WO2012157827A1 - Rotation-type multiple injection mold - Google Patents

Rotation-type multiple injection mold Download PDF

Info

Publication number
WO2012157827A1
WO2012157827A1 PCT/KR2011/009193 KR2011009193W WO2012157827A1 WO 2012157827 A1 WO2012157827 A1 WO 2012157827A1 KR 2011009193 W KR2011009193 W KR 2011009193W WO 2012157827 A1 WO2012157827 A1 WO 2012157827A1
Authority
WO
WIPO (PCT)
Prior art keywords
template
movable side
mold
rotary
rotating
Prior art date
Application number
PCT/KR2011/009193
Other languages
French (fr)
Korean (ko)
Inventor
박희영
Original Assignee
(주)양정
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)양정 filed Critical (주)양정
Publication of WO2012157827A1 publication Critical patent/WO2012157827A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/03Injection moulding apparatus
    • B29C45/04Injection moulding apparatus using movable moulds or mould halves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/03Injection moulding apparatus
    • B29C45/04Injection moulding apparatus using movable moulds or mould halves
    • B29C45/06Injection moulding apparatus using movable moulds or mould halves mounted on a turntable, i.e. on a rotating support having a rotating axis parallel to the mould opening, closing or clamping direction
    • B29C45/062Injection moulding apparatus using movable moulds or mould halves mounted on a turntable, i.e. on a rotating support having a rotating axis parallel to the mould opening, closing or clamping direction carrying mould halves co-operating with fixed mould halves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C45/006Joining parts moulded in separate cavities
    • B29C45/0062Joined by injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/03Injection moulding apparatus
    • B29C45/04Injection moulding apparatus using movable moulds or mould halves
    • B29C45/06Injection moulding apparatus using movable moulds or mould halves mounted on a turntable, i.e. on a rotating support having a rotating axis parallel to the mould opening, closing or clamping direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles

Definitions

  • the present invention relates to a rotary multi-injection mold, and more particularly to a plurality of cavities which are different shapes when rotationally coalesced at a predetermined angle on the same horizontal plane with respect to the central axis in order to mass produce an injection product having a hollow shape.
  • the fixed side mold and the movable side mold are formed so as to face each other and the movable side mold is rotated at a predetermined angle with respect to the fixed side mold to change the shape of the cavity to inject the injection resin while finally injecting the desired injection product. It relates to a rotary multi-injection mold to sequentially mass production.
  • injection molds are mainly used to mass-produce injection products made of synthetic resin.
  • Such an injection mold has a cavity corresponding to the shape of the injection product formed therein when a pair of molds are merged, and produces an injection product by injecting molten resin therein.
  • a plurality of cavities are formed by forming a plurality of cavities in a pair of molds to manufacture an intermediate injection molded product, and then integrating them. Injection molds have been developed.
  • a typical example of such a multi-injection mold is a die injection injection (DSI) type multi-injection mold disclosed in Japanese Laid-Open Patent Publication No. 1987-87315, which is a prior art document shown in FIG.
  • DSI die injection injection
  • DSI die sliding injection multi-injection mold manufactures two intermediate injection molded products by injecting molten resin into two different cavities which are formed at the time of coalescence, and then linearly moves the movable mold against the fixed mold. After moving and coalescing, molten resin is injected into the joint to produce an injection product having a hollow shape.
  • the multi-injection mold of the DSI method has a problem of securing a linear movement space of the mold according to the sliding movement, and the molding part forming the cavity according to the sliding movement is exposed to the outside for a long time, resulting in contamination of the injection product. There is a problem that is increased.
  • DRI die rotary
  • Japanese Laid-Open Patent Publication No. 1992-91914 which is shown in Fig. 29
  • Korean Laid-Open Patent Publication No. 2007-41115 which is shown in Fig. 30, respectively.
  • An injection type multiple injection mold has been developed.
  • the multi-injection mold of the DRI method can solve the problem of the multi-injection mold of the DRI method by producing a large amount of injection products having a hollow shape by rotating the moving mold with respect to the stationary mold rather than the sliding method. There is this.
  • the movable side molds 30a and 30b protrude from the movable side disc 3 toward the fixed side molds 10a and 10b by the elevating plate 7. Since the furnace can be rotated, the problem of the multiple injection mold of the DRI method shown in FIG. 29 can be solved.
  • the multi-injection mold of the DRI method shown in Fig. 30 is a state in which the movable side molds 30a and 30b are accommodated in the movable side disk 3 in the state except for the rotation, and thus the hot molten resin injected into the cavity is used.
  • a cooling water injection member that can be cooled efficiently cannot be installed inside the cavity vicinity of the movable side mold.
  • a separate driving device driven by an external power source or the like for moving the elevating plate 7 forward or backward must be provided in addition to the rotary device. There was a problem.
  • the technical problem to be solved by the present invention is to solve the problem of the multi-injection mold of the conventional DRI method of rotation method, there is no need to install a separate oilless (oilless) parts on the movable mold, the cavity inside the movable mold Not only has a structure that can easily inject coolant into the vicinity, but also provides a rotary multi-injection mold in which a part of the movable mold can move forward or backward so as to eliminate friction due to rotation without supplying an external power source. There is.
  • the rotary multi-injection mold according to the present invention for solving the above problems is provided with a hot runner system therein, and a fixed side mold having at least two different shapes of fixed side cavities formed at a predetermined angle with respect to the upper center portion. And a movable side mold which is disposed so as to be joined to or separated from the fixed side mold, and has at least two different shapes of movable side cavities corresponding to the fixed side cavity with respect to the upper center part to form a predetermined angle.
  • the movable side mold has a movable side template, the movable side cavity is formed on the upper side, protrudes from the movable side template toward the fixed side template, and the movable side when separated from the fixed side mold.
  • a vertical movement member having an elastic member that provides an elastic force with respect to the rotating template member at the rear of the rotating template member, and a rotating member for rotating the rotating template member at a predetermined angle.
  • the movable side template may have a shaft through hole formed at a center thereof, and the rotating member may include a shaft fastened to the shaft through hole, and the elastic member may provide an elastic force to the shaft.
  • the vertical movement member may further include at least one bearing accommodated in the inner diameter to be coupled to the outer diameter of the shaft, and a bearing housing for transmitting the elastic force of the elastic member to the shaft through the bearing.
  • the vertical movement member is a slide bar for mutually fixing the bearing housing and the rotating member between the bearing housing and the rotating member,
  • It may further include a ball bush fixedly coupled to the movable side template to accommodate the slide bar to guide the forward or backward movement of the slide bar.
  • the movable side template may further include a ball bushing fastening hole and an accommodating groove accommodating the elastic member in front of the edge of the shaft through hole.
  • the vertical movement member may further include a bearing nut fastened to the outer diameter of the shaft at the rear of the bearing.
  • When there are a plurality of bearings may further include a bearing engaging projection protruding inward from the inner diameter of the bearing housing so that the plurality of bearings are separated from each other.
  • the movable side template further includes a rotation template stopper protruding from an upper surface to limit the rotation angle of the rotation template member, and the rotation template member accommodates the rotation stopper on a rear surface thereof and both ends of the rotation template stopper are rotated.
  • the rotating template guide groove may be further formed.
  • the movable side mold may further include a fixed plate for fixing the movable side mold, and a spacer accommodating the rotating member therein and fixedly coupling the movable side mold to the fixed plate.
  • the rotating member may further include a rotating gear member for rotating the shaft, and a bracket fixing plate for fixedly coupling the rotating gear member to the slide bar.
  • the rotary gear member may include a rack gear cylinder and a rack gear and a spur gear for converting the linear motion generated by the rack gear cylinder into a rotary motion.
  • the rotating member may further include a cylinder bracket for fixing the rack gear cylinder to the bracket fixing plate, and a rack gear stopper for limiting linear movement of the rack gear.
  • the rotating member may further include a rack gear liner fixed to the bracket fixing plate to guide the linear movement of the rack gear, and a stopper bracket fixed to the bracket fixing plate to fix the rack gear stopper.
  • the rotating template member may further include a coolant channel disposed inwardly from the side to be adjacent to the movable side cavity, and a coolant hose connected to the coolant channel along a portion of the side circumference to supply the coolant.
  • the shaft may further have a bearing lubricating oil injection hole penetrating laterally from the rear end to supply lubricating oil to the bearing.
  • the rotary multi-injection mold according to the present invention it is possible to easily inject coolant into the inner cavity of the movable side mold, thereby facilitating the cooling of the injection product, and thus reducing the manufacturing time and manufacturing defect of the injection product. There is.
  • the rotatable multi-injection mold according to the present invention there is an advantageous effect that the rotatable plate member of the movable mold can be moved forward or backward so as to eliminate friction due to rotation without supplying an external power source or the like.
  • FIG. 1 is a combined perspective view of a rotary multiple injection mold according to an embodiment of the present invention
  • Figure 2 is a perspective view of a fixed side mold of the rotary multi-injection mold according to an embodiment of the present invention
  • FIG. 3 is an enlarged view of the first fixed core region shown in FIG. 2, FIG.
  • FIG. 4 is an internal perspective view of the fixed side mold of the rotary multiple injection mold of FIG.
  • FIG. 5 is an internal perspective view of the fixed side mold of the rotary multiple injection mold of FIG.
  • FIG. 6 is a perspective view of a movable side mold of a rotary multiple injection mold according to an embodiment of the present invention.
  • FIG. 7 is an internal perspective view of the movable mold of the rotary multi-injection mold of FIG. 6 for explaining the connection relationship between the movable coolant channel and the cooling hose;
  • FIG. 8 is an internal perspective view showing a state in which the rotating die member of the movable side mold of the rotary multiple injection mold of FIG. 7 is rotated 120 degrees in a counterclockwise direction
  • FIG. 9 is a perspective view illustrating a state in which a rotating template member is removed from the rotating multiple injection mold of FIG. 6;
  • FIG. 10 is a perspective view of the movable side mold of the rotatable multi-injection mold according to one embodiment of the present invention viewed from the opposite direction,
  • FIG. 11 is a perspective view illustrating a mutual coupling relationship between a rotating template member, a shaft, and a bearing housing by removing a part of the rotating member of the movable side mold of the rotary multi-injection mold of FIG. 10;
  • FIG. 12 is a cross-sectional view illustrating a state in which the rotating template member is cut back along the line A-A of FIG. 6 and brought into contact with the movable side template;
  • FIG. 13 is a cross-sectional view showing a state in which the rotating template member of FIG. 12 is advanced and the contact is released from the movable side template;
  • FIG. 14 to 25 are views sequentially showing a method of manufacturing an injection product having a hollow shape by using a rotary multiple injection mold according to an embodiment of the present invention.
  • FIG. 14 is a perspective view illustrating a state in which molten resin is injected into a first cavity and a second cavity of a rotary multi-injection mold according to an embodiment of the present invention through a first hot runner, respectively;
  • FIG. 15 is an enlarged view of the rotation template member area of FIG. 14;
  • FIG. 16 is a perspective view of the rotary multi-injection mold of FIG.
  • FIG. 17 is a perspective view of the rotary multi-injection mold according to the embodiment of the present invention of FIG. 16 viewed from the opposite direction,
  • FIG. 18 is a perspective view showing a state in which the rotary template member of the rotary multi-injection mold of FIG. 16 is rotated 120 degrees in a counterclockwise direction;
  • FIG. 19 is a perspective view from behind of the movable side mold of the rotary multiple injection mold of FIG. 18;
  • FIG. 20 is a perspective view illustrating a state in which molten resin is injected for mutual bonding of a first injection molding and a second injection molding through a second hot runner of a rotary multi-injection mold according to an embodiment of the present invention.
  • FIG. 21 is an enlarged view of the rotation template member area of FIG. 20,
  • FIG. 22 is a perspective view of the rotary multiple injection mold of FIG. 20 secondarily opened; FIG.
  • FIG. 23 is a perspective view of the rotary multiple injection mold of FIG. 22 viewed from the opposite direction;
  • FIG. 24 is an enlarged perspective view of a first fixed core region showing a state in which a slat core pin bonded to one end of a coalescing injection molding is separated;
  • FIG. 25 is a perspective view showing a state in which the coalescent injection molded product of FIG. 24 is taken out from the first fixed core by using a takeout member;
  • 26 is a perspective view of the coalesced injection molded product taken out
  • FIG. 27 is a perspective view of an injection product having a hollow shape that is finally completed by removing unnecessary portions of the coalescence injection molding;
  • 29 is a side cross-sectional view of a conventional injection molding multiple injection mold, and,
  • FIG. 30 is a side cross-sectional view of another conventional DRI multiple injection mold.
  • first fixing plate 112 injection machine nozzle inlet
  • first manifold template 122 manifold receiving portion
  • hot runner system 125a first hot runner
  • first spacer 140 fixed side template
  • first fixed core 142a first recessed cavity
  • slide core member 162 slide core body
  • movable side template 242 shaft through hole
  • Ball bushing fastening hole 245 Housing spring receiving groove
  • rotatable die member 261 rotatable die stopper guide groove
  • Bearing lubricant injection hole 283 Bracket fixing plate
  • Stopper Bracket 287 Rack Gear Stopper
  • bearing housing 292 slide bar
  • FIG. 1 is a perspective view of a combination of a rotary multi-injection mold according to an embodiment of the present invention
  • Figure 2 is a perspective view of a fixed side mold of the rotary multi-injection mold according to an embodiment of the present invention
  • Figure 3 is a second 1 is an enlarged view of the fixed core region
  • FIG. 4 is an internal perspective view of the fixed side mold of the rotary multi-injection mold of FIG. 1
  • FIG. 5 is an internal perspective view of the fixed side mold of the rotary multi-injection mold of FIG. Is a perspective view of a movable side mold of a rotary multi-injection mold according to an embodiment of the present invention
  • FIG. 7 is an interior of the movable side mold of the rotary multi-injection mold of FIG.
  • FIG. 8 is an internal perspective view showing a state in which the rotating die member of the movable side mold of the rotary multi-injection mold of Fig. 7 is rotated 120 degrees in a counterclockwise direction
  • Fig. 9 is a view of the rotary multi-injection mold of Fig. 6.
  • 10 is a perspective view showing a state in which the rotatable die member is removed
  • FIG. 10 is a perspective view of the movable side mold of the rotary multi-injection mold according to one embodiment of the present invention, viewed from the opposite direction
  • FIG. 11 is a movable side of the rotary multi-injection mold of FIG. 10.
  • FIG. 12 is a state in which the rotating die member is retracted and is in contact with the movable side template along the AA line of FIG. 6.
  • 13 is a sectional view showing a state in which the rotating template member of FIG. 12 is moved forward and the contact is released from the movable side template.
  • the rotary multi-injection mold 1 includes a stationary side mold 100 and a movable side mold 200 disposed to be opposed to each other or to be combined with each other. do.
  • the stationary side mold 100 includes a first stationary plate 110, a first manifold template 120, a first spacer 130, a stationary side template 140, and a takeout member ( 150 and slide core member 160.
  • the first fixing plate 110 is a plate for fixedly attaching the fixed side mold 100 to an injection apparatus (not shown), and an injection machine nozzle injection hole 112 to which an injection machine nozzle (not shown) for injecting molten resin into a rear end portion thereof is coupled. Is formed.
  • the first manifold template 120 is coupled to the upper portion of the first fixing plate 110 and the manifold 127 of the hot runner system 125 by the manifold fixing pin 129 therein as shown in FIG. 5. ), A manifold accommodating portion 122 is formed.
  • the hot runner system 125 includes a sprue 126, a manifold 127, and a hot nozzle 128, which are well known configurations.
  • the hot runner system 125 is alternately opened and closed inside each other to allow three branched first hot runners 125a through which molten resin passes and two branched second hot runners 126a. Is formed.
  • the first spacer 130 is coupled to the upper portion of the first manifold template 120, and when the coalesced injection molding 30 shown in FIG. 26 is taken out, the contact plate 152 of the blowout member 150 to be described later may move. To provide space.
  • the fixed side template 140 is fixed to the first manifold template 120 by the center pin 149 and is coupled to the upper portion of the first spacer 130, and the first fixed core 142 based on the upper center thereof.
  • the second fixing core 144 and the rotation core avoiding groove 145 are disposed at an angle of 120 degrees.
  • the fixed side template 140 has three coaters 146 protruding upward, and guide pin receiving grooves 147 are formed at four corners, respectively.
  • the fixed side template 140 has a fixed side coolant channel 148 connected to an external coolant hose (not shown) as shown in FIG. 4.
  • the first fixing core 142 is formed with a first recessed cavity 142a corresponding to one side shape of the first injection molding 10 (see FIG. 17), and the first recessed cavity 142a.
  • a cold cat 142d is an end of the cold runner 142c connected to the second hot runner 125b.
  • the second fixing core 144 has a second protruding cavity 144a corresponding to one side shape of the second injection molding 20 (see FIG. 16), and the second protruding cavity 144a.
  • the fixed side take-out block 144d for taking out the 2nd injection molding 20 is provided in both ends of ().
  • the rotary core avoidance groove 145 has a first rotating core 262 rotated by 120 degrees from its original position when the fixed side mold 100 and the movable side mold 200 are merged for injection molding.
  • the first rotational core 262 is coupled to the housing so as not to hit the top.
  • the extraction member 150 is installed in the space portion between the first manifold template 120 and the fixed side template 140 provided by the first spacer 130, and is provided with a plate 152, a plate cylinder 154, and a mill pin. 156 and return pin 158.
  • the plate 152 is coupled to protrude and extend the forward motion provided by the plate cylinder 154 to the first recessed cavity 142a and the cold runner 142c of the first fixed core 142 as shown in FIG. 3. Transfer to Milpin 156.
  • the pin 156 protrudes from the first recessed cavity 142a and the cold runner 142c when the plate 152 is advanced to separate the coalescing injection molding 30 (see FIG. 25) from the first fixed core 142. .
  • the return pin 158 is coupled to the mill plate 152 so as to protrude upward from the stationary side plate 140, and is fixed to the stationary side mold 100 and the movable side mold when protruded by the forward movement of the plate 152.
  • the retracting plate 152 In contact with the rotary die member 260 during the coalescing of the 200, the retracting plate 152 is pushed back so that the mil pin 156 protruding from the first recessed cavity 142a and the cold runner 142c is put back in place.
  • the slide core member 160 is provided at one end of the first fixed core 142 and includes a slide core body 162, a slide core pin 164, a guide rail 166, and a slide core cylinder 168.
  • the slide core body 162 moves up and down by the guide of the guide rail 166 by the slide core cylinder 168 to couple the slide core pin 164 coupled to the upper portion of the first recessed cavity 142a. Or by disengaging the coupling, one end of the first injection molding 10 may have a hollow shape or the coalescing injection molding 30 may be taken out of the first fixing core 142 during the injection operation.
  • the movable side mold 200 includes a second fixing plate 210, a second spacer 230, a movable side template 240, a rotating template member 260, a rotating member 280, and the like.
  • the vertical movement member 290 is included.
  • the second fixing plate 210 fixedly attaches the movable side mold 200 to an injection apparatus (not shown) so as to face the fixed side mold 100.
  • the second spacer 230 is coupled to the upper portion of the second fixing plate 210 and provides a space in which the rotating member 280 for rotating the rotating template member 260 to be described later is installed.
  • the movable side template 240 is coupled to the upper portion of the second spacer 230, and supports the vertical movement member 290 in combination.
  • the movable side template 240 has a shaft through hole 242 formed at the center thereof, and a ball bushing hole 244 at the edge of the shaft through hole 242.
  • the housing spring receiving groove 245 is formed.
  • two rotational template stoppers 246 protrude from the upper portion at a 120 degree angle with respect to the central portion of the shaft through hole 242.
  • the guide pin for receiving and coupling to the guide pin receiving groove 147 when the fixed side mold 100 and the movable side mold 200 are coupled to each other to align the coupling positions between the fixed side mold 100 and the movable side mold 200. 247 is formed at four corners to protrude upward.
  • Rotational template member 260 is coupled to the rotating member 280 to be described later to be rotated at an angle of 120 degrees in the clockwise or counterclockwise direction by the rotational movement of the shaft 281, the shaft 281 is moved forward or The movable side template 240 is contacted or separated by the vertically movable member 290 which moves backward.
  • the rotatable die member 260 includes a rotatable die stopper guide groove 261, and includes a first rotatable core 262, a second rotatable core 264, and a fixed core avoidance groove 265.
  • the rotary die stopper guide groove 261 is formed at the rear of the rotary die member 260, and when the rotary die stopper 246 receives the rotary die stopper 246 to rotate by the rotary member 280. Each end of the rotary die stopper 246 is locked to limit the rotation angle of the rotary die member 260.
  • the rotation of the rotating template member 260 is made by the rotational movement of the shaft 250 coupled to each other by the fastening member through the shaft fastening hole 267.
  • the first rotary core 262, the second rotary core 264, and the fixed core avoidance groove 265 are disposed on the rotary template member 260 to form an angle of 120 degrees with respect to the central axis of the shaft 250, respectively. have.
  • the first rotating core 262 is formed with a first protruding cavity 262a corresponding to the other shape of the first injection molded product 10. Therefore, when the first recessed cavity 142a and the first protruding cavity 262a are combined, a cavity corresponding to the shape of the first injection molding 10 is formed.
  • the extraction spring (to take out the first injection molding 10 from the first protruding cavity 262a) is separated from the fixed side mold 100 and the movable side mold 200.
  • 262e (refer FIG. 12) is provided with the movable side extraction block 262d provided with elastic force.
  • the second rotating core 264 is formed with a second recessed cavity 264a corresponding to the other side shape of the second injection molding 10. Accordingly, when the second protruding cavity 144a and the second recessed cavity 264a are combined, a cavity corresponding to the shape of the second injection molding 10 is formed.
  • the fixed core avoidance groove 265 is formed by the combination of the fixed mold 100 and the movable mold 200 for the injection operation, that is, the second fixed core (2) by the rotary die member 260 rotated 120 degrees from its original position during mold closing.
  • the second fixing core 144 is received and coupled to prevent the 144 from hitting the upper portion of the rotating template member 260.
  • the coater socket 266 accommodates the coater 146 to align the positions of the fixed side template 140 and the rotating template member 260 during mold closing.
  • the movable side coolant channel 268 is formed inside the first rotating core 262 and the second rotating core 264 as shown in FIGS. 7 and 8.
  • the movable side coolant channel 268 is connected to a coolant hose 269 disposed adjacent to the side of the rotating template member 260.
  • the hot molten resin injected into the cavity 264a can be easily cooled.
  • the coolant hose 269 is omitted in the remaining drawings other than FIGS. 7 and 8 for convenience of illustration.
  • the rotatable die member 260 is always provided to protrude from the movable side die 240. Therefore, since the coolant hose 269 can be connected to the movable side coolant channel 268 while being disposed adjacent to the side of the rotary die member 260, the rotary die member 260 is counterclockwise as shown in FIGS. 7 to 8. Even if rotated by 120 degrees, there is an advantage that does not occur interference with other components.
  • the rotary member 280 is connected to the rotary template member 260 so that the rotary multi-injection mold 1 firstly makes the first injection molding 10 and the second injection molding 20, and secondly, the first injection molding ( 20) and the second injection molding 20 to rotate the rotational template member 260 in a clockwise or counterclockwise direction in order to complete the coalescing injection molding 30 to rotate the rotational template member Provided at 260.
  • the rotating member 280 may include a shaft 281, a bracket fixing plate 283, a cylinder bracket 284, a rack gear liner 285, a stopper bracket 286, a rack gear stopper 287, and a rotating gear member 288. It is configured to include).
  • the shaft 281 is connected to the rear center portion of the rotating template member 260 and transmits the rotational force generated by the rotating gear member 288 to the rotating plate member 260.
  • the inside of the shaft 281 is formed with a bearing lubricating oil injection hole (281a) is formed through the side from the rear side to inject lubricating oil for smooth operation of the bearing (294) to be described later.
  • the rotary gear member 288 generates a rotational force for rotating the rotary template member 260, and includes a power lock 288a, a spur gear 288b, a rack gear 288c, and a rack gear cylinder 288d.
  • the spur gear 288b is fixed to the shaft 281 by the power lock 288a and rotates the vertical movement of the rack gear 288c generated by the rack gear cylinder 288d fixedly coupled to the cylinder bracket 284. Transition to motion and transfer to shaft 281. At this time, the rack gear 288c is guided by the rack gear liner 289 in order to prevent the deviation of the position during the vertical movement, and the downward movement is limited by the rack gear stopper 287 accommodated in the stopper bracket 286. do.
  • the bracket fixing plate 283 fixes the cylinder bracket 284, the rack gear liner 285, and the stopper bracket 286 described above to ensure stable operation of the rotary gear member 288.
  • the vertical movement member 290 rotates the shaft 281 so as to prevent rotational friction caused by the contact between the movable side template 240 and the rotation member 280 during the rotational movement of the rotation template member 260 by the rotation member 280. Advance the predetermined distance so that the rotating member 280 connected to the shaft 281 is advanced from the movable side template 240 to be separated from the movable side template 240.
  • the vertical movement member 290 includes a bearing housing 291, a slide bar 292, a ball bush 293, a bearing 294 and a bearing nut 295, and a housing spring 296 that is an elastic member.
  • the bearing housing 291 is accommodated in the shaft through-hole 242 such that the two bearings 294 are separated from each other by the bearing engaging jaws 291a formed in the inner diameter to surround the center portion of the outer diameter of the shaft 281.
  • the bearing housing 291 is moved forward by receiving the elastic force of the housing spring 296 which will be described later so that the rotating die member 260 can be separated from the movable side template 240 and transferred to the shaft 281.
  • the slide bar 292 supports the rotating member 280 by interconnecting the bearing housing 291 and the bracket fixing plate 283. Therefore, there is an advantage that it is not necessary to separately provide a fixing device for fixing the rotating member 280 to the movable side mold (200).
  • the ball bush 293 is fixedly coupled to the movable side template 240 while the slide bar 292 is wrapped to guide the forward and backward movement of the slide bar 292.
  • Two bearings 294 are accommodated in the inner diameter of the bearing housing 291 with the bearing engaging jaw 291a interposed therebetween so that the shaft 281 can rotate smoothly inside the bearing housing 291.
  • the inner diameter is in contact with the center of the outer diameter of the shaft 281, and the front end is positioned to catch the step of the shaft 281, and the bearing engaging jaw 291a
  • the bearing 294 provided at the rear of the side is in contact with the center portion of the shaft 281 and the rear end is fixedly supported by the bearing nut 295. Therefore, when the mold starting bearing housing 291 moves forward by the elastic force of the housing spring 296, the bearing 294 transmits the forward movement to the shaft 281.
  • the bearing 294 may be provided with one or three or more. In one case, the bearing engaging jaw 291a may be omitted. May be added.
  • the housing spring 296 is accommodated in the housing spring receiving groove 245 and provides an elastic force to the rear of the bearing housing 294.
  • the housing spring 296 is used as the elastic member in this embodiment, it may be replaced by another known elastic member that provides elastic force.
  • FIG. 14 to 25 are views sequentially showing a method of manufacturing an injection product having a hollow shape by using a rotary multiple injection mold according to an embodiment of the present invention
  • Figure 14 is an embodiment of the present invention
  • Fig. 15 is a perspective view showing a state in which molten resin is injected into a first cavity and a second cavity of a rotary multi-injection mold through a first hot runner, respectively
  • Fig. 15 is an enlarged view of the rotatable die member region of Fig. 14
  • Fig. 16 is a perspective view of the rotary multi-injection mold of FIG. 14 primarily
  • FIG. 17 is a perspective view of the rotary multi-injection mold according to an embodiment of the present invention of FIG. Fig.
  • FIG. 19 is a perspective view showing a state in which the rotating die member of the mold is rotated 120 degrees in a counterclockwise direction
  • Fig. 19 is a perspective perspective view of the movable side mold of the rotary multiple injection mold of Fig. 18, and
  • Fig. 20 is a ash.
  • Perspective state diagram illustrating a state in which molten resin is injected for mutual bonding of a first injection molding and a second injection molding through a second hot runner of a rotary multi-injection mold according to an embodiment of the present invention
  • FIG. 21 Is an enlarged view of the rotatable die member region of FIG.
  • FIG. 22 is a perspective view of the rotary multiple injection mold of FIG. 20 secondaryly
  • FIG. 23 is a perspective view of the rotary multiple injection mold of FIG. An enlarged perspective view of a first fixed core region showing a state in which a slat core pin coupled to one end of an injection molding is separated;
  • FIG. 25 is a state in which the coalesced injection molding of FIG. 24 is taken out from the first fixed core by using a takeout member.
  • 26 is a perspective view of the coalesced injection molding taken out, and
  • FIG. 27 is an injection having a hollow shape finally completed by removing unnecessary portions of the coalescence injection molding.
  • Product is a perspective view.
  • a method of manufacturing an injection product having a hollow shape by operating a rotary multi-injection mold may first include a first recessed cavity 142a and a first protruding cavity (as shown in FIGS. 14 and 15). 262a are combined to form a cavity corresponding to the shape of the first injection molding 10, and the second protruding cavity 144a and the second recessed cavity 264a are combined to correspond to the shape of the second injection molding 20.
  • the fixed side mold 100 and the movable side mold 200 are coalesced, ie, closed, so that the cavity is formed.
  • inject The injected hot molten resin can be efficiently cooled by the fixed side coolant channel 148, the movable side coolant channel 268 and the coolant hose 269 shown in FIGS. 4 and 7.
  • the second hot runner 125b is closed by a known open / close valve system (not shown).
  • a known open / close valve system not shown.
  • the rotary die member 260 as shown in FIG. 12 by contact with the fixed side template 140. Maintains contact with the movable side template 240.
  • the fixed side mold 100 and the movable side mold 200 are separated from each other.
  • the first injection molded product 10 is attached to the first fixed core 142 of the mold-side fixing side mold 100 by the movable side take-out block 262d, and the second rotating core of the movable side mold 200 ( 264, the 2nd injection molding 20 is attached by the fixed side extraction block 144d.
  • the rotating die member 260 whose contact with the stationary side template 140 is released as shown in FIG. 13 is the above-mentioned vertically moving member 290.
  • the rotating die member 260 is separated from the movable side template 240 by the bearing housing 291, the bearing 294, and the shaft 281 moving forward due to the elastic force of the housing spring 296.
  • the rotating template member 260 is rotated 120 degrees counterclockwise by the rotating member 280, and the second rotating core 264 to which the second injection molding 20 is attached is formed.
  • the first injection molding 10 is positioned on the upper side of the first fixing core 142 to which the injection molding 10 is attached. Since the rotation template member 260 is separated from the movable side template 240 by the vertical movement member 290 during the rotational movement, the friction phenomenon due to the contact rotation does not occur.
  • the coolant hose 269 connected to the movable side coolant channel 268 does not interfere with other components.
  • the fixed side mold 100 and the movable side mold 200 are reintegrated, ie, closed, so that the edges of the first injection molding 10 and the second injection molding 20 are changed.
  • Molten resin is injected into the contact rim using the second hot runner 125b, the cold runner 142c and the cold cate 142d of the hot runner system 125 to bond the contact rims together.
  • the first hot runner 125a is closed by a known open / close valve system (not shown).
  • the fixed mold 100 and the movable mold 200 is re-separated from each other again.
  • the mold injection molding unit 30 is attached to the first fixing core 142 of the fixing side mold 100 by the slide core pin 164 which is kept extended downward.
  • the slide core pin 164 is shrunk upward as shown in FIG. 24 to receive it from the hollow of the coalesced injection molding 30. Release it.
  • Rotary multi-injection mold according to the present invention is an industrially useful invention that does not need to install a separate oilless (oiless) parts on the movable mold because frictional resistance due to contact does not occur during rotation.
  • the rotary multi-injection mold according to the present invention can be easily injected into the vicinity of the inner cavity of the movable mold to facilitate the cooling of the injection product is useful industrially to reduce the manufacturing time and manufacturing defects of the injection product Invention.
  • the rotary multi-injection mold according to the present invention is an industrially useful invention in which the rotatable die member of the movable mold can move forward or backward so as to eliminate friction due to rotation without supplying a separate external power source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

A rotation-type multiple injection mold of the present invention comprises: a fixed side mold, which is provided with a hot runner system therein, and provided with at least two fixed side cavities having different shapes so as to create a predetermined angle with an upper central portion at the center; and a movable side mold, which is arranged opposite the fixed side mold so as to be coupled to or separated from same, and is provided with at least two movable side cavities having different shapes, which correspond to the fixed side cavities, so as to create a predetermined angle with the upper central portion at the center, wherein the movable side mold further comprises a movable side template, a rotatable template member, which is provided with the movable side cavities at the upper portion thereof, protrudes from the movable side template toward the fixed side template, separates to a predetermined distance away from the movable side template when separated from the fixed side mold, and which can rotate to a predetermined angle, a vertical moving member that is provided with an elastic member for providing elastic force to the rotatable template member from the rear direction of the rotatable template member, and a rotation member for rotating the rotatable template member to the predetermined angle.

Description

회전식 다중 사출 금형Rotary multi injection mold
본 발명은 회전식 다중 사출 금형에 관한 것으로서, 보다 상세하게는 중공 형상을 갖는 사출 제품을 대량으로 생산하기 위해 중앙의 중심축을 기준으로 동일 수평면 상에 일정 각도 마다 회전 합체 시 다른 형상이 되는 복수개의 캐비티를 형성하는 고정측 금형과 가동측 금형을 서로 마주하도록 동시에 설치하고 가동측 금형을 고정측 금형에 대해 소정 각도로 회전시켜 캐비티의 형상을 변경시키면서 사출 수지를 주입하는 방식으로 최종적으로 원하는 사출 제품을 순차적으로 대량 생산하는 회전식 다중 사출 금형에 관한 것이다.The present invention relates to a rotary multi-injection mold, and more particularly to a plurality of cavities which are different shapes when rotationally coalesced at a predetermined angle on the same horizontal plane with respect to the central axis in order to mass produce an injection product having a hollow shape. At the same time, the fixed side mold and the movable side mold are formed so as to face each other and the movable side mold is rotated at a predetermined angle with respect to the fixed side mold to change the shape of the cavity to inject the injection resin while finally injecting the desired injection product. It relates to a rotary multi-injection mold to sequentially mass production.
일반적으로, 합성 수지 재질의 사출 제품을 대량으로 생산하기 위해 사출 금형이 주로 사용되고 있다. 이러한 사출 금형은 한 쌍의 금형이 합체시 내부에 사출 제품의 형상에 대응하는 캐비티가 형성되며 여기에 용융된 수지를 주입함으로써 사출 제품을 생산한다.In general, injection molds are mainly used to mass-produce injection products made of synthetic resin. Such an injection mold has a cavity corresponding to the shape of the injection product formed therein when a pair of molds are merged, and produces an injection product by injecting molten resin therein.
이러한 사출 제품 중 특히 내부에 중공 형상을 갖는 사출 제품을 효율적으로 대량 생산하기 위해 한 쌍의 금형 내 복수개의 캐비티를 형성하여 중간 사출 성형품의 제조한 후 이들을 상호 합체하는 방식으로 사출 제품을 제조하는 다중 사출 금형이 개발되었다.In order to efficiently mass-produce an injection product having a hollow shape among these injection products, a plurality of cavities are formed by forming a plurality of cavities in a pair of molds to manufacture an intermediate injection molded product, and then integrating them. Injection molds have been developed.
이러한 다중 사출 금형의 대표적인 예가 도 28에 도시된 선행기술문헌인 일본공개특허공보 제1987-87315호에 개시된 DSI(die sliding injection) 방식의 다중 사출 금형이 있다.A typical example of such a multi-injection mold is a die injection injection (DSI) type multi-injection mold disclosed in Japanese Laid-Open Patent Publication No. 1987-87315, which is a prior art document shown in FIG.
DSI(die sliding injection) 방식의 다중 사출 금형은 합체시 형성되는 2개의 서로 다른 캐비티에 용융 수지를 각각 주입하여 2개의 중간 사출 성형품을 제조한 후 고정측 금형에 대해 가동측 금형을 슬라이딩 방식으로 직선 이동하여 합체한 후 접합부에 용융 수지를 주입하여 중공 형상을 갖는 사출 제품을 생산한다.DSI (die sliding injection) multi-injection mold manufactures two intermediate injection molded products by injecting molten resin into two different cavities which are formed at the time of coalescence, and then linearly moves the movable mold against the fixed mold. After moving and coalescing, molten resin is injected into the joint to produce an injection product having a hollow shape.
그런데 이러한 DSI 방식의 다중 사출 금형은 슬라이딩 이동에 따른 금형의 직선 이동 공간을 확보해야 하는 문제점이 있을 뿐만 아니라, 슬라이딩 이동에 따라 캐비티를 형성하는 성형부가 외부로 장시간 노출되어 오염이 됨으로써 사출 제품의 불량이 증대되는 문제점이 있다.However, the multi-injection mold of the DSI method has a problem of securing a linear movement space of the mold according to the sliding movement, and the molding part forming the cavity according to the sliding movement is exposed to the outside for a long time, resulting in contamination of the injection product. There is a problem that is increased.
이러한 문제점을 해결하기 위해 도 29에 도시된 선행기술문헌인 일본공개특허공보 제1992-91914호 및 도 30에 도시된 선행기술문헌인 한국공개특허공보 제 2007-41115호에 각각 개시된 DRI(die rotary injection) 방식의 다중 사출 금형이 개발되었다. DRI 방식의 다중 사출 금형은 가동측 금형을 고정측 금형에 대해 슬라이딩 방식이 아닌 회전 방식을 통해 중공 형상을 갖는 사출 제품을 대량으로 생산할 수 있어 DRI 방식의 다중 사출 금형이 갖는 문제점을 해결할 수 있는 장점이 있다.In order to solve this problem, DRI (die rotary) disclosed in Japanese Laid-Open Patent Publication No. 1992-91914, which is shown in Fig. 29, and Korean Laid-Open Patent Publication No. 2007-41115, which is shown in Fig. 30, respectively. An injection type multiple injection mold has been developed. The multi-injection mold of the DRI method can solve the problem of the multi-injection mold of the DRI method by producing a large amount of injection products having a hollow shape by rotating the moving mold with respect to the stationary mold rather than the sliding method. There is this.
그러나 도 29에 도시된 DRI 방식의 다중 사출 금형은 가동측 금형의 경우 지지부(51)에 대해 가동 다이(2)가 직접적으로 맞닿은 상태에서 회전을 하기 때문에 회전 마찰 저항이 발생한다. 이러한 회전 마찰 저항을 줄이기 위해서는 맞닿는 부분에 별도의 오일리스(oilless) 부품을 설치하여야 하며, 오일리스 부품은 소모품이므로 주기적인 교체가 필요하여 설치 및 관리에 많은 시간과 비용이 소요되는 불편함이 있다.However, in the case of the multi-injection mold of the DRI method shown in FIG. 29, since the movable die 2 rotates in a state where the movable die 2 is directly in contact with the support 51, rotational frictional resistance is generated. In order to reduce such rotational frictional resistance, an oilless component must be installed at the contact portion, and since the oilless component is a consumable part, periodic replacement is required, resulting in inconvenience that requires a lot of time and cost for installation and management. .
한편, 도 30에 도시된 DRI 방식의 다중 사출 금형은 가동측 금형(30a, 30b)이 가동측 원판(3)으로부터 승하강판(7)에 의해 고정측 금형(10a, 10b)을 향해 돌출된 상태로 회전이 가능하므로 도 29에 도시된 DRI 방식의 다중 사출 금형이 갖는 문제점을 해결할 수 있다.On the other hand, in the multi-injection mold of the DRI method shown in FIG. 30, the movable side molds 30a and 30b protrude from the movable side disc 3 toward the fixed side molds 10a and 10b by the elevating plate 7. Since the furnace can be rotated, the problem of the multiple injection mold of the DRI method shown in FIG. 29 can be solved.
그러나 도 30에 도시된 DRI 방식의 다중 사출 금형은 회전 시를 제외한 상태에서는 가동측 금형(30a, 30b)이 가동측 원판(3)에 수용되어 있는 상태이기 때문에 캐비티에 주입되는 고온의 용융 수지를 효율적으로 냉각할 수 있는 냉각수 주입 부재를 가동측 금형의 캐비티 부근 내부까지 설치할 수 없는 문제점이 있었다. 뿐만 아니라 가동측 금형(30a, 30b)을 가동측 원판(3)으로부터 돌출 또는 수용시키기 위해서는 회전 장치 이외에 승하강판(7)을 전진 또는 후진 시키기 위해 외부 전원 등에 의해 구동되는 별도의 구동 장치를 구비하여야 하는 문제점이 있었다.However, the multi-injection mold of the DRI method shown in Fig. 30 is a state in which the movable side molds 30a and 30b are accommodated in the movable side disk 3 in the state except for the rotation, and thus the hot molten resin injected into the cavity is used. There has been a problem that a cooling water injection member that can be cooled efficiently cannot be installed inside the cavity vicinity of the movable side mold. In addition, in order to protrude or accommodate the movable side molds 30a and 30b from the movable side disc 3, a separate driving device driven by an external power source or the like for moving the elevating plate 7 forward or backward must be provided in addition to the rotary device. There was a problem.
따라서 본 발명이 해결하고자 하는 기술적 과제는 회전 방식인 종래의 DRI 방식의 다중 사출 금형의 문제점을 해결하여 가동측 금형에 별도의 오일리스(oilless) 부품을 설치할 필요가 없으며, 가동측 금형 내부의 캐비티 부근으로 냉각수를 용이하게 주입할 수 있는 구조를 가질 뿐만 아니라, 별도의 외부 전원 등의 공급이 없이도 회전에 따른 마찰을 없앨 수 있도록 가동측 금형의 일부분이 전진 또는 후진이 가능한 회전식 다중 사출 금형을 제공하는 데 있다.Therefore, the technical problem to be solved by the present invention is to solve the problem of the multi-injection mold of the conventional DRI method of rotation method, there is no need to install a separate oilless (oilless) parts on the movable mold, the cavity inside the movable mold Not only has a structure that can easily inject coolant into the vicinity, but also provides a rotary multi-injection mold in which a part of the movable mold can move forward or backward so as to eliminate friction due to rotation without supplying an external power source. There is.
상기의 과제 해결을 위한 본 발명에 따른 회전식 다중 사출 금형은 내부에 핫런너 시스템이 마련되어 있으며, 상부 중앙부를 기준으로 적어도 2 이상의 서로 다른 형상의 고정측 캐비티가 소정 각도를 이루도록 형성되어 있는 고정측 금형, 그리고, 상기 고정측 금형에 합체 또는 분리되도록 대향 배치되어 있으며, 상부 중앙부를 기준으로 상기 고정측 캐비티에 대응하는 적어도 2 이상의 서로 다른 형상의 가동측 캐비티가 소정 각도를 이루도록 형성되어 있는 가동측 금형을 포함하며, 상기 가동측 금형은 가동측 형판, 상부에 상기 가동측 캐비티가 형성되어 있으며, 상기 가동측 형판으로부터 상기 고정측 형판을 향해 돌출되어 있으며, 상기 고정측 금형과의 분리시 상기 가동측 형판으로부터 소정 이격 간격으로 분리되며, 소정 각도로 회전이 가능한 회전 형판 부재. 상기 회전 형판 부재의 후방에서 상기 회전 형판 부재에 대해 탄성력을 제공하는 탄성 부재를 갖는 상하 이동 부재, 그리고, 상기 회전 형판 부재를 소정 각도로 회전시키는 회전 부재를 포함한다.The rotary multi-injection mold according to the present invention for solving the above problems is provided with a hot runner system therein, and a fixed side mold having at least two different shapes of fixed side cavities formed at a predetermined angle with respect to the upper center portion. And a movable side mold which is disposed so as to be joined to or separated from the fixed side mold, and has at least two different shapes of movable side cavities corresponding to the fixed side cavity with respect to the upper center part to form a predetermined angle. The movable side mold has a movable side template, the movable side cavity is formed on the upper side, protrudes from the movable side template toward the fixed side template, and the movable side when separated from the fixed side mold. Separated from the template at predetermined intervals, and can be rotated at a predetermined angle Rotational template member. And a vertical movement member having an elastic member that provides an elastic force with respect to the rotating template member at the rear of the rotating template member, and a rotating member for rotating the rotating template member at a predetermined angle.
상기 가동측 형판은 중앙에 샤프트 관통공이 형성되어 있으며, 상기 회전 부재는 상기 샤프트 관통공에 체결되어 있는 샤프트를 포함하며, 상기 탄성 부재는 상기 샤프트에 탄성력을 제공할 수 있다.The movable side template may have a shaft through hole formed at a center thereof, and the rotating member may include a shaft fastened to the shaft through hole, and the elastic member may provide an elastic force to the shaft.
상기 상하 이동 부재는 상기 샤프트의 외경에 체결되도록 내경에 수용된 적어도 하나의 베어링, 그리고, 상기 탄성 부재의 탄성력을 상기 베어링을 통해 상기 샤프트에 전달하는 베어링 하우징을 더 포함할 수 있다.The vertical movement member may further include at least one bearing accommodated in the inner diameter to be coupled to the outer diameter of the shaft, and a bearing housing for transmitting the elastic force of the elastic member to the shaft through the bearing.
상기 상하 이동 부재는 상기 베어링 하우징과 상기 회전 부재의 사이에서 상기 베어링 하우징과 상기 회전 부재를 상호 고정 결합시키는 슬라이드바, 그리고,The vertical movement member is a slide bar for mutually fixing the bearing housing and the rotating member between the bearing housing and the rotating member,
상기 슬라이드바를 수용하여 상기 슬라이드바의 전진 또는 후진 운동을 가이드하도록 상기 가동측 형판에 고정 결합되는 볼부시를 더 포함할 수 있다.It may further include a ball bush fixedly coupled to the movable side template to accommodate the slide bar to guide the forward or backward movement of the slide bar.
상기 가동측 형판은 상기 샤프트 관통공의 가장자리 전면에 볼부시 체결공 및 상기 탄성 부재를 수용하는 수용홈이 각각 더 형성되어 있을 수 있다.The movable side template may further include a ball bushing fastening hole and an accommodating groove accommodating the elastic member in front of the edge of the shaft through hole.
상기 베어링은 전단이 상기 샤프트의 단턱에 걸리도록 마련되어 있으며, 상기 상하 이동 부재는 상기 베어링의 후방에서 상기 샤프트의 외경에 체결되는 베어링 너트를 더 포함할 수 있다.The bearing is provided so that the front end is caught on the step of the shaft, the vertical movement member may further include a bearing nut fastened to the outer diameter of the shaft at the rear of the bearing.
상기 베어링이 복수개인 경우 상기 복수개의 베어링이 상호 분리 위치하도록 상기 베어링 하우징의 내경에서 내부로 돌출 형성된 베어링 걸림턱을 더 포함할 수 있다.When there are a plurality of bearings may further include a bearing engaging projection protruding inward from the inner diameter of the bearing housing so that the plurality of bearings are separated from each other.
상기 가동측 형판은 상기 회전 형판 부재의 회전 각도를 제한하도록 상면에 돌출 형성되어 있는 회전 형판 스토퍼를 더 포함하며, 상기 회전 형판 부재는 후면에 상기 회전 스토퍼를 수용하며 회전시 양단이 상기 회전 형판 스토퍼에 걸리는 회전 형판 가이드홈이 더 형성되어 있을 수 있다.The movable side template further includes a rotation template stopper protruding from an upper surface to limit the rotation angle of the rotation template member, and the rotation template member accommodates the rotation stopper on a rear surface thereof and both ends of the rotation template stopper are rotated. The rotating template guide groove may be further formed.
상기 가동측 금형은 상기 가동측 금형을 고정하는 고정판, 그리고, 상기 회전 부재를 내부에 수용하며, 상기 가동측 형판을 상기 고정판에 고정 결합하는 스페이서를 더 포함할 수 있다.The movable side mold may further include a fixed plate for fixing the movable side mold, and a spacer accommodating the rotating member therein and fixedly coupling the movable side mold to the fixed plate.
상기 회전 부재는 상기 샤프트를 회전시키는 회전 기어 부재, 그리고, 상기 회전 기어 부재를 상기 슬라이드바에 고정 결합시키는 브라켓 고정판을 더 포함할 수 있다.The rotating member may further include a rotating gear member for rotating the shaft, and a bracket fixing plate for fixedly coupling the rotating gear member to the slide bar.
상기 회전 기어 부재는 랙기어 실린더, 그리고, 상기 랙기어 실린더에 의해 발생된 직선 운동을 회전 운동으로 전환하는 랙 기어 및 스퍼 기어를 포함할 수 있다.The rotary gear member may include a rack gear cylinder and a rack gear and a spur gear for converting the linear motion generated by the rack gear cylinder into a rotary motion.
상기 회전 부재는 상기 랙기어 실린더를 상기 브라켓 고정판에 고정하는 실린더 브라켓, 그리고, 상기 랙기어의 직선 운동을 제한하는 랙기어 스토퍼를 더 포함할 수 있다.The rotating member may further include a cylinder bracket for fixing the rack gear cylinder to the bracket fixing plate, and a rack gear stopper for limiting linear movement of the rack gear.
상기 회전 부재는 상기 랙기어의 직선 운동을 가이드하도록 상기 브라켓 고정판에 고정된 랙기어 라이너, 그리고, 랙 기어 스토터를 고정하도록 상기 브라켓 고정판에 고정된 스토퍼 브라켓을 더 포함할 수 있다.The rotating member may further include a rack gear liner fixed to the bracket fixing plate to guide the linear movement of the rack gear, and a stopper bracket fixed to the bracket fixing plate to fix the rack gear stopper.
상기 회전 형판 부재는 측면으로부터 상기 가동측 캐비티에 인접하도록 내부로 배치 형성된 냉각수 채널, 그리고 측면 둘레의 일부를 따라 상기 냉각수 채널에 연결되어 냉각수를 공급하는 냉각수 호스를 더 포함할 수 있다.The rotating template member may further include a coolant channel disposed inwardly from the side to be adjacent to the movable side cavity, and a coolant hose connected to the coolant channel along a portion of the side circumference to supply the coolant.
상기 샤프트는 후단으로부터 측면으로 관통되어 상기 베어링에 윤활유를 공급하는 베어링 윤활유 주입공이 더 형성되어 있을 수 있다.The shaft may further have a bearing lubricating oil injection hole penetrating laterally from the rear end to supply lubricating oil to the bearing.
이상과 같이 본 발명에 따른 회전식 다중 사출 금형에 의하면, 회전시 접촉에 의한 마찰 저항이 발생하지 않으므로 가동측 금형에 별도의 오일리스(oiless) 부품을 설치할 필요가 없는 유리한 효과가 있다.As described above, according to the rotary multi-injection mold according to the present invention, since frictional resistance due to contact does not occur during rotation, there is an advantageous effect that there is no need to install a separate oilless component on the movable side mold.
또한, 본 발명에 따른 회전식 다중 사출 금형에 의하면 가동측 금형의 내부캐비티 부근으로 냉각수를 용이하게 주입할 수 있어 사출 제품의 냉각이 용이하여 사출 제품의 제조 시간 및 제조 불량을 감소시킬 수 있는 유리한 효과가 있다.In addition, according to the rotary multi-injection mold according to the present invention, it is possible to easily inject coolant into the inner cavity of the movable side mold, thereby facilitating the cooling of the injection product, and thus reducing the manufacturing time and manufacturing defect of the injection product. There is.
또한, 본 발명에 따른 회전식 다중 사출 금형에 의하면 별도의 외부 전원 등의 공급이 없이도 회전에 따른 마찰을 없앨 수 있도록 가동측 금형의 회전 형판 부재가 전진 또는 후진이 가능한 유리한 효과가 있다.In addition, according to the rotatable multi-injection mold according to the present invention, there is an advantageous effect that the rotatable plate member of the movable mold can be moved forward or backward so as to eliminate friction due to rotation without supplying an external power source or the like.
도 1은 본 발명의 한 실시예에 따른 회전식 다중 사출 금형의 결합 사시도,1 is a combined perspective view of a rotary multiple injection mold according to an embodiment of the present invention,
도 2는 본 발명의 한 실시예에 따른 회전식 다중 사출 금형의 고정측 금형의 사시도,Figure 2 is a perspective view of a fixed side mold of the rotary multi-injection mold according to an embodiment of the present invention,
도 3은 도 2에 도시된 제1 고정 코어 영역의 확대도,3 is an enlarged view of the first fixed core region shown in FIG. 2, FIG.
도 4는 도 1의 회전식 다중 사출 금형의 고정측 금형의 내부 투시도,4 is an internal perspective view of the fixed side mold of the rotary multiple injection mold of FIG.
도 5는 도 4의 회전식 다중 사출 금형의 고정측 금형을 반대 방향에서 바라본 내부 투시도,5 is an internal perspective view of the fixed side mold of the rotary multiple injection mold of FIG.
도 6은 본 발명의 한 실시예에 따른 회전식 다중 사출 금형의 가동측 금형의 사시도,6 is a perspective view of a movable side mold of a rotary multiple injection mold according to an embodiment of the present invention;
도 7은 가동측 냉각수 채널과 냉각 호스의 연결 관계를 설명하기 위한 도 6의 회전식 다중 사출 금형의 가동측 금형의 내부 투시도,7 is an internal perspective view of the movable mold of the rotary multi-injection mold of FIG. 6 for explaining the connection relationship between the movable coolant channel and the cooling hose;
도 8은 도 7의 회전식 다중 사출 금형의 가동측 금형의 회전 형판 부재가 반시계 방향으로 120도 회동한 상태를 나타낸 내부 투시도,8 is an internal perspective view showing a state in which the rotating die member of the movable side mold of the rotary multiple injection mold of FIG. 7 is rotated 120 degrees in a counterclockwise direction,
도 9는 도 6의 회전식 다중 사출 금형 중 회전 형판 부재가 제거된 상태를 나타낸 사시도, FIG. 9 is a perspective view illustrating a state in which a rotating template member is removed from the rotating multiple injection mold of FIG. 6;
도 10은 본 발명의 한 실시예에 따른 회전식 다중 사출 금형의 가동측 금형을 반대 방향에서 바라본 사시도,10 is a perspective view of the movable side mold of the rotatable multi-injection mold according to one embodiment of the present invention viewed from the opposite direction,
도 11은 도 10의 회전식 다중 사출 금형의 가동측 금형 중 회전 부재의 일부를 제거하여 회전 형판 부재와 샤프트 및 베어링 하우징의 상호 결합 관계를 나타낸 사시도,FIG. 11 is a perspective view illustrating a mutual coupling relationship between a rotating template member, a shaft, and a bearing housing by removing a part of the rotating member of the movable side mold of the rotary multi-injection mold of FIG. 10;
도 12는 도 6의 A-A 선을 따라 잘라 회전 형판 부재가 후퇴하여 가동측 형판에 접촉된 상태를 도시한 단면도,12 is a cross-sectional view illustrating a state in which the rotating template member is cut back along the line A-A of FIG. 6 and brought into contact with the movable side template;
도 13은 도 12의 회전 형판 부재가 전진하여 가동측 형판으로부터 접촉이 해제된 상태를 도시한 단면도,FIG. 13 is a cross-sectional view showing a state in which the rotating template member of FIG. 12 is advanced and the contact is released from the movable side template; FIG.
도 14 내지 도 25는 본 발명의 한 실시예에 따른 회전식 다중 사출 금형을 이용하여 중공 형상을 갖는 사출 제품을 제조하는 방법을 순차적으로 도시한 도면으로서,14 to 25 are views sequentially showing a method of manufacturing an injection product having a hollow shape by using a rotary multiple injection mold according to an embodiment of the present invention.
도 14는 합체된 본 발명의 한 실시예에 따른 회전식 다중 사출 금형의 제1 캐비티 및 제2 캐비티에 제1 핫런너를 통해 각각 용융 수지를 주입하는 상태를 도시한 투시 상태도,14 is a perspective view illustrating a state in which molten resin is injected into a first cavity and a second cavity of a rotary multi-injection mold according to an embodiment of the present invention through a first hot runner, respectively;
도 15는 도 14의 회전 형판 부재 영역의 확대도,15 is an enlarged view of the rotation template member area of FIG. 14;
도 16은 도 14의 회전식 다중 사출 금형을 1차로 형개한 사시도,16 is a perspective view of the rotary multi-injection mold of FIG.
도 17은 도 16의 본 발명의 한 실시예에 따른 회전식 다중 사출 금형을 반대 방향에서 바라본 사시도,17 is a perspective view of the rotary multi-injection mold according to the embodiment of the present invention of FIG. 16 viewed from the opposite direction,
도 18은 도 16의 회전식 다중 사출 금형의 회전 형판 부재를 반시계 방향으로 120도 회전시킨 상태를 도시한 사시도,18 is a perspective view showing a state in which the rotary template member of the rotary multi-injection mold of FIG. 16 is rotated 120 degrees in a counterclockwise direction;
도 19는 도 18의 회전식 다중 사출 금형의 가동측 금형을 뒤에서 바라본 투시 사시도,19 is a perspective view from behind of the movable side mold of the rotary multiple injection mold of FIG. 18;
도 20은 재합체된 본 발명의 한 실시예에 따른 회전식 다중 사출 금형의 제2 핫런너를 통해 제1 사출 성형물과 제2 사출 성형물의 상호 접합을 위해 용융 수지를 주입하는 상태를 도시한 투시 상태도,20 is a perspective view illustrating a state in which molten resin is injected for mutual bonding of a first injection molding and a second injection molding through a second hot runner of a rotary multi-injection mold according to an embodiment of the present invention. Degree,
도 21은 도 20의 회전 형판 부재 영역의 확대도,21 is an enlarged view of the rotation template member area of FIG. 20,
도 22는 도 20의 회전식 다중 사출 금형을 2차로 형개한 사시도,FIG. 22 is a perspective view of the rotary multiple injection mold of FIG. 20 secondarily opened; FIG.
도 23은 도 22의 회전식 다중 사출 금형을 반대 방향에서 바라본 사시도,FIG. 23 is a perspective view of the rotary multiple injection mold of FIG. 22 viewed from the opposite direction;
도 24는 합체 사출 성형물의 일단에 결합된 슬라이트 코어핀이 분리되는 상태를 도시한 제1 고정 코어 영역의 확대 사시도,24 is an enlarged perspective view of a first fixed core region showing a state in which a slat core pin bonded to one end of a coalescing injection molding is separated;
도 25는 취출 부재를 이용하여 도 24의 합체 사출 성형물을 제1 고정 코어로부터 취출하는 상태를 도시한 사시도,FIG. 25 is a perspective view showing a state in which the coalescent injection molded product of FIG. 24 is taken out from the first fixed core by using a takeout member; FIG.
도 26은 취출된 합체 사출 성형물의 사시도, 26 is a perspective view of the coalesced injection molded product taken out,
도 27은 합체 사출 성형물 중 불필요 부분을 제거하여 최종적으로 완성된 중공 형상을 갖는 사출 제품의 사시도,27 is a perspective view of an injection product having a hollow shape that is finally completed by removing unnecessary portions of the coalescence injection molding;
도 28은 종래의 DSI 방식의 다중 사출 금형의 측단면도,28 is a side cross-sectional view of a multi-component injection mold of a conventional DSI system;
도 29는 종래의 DRI 방식의 다중 사출 금형의 측단면도, 그리고,29 is a side cross-sectional view of a conventional injection molding multiple injection mold, and,
도 30은 또 다른 종래의 DRI 방식의 다중 사출 금형의 측단면도이다.30 is a side cross-sectional view of another conventional DRI multiple injection mold.
*도면의 주요 부분에 관한 부호의 설명** Explanation of symbols on main parts of the drawings *
1 : 회전식 다중 사출 금형 10 : 제1 사출 성형물 1: Rotary Multi-Injection Mold 10: First Injection Molded Product
20 : 제2 사출 성형물 30 : 합체 사출 성형물 20: second injection molding 30: coalescence injection molding
50 : 사출 제품 100 : 고정측 금형 50 injection molding 100 fixed-side mold
110 : 제1 고정판 112 : 사출기 노즐 주입구110: first fixing plate 112: injection machine nozzle inlet
120 : 제1 매니폴더 형판 122 : 매니폴더 수용부120: first manifold template 122: manifold receiving portion
125 : 핫런너 시스템 125a : 제1 핫런너125: hot runner system 125a: first hot runner
125b : 제2 핫런너 126 : 스프루125b: second hot runner 126: sprue
127 : 매니폴더 128 : 핫노즐127: manifold 128: hot nozzle
130 : 제1 스페이서 140 : 고정측 형판130: first spacer 140: fixed side template
142 : 제1 고정 코어 142a : 제1 함몰 캐비티142: first fixed core 142a: first recessed cavity
142c : 콜드 런너 142d : 콜드 게이트142c Cold Runner 142d Cold Gate
144 : 제2 고정 코어 144a : 제2 돌출 캐비티144: second fixing core 144a: second protruding cavity
144d : 고정측 취출 블록 145 : 회전 코어 회피홈144d: fixed side take-out block 145: rotating core avoidance groove
146 : 코터 147 : 가이드핀 수용홈146: coater 147: guide pin receiving groove
148 : 고정측 냉각수 채널 150 : 취출 부재148: fixed side cooling water channel 150: blowout member
152 : 밀판 154 ; 밀판 실린더152: compact 154; Plate cylinder
156 : 밀핀 158 : 리턴핀156: Milpin 158: Return Pin
160 : 슬라이드 코어 부재 162 : 슬라이드 코어 바디160: slide core member 162: slide core body
164 : 슬라이드 코어핀 166 : 가이드 레일164: slide core pin 166: guide rail
168 : 슬라이드 코어 실린더 200 : 가동측 금형168: slide core cylinder 200: movable side mold
210 : 제2 고정판 230 : 제2 스페이서210: second fixing plate 230: second spacer
240 : 가동측 형판 242 : 샤프트 관통공240: movable side template 242: shaft through hole
244 : 볼부시 체결공 245 : 하우징 스프링 수용홈244: Ball bushing fastening hole 245: Housing spring receiving groove
246 : 회전 형판 스토퍼 247 : 가이드핀246: rotating template stopper 247: guide pin
260 : 회전 형판 부재 261 : 회전 형판 스토퍼 가이드홈260: rotatable die member 261: rotatable die stopper guide groove
262 : 제1 회전 코어 262a : 제1 돌출 캐비티262: first rotating core 262a: first protruding cavity
262d : 가동측 취출 블록 262e : 취출 스프링262d: movable side extraction block 262e: extraction spring
264 : 제2 회전 코어 264a : 제2 함몰 캐비티264: second rotating core 264a: second recessed cavity
265 : 고정 코어 회피홈 266 : 코터 소켓265: fixed core avoidance groove 266: cotter socket
267 : 샤프트 체결공267: shaft fastener
268 : 가동측 냉각수 채널 269 : 냉각수 호스268: movable side coolant channel 269: coolant hose
280 : 회전 부재 281 : 샤프트280: rotating member 281: shaft
281a : 베어링 윤활유 주입공283 : 브라켓 고정판281a: Bearing lubricant injection hole 283: Bracket fixing plate
284 : 실린더 브라켓 289 : 랙기어 라이너284 cylinder bracket 289 rack gear liner
286 : 스토퍼 브라켓 287 : 랙기어 스토퍼286: Stopper Bracket 287: Rack Gear Stopper
288 : 회전 기어 부재 288a : 파워락 288: rotating gear member 288a: power lock
288b : 스퍼 기어 288c : 랙기어 288b: Spur Gears 288c: Rack Gears
288d : 랙기어 실린더 290 : 상하 이동 부재288d: rack gear cylinder 290: up and down moving member
291 : 베어링 하우징 292 : 슬라이드바291: bearing housing 292: slide bar
293 : 볼부시 294 : 베어링293: ball bush 294: bearing
295 : 베어링 너트 296 : 하우징 스프링295 bearing nut 296 housing spring
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Specific details of other embodiments are included in the detailed description and drawings.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention, and methods for achieving them will be apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and those skilled in the art to which the present invention pertains. It is provided to fully inform the scope of the invention, and the invention is defined only by the scope of the claims.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 본 명세서에서 기술하는 실시예는 본 발명의 이상적인 사시도, 확대도, 투시도 및 단면도를 참고하여 설명될 것이다. Like reference numerals refer to like elements throughout. Embodiments described herein will be described with reference to the ideal perspective, enlarged, perspective and cross-sectional views of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 한 실시예에 따른 회전식 다중 사출 금형의 구성 및 작동 방법에 관하여 설명한다.Hereinafter, with reference to the accompanying drawings will be described the configuration and operation method of a rotary multi-injection mold according to an embodiment of the present invention.
먼저 본 발명의 한 실시예에 따른 회전식 다중 사출 금형을 그 구성을 중심으로 도 1 내지 도 13을 참조하여 상세히 설명한다.First, a rotary multi-injection mold according to an exemplary embodiment of the present invention will be described in detail with reference to FIGS. 1 to 13.
도 1은 본 발명의 한 실시예에 따른 회전식 다중 사출 금형의 결합 사시도,도 2는 본 발명의 한 실시예에 따른 회전식 다중 사출 금형의 고정측 금형의 사시도, 도 3은 도 2에 도시된 제1 고정 코어 영역의 확대도, 도 4는 도 1의 회전식 다중 사출 금형의 고정측 금형의 내부 투시도, 도 5는 도 4의 회전식 다중 사출 금형의 고정측 금형을 반대 방향에서 바라본 내부 투시도, 도 6은 본 발명의 한 실시예에 따른 회전식 다중 사출 금형의 가동측 금형의 사시도, 도 7은 가동측 냉각수 채널과 냉각 호스의 연결 관계를 설명하기 위한 도 6의 회전식 다중 사출 금형의 가동측 금형의 내부 투시도, 도 8은 도 7의 회전식 다중 사출 금형의 가동측 금형의 회전 형판 부재가 반시계 방향으로 120도 회동한 상태를 나타낸 내부 투시도, 도 9는 도 6의 회전식 다중 사출 금형 중 회전 형판 부재가 제거된 상태를 나타낸 사시도, 도 10은 본 발명의 한 실시예에 따른 회전식 다중 사출 금형의 가동측 금형을 반대 방향에서 바라본 사시도, 도 11은 도 10의 회전식 다중 사출 금형의 가동측 금형 중 회전 부재의 일부를 제거하여 회전 형판 부재와 샤프트 및 베어링 하우징의 상호 결합 관계를 나타낸 사시도, 도 12는 도 6의 A-A 선을 따라 잘라 회전 형판 부재가 후퇴하여 가동측 형판에 접촉된 상태를 도시한 단면도, 그리고, 도 13은 도 12의 회전 형판 부재가 전진하여 가동측 형판으로부터 접촉이 해제된 상태를 도시한 단면도이다.1 is a perspective view of a combination of a rotary multi-injection mold according to an embodiment of the present invention, Figure 2 is a perspective view of a fixed side mold of the rotary multi-injection mold according to an embodiment of the present invention, Figure 3 is a second 1 is an enlarged view of the fixed core region, FIG. 4 is an internal perspective view of the fixed side mold of the rotary multi-injection mold of FIG. 1, FIG. 5 is an internal perspective view of the fixed side mold of the rotary multi-injection mold of FIG. Is a perspective view of a movable side mold of a rotary multi-injection mold according to an embodiment of the present invention, and FIG. 7 is an interior of the movable side mold of the rotary multi-injection mold of FIG. 6 for explaining a connection relationship between a movable side coolant channel and a cooling hose. Fig. 8 is an internal perspective view showing a state in which the rotating die member of the movable side mold of the rotary multi-injection mold of Fig. 7 is rotated 120 degrees in a counterclockwise direction, and Fig. 9 is a view of the rotary multi-injection mold of Fig. 6. 10 is a perspective view showing a state in which the rotatable die member is removed, FIG. 10 is a perspective view of the movable side mold of the rotary multi-injection mold according to one embodiment of the present invention, viewed from the opposite direction, and FIG. 11 is a movable side of the rotary multi-injection mold of FIG. 10. A perspective view showing the mutual coupling relationship between the rotating die member, the shaft and the bearing housing by removing a part of the rotating member of the mold, and FIG. 12 is a state in which the rotating die member is retracted and is in contact with the movable side template along the AA line of FIG. 6. 13 is a sectional view showing a state in which the rotating template member of FIG. 12 is moved forward and the contact is released from the movable side template.
본 발명의 한 실시예에 따른 회전식 다중 사출 금형(1)은 상호 합체 또는 분리되도록 대향 배치된 고정측 금형(100)과 가동측 금형(200)를 포함한다.먼저 고정측 금형(100)을 설명한다.The rotary multi-injection mold 1 according to an embodiment of the present invention includes a stationary side mold 100 and a movable side mold 200 disposed to be opposed to each other or to be combined with each other. do.
도 1 내지 도 5에 도시된 바와 같이 고정측 금형(100)은 제1 고정판(110), 제1 매니폴더 형판(120), 제1 스페이서(130), 고정측 형판(140), 취출 부재(150) 및 슬라이드 코어 부재(160)를 포함한다. As shown in FIGS. 1 to 5, the stationary side mold 100 includes a first stationary plate 110, a first manifold template 120, a first spacer 130, a stationary side template 140, and a takeout member ( 150 and slide core member 160.
제1 고정판(110)은 고정측 금형(100)을 사출 장치(미도시)에 고정 부착하기 위한 판으로 후단 중앙부에 용융 수지를 주입하는 사출기 노즐(미도시)이 결합되는 사출기 노즐 주입구(112)가 형성되어 있다.The first fixing plate 110 is a plate for fixedly attaching the fixed side mold 100 to an injection apparatus (not shown), and an injection machine nozzle injection hole 112 to which an injection machine nozzle (not shown) for injecting molten resin into a rear end portion thereof is coupled. Is formed.
제1 매니폴더 형판(120)은 제1 고정판(110)의 상부에 결합되어 있으며 도 5에 도시된 바와 같이 내부에 매니폴더 고정핀(129)에 의해 핫런너 시스템(125)의 매니폴더(127)를 수용하는 매니폴더 수용부(122)가 형성되어 있다.The first manifold template 120 is coupled to the upper portion of the first fixing plate 110 and the manifold 127 of the hot runner system 125 by the manifold fixing pin 129 therein as shown in FIG. 5. ), A manifold accommodating portion 122 is formed.
핫런너 시스템(125)은 공지의 구성인 스프루(126), 매니폴더(127) 및 핫노즐(128)을 포함한다.The hot runner system 125 includes a sprue 126, a manifold 127, and a hot nozzle 128, which are well known configurations.
이 핫런너 시스템(125)은 도 14에 도시된 바와 같이 내부에 상호 교대로 개폐되어 용융 수지가 통과하는 분기된 3개의 제1 핫런너(125a)와 분기된 2개의 제2 핫런너(126a)가 형성되어 있다.As shown in FIG. 14, the hot runner system 125 is alternately opened and closed inside each other to allow three branched first hot runners 125a through which molten resin passes and two branched second hot runners 126a. Is formed.
제1 스페이서(130)는 제1 매니폴더 형판(120)의 상부에 결합되어 있으며 도 26에 도시된 합체 사출 성형물(30)의 취출시 후술할 취출 부재(150)의 밀판(152)이 이동할 수 있는 공간을 제공한다. The first spacer 130 is coupled to the upper portion of the first manifold template 120, and when the coalesced injection molding 30 shown in FIG. 26 is taken out, the contact plate 152 of the blowout member 150 to be described later may move. To provide space.
고정측 형판(140)은 센터핀(149)에 의해 제1 매니폴더 형판(120)에 고정되어제1 스페이서(130)의 상부에 결합되어 있으며, 상부 중앙을 기준으로 제1 고정 코어(142), 제2 고정 코어(144) 및 회전 코어 회피홈(145)이 각각 120도 각도를 이루며 배치되어 있다. 또한 고정측 형판(140)은 3개의 코터(146)가 상부로 돌출되어 있으며, 네 모서리에 각각 가이드핀 수용홈(147)이 형성되어 있다. 또한 고정측 형판(140)은 도 4에 도시된 바와 같이 내부에는 외부의 냉각수 호스(미도시)에 연결된 고정측 냉각수 채널(148)이 형성되어 있다.The fixed side template 140 is fixed to the first manifold template 120 by the center pin 149 and is coupled to the upper portion of the first spacer 130, and the first fixed core 142 based on the upper center thereof. The second fixing core 144 and the rotation core avoiding groove 145 are disposed at an angle of 120 degrees. In addition, the fixed side template 140 has three coaters 146 protruding upward, and guide pin receiving grooves 147 are formed at four corners, respectively. In addition, the fixed side template 140 has a fixed side coolant channel 148 connected to an external coolant hose (not shown) as shown in FIG. 4.
제1 고정 코어(142)는 도 3에 도시된 바와 같이 제1 사출 성형물(10, 도 17 참조)의 일측 형상에 대응하는 제1 함몰 캐비티(142a)가 형성되어 있으며, 제1 함몰 캐비티(142a)의 하부에는 제2 핫런너(125b)에 연결된 콜드 런너(142c)의 단부인 콜드 케이트(142d)가 연결되어 있다.As shown in FIG. 3, the first fixing core 142 is formed with a first recessed cavity 142a corresponding to one side shape of the first injection molding 10 (see FIG. 17), and the first recessed cavity 142a. At the bottom of the) is a cold cat 142d, which is an end of the cold runner 142c connected to the second hot runner 125b.
제2 고정 코어(144)는 도2에 도시된 바와 같이 제2 사출 성형물(20, 도 16 참조)의 일측 형상에 대응하는 제2 돌출 캐비티(144a)가 형성되어 있으며, 제2 돌출 캐비티(144a)의 양단에는 각각 제2 사출 성형물(20)을 취출하기 위한 고정측 취출 블록(144d)이 마련되어 있다.As shown in FIG. 2, the second fixing core 144 has a second protruding cavity 144a corresponding to one side shape of the second injection molding 20 (see FIG. 16), and the second protruding cavity 144a. The fixed side take-out block 144d for taking out the 2nd injection molding 20 is provided in both ends of ().
회전 코어 회피홈(145)은 사출 작업을 위한 고정측 금형(100)과 가동측 금형(200)의 합체시 원래 위치에서 120도 회전된 제1 회전 코어(262)가 고정측 형판(140)의 상부와 부딪히지 않도록 제1 회전 코어(262)를 수용 결합한다.The rotary core avoidance groove 145 has a first rotating core 262 rotated by 120 degrees from its original position when the fixed side mold 100 and the movable side mold 200 are merged for injection molding. The first rotational core 262 is coupled to the housing so as not to hit the top.
취출 부재(150)는 제1 스페이서(130)에 의해 마련된 제1 매니폴더 형판(120)과 고정측 형판(140) 사이의 공간부에 설치되며, 밀판(152), 밀판 실린더(154), 밀핀(156) 및 리턴핀(158)을 포함한다.The extraction member 150 is installed in the space portion between the first manifold template 120 and the fixed side template 140 provided by the first spacer 130, and is provided with a plate 152, a plate cylinder 154, and a mill pin. 156 and return pin 158.
밀판(152)은 밀판 실린더(154)에 의해 제공된 전진 운동을 도 3에 도시된 바와 같이 제1 고정 코어(142)의 제1 함몰 캐비티(142a) 및 콜드 런너(142c)로 연장 돌출되도록 결합된 밀핀(156)에 전달한다. 밀핀(156)은 밀판(152)이 전진되면 제1 함몰 캐비티(142a) 및 콜드 런너(142c)로부터 돌출되어 합체 사출 성형물(30, 도 25 참조)이 제1 고정 코어(142)로부터 분리되도록 한다.The plate 152 is coupled to protrude and extend the forward motion provided by the plate cylinder 154 to the first recessed cavity 142a and the cold runner 142c of the first fixed core 142 as shown in FIG. 3. Transfer to Milpin 156. The pin 156 protrudes from the first recessed cavity 142a and the cold runner 142c when the plate 152 is advanced to separate the coalescing injection molding 30 (see FIG. 25) from the first fixed core 142. .
리턴핀(158)은 고정측 형판(140)으로부터 상부로 연장 돌출 가능하도록 밀판(152)에 결합되어 있으며, 밀판(152)의 전진 이동에 의해 돌출된 경우 고정측 금형(100)과 가동측 금형(200)의 합체시에 회전 형판 부재(260)와 접촉되어 후퇴하여 밀판(152)을 후퇴시킴으로써 제1 함몰 캐비티(142a) 및 콜드 런너(142c)로부터부터 돌출된 밀핀(156)이 다시 제자리로 후퇴하도록 한다. The return pin 158 is coupled to the mill plate 152 so as to protrude upward from the stationary side plate 140, and is fixed to the stationary side mold 100 and the movable side mold when protruded by the forward movement of the plate 152. In contact with the rotary die member 260 during the coalescing of the 200, the retracting plate 152 is pushed back so that the mil pin 156 protruding from the first recessed cavity 142a and the cold runner 142c is put back in place. Retreat.
슬라이드 코어 부재(160)는 제1 고정 코어(142)의 일단에 마련되어 있으며, 슬라이드 코어 바디(162), 슬라이드 코어핀(164), 가이드 레일(166) 및 슬라이드 코어 실린더(168)를 포함한다.The slide core member 160 is provided at one end of the first fixed core 142 and includes a slide core body 162, a slide core pin 164, a guide rail 166, and a slide core cylinder 168.
슬라이드 코어 바디(162)는 슬라이드 코어 실린더(168)에 의해 가이드 레일(166)의 안내로 상하로 이동하면서 하부에 결합된 슬라이드 코어핀(164)을 제1 함몰 캐비티(142a)의 상부에 결합시키거나 결합을 해제 시킴으로써 사출 작업시 제1 사출 성형물(10)의 일단이 중공 형상을 가지도록 하거나 합체 사출 성형물(30)이 제1 고정 코어(142)로부터 취출될 수 있도록 한다. The slide core body 162 moves up and down by the guide of the guide rail 166 by the slide core cylinder 168 to couple the slide core pin 164 coupled to the upper portion of the first recessed cavity 142a. Or by disengaging the coupling, one end of the first injection molding 10 may have a hollow shape or the coalescing injection molding 30 may be taken out of the first fixing core 142 during the injection operation.
이하에서는 가동측 금형(200)을 설명한다.Hereinafter, the movable side mold 200 will be described.
도 6 내지 13에 도시된 바와 같이 가동측 금형(200)은 제2 고정판(210), 제2 스페이서(230), 가동측 형판(240), 회전 형판 부재(260), 회전 부재(280) 및 상하 이동 부재(290)를 포함한다.As shown in FIGS. 6 to 13, the movable side mold 200 includes a second fixing plate 210, a second spacer 230, a movable side template 240, a rotating template member 260, a rotating member 280, and the like. The vertical movement member 290 is included.
제2 고정판(210)은 고정측 금형(100)에 대향되게 가동측 금형(200)을 사출 장치(미도시)에 고정 부착한다.The second fixing plate 210 fixedly attaches the movable side mold 200 to an injection apparatus (not shown) so as to face the fixed side mold 100.
제2 스페이서(230)는 제2 고정판(210)의 상부에 결합되어 있으며, 후술할 회전 형판 부재(260)를 회전시키는 회전 부재(280)가 설치될 수 있는 공간을 제공한다.The second spacer 230 is coupled to the upper portion of the second fixing plate 210 and provides a space in which the rotating member 280 for rotating the rotating template member 260 to be described later is installed.
가동측 형판(240)은 제2 스페이서(230)의 상부에 결합되어 있으며, 상하 이동 부재(290)를 결합하여 지지한다. 이를 위해 가동측 형판(240)은 도 9에 도시된 바와 같이 중앙부에 샤프트 관통공(242)이 형성되어 있으며, 샤프트 관통공(242)의 가장 자리의 단턱부에 볼부시 체결공(244) 및 하우징 스프링 수용홈(245)이 형성되어 있다. 또한, 샤프트 관통공(242)의 중앙부를 기준으로 120도 각도로 2개의 회전 형판 스토퍼(246)가 상부에 돌출 형성되어 있다. 또한 고정측 금형(100)과 가동측 금형(200)의 결합시 가이드핀 수용홈(147)에 수용 결합되어 고정측 금형(100)과 가동측 금형(200)의 상호간 결합 위치를 정렬하는 가이드핀(247)이 네 모서리에 각각 상부로 돌출 형성되어 있다.The movable side template 240 is coupled to the upper portion of the second spacer 230, and supports the vertical movement member 290 in combination. To this end, as shown in FIG. 9, the movable side template 240 has a shaft through hole 242 formed at the center thereof, and a ball bushing hole 244 at the edge of the shaft through hole 242. The housing spring receiving groove 245 is formed. In addition, two rotational template stoppers 246 protrude from the upper portion at a 120 degree angle with respect to the central portion of the shaft through hole 242. In addition, the guide pin for receiving and coupling to the guide pin receiving groove 147 when the fixed side mold 100 and the movable side mold 200 are coupled to each other to align the coupling positions between the fixed side mold 100 and the movable side mold 200. 247 is formed at four corners to protrude upward.
회전 형판 부재(260)는 샤프트(281)의 회전 운동에 의해 시계 방향 또는 반시계 방향으로 120도 각도로 회전이 가능하도록 후술할 회전 부재(280)에 결합되어 있으며, 샤프트(281)를 전진 또는 후진시키는 상하 이동 부재(290)에 의해 가동측 형판(240)과 접촉 또는 분리된다. Rotational template member 260 is coupled to the rotating member 280 to be described later to be rotated at an angle of 120 degrees in the clockwise or counterclockwise direction by the rotational movement of the shaft 281, the shaft 281 is moved forward or The movable side template 240 is contacted or separated by the vertically movable member 290 which moves backward.
회전 형판 부재(260)는 도 10에 도시된 바와 같이 회전 형판 스토퍼 가이드 홈(261)이 형성되어 있으며, 제1 회전 코어(262), 제2 회전 코어(264), 고정 코어 회피홈(265), 코터 소켓(266) 및 가동측 냉각수 채널(268)을 포함한다.As shown in FIG. 10, the rotatable die member 260 includes a rotatable die stopper guide groove 261, and includes a first rotatable core 262, a second rotatable core 264, and a fixed core avoidance groove 265. A coater socket 266 and a movable side coolant channel 268.
회전 형판 스토퍼 가이드홈(261)은 회전 형판 부재(260)의 후면에 형성되어 있으며, 회전 형판 스토퍼(246)를 수용하여 회전 형판 부재(260)가 회전 부재(280)에 의해 회동 운동을 하는 경우 회전 형판 스토퍼(246)에 각 일단이 걸림으로써 회전 형판 부재(260)의 회동 각도를 제한한다. 이러한 회전 형판 부재(260)의 회동은 샤프트 체결공(267)을 통해 체결 부재에 의해 상호 결합된 샤프트(250)의 회동 운동에 의해 이루어지게 된다. The rotary die stopper guide groove 261 is formed at the rear of the rotary die member 260, and when the rotary die stopper 246 receives the rotary die stopper 246 to rotate by the rotary member 280. Each end of the rotary die stopper 246 is locked to limit the rotation angle of the rotary die member 260. The rotation of the rotating template member 260 is made by the rotational movement of the shaft 250 coupled to each other by the fastening member through the shaft fastening hole 267.
제1 회전 코어(262), 제2 회전 코어(264) 및 고정 코어 회피홈(265)은 샤프트(250)의 중심축을 기준으로 각각 120도 각도를 이루도록 회전 형판 부재(260)의 상부에 배치되어 있다.The first rotary core 262, the second rotary core 264, and the fixed core avoidance groove 265 are disposed on the rotary template member 260 to form an angle of 120 degrees with respect to the central axis of the shaft 250, respectively. have.
제1 회전 코어(262)는 제1 사출 성형물(10)의 타측 형상에 대응하는 제1 돌출 캐비티(262a)가 형성되어 있다. 따라서 제1 함몰 캐비티(142a)와 제1 돌출 캐비티(262a)가 합쳐지면 제1 사출 성형물(10)의 형상에 대응하는 캐비티가 형성된다. 제1 돌출 캐비티(262a)의 하부에는 고정측 금형(100)과 가동측 금형(200)의 분리 즉 형개시 제1 사출 성형물(10)을 제1 돌출 캐비티(262a)로부터 취출하기 위해 취출 스프링(262e, 도 12 참조)에 의해 탄성력이 제공되는 가동측 취출 블록(262d)이 마련되어 있다.The first rotating core 262 is formed with a first protruding cavity 262a corresponding to the other shape of the first injection molded product 10. Therefore, when the first recessed cavity 142a and the first protruding cavity 262a are combined, a cavity corresponding to the shape of the first injection molding 10 is formed. In the lower part of the first protruding cavity 262a, the extraction spring (to take out the first injection molding 10 from the first protruding cavity 262a) is separated from the fixed side mold 100 and the movable side mold 200. 262e (refer FIG. 12) is provided with the movable side extraction block 262d provided with elastic force.
제2 회전 코어(264)는 제2 사출 성형물(10)의 타측 형상에 대응하는 제2 함몰 캐비티(264a)가 형성되어 있다. 따라서 제2 돌출 캐비티(144a)와 제2 함몰 캐비티(264a)가 합쳐지면 제2 사출 성형물(10)의 형상에 대응하는 캐비티가 형성된다.The second rotating core 264 is formed with a second recessed cavity 264a corresponding to the other side shape of the second injection molding 10. Accordingly, when the second protruding cavity 144a and the second recessed cavity 264a are combined, a cavity corresponding to the shape of the second injection molding 10 is formed.
고정 코어 회피홈(265)은 사출 작업을 위한 고정측 금형(100)과 가동측 금형(200)의 합체 즉 형폐시 원래 위치에서 120도 회전된 회전 형판 부재(260)에 의해 제2 고정 코어(144)가 회전 형판 부재(260)의 상부에 부딪히지 않도록 제2 고정 코어(144)를 수용 결합한다.The fixed core avoidance groove 265 is formed by the combination of the fixed mold 100 and the movable mold 200 for the injection operation, that is, the second fixed core (2) by the rotary die member 260 rotated 120 degrees from its original position during mold closing. The second fixing core 144 is received and coupled to prevent the 144 from hitting the upper portion of the rotating template member 260.
코터 소켓(266)은 코터(146)를 수용 결합하여 형폐시 고정측 형판(140)과 회전 형판 부재(260)의 위치를 정렬하여 준다.The coater socket 266 accommodates the coater 146 to align the positions of the fixed side template 140 and the rotating template member 260 during mold closing.
가동측 냉각수 채널(268)은 도 7 및 도 8에 도시된 바와 같이 제1 회전 코어(262) 및 제2 회전 코어(264)의 내부에 형성되어 있다. 가동측 냉각수 채널(268)은 회전 형판 부재(260)의 측면에 인접하게 배치된 냉각수 호스(269)에 연결되어 있다. 따라서 냉각수 호스(269)를 통해 가동측 냉각수 채널(268)로 유입된 냉각수에 의해 제1 회전 코어(262) 및 제2 회전 코어(264)에 각각 형성된 제1 돌출 캐비티(262a)와 제2 함몰 캐비티(264a)에 주입된 고온의 용융 수지를 용이하게 냉각시킬 수 있다. 한편, 냉각수 호스(269)는 도시의 편의를 위해 도 7 및 도 8 이외의 나머지 도면에서는 생략하였다.The movable side coolant channel 268 is formed inside the first rotating core 262 and the second rotating core 264 as shown in FIGS. 7 and 8. The movable side coolant channel 268 is connected to a coolant hose 269 disposed adjacent to the side of the rotating template member 260. Thus, the first protruding cavity 262a and the second depression formed in the first rotating core 262 and the second rotating core 264 by the cooling water introduced into the movable side cooling water channel 268 through the cooling water hose 269, respectively. The hot molten resin injected into the cavity 264a can be easily cooled. On the other hand, the coolant hose 269 is omitted in the remaining drawings other than FIGS. 7 and 8 for convenience of illustration.
본 발명의 한 실시예에 따른 회전식 다중 사출 금형(1)의 경우 회전 형판 부재(260)가 가동측 형판(240)으로부터 상시 돌출된 상태로 마련된다. 따라서 냉각수 호스(269)를 회전 형판 부재(260)의 측면에 인접하게 배치한 상태로 가동측 냉각수 채널(268)에 연결할 수 있으므로 회전 형판 부재(260)가 도 7에서 도 8과 같이 반시계 방향으로 120도 회전하더라도 다른 구성 부분과의 간섭 현상이 발생하지 않는 장점이 있다.In the case of the rotary multi-injection mold 1 according to the exemplary embodiment of the present invention, the rotatable die member 260 is always provided to protrude from the movable side die 240. Therefore, since the coolant hose 269 can be connected to the movable side coolant channel 268 while being disposed adjacent to the side of the rotary die member 260, the rotary die member 260 is counterclockwise as shown in FIGS. 7 to 8. Even if rotated by 120 degrees, there is an advantage that does not occur interference with other components.
회전 부재(280)는 회전 형판 부재(260)에 연결되어 회전식 다중 사출 금형(1)이 1차로 제1 사출 성형물(10)과 제2 사출 성형물(20)을 만든 후 2차로 제1 사출 성형물(20)과 제2 사출 성형물(20)을 합체하여 합체 사출 성형물(30)을 완성하기 위해 회전 형판 부재(260)를 시계 방향 또는 반시계 방향으로 120도 각도로 회전시킬 수 있도록 회전력을 회전 형판 부재(260)에 제공한다.The rotary member 280 is connected to the rotary template member 260 so that the rotary multi-injection mold 1 firstly makes the first injection molding 10 and the second injection molding 20, and secondly, the first injection molding ( 20) and the second injection molding 20 to rotate the rotational template member 260 in a clockwise or counterclockwise direction in order to complete the coalescing injection molding 30 to rotate the rotational template member Provided at 260.
이를 위해 회전 부재(280)는 샤프트(281), 브라켓 고정판(283), 실린더 브라켓(284), 랙기어 라이너(285), 스토퍼 브라켓(286), 랙기어 스토퍼(287) 및 회전 기어 부재(288)를 포함하도록 구성된다.To this end, the rotating member 280 may include a shaft 281, a bracket fixing plate 283, a cylinder bracket 284, a rack gear liner 285, a stopper bracket 286, a rack gear stopper 287, and a rotating gear member 288. It is configured to include).
샤프트(281)는 회전 형판 부재(260)의 후면 중앙부와 연결되어 있으며, 회전 기어 부재(288)에 의해 발생한 회전력을 회전 평판 부재(260)에 전달한다. 한편, 샤프트(281)의 내부에는 후방으로부터 측면 일측으로 통공된 베어링 윤활유 주입공(281a)이 형성되어 있어 후술할 베어링(294)의 원활한 작동을 위해 윤활유를 주입한다.The shaft 281 is connected to the rear center portion of the rotating template member 260 and transmits the rotational force generated by the rotating gear member 288 to the rotating plate member 260. On the other hand, the inside of the shaft 281 is formed with a bearing lubricating oil injection hole (281a) is formed through the side from the rear side to inject lubricating oil for smooth operation of the bearing (294) to be described later.
회전 기어 부재(288)는 회전 형판 부재(260)를 회전시키기 위한 회전력을 발생시키며, 파워락(288a), 스퍼 기어(288b), 랙 기어(288c) 및 랙 기어 실린더(288d)를 포함한다.The rotary gear member 288 generates a rotational force for rotating the rotary template member 260, and includes a power lock 288a, a spur gear 288b, a rack gear 288c, and a rack gear cylinder 288d.
스퍼 기어(288b)는 파워락(288a)에 의해 샤프트(281)에 고정되며, 실린더 브라켓(284)에 고정 결합된 랙기어 실린더(288d)에 의해 발생된 랙기어(288c)의 상하 운동을 회전 운동으로 전환하여 샤프트(281)에 전달한다. 이 때 랙 기어(288c)는 상하 운동시 정위치 이탈을 막기 위해 랙기어 라이너(289)에 의해 가이드되며, 스토퍼 브라켓(286)에 수용 결합되어 있는 랙기어 스토퍼(287)에 의해 하방 운동이 제한된다.The spur gear 288b is fixed to the shaft 281 by the power lock 288a and rotates the vertical movement of the rack gear 288c generated by the rack gear cylinder 288d fixedly coupled to the cylinder bracket 284. Transition to motion and transfer to shaft 281. At this time, the rack gear 288c is guided by the rack gear liner 289 in order to prevent the deviation of the position during the vertical movement, and the downward movement is limited by the rack gear stopper 287 accommodated in the stopper bracket 286. do.
브라켓 고정판(283)은 회전 기어 부재(288)의 안정적인 작동을 담보하기 위해 상술한 실린더 브라켓(284), 랙기어 라이너(285) 및 스토퍼 브라켓(286)을 고정한다.The bracket fixing plate 283 fixes the cylinder bracket 284, the rack gear liner 285, and the stopper bracket 286 described above to ensure stable operation of the rotary gear member 288.
상하 이동 부재(290)는 회전 부재(280)에 의한 회전 형판 부재(260)의 회동 운동시 가동측 형판(240)과 회전 부재(280)의 접촉에 따른 회전 마찰을 방지하도록 샤프트(281)를 소정 거리만큼 전진시켜 샤프트(281)에 연결된 회전 부재(280)가 가동측 형판(240)으로부터 전진하여 가동측 형판(240)에 대해 분리되도록 한다. The vertical movement member 290 rotates the shaft 281 so as to prevent rotational friction caused by the contact between the movable side template 240 and the rotation member 280 during the rotational movement of the rotation template member 260 by the rotation member 280. Advance the predetermined distance so that the rotating member 280 connected to the shaft 281 is advanced from the movable side template 240 to be separated from the movable side template 240.
이를 위해 상하 이동 부재(290)는 베어링 하우징(291), 슬라이드바(292), 볼부시(293), 베어링(294) 및 베어링 너트(295), 탄성 부재인 하우징 스프링(296)을 포함한다.To this end, the vertical movement member 290 includes a bearing housing 291, a slide bar 292, a ball bush 293, a bearing 294 and a bearing nut 295, and a housing spring 296 that is an elastic member.
베어링 하우징(291)은 내경에 형성된 베어링 걸림턱(291a)에 의해 2개의 베어링(294)이 상호 분리되어 샤프트(281)의 외경 중앙부를 감싼 상태가 되도록 샤프트 관통공(242)에 수용되어 있다. 베어링 하우징(291)은 형개시 회전 형판 부재(260)가 가동측 형판(240)으로부터 분리될 수 있도록 후술할 하우징 스프링(296)의 탄성력을 받아 전진 운동을 하며 이를 샤프트(281)에 전달한다. The bearing housing 291 is accommodated in the shaft through-hole 242 such that the two bearings 294 are separated from each other by the bearing engaging jaws 291a formed in the inner diameter to surround the center portion of the outer diameter of the shaft 281. The bearing housing 291 is moved forward by receiving the elastic force of the housing spring 296 which will be described later so that the rotating die member 260 can be separated from the movable side template 240 and transferred to the shaft 281.
슬라이드바(292)는 베어링 하우징(291)과 브라켓 고정판(283)을 상호 연결하여 회전 부재(280)를 지지한다. 따라서 회전 부재(280)를 가동측 금형(200)에 고정하기 위한 고정 장치를 별도로 마련할 필요가 없는 장점이 있다.The slide bar 292 supports the rotating member 280 by interconnecting the bearing housing 291 and the bracket fixing plate 283. Therefore, there is an advantage that it is not necessary to separately provide a fixing device for fixing the rotating member 280 to the movable side mold (200).
볼부시(293)는 슬라이드바(292)를 감싼 상태로 가동측 형판(240)에 고정 결합되어 있으며, 슬라이드바(292)의 전후진 이동을 가이드한다.The ball bush 293 is fixedly coupled to the movable side template 240 while the slide bar 292 is wrapped to guide the forward and backward movement of the slide bar 292.
베어링(294)은 샤프트(281)가 베어링 하우징(291)의 내부에서 원활하게 회전할 수 있도록 베어링 걸림턱(291a)을 사이에 두고 2개가 베어링 하우징(291)의 내경에 수용되어 있다. 이 중 베어링 걸림턱(291a)의 전방에 설치된 베어링(294)의 경우 내경은 샤프트(281)의 외경 중앙부와 접촉하며 전단이 샤프트(281)의 단턱에 걸리도록 위치하고 있으며, 베어링 걸림턱(291a)의 후방에 설치된 베어링(294)은 측면은 샤프트(281)의 중앙부에 접촉하며 후단이 베어링 너트(295)에 의해 고정 지지되어 있다. 따라서 형개시 베어링 하우징(291)이 하우징 스프링(296)의 탄성력에 의해 전진 운동을 하면 베어링(294)은 이 전진 운동을 샤프트(281)에 전달하게 된다. 베어링(294)은 본 실시예와 달리 하나 또는 3개 이상으로 마련될 수도 있으며, 하나로 마련되는 경우 베어링 걸림턱(291a)은 생략가능하며 3개 이상으로 마련되는 경우 베어링 걸림턱(291a)이 2개 이상 추가될 수 있다.Two bearings 294 are accommodated in the inner diameter of the bearing housing 291 with the bearing engaging jaw 291a interposed therebetween so that the shaft 281 can rotate smoothly inside the bearing housing 291. Among these, in the case of the bearing 294 installed in front of the bearing engaging jaw 291a, the inner diameter is in contact with the center of the outer diameter of the shaft 281, and the front end is positioned to catch the step of the shaft 281, and the bearing engaging jaw 291a The bearing 294 provided at the rear of the side is in contact with the center portion of the shaft 281 and the rear end is fixedly supported by the bearing nut 295. Therefore, when the mold starting bearing housing 291 moves forward by the elastic force of the housing spring 296, the bearing 294 transmits the forward movement to the shaft 281. Unlike the present embodiment, the bearing 294 may be provided with one or three or more. In one case, the bearing engaging jaw 291a may be omitted. May be added.
한편, 하우징 스프링(296)은 하우징 스프링 수용홈(245)에 수용되어 있으며 베어링 하우징(294)의 후면에 탄성력을 제공한다. 본 실시예에서 탄성 부재로 하우징 스프링(296)을 사용하였으나 탄성력을 제공하는 다른 공지의 탄성 부재로 대체되어도 무방하다.On the other hand, the housing spring 296 is accommodated in the housing spring receiving groove 245 and provides an elastic force to the rear of the bearing housing 294. Although the housing spring 296 is used as the elastic member in this embodiment, it may be replaced by another known elastic member that provides elastic force.
따라서 회전식 다중 사출 금형(1)이 분리 즉 형개된 경우 고정측 형판(140)과 접촉이 해제된 회전 형판 부재(260)는 도 13에 도시된 바와 같이 하우징 스프링(296)의 탄성력으로 인해 베어링 하우징(291), 베어링(294) 및 샤프트(281)가 전진 운동을 함으로써 가동측 형판(240)으로부터 분리되게 된다. Therefore, when the rotary multi-injection mold 1 is separated or opened, the rotating die member 260 in contact with the fixed side template 140 is released from the bearing housing due to the elastic force of the housing spring 296 as shown in FIG. 13. 291, bearing 294 and shaft 281 are separated from the movable side template 240 by the forward movement.
그러므로 이후 회전 부재(280)가 회전을 하여 회전 형판 부재(260)가 각도를 변경하더라도 회전 형판 부재(260)와 가동측 형판(240)은 비접촉 상태에 있으므로 접촉에 따른 마찰 현상은 발생하지 않게 된다.Therefore, even after the rotating member 280 rotates and the rotating template member 260 changes its angle, the rotating template member 260 and the movable side template 240 are in a non-contact state, so that a friction phenomenon due to contact does not occur. .
이하에서는 본 발명의 한 실시예에 따른 회전식 다중 사출 금형을 작동하여 중공 형상을 갖는 사출 제품을 제조하는 방법을 도 14 내지 도 27을 참조하여 상세히 설명한다.Hereinafter, a method of manufacturing an injection product having a hollow shape by operating a rotary multiple injection mold according to an embodiment of the present invention will be described in detail with reference to FIGS. 14 to 27.
도 14 내지 도 25는 본 발명의 한 실시예에 따른 회전식 다중 사출 금형을 이용하여 중공 형상을 갖는 사출 제품을 제조하는 방법을 순차적으로 도시한 도면으로서, 도 14는 합체된 본 발명의 한 실시예에 따른 회전식 다중 사출 금형의 제1 캐비티 및 제2 캐비티에 제1 핫런너를 통해 각각 용융 수지를 주입하는 상태를 도시한 투시 상태도, 도 15는 도 14의 회전 형판 부재 영역의 확대도, 도 16은 도 14의 회전식 다중 사출 금형을 1차로 형개한 사시도, 도 17은 도 16의 본 발명의 한 실시예에 따른 회전식 다중 사출 금형을 반대 방향에서 바라본 사시도, 도 18은 도 16의 회전식 다중 사출 금형의 회전 형판 부재를 반시계 방향으로 120도 회전시킨 상태를 도시한 사시도, 도 19는 도 18의 회전식 다중 사출 금형의 가동측 금형을 뒤에서 바라본 투시 사시도, 도 20은 재합체된 본 발명의 한 실시예에 따른 회전식 다중 사출 금형의 제2 핫런너를 통해 제1 사출 성형물과 제2 사출 성형물의 상호 접합을 위해 용융 수지를 주입하는 상태를 도시한 투시 상태도, 도 21은 도 20의 회전 형판 부재 영역의 확대도, 도 22는 도 20의 회전식 다중 사출 금형을 2차로 형개한 사시도, 도 23은 도 22의 회전식 다중 사출 금형을 반대 방향에서 바라본 사시도, 도 24는 합체 사출 성형물의 일단에 결합된 슬라이트 코어핀이 분리되는 상태를 도시한 제1 고정 코어 영역의 확대 사시도, 도 25는 취출 부재를 이용하여 도 24의 합체 사출 성형물을 제1 고정 코어로부터 취출하는 상태를 도시한 사시도, 도 26은 취출된 합체 사출 성형물의 사시도, 그리고, 도 27은 합체 사출 성형물 중 불필요 부분을 제거하여 최종적으로 완성된 중공 형상을 갖는 사출 제품의 사시도이다.14 to 25 are views sequentially showing a method of manufacturing an injection product having a hollow shape by using a rotary multiple injection mold according to an embodiment of the present invention, Figure 14 is an embodiment of the present invention incorporated Fig. 15 is a perspective view showing a state in which molten resin is injected into a first cavity and a second cavity of a rotary multi-injection mold through a first hot runner, respectively, Fig. 15 is an enlarged view of the rotatable die member region of Fig. 14, Fig. 16 is a perspective view of the rotary multi-injection mold of FIG. 14 primarily, FIG. 17 is a perspective view of the rotary multi-injection mold according to an embodiment of the present invention of FIG. Fig. 19 is a perspective view showing a state in which the rotating die member of the mold is rotated 120 degrees in a counterclockwise direction, Fig. 19 is a perspective perspective view of the movable side mold of the rotary multiple injection mold of Fig. 18, and Fig. 20 is a ash. Perspective state diagram illustrating a state in which molten resin is injected for mutual bonding of a first injection molding and a second injection molding through a second hot runner of a rotary multi-injection mold according to an embodiment of the present invention; FIG. 21 Is an enlarged view of the rotatable die member region of FIG. 20, FIG. 22 is a perspective view of the rotary multiple injection mold of FIG. 20 secondaryly, FIG. 23 is a perspective view of the rotary multiple injection mold of FIG. An enlarged perspective view of a first fixed core region showing a state in which a slat core pin coupled to one end of an injection molding is separated; FIG. 25 is a state in which the coalesced injection molding of FIG. 24 is taken out from the first fixed core by using a takeout member. 26 is a perspective view of the coalesced injection molding taken out, and FIG. 27 is an injection having a hollow shape finally completed by removing unnecessary portions of the coalescence injection molding. Product is a perspective view.
본 발명의 한 실시예에 따른 회전식 다중 사출 금형을 작동하여 중공 형상을 갖는 사출 제품을 제조하는 방법은 먼저 도 14 및 도 15에 도시된 바와 같이 제1 함몰 캐비티(142a)와 제1 돌출 캐비티(262a)가 합쳐져 제1 사출 성형물(10)의 형상에 대응하는 캐비티가 형성되며, 제2 돌출 캐비티(144a)와 제2 함몰 캐비티(264a)가 합쳐져 제2 사출 성형물(20)의 형상에 대응하는 캐비티가 형성되도록 고정측 금형(100)과 가동측 금형(200)을 합체 즉 형폐한다. 그런 다음 핫 런너 시스템(125)의 제1 핫런너(125a)를 이용하여 제1 사출 성형물(10)의 형상에 대응하는 캐비티 및 제2 사출 성형물(20)의 형상에 대응하는 캐비티에 각각 용융 수지를 주입한다. 주입된 고온의 용융 수지는 도 4 및 도 7에 도시된 고정측 냉각수 채널(148), 가동측 냉각수 채널(268) 및 냉각수 호스(269)에 의해 효율적으로 냉각될 수 있다.A method of manufacturing an injection product having a hollow shape by operating a rotary multi-injection mold according to an embodiment of the present invention may first include a first recessed cavity 142a and a first protruding cavity (as shown in FIGS. 14 and 15). 262a are combined to form a cavity corresponding to the shape of the first injection molding 10, and the second protruding cavity 144a and the second recessed cavity 264a are combined to correspond to the shape of the second injection molding 20. The fixed side mold 100 and the movable side mold 200 are coalesced, ie, closed, so that the cavity is formed. Then, using the first hot runner 125a of the hot runner system 125, the molten resin in the cavity corresponding to the shape of the first injection molding 10 and the cavity corresponding to the shape of the second injection molding 20, respectively. Inject The injected hot molten resin can be efficiently cooled by the fixed side coolant channel 148, the movable side coolant channel 268 and the coolant hose 269 shown in FIGS. 4 and 7.
이때 제2 핫런너(125b)는 공지의 개폐 밸브 시스템(미도시)에 의해 폐쇄된다. 또한 도 14에 도시된 바와 같이 고정측 금형(100)과 가동측 금형(200)이 합체 즉 형폐되면 고정측 형판(140)과의 접촉에 의해 도 12에 도시된 바와 같이 회전 형판 부재(260)는 가동측 형판(240)과 접촉 상태를 유지한다. At this time, the second hot runner 125b is closed by a known open / close valve system (not shown). In addition, as shown in FIG. 14, when the fixed side mold 100 and the movable side mold 200 are coalesced, that is, closed, the rotary die member 260 as shown in FIG. 12 by contact with the fixed side template 140. Maintains contact with the movable side template 240.
그런 다음 도 16 및 도 17에 도시된 바와 같이 고정측 금형(100)과 가동측 금형(200)을 분리 즉 형개한다. 형개시 고정측 금형(100)의 제1 고정 코어(142)에는 가동측 취출 블록(262d)에 의해 제1 사출 성형물(10)이 부착되어 있으며, 가동측 금형(200)의 제2 회전 코어(264)에는 고정측 취출 블록(144d)에 의해 제2 사출 성형물(20)이 부착되어 있다.Then, as shown in FIGS. 16 and 17, the fixed side mold 100 and the movable side mold 200 are separated from each other. The first injection molded product 10 is attached to the first fixed core 142 of the mold-side fixing side mold 100 by the movable side take-out block 262d, and the second rotating core of the movable side mold 200 ( 264, the 2nd injection molding 20 is attached by the fixed side extraction block 144d.
고정측 금형(100)과 가동측 금형(200)이 분리 즉 형개되면 도 13에 도시된 바와 같이 고정측 형판(140)과 접촉이 해제된 회전 형판 부재(260)는 상술한 상하 이동 부재(290)에 의해 가동측 형판(240)으로부터 소정 이격 간격을 갖도록 분리되게 된다. 즉 회전 형판 부재(260)는 하우징 스프링(296)의 탄성력으로 인해 베어링 하우징(291), 베어링(294) 및 샤프트(281)가 전진 운동을 함으로써 가동측 형판(240)으로부터 분리되게 된다. When the stationary side mold 100 and the movable side mold 200 are separated or opened, the rotating die member 260 whose contact with the stationary side template 140 is released as shown in FIG. 13 is the above-mentioned vertically moving member 290. ) To be separated from the movable side template 240 by a predetermined distance. That is, the rotating die member 260 is separated from the movable side template 240 by the bearing housing 291, the bearing 294, and the shaft 281 moving forward due to the elastic force of the housing spring 296.
그런 다음 도 18 및 도 19와 같이 회전 부재(280)에 의해 회전 형판 부재(260)가 반시계 방향으로 120도 회전하여 제2 사출 성형물(20)이 부착된 제2 회전 코어(264)가 제1 사출 성형물(10)이 부착되어 있는 제1 고정 코어(142)에 대향되게 상부에 위치하게 된다. 회전 운동시 회전 형판 부재(260)는 상하 이동 부재(290)에 의해 가동측 형판(240)으로부터 분리된 상태에 있으므로 접촉 회전에 따른 마찰 현상은 발생하지 않게 된다. 또한, 도 7 및 도 8에 도시된 바와 같이 회전을 하더라도 가동측 냉각수 채널(268)에 연결된 냉각수 호스(269)가 다른 구성 요소들에 방해를 주지 않는다. Then, as shown in FIGS. 18 and 19, the rotating template member 260 is rotated 120 degrees counterclockwise by the rotating member 280, and the second rotating core 264 to which the second injection molding 20 is attached is formed. The first injection molding 10 is positioned on the upper side of the first fixing core 142 to which the injection molding 10 is attached. Since the rotation template member 260 is separated from the movable side template 240 by the vertical movement member 290 during the rotational movement, the friction phenomenon due to the contact rotation does not occur. In addition, even as shown in FIGS. 7 and 8, the coolant hose 269 connected to the movable side coolant channel 268 does not interfere with other components.
그런 다음, 도 20 및 도 21에 도시된 바와 같이 고정측 금형(100)과 가동측 금형(200)을 재합체 즉 재형폐하여 제1 사출 성형물(10)과 제2 사출 성형물(20)의 테두리가 접촉되도록 한 후 접촉 테두리를 상호 접합하기 위해 핫 런너 시스템(125)의 제2 핫런너(125b), 콜드 런더(142c) 및 콜드 케이트(142d)를 이용하여 접촉 테두리에 용융 수지를 주입한다. 이때 제1 핫런너(125a)는 공지의 개폐 밸브 시스템(미도시)에 의해 폐쇄된다. Then, as shown in FIGS. 20 and 21, the fixed side mold 100 and the movable side mold 200 are reintegrated, ie, closed, so that the edges of the first injection molding 10 and the second injection molding 20 are changed. Molten resin is injected into the contact rim using the second hot runner 125b, the cold runner 142c and the cold cate 142d of the hot runner system 125 to bond the contact rims together. At this time, the first hot runner 125a is closed by a known open / close valve system (not shown).
접촉 테두리에 용융 수지의 주입이 완료되면, 도 22 및 도 23과 같이 고정측 금형(100)과 가동측 금형(200)을 상호 재분리 즉 재형개한다. 재형개시 고정측 금형(100)의 제1 고정 코어(142)에는 하부로 확장된 상태를 유지하는 슬라이드 코어핀(164)에 의해 합체 사출 성형물(30)이 부착된 상태로 있게 된다.When the injection of the molten resin to the contact edge is completed, as shown in Fig. 22 and 23, the fixed mold 100 and the movable mold 200 is re-separated from each other again. The mold injection molding unit 30 is attached to the first fixing core 142 of the fixing side mold 100 by the slide core pin 164 which is kept extended downward.
그런 다음 합체 사출 성형물(30)을 제1 고정 코어(142)로부터 취출하기 위해 우선 도 24에 도시된 바와 같이 슬라이드 코어핀(164)을 상부로 수축시켜 합체 사출 성형물(30)의 중공으로부터 수용 상태를 해제시킨다. Then, in order to take out the coalesced injection molding 30 from the first fixed core 142, first, the slide core pin 164 is shrunk upward as shown in FIG. 24 to receive it from the hollow of the coalesced injection molding 30. Release it.
이 후, 도 25에 도시된 바와 같이 취출 부재(150)의 밀핀(156)을 전진시키면 도 26에 도시된 합체 사출 성형물(30)이 제1 고정 코어(142)로부터 취출되게 된다. Thereafter, as shown in FIG. 25, when the mill pin 156 of the blowout member 150 is advanced, the coalescence injection molding 30 shown in FIG. 26 is taken out from the first fixing core 142.
이 후, 합체 사출 성형물(30)의 불필요 부분을 제거하고 형상 가공을 완료하면 최종적으로 본 발명의 한 실시예에 따른 회전식 다출 사출 금형(1)을 통해 제조하고자 하는 사출 제품(50)이 완성되게 된다.Thereafter, removing the unnecessary portion of the coalescence injection molding 30 and completing the shape processing, finally, the injection product 50 to be manufactured through the rotary die injection mold 1 according to an embodiment of the present invention is completed. do.
이상에서 본 발명의 바람직한 실시예에 대하여 상세히 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태의 공정 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiment of the present invention has been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of the process using the basic concept of the present invention as defined in the following claims are also possible. It belongs to the scope of the invention.
본 발명에 따른 회전식 다중 사출 금형은 회전시 접촉에 의한 마찰 저항이 발생하지 않으므로 가동측 금형에 별도의 오일리스(oiless) 부품을 설치할 필요가 없는 산업상 유용한 발명이다.Rotary multi-injection mold according to the present invention is an industrially useful invention that does not need to install a separate oilless (oiless) parts on the movable mold because frictional resistance due to contact does not occur during rotation.
또한, 본 발명에 따른 회전식 다중 사출 금형은 가동측 금형의 내부 캐비티 부근으로 냉각수를 용이하게 주입할 수 있어 사출 제품의 냉각이 용이하여 사출 제품의 제조 시간 및 제조 불량을 감소시킬 수 있는 산업상 유용한 발명이다.In addition, the rotary multi-injection mold according to the present invention can be easily injected into the vicinity of the inner cavity of the movable mold to facilitate the cooling of the injection product is useful industrially to reduce the manufacturing time and manufacturing defects of the injection product Invention.
또한, 본 발명에 따른 회전식 다중 사출 금형은 별도의 외부 전원 등의 공급이 없이도 회전에 따른 마찰을 없앨 수 있도록 가동측 금형의 회전 형판 부재가 전진 또는 후진이 가능한 산업상 유용한 발명이다.In addition, the rotary multi-injection mold according to the present invention is an industrially useful invention in which the rotatable die member of the movable mold can move forward or backward so as to eliminate friction due to rotation without supplying a separate external power source.

Claims (15)

  1. 내부에 핫런너 시스템이 마련되어 있으며, 상부 중앙부를 기준으로 적어도 2 이상의 서로 다른 형상의 고정측 캐비티가 소정 각도를 이루도록 형성되어 있는 고정측 금형, 그리고,
    상기 고정측 금형에 합체 또는 분리되도록 대향 배치되어 있으며, 상부 중앙부를 기준으로 상기 고정측 캐비티에 대응하는 적어도 2 이상의 서로 다른 형상의 가동측 캐비티가 소정 각도를 이루도록 형성되어 있는 가동측 금형
    을 포함하며,
    상기 가동측 금형은
    가동측 형판,
    상부에 상기 가동측 캐비티가 형성되어 있으며, 상기 가동측 형판으로부터 상기 고정측 형판을 향해 돌출되어 있으며, 상기 고정측 금형과의 분리시 상기 가동측 형판으로부터 소정 이격 간격으로 분리되며, 소정 각도로 회전이 가능한 회전 형판 부재,
    상기 회전 형판 부재의 후방에서 상기 회전 형판 부재에 대해 탄성력을 제공하는 탄성 부재를 갖는 상하 이동 부재, 그리고,
    상기 회전 형판 부재를 소정 각도로 회전시키는 회전 부재
    를 포함하는
    회전식 다중 사출 금형.
    A fixed-side mold having a hot runner system formed therein, the fixed-side cavity having at least two different shapes of fixed-side cavities formed at a predetermined angle with respect to the upper center part, and
    Movable side molds which are disposed to face each other so as to be integrated or separated from the fixed side mold, and are formed such that at least two different shapes of movable side cavities corresponding to the fixed side cavity are formed at a predetermined angle with respect to the upper center portion.
    Including;
    The movable side mold
    Movable side template,
    The movable side cavity is formed at an upper portion, protrudes from the movable side template toward the fixed side template, and is separated from the movable side template at predetermined intervals when separated from the fixed side mold, and rotates at a predetermined angle. This rotatable template member,
    A vertically moving member having an elastic member that provides an elastic force to the rotating template member from the rear of the rotating template member, and
    A rotating member for rotating the rotating template member at a predetermined angle
    Containing
    Rotary multi injection mold.
  2. 제1항에서,
    상기 가동측 형판은 중앙에 샤프트 관통공이 형성되어 있으며,
    상기 회전 부재는 상기 샤프트 관통공에 체결되어 있는 샤프트를 포함하며,
    상기 탄성 부재는 상기 샤프트에 탄성력을 제공하는
    회전식 다중 사출 금형.
    In claim 1,
    The movable side template is formed with a shaft through hole in the center,
    The rotating member includes a shaft fastened to the shaft through hole,
    The elastic member provides an elastic force to the shaft
    Rotary multi injection mold.
  3. 제2항에서,
    상기 상하 이동 부재는
    상기 샤프트의 외경에 체결되도록 내경에 수용된 적어도 하나의 베어링, 그리고,
    상기 탄성 부재의 탄성력을 상기 베어링을 통해 상기 샤프트에 전달하는 베어링 하우징
    을 더 포함하는
    회전식 다중 사출 금형.
    In claim 2,
    The vertical movement member
    At least one bearing received in an inner diameter to be coupled to an outer diameter of the shaft, and
    Bearing housing for transmitting the elastic force of the elastic member to the shaft through the bearing
    Containing more
    Rotary multi injection mold.
  4. 제3항에서,
    상기 상하 이동 부재는
    상기 베어링 하우징과 상기 회전 부재의 사이에서 상기 베어링 하우징과 상기 회전 부재를 상호 고정 결합시키는 슬라이드바, 그리고,
    상기 슬라이드바를 수용하여 상기 슬라이드바의 전진 또는 후진 운동을 가이드하도록 상기 가동측 형판에 고정 결합되는 볼부시
    를 더 포함하는
    회전식 다중 사출 금형.
    In claim 3,
    The vertical movement member
    A slide bar for fixing the bearing housing and the rotating member to each other between the bearing housing and the rotating member;
    A ball bush fixedly coupled to the movable side template to accommodate the slide bar to guide forward or backward movement of the slide bar.
    Containing more
    Rotary multi injection mold.
  5. 제4항에서,
    상기 가동측 형판은
    상기 샤프트 관통공의 가장자리 전면에 볼부시 체결공 및 상기 탄성 부재를 수용하는 수용홈이 각각 더 형성되어 있는
    회전식 다중 사출 금형.
    In claim 4,
    The movable side template
    A ball bushing fastening hole and a receiving groove for receiving the elastic member are further formed on the front edge of the shaft through hole, respectively.
    Rotary multi injection mold.
  6. 제3항에서,
    상기 베어링은 전단이 상기 샤프트의 단턱에 걸리도록 마련되어 있으며,
    상기 상하 이동 부재는
    상기 베어링의 후방에서 상기 샤프트의 외경에 체결되는 베어링 너트
    를 더 포함하는
    회전식 다중 사출 금형.
    In claim 3,
    The bearing is provided so that the front end is caught on the step of the shaft,
    The vertical movement member
    Bearing nut fastened to the outer diameter of the shaft at the rear of the bearing
    Containing more
    Rotary multi injection mold.
  7. 제3항에서,
    상기 베어링이 복수개인 경우
    상기 복수개의 베어링이 상호 분리 위치하도록 상기 베어링 하우징의 내경에서 내부로 돌출 형성된 베어링 걸림턱
    을 더 포함하는
    회전식 다중 사출 금형.
    In claim 3,
    If there are more than one bearing
    Bearing engaging jaw protruding inward from the inner diameter of the bearing housing so that the plurality of bearings are separated from each other
    Containing more
    Rotary multi injection mold.
  8. 제1항에서,
    상기 가동측 형판은
    상기 회전 형판 부재의 회전 각도를 제한하도록 상면에 돌출 형성되어 있는 회전 형판 스토퍼를 더 포함하며,
    상기 회전 형판 부재는
    후면에 상기 회전 스토퍼를 수용하며 회전시 양단이 상기 회전 형판 스토퍼에 걸리는 회전 형판 가이드홈이 더 형성되어 있는
    회전식 다중 사출 금형.
    In claim 1,
    The movable side template
    Further comprising a rotary template stopper protruding from the upper surface to limit the rotation angle of the rotary template member,
    The rotating template member is
    Receiving the rotary stopper on the rear side and is further formed with a rotary template guide groove that both ends are caught by the rotary template stopper during rotation
    Rotary multi injection mold.
  9. 제1항에서,
    상기 가동측 금형은
    상기 가동측 금형을 고정하는 고정판, 그리고,
    상기 회전 부재를 내부에 수용하며, 상기 가동측 형판을 상기 고정판에 고정 결합하는 스페이서
    를 더 포함하는
    회전식 다중 사출 금형.
    In claim 1,
    The movable side mold
    A fixed plate for fixing the movable side mold, and
    A spacer accommodating the rotating member therein and fixedly coupling the movable side template to the fixed plate
    Containing more
    Rotary multi injection mold.
  10. 제4항에서,
    상기 회전 부재는
    상기 샤프트를 회전시키는 회전 기어 부재, 그리고,
    상기 회전 기어 부재를 상기 슬라이드바에 고정 결합시키는 브라켓 고정판을 더 포함하는
    회전식 다중 사출 금형.
    In claim 4,
    The rotating member is
    A rotary gear member for rotating the shaft, and
    Further comprising a bracket fixing plate for fixedly coupling the rotary gear member to the slide bar.
    Rotary multi injection mold.
  11. 제10항에서,
    상기 회전 기어 부재는
    랙기어 실린더, 그리고,
    상기 랙기어 실린더에 의해 발생된 직선 운동을 회전 운동으로 전환하는 랙 기어 및 스퍼 기어
    를 포함하는
    회전식 다중 사출 금형.
    In claim 10,
    The rotary gear member
    Rack gear cylinder,
    Rack gear and spur gear for converting linear motion generated by the rack gear cylinder into rotational motion
    Containing
    Rotary multi injection mold.
  12. 제11항에서,
    상기 회전 부재는
    상기 랙기어 실린더를 상기 브라켓 고정판에 고정하는 실린더 브라켓, 그리고,
    상기 랙기어의 직선 운동을 제한하는 랙기어 스토퍼
    를 더 포함하는
    회전식 다중 사출 금형.
    In claim 11,
    The rotating member is
    A cylinder bracket for fixing the rack gear cylinder to the bracket fixing plate, and
    Rack gear stopper for limiting linear motion of the rack gear
    Containing more
    Rotary multi injection mold.
  13. 제12항에서,
    상기 회전 부재는
    상기 랙기어의 직선 운동을 가이드하도록 상기 브라켓 고정판에 고정된 랙기어 라이너, 그리고,
    랙 기어 스토터를 고정하도록 상기 브라켓 고정판에 고정된 스토퍼 브라켓
    을 더 포함하는
    회전식 다중 사출 금형.
    In claim 12,
    The rotating member is
    A rack gear liner fixed to the bracket fixing plate to guide linear movement of the rack gear, and
    Stopper bracket fixed to the bracket fixing plate to secure the rack gear stopper
    Containing more
    Rotary multi injection mold.
  14. 제1항에서,
    상기 회전 형판 부재는
    측면으로부터 상기 가동측 캐비티에 인접하도록 내부로 배치 형성된 냉각수 채널, 그리고
    측면 둘레의 일부를 따라 상기 냉각수 채널에 연결되어 냉각수를 공급하는 냉각수 호스
    를 더 포함하는
    회전식 다중 사출 금형.
    In claim 1,
    The rotating template member is
    A coolant channel disposed inwardly adjacent to the movable side cavity from a side, and
    Coolant hose connected to the coolant channel along a portion of the side circumference to supply coolant
    Containing more
    Rotary multi injection mold.
  15. 제3항에서,
    상기 샤프트는 후단으로부터 측면으로 관통되어 상기 베어링에 윤활유를 공급하는 베어링 윤활유 주입공이 더 형성되어 있는
    회전식 다중 사출 금형.
    In claim 3,
    The shaft penetrates laterally from the rear end and further includes a bearing lubricant injection hole for supplying lubricant to the bearing.
    Rotary multi injection mold.
PCT/KR2011/009193 2011-05-16 2011-11-30 Rotation-type multiple injection mold WO2012157827A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0045642 2011-05-16
KR1020110045642A KR101058362B1 (en) 2011-05-16 2011-05-16 Rotary type multi injection mold

Publications (1)

Publication Number Publication Date
WO2012157827A1 true WO2012157827A1 (en) 2012-11-22

Family

ID=44933571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009193 WO2012157827A1 (en) 2011-05-16 2011-11-30 Rotation-type multiple injection mold

Country Status (2)

Country Link
KR (1) KR101058362B1 (en)
WO (1) WO2012157827A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9676155B2 (en) 2013-08-05 2017-06-13 Dbm Reflex Enterprises Inc. Injection-molded thick lens
CN112223666A (en) * 2020-09-26 2021-01-15 武汉亿年通管业科技有限公司 Rapid forming die for PE (polyethylene) pipe
CN112265220A (en) * 2020-09-30 2021-01-26 宁波方正汽车模具股份有限公司 Three-color mold structure
CN112606323A (en) * 2019-10-04 2021-04-06 Nec平台株式会社 Multi-material mold and molding machine
CN116001184A (en) * 2022-12-12 2023-04-25 合肥大道模具有限责任公司 Rotational molding equipment for machining POM hand mold

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522678B1 (en) * 2014-03-28 2015-05-22 에이테크솔루션(주) A double injection mould having sliding core
KR102149026B1 (en) * 2019-12-11 2020-08-27 유호종 Double injection mold equipped with 2 sliding core

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080010222A (en) * 2006-07-26 2008-01-30 박화석 Multi component injection mold
KR100832908B1 (en) * 2007-01-10 2008-05-28 박화석 Multi component injection mold and method thereof
KR101005290B1 (en) * 2010-07-15 2011-01-04 (주) 우성정공 Multi directional injection mold
KR20110034323A (en) * 2009-09-28 2011-04-05 (주) 우성정공 Rotation core device of multi component injection mold for double injection molding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358951A (en) 2003-01-29 2004-12-24 Takao Kikai Kk Mold for multiplex molding, molding machine and multiplex injection molding process using them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080010222A (en) * 2006-07-26 2008-01-30 박화석 Multi component injection mold
KR100832908B1 (en) * 2007-01-10 2008-05-28 박화석 Multi component injection mold and method thereof
KR20110034323A (en) * 2009-09-28 2011-04-05 (주) 우성정공 Rotation core device of multi component injection mold for double injection molding
KR101005290B1 (en) * 2010-07-15 2011-01-04 (주) 우성정공 Multi directional injection mold

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9676155B2 (en) 2013-08-05 2017-06-13 Dbm Reflex Enterprises Inc. Injection-molded thick lens
US10144187B2 (en) 2013-08-05 2018-12-04 Dbm Reflex Enterprises Inc. Injection molding device for thick lenses and method of manufacturing
CN112606323A (en) * 2019-10-04 2021-04-06 Nec平台株式会社 Multi-material mold and molding machine
CN112606323B (en) * 2019-10-04 2022-06-17 Nec平台株式会社 Multi-material mold and molding machine
CN112223666A (en) * 2020-09-26 2021-01-15 武汉亿年通管业科技有限公司 Rapid forming die for PE (polyethylene) pipe
CN112265220A (en) * 2020-09-30 2021-01-26 宁波方正汽车模具股份有限公司 Three-color mold structure
CN116001184A (en) * 2022-12-12 2023-04-25 合肥大道模具有限责任公司 Rotational molding equipment for machining POM hand mold
CN116001184B (en) * 2022-12-12 2023-12-26 合肥大道模具有限责任公司 Rotational molding equipment for machining POM hand mold

Also Published As

Publication number Publication date
KR101058362B1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
WO2012157827A1 (en) Rotation-type multiple injection mold
US6428730B1 (en) Method for manufacturing synthetic resin-made hollow member with intermediate element incorporated therein, and apparatus therefor
KR101249701B1 (en) A turn table type double injection mould and a car lamp lens manufactured by using this and a manufacturing method of the car lamp lens
RU2424902C1 (en) Compensating rod for casting system and casting system with said compensating rod
KR101342889B1 (en) Injection molding machine for composite molded article and molding method thereof
CN107116756B (en) A kind of tee tube injection mold and its application method
EP2111964A2 (en) Injection molding machine with coupling guide device
CN102649304B (en) Multilayer molding apparatus and injection molding method
JP2000238090A (en) Method and apparatus for assembling molding and rain gutter component
JP6180260B2 (en) Rotating two-color injection molding equipment for resin windows
KR101487010B1 (en) Multi-component injection mold and injection method
CA2641746A1 (en) Injection-molding tool
CN203622843U (en) Three-plate mechanical core-pulling mold
KR102204754B1 (en) A container shaping module for a container manufacturing apparatus
KR20120096321A (en) Injection mold apparatus
CN214266483U (en) Injection mold capable of realizing unilateral demolding through cavity interchange
CN113942192A (en) Multicolor injection molding and sealing glue molding inner-drawing structure and use method thereof
CN108000788A (en) A kind of injection mould open-close control mechanism in shoes former
CN203888147U (en) Injection mould with rotary core pulling mechanism
KR102131208B1 (en) Injection mould having mechanism for inside undercut
CN112829220A (en) Injection mold for automobile front wind shielding lower decorative plate
CN106738691A (en) A kind of gun stock injection mold
CN110654004A (en) Embedded gear circular arc core pulling mechanism
KR101813677B1 (en) Injection molding apparatus
KR20200101002A (en) Injection mould having rotating mechanism for inside undercut

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205ADATED 10/03/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11865453

Country of ref document: EP

Kind code of ref document: A1