WO2012157798A1 - 나노 마이크로 기포 발생용 적층구조물 및 이 적층구조물을 포함하는 나노 마이크로 기포 발생장치 - Google Patents

나노 마이크로 기포 발생용 적층구조물 및 이 적층구조물을 포함하는 나노 마이크로 기포 발생장치 Download PDF

Info

Publication number
WO2012157798A1
WO2012157798A1 PCT/KR2011/003681 KR2011003681W WO2012157798A1 WO 2012157798 A1 WO2012157798 A1 WO 2012157798A1 KR 2011003681 W KR2011003681 W KR 2011003681W WO 2012157798 A1 WO2012157798 A1 WO 2012157798A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
bubble
air
laminated structure
generating
Prior art date
Application number
PCT/KR2011/003681
Other languages
English (en)
French (fr)
Inventor
최세현
박종관
Original Assignee
(주)인터포어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)인터포어 filed Critical (주)인터포어
Priority to PCT/KR2011/003681 priority Critical patent/WO2012157798A1/ko
Publication of WO2012157798A1 publication Critical patent/WO2012157798A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23125Diffusers characterised by the way in which they are assembled or mounted; Fabricating the parts of the diffusers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23124Diffusers consisting of flexible porous or perforated material, e.g. fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231264Diffusers characterised by the shape of the diffuser element being in the form of plates, flat beams, flat membranes or films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231265Diffusers characterised by the shape of the diffuser element being tubes, tubular elements, cylindrical elements or set of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm

Definitions

  • the present invention relates to a nano-bubble generating layered structure and a nano-microbubble generating device comprising the laminated structure, in more detail, there is no fear of contamination, small and economical and can change the diameter of the nano-bubble
  • the present invention relates to a laminate structure for generating nano-micro bubbles, which can be used for various purposes without any burden, and to a nano-micro bubble generator including the laminate.
  • the microbubbles are in the millimeter bubble of the bubble diameter in the generator, microbubbles in the range of 10 to several tens of micrometers, nanobubbles in the range of several hundred nanometers to 10 micrometers, nanobubbles in the hundreds of nanometers or less
  • microbubbles' is also used as a broad term covering both milli bubbles, micro bubbles, and nano micro bubbles.
  • Microbubbles including nano micro bubbles tend to prove excellent effects in growth rate, purification, and growth in plant cultivation, fish and shellfish farming.
  • nano-micro bubbles have physical and chemical properties such as gas dissolution effect, self-pressurization effect, and charging effect.
  • the nano micro bubbles have excellent redox effect and a large amount of energy generated when one nano micro bubble disappears. It is widely used for sterilization and cleaning functions.
  • nano-micro bubbles have been used in the environmental fields (sewage treatment facilities, advanced water treatment facilities, soil purification, etc.), fisheries and agriculture fields (various aquaculture, nutrient solutions, live fish tanks, aquariums, etc.) ( Industries such as drainage treatment, cleaning, etc., health and medical fields (bathing facilities, bathtubs, artificial carbonated springs, water purification, electricity, etc.), and household appliances (washing machines, etc.) Is being applied.
  • environmental fields sewage treatment facilities, advanced water treatment facilities, soil purification, etc.
  • fisheries and agriculture fields variantous aquaculture, nutrient solutions, live fish tanks, aquariums, etc.
  • Industries such as drainage treatment, cleaning, etc., health and medical fields (bathing facilities, bathtubs, artificial carbonated springs, water purification, electricity, etc.), and household appliances (washing machines, etc.) Is being applied.
  • Nano-bubble generators using the dissolved air flotation method which generates nano-micro bubbles by a swirling device designed by mixing water and high-pressure air, are typical.
  • one method for preparing a microporous film having an average diameter of 20 nm to 2 ⁇ m is to mix a matrix polymer with a considerable amount of organic or inorganic particulate filler such as paraffin oil or calcium carbonate, and use the mixture to extrude the film. After production, it is produced by uniaxial or biaxial stretching.
  • the film mixed with calcium carbonate forms pores by calcium carbonate in the stretching process, and the low molecular weight organic filler film such as paraffin is washed and heat fixed after extracting the low molecular weight material with an organic solvent such as methyl alcohol or acetone.
  • an organic solvent such as methyl alcohol or acetone.
  • the matrix polymer is polypropylene, low density polyethylene, linear low density polyethylene, high density polyethylene, ultra high density polyethylene and the like.
  • the microporous film prepared by the method of extracting the low molecular weight material with the organic solvent has a limit in pore size control in proportion to the dissolved size of the low molecular weight material added after the extraction of the fine pores. Constrained by the size of nano and micro bubble generation, when used in aquaculture and cultivation of fish and shellfish, agricultural products, etc., there was a great concern that the contamination by residual organic solvents would provide harmful effects to the growth and life of agricultural and marine products.
  • the pores are formed in the form of tearing by the inorganic material of the calcium carbonate during stretching, so that the pores are large in size and cannot produce nano or micro bubbles. By forming, it becomes unsuitable for nano micro bubble generation.
  • the present invention has been made in view of the above-mentioned problems, in order to produce nano-micro bubbles having an average bubble diameter of 50 ⁇ 500nm size without using any organic, inorganic materials, compatibilizers, etc. crystalline and amorphous region
  • the object is to provide a bubble generator.
  • the present invention eliminates expensive and large electrolysis equipment, high pressure pumps, etc., but does not use any organic, inorganic materials, or compatibilizers, and provides microporosity through physical stretching of crystalline and amorphous regions.
  • a microporous film to the nano-bubble generating device with less economic burden, it is easy to use for a variety of uses, including home and small sea bass farmers, and its purpose is to facilitate the application to small products.
  • the present invention by removing the expensive and large size electrolysis equipment, high pressure pump and the like, by applying a well-known microporous film, by providing a nano-bubble generating device with less economic burden, home and small perch farms It is easy to use as a variety of uses, and also has an object to facilitate the application to small products.
  • the nano-bubble stack structure is a high density polyethylene (HDPE), a low density polyethylene (without addition of an inorganic compound or an organic compound for forming pores).
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • HMW-PE high molecular weight polyethylene
  • UHMW-PE ultra high molecular weight polyethylene
  • the mesh-shaped mesh is further laminated and formed as a protective material on the upper surface of the microporous film back support, and more preferably, the mesh is made of metal or nylon.
  • nano-bubble bubble generator including a nano-bubble structure for generating a lamination structure according to the present invention, the nano-bubble lamination structure for generating; It is characterized in that it comprises air supply means for supplying air by applying a predetermined pressure to the laminated structure for generating nano-bubble bubbles, the air is dispersed and evenly passed through.
  • the air supply means the air inlet is formed on one side, and includes a main body having an air passage therein to communicate with the air inlet, a plurality of through-holes are formed at regular intervals in the upper portion of the air passage of the main body
  • a plurality of branched slit grooves are formed to have the same height as the top surface of the through holes so that the through holes communicate with each other;
  • Between the slit groove is formed a convex portion such that the convex portion by a certain height higher than the slim groove, and the concave portion lower than the concave portions are continuously aligned;
  • the slit grooves at a predetermined distance from the outer slit grooves, characterized in that the sealing member is installed around the circumference to prevent the loss of air supplied through the through holes, the nano-bubble
  • the laminated structure is preferably seated and supported to be positioned inside the sealing member.
  • the cover may further include a cover in which a vent hole is formed such that the main body and the nano-micro bubble generation stacking structure are laminated and coupled to each other, and the nano-micro bubbles passing through the nano-bubble stacking structure pass therethrough.
  • a sealing member is installed around the outer circumference of the cover at a predetermined interval from the inner side of the cover to prevent the loss of air supplied through the through holes.
  • the size of the through hole formed at a position far from the air inlet is the largest, and the size of the through hole formed at the position close to the air inlet is smallest.
  • the air supply means the air inlet is formed on one side, and includes a main body having an air passage therein to communicate with the air inlet, one side of the main body is formed with a plurality of through-holes communicating with the air passage And a slit groove having a predetermined depth is formed in a longitudinal direction at a portion where the plurality of through holes are formed, and the laminated structure for generating the nano micro bubbles is fitted to the main body and is formed on the outer surface of the laminated structure for generating the nano micro bubbles.
  • the wire may be wound at regular intervals.
  • the size of the through hole formed at a position far from the air inlet is the largest, and the size of the through hole formed at the position close to the air inlet is the smallest. It is preferable.
  • the nano-bubble bubble generator including a nano-bubble structure for generating a lamination structure according to the present invention, the conventionally known nano-bubble stacking structure; It may be characterized in that it comprises air supply means for supplying air by applying a predetermined pressure to the laminated structure for generating nano-bubble, the air is dispersed and evenly passed.
  • the nano-bubble stacking structure and the nano-bubble bubble generator including the laminated structure generate a nano-bubble having an average bubble diameter of 50 to 500 nm
  • the microporous film manufactured by physically stretching the crystalline and amorphous regions without using an organic, inorganic material, or compatibilizer, and the microporous film backing support and the pressure applying structure (air supply means) are integrated to form nano micro bubbles.
  • the present invention excludes expensive and large electrolysis facilities, high pressure pumps, etc., and does not use any organic, inorganic materials, compatibilizers, etc., as well as fine porosity through physical stretching of the crystalline and amorphous regions.
  • the applied microporous film it is possible to provide a nano-bubble generating device with less economic burden, thereby making it easy to use for various uses including households and small sea bass, as well as easy to apply to small products, etc. This is a very useful effect.
  • 1 and 2 are an exploded perspective view and a cross-sectional view of the laminated structure for generating a nano-bubble bubble according to the present invention.
  • Figure 3 and Figure 4 is an exploded perspective view and a cross-sectional view of the laminated structure for generating another nano-bubble bubble in accordance with the present invention.
  • FIG. 5 is an overall perspective view of a nano-bubble bubble generator according to the first embodiment including a laminate structure for generating nano-bubble bubble of the present invention.
  • FIG. 6 is an exploded perspective view of FIG. 5;
  • FIG. 7 is a cross sectional view of FIG. 5.
  • FIG. 8 is an overall perspective view of a nano-bubble bubble generator according to a second embodiment including a laminate structure for generating nano-bubble bubble of the present invention.
  • FIG. 9 and 10 are exploded perspective views of FIG. 8.
  • FIG. 11 is a cross sectional view of FIG. 8.
  • FIG. 1 is an exploded perspective view showing the lamination relationship of the nano-bubble laminated structure according to the present invention
  • Figure 2 is a cross-sectional view of the bonding of FIG.
  • the nano-bubble stacking structure 10 As shown, the nano-bubble stacking structure 10 according to the present invention, the microporous film 12, the microporous film back support 14 and the mash (18) in the order of passing air. ) Consists of a stacked structure sequentially.
  • air is introduced to sequentially generate the micro microbubbles having a diameter of 50 to 500 nm while passing through the microporous film 12, the microporous film back support 14, and the mesh 18.
  • the microporous film 12 has an average pore size of 0.01 to 2 ⁇ m, and is free of high density polyethylene (HDPE) and low density polyethylene (LDPE) without addition of inorganic or organic compounds for pore formation.
  • LLDPE linear low density polyethylene
  • HMW-PE high molecular weight polyethylene
  • UHMW-PE ultra high molecular weight polyethylene
  • the microporous film 12 by the extrusion of the pure polyolefin-based resin without the addition of inorganic or organic particles such as stabilizers, antioxidants or dispersants to produce an unstretched film, and then induce crystallization by cooling after forming the pores of the fiber by physical stretching process, would obtained by the final heat treatment, to the water pressure resistance is 1.177 ⁇ 105Pa or more, gas permeability is 100 ⁇ 200cc / min / cm 2 / 1ATM.
  • microporous film 12 is a patent application (10-0715888) by the applicant of the present invention, the detailed manufacturing method will not be described in detail.
  • the back support 14 of the microporous film is at least one selected from a hydrophobic polyolefin-based nonwoven fabric, a polyolefin-based hydrophobic porous body produced by a sintering method, and a fibrous porous body made by heating and compressing a polyolefin fiber. It is a porous support.
  • the mesh 18 protects the microporous film 12 and the microporous film back support 14, and is a mesh-type protective material formed with small holes to allow nano-bubbles to pass therethrough, and is made of metal or nylon according to a purpose. do.
  • the air is dispersed in the nanostructure of the microbubble generation structure 10, and passed through at a constant pressure. Nano-micro bubbles of ⁇ 500 nm diameter are generated.
  • Figures 3 and 4 is an exploded perspective view and a bonded cross-sectional view of another nano-bubble layered laminated structure according to the present invention, in addition to the microporous film 12 and the microporous film back support 14, the microporous film 12 -1) is further laminated, and the nonwoven fabric 16 for dispersing the bubbles passing through them is further laminated, and finally, the mesh 18 serving as the protective material is laminated.
  • the average pore size is 0.01 ⁇ 2 ⁇ m, high density polyethylene (HDPE), low density polyethylene (LDPE) without the addition of inorganic compounds (organic compounds) or organic compounds (organic compounds) for pore formation ), From one or more polyolefin resins selected from linear low density polyethylene (LLDPE), high molecular weight polyethylene (HMW-PE) and ultra high molecular weight polyethylene (UHMW-PE), through a dry stretching method without using an organic solvent and a solvent. Porosity is imparted so that air passes through the microporous films 12 and 12-1 having a porosity of 10% to 80% twice, thereby generating nanomicro bubbles having a finer size.
  • LLDPE linear low density polyethylene
  • HMW-PE high molecular weight polyethylene
  • nano-bubble generating device comprising the laminated structure 10 for generating a nano-bubble bubble.
  • FIG. 5 is an overall perspective view of a nano-bubble bubble generator according to the first embodiment including a nano-bubble stacking structure of the present invention
  • Figure 6 is an exploded perspective view of Figure 5
  • Figure 7 is a cross-sectional view of FIG. .
  • the nano-bubble bubble generator 100 including the nano-bubble bubble stack 10 of the present invention, the nano-bubble bubble stacking structure 10 described above and
  • the nano-bubble laminated structure 10 for supplying the air while giving a constant pressure but the air is made to include an air supply means for dispersing evenly.
  • the air supply means is configured to include an air inlet 112 is formed on one side, the main body 110 is formed with an air passage 114 therein to communicate with the air inlet 112.
  • the main body 110 forming the air supply means is a rectangular frame shape, the shape may be a polygonal shape including a circular bar, the shape There is no limit.
  • a plurality of through holes 116: 116a, 116b, and 116c are formed at a predetermined interval on an upper portion of the air passage 114 formed in the main body 110, and the same height as the upper surface height of the through holes 116 is provided.
  • the slit groove 120 is divided into several branches so that the through holes 116 communicate with each other.
  • the slit groove 120 is formed in a substantially checkerboard shape and is formed to be connected to each other. Between the slit grooves 120, the convex portions 132a as high as a predetermined height and the lower recesses 132b lower than these convex portions are continuously aligned. Concave-convex portion 130 is formed in a disposed form.
  • the diameter of the through hole 116a far from the air inlet 112 is the largest, and the diameter of the through hole 116c close to the air inlet 112 is smallest.
  • the reason for this is to prevent a large amount of air from flowing through the through hole 116c close to the air inlet 112 due to the difference in air pressure, and to ensure that the air is supplied evenly as a whole.
  • the sealing member 140 is installed over the circumference so as to prevent the loss of the air supplied through the through-hole 116 at a position spaced apart from the outer slit groove. , Between the sealing member 140 and the slit groove forming the outer edge is formed somewhat higher than the slit groove.
  • the nano-bubble stack structure 10 is seated, supported and installed so as to be located inside the sealing member 140 of the main body 110, the air passage 114 and the through-hole 116 of the main body 110 and The air passing through the slit groove 120 is evenly passed through the nanostructures 10 for generating the micro-bubbles without losing any nano-bubbles are generated.
  • a cover 150 having a 152 is further provided.
  • the outer periphery of the cover 150 is formed with a plurality of coupling holes 158 at predetermined intervals, and corresponding to the outer periphery of the body 110 is formed with a plurality of coupling holes 118, these coupling
  • the coupling means is fastened through the holes 118 and 158, the nano-bubble stacking structure 10 is in close contact with and supported by the uneven parts 130 of the main body 110, thereby forming the nano-bubble stacking structure 10. Air passing through) is given a constant pressure.
  • the member 154 is provided.
  • the nano-micro bubble generator according to the first embodiment comprising a laminated structure for generating a nano-bubble bubble of the present invention made as described above are as follows.
  • the air inlet 112 formed at one side of the main body 110.
  • the supplied air passes through the air passage 114 inside the main body 110, and passes through the through holes 116 formed at predetermined intervals in the air passage 114 to slit grooves ( Flowing along 120, it is evenly distributed over the entire area.
  • the diameter of the through hole 116a formed at a relatively long distance from the air inlet 112 is the largest, and the diameter of the through hole 116b formed at the relatively close distance is formed the smallest, whereby the slit far from the air inlet 112 is formed.
  • the slit groove close to the groove is supplied with almost the same amount of air by the pneumatic differential.
  • the air supplied evenly to the slit grooves 120 flows along the slit grooves 120 branched to each other and is evenly distributed throughout the entire area, and recesses of the uneven parts 130 formed between the slit grooves 120 are provided. It is controlled to branch more finely along 130b, and is uniformly dispersed in the entire area of the bottom portion of the stacked structure 10 for generating nano-micro bubbles.
  • the air evenly dispersed over the entire area by the slit groove 120 and the convex-convex portion 130 passes through the nano-bubble stacking structure 10 to generate nano-micro bubbles.
  • evenly dispersed air has a porosity of 10 to 80%, an average pore size of 0.01 to 2 ⁇ m, a microporous film 12, a microporous film back support 14, and a porosity of 10 to 80%.
  • the nano-bubble stacking structure 10 is a microporous film ( 12), the microporous film back support 14, the microporous film 12-1, the non-woven fabric 16 and the mesh 18 has been described as an example, the nano-bubble for generating
  • the laminated structure 10 may be applied to a three-ply structure of the microporous film 12, the microporous film back support 14, and the mesh 18.
  • FIG. 8 is an overall perspective view of a nano-bubble bubble generator according to a second embodiment including a nano-bubble stacking structure of the present invention
  • Figures 9 and 10 are separate perspective views of Figure 8
  • Figure 11 is Figure 8 Is a cross-sectional view of.
  • the nano-bubble bubble generator 200 including the nano-bubble bubble stack 10 of the present invention, the nano-bubble bubble stacking structure 10 and the above-described
  • the nano-bubble laminated structure 10 for providing a predetermined pressure to supply air but comprises an air supply means for controlling the air is dispersed and evenly passed.
  • the air supply means, the air inlet 212 is formed on one side, it is composed of a configuration including an annular body 210 formed with an air passage 214 therein to communicate with the air inlet (212).
  • the main body is illustrated as an annular shape in FIGS. 8 to 11 supporting the second embodiment of the present invention, the shape may be polygonal.
  • a plurality of through holes 216: 216a, 216b, and 216c communicating with the air passage 214 are formed at one side of the main body 210, and the slit groove 220 having a predetermined depth is formed at a portion where the through holes 216 are formed. ) Is formed along the longitudinal direction.
  • the diameter of the through hole 216a far from the air inlet 212 is the largest, and the diameter of the through hole 216c close to the air inlet 212 is smallest.
  • the reason for this is to prevent a large amount of air from flowing through the air inlet 212 and the through hole 216c close to the air inlet 212, and to supply air evenly as a whole.
  • the nano-bubble structure stacking structure 10 is fitted along the circumference of the body 210, the nano-bubble structure stacking structure 10 in Figures 8 to 11 supporting the second embodiment of the present invention.
  • the microporous film 12, the microporous film back support 14, the microporous film 12-1, the nonwoven fabric 16, and the mesh 18 have a 5-ply structure.
  • the three-ply structure of the (12) -microporous film back support 14-mesh 18 is also applicable.
  • the wire 230 having excellent rigidity such as a fishing line, is fixed at regular intervals on the outer surface thereof.
  • the wire 230 is responsible for a control function of dispersing air evenly at a constant pressure over the entire surface of the nano-bubble stacking structure 10, a detailed description thereof will be described later.
  • reference numerals 240 and 242 in FIGS. 8 to 11 show caps and sealing members respectively fastened to the front and rear ends of the main body 210, and excludes the configuration thereof, and an air inlet is formed at one side.
  • the other side may be provided with only the closed body.
  • nano-bubble bubble generator 200 including a stack structure for generating a nano-bubble bubble of the present invention made as described above are as follows.
  • the main body 210 in the state in which the nano-bubble stacking structure 10 is fitted around the main body 210, and the wire 230 is wound around the outer surface at regular intervals, the main body 210.
  • the air inlet 212 formed at one side the supplied air passes through the air passage 214 inside the main body 210, and through holes formed at predetermined intervals in the air passage 214 ( 216 flows along the slit groove 220 and is evenly distributed over the entire length of one side of the body 210.
  • the diameter of the through-hole 216a formed at a relatively long distance from the air inlet 212 is the largest, the diameter of the through-hole 216b formed at a relatively close distance is formed the smallest, so that the slit far from the air inlet 212
  • the slit groove close to the groove is supplied with almost the same amount of air by the pneumatic differential.
  • the air evenly supplied to the slit groove 220 is rotated in the circumferential direction between the circumferential surface of the body 210 and the nano-bubble stack structure 10, and thus the air dispersed in the circumferential surface By passing only the corresponding portion of the nano-bubble stack structure 10, it is evenly distributed and passed through the entire area.
  • the nano-bubble stack 10 is wound by a wire 230 at regular intervals, as shown in FIG. 11, the air supplied between adjacent wires is connected to both wires.
  • the nanostructures for generating bubbles between the nano-bubble structure only passes through the area is generated as a nano-bubble, the nano-bubble is generated evenly over the entire area, not concentrated in any one part. .
  • the dispersed air passing through the slit groove 220 by the wire 230 wound at regular intervals on the outer surface of the nano-bubble stack structure 10 for the nano-micro correspond to the position
  • the nano-micro bubbles are generated evenly over the entire area of the nano-bubble laminated structure 10.
  • the main body 110 and the mesh 18 are made of a metal material, and in this case, a tub bubbler and a microorganism culture. It will be suitable for fresh water use.
  • the main body 210 and the mesh 18 made of a synthetic resin material in this case, seawater applications such as farms would be suitable for
  • the nano-bubble generating device may be applied to a laminated structure including a conventionally known microporous film as it is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은, 일체의 유,무기재료 및 상용화제를 사용하지 않고, 결정성과 비결정성 영역을 물리적 연신을 통하여 미세 다공성이 부여된 미세 다공성 필름을 제조하고, 이와 같이 제조된 미세 다공성 필름을 미세 다공성 필름 배면 지지체 및 압력부여 구조체(공기 공급수단)와 일체화하여 나노 마이크로 기포를 발생시키도록 한 나노 마이크로 기포 발생장치에 관한 것이며, 이와 같은 나노 마이크로 기포 발생장치는 양식장 및 농산물 재배에 적용하더라도 오염의 우려가 없어 보다 생산량이 증대되는 효과가 제공된다.

Description

나노 마이크로 기포 발생용 적층구조물 및 이 적층구조물을 포함하는 나노 마이크로 기포 발생장치
본 발명은 나노 마이크로 기포 발생용 적층구조물 및 이 적층구조물을 포함하는 나노 마이크로 기포 발생장치에 관한 것으로서, 보다 상세하게는 오염의 우려가 없고, 소형이면서 경제적이며 나노 마이크로 기포의 직경을 가변할 수 있어 부담없이 다양한 용도로 사용할 수 있는 나노 마이크로 기포 발생용 적층구조물 및 이 적층구조물을 포함하는 나노 마이크로 기포 발생장치에 관한 것이다.
일반적으로, 미세 기포는 발생기에서 버블 직경이 밀리미터 단위인 것을 밀리 버블, 10 ~ 수십 마이크로미터 범위인 것을 마이크로 버블, 수백 나노미터 ~ 10 마이크로미터 범위인 것을 나노 마이크로 버블, 수백 나노미터 이하인 것을 나노 버블로 분류하고 있는데, 밀리 버블부터 마이크로 버블, 및 나노 마이크로 버블을 모두 포괄하는 광의의 용어로서 '미세 기포'를 사용하기도 한다.
나노 마이크로 버블(Nano micro bubble)을 포함하는 미세 기포는, 식물의 재배 및 어,패류의 양식에 있어서 성장속도, 정화작용, 증식 등에 탁월한 효과가 있음이 증명되고 있는 추세이다.
특히, 나노 마이크로 기포는, 기체용해효과, 자기가압 효과, 대전 효과 등의 물리화학적 특성이 있으며, 이러한 나노 마이크로 기포의 탁월한 산화환원작용과 하나의 나노 마이크로 기포가 소멸될 때 발생하는 다량의 에너지를 이용하여 살균, 세정 기능에 많이 응용되고 있다.
일예로, 최근에 이러한 나노 마이크로 기포는, (하수처리 관련 시설, 고도 정수 처리 시설, 토양 정화 등)의 환경분야, (각종 양식, 양액 재배, 활어 수조, 수족관 등)의 어업 및 농업분야, (배수처리, 세정 등)의 산업분야, (입욕관련 시설, 욕조, 인공 탄산천, 정수, 전기 등)의 건강의료분야, (세탁기 등)의 생활가전분야 (선체저항저감 등)의 선반 분야 등 다방면에 적용되고 있다.
따라서, 이와 같이 다방면에 적용되는 나노 마이크로 기포를 발생하기 위한 장치들이 많이 제공되고 있는데, 일예로서 마이크로 버블을 제조한 후 이를 전기 분해하여 나노화시키는 전기분해 방식의 나노 마이크로 기포 발생장치와, 차폐된 공간 속에 물과 고압의 공기를 혼입하여 고안된 와류형성 장치에 의해 나노 마이크로 버블을 생성시키는 용존공기부상법(DAF)을 적용한 나노 마이크로 기포 발생장치가 대표적이다.
그러나, 현재 제공되고 있는 전기분해 방식의 나노 마이크로 기포 발생장치와 용존공기부상법 방식의 나노 마이크로 기포 발생장치의 경우, 설비자체가 크고 고가여서 농어민들이 농어업에 사용하기에는 경제적인 부담이 매우 컸으며, 설혹 고가로 구매하여 사용한다고 하더라도 에너지 소비량도 매우 커서 유지비용의 부담이 큰 문제점이 있었다.
또한, 설비자체가 매우 크고 고가여서 욕조 등의 생활건강 분야를 비롯하여 가정 및 소규모 농가 등에 적용하여 사용하기에도 한계가 있는 문제점이 있었다.
한편, 종래의 전기분해 방식의 나노 마이크로 기포 발생장치와 용존공기부상법 방식의 나노 마이크로 기포 발생장치의 경우, 나노 마이크로 기포 발생을 위하여 공지된 폴리올레핀 재질의 미세 다공성 필름을 적용하고 있다.
종래에 평균 20nm ~2㎛ 크기의 직경을 갖는 미세 다공성 필름 제조방법 중 하나는 매트릭스 중합체와 상당량의 유기 또는 무기 미립자 충전제 예컨대 파라핀오일 또는 탄산칼슘 등을 혼합하고, 이 혼합물을 압출기를 이용하여 필름을 생산한 후, 이를 일축 또는 이축 연신하여 제조한다.
여기서, 탄산칼슘이 혼합된 필름은 연신과정에서 탄산칼슘에 의한 기공이 형성되며, 파라핀 등의 저분자량 유기충전제 필름은 메틸 알콜, 아세톤 등의 유기용제로 상기 저분자량 물질을 추출한 후 세척, 열 고정하여 미세 다공성 필름을 제조하였다.
이때, 매트릭스 중합체로는 폴리프로필렌, 저밀도폴리에틸렌, 선형저밀도 폴리에틸렌, 고밀도폴리에틸렌, 초고밀도폴리에틸렌 등이다.
그러나, 저분자량 물질을 유기용제로 추출하는 방식으로 제조되는 미세 다공성 필름은, 추출 후 생성되는 미세 기공의 크기가 첨가된 저분자량 물질의 용해된 크기와 비례하여, 기공 크기 조절에 한계가 있으므로, 나노, 마이크로 버블 생성크기에 제약을 받으며, 또한 어패류, 농산물 등의 양식 및 재배에 사용할 경우 잔류 유기용제에 의한 오염으로 농수산물의 성장 및 생명에 유해성을 제공하게 될 우려가 컸었다.
또한, 탄산칼슘을 사용하여 연신에 따라 미세 다공성 필름을 제조할 경우는, 연신 시 탄산칼슘의 무기재료에 의한 찢기는 형태로 기공이 형성됨으로써, 기공의 크기가 나노, 마이크로 버블을 생성할 수 없는 크게 형성됨으로써, 나노 마이크로 기포 발생용으로는 적합하지 않게 된다.
본 발명은 상기와 같은 제반 문제점에 착안하여 안출된 것으로서, 평균 버블 직경이 50~500nm 크기인 나노 마이크로 버블을 생성하기 위하여 일체의 유기, 무기재료, 상용화제 등을 사용하지 않고 결정성과 비결정성 영역을 물리적 연신을 통하여 미세 다공성이 부여된 미세 다공성 필름을 제조하고, 이와 같이 제조된 미세 다공성 필름을 미세 다공성 필름 배면 지지체 및 압력부여 구조체(공기 공급수단)와 일체화하여 나노 마이크로 기포를 생성하는 나노 마이크로 기포 발생장치를 제공하는데 그 목적이 있다.
특히, 본 발명은 고가이면서 크기가 큰 전기분해 설비나 고압 펌프 등을 배제하면서도, 일체의 유기, 무기재료, 상용화제 등을 사용하지 않고 결정성과 비결정성 영역을 물리적 연신을 통하여 미세 다공성이 부여된 미세 다공성 필름을 적용하여 보다 경제적 부담이 적은 나노 마이크로 기포 발생장치를 제공함으로써, 가정 및 소규모 농어가를 비롯한 다양한 용도로서 사용이 용이하며, 소형 제품 등에도 적용이 수월하도록 하는데 그 목적이 있다.
한편, 본 발명은 고가이면서 크기가 큰 전기분해 설비나 고압 펌프 등을 배제하고, 공지된 미세 다공성 필름을 적용하면서도, 보다 경제적 부담이 적은 나노 마이크로 기포 발생장치를 제공함으로써, 가정 및 소규모 농어가를 비롯한 다양한 용도로서 사용이 용이하며, 소형 제품 등에도 적용이 수월하도록 하는데에도 목적이 있다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 나노 마이크로 기포 발생용 적층구조물은, 기공 형성을 위한 무기재(inorganic compounds) 또는 유기재(organic compounds)의 첨가 없이, 고밀도 폴리에틸렌(HDPE), 저밀도 폴리에틸렌(LDPE), 선형 저밀도 폴리에틸렌(LLDPE), 고분자량 폴리에틸렌(HMW-PE) 및 초고분자량 폴리에틸렌(UHMW-PE) 중에서 선택된 1종 이상의 폴리올레핀계 수지로부터, 유기용제 및 용매를 사용하지 않는 건식연신법을 통해 미세 다공성이 부여되어 기공율이 10~80% 이고, 평균 기공 크기가 0.01~2㎛로 제조된 적어도 1겹 이상의 미세 다공성 필름과; 상기 미세 다공성 필름의 배면에 적층되며, 유입되는 공기가 분산되어 다공성 필름을 통과되도록 하는 것으로서, 소수성을 갖는 폴리올레핀계 부직포, 신터링(sintering) 방식으로 제조된 폴리올레핀계 소수성 다공체, 폴리올레핀 섬유를 가열,압착하여 만들어진 섬유상 다공체 중에서 선택된 1종 이상인 적어도 1겹 이상의 미세 다공성 필름 배면 지지체가 적층,형성된 것을 특징으로 한다.
이 경우, 상기 미세 다공성 필름 배면 지지체의 상부에는 보호재로서 그물망 형태의 매쉬가 더 적층,형성되는 것이 바람직하며, 더욱 바람직하게는 상기 매쉬가 금속재 또는 나일론인 것이 적용되는 것이다.
한편, 본 발명에 따른 나노 마이크로 기포 발생용 적층구조물을 포함하는 나노 마이크로 기포 발생장치는, 상기한 나노 마이크로 기포 발생용 적층구조물과; 상기 나노 마이크로 기포 발생용 적층구조물에 일정한 압력을 부여하여 공기를 공급하되, 상기 공기가 분산되어 고르게 통과되도록 하는 공기 공급수단을 포함하는 것을 특징으로 한다.
이 경우, 상기 공기 공급수단은, 일측에 공기 유입구가 형성되고, 상기 공기 유입구와 연통되도록 내부에 공기 통로가 형성된 본체를 포함하되, 상기 본체의 공기 통로 상부에는 일정간격마다 복수의 통공이 형성되고, 상기 통공들의 상면 높이와 동일높이를 이루어 각 통공들이 연통되도록 여러 갈래로 분기된 슬릿홈이 형성된 것과; 상기 슬릿홈 사이에는 슬림홈보다 일정높이만큼 높은 철부와, 상기 철부들보다는 낮은 요부가 연속적으로 정렬배치되게 요철부가 형성된 것과; 상기 슬릿홈들 중, 외곽을 이루는 슬릿홈으로부터 일정간격 이격된 위치에는, 상기 통공들을 통해 공급되는 공기의 유실을 예방하도록 그 둘레에 걸쳐 실링부재가 설치된 것을 특징으로 하며, 상기 나노 마이크로 기포 발생용 적층구조물은, 상기 실링부재 안쪽에 위치되게 안착,지지되는 것이 바람직하다.
여기서, 상기 본체와 나노 마이크로 기포 발생용 적층구조물을 사이에 두고 적층 결합되고, 나노 마이크로 기포 발생용 적층구조물을 통과한 나노 마이크로 기포들이 통과되도록 통기공이 형성된 커버를 더 포함할 수 있다.
이 경우, 상기 커버의 안쪽면에서 통기공으로부터 일정간격 이격된 외곽 둘레에는, 상기 통공들을 통해 공급되는 공기의 유실을 예방하도록 그 둘레에 걸쳐 실링부재가 설치되는 것이 바람직하다.
또한, 상기 통공들 중, 상기 공기 유입구로부터 먼 위치에 형성되는 통공의 크기가 제일 크게, 상기 공기 유입구로부터 가까운 위치에 형성되는 통공의 크기가 제일 작게 형성되는 것이 바람직하다.
한편, 상기 공기 공급수단은, 일측에 공기 유입구가 형성되고, 상기 공기 유입구와 연통되도록 내부에 공기 통로가 형성된 본체를 포함하되, 상기 본체의 일측면에는 상기 공기 통로와 연통되는 복수의 통공이 형성되고, 상기 복수의 통공이 형성되는 부위에는 일정깊이의 슬릿홈이 길이방향으로 형성되며, 상기 나노 마이크로 기포 발생용 적층구조물은, 상기 본체에 감합되고, 감합된 나노 마이크로 기포 발생용 적층구조물 외면에 일정간격으로 와이어가 감긴 것일 수도 있다.
이 경우, 상기 본체의 슬릿홈에 형성되는 복수의 통공들 중, 상기 공기 유입구로부터 먼 위치에 형성되는 통공의 크기가 제일 크게, 상기 공기 유입구로부터 가까운 위치에 형성되는 통공의 크기가 제일 작게 형성하는 것이 바람직하다.
한편, 본 발명에 따른 나노 마이크로 기포 발생용 적층구조물을 포함하는 나노 마이크로 기포 발생장치는, 종래에 공지된 나노 마이크로 기포 발생용 적층구조물과; 상기 나노 마이크로 기포 발생용 적층구조물에 일정한 압력을 부여하여 공기를 공급하되, 상기 공기가 분산되어 고르게 통과되도록 하는 공기 공급수단을 포함하는 것을 특징으로 할 수도 있다.
이상에서 설명한 바와 같이, 본 발명에 따른 나노 마이크로 기포 발생용 적층구조물 및 이 적층구조물을 포함하는 나노 마이크로 기포 발생장치에 의하면, 평균 버블 직경이 50~500nm 크기인 나노 마이크로 버블을 발생시키되, 일체의 유기, 무기재료, 상용화제 등이 사용되지 않고 결정성과 비결정성 영역을 물리적 연신을 통하여 제조된 미세 다공성 필름과, 미세 다공성 필름 배면 지지체 및 압력부여 구조체(공기 공급수단)가 일체화되어 나노 마이크로 기포를 생성하는 나노 마이크로 기포 발생장치가 제공되는바, 양식장 및 농산물 재배에 적용하더라도 오염의 우려가 없이 보다 생산량이 증대되는 효과가 제공된다.
특히, 본 발명은 고가이면서 크기가 큰 전기분해 설비나 고압 펌프 등이 배제되고, 일체의 유기, 무기재료, 상용화제 등이 사용되지 않음은 물론 결정성과 비결정성 영역을 물리적 연신을 통하여 미세 다공성이 부여된 미세 다공성 필름이 적용됨으로써, 보다 경제적 부담이 적은 나노 마이크로 기포 발생장치의 제공이 가능하며, 이에 따라 가정 및 소규모 농어가를 비롯한 다양한 용도로서 사용이 용이해짐은 물론 소형 제품 등에도 적용이 수월해지게 되는 매우 유용한 효과가 제공된다.
도 1 및 도 2는 본 발명에 따른 나노 마이크로 기포 발생용 적층구조물의 분리사시도 및 결합단면도.
도 3 및 도 4는 본 발명에 따른 다른 나노 마이크로 기포 발생용 적층구조물의 분리사시도 및 결합단면도.
도 5는 본 발명의 나노 마이크로 기포 발생용 적층구조물을 포함하는 제 1실시 예에 따른 나노 마이크로 기포 발생장치의 전체 사시도.
도 6은 도 5의 분리 사시도.
도 7은 도 5의 결합 단면도.
도 8은 본 발명의 나노 마이크로 기포 발생용 적층구조물을 포함하는 제 2실시 예에 따른 나노 마이크로 기포 발생장치의 전체 사시도.
도 9 및 도 10은 도 8의 분리 사시도.
도 11은 도 8의 결합 단면도.
이하, 본 발명의 바람직한 실시 예를 첨부된 예시도면에 의거하여 상세히 설명한다.
도 1은 본 발명에 따른 나노 마이크로 기포 발생용 적층구조물의 적층관계를 나타낸 분리사시도이고, 도 2는 도 1의 결합단면도이다.
도시된 바와 같이, 본 발명에 따른 나노 마이크로 기포 발생용 적층구조물(10)은, 공기가 통과되는 순서대로 미세 다공성 필름(12)과, 미세 다공성 필름 배면 지지체(14) 및 매쉬(mash)(18)가 순차적으로 적층된 구조로 이루어져 있다.
따라서, 공기가 유입되어 순차적으로 미세 다공성 필름(12)과, 미세 다공성 필름 배면 지지체(14) 및 매쉬(18)를 통과하면서 50~500nm크기의 직경을 갖는 나노 마이크로 버블이 생성된다.
미세 다공성 필름(12)은, 평균 기공 크기가 0.01~2㎛인 것으로서, 기공 형성을 위한 무기재(inorganic compounds) 또는 유기재(organic compounds)의 첨가 없이, 고밀도 폴리에틸렌(HDPE), 저밀도 폴리에틸렌(LDPE), 선형 저밀도 폴리에틸렌(LLDPE), 고분자량 폴리에틸렌(HMW-PE) 및 초고분자량 폴리에틸렌(UHMW-PE) 중에서 선택된 1종 이상의 폴리올레핀계 수지로부터, 유기용제 및 용매를 사용하지 않는 건식연신법을 통해 미세 다공성이 부여되어 기공율이 10~80%로 제조된 필름이다.
특히, 상기 미세 다공성 필름(12)은, 안정제, 산화방지제 또는 분산제와 같은 무기재 또는 유기재 입자의 첨가 없이 순수 폴리올레핀계 수지를 압출하여 미연신 필름을 제조한 다음, 이를 냉각에 의해 결정화를 유도하고 물리적인 연신공정에 의해 섬유상의 기공을 형성시킨 후, 최종 열처리하여 얻어진 것이며, 수압저항성이 1.177 ㅧ 105Pa 이상, 기체투과율이 100~200cc/min/cm2/1ATM 인 것이다.
상기한 미세 다공성 필름(12)은, 본 발명 출원인이 선출원하여 특허등록(10-0715888호)받은 것이므로, 그 구체적인 제조방법에 대해서는 상술하지 않기로 한다.
또한, 상기 미세 다공성 필름의 배면 지지체(14)는, 소수성을 갖는 폴리올레핀계 부직포, 신터링(sintering) 방식으로 제조된 폴리올레핀계 소수성 다공체, 폴리올레핀 섬유를 가열,압착하여 만들어진 섬유상 다공체 중에서 선택된 1종 이상의 다공성 지지체이다.
상기 매쉬(18)는 미세 다공성 필름(12)과 미세 다공성 필름 배면 지지체(14)를 보호하고, 나노 마이크로 기포가 통과되도록 작은 구멍이 형성된 그물망 형태의 보호재로서, 용도에 따라 금속재 또는 나일론 재질로 구성된다.
이와 같이, 미세 다공성 필름(12)과 미세 다공성 필름 배면 지지체(14) 및 매쉬(18)가 적층되어 이루어진 나노 마이크로 기포 발생용 적층구조물(10)에 공기가 분산되어 일정한 압력으로 통과되도록 하면, 50~500nm 직경의 나노 마이크로 버블이 발생된다.
한편, 도 3 및 도 4는 본 발명에 따른 다른 나노 마이크로 기포 발생용 적층구조물의 분리사시도 및 결합단면도로서, 미세 다공성 필름(12)과 미세 다공성 필름 배면 지지체(14)에 더하여 미세 다공성 필름(12-1)을 한 겹 더 적층하고, 이들을 통과한 버블을 분산시키기 위한 부직포(16)를 더 적층한 후, 마지막으로 보호재인 매쉬(18)를 적층한 구성을 나타낸 것이다.
즉, 미세 다공성 필름(12)-미세 다공성 필름 배면 지지체(14)-미세 다공성 필름(12-1)-부직포(16)-매쉬(18)의 순으로 적층한 나노 마이크로 기포 발생용 적층구조물(10)로 구성될 수도 있으며, 이의 경우 평균 기공 크기가 0.01~2㎛인 것으로서, 기공 형성을 위한 무기재(inorganic compounds) 또는 유기재(organic compounds)의 첨가 없이, 고밀도 폴리에틸렌(HDPE), 저밀도 폴리에틸렌(LDPE), 선형 저밀도 폴리에틸렌(LLDPE), 고분자량 폴리에틸렌(HMW-PE) 및 초고분자량 폴리에틸렌(UHMW-PE) 중에서 선택된 1종 이상의 폴리올레핀계 수지로부터, 유기용제 및 용매를 사용하지 않는 건식연신법을 통해 미세 다공성이 부여되어 기공율이 10~80%로 제조된 미세 다공성 필름(12,12-1)을 두 번에 걸쳐 공기가 통과하게 됨으로써, 더욱 미세한 크기의 나노 마이크로 버블이 발생된다.
이하에서는, 상기한 나노 마이크로 기포 발생용 적층구조물(10)을 포함하는 나노 마이크로 기포 발생장치에 대하여 설명한다.
<제 1실시 예>
도 5는 본 발명의 나노 마이크로 기포 발생용 적층구조물을 포함하는 제 1실시 예에 따른 나노 마이크로 기포 발생장치의 전체 사시도이고, 도 6은 도 5의 분리 사시도이며, 도 7은 도 5의 단면도이다.
도시된 바와 같이, 본 발명의 나노 마이크로 기포 발생용 적층구조물(10)을 포함하는 제 1실시 예에 따른 나노 마이크로 기포 발생장치(100)는, 앞서 설명한 나노 마이크로 기포 발생용 적층구조물(10)과, 이 나노 마이크로 기포 발생용 적층구조물(10)에 일정한 압력을 부여하면서 공기를 공급하되, 상기 공기가 분산되어 고르게 통과되도록 하는 공기 공급수단을 포함하여 이루어진다.
상기 공기 공급수단은, 일측에 공기 유입구(112)가 형성되고, 이 공기 유입구(112)와 연통되도록 내부에 공기 통로(114)가 형성된 본체(110)를 포함하는 구성으로 이루어져 있다.
본 발명의 제 1실시 예를 뒷받침하는 도 5 내지 도 7에서 공기 공급수단을 이루는 본체(110)가 사각 프레임 형상인 것으로 도시하였으나, 그 형상은 원형을 비롯한 다각 형상일 수 있는바, 그 형상에는 한정을 두지 않는다.
상기 본체(110)의 내부에 형성되는 공기 통로(114)의 상부에는 일정간격마다 복수의 통공(116 : 116a,116b,116c)이 형성되어 있고, 이 통공(116)들의 상면 높이와 동일높이를 이루어 각 통공(116)들이 연통되도록 여러 갈래로 분기된 슬릿홈(120)이 형성되어 있다.
여기서 상기 슬릿홈(120)은 대략 바둑판 형태로 형성되어 서로 연결되도록 형성되며, 슬릿홈(120) 사이에는 일정높이만큼 높은 철부(132a)와, 이 철부들보다는 낮은 요부(132b)가 연속적으로 정렬배치된 형태로 요철부(130)가 형성되어 있다.
참고로, 상기 통공(116)들 중, 공기 유입구(112)와 거리가 먼 통공(116a)의 직경이 가장 크게, 공기 유입구(112)와 거리가 가까운 통공(116c)의 직경이 가장 작게 형성되는 것이 바람직한데, 그 이유는 공압의 차이에 의해 공기 유입구(112)와 가까운 통공(116c)을 통해 많은 양의 공기가 유입되는 것을 예방하고, 전체적으로 고르게 공기가 공급되도록 하기 위함이다.
한편, 슬릿홈(120) 중, 외곽을 이루는 슬릿홈으로부터 일정간격 이격된 위치에는, 상기 통공(116)들을 통해 공급되는 공기의 유실을 예방하도록 그 둘레에 걸쳐 실링부재(140)가 설치되어 있으며, 이 실링부재(140)와 외곽을 이루는 슬릿홈 사이는 슬릿홈보다 다소 높게 형성되어 있다.
상기 나노 마이크로 기포 발생용 적층구조물(10)은, 본체(110)의 실링부재(140) 안쪽에 위치되게 안착,지지되어 설치됨으로써, 본체(110)의 공기 통로(114)와 통공(116) 및 슬릿홈(120)을 통과하는 공기는 유실됨이 없이 모두 나노 마이크로 기포 발생용 적층구조물(10)을 고르게 통과하여 나노 마이크로 버블이 생성된다.
한편, 본체(110)와 나노 마이크로 기포 발생용 적층구조물(10)을 사이에 두고 적층 결합되되, 나노 마이크로 기포 발생용 적층구조물(10)을 통과면서 생성된 나노 마이크로 기포들이 통과될 수 있도록 통기공(152)이 형성된 커버(150)가 더 구비되어 있다.
상기 커버(150)의 외측 둘레에는 일정간격마다 복수의 결합공(158)이 형성되어 있고, 이에 대응하도록 본체(110)의 외측 둘레에도 복수의 결합공(118)이 형성되어 있는바, 이들 결합공(118,158)들을 통해 결합수단을 체결하게 되면, 나노 마이크로 기포 발생용 적층구조물(10)이 본체(110)의 요철부(130)들에 밀착,지지됨으로써, 나노 마이크로 기포 발생용 적층구조물(10)을 통과하는 공기가 일정한 압력을 부여받게 된다.
물론, 이 경우 커버(150)의 안쪽면에서 통기공(152)으로부터 일정간격 이격된 외곽 둘레에는, 본체(110)의 통공(116)을 통해 공급되는 공기의 유실을 예방하도록 그 둘레에 걸쳐 실링부재(154)가 설치되는 것이 바람직하다.
상기와 같은 구성으로 이루어진 본 발명의 나노 마이크로 기포 발생용 적층구조물을 포함하는 제 1실시 예에 따른 나노 마이크로 기포 발생장치의 작동관계를 설명하면 다음과 같다.
먼저, 도 3에 도시된 바와 같이, 나노 마이크로 기포 발생용 적층구조물(10)을 사이에 두고 본체(110)와 커버(150)가 결합된 상태에서, 본체(110) 일측에 형성된 공기 유입구(112)를 통해 공기를 공급하게 되면, 공급되는 공기는 본체(110) 내부의 공기 통로(114)를 통과하게 되고, 이 공기 통로(114)에 일정간격마다 형성된 통공(116)들을 통과하여 슬릿홈(120)을 따라 유동하면서 전체 면적에 걸쳐 고르게 분산된다.
이때, 공기 유입구(112)로부터 비교적 먼 거리에 형성된 통공(116a)의 직경이 가장 크고, 비교적 가까운 거리에 형성된 통공(116b)의 직경이 가장 작게 형성됨으로써, 공기 유입구(112)로부터 먼 위치의 슬릿홈과 가까운 위치의 슬릿홈에는 공압차에 의해 거의 유사한 양의 공기가 공급된다.
이와 같이 슬릿홈(120)으로 고르게 공급되는 공기들은 서로 분기된 슬릿홈(120)을 따라 유동하면서 전체 면적에 걸쳐 고르게 분산될 뿐만 아니라, 슬릿홈(120) 사이에 형성된 요철부(130)들의 요부(130b)를 따라 더욱 미세하게 분기되도록 제어되는바, 나노 마이크로 기포 발생용 적층구조물(10)의 저면부 전체 면적에 고르게 분산되게 된다.
따라서, 슬릿홈(120) 및 요철부(130)에 의해 전체 면적에 대해 고르게 분산된 공기는 나노 마이크로 기포 발생용 적층구조물(10)을 통과하면서 나노 마이크로 버블이 생성되게 된다.
즉, 고르게 분산된 공기는 기공율이 10~80%이고, 평균 기공 크기가 0.01~2㎛인 미세 다공성 필름(12)과, 미세 다공성 필름 배면 지지체(14)와, 역시 기공율이 10~80%이고, 평균 기공 크기가 0.01~2㎛인 미세 다공성 필름(12-1)과, 부직포(16)를 연속적으로 통과한 후, 마지막으로 매쉬(18)와 커버(150)의 통기공(152)을 통과하여 나노 마이크로 기포로 발생되는 것이다.
참고로, 본 발명의 나노 마이크로 기포 발생용 적층구조물(10)을 포함하는 제 1실시 예에 따른 나노 마이크로 기포 발생장치(100)에서, 나노 마이크로 기포 발생용 적층구조물(10)을 미세 다공성 필름(12)과, 미세 다공성 필름 배면 지지체(14)와, 미세 다공성 필름(12-1)과, 부직포(16) 및 매쉬(18)의 5겹 구조인 것을 일예로 설명하였으나, 상기 나노 마이크로 기포 발생용 적층구조물(10)은 미세 다공성 필름(12)과, 미세 다공성 필름 배면 지지체(14) 및 매쉬(18)의 3겹 구조인 것이 적용될 수 있음은 물론이다.
<제 2실시 예>
도 8은 본 발명의 나노 마이크로 기포 발생용 적층구조물을 포함하는 제 2실시 예에 따른 나노 마이크로 기포 발생장치의 전체 사시도이고, 도 9 및 도 10은 도 8의 분리 사시도이며, 도 11은 도 8의 결합단면도이다.
도시된 바와 같이, 본 발명의 나노 마이크로 기포 발생용 적층구조물(10)을 포함하는 제 2실시 예에 따른 나노 마이크로 기포 발생장치(200)는, 앞서 설명한 나노 마이크로 기포 발생용 적층구조물(10)과, 이 나노 마이크로 기포 발생용 적층구조물(10)에 일정한 압력을 부여하여 공기를 공급하되, 상기 공기가 분산되어 고르게 통과되도록 제어하는 공기 공급수단을 포함하여 이루어진다.
상기 공기 공급수단은, 일측에 공기 유입구(212)가 형성되고, 이 공기 유입구(212)와 연통되도록 내부에 공기 통로(214)가 형성된 환형 형태의 본체(210)를 포함하는 구성으로 이루어져 있다.
여기서, 본 발명의 제 2실시 예를 뒷받침하는 도 8 내지 도 11에서 본체를 환형 형태인 것으로 도시하였으나, 그 형태는 다각형상일 수도 있음은 물론이다.
상기 본체(210)의 일측면에는 공기 통로(214)와 연통되는 복수의 통공(216 : 216a,216b,216c)이 형성되되, 이 통공(216)이 형성되는 부위에는 일정깊이의 슬릿홈(220)이 길이방향을 따라 형성되어 있다.
여기서, 상기 통공(216)들 중, 공기 유입구(212)와 거리가 먼 통공(216a)의 직경이 가장 크게, 공기 유입구(212)와 거리가 가까운 통공(216c)의 직경이 가장 작게 형성되는 것이 바람직한데, 그 이유는 공압의 차이에 의해 공기 유입구(212)와 가까운 통공(216c)을 통해 많은 양의 공기가 유입되는 것을 예방하고, 전체적으로 고르게 공기가 공급되도록 하기 위함이다.
상기 나노 마이크로 기포 발생용 적층구조물(10)은, 본체(210)의 둘레를 따라 감합되는데, 본 발명의 제 2실시 예를 뒷받침하는 도 8 내지 도 11에서 나노 마이크로 기포 발생용 적층구조물(10)을, 미세 다공성 필름(12)-미세 다공성 필름 배면 지지체(14)-미세 다공성 필름(12-1)-부직포(16)-매쉬(18)의 5겹구조인 것을 일예로 도시하였으나, 미세 다공성 필름(12)-미세 다공성 필름 배면 지지체(14)-매쉬(18)의 3겹 구조인 것도 적용가능함은 물론이다.
상기와 같이, 본체(210)의 외면 둘레를 따라 나노 마이크로 기포 발생용 적층구조물(10)이 감합된 상태에서, 그 외면에는 일정간격마다 낚시 줄과 같이 강성이 우수한 와이어(230)가 일정간격으로 감겨져 있는데, 이 와이어(230)는 나노 마이크로 기포 발생용 적층구조물(10) 전체면에 걸쳐 일정한 압력으로 고르게 공기가 통과되도록 분산시키는 제어기능을 담당하는 것으로서, 그 상세한 설명은 후술하기로 한다.
참고로, 도 8 내지 도 11에서 미설명 부호 (240)와 (242)는 본체(210)의 선후단에 각각 체결되는 캡과 실링부재를 나타낸 것이며, 이의 구성을 배제하고 일측에 공기 유입구가 형성되고, 타측은 폐쇄된 본체만 제공될 수도 있다.
상기와 같은 구성으로 이루어진 본 발명의 나노 마이크로 기포 발생용 적층구조물을 포함하는 제 2실시 예에 따른 나노 마이크로 기포 발생장치(200)의 작동관계를 설명하면 다음과 같다.
먼저, 도 8에 도시된 바와 같이, 본체(210)의 둘레에 나노 마이크로 기포 발생용 적층구조물(10)이 감합되고, 그 외면에 와이어(230)가 일정간격마다 감겨진 상태에서, 본체(210) 일측에 형성된 공기 유입구(212)를 통해 공기를 공급하게 되면, 공급되는 공기는 본체(210) 내부의 공기 통로(214)를 통과하게 되고, 이 공기 통로(214)에 일정간격마다 형성된 통공(216)들을 통과하여 슬릿홈(220)을 따라 유동하면서 본체(210)의 일측면 전체길이에 걸쳐 고르게 분산된다.
이때, 공기 유입구(212)로부터 비교적 먼 거리에 형성된 통공(216a)의 직경이 가장 크고, 비교적 가까운 거리에 형성된 통공(216b)의 직경이 가장 작게 형성됨으로써, 공기 유입구(212)로부터 먼 위치의 슬릿홈과 가까운 위치의 슬릿홈에는 공압차에 의해 거의 유사한 양의 공기가 공급된다.
이와 같이 슬릿홈(220)으로 고르게 공급된 공기들은 본체(210)의 둘레면과 나노 마이크로 기포 발생용 적층구조물(10) 사이를 통해 원주방향으로 회전하게 되고, 따라서 해당 둘레면으로 분산된 공기는 나노 마이크로 기포 발생용 적층구조물(10)의 해당 부위만을 통과하게 됨으로써, 전체 면적에 고르게 분산, 통과되게 된다.
즉, 나노 마이크로 기포 발생용 적층구조물(10)은 와이어(230)에 의해 일정간격마다 감겨져 있는바, 도 11에 확대 도시된 바와 같이, 서로 근접하는 와이어들 사이로 공급된 공기는 양쪽의 와이어들에 의해 옆 방향으로 이동되지 않고 그 사이의 나노 마이크로 기포 발생용 적층구조물 해당 부위만을 통과하여 나노 마이크로 기포로서 생성이 이루어지는바, 어느 한 부분에 집중적이지 않고 전체 면적에 걸쳐 고르게 나노 마이크로 기포가 발생되게 된다.
다시 말해서, 나노 마이크로 기포 발생용 적층구조물(10)의 외면에 일정간격마다 감긴 와이어(230)에 의해 슬릿홈(220)을 통과한 분산된 공기가 어느 한쪽으로 몰리지 않고 제 위치에 해당되는 나노 마이크로 기포 발생용 적층구조물의 해당 부위만을 통과하여 나노 마이크로 기포로서 생성이 이루어지는바, 나노 마이크로 기포 발생용 적층구조물(10)의 전체 면적에 걸쳐 고르게 나노 마이크로 기포가 발생되게 되는 것이다.
참고로, 본 발명의 제 1실시 예에 따른 나노 마이크로 기포 발생장치(100)는, 본체(110)와 매쉬(18)가 금속재로 이루어진 것을 적용하는 것이 바람직하며, 이의 경우 욕조 버블러, 미생물 배양조 등 민물 용도에 적합할 것이다.
반면에, 본 발명의 제 2실시 예에 따른 나노 마이크로 기포 발생장치(200)는, 본체(210)와 매쉬(18)가 합성수지재로 이루어진 것을 적용하는 것이 바람직하며, 이의 경우 양식장과 같이 해수 용도에 적합할 것이다.
또 한편으로, 본 발명의 제 1실시 예 및 제 2실시 예에 따른 나노 마이크로 기포 발생장치는, 종래에 공지된 미세 다공성 필름을 포함하는 적층구조물을 그대로 적용할 수도 있음은 물론이다.

Claims (11)

  1. 기공 형성을 위한 무기재(inorganic compounds) 또는 유기재(organic compounds)의 첨가 없이, 고밀도 폴리에틸렌(HDPE), 저밀도 폴리에틸렌(LDPE), 선형 저밀도 폴리에틸렌(LLDPE), 고분자량 폴리에틸렌(HMW-PE) 및 초고분자량 폴리에틸렌(UHMW-PE) 중에서 선택된 1종 이상의 폴리올레핀계 수지로부터, 유기용제 및 용매를 사용하지 않는 건식연신법을 통해 미세 다공성이 부여되어 기공율이 10~80% 이고, 평균 기공 크기가 0.01~2㎛로 제조된 적어도 1겹 이상의 미세 다공성 필름과;
    상기 미세 다공성 필름의 배면에 적층되며, 유입되는 공기가 분산되어 다공성 필름을 통과되도록 하는 것으로서, 소수성을 갖는 폴리올레핀계 부직포, 신터링(sintering) 방식으로 제조된 폴리올레핀계 소수성 다공체, 폴리올레핀 섬유를 가열,압착하여 만들어진 섬유상 다공체 중에서 선택된 1종 이상인 적어도 1겹 이상의 미세 다공성 필름 배면 지지체가 적층,형성된 것을 특징으로 하는 나노 마이크로 기포 발생용 적층구조물.
  2. 제 1항에 있어서,
    상기 미세 다공성 필름 배면 지지체의 상부에는 보호재로서 그물망 형태의 매쉬가 더 적층,형성된 것을 특징으로 하는 나노 마이크로 기포 발생용 적층구조물.
  3. 제 2항에 있어서,
    상기 매쉬는, 금속재 또는 나일론인 것을 특징으로 하는 나노 마이크로 기포 발생용 적층구조물.
  4. 청구항 1 내지 청구항 3 중, 어느 하나의 청구항에 기재된 나노 마이크로 기포 발생용 적층구조물과;
    상기 나노 마이크로 기포 발생용 적층구조물에 일정한 압력을 부여하여 공기를 공급하되, 상기 공기가 분산되어 고르게 통과되도록 하는 공기 공급수단을 포함하는 것을 특징으로 하는 나노 마이크로 기포 발생용 적층구조물을 포함하는 나노 마이크로 기포 발생장치.
  5. 제 4항에 있어서,
    상기 공기 공급수단은,
    일측에 공기 유입구가 형성되고, 상기 공기 유입구와 연통되도록 내부에 공기 통로가 형성된 본체를 포함하되,
    상기 본체의 공기 통로 상부에는 일정간격마다 복수의 통공이 형성되고, 상기 통공들의 상면 높이와 동일높이를 이루어 각 통공들이 연통되도록 여러 갈래로 분기된 슬릿홈이 형성된 것과;
    상기 슬릿홈 사이에는 슬림홈보다 일정높이만큼 높은 철부와, 상기 철부들보다는 낮은 요부가 연속적으로 정렬배치되게 요철부가 형성된 것과;
    상기 슬릿홈들 중, 외곽을 이루는 슬릿홈으로부터 일정간격 이격된 위치에는, 상기 통공들을 통해 공급되는 공기의 유실을 예방하도록 그 둘레에 걸쳐 실링부재가 설치된 것을 특징으로 하며,
    상기 나노 마이크로 기포 발생용 적층구조물은, 상기 실링부재 안쪽에 위치되게 안착,지지되는 나노 마이크로 기포 발생용 적층구조물을 포함하는 나노 마이크로 기포 발생장치.
  6. 제 5항에 있어서,
    상기 본체와 나노 마이크로 기포 발생용 적층구조물을 사이에 두고 적층 결합되고, 나노 마이크로 기포 발생용 적층구조물을 통과한 나노 마이크로 기포들이 통과되도록 통기공이 형성된 커버를 더 포함하는 것을 특징으로 하는 나노 마이크로 기포 발생용 적층구조물을 포함하는 나노 마이크로 기포 발생장치.
  7. 제 6항에 있어서,
    상기 커버의 안쪽면에서 통기공으로부터 일정간격 이격된 외곽 둘레에는, 상기 통공들을 통해 공급되는 공기의 유실을 예방하도록 그 둘레에 걸쳐 실링부재가 설치된 것을 특징으로 하는 나노 마이크로 기포 발생용 적층구조물을 포함하는 나노 마이크로 기포 발생장치.
  8. 제 5항에 있어서,
    상기 통공들 중, 상기 공기 유입구로부터 먼 위치에 형성되는 통공의 크기가 제일 크고, 상기 공기 유입구로부터 가까운 위치에 형성되는 통공의 크기가 제일 작은 것을 특징으로 하는 나노 마이크로 기포 발생용 적층구조물을 포함하는 나노 마이크로 기포 발생장치.
  9. 제 4항에 있어서,
    상기 공기 공급수단은,
    일측에 공기 유입구가 형성되고, 상기 공기 유입구와 연통되도록 내부에 공기 통로가 형성된 본체를 포함하되,
    상기 본체의 일측면에는 상기 공기 통로와 연통되는 복수의 통공이 형성되고, 상기 복수의 통공이 형성되는 부위에는 일정깊이의 슬릿홈이 길이방향으로 형성되며,
    상기 나노 마이크로 기포 발생용 적층구조물은, 상기 본체에 감합되고, 감합된 나노 마이크로 기포 발생용 적층구조물 외면에 일정간격으로 와이어가 감긴 것을 특징으로 하는 나노 마이크로 기포 발생용 적층구조물을 포함하는 나노 마이크로 기포 발생장치.
  10. 제 9항에 있어서,
    상기 본체의 슬릿홈에 형성되는 복수의 통공들 중, 상기 공기 유입구로부터 먼 위치에 형성되는 통공의 크기가 제일 크고, 상기 공기 유입구로부터 가까운 위치에 형성되는 통공의 크기가 제일 작은 것을 특징으로 하는 나노 마이크로 기포 발생용 적층구조물을 포함하는 나노 마이크로 기포 발생장치.
  11. 나노 마이크로 기포 발생용 적층구조물과;
    상기 나노 마이크로 기포 발생용 적층구조물에 일정한 압력을 부여하여 공기를 공급하되, 상기 공기가 분산되어 고르게 통과되도록 하는 공기 공급수단을 포함하는 것을 특징으로 하는 나노 마이크로 기포 발생용 적층구조물을 포함하는 나노 마이크로 기포 발생장치.
PCT/KR2011/003681 2011-05-18 2011-05-18 나노 마이크로 기포 발생용 적층구조물 및 이 적층구조물을 포함하는 나노 마이크로 기포 발생장치 WO2012157798A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/003681 WO2012157798A1 (ko) 2011-05-18 2011-05-18 나노 마이크로 기포 발생용 적층구조물 및 이 적층구조물을 포함하는 나노 마이크로 기포 발생장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/003681 WO2012157798A1 (ko) 2011-05-18 2011-05-18 나노 마이크로 기포 발생용 적층구조물 및 이 적층구조물을 포함하는 나노 마이크로 기포 발생장치

Publications (1)

Publication Number Publication Date
WO2012157798A1 true WO2012157798A1 (ko) 2012-11-22

Family

ID=47177109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003681 WO2012157798A1 (ko) 2011-05-18 2011-05-18 나노 마이크로 기포 발생용 적층구조물 및 이 적층구조물을 포함하는 나노 마이크로 기포 발생장치

Country Status (1)

Country Link
WO (1) WO2012157798A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11179683B2 (en) * 2018-10-22 2021-11-23 Petrochina Company Limited Microbubble generation device and equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212183A1 (en) * 2002-04-24 2005-09-29 Treofan Germany Gmbh & Co. Kg Use of polypropylene films for in-mold labelling
JP2007000777A (ja) * 2005-06-23 2007-01-11 Mitsubishi Cable Ind Ltd 多孔膜材及び散気装置
KR100836814B1 (ko) * 2007-07-06 2008-06-11 주식회사 신일 미세기포 발생용 산기장치
KR20080064251A (ko) * 2007-01-04 2008-07-09 (주)인터포어 통기성 필름
KR100967831B1 (ko) * 2009-11-12 2010-07-05 주식회사 디에스21 마이크로 기포 발생장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212183A1 (en) * 2002-04-24 2005-09-29 Treofan Germany Gmbh & Co. Kg Use of polypropylene films for in-mold labelling
JP2007000777A (ja) * 2005-06-23 2007-01-11 Mitsubishi Cable Ind Ltd 多孔膜材及び散気装置
KR20080064251A (ko) * 2007-01-04 2008-07-09 (주)인터포어 통기성 필름
KR100836814B1 (ko) * 2007-07-06 2008-06-11 주식회사 신일 미세기포 발생용 산기장치
KR100967831B1 (ko) * 2009-11-12 2010-07-05 주식회사 디에스21 마이크로 기포 발생장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11179683B2 (en) * 2018-10-22 2021-11-23 Petrochina Company Limited Microbubble generation device and equipment

Similar Documents

Publication Publication Date Title
CN206278978U (zh) 植物‑自然生物膜复合生态浮床
CN205528306U (zh) 漂浮式综合水处理设备及应用该设备的水处理系统
US7303677B2 (en) Supported biofilm process
WO2014163426A1 (ko) 광합성 미생물 대량배양을 위한 광생물 반응기
US7303676B2 (en) Supported biofilm apparatus and process
CA2901764C (en) Membrane assembly for supporting a biofilm
CN205241356U (zh) 一种太阳能复合式生态浮岛水处理装置
CN103145249A (zh) 一种组合式可调节复合生态浮岛
KR101966759B1 (ko) 중력식 정수장치용 필터모듈 및 이를 포함하는 중력식 정수장치
JP5390212B2 (ja) 微細気泡発生装置
Zhou et al. High‐flux strategy for electrospun nanofibers in membrane distillation to treat aquaculture wastewater: a review
KR101161315B1 (ko) 나노 마이크로 기포 발생용 적층구조물 및 이 적층구조물을 포함하는 나노 마이크로 기포 발생장치
CN103387312A (zh) 多级生物接触氧化反应器污水处理设备
WO2012157798A1 (ko) 나노 마이크로 기포 발생용 적층구조물 및 이 적층구조물을 포함하는 나노 마이크로 기포 발생장치
CN106745755A (zh) 一种太阳能微动力智能生活污水处理系统及污水处理方法
WO2015178623A1 (ko) 초미세 버블 발생용 나노섬유 복합막 및 이를 이용한 초미세 버블 발생장치
CN207911819U (zh) 一种用于水产养殖的水质净化装置
CN207738524U (zh) 一种高效复合柔性脱氮填料池
CN108545838B (zh) 一种锚定式受污染水体原位净化处理方法及装置
CN207684981U (zh) 一种采用mbr工艺的一体化生活污水处理设备
CN214060279U (zh) 一种海水养殖尾水回用装置
CN110204147B (zh) 现场分散式污水处理含磷废水的处理系统
CN211999356U (zh) 一种农村生活污水一体化处理装置
CN203683327U (zh) 接触氧化-完全混合式活性污泥法组合式污水处理设备
CN101264975A (zh) 一种柱式膜组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865663

Country of ref document: EP

Kind code of ref document: A1