징으로 하는 전자기 연속 주조 장치.And an insulating layer positioned between the first connecting member and the second connecting member to electrically insulate them.
  4. 제1항에 있어서, 상기 전자기 연속 주조 장치는,The method of claim 1, wherein the electromagnetic continuous casting device,
    상기 연결 부재에 구비되어 상기 연결 부재를 냉각시키는 냉각 수단을 더 포함하되,Further comprising cooling means provided in the connecting member to cool the connecting member,
    상기 내열성 부재의 높이(h)는,The height h of the heat resistant member is
    300 내지 2000mm인 것을 특징으로 하는 전자기 연속 주조 장치.Electromagnetic continuous casting device, characterized in that 300 to 2000mm.
  5. 제1항에 있어서, 상기 내열성 부재는,The method of claim 1, wherein the heat resistant member,
    상부면이 상기 실리콘 잉곳과 접촉하는 내열성 비금속부; 및A heat resistant non-metal part having an upper surface in contact with the silicon ingot; And
    상부가 상기 내열성 비금속부에 연결되고, 하부가 상기 연결 부재와 연결되는 내열성 금속부를 포함하는 것을 특징으로 하는 전자기 연속 주조 장치.Electromagnetic continuous casting apparatus characterized in that the upper portion is connected to the heat-resistant non-metallic portion, the lower portion includes a heat-resistant metal portion connected to the connecting member.
  6. 제5항에 있어서, 상기 이송식 플라즈마 아크 토치의 전극은,The method of claim 5, wherein the electrode of the transfer plasma arc torch,
    상기 내열성 비금속부에 연결되는 것을 특징으로 하는 전자기 연속 주조 장치.Electromagnetic continuous casting device characterized in that connected to the heat-resistant non-metal parts.
  7. 제6항에 있어서, 상기 전자기 연속 주조 장치는,According to claim 6, The electromagnetic continuous casting device,
    상기 내열성 비금속부와 상기 내열성 금속부 사이에 위치하여 이들을 전기적으로 절연시키는 절연층을 더 포함하는 것을 특징으로 하는 전자기 연속 주조 장치.And an insulating layer disposed between the heat resistant non-metal part and the heat resistant metal part to electrically insulate them.
  8. 제6항에 있어서, 상기 전자기 연속 주조 장치는,According to claim 6, The electromagnetic continuous casting device,
    상기 내열성 금속부와 상기 연결 부재 사이에 위치하여 이들을 전기적으로 절연시키는 절연층을 더 포함하는 것을 특징으로 하는 전자기 연속 주조 장치.And an insulating layer positioned between the heat resistant metal portion and the connection member to electrically insulate them.
  9. 제6항에 있어서, 상기 연결 부재는,The method of claim 6, wherein the connecting member,
    상기 내열성 금속부의 하부에서 상기 내열성 금속부와 연결되는 제1연결 부재; 및A first connection member connected to the heat resistant metal part under the heat resistant metal part; And
    상기 제1연결 부재의 하부에서 상기 제1연결 부재와 연결되는 제2연결 부재를 포함하되,A second connection member connected to the first connection member under the first connection member,
    상기 전자기 연속 주조 장치는,The electromagnetic continuous casting device,
    상기 제1연결 부재와 상기 제2연결 부재 사이에 위치하여 이들을 전기적으로 절연시키는 절연층을 더 포함하는 것을 특징으로 하는 전자기 연속 주조 장치.And an insulating layer positioned between the first connecting member and the second connecting member to electrically insulate them.
  10. 제5항에 있어서, 상기 이송식 플라즈마 아크 토치의 전극은,The method of claim 5, wherein the electrode of the transfer plasma arc torch,
    상기 내열성 금속부에 연결된 것을 특징으로 하는 전자기 연속 주조 장치.Electromagnetic continuous casting device, characterized in that connected to the heat-resistant metal portion.
  11. 제10항에 있어서, 상기 전자기 연속 주조 장치는,The method of claim 10, wherein the electromagnetic continuous casting device,
    상기 내열성 금속부와 상기 연결 부재 사이에 위치하여 이들을 전기적으로 절연시키는 절연층을 더 포함하는 것을 특징으로 하는 전자기 연속 주조 장치.And an insulating layer positioned between the heat resistant metal portion and the connection member to electrically insulate them.
  12. 제10항에 있어서, 상기 연결 부재는,The method of claim 10, wherein the connecting member,
    상기 내열성 금속부의 하부에서 상기 내열성 금속부와 연결되는 제1연결 부재; 및A first connection member connected to the heat resistant metal part under the heat resistant metal part; And
    상기 제1연결 부재의 하부에서 상기 제1연결 부재와 연결되는 제2연결 부재를 포함하되,A second connection member connected to the first connection member under the first connection member,
    상기 전자기 연속 주조 장치는,The electromagnetic continuous casting device,
    상기 제1연결 부재와 상기 제2연결 부재 사이에 위치하여 이들을 전기적으로 절연시키는 절연층을 더 포함하는 것을 특징으로 하는 전자기 연속 주조 장치.And an insulating layer positioned between the first connecting member and the second connecting member to electrically insulate them.
  13. 제5항에 있어서, 상기 내열성 비금속부는,The method of claim 5, wherein the heat-resistant non-metal part,
    탄소, 흑연 또는 이들의 화합물을 포함하는 것을 특징으로 하는 전자기 연속 주조 장치.An electromagnetic continuous casting device comprising carbon, graphite or a compound thereof.
  14. 제5항에 있어서, 상기 내열성 금속부는,The method of claim 5, wherein the heat resistant metal portion,
    몰리브덴(Mo), 텅스텐(W) 또는 스테인리스 강을 포함하는 것을 특징으로 하는 전자기 연속 주조 장치.Electromagnetic continuous casting device comprising molybdenum (Mo), tungsten (W) or stainless steel.
  15. 챔버 상부의 원료 투입구로부터 공급되는 실리콘 원료의 융액 형성시 이송식 플라즈마 아크 토치를 보조 열원으로 사용하여 실리콘 잉곳을 생산하는 전자기 연속 주조 장치에 있어서,In the electromagnetic continuous casting apparatus for producing a silicon ingot using a transfer plasma arc torch as an auxiliary heat source when forming the melt of the silicon raw material supplied from the raw material inlet in the upper chamber,
    내열성 부재(상기 내열성 부재의 상부면에는 공급된 실리콘 원료가 용융 및 응고되어 실리콘 잉곳이 성장한다);A heat resistant member (the silicon raw material is grown by melting and solidifying the supplied silicon raw material on the upper surface of the heat resistant member);
    상기 내열성 부재로부터 하향으로 연장되도록 상기 내열성 부재와 연결된 제1연결 부재;A first connection member connected to the heat resistant member to extend downward from the heat resistant member;
    상기 제1연결 부재로부터 하향으로 연장되도록 상기 제1연결 부재와 연결된 제2연결 부재; 및A second connecting member connected to the first connecting member to extend downward from the first connecting member; And
    상기 제2연결 부재와 연결되어 상기 내열성 부재를 상하로 이동시키는 인출 장치를 포함하되,A drawing device connected to the second connection member to move the heat resistant member up and down;
    상기 이송식 플라즈마 아크 토치의 전극은 상기 제1연결 부재에 연결되며, 상기 인출 장치는 실리콘 잉곳이 성장함에 따라 상기 내열성 부재를 하향으로 이동시키는 것을 특징으로 하는 전자기 연속 주조 장치.The electrode of the transfer plasma arc torch is connected to the first connecting member, the drawing device is an electromagnetic continuous casting device, characterized in that for moving the heat-resistant member downward as the silicon ingot grows.
  16. 제15항에 있어서, 상기 전자기 연속 주조 장치는,The method of claim 15, wherein the electromagnetic continuous casting device,
    상기 제1연결 부재와 상기 제2연결 부재 사이에 위치하여 이들을 전기적으로 절연시키는 절연층을 더 포함하는 것을 특징으로 하는 전자기 연속 주조 장치.And an insulating layer positioned between the first connecting member and the second connecting member to electrically insulate them.
PCT/KR2012/003429 2011-05-13 2012-05-02 Electromagnetic continuous casting apparatus for producing a silicon ingot WO2012157861A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0045046 2011-05-13
KR1020110045046A KR20120126913A (en) 2011-05-13 2011-05-13 Electromagnetic continuous casting machine for producing silicon ingot

Publications (2)

Publication Number Publication Date
WO2012157861A2 true WO2012157861A2 (en) 2012-11-22
WO2012157861A3 WO2012157861A3 (en) 2013-01-24

Family

ID=47177425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003429 WO2012157861A2 (en) 2011-05-13 2012-05-02 Electromagnetic continuous casting apparatus for producing a silicon ingot

Country Status (2)

Country Link
KR (1) KR20120126913A (en)
WO (1) WO2012157861A2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019594A (en) * 1999-07-01 2001-01-23 Sumitomo Sitix Of Amagasaki Inc Method for continuously casting silicon
US20030150374A1 (en) * 2000-12-28 2003-08-14 Kenichi Sasatani Silicon continuous casting method
KR20100050307A (en) * 2008-11-05 2010-05-13 한국에너지기술연구원 Continuous casting equipment and method for high purity silicon
KR20100120879A (en) * 2009-05-07 2010-11-17 아르케솔라주식회사 Silicon continuous casting apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019594A (en) * 1999-07-01 2001-01-23 Sumitomo Sitix Of Amagasaki Inc Method for continuously casting silicon
US20030150374A1 (en) * 2000-12-28 2003-08-14 Kenichi Sasatani Silicon continuous casting method
KR20100050307A (en) * 2008-11-05 2010-05-13 한국에너지기술연구원 Continuous casting equipment and method for high purity silicon
KR20100120879A (en) * 2009-05-07 2010-11-17 아르케솔라주식회사 Silicon continuous casting apparatus and method

Also Published As

Publication number Publication date
WO2012157861A3 (en) 2013-01-24
KR20120126913A (en) 2012-11-21

Similar Documents

Publication Publication Date Title
US4915723A (en) Apparatus for casting silicon with gradual cooling
KR101063250B1 (en) Graphite Crucible for Silicon Electromagnetic Induction Melting
KR100778019B1 (en) A crucible for an electromagnetic continuous casting apparatus with high melting efficiency and product yield
WO2014126273A1 (en) Device for manufacturing high-purity mox nanostructure and manufacturing method therefor
AU2012229371A1 (en) Open bottom electric induction cold crucible for use in electromagnetic casting of ingots
KR20060016659A (en) Apparatus for continuously casting an low electroconductive material by induction
JP4664967B2 (en) Silicon casting apparatus and silicon substrate manufacturing method
JP2657240B2 (en) Silicon casting equipment
WO2012157861A2 (en) Electromagnetic continuous casting apparatus for producing a silicon ingot
US10766777B2 (en) Method for electromagnetic casting of silicon in a conductive crucible using a highest- and lowest-disposed induction coil
WO2011083898A1 (en) Insulation device of single crystal growth device and single crystal growth device including the same
WO2022065739A1 (en) Ingot growing apparatus comprising heater and method for manufacturing heater for ingot growing apparatus
US3729307A (en) Method and apparatus for electroslag remelting of metals,particularly steel
WO2010128746A1 (en) Device and method for continuous casting of silicon
JP2012101963A (en) Electromagnetic casting apparatus and method for silicon ingot
KR100981134B1 (en) A high-purity silicon ingot with solar cell grade, a system and method for manufacturing the same by refining a low-purity scrap silicon
WO2022065736A1 (en) Apparatus for continuously growing ingot
JP2012066970A (en) Electromagnetic casting method of silicon ingot
WO2011074847A2 (en) Apparatus and method for extracting a silicon ingot
EP2748355B1 (en) Purification of a metalloid by consumable electrode vacuum arc remelt process
CN217103560U (en) Continuous discharging device at bottom of glass kiln
JPH0538555A (en) Apparatus and method for melting and continuously casting metal
WO2013137607A1 (en) Crucible for electromagnetic casting with slits formed at nonequal intervals
KR20120021136A (en) Electromagnetic casting apparatus for silicon ingot
WO2012002630A1 (en) Transfer apparatus for heating furnace

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12786734

Country of ref document: EP

Kind code of ref document: A2