WO2012157432A1 - Method for producing molten glass, glass-melting furnace, method for producing glass article, and device for producing glass article - Google Patents

Method for producing molten glass, glass-melting furnace, method for producing glass article, and device for producing glass article Download PDF

Info

Publication number
WO2012157432A1
WO2012157432A1 PCT/JP2012/061269 JP2012061269W WO2012157432A1 WO 2012157432 A1 WO2012157432 A1 WO 2012157432A1 JP 2012061269 W JP2012061269 W JP 2012061269W WO 2012157432 A1 WO2012157432 A1 WO 2012157432A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
molten glass
raw material
gas phase
heated gas
Prior art date
Application number
PCT/JP2012/061269
Other languages
French (fr)
Japanese (ja)
Inventor
達也 山下
千禾夫 田中
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201280022826.7A priority Critical patent/CN103534214B/en
Priority to JP2013515065A priority patent/JP5971241B2/en
Priority to KR1020137027054A priority patent/KR101965003B1/en
Publication of WO2012157432A1 publication Critical patent/WO2012157432A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/026Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet by charging the ingredients into a flame, through a burner or equivalent heating means used to heat the melting furnace
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/025Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by arc discharge or plasma heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/12Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/183Stirring devices; Homogenisation using thermal means, e.g. for creating convection currents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the present invention relates to a molten glass manufacturing method, a glass melting furnace, a glass article manufacturing method, and a glass article manufacturing apparatus.
  • a Siemens type that melts glass raw materials in a glass melting furnace (hereinafter also referred to simply as a melting furnace). It is produced based on a melting furnace (Siemensementype furnace).
  • a melting furnace Siemens-type melting furnace
  • a mixture of powdered glass raw materials is charged on the surface of the glass melt previously melted in the melting furnace, and the mixture becomes a lump (hereinafter also referred to as a batch). It is heated by a burner or the like to cause melting to proceed from the surface to gradually form a glass melt.
  • FIG. 5 is a schematic cross-sectional view showing the melting furnace described in Patent Document 1.
  • Melting furnace 100 of Patent Document 1 as the heating means for forming a high-temperature gas-phase atmosphere K 100, and includes a plurality of arc electrode 102 and the oxygen combustion nozzle 103.
  • a high-temperature gas phase atmosphere K 100 of about 1600 ° C. or higher is formed in the furnace body 101 by a thermal plasma arc formed by the plurality of arc electrodes 102 and / or an oxyfuel flame (frame) F 100 by the oxyfuel nozzle 103.
  • the air melting method has an advantage that a glass melt can be produced in a short time by heating and melting at a high temperature by passing the glass raw material particles through a high temperature gas phase atmosphere.
  • the present inventors have studied, and aiming for rapid melting in a short time, if the glass raw material particles are heated at an excessively high temperature, the fining agent contained in the glass raw material particles disappears due to excessive heat. It turned out that there was a case.
  • the glass melt storing the liquid glass particles in the state where the fining agent has disappeared does not exhibit the effect of defoaming by the fining agent in the glass melt, and when a lot of bubbles are mixed, It takes time to perform the defoaming process.
  • the temperature of the gas phase atmosphere is lowered too much to prevent the fining agent from disappearing, the liquid glass particles are not sufficiently melted due to insufficient heating, and the clarification in the glass melt is not promoted. It may be in the state.
  • an object of the present invention is to provide a molten glass manufacturing method and a glass melting furnace capable of manufacturing a molten glass having a high bubble quality with few bubbles. Moreover, this invention aims at provision of the manufacturing method of the glass article using the manufacturing method of the above-mentioned molten glass. Furthermore, this invention aims at provision of the manufacturing apparatus of the glass article provided with the above-mentioned glass melting furnace.
  • the present inventors diligently studied on a method capable of heating glass raw material particles with an appropriate temperature history in order to produce a high-foam quality molten glass with few bubbles, and reached the present invention.
  • the present invention forms two or more heated gas phase atmospheres arranged in the vertical direction, supplies glass raw material particles to the uppermost heated gas phase atmosphere, and passes the glass raw material particles through the two or more heated gas phase atmospheres
  • grains by providing is provided.
  • the first heated vapor phase atmosphere is formed in the uppermost stage among the two or more heated vapor phase atmospheres, and the last heating is performed in the lowermost stage among the two or more heated vapor phase atmospheres.
  • the glass raw material particles preferably contain a fining agent component.
  • the temperature of the first heated gas phase atmosphere is preferably not less than the vitrification start temperature of the glass raw material particles and not more than 1500 ° C.
  • the temperature of the final heated gas phase atmosphere is preferably not less than the clarification start temperature of the fining agent component in the glass raw material particles and not more than 20000 ° C.
  • the tip of the heat source generating part of the heating means for forming the first heated vapor phase atmosphere and the liquid level of the molten glass that stores the molten glass particles to form molten glass When the vertical distance is H, the last heated gas phase atmosphere is preferably formed within 0.5H above the liquid surface of the molten glass.
  • the present invention includes a furnace body that contains molten glass, a glass raw material particle introduction portion that is disposed on the upper portion of the furnace body, and that introduces glass raw material particles inside the furnace body, and a lower portion of the glass raw material particle introduction portion.
  • a glass melting furnace provided with heating means for forming two or more heated gas phase atmospheres for heating and melting the glass raw material particles into molten glass particles so as to be arranged in the vertical direction.
  • the heating means includes first heating means for forming a heated gas phase atmosphere for first melting glass raw material particles in the uppermost stage of the two or more heated gas phase atmospheres; It is preferable to include a last heating unit that forms a heated gas phase atmosphere for melting glass raw material particles at the bottom of the two or more heated gas phase atmospheres.
  • the first heating means may be a combustion burner.
  • the last heating means may be a multi-phase arc plasma generator comprising a combustion burner and / or a plurality of electrodes.
  • the first heating means may be disposed downwardly on the top of the furnace body.
  • the vertical distance between the tip of the heat source generating portion of the first heating means and the liquid level of the molten glass that stores the molten glass particles in the furnace body to form molten glass is H.
  • the last heating means is preferably arranged such that the last heated gas phase atmosphere is within 0.5H above the liquid surface of the molten glass.
  • the present invention includes a step of producing a molten glass using the method for producing a molten glass according to any one of the above, a step of forming the molten glass, and a step of gradually cooling the glass after forming.
  • a method for manufacturing an article is provided.
  • the present invention provides a glass article comprising: the glass melting furnace according to any one of the above; a forming means for forming the molten glass produced by the glass melting furnace; and a slow cooling means for gradually cooling the glass after forming. Providing manufacturing equipment.
  • the method for producing molten glass and the glass melting furnace of the present invention have a configuration in which glass raw material particles are passed through two or more heated gas phase atmospheres to form molten glass particles. Therefore, the temperature of each heated gas phase atmosphere is adjusted, the upper heated gas phase atmosphere is set to a temperature at which the fining agent in the glass raw material particles does not disappear, and the lower heated gas phase atmosphere is the molten glass in which the molten glass particles are stored. Immediately after falling, it can be set to a temperature at which the fining effect of the fining agent is well expressed. Thereby, defoaming of a molten glass particle is accelerated
  • the glass raw material particles can be sequentially passed through two or more heated gas-phase atmospheres, after melting the glass raw material particles in the upper heated gas-phase atmosphere, the melting is further promoted in the lower heated gas-phase atmosphere.
  • the lack of melting can be resolved and the molten glass particles having a higher specific gravity can be obtained. Therefore, in the method for producing molten glass of the present invention, the molten glass particles are less scattered and the vitrification rate is improved.
  • the method for producing molten glass of the present invention can reduce molten glass particles that fly down and scatter and adhere to the wall of the furnace body, so that damage to the furnace material is reduced.
  • the manufacturing method of the glass article of this invention can provide a high quality glass article by using the manufacturing method of the above-mentioned molten glass.
  • the apparatus for producing a glass article of the present invention can produce a high-quality glass article by including the glass melting furnace described above.
  • FIG. 1 is a cross-sectional view schematically showing a first embodiment of a glass melting furnace according to the present invention.
  • FIG. 2 is a sectional view schematically showing a second embodiment of the glass melting furnace according to the present invention.
  • FIG. 3 is a sectional view schematically showing a third embodiment of the glass melting furnace according to the present invention.
  • FIG. 4 is a flowchart showing an example of a method for producing a glass article using the method for producing molten glass according to the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the glass melting furnace described in Patent Document 1. As shown in FIG.
  • the first heating means for forming the first heated vapor atmosphere (hereinafter referred to as “first heated vapor atmosphere”) is a combustion burner. More specifically, it comprises an oxyfuel burner.
  • the first heated gas phase atmosphere is formed from a high temperature atmosphere in and near the oxyfuel flame of the oxyfuel burner.
  • a glass raw material particle charging portion for supplying glass raw material particles to a heated gas phase atmosphere in the furnace body is integrated with an oxyfuel burner as a first heating means, and a tube for supplying combustion gas in the vicinity of the oxyfuel burner outlet.
  • a tube for supplying oxygen and a tube for supplying glass raw material particles are configured coaxially.
  • the combination of the glass raw material particle charging portion and the oxygen combustion burner is referred to as a glass raw material particle heating unit.
  • the last heating means (that is, the lowest heating means on the molten glass side) that forms the lowest heated gas phase atmosphere generates a combustion burner (more specifically, an oxyfuel combustion burner) and / or a thermal plasma.
  • a multi-phase arc plasma generator comprising a plurality of electrodes.
  • the last heating means is an oxyfuel combustion burner
  • the last heated gas phase atmosphere is formed from a high temperature atmosphere in the oxyfuel combustion flame of the oxyfuel combustion burner and in the vicinity of the oxyfuel combustion flame.
  • the last heating means is a thermal plasma generator
  • the last heated vapor phase atmosphere is formed from thermal plasma and a high temperature atmosphere near the thermal plasma.
  • the heated gas phase atmosphere refers to a gas combustion region if it is an oxyfuel burner, and refers to a region where plasma is generated if it is thermal plasma. If it is by other heating means, the area has a temperature sufficient to melt the glass raw material particles or further melt the molten glass particles that have not been melted compared to the surrounding atmosphere by that means.
  • FIG. 1 is a cross-sectional view schematically showing a first embodiment of a glass melting furnace according to the present invention.
  • the glass melting furnace shown in FIG. 1 is used in the method for manufacturing molten glass and the method for manufacturing glass articles according to the present invention.
  • a glass melting furnace 30 shown in FIG. 1 is a furnace for forming a first heated gas-phase atmosphere K1 by ejecting a hollow box-shaped furnace body 1 and glass raw material particles GM and an oxyfuel flame F1.
  • the glass raw material particle heating unit 10 disposed downward through the furnace wall portion 1A of the upper portion of the body 1 and the oxyfuel combustion flame F2 are ejected to form the second heated vapor phase atmosphere K2 as the first heated vapor phase atmosphere.
  • An oxyfuel combustion burner 20 that is disposed obliquely downward through the side wall 1C of the furnace body 1 and a storage portion 1B for molten glass G formed at the bottom of the furnace body 1 is provided to form the bottom of K1.
  • the glass raw material particle heating unit 10 can form a first heated gas-phase atmosphere K1 on the front end side in the injection direction of the combustion flame (lower side in FIG. 1).
  • the oxyfuel burner 20 as the second heating means penetrates the central portion in the height direction of the side wall 1C so that the second heated gas phase atmosphere K2 can be formed below the first heated gas phase atmosphere K1. It is provided diagonally downward.
  • the oxyfuel burner 20 as the second heating means is the last heating means, and the second heated vapor phase atmosphere K2 is the last heated vapor phase atmosphere.
  • the glass raw material particle heating unit 10 will be described later.
  • the upper part of the furnace body 1 means a range including the upper part of the furnace wall 1A and the side wall 1C of the furnace body 1.
  • the shape of the furnace body 1 is not limited to the box-shaped rectangular parallelepiped shape shown in FIG. 1, and may be configured in a cylindrical shape.
  • the glass raw material particle heating unit 10 is installed in the vertical direction downward in FIG. 1, the present invention is not limited to this, and the glass raw material particle heating unit 10 may be installed inclined if it is downward.
  • the furnace wall part 1A of the furnace body 1 was made into a flat shape, not only this but shapes, such as an arch shape and a dome shape, may be sufficient.
  • the oxyfuel burner 20 is installed obliquely downward.
  • the present invention is not limited to this. If the second heated vapor phase atmosphere K2 can be formed below the first heated vapor phase atmosphere K1, the oxyfuel combustion burner 20 is inclined upward or horizontally laterally. You may install in.
  • the bottom side of the furnace body 1 is a storage part 1B for the molten glass G.
  • the molten glass G is externally supplied from the furnace body 1 through a molten glass discharge port 4 formed on the bottom side of the side wall 1C of the furnace body 1. It is configured so that it can be discharged.
  • the glass article manufacturing apparatus including the glass melting furnace 30 of the present embodiment is connected, as an example, to a molding apparatus 50 including a molding unit on the downstream side in the direction of discharging the molten glass G from the furnace body 1.
  • the molten glass G is formed into a target shape by the forming apparatus 50 so that a glass article can be obtained.
  • a vacuum degassing apparatus may be provided before the molding apparatus 50.
  • the manufacturing apparatus of a glass article has a slow cooling means which anneals the glass after shaping
  • the glass article manufacturing apparatus of the present invention can apply known molding means and slow cooling means, and other known addition means, in addition to using the glass melting furnace according to the present invention described above. it can.
  • the furnace body 1 is made of a refractory material such as a refractory brick, and is configured to store high-temperature molten glass G. Although not shown in the storage part 1B of the furnace body 1, a heater is installed, and the molten glass G stored in the storage part 1B is melted to a target temperature (for example, about 1400 ° C.) as necessary. It is configured so that it can be held.
  • An exhaust gas treatment device 3 is connected to a side wall portion of the storage portion 1B via an exhaust port 2 and an exhaust pipe 2a.
  • an oxyfuel burner 11 in which a glass raw material particle charging portion is integrally formed at the tip portion 12 is applied.
  • this oxyfuel combustion burner 11 an oxyfuel combustion burner known as an inorganic powder heating burner, in which raw materials, fuel gas, and combustion gas supply nozzles are appropriately arranged, can be used.
  • the oxycombustion burner 11 is configured in a straight tube shape, and a tip 12 thereof has a fuel supply nozzle, a primary combustion gas supply nozzle, a glass raw material particle supply nozzle that is a glass raw material particle supply portion from the center to the outer periphery, and Secondary combustion gas supply nozzles are arranged concentrically.
  • the oxyfuel burner 11 is not limited to a structure in which the supply nozzles are arranged concentrically, but may have a structure in which the supply nozzles are simply bundled.
  • a raw material supplier 8 composed of a hopper containing glass raw material particles GM is connected to the upper side of the oxyfuel burner 11 through a supply pipe 9.
  • a carrier gas supply source (not shown) for supplying a carrier gas for conveying the glass raw material particles GM to the glass raw material particle supply nozzle of the oxyfuel combustion burner 11 is connected to the supply pipe 9.
  • the fuel gas supply nozzle, the primary combustion gas supply nozzle, and the secondary combustion gas supply nozzle of the oxyfuel combustion burner 11 are connected to the gas supply device 6 via gas supply pipes 7a, 7b, and 7c, respectively.
  • the oxyfuel burner 20 as the second heating means is an oxyfuel burner known as an oxyfuel burner, in which a fuel and oxygen supply nozzle are appropriately arranged.
  • a fuel supply device (not shown) for supplying fuel to the fuel supply nozzle and a gas supply device (not shown) for supplying combustion gas containing oxygen to the combustion gas supply nozzle are connected to the oxyfuel burner 20.
  • the two oxygen combustion burners 20, 20 pass through substantially the same height positions of the opposing side walls 1 ⁇ / b> C, 1 ⁇ / b> C of the furnace body 1 and eject the oxygen combustion flames F ⁇ b> 2, F ⁇ b> 2 obliquely downward.
  • the present invention is not limited to this, and a plurality of oxygen combustion burners 20 are arranged in a ring shape so as to form a second heated gas phase atmosphere K2 having high symmetry below the first heated gas phase atmosphere K1.
  • a second heated gas phase atmosphere K2 having high symmetry below the first heated gas phase atmosphere K1.
  • it is.
  • three or more oxyfuel combustion burners may be arranged in a ring shape at equal intervals, and a plurality of nozzles for ejecting an oxyfuel combustion flame are arranged in a ring shape. You may apply the ring burner which can eject a combustion flame.
  • the second heated gas phase atmosphere K2 is composed of an arc plasma generation region and a high temperature atmosphere in the vicinity thereof.
  • FIG. 2 which showed the glass melting furnace which concerns on the 2nd Embodiment of this invention, the same code
  • the oxyfuel combustion flame F1 is injected downward from the front end portion 12 of the oxyfuel combustion burner 11, the first heated gas phase atmosphere K1 is formed by the oxyfuel combustion flame F1, and the oxyfuel combustion flame F2 is injected from the oxyfuel combustion burner 20.
  • a second heated gas phase atmosphere K2 is formed below the first heated gas phase atmosphere K1.
  • glass raw material particle GM is supplied from a glass raw material particle supply nozzle. As a result, the glass raw material particles GM charged into the furnace body 1 are melted into the first molten glass particles U1 while passing through the first heated gas phase atmosphere K1.
  • first molten glass particle U1 falls downward and passes through the second heated gas phase atmosphere K2, it is heated to become the second molten glass particle U2, and this second molten glass particle U2 Falls downward and accumulates at the bottom of the furnace body 1 to form molten glass G.
  • the first molten glass particles U1 are heated by the glass raw material particles GM in the first heated gas-phase atmosphere K1 and are liquefied by a chemical reaction such as a reaction of a component that becomes glass called a vitrification reaction and a melting reaction. It shows particles in the middle of becoming glass particles or liquid glass particles.
  • the second molten glass particles U2 are further heated in the second heated gas phase atmosphere K2 by the first molten glass particles U1, and the glass raw material is thermally decomposed (for example, from metal carbonate to metal oxide). Thermal decomposition, etc.), thermal decomposition of the fining agent contained in the glass raw material particles GM, and reaction of the components that become glass called vitrification reaction and melting, which are liquid glass particles.
  • some molten glass particles which have not finished melting may be present in the second molten glass particles U2. This is because most of the molten glass particles have finished melting, and other molten glass particles are immediately melted in the stored molten glass G. Further, the thermal decomposition of the fining agent on the second molten glass particles U2 is limited to such an extent that the effect as the fining agent can be further manifested immediately after falling on the molten glass G stored as the molten glass particles. This is possible by adjusting the temperature of the second heated gas-phase atmosphere K2.
  • the temperature of the heated gas phase atmosphere refers to the temperature near the center of the heated gas phase atmosphere, and is the maximum temperature in this region. It is preferable that the temperature of the first heated gas-phase atmosphere K1 is not less than the vitrification start temperature of the glass raw material particles GM and not more than 1500 ° C.
  • the temperature of the first heated gas phase atmosphere K1 is not less than the vitrification start temperature of the glass raw material particles GM and not more than 1500 ° C.
  • the “vitrification start temperature” refers to a temperature at which the shrinkage of the glass raw material particles GM starts by heating.
  • the vitrification start temperature varies depending on the composition of the glass raw material particles GM, but can be estimated by a temperature gradient furnace.
  • the vitrification start temperature is about 1040 ° C. for a general soda lime composition, and about 1150 ° C. for a non-alkali glass composition.
  • the temperature gradient furnace is described in, for example, Japanese Patent Application Laid-Open No. 2003-40641.
  • the temperature of the second heated gas-phase atmosphere K2 is equal to or higher than the clarification start temperature that is the decomposition start temperature of the clarifier contained in the glass raw material particles GM and the molten glass particles U1.
  • the fining start temperature differs depending on the type of fining agent contained in the glass raw material particles GM and the molten glass particles U1, for example, when the fining agent is SO 3 , 1450 ° C. for soda lime glass, 1250 ° C. for alkali-free glass, Cl
  • the soda-lime glass is 1410 ° C.
  • the alkali-free glass is 1450 ° C.
  • the alkali-free glass is 1500 ° C.
  • the clarification start temperature is a temperature at which the partial pressure of the clarification gas in the glass is remarkably increased by increasing the temperature in SO 3 , Cl, F, etc. (for example, expensive in As 2 O 5 , Sb 2 O 5, etc.). Is a temperature at which the oxide of the oxide begins to decompose and begins to generate oxygen gas), and takes a different value depending on the glass composition. That is, the temperature of the second heated gas-phase atmosphere K2 is higher than the temperature of the first heated gas-phase atmosphere K1.
  • the upper limit of the temperature of the second heated gas-phase atmosphere K2 is not particularly limited, but as described above, it is set to a temperature at which the effect of the fining agent is further manifested immediately after falling on the stored molten glass.
  • the upper limit of the temperature is about 2800 ° C.
  • the second heated gas phase atmosphere K2 is formed by the thermal plasma P of the multiphase plasma arc generator 22 shown in FIG. 2, the upper limit of the temperature is about 20000 ° C.
  • the glass raw material particles GM charged into the furnace body 1 are converted into the first heated vapor phase atmosphere. It becomes the 1st molten glass particle U1 in the state which the fining agent remained without vanishing in K1. And this 1st molten glass particle U1 is heated more than the clarification start temperature in the 2nd heating gaseous-phase atmosphere K2, and becomes the 2nd molten glass particle U2. Defoaming of the second molten glass particles U2 and the molten glass G is promoted by the second molten glass particles U2 heated to a temperature at which the clarification effect of the fining agent appears on the liquid surface of the molten glass G. As a result, it becomes a molten glass having a high bubble quality with few bubbles.
  • the second molten glass particle U2 heated to the clarification start temperature or higher is the temperature of the molten glass G before the temperature drops below the clarification start temperature. It is preferable to reach the liquid level.
  • the second heated gas phase atmosphere K2 is preferably formed in the vicinity of the liquid surface of the molten glass G.
  • the vicinity of the liquid surface of the molten glass G indicates a range that is not more than half of the distance from the liquid surface of the molten glass G to the inner surface of the furnace wall portion 1A of the upper wall of the furnace body 1.
  • the glass melting furnace 30 of the present embodiment can pass the glass raw material particles GM through the first heating vapor phase atmosphere K1 and the second heating vapor phase atmosphere K2 in this order. Therefore, after making the 1st molten glass particle U1 in the 1st heating gaseous-phase atmosphere K1 including the component of a clarifying agent, the 1st molten-glass particle
  • grains are heated by the heating in 2nd heated gaseous-phase atmosphere K2.
  • the melting of U1 can be further promoted to form molten glass particles U2 having a higher specific gravity.
  • the gas stream from the oxygen combustion burner 103 for injecting oxygen combustion flame F 100 downward is changing sideways from downward near the liquid surface of the molten glass G 100
  • the molten glass particles U 100 may be scattered on the side wall side and cannot be deposited on the molten glass G 100 .
  • the glass melting furnace 30 of the present embodiment can apply a downward force to the molten glass particles U1, U2 by the oxyfuel combustion flame F2 of the oxyfuel burner 20 that is inclined downward, so that the molten glass particles U1, It is possible to make the molten glass G land without scattering U2.
  • the vertical distance between the liquid surface of the molten glass G and the tip of the heat source generating part of the oxyfuel burner 11 is set as the second heated gas phase atmosphere K2. Is preferably within 0.5H above the liquid surface of the molten glass G. From the viewpoint of landing the molten glass particles U2 on the molten glass G more effectively, it is more preferable to form the second heated gas phase atmosphere K2 within 0.3H above the liquid surface of the molten glass G.
  • the tip of the heat source generating part of the oxyfuel burner 11 indicates the tip 12 of the oxyfuel burner 7. Even when the heat source generator is not an oxyfuel burner, the tip of the heat source generator is used as a reference when calculating H.
  • the molten glass G manufactured by the glass melting furnace 30 and the manufacturing method of the molten glass of the present embodiment is discharged from the molten glass discharge port 4 at a predetermined speed, introduced into a vacuum degassing apparatus as necessary, and forced in a vacuum state. Further, after defoaming, the glass article can be transferred to the molding apparatus 50 and molded into a desired shape to produce a glass article. Since the glass article manufactured as described above is formed from the molten glass G having a high bubble quality with few bubbles as described above, a high-quality glass article can be obtained.
  • FIG. 3 is a schematic view showing a third embodiment of the glass melting furnace according to the present invention. 3, the same components as those of the glass melting furnace 30 shown in FIG. 1 are denoted by the same reference numerals, and the description of the same components is omitted.
  • the glass melting furnace 30 ⁇ / b> C shown in FIG. 3 has a furnace wall 1 ⁇ / b> C of the furnace body 1 below the oxygen combustion burner 20 that forms the second heated gas phase atmosphere K ⁇ b> 2.
  • an oxyfuel combustion burner 25 that is a third heating means installed obliquely downward.
  • the oxyfuel combustion of the oxyfuel burner 25 is performed below the first heated gas phase atmosphere K1, below the second heated gas phase atmosphere K2, and further below the second heated gas phase atmosphere K2.
  • the third heating vapor phase atmosphere K3 is formed by the flame F3.
  • the oxyfuel burner 25, which is the third heating means is the last heating means
  • the third heated gas phase atmosphere K3 is the last heated gas phase atmosphere.
  • the glass raw material particles GM charged into the furnace body 1 are melted first by one while passing through the first heated gas phase atmosphere K ⁇ b> 1. It becomes the glass particle U1. Further, the first molten glass particle U1 falls downward and passes through the second heated gas phase atmosphere K2, and is heated to become the second molten glass particle U2. Thereafter, while the second molten glass particle U2 falls downward and passes through the third heated gas phase atmosphere K3, the second molten glass particle U2 is further heated to become the third molten glass particle U3 and accumulates at the bottom of the furnace body 1. Then, a molten glass G is formed.
  • the formation position of the third heating vapor phase atmosphere K3 closest to the molten glass G side is set to the same position as the second heating vapor phase atmosphere K2 in the glass melting furnace 30 shown in FIG. It is preferable to do. Further, the temperature of the third heated vapor phase atmosphere K3 can be set to the same level as the second heated vapor phase atmosphere K2. In the case of the configuration of FIG. 3, when the vertical distance between the liquid surface of the molten glass G and the tip of the heat source generating portion of the oxyfuel burner 11 is H, the third heated gas phase atmosphere K3 is the liquid surface of the molten glass G.
  • the third heated gas phase atmosphere K3 is formed upward from the liquid surface of the molten glass G. More preferably, it is formed within 0.15H.
  • the third heating means in addition to the oxyfuel burner 25, the arc plasma generator 22 shown in FIG. 2 may be applied, or the oxyfuel burner 25 and / or the arc plasma generator 22 may be applied.
  • the glass raw material particles GM may not be able to contain a large amount of fining agent.
  • it is possible to pass through three or more heated gas phase atmospheres so that the molten glass particles By staying for a long time in a temperature range lower than that of the conventional air melting method and gradually heating, molten glass particles that preserve the effect of the fining agent can be obtained even if the amount of the fining agent is small.
  • the glass melting furnace of the present invention is not limited to the examples shown in FIGS.
  • Four or more heating means may be provided so that four or more heating gas phase atmospheres arranged in the vertical direction can be formed in the atmosphere in the furnace body 1. In that case, it is preferable to set the temperature and position of the heating vapor phase atmosphere formed in the lowermost stage similarly to the second heating vapor phase atmosphere K2 formed in the glass melting furnace of the first embodiment shown in FIG. .
  • the molten glass G produced by the present invention is not limited in terms of composition as long as it is a glass produced by an air melting method. Therefore, any of soda lime glass, mixed alkali glass, borosilicate glass, or non-alkali glass may be used. Moreover, the use of the manufactured glass article is not limited to architectural use or vehicle use, and examples include flat panel display use and other various uses.
  • soda-lime glass used for plate glass for buildings or vehicles, it is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 65 to 75%, Al 2 O 3 : 0 to 3%, CaO: 5 to 15%, MgO: 0 to 15%, Na 2 O: 10 to 20%, K 2 O: 0 to 3%, Li 2 O: 0 to 5%, Fe 2 O 3 : 0 to 3%, TiO 2 : 0 to 5%, CeO 2 : 0 to 3%, BaO: 0 to 5%, SrO: 0 to 5%, B 2 O 3 : 0 to 5%, ZnO: 0 to 5%, ZrO 2 : 0 to 5 %, SnO 2 : 0 to 3%, SO 3 : 0 to 0.5%.
  • SiO 2 39 to 75%
  • Al 2 O 3 3 to 27%
  • B 2 O 3 0 to 20%
  • SrO: 0 to 20% BaO: 0 to 30% are preferable.
  • a mixed alkali glass used for a substrate for plasma display it is expressed in terms of mass percentage on the basis of oxide, and SiO 2 : 50 to 75%, Al 2 O 3 : 0 to 15%, MgO + CaO + SrO + BaO + ZnO: 6 to 24 %, Na 2 O + K 2 O: preferably 6 to 24%.
  • one or more kinds of fining agents such as SO 3 , Cl, F, SnO 2 , As 2 O 3 , Sb 2 O 3 , CeO 2 are contained at 1% or less.
  • colorants, melting aids, opacifiers and the like can be included as auxiliary materials.
  • glass raw material particles GM are prepared by mixing and assembling the glass raw materials having any of the above-described compositions, for example, the particulate raw material powder particles of the above-described components in accordance with the composition ratio of the target glass.
  • the air melting method is a method of manufacturing glass by melting glass raw material particles GM in order to manufacture glass composed of a plurality of (usually three or more components) components.
  • the glass raw material particles GM when an example of an alkali-free glass is applied as an example of the glass raw material particles GM, silica sand, alumina (Al 2 O 3 ), boric acid (H 3 BO 3 ), magnesium hydroxide (Mg (OH 2 ), raw material powder particles such as calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), barium carbonate (BaCO 3 ) are blended so as to match the composition ratio of the target glass, for example, spray dry granulation method As a result, the glass raw material particles GM can be obtained as a granulated body of about 30 to 1000 ⁇ m.
  • the glass raw material particles GM As a method of preparing the glass raw material particles GM from the glass raw material powder particles, a method such as a spray dry granulation method can be used, and granulation in which an aqueous solution in which the glass raw material is dispersed and dissolved is sprayed in a high temperature atmosphere and dried and solidified.
  • the method is preferred.
  • the glass raw material particles may be composed only of raw materials having a mixing ratio corresponding to the target glass component composition, but the glass raw material particles are further mixed with glass cullet powder having the same composition, and this is mixed with glass. It can also be used as raw material particles GM.
  • a glass slurry powder in the range of 2 to 500 ⁇ m is dispersed in a solvent such as distilled water as a glass raw material powder particle of each of the above components to form a slurry. Then, the slurry is stirred for a predetermined time by a stirring device such as a ball mill, mixed, pulverized, and then spray-dried granulated, whereby the glass raw material powder particles GM of the above-mentioned components are dispersed almost uniformly. Is obtained.
  • the glass raw material particles GM used in the present embodiment can be formed by a dry granulation method such as a tumbling granulation method or a stirring granulation method in addition to the above-mentioned spray dry granulation method.
  • the average particle diameter (weight average) of the glass raw material particles GM is preferably in the range of 30 to 1000 ⁇ m. More preferably, glass raw material particles GM having an average particle diameter (weight average) in the range of 50 to 500 ⁇ m are used, and glass raw material particles GM in the range of 70 to 300 ⁇ m are more preferable. An example of the glass raw material particles GM is enlarged and shown in FIG. 1, but it is preferable that one glass raw material particle GM substantially matches the composition ratio of the final target glass or has an approximate composition ratio.
  • the average particle diameter (weight average) of the molten glass particles U1, U2, and U3 in which the glass raw material particles GM are melted is usually about 80% of the average particle diameter of the glass raw material particles GM.
  • the particle size of the glass raw material particles GM is preferably selected from the above-mentioned range from the viewpoint that it can be heated in a short time, the generated gas can be easily diffused, and the composition variation between the particles is reduced.
  • FIG. 4 is a flowchart showing an example of a method for producing a glass article using the method for producing molten glass according to the present invention.
  • the molten glass G is obtained by the glass melting step S ⁇ b> 1 by the molten glass manufacturing method according to the present invention using the glass melting furnaces 30, 30 ⁇ / b> B, 30 ⁇ / b> C described above.
  • the glass article G5 can be obtained by passing the molten glass G to the molding apparatus 50 and performing the molding step S2 in which the molten glass G is molded into the target shape and then slowly cooling in the slow cooling step S3. As shown in FIG.
  • the manufacturing method of the glass article of the present invention uses a known molding step and slow cooling step, and other known additional steps, in addition to utilizing the glass melting step S1 according to the above-described molten glass manufacturing method of the present invention. Can be applied.
  • the glass raw material particle GM in this invention does not exclude what is not contained in a glass raw material particle about a part of glass raw material (henceforth a "partially granulated body").
  • the glass raw material (hereinafter referred to as “partial glass raw material”) that is not contained in a part of the granulated material is a gas phase heated from the same or different inlet from the part of the granulated body. Put it in the atmosphere.
  • the partially granulated body and the partially glass raw material may be deposited at least in the same region on the glass melt to form molten glass particles. Specifically, both may be allowed to coexist within 10 square millimeters of the glass melt surface.
  • the partial glass raw material and the partial granulated body can be obtained by adjusting the density and particle size of the partial granule with respect to the partial glass raw material or by devising the method of charging the partial glass raw material.
  • the flight trajectory should be close. Some melts hardly aggregation prone components of the glass raw material (silica sand, alumina or the like) had better form part granule with components for lowering the melting point (boric acid (H 3 BO 3), an alkali, etc.).
  • the component that lowers the melting point of a part of the glass raw material is easy to form molten glass particles integrally with the part of the granule, even if it is added separately from the part of the granule containing the silica sand that is difficult to dissolve, for example Boric acid, alkali, etc. (excess thereof) can be added separately.
  • a coloring component may be used as a part of the glass raw material. In this case, it is preferable to stir the molten glass after landing on the glass melt.
  • the advantage of using a partly granulated body is that it is not always necessary to make all the glass raw materials into granulated bodies, and there is a point that cost can be reduced because the necessary amount of granulated bodies to be prepared can be reduced.
  • most of the glass raw material particles GM in the present invention are supplied to the uppermost heated gas phase atmosphere, a part thereof is supplied from a heated gas phase atmosphere other than the uppermost layer as necessary. It is not excluded. In this case, the amount of the glass raw material particles supplied to the heated gas phase atmosphere other than the uppermost layer should be suppressed to such an extent that it becomes molten glass particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma & Fusion (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

The objective of the present invention is to provide: a method for producing molten glass that can produce molten glass having few bubbles and high bubble quality; a glass-melting furnace; and the like. The method for producing molten glass forms at least two heated gas-phase atmospheres (K1, K2) aligned vertically, supplies glass starting material particles (GM) from above the uppermost of the heated gas-phase atmospheres (K1, K2), and forms molten glass particles (U2) by passing the glass starting material particles (GM) through the at least two heated gas-phase atmospheres (K1, K2).

Description

溶融ガラスの製造方法、ガラス溶融炉、ガラス物品の製造方法およびガラス物品の製造装置Molten glass manufacturing method, glass melting furnace, glass article manufacturing method, and glass article manufacturing apparatus
 本発明は、溶融ガラスの製造方法、ガラス溶融炉、ガラス物品の製造方法、およびガラス物品の製造装置に関する。 The present invention relates to a molten glass manufacturing method, a glass melting furnace, a glass article manufacturing method, and a glass article manufacturing apparatus.
 現在、板ガラス、瓶ガラス、繊維ガラスを始めとして表示装置用ガラスに至るまで、量産規模のガラスの多くはガラス原料をガラス溶融炉(以下、単に溶融炉とも呼ぶ。)にて溶融するシーメンス型の溶融炉(Siemens type furnace)に基づき生産されている。シーメンス型の溶融炉による溶融法では、粉末状ガラス原料の混合物を、溶融炉で先に溶融したガラス融液面上に投入し、それが塊(以下、バッチとも呼ぶ。)となったものをバーナーなどにより加熱してその表面から融解を進行させ、徐々にガラス融液とする。このとき、融液上のバッチは、反応あるいは溶融しやすい物質から順次溶け出るため、ガラス原料層内に難溶融性物質が形成されやすい。また、同様の理由で、融液形成の初期状態においては、局所的に見るとバッチと組成が異なったガラス融液が生じ、融液の不均一化が生じやすい。さらに、シーメンス型の溶融炉は大量のエネルギーを必要とするため、溶融炉の消費エネルギー削減が望まれている。最近では、表示装置用途のガラス板として高品質、高付加価値のガラス物品の需要が増え、エネルギー消費も増大しており、ガラス物品の製造にかかる省エネルギー技術の開発は重要かつ緊急の課題とされている。 Currently, from glass sheets, bottle glass, fiber glass to glass for display devices, most of mass-produced glass is a Siemens type that melts glass raw materials in a glass melting furnace (hereinafter also referred to simply as a melting furnace). It is produced based on a melting furnace (Siemensementype furnace). In the melting method using a Siemens-type melting furnace, a mixture of powdered glass raw materials is charged on the surface of the glass melt previously melted in the melting furnace, and the mixture becomes a lump (hereinafter also referred to as a batch). It is heated by a burner or the like to cause melting to proceed from the surface to gradually form a glass melt. At this time, since the batch on the melt sequentially melts from the material that is easily reacted or melted, a hardly-fusible material is easily formed in the glass raw material layer. For the same reason, in the initial state of melt formation, a glass melt having a composition different from that of the batch is generated locally, and the melt is likely to be non-uniform. Furthermore, since the Siemens type melting furnace requires a large amount of energy, it is desired to reduce the energy consumption of the melting furnace. Recently, the demand for high-quality, high-value-added glass articles as glass plates for display devices has increased, and energy consumption has also increased, and the development of energy-saving technologies for the production of glass articles has become an important and urgent issue. ing.
 このような背景から、省エネルギー型のガラス製造技術の一例として、ガラス原料の混合物からなる微細粒子(すなわち、ガラス原料粒子)を高温の気相雰囲気中で加熱し溶かして溶融ガラス粒子とし、次いで溶融ガラス粒子を集積して液体相(すなわち、ガラス融液)を形成するガラス物品の製造方法が提案されている(例えば、特許文献1、2参照。)。なお、以下では、この溶融ガラスの製造方法を、気中溶融法(in-flight glass melting method)と呼ぶこととする。この気中溶融法によれば、従来のシーメンス型の溶融炉による溶融法と比較して、ガラス溶融工程の消費エネルギーを1/3程度まで低減できると言われており、短時間で溶融が可能になり、溶融炉の小型化、蓄熱室の省略、品質の向上、COの削減、ガラス品種の変更時間の短縮化を図ることができる技術として注目されている。 Against this background, as an example of energy-saving glass manufacturing technology, fine particles (that is, glass raw material particles) made of a mixture of glass raw materials are heated and melted in a high-temperature gas phase atmosphere to form molten glass particles, and then melted. A method for producing a glass article in which glass particles are accumulated to form a liquid phase (that is, a glass melt) has been proposed (see, for example, Patent Documents 1 and 2). Hereinafter, this molten glass manufacturing method will be referred to as an in-flight glass melting method. According to this in-flight melting method, it is said that the energy consumed in the glass melting process can be reduced to about 1/3 compared to the conventional Siemens-type melting furnace. Therefore, it has been attracting attention as a technology that can reduce the size of the melting furnace, omit the heat storage chamber, improve the quality, reduce CO 2 , and shorten the time for changing the glass type.
 図5は特許文献1に記載の溶融炉を示す断面模式図である。特許文献1の溶融炉100は、高温の気相雰囲気K100を形成する加熱手段として、複数本のアーク電極102と酸素燃焼ノズル103を備えている。これら複数のアーク電極102が形成する熱プラズマアークおよび/または酸素燃焼ノズル103による酸素燃焼炎(フレーム)F100によって炉体101内に約1600℃以上の高温の気相雰囲気K100を形成する。この高温の気相雰囲気K100中に、ガラス原料粒子R100を投入することにより、高温の気相雰囲気K100内でガラス原料粒子R100を液状ガラス粒子U100に変化させる。液状ガラス粒子U100は落下して炉体101の炉底部101Aに溜まり、ガラス融液G100となる。 FIG. 5 is a schematic cross-sectional view showing the melting furnace described in Patent Document 1. As shown in FIG. Melting furnace 100 of Patent Document 1, as the heating means for forming a high-temperature gas-phase atmosphere K 100, and includes a plurality of arc electrode 102 and the oxygen combustion nozzle 103. A high-temperature gas phase atmosphere K 100 of about 1600 ° C. or higher is formed in the furnace body 101 by a thermal plasma arc formed by the plurality of arc electrodes 102 and / or an oxyfuel flame (frame) F 100 by the oxyfuel nozzle 103. During this high temperature gas phase atmosphere K 100, by placing the glass raw material particles R 100, a glass raw material particles R 100 is changed to liquid glass particles U 100 in the high-temperature gas-phase atmosphere K 100. Liquid glass particles U 100 accumulates the furnace bottom portion 101A of the furnace body 101 to fall, the glass melt G 100.
日本特開2007-297239号公報Japanese Unexamined Patent Publication No. 2007-297239 日本特開2008-290921号公報Japanese Unexamined Patent Publication No. 2008-290921
 上述のように、気中溶融法では、ガラス原料粒子を高温の気相雰囲気に通過させることにより、高温で加熱溶融して短時間で溶融ガラスを製造できる利点がある。
 しかしながら、本発明者らが検討したところ、短時間での急速溶融を目指し、ガラス原料粒子を必要以上の高温で加熱しすぎると、ガラス原料粒子に含まれる清澄剤が過剰な熱により消失してしまう場合があることが判明した。清澄剤が消失した状態の液状ガラス粒子を貯留したガラス融液は、ガラス融液中での清澄剤による脱泡の効果が発現せず、泡が多く混入している場合には、後工程での脱泡処理に時間を要することとなる。また、清澄剤の消失を防ぐために気相雰囲気の温度を下げすぎると、加熱不足により液状ガラス粒子が十分に溶融されず、またガラス融液中での清澄が促進されず、やはり泡を多く混入した状態となる場合がある。
As described above, the air melting method has an advantage that a glass melt can be produced in a short time by heating and melting at a high temperature by passing the glass raw material particles through a high temperature gas phase atmosphere.
However, the present inventors have studied, and aiming for rapid melting in a short time, if the glass raw material particles are heated at an excessively high temperature, the fining agent contained in the glass raw material particles disappears due to excessive heat. It turned out that there was a case. The glass melt storing the liquid glass particles in the state where the fining agent has disappeared does not exhibit the effect of defoaming by the fining agent in the glass melt, and when a lot of bubbles are mixed, It takes time to perform the defoaming process. In addition, if the temperature of the gas phase atmosphere is lowered too much to prevent the fining agent from disappearing, the liquid glass particles are not sufficiently melted due to insufficient heating, and the clarification in the glass melt is not promoted. It may be in the state.
 以上のような背景から本発明は、泡の少ない泡品質の高い溶融ガラスを製造できる溶融ガラスの製造方法およびガラス溶融炉の提供を目的とする。
 また、本発明は、上述の溶融ガラスの製造方法を用いるガラス物品の製造方法の提供を目的とする。
 さらに、本発明は、上述のガラス溶融炉を備えるガラス物品の製造装置の提供を目的とする。
In view of the above background, an object of the present invention is to provide a molten glass manufacturing method and a glass melting furnace capable of manufacturing a molten glass having a high bubble quality with few bubbles.
Moreover, this invention aims at provision of the manufacturing method of the glass article using the manufacturing method of the above-mentioned molten glass.
Furthermore, this invention aims at provision of the manufacturing apparatus of the glass article provided with the above-mentioned glass melting furnace.
 本発明者らは、泡の少ない高い泡品質の溶融ガラスを製造すべく、ガラス原料粒子を適切な温度履歴で加熱できる方法について鋭意研究し、本発明に至った。
 本発明は、上下方向に並ぶ2以上の加熱気相雰囲気を形成し、その最上方の加熱気相雰囲気にガラス原料粒子を供給し、該ガラス原料粒子を前記2以上の加熱気相雰囲気を通過させることにより溶融ガラス粒子とする溶融ガラスの製造方法を提供する。
 本発明の溶融ガラスの製造方法においては、前記2以上の加熱気相雰囲気のうち最上段に最初の加熱気相雰囲気を形成し、前記2以上の加熱気相雰囲気のうち最下段に最後の加熱気相雰囲気を形成し、前記最初の加熱気相雰囲気に前記ガラス原料粒子を供給し、該ガラス原料粒子を前記最初の加熱気相雰囲気から前記最後の加熱気相雰囲気まで順次通過させて前記溶融ガラス粒子とすることが好ましい。
The present inventors diligently studied on a method capable of heating glass raw material particles with an appropriate temperature history in order to produce a high-foam quality molten glass with few bubbles, and reached the present invention.
The present invention forms two or more heated gas phase atmospheres arranged in the vertical direction, supplies glass raw material particles to the uppermost heated gas phase atmosphere, and passes the glass raw material particles through the two or more heated gas phase atmospheres The manufacturing method of the molten glass made into molten glass particle | grains by providing is provided.
In the molten glass manufacturing method of the present invention, the first heated vapor phase atmosphere is formed in the uppermost stage among the two or more heated vapor phase atmospheres, and the last heating is performed in the lowermost stage among the two or more heated vapor phase atmospheres. Forming a gas phase atmosphere, supplying the glass raw material particles to the first heated gas phase atmosphere, and sequentially passing the glass raw material particles from the first heated gas phase atmosphere to the last heated gas phase atmosphere It is preferable to use glass particles.
 本発明の溶融ガラスの製造方法において、前記ガラス原料粒子は清澄剤成分を含有することが好ましい。
 本発明の溶融ガラスの製造方法においては、前記最初の加熱気相雰囲気の温度は、前記ガラス原料粒子のガラス化開始温度以上、1500℃以下が好ましい。
 本発明の溶融ガラスの製造方法においては、前記最後の加熱気相雰囲気の温度は、前記ガラス原料粒子中の清澄剤成分の清澄開始温度以上、20000℃以下が好ましい。
 本発明の溶融ガラスの製造方法においては、前記最初の加熱気相雰囲気を形成する加熱手段の熱源発生部の先端と前記溶融ガラス粒子を貯留して溶融ガラスとした該溶融ガラスの液面との鉛直距離をHとしたとき、前記最後の加熱気相雰囲気を、前記溶融ガラスの液面から上方0.5H以内に形成することが好ましい。
In the method for producing molten glass of the present invention, the glass raw material particles preferably contain a fining agent component.
In the method for producing molten glass according to the present invention, the temperature of the first heated gas phase atmosphere is preferably not less than the vitrification start temperature of the glass raw material particles and not more than 1500 ° C.
In the method for producing molten glass of the present invention, the temperature of the final heated gas phase atmosphere is preferably not less than the clarification start temperature of the fining agent component in the glass raw material particles and not more than 20000 ° C.
In the method for producing molten glass of the present invention, the tip of the heat source generating part of the heating means for forming the first heated vapor phase atmosphere and the liquid level of the molten glass that stores the molten glass particles to form molten glass When the vertical distance is H, the last heated gas phase atmosphere is preferably formed within 0.5H above the liquid surface of the molten glass.
 本発明は、溶融ガラスを収容する炉体と、前記炉体の上部に配置され、ガラス原料粒子を前記炉体の内側に投入するガラス原料粒子投入部と、前記ガラス原料粒子投入部の下方に前記ガラス原料粒子を加熱溶融して溶融ガラス粒子にするための加熱気相雰囲気を2以上、上下方向に並ぶように形成する加熱手段と、を備えるガラス溶融炉を提供する。
 本発明のガラス溶融炉においては、前記加熱手段は、前記2以上の加熱気相雰囲気のうち最上段にガラス原料粒子を最初に溶融するための加熱気相雰囲気を形成する最初の加熱手段と、前記2以上の加熱気相雰囲気のうち最下段にガラス原料粒子を最後に溶融するための加熱気相雰囲気を形成する最後の加熱手段と、を備えることが好ましい。
 本発明のガラス溶融炉においては、前記最初の加熱手段は、燃焼バーナーであってもよい。
 本発明のガラス溶融炉においては、前記最後の加熱手段は、燃焼バーナーおよび/または複数の電極で構成される多相アークプラズマ発生装置であってもよい。
The present invention includes a furnace body that contains molten glass, a glass raw material particle introduction portion that is disposed on the upper portion of the furnace body, and that introduces glass raw material particles inside the furnace body, and a lower portion of the glass raw material particle introduction portion. There is provided a glass melting furnace provided with heating means for forming two or more heated gas phase atmospheres for heating and melting the glass raw material particles into molten glass particles so as to be arranged in the vertical direction.
In the glass melting furnace of the present invention, the heating means includes first heating means for forming a heated gas phase atmosphere for first melting glass raw material particles in the uppermost stage of the two or more heated gas phase atmospheres; It is preferable to include a last heating unit that forms a heated gas phase atmosphere for melting glass raw material particles at the bottom of the two or more heated gas phase atmospheres.
In the glass melting furnace of the present invention, the first heating means may be a combustion burner.
In the glass melting furnace of the present invention, the last heating means may be a multi-phase arc plasma generator comprising a combustion burner and / or a plurality of electrodes.
 本発明のガラス溶融炉においては、前記最初の加熱手段は、前記炉体の上部に下向きに配置されていてもよい。
 本発明のガラス溶融炉においては、前記最初の加熱手段の熱源発生部の先端と前記炉体内の前記溶融ガラス粒子を貯留して溶融ガラスとした該溶融ガラスの液面との鉛直距離をHとしたとき、前記最後の加熱手段は、前記最後の加熱気相雰囲気が前記溶融ガラスの液面から上方0.5H以内に配置されることが好ましい。
In the glass melting furnace of the present invention, the first heating means may be disposed downwardly on the top of the furnace body.
In the glass melting furnace of the present invention, the vertical distance between the tip of the heat source generating portion of the first heating means and the liquid level of the molten glass that stores the molten glass particles in the furnace body to form molten glass is H. In this case, the last heating means is preferably arranged such that the last heated gas phase atmosphere is within 0.5H above the liquid surface of the molten glass.
 本発明は、前記のいずれかに記載の溶融ガラスの製造方法を用いて溶融ガラスを製造する工程と、該溶融ガラスを成形する工程と、成形後のガラスを徐冷する工程と、を含むガラス物品の製造方法を提供する。
 本発明は、前記のいずれかに記載のガラス溶融炉と、該ガラス溶融炉により製造された溶融ガラスを成形する成形手段と、成形後のガラスを徐冷する徐冷手段とを備えるガラス物品の製造装置を提供する。
The present invention includes a step of producing a molten glass using the method for producing a molten glass according to any one of the above, a step of forming the molten glass, and a step of gradually cooling the glass after forming. A method for manufacturing an article is provided.
The present invention provides a glass article comprising: the glass melting furnace according to any one of the above; a forming means for forming the molten glass produced by the glass melting furnace; and a slow cooling means for gradually cooling the glass after forming. Providing manufacturing equipment.
 本発明の溶融ガラスの製造方法およびガラス溶融炉は、2以上の加熱気相雰囲気にガラス原料粒子を通過させて溶融ガラス粒子とする構成である。そのため、それぞれの加熱気相雰囲気の温度を調整し、上方の加熱気相雰囲気はガラス原料粒子中の清澄剤が消失しない温度とし、下方の加熱気相雰囲気は溶融ガラス粒子が貯留した溶融ガラスに落下した直後に清澄剤の清澄効果がよく発現する温度に設定することができる。これにより、溶融ガラス粒子の脱泡が促進され、泡の少ない泡品質の高い溶融ガラスを製造できる。
 また、ガラス原料粒子を2以上の加熱気相雰囲気に順次通過させることができるため、上方の加熱気相雰囲気でガラス原料粒子を溶融した後に、下方の加熱気相雰囲気中で溶融をさらに促進して、溶融不足を解消し、比重のより高い溶融ガラス粒子とすることができる。したがって、本発明の溶融ガラスの製造方法は、溶融ガラス粒子の飛散が少なくなり、ガラス化率が向上する。これに加えて、本発明の溶融ガラスの製造方法は、下方で舞い上がり飛散して炉体の壁部に付着する溶融ガラス粒子を低減できるので、炉材の損傷が低減される。
 また、本発明のガラス物品の製造方法は、上述の溶融ガラスの製造方法を用いることにより、高品質なガラス物品を提供できる。
 さらに、本発明のガラス物品の製造装置は、上述のガラス溶融炉を備えることにより、高品質なガラス物品を製造できる。
The method for producing molten glass and the glass melting furnace of the present invention have a configuration in which glass raw material particles are passed through two or more heated gas phase atmospheres to form molten glass particles. Therefore, the temperature of each heated gas phase atmosphere is adjusted, the upper heated gas phase atmosphere is set to a temperature at which the fining agent in the glass raw material particles does not disappear, and the lower heated gas phase atmosphere is the molten glass in which the molten glass particles are stored. Immediately after falling, it can be set to a temperature at which the fining effect of the fining agent is well expressed. Thereby, defoaming of a molten glass particle is accelerated | stimulated and a molten glass with few foams and high foam quality can be manufactured.
In addition, since the glass raw material particles can be sequentially passed through two or more heated gas-phase atmospheres, after melting the glass raw material particles in the upper heated gas-phase atmosphere, the melting is further promoted in the lower heated gas-phase atmosphere. Thus, the lack of melting can be resolved and the molten glass particles having a higher specific gravity can be obtained. Therefore, in the method for producing molten glass of the present invention, the molten glass particles are less scattered and the vitrification rate is improved. In addition to this, the method for producing molten glass of the present invention can reduce molten glass particles that fly down and scatter and adhere to the wall of the furnace body, so that damage to the furnace material is reduced.
Moreover, the manufacturing method of the glass article of this invention can provide a high quality glass article by using the manufacturing method of the above-mentioned molten glass.
Furthermore, the apparatus for producing a glass article of the present invention can produce a high-quality glass article by including the glass melting furnace described above.
図1は本発明に係るガラス溶融炉の第1実施形態を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a first embodiment of a glass melting furnace according to the present invention. 図2は本発明に係るガラス溶融炉の第2実施形態を模式的に示す断面図である。FIG. 2 is a sectional view schematically showing a second embodiment of the glass melting furnace according to the present invention. 図3は本発明に係るガラス溶融炉の第3実施形態を模式的に示す断面図である。FIG. 3 is a sectional view schematically showing a third embodiment of the glass melting furnace according to the present invention. 図4は本発明に係る溶融ガラスの製造方法を用いてガラス物品を製造する方法の一例を示すフロー図である。FIG. 4 is a flowchart showing an example of a method for producing a glass article using the method for producing molten glass according to the present invention. 図5は特許文献1に記載のガラス溶融炉を示す断面模式図である。FIG. 5 is a schematic cross-sectional view showing the glass melting furnace described in Patent Document 1. As shown in FIG.
 以下、本発明に係るガラス溶融炉、溶融ガラスの製造方法、ガラス物品の製造方法、およびガラス物品の製造装置の一実施形態について説明するが、本発明は以下の実施形態に制限されるものではない。 Hereinafter, although one embodiment of a glass melting furnace, a manufacturing method of a molten glass, a manufacturing method of a glass article, and a manufacturing apparatus of a glass article according to the present invention will be described, the present invention is not limited to the following embodiment. Absent.
 図示したガラス溶融炉において、最初の加熱気相雰囲気(以下「第1の加熱気相雰囲気」という。)を形成する最初の加熱手段(以下「第1の加熱手段」という。)は、燃焼バーナー、より具体的には酸素燃焼バーナーからなる。第1の加熱気相雰囲気は、酸素燃焼バーナーの酸素燃焼炎中および酸素燃焼炎近傍の高温雰囲気から形成される。
 炉体内の加熱気相雰囲気にガラス原料粒子を供給するためのガラス原料粒子投入部は、第1の加熱手段である酸素燃焼バーナーと一体となり、酸素燃焼バーナー出口付近で燃焼ガスを供給する管と酸素を供給する管とガラス原料粒子を供給する管が同軸で構成されている。このガラス原料粒子投入部と酸素燃焼バーナーとの組み合わせをガラス原料粒子加熱ユニットという。
In the illustrated glass melting furnace, the first heating means (hereinafter referred to as “first heating means”) for forming the first heated vapor atmosphere (hereinafter referred to as “first heated vapor atmosphere”) is a combustion burner. More specifically, it comprises an oxyfuel burner. The first heated gas phase atmosphere is formed from a high temperature atmosphere in and near the oxyfuel flame of the oxyfuel burner.
A glass raw material particle charging portion for supplying glass raw material particles to a heated gas phase atmosphere in the furnace body is integrated with an oxyfuel burner as a first heating means, and a tube for supplying combustion gas in the vicinity of the oxyfuel burner outlet. A tube for supplying oxygen and a tube for supplying glass raw material particles are configured coaxially. The combination of the glass raw material particle charging portion and the oxygen combustion burner is referred to as a glass raw material particle heating unit.
 最下段の加熱気相雰囲気を形成する最後の加熱手段(すなわち、溶融ガラス側の最も下側の加熱手段)は、燃焼バーナー(より具体的には酸素燃焼バーナー)、および/または熱プラズマを発生させる複数の電極で構成される多相アークプラズマ発生装置からなる。最後の加熱気相雰囲気は、最後の加熱手段が酸素燃焼バーナーの場合には、酸素燃焼バーナーの酸素燃焼炎中および酸素燃焼炎近傍の高温雰囲気から形成される。また、最後の加熱手段が熱プラズマ発生装置の場合には、最後の加熱気相雰囲気は熱プラズマおよび熱プラズマ近傍の高温雰囲気から形成される。
 本発明において、加熱気相雰囲気は、酸素燃焼バーナーであればガスの燃焼領域をいい、熱プラズマであればプラズマが発生している領域をいう。その他の加熱手段によるものであれば、その手段によって周辺の雰囲気に比べて、ガラス原料粒子を溶融する、又は溶融が終了していない溶融ガラス粒子をさらに溶融する、に足る温度となっている領域とする。
The last heating means (that is, the lowest heating means on the molten glass side) that forms the lowest heated gas phase atmosphere generates a combustion burner (more specifically, an oxyfuel combustion burner) and / or a thermal plasma. A multi-phase arc plasma generator comprising a plurality of electrodes. When the last heating means is an oxyfuel combustion burner, the last heated gas phase atmosphere is formed from a high temperature atmosphere in the oxyfuel combustion flame of the oxyfuel combustion burner and in the vicinity of the oxyfuel combustion flame. When the last heating means is a thermal plasma generator, the last heated vapor phase atmosphere is formed from thermal plasma and a high temperature atmosphere near the thermal plasma.
In the present invention, the heated gas phase atmosphere refers to a gas combustion region if it is an oxyfuel burner, and refers to a region where plasma is generated if it is thermal plasma. If it is by other heating means, the area has a temperature sufficient to melt the glass raw material particles or further melt the molten glass particles that have not been melted compared to the surrounding atmosphere by that means. And
 図1は本発明に係るガラス溶融炉の第1実施形態を模式的に示す断面図である。図1に示すガラス溶融炉は、本発明に係る溶融ガラスの製造方法およびガラス物品の製造方法に用いられる。 FIG. 1 is a cross-sectional view schematically showing a first embodiment of a glass melting furnace according to the present invention. The glass melting furnace shown in FIG. 1 is used in the method for manufacturing molten glass and the method for manufacturing glass articles according to the present invention.
 図1に示すガラス溶融炉30は、中空箱型状の炉体1と、ガラス原料粒子GMを噴出するとともに酸素燃焼炎F1を噴出して第1の加熱気相雰囲気K1を形成するために炉体1の上部の炉壁部1Aを貫通して下向きに配置されたガラス原料粒子加熱ユニット10と、酸素燃焼炎F2を噴出して第2の加熱気相雰囲気K2を第1の加熱気相雰囲気K1の下方に形成するために炉体1の側壁1Cを貫通して斜め下向きに配置された酸素燃焼バーナー20と、炉体1の底部に形成された溶融ガラスGの貯留部1Bとを備える。 A glass melting furnace 30 shown in FIG. 1 is a furnace for forming a first heated gas-phase atmosphere K1 by ejecting a hollow box-shaped furnace body 1 and glass raw material particles GM and an oxyfuel flame F1. The glass raw material particle heating unit 10 disposed downward through the furnace wall portion 1A of the upper portion of the body 1 and the oxyfuel combustion flame F2 are ejected to form the second heated vapor phase atmosphere K2 as the first heated vapor phase atmosphere. An oxyfuel combustion burner 20 that is disposed obliquely downward through the side wall 1C of the furnace body 1 and a storage portion 1B for molten glass G formed at the bottom of the furnace body 1 is provided to form the bottom of K1.
 ガラス原料粒子加熱ユニット10は、その燃焼炎の噴射方向先端側(図1では下方側)に第1の加熱気相雰囲気K1を形成できるようになっている。第2の加熱手段である酸素燃焼バーナー20は、第1の加熱気相雰囲気K1の下方に第2の加熱気相雰囲気K2を形成できるように、側壁1Cの高さ方向中央部を貫通して斜め下向きに設けられている。
 図1に示すガラス溶融炉30において、第2の加熱手段である酸素燃焼バーナー20が最後の加熱手段であり、第2の加熱気相雰囲気K2が最後の加熱気相雰囲気である。なお、ガラス原料粒子加熱ユニット10については後述する。
The glass raw material particle heating unit 10 can form a first heated gas-phase atmosphere K1 on the front end side in the injection direction of the combustion flame (lower side in FIG. 1). The oxyfuel burner 20 as the second heating means penetrates the central portion in the height direction of the side wall 1C so that the second heated gas phase atmosphere K2 can be formed below the first heated gas phase atmosphere K1. It is provided diagonally downward.
In the glass melting furnace 30 shown in FIG. 1, the oxyfuel burner 20 as the second heating means is the last heating means, and the second heated vapor phase atmosphere K2 is the last heated vapor phase atmosphere. The glass raw material particle heating unit 10 will be described later.
 本発明において、炉体1の上部とは、炉体1の炉壁部1Aおよび側壁1Cの上部を含む範囲を意味する。
 なお、炉体1の形状は、図1に示す箱型状の直方体形状に限定されるものではなく、円筒状に構成されたものであってもよい。また、図1ではガラス原料粒子加熱ユニット10を鉛直方向下向きに設置しているが、これに限らず、下向きであれば傾斜して設置してもよい。さらに、図1では炉体1の炉壁部1Aをフラットな形状としたが、これに限らず、アーチ形状、ドーム形状等の形状であってもよい。さらにまた、酸素燃焼バーナー20を斜め下向きに設置しているが、これに限らず、第1の加熱気相雰囲気K1の下方に第2の加熱気相雰囲気K2を形成できれば、斜め上向きや水平横向きに設置してもよい。
In the present invention, the upper part of the furnace body 1 means a range including the upper part of the furnace wall 1A and the side wall 1C of the furnace body 1.
In addition, the shape of the furnace body 1 is not limited to the box-shaped rectangular parallelepiped shape shown in FIG. 1, and may be configured in a cylindrical shape. Moreover, although the glass raw material particle heating unit 10 is installed in the vertical direction downward in FIG. 1, the present invention is not limited to this, and the glass raw material particle heating unit 10 may be installed inclined if it is downward. Furthermore, in FIG. 1, although the furnace wall part 1A of the furnace body 1 was made into a flat shape, not only this but shapes, such as an arch shape and a dome shape, may be sufficient. Furthermore, the oxyfuel burner 20 is installed obliquely downward. However, the present invention is not limited to this. If the second heated vapor phase atmosphere K2 can be formed below the first heated vapor phase atmosphere K1, the oxyfuel combustion burner 20 is inclined upward or horizontally laterally. You may install in.
 炉体1の底部側は、溶融ガラスGの貯留部1Bとされており、炉体1の側壁1Cの底部側に形成された溶融ガラス排出口4を介して炉体1から溶融ガラスGを外部に排出できるように構成されている。
 なお、本実施形態のガラス溶融炉30を備えたガラス物品の製造装置は、炉体1から溶融ガラスGを排出する方向の下流側に、一例として、成形手段を備えた成形装置50などが接続され、溶融ガラスGを成形装置50により目的の形状に成形してガラス物品を得ることができるように構成されている。なお、泡品質によっては、成形装置50の前に減圧脱泡装置を設けてもよい。また、ガラス物品の製造装置は、成形後のガラスを徐冷する徐冷手段を有する。なお、本発明のガラス物品の製造装置は、前述した本発明に係るガラス溶融炉を利用することの他は、公知の成形手段および徐冷手段、またその他の公知な付加手段を適用することができる。
The bottom side of the furnace body 1 is a storage part 1B for the molten glass G. The molten glass G is externally supplied from the furnace body 1 through a molten glass discharge port 4 formed on the bottom side of the side wall 1C of the furnace body 1. It is configured so that it can be discharged.
The glass article manufacturing apparatus including the glass melting furnace 30 of the present embodiment is connected, as an example, to a molding apparatus 50 including a molding unit on the downstream side in the direction of discharging the molten glass G from the furnace body 1. In addition, the molten glass G is formed into a target shape by the forming apparatus 50 so that a glass article can be obtained. Depending on the foam quality, a vacuum degassing apparatus may be provided before the molding apparatus 50. Moreover, the manufacturing apparatus of a glass article has a slow cooling means which anneals the glass after shaping | molding. The glass article manufacturing apparatus of the present invention can apply known molding means and slow cooling means, and other known addition means, in addition to using the glass melting furnace according to the present invention described above. it can.
 炉体1は耐火レンガなどの耐火材からなり、高温の溶融ガラスGを貯留できるように構成されている。炉体1の貯留部1Bには図示していないが、加熱ヒータが設置され、必要に応じて貯留部1Bに貯留されている溶融ガラスGを目的の温度(たとえば1400℃程度)に溶融状態で保持できるように構成されている。貯留部1Bの側壁部に排気口2および排気管2aを介し排ガス処理装置3が接続されている。 The furnace body 1 is made of a refractory material such as a refractory brick, and is configured to store high-temperature molten glass G. Although not shown in the storage part 1B of the furnace body 1, a heater is installed, and the molten glass G stored in the storage part 1B is melted to a target temperature (for example, about 1400 ° C.) as necessary. It is configured so that it can be held. An exhaust gas treatment device 3 is connected to a side wall portion of the storage portion 1B via an exhaust port 2 and an exhaust pipe 2a.
 ガラス原料粒子加熱ユニット10としては、その先端部12にガラス原料粒子投入部が一体形成された酸素燃焼バーナー11が適用されている。
 この酸素燃焼バーナー11としては、無機粉体加熱用バーナーとして公知な、原料、燃料ガス、燃焼ガス供給ノズルが適切に配置された酸素燃焼バーナーを使用することができる。酸素燃焼バーナー11は直管状に構成され、その先端部12には、中心部から外周部に向かって燃料供給ノズル、一次燃焼ガス供給ノズル、ガラス原料粒子投入部であるガラス原料粒子供給ノズル、および二次燃焼ガス供給ノズルが同心円状に配置されている。なお、酸素燃焼バーナー11は、各供給ノズルが同心円状に配置された構造に限らず、各供給ノズルが単純に束ねられた構造でもよい。
As the glass raw material particle heating unit 10, an oxyfuel burner 11 in which a glass raw material particle charging portion is integrally formed at the tip portion 12 is applied.
As this oxyfuel combustion burner 11, an oxyfuel combustion burner known as an inorganic powder heating burner, in which raw materials, fuel gas, and combustion gas supply nozzles are appropriately arranged, can be used. The oxycombustion burner 11 is configured in a straight tube shape, and a tip 12 thereof has a fuel supply nozzle, a primary combustion gas supply nozzle, a glass raw material particle supply nozzle that is a glass raw material particle supply portion from the center to the outer periphery, and Secondary combustion gas supply nozzles are arranged concentrically. The oxyfuel burner 11 is not limited to a structure in which the supply nozzles are arranged concentrically, but may have a structure in which the supply nozzles are simply bundled.
 酸素燃焼バーナー11の上部側には供給管9を介してガラス原料粒子GMを収容したホッパからなる原料供給器8が接続されている。供給管9にはガラス原料粒子GMを酸素燃焼バーナー11のガラス原料粒子供給ノズルへと搬送するためのキャリアガスを供給するキャリアガス供給源(図示略)が接続されている。また、酸素燃焼バーナー11の燃料ガス供給ノズル、一次燃焼ガス供給ノズルおよび二次燃焼ガス供給ノズルは、それぞれ、ガス供給管7a、7b、7cを介してガス供給装置6に接続されている。 A raw material supplier 8 composed of a hopper containing glass raw material particles GM is connected to the upper side of the oxyfuel burner 11 through a supply pipe 9. A carrier gas supply source (not shown) for supplying a carrier gas for conveying the glass raw material particles GM to the glass raw material particle supply nozzle of the oxyfuel combustion burner 11 is connected to the supply pipe 9. The fuel gas supply nozzle, the primary combustion gas supply nozzle, and the secondary combustion gas supply nozzle of the oxyfuel combustion burner 11 are connected to the gas supply device 6 via gas supply pipes 7a, 7b, and 7c, respectively.
 第2の加熱手段である酸素燃焼バーナー20は、酸素燃焼バーナーとして公知な、燃料、酸素供給ノズルが適切に配置された酸素燃焼バーナーである。酸素燃焼バーナー20には、燃料を燃料供給ノズルに供給する燃料供給装置(図示略)、および酸素を含む燃焼ガスを燃焼ガス供給ノズルに供給するガス供給装置(図示略)が接続されている。 The oxyfuel burner 20 as the second heating means is an oxyfuel burner known as an oxyfuel burner, in which a fuel and oxygen supply nozzle are appropriately arranged. A fuel supply device (not shown) for supplying fuel to the fuel supply nozzle and a gas supply device (not shown) for supplying combustion gas containing oxygen to the combustion gas supply nozzle are connected to the oxyfuel burner 20.
 図1に示す例では、2基の酸素燃焼バーナー20、20が炉体1の対向する側壁1C、1Cの略同等の高さ位置を貫通して斜め下向きに酸素燃焼炎F2、F2を噴出するように配置されている。しかしながら、これに限定されず、酸素燃焼バーナー20は、第1の加熱気相雰囲気K1の下方に対称性の高い第2の加熱気相雰囲気K2を形成できるように、リング状に複数配置されていることが好ましい。この場合、3個以上の酸素燃焼バーナーをリング状に等間隔で配置してもよく、酸素燃焼炎を噴出する複数のノズルがリング状に配置され、これらのノズルから内周側に向かって酸素燃焼炎を噴出できるリングバーナーを適用してもよい。 In the example shown in FIG. 1, the two oxygen combustion burners 20, 20 pass through substantially the same height positions of the opposing side walls 1 </ b> C, 1 </ b> C of the furnace body 1 and eject the oxygen combustion flames F <b> 2, F <b> 2 obliquely downward. Are arranged as follows. However, the present invention is not limited to this, and a plurality of oxygen combustion burners 20 are arranged in a ring shape so as to form a second heated gas phase atmosphere K2 having high symmetry below the first heated gas phase atmosphere K1. Preferably it is. In this case, three or more oxyfuel combustion burners may be arranged in a ring shape at equal intervals, and a plurality of nozzles for ejecting an oxyfuel combustion flame are arranged in a ring shape. You may apply the ring burner which can eject a combustion flame.
 本発明のガラス溶融炉において、第2の加熱気相雰囲気K2を形成する最後の加熱手段である第2の加熱手段としては、図1に示す酸素燃焼バーナー20の他、図2に示すガラス溶融炉30Bのように熱プラズマPを発生させる、複数の電極21、21で構成される多相アークプラズマ発生装置22が、炉体1の側壁1C、1Cを貫通して斜め下向きに設けられた形態であってもよい。この場合、第2の加熱気相雰囲気K2は、アークプラズマ発生領域およびその近傍の高温雰囲気から構成される。また、第2の加熱手段として、酸素燃焼バーナー20および/または多相アークプラズマ発生装置22を用いてもよい。なお、本発明の第2の実施形態に係るガラス溶融炉を示した図2において、図1に示すガラス溶融炉30と同一の構成要素には同一の符号を付してあり、同一要素の説明は省略する。 In the glass melting furnace of the present invention, as the second heating means which is the last heating means for forming the second heated vapor phase atmosphere K2, in addition to the oxygen combustion burner 20 shown in FIG. 1, the glass melting shown in FIG. A configuration in which a multi-phase arc plasma generator 22 composed of a plurality of electrodes 21 and 21 for generating thermal plasma P as in the furnace 30B is provided obliquely downward through the side walls 1C and 1C of the furnace body 1 It may be. In this case, the second heated gas phase atmosphere K2 is composed of an arc plasma generation region and a high temperature atmosphere in the vicinity thereof. Moreover, you may use the oxyfuel combustion burner 20 and / or the multiphase arc plasma generator 22 as a 2nd heating means. In addition, in FIG. 2 which showed the glass melting furnace which concerns on the 2nd Embodiment of this invention, the same code | symbol is attached | subjected to the same component as the glass melting furnace 30 shown in FIG. 1, and description of the same element Is omitted.
 酸素燃焼バーナー11の先端部12から酸素燃焼炎F1を下向きで噴射させて、この酸素燃焼炎F1により第1の加熱気相雰囲気K1を形成し、酸素燃焼バーナー20から酸素燃焼炎F2を噴射させて第1の加熱気相雰囲気K1の下方に第2の加熱気相雰囲気K2を形成する。そして、ガラス原料粒子GMをガラス原料粒子供給ノズルから供給する。これにより、炉体1内に投入されたガラス原料粒子GMは、第1の加熱気相雰囲気K1を通過する間に、その一粒一粒が溶融されて第1の溶融ガラス粒子U1となる。さらに、この第1の溶融ガラス粒子U1は下方に落下して第2の加熱気相雰囲気K2を通過する間に、加熱されて第2の溶融ガラス粒子U2となり、この第2の溶融ガラス粒子U2が下方に落下して炉体1の底部に集積し、溶融ガラスGを形成する。 The oxyfuel combustion flame F1 is injected downward from the front end portion 12 of the oxyfuel combustion burner 11, the first heated gas phase atmosphere K1 is formed by the oxyfuel combustion flame F1, and the oxyfuel combustion flame F2 is injected from the oxyfuel combustion burner 20. A second heated gas phase atmosphere K2 is formed below the first heated gas phase atmosphere K1. And glass raw material particle GM is supplied from a glass raw material particle supply nozzle. As a result, the glass raw material particles GM charged into the furnace body 1 are melted into the first molten glass particles U1 while passing through the first heated gas phase atmosphere K1. Further, while the first molten glass particle U1 falls downward and passes through the second heated gas phase atmosphere K2, it is heated to become the second molten glass particle U2, and this second molten glass particle U2 Falls downward and accumulates at the bottom of the furnace body 1 to form molten glass G.
 ここで、第1の溶融ガラス粒子U1は、ガラス原料粒子GMが第1の加熱気相雰囲気K1中で加熱され、ガラス化反応と呼ばれるガラスとなる成分の反応と融解などの化学反応により液状のガラス粒子となる途中の粒子や液状のガラス粒子となったものを示す。また、第2の溶融ガラス粒子U2は、第1の溶融ガラス粒子U1が第2の加熱気相雰囲気K2中でさらに加熱され、ガラス原料の熱分解(たとえば、金属炭酸塩から金属酸化物への熱分解など)、ガラス原料粒子GMに含まれる清澄剤の熱分解、ガラス化反応と呼ばれるガラスとなる成分の反応と融解、などの化学反応により液状のガラス粒子となったものを示す。なお、第2の溶融ガラス粒子U2の中に、溶融が終了していない溶融ガラス粒子が一部あってもよい。ほとんどの溶融ガラス粒子が溶融を終了しているので、それ以外の溶融ガラス粒子も貯留した溶融ガラスG中ですぐに溶融するからである。また、第2の溶融ガラス粒子U2での清澄剤の熱分解は、溶融ガラス粒子として貯留した溶融ガラスG上に落下した直後に清澄剤としての効果をより発現できる程度に留める。これは、第2の加熱気相雰囲気K2の温度を調節することによって可能である。 Here, the first molten glass particles U1 are heated by the glass raw material particles GM in the first heated gas-phase atmosphere K1 and are liquefied by a chemical reaction such as a reaction of a component that becomes glass called a vitrification reaction and a melting reaction. It shows particles in the middle of becoming glass particles or liquid glass particles. Further, the second molten glass particles U2 are further heated in the second heated gas phase atmosphere K2 by the first molten glass particles U1, and the glass raw material is thermally decomposed (for example, from metal carbonate to metal oxide). Thermal decomposition, etc.), thermal decomposition of the fining agent contained in the glass raw material particles GM, and reaction of the components that become glass called vitrification reaction and melting, which are liquid glass particles. In addition, some molten glass particles which have not finished melting may be present in the second molten glass particles U2. This is because most of the molten glass particles have finished melting, and other molten glass particles are immediately melted in the stored molten glass G. Further, the thermal decomposition of the fining agent on the second molten glass particles U2 is limited to such an extent that the effect as the fining agent can be further manifested immediately after falling on the molten glass G stored as the molten glass particles. This is possible by adjusting the temperature of the second heated gas-phase atmosphere K2.
 本発明において、加熱気相雰囲気の温度とは、加熱気相雰囲気の中央部付近の温度をいい、この領域の中での最大温度である。第1の加熱気相雰囲気K1の温度は、ガラス原料粒子GMのガラス化開始温度以上、1500℃以下とすることが好ましい。第1の加熱気相雰囲気K1の温度を前記範囲に設定することにより、ガラス原料粒子GMをガラス化して溶融ガラス粒子U1としつつ、ガラス原料粒子GMに含まれるSOなどの清澄剤が分解や気化などにより消失してしまうことを抑止できる。なお、前述したように、第1の加熱気相雰囲気K1を通過した溶融ガラス粒子U1は、完全にガラス化していなくてもよく、第2の加熱気相雰囲気K2中でガラス化が促進されて溶融ガラス粒子U2となればよい。 In the present invention, the temperature of the heated gas phase atmosphere refers to the temperature near the center of the heated gas phase atmosphere, and is the maximum temperature in this region. It is preferable that the temperature of the first heated gas-phase atmosphere K1 is not less than the vitrification start temperature of the glass raw material particles GM and not more than 1500 ° C. By setting the temperature of the first heated gas phase atmosphere K1 within the above range, the glass raw material particles GM are vitrified into molten glass particles U1, and the clarifier such as SO 3 contained in the glass raw material particles GM is decomposed or It can be prevented from disappearing due to vaporization. As described above, the molten glass particles U1 that have passed through the first heated vapor phase atmosphere K1 may not be completely vitrified, and vitrification is promoted in the second heated vapor phase atmosphere K2. What is necessary is just to become the molten glass particle U2.
 本発明において、「ガラス化開始温度」とは、加熱によりガラス原料粒子GMの収縮が開始する温度を示す。ガラス化開始温度は、ガラス原料粒子GMの組成により異なるが、温度傾斜炉によって見積もることができる。一例として、ガラス化開始温度は、一般的なソーダライム組成であれば1040℃程度、無アルカリガラス組成であれば1150℃程度である。温度傾斜炉については、たとえば特開2003-40641号公報に記載がある。 In the present invention, the “vitrification start temperature” refers to a temperature at which the shrinkage of the glass raw material particles GM starts by heating. The vitrification start temperature varies depending on the composition of the glass raw material particles GM, but can be estimated by a temperature gradient furnace. As an example, the vitrification start temperature is about 1040 ° C. for a general soda lime composition, and about 1150 ° C. for a non-alkali glass composition. The temperature gradient furnace is described in, for example, Japanese Patent Application Laid-Open No. 2003-40641.
 第2の加熱気相雰囲気K2の温度は、ガラス原料粒子GMおよび溶融ガラス粒子U1に含まれる清澄剤の分解開始温度である清澄開始温度以上とすることが好ましい。清澄開始温度は、ガラス原料粒子GMおよび溶融ガラス粒子U1に含まれる清澄剤の種類によって異なり、たとえば、清澄剤がSOの場合は、ソーダライムガラスで1450℃、無アルカリガラスで1250℃、Clの場合は、ソーダライムガラスで1410℃、無アルカリガラスで1450℃、SnOの場合は、無アルカリガラスで1500℃である。清澄開始温度は、SO、Cl、Fなどにおいては昇温により、ガラス中の清澄ガスの分圧の上昇が顕著に認められる温度(例えばAs、Sbなどにおいては高価数の酸化物が分解し、酸素ガスを発生し始める温度)であり、ガラス組成によって異なる値をとる。すなわち、第2の加熱気相雰囲気K2の温度は、第1の加熱気相雰囲気K1の温度よりも有意さを持った高い温度となる。 It is preferable that the temperature of the second heated gas-phase atmosphere K2 is equal to or higher than the clarification start temperature that is the decomposition start temperature of the clarifier contained in the glass raw material particles GM and the molten glass particles U1. The fining start temperature differs depending on the type of fining agent contained in the glass raw material particles GM and the molten glass particles U1, for example, when the fining agent is SO 3 , 1450 ° C. for soda lime glass, 1250 ° C. for alkali-free glass, Cl In this case, the soda-lime glass is 1410 ° C., the alkali-free glass is 1450 ° C., and in the case of SnO 2 , the alkali-free glass is 1500 ° C. The clarification start temperature is a temperature at which the partial pressure of the clarification gas in the glass is remarkably increased by increasing the temperature in SO 3 , Cl, F, etc. (for example, expensive in As 2 O 5 , Sb 2 O 5, etc.). Is a temperature at which the oxide of the oxide begins to decompose and begins to generate oxygen gas), and takes a different value depending on the glass composition. That is, the temperature of the second heated gas-phase atmosphere K2 is higher than the temperature of the first heated gas-phase atmosphere K1.
 第2の加熱気相雰囲気K2の温度の上限は特に制限されないが、前述したように清澄剤の効果が、貯留した溶融ガラスに落下した直後に一層発現する温度とする。第2の加熱気相雰囲気K2が、図1に示す酸素燃焼バーナー20の酸素燃焼炎F2により形成される場合、その温度の上限は2800℃程度である。また、第2の加熱気相雰囲気K2が図2に示す多相プラズマアーク発生装置22の熱プラズマPにより形成される場合、その温度の上限は20000℃程度である。 The upper limit of the temperature of the second heated gas-phase atmosphere K2 is not particularly limited, but as described above, it is set to a temperature at which the effect of the fining agent is further manifested immediately after falling on the stored molten glass. When the second heated gas-phase atmosphere K2 is formed by the oxyfuel combustion flame F2 of the oxyfuel burner 20 shown in FIG. 1, the upper limit of the temperature is about 2800 ° C. When the second heated gas phase atmosphere K2 is formed by the thermal plasma P of the multiphase plasma arc generator 22 shown in FIG. 2, the upper limit of the temperature is about 20000 ° C.
 第1の加熱気相雰囲気K1および第2の加熱気相雰囲気K2を、このような温度範囲とすることにより、炉体1内に投入されたガラス原料粒子GMは、第1の加熱気相雰囲気K1中で清澄剤が消失することなく残留した状態で第1の溶融ガラス粒子U1となる。そして、この第1の溶融ガラス粒子U1は、第2の加熱気相雰囲気K2中で清澄開始温度以上に加熱されて第2の溶融ガラス粒子U2となる。清澄剤の清澄効果が発現する温度に加熱された第2の溶融ガラス粒子U2が溶融ガラスGの液面に着液することにより、第2の溶融ガラス粒子U2および溶融ガラスGの脱泡が促進され、泡の少ない泡品質の高い溶融ガラスとなる。 By setting the first heated vapor phase atmosphere K1 and the second heated vapor phase atmosphere K2 in such a temperature range, the glass raw material particles GM charged into the furnace body 1 are converted into the first heated vapor phase atmosphere. It becomes the 1st molten glass particle U1 in the state which the fining agent remained without vanishing in K1. And this 1st molten glass particle U1 is heated more than the clarification start temperature in the 2nd heating gaseous-phase atmosphere K2, and becomes the 2nd molten glass particle U2. Defoaming of the second molten glass particles U2 and the molten glass G is promoted by the second molten glass particles U2 heated to a temperature at which the clarification effect of the fining agent appears on the liquid surface of the molten glass G. As a result, it becomes a molten glass having a high bubble quality with few bubbles.
 溶融ガラス粒子U2および溶融ガラスGの脱泡を促進する観点から、清澄開始温度以上に加熱された第2の溶融ガラス粒子U2は、その温度が清澄開始温度以下に低下する前に溶融ガラスGの液面に到達することが好ましい。そのため、第2の加熱気相雰囲気K2は、溶融ガラスGの液面近傍に形成することが好ましい。ここで、溶融ガラスGの液面近傍とは、溶融ガラスGの液面から炉体1の上壁の炉壁部1Aの内面までの距離の半分以下の範囲を示す。 From the viewpoint of promoting the defoaming of the molten glass particle U2 and the molten glass G, the second molten glass particle U2 heated to the clarification start temperature or higher is the temperature of the molten glass G before the temperature drops below the clarification start temperature. It is preferable to reach the liquid level. For this reason, the second heated gas phase atmosphere K2 is preferably formed in the vicinity of the liquid surface of the molten glass G. Here, the vicinity of the liquid surface of the molten glass G indicates a range that is not more than half of the distance from the liquid surface of the molten glass G to the inner surface of the furnace wall portion 1A of the upper wall of the furnace body 1.
 本実施形態のガラス溶融炉30は、ガラス原料粒子GMを、第1の加熱気相雰囲気K1および第2の加熱気相雰囲気K2をこの順に通過させることができる。そのため、第1の加熱気相雰囲気K1で清澄剤の成分を含めたまま第1の溶融ガラス粒子U1とした後、第2の加熱気相雰囲気K2中での加熱により、第1の溶融ガラス粒子U1の溶融をさらに促進して、より比重の高い溶融ガラス粒子U2を形成できる。したがって、比重の低い溶融ガラス粒子U2を生成する確率が低く、比重が低いために溶融ガラスGの液面上に到達せず、炉体1の壁部1C、炉壁部1Aなどに飛散する溶融ガラス粒子を低減できる。これにより、炉体1を構成する炉材の損傷が低減され、ガラス化率も増加する。 The glass melting furnace 30 of the present embodiment can pass the glass raw material particles GM through the first heating vapor phase atmosphere K1 and the second heating vapor phase atmosphere K2 in this order. Therefore, after making the 1st molten glass particle U1 in the 1st heating gaseous-phase atmosphere K1 including the component of a clarifying agent, the 1st molten-glass particle | grains are heated by the heating in 2nd heated gaseous-phase atmosphere K2. The melting of U1 can be further promoted to form molten glass particles U2 having a higher specific gravity. Therefore, there is a low probability of generating molten glass particles U2 having a low specific gravity, and since the specific gravity is low, the molten glass particles U2 do not reach the liquid surface of the molten glass G and are scattered on the wall 1C, the furnace wall 1A, etc. of the furnace body 1 Glass particles can be reduced. Thereby, the damage of the furnace material which comprises the furnace body 1 is reduced, and the vitrification rate also increases.
 図5に示すような従来のガラス溶融炉100では、酸素燃焼炎F100を下向きに噴射する酸素燃焼バーナー103からのガス流は、溶融ガラスG100の液面付近で下向きから横向きに変化することがあり、これにより溶融ガラス粒子U100が側壁側に飛散して溶融ガラスG100に着液できない場合があった。
 これに対し、本実施形態のガラス溶融炉30は、斜め下向きとした酸素燃焼バーナー20の酸素燃焼炎F2により溶融ガラス粒子U1、U2に下向きの力を加えることができるので、溶融ガラス粒子U1、U2を飛散させることなく溶融ガラスGに着液させることができる。より効果的に溶融ガラス粒子U2を溶融ガラスGに着液させる観点から、第2の加熱気相雰囲気K2を、溶融ガラスGの液面と酸素燃焼バーナー11の熱源発生部の先端との鉛直距離をHとしたとき、溶融ガラスGの液面から上方0.5H以内に形成することが好ましい。より効果的に溶融ガラス粒子U2を溶融ガラスGに着液させる観点から、第2の加熱気相雰囲気K2を、溶融ガラスGの液面から上方0.3H以内に形成することがより好ましい。さらに効果的に溶融ガラス粒子U2を溶融ガラスGに着液させる観点から、第2の加熱気相雰囲気K2を、溶融ガラスGの液面から上方0.15H以内に形成することがさらに好ましい。ここで、酸素燃焼バーナー11の熱源発生部の先端とは、酸素燃焼バーナー7の先端部12を示す。熱源発生部が酸素燃焼バーナーでない場合でも、Hの算定にあたっては、熱源発生部の先端を基準とする。
In conventional glass melting furnace 100 as shown in FIG. 5, the gas stream from the oxygen combustion burner 103 for injecting oxygen combustion flame F 100 downward is changing sideways from downward near the liquid surface of the molten glass G 100 As a result, the molten glass particles U 100 may be scattered on the side wall side and cannot be deposited on the molten glass G 100 .
On the other hand, the glass melting furnace 30 of the present embodiment can apply a downward force to the molten glass particles U1, U2 by the oxyfuel combustion flame F2 of the oxyfuel burner 20 that is inclined downward, so that the molten glass particles U1, It is possible to make the molten glass G land without scattering U2. From the viewpoint of landing the molten glass particles U2 on the molten glass G more effectively, the vertical distance between the liquid surface of the molten glass G and the tip of the heat source generating part of the oxyfuel burner 11 is set as the second heated gas phase atmosphere K2. Is preferably within 0.5H above the liquid surface of the molten glass G. From the viewpoint of landing the molten glass particles U2 on the molten glass G more effectively, it is more preferable to form the second heated gas phase atmosphere K2 within 0.3H above the liquid surface of the molten glass G. From the viewpoint of more effectively landing the molten glass particles U2 on the molten glass G, it is more preferable to form the second heated gas phase atmosphere K2 within 0.15H above the liquid surface of the molten glass G. Here, the tip of the heat source generating part of the oxyfuel burner 11 indicates the tip 12 of the oxyfuel burner 7. Even when the heat source generator is not an oxyfuel burner, the tip of the heat source generator is used as a reference when calculating H.
 本実施形態のガラス溶融炉30および溶融ガラスの製造方法により製造した溶融ガラスGを所定の速度で溶融ガラス排出口4から排出し、必要に応じ減圧脱泡装置に導入し、減圧状態で強制的にさらに脱泡した後、成形装置50に移送して目的の形状に成形し、ガラス物品を製造できる。
 以上のように製造されたガラス物品は、上述のように泡の少ない泡品質の高い溶融ガラスGより形成されているため、高い品質のガラス物品を得ることができる。
The molten glass G manufactured by the glass melting furnace 30 and the manufacturing method of the molten glass of the present embodiment is discharged from the molten glass discharge port 4 at a predetermined speed, introduced into a vacuum degassing apparatus as necessary, and forced in a vacuum state. Further, after defoaming, the glass article can be transferred to the molding apparatus 50 and molded into a desired shape to produce a glass article.
Since the glass article manufactured as described above is formed from the molten glass G having a high bubble quality with few bubbles as described above, a high-quality glass article can be obtained.
 本発明のガラス溶融炉において、前述した第1の加熱手段、第2の加熱手段に加えて、最後の加熱手段として第3の加熱手段を備えていてもよい。図3は本発明に係るガラス溶融炉の第3実施形態を示す模式図である。図3において図1に示すガラス溶融炉30と同一の構成要素には同一の符号を付し、同一要素の説明は省略する。 In the glass melting furnace of the present invention, in addition to the first heating means and the second heating means described above, a third heating means may be provided as the last heating means. FIG. 3 is a schematic view showing a third embodiment of the glass melting furnace according to the present invention. 3, the same components as those of the glass melting furnace 30 shown in FIG. 1 are denoted by the same reference numerals, and the description of the same components is omitted.
 図3に示すガラス溶融炉30Cは、図1に示すガラス溶融炉30の構成要素に加え、第2の加熱気相雰囲気K2を形成する酸素燃焼バーナー20の下方に、炉体1の炉壁1Cを貫通して斜め下向きに設置された第3の加熱手段である酸素燃焼バーナー25を備える構成である。この例のガラス溶融炉30Cは、第1の加熱気相雰囲気K1の下方に、第2の加熱気相雰囲気K2と、さらに第2の加熱気相雰囲気K2の下方に酸素燃焼バーナー25の酸素燃焼炎F3による第3の加熱気相雰囲気K3を形成した構成となっている。図3に示すガラス溶融炉30Cにおいて、第3の加熱手段である酸素燃焼バーナー25が最後の加熱手段であり、第3の加熱気相雰囲気K3が最後の加熱気相雰囲気である。 In addition to the components of the glass melting furnace 30 shown in FIG. 1, the glass melting furnace 30 </ b> C shown in FIG. 3 has a furnace wall 1 </ b> C of the furnace body 1 below the oxygen combustion burner 20 that forms the second heated gas phase atmosphere K <b> 2. And an oxyfuel combustion burner 25 that is a third heating means installed obliquely downward. In the glass melting furnace 30C of this example, the oxyfuel combustion of the oxyfuel burner 25 is performed below the first heated gas phase atmosphere K1, below the second heated gas phase atmosphere K2, and further below the second heated gas phase atmosphere K2. The third heating vapor phase atmosphere K3 is formed by the flame F3. In the glass melting furnace 30C shown in FIG. 3, the oxyfuel burner 25, which is the third heating means, is the last heating means, and the third heated gas phase atmosphere K3 is the last heated gas phase atmosphere.
 この例のガラス溶融炉30Cでは、炉体1内に投入されたガラス原料粒子GMは、第1の加熱気相雰囲気K1を通過する間に、その一粒一粒が溶融されて第1の溶融ガラス粒子U1となる。さらに、この第1の溶融ガラス粒子U1は下方に落下して第2の加熱気相雰囲気K2を通過する間に、加熱されて第2の溶融ガラス粒子U2となる。その後、この第2の溶融ガラス粒子U2が下方に落下して第3の加熱気相雰囲気K3を通過する間に、さらに加熱されて第3の溶融ガラス粒子U3となり、炉体1の底部に集積し、溶融ガラスGを形成する。 In the glass melting furnace 30 </ b> C of this example, the glass raw material particles GM charged into the furnace body 1 are melted first by one while passing through the first heated gas phase atmosphere K <b> 1. It becomes the glass particle U1. Further, the first molten glass particle U1 falls downward and passes through the second heated gas phase atmosphere K2, and is heated to become the second molten glass particle U2. Thereafter, while the second molten glass particle U2 falls downward and passes through the third heated gas phase atmosphere K3, the second molten glass particle U2 is further heated to become the third molten glass particle U3 and accumulates at the bottom of the furnace body 1. Then, a molten glass G is formed.
 ガラス溶融炉30Cにおいて、溶融ガラスG側に一番近い第3の加熱気相雰囲気K3の形成位置は、図1に示すガラス溶融炉30における第2の加熱気相雰囲気K2と同様の位置に設定することが好ましい。また、第3の加熱気相雰囲気K3の温度は、第2の加熱気相雰囲気K2と同程度とすることができる。この図3の構成の場合、溶融ガラスGの液面と酸素燃焼バーナー11の熱源発生部の先端との鉛直距離をHとしたとき、第3の加熱気相雰囲気K3を溶融ガラスGの液面から上方0.3H以内に形成することが好ましく、より効果的に溶融ガラス粒子U2を溶融ガラスGに着液させる観点から、第3の加熱気相雰囲気K3を、溶融ガラスGの液面から上方0.15H以内に形成することがより好ましい。
 第3の加熱手段は、酸素燃焼バーナー25の他に、図2に示すアークプラズマ発生装置22を適用してもよく、酸素燃焼バーナー25および/またはアークプラズマ発生装置22を適用してもよい。
In the glass melting furnace 30C, the formation position of the third heating vapor phase atmosphere K3 closest to the molten glass G side is set to the same position as the second heating vapor phase atmosphere K2 in the glass melting furnace 30 shown in FIG. It is preferable to do. Further, the temperature of the third heated vapor phase atmosphere K3 can be set to the same level as the second heated vapor phase atmosphere K2. In the case of the configuration of FIG. 3, when the vertical distance between the liquid surface of the molten glass G and the tip of the heat source generating portion of the oxyfuel burner 11 is H, the third heated gas phase atmosphere K3 is the liquid surface of the molten glass G. From the viewpoint of landing the molten glass particles U2 on the molten glass G more effectively, the third heated gas phase atmosphere K3 is formed upward from the liquid surface of the molten glass G. More preferably, it is formed within 0.15H.
As the third heating means, in addition to the oxyfuel burner 25, the arc plasma generator 22 shown in FIG. 2 may be applied, or the oxyfuel burner 25 and / or the arc plasma generator 22 may be applied.
 目的のガラスによっては、ガラス原料粒子GMに清澄剤を多く含有させることができない場合があるが、この例のように、3以上の加熱気相雰囲気を通過させる構成とすることにより、溶融ガラス粒子を従来の気中溶融法よりも低い温度域により長時間滞在させて徐々に加熱することにより、清澄剤が少なくても、清澄剤の効果を温存した溶融ガラス粒子を得ることができる。
 なお、本発明のガラス溶融炉は図1~3に示す例に限定されない。炉体1内の雰囲気に上下方向に並ぶ4以上の加熱気相雰囲気を形成できる構成となるよう、4以上の加熱手段を備えていてもよい。その場合、最下段に形成する加熱気相雰囲気の温度および位置は、図1に示す第1実施形態のガラス溶融炉で形成される第2の加熱気相雰囲気K2と同様に設定することが好ましい。
Depending on the target glass, the glass raw material particles GM may not be able to contain a large amount of fining agent. However, as shown in this example, it is possible to pass through three or more heated gas phase atmospheres so that the molten glass particles By staying for a long time in a temperature range lower than that of the conventional air melting method and gradually heating, molten glass particles that preserve the effect of the fining agent can be obtained even if the amount of the fining agent is small.
The glass melting furnace of the present invention is not limited to the examples shown in FIGS. Four or more heating means may be provided so that four or more heating gas phase atmospheres arranged in the vertical direction can be formed in the atmosphere in the furnace body 1. In that case, it is preferable to set the temperature and position of the heating vapor phase atmosphere formed in the lowermost stage similarly to the second heating vapor phase atmosphere K2 formed in the glass melting furnace of the first embodiment shown in FIG. .
 本発明によって製造される溶融ガラスGは、気中溶融法により製造されるガラスである限り、組成的には制限されない。したがって、ソーダライムガラス、混合アルカリ系ガラス、ホウケイ酸ガラス、あるいは、無アルカリガラスのいずれであってもよい。また、製造されるガラス物品の用途は、建築用や車両用に限定されず、フラットパネルディスプレイ用、その他の各種用途が挙げられる。 The molten glass G produced by the present invention is not limited in terms of composition as long as it is a glass produced by an air melting method. Therefore, any of soda lime glass, mixed alkali glass, borosilicate glass, or non-alkali glass may be used. Moreover, the use of the manufactured glass article is not limited to architectural use or vehicle use, and examples include flat panel display use and other various uses.
 建築用または車両用の板ガラスに使用されるソーダライムガラスの場合には、酸化物基準の質量百分率表示で、SiO:65~75%、Al:0~3%、CaO:5~15%、MgO:0~15%、NaO:10~20%、KO:0~3%、LiO:0~5%、Fe:0~3%、TiO:0~5%、CeO:0~3%、BaO:0~5%、SrO:0~5%、B:0~5%、ZnO:0~5%、ZrO:0~5%、SnO:0~3%、SO:0~0.5%、という組成を有することが好ましい。 In the case of soda-lime glass used for plate glass for buildings or vehicles, it is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 65 to 75%, Al 2 O 3 : 0 to 3%, CaO: 5 to 15%, MgO: 0 to 15%, Na 2 O: 10 to 20%, K 2 O: 0 to 3%, Li 2 O: 0 to 5%, Fe 2 O 3 : 0 to 3%, TiO 2 : 0 to 5%, CeO 2 : 0 to 3%, BaO: 0 to 5%, SrO: 0 to 5%, B 2 O 3 : 0 to 5%, ZnO: 0 to 5%, ZrO 2 : 0 to 5 %, SnO 2 : 0 to 3%, SO 3 : 0 to 0.5%.
 液晶ディスプレイ用または有機ELディスプレイ用の基板に使用される無アルカリガラスの場合には、酸化物基準の質量百分率表示で、SiO:39~75%、Al:3~27%、B:0~20%、MgO:0~13%、CaO:0~17%、SrO:0~20%、BaO:0~30%、という組成を有することが好ましい。 In the case of an alkali-free glass used for a substrate for a liquid crystal display or an organic EL display, SiO 2 : 39 to 75%, Al 2 O 3 : 3 to 27%, B 2 O 3 : 0 to 20%, MgO: 0 to 13%, CaO: 0 to 17%, SrO: 0 to 20%, BaO: 0 to 30% are preferable.
 プラズマディスプレイ用の基板に使用される混合アルカリ系ガラスの場合には、酸化物基準の質量百分率表示で、SiO:50~75%、Al:0~15%、MgO+CaO+SrO+BaO+ZnO:6~24%、NaO+KO:6~24%、という組成を有することが好ましい。 In the case of a mixed alkali glass used for a substrate for plasma display, it is expressed in terms of mass percentage on the basis of oxide, and SiO 2 : 50 to 75%, Al 2 O 3 : 0 to 15%, MgO + CaO + SrO + BaO + ZnO: 6 to 24 %, Na 2 O + K 2 O: preferably 6 to 24%.
 その他の用途として、耐熱容器または理化学用器具等に使用されるホウケイ酸ガラスの場合には、酸化物基準の質量百分率表示で、SiO:60~85%、Al:0~5%、B:5~20%、NaO+KO:2~10%、という組成を有することが好ましい。 For other applications, in the case of borosilicate glass used for heat-resistant containers or physics and chemistry instruments, etc., it is expressed in terms of mass percentage based on oxide, SiO 2 : 60 to 85%, Al 2 O 3 : 0 to 5% B 2 O 3 : 5 to 20%, Na 2 O + K 2 O: 2 to 10% are preferable.
 また、上述のガラス組成に加え、SO、Cl、F、SnO、As、Sb、CeOなど一種類以上の清澄剤が1%以下で含まれていることが好ましい。
 さらに、必要に応じて、副原料として着色剤、溶融助剤、乳白剤等を含むことができる。
Further, in addition to the above glass composition, it is preferable that one or more kinds of fining agents such as SO 3 , Cl, F, SnO 2 , As 2 O 3 , Sb 2 O 3 , CeO 2 are contained at 1% or less. .
Furthermore, if necessary, colorants, melting aids, opacifiers and the like can be included as auxiliary materials.
 本実施形態においては、前記いずれかの組成のガラスの原料、たとえば上述の各成分の粒子状の原料粉末粒子を目的のガラスの組成比に合わせて混合して集合させたガラス原料粒子GMを用意する。
 基本的に気中溶融法は、複数(通常3成分以上)の成分から成るガラスを製造するためにガラス原料粒子GMを溶融してガラスを製造する方法である。
In the present embodiment, glass raw material particles GM are prepared by mixing and assembling the glass raw materials having any of the above-described compositions, for example, the particulate raw material powder particles of the above-described components in accordance with the composition ratio of the target glass. To do.
Basically, the air melting method is a method of manufacturing glass by melting glass raw material particles GM in order to manufacture glass composed of a plurality of (usually three or more components) components.
 また、たとえば、前述のガラス原料粒子GMの一例として、無アルカリガラスの一例を適用する場合、珪砂、アルミナ(Al)、ホウ酸(HBO)、水酸化マグネシウム(Mg(OH))、炭酸カルシウム(CaCO)、炭酸ストロンチウム(SrCO)、炭酸バリウム(BaCO)などの原料粉末粒子を目的のガラスの組成比に合致するように調合し、たとえばスプレードライ造粒法により集合することにより30~1000μm程度の造粒体として、ガラス原料粒子GMを得ることができる。 For example, when an example of an alkali-free glass is applied as an example of the glass raw material particles GM, silica sand, alumina (Al 2 O 3 ), boric acid (H 3 BO 3 ), magnesium hydroxide (Mg (OH 2 ), raw material powder particles such as calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), barium carbonate (BaCO 3 ) are blended so as to match the composition ratio of the target glass, for example, spray dry granulation method As a result, the glass raw material particles GM can be obtained as a granulated body of about 30 to 1000 μm.
 前記ガラス原料粉末粒子からガラス原料粒子GMを調製する方法としては、スプレードライ造粒法などの方法が使用でき、ガラス原料を分散溶解させた水溶液を高温雰囲気中に噴霧させて乾燥固化させる造粒法が好ましい。また、このガラス原料粒子は目的とするガラスの成分組成に対応する混合比の原料のみで構成してもよいが、そのガラス原料粒子に更に同一組成のガラスカレット微粉を混合して、これをガラス原料粒子GMとして用いることもできる。 As a method of preparing the glass raw material particles GM from the glass raw material powder particles, a method such as a spray dry granulation method can be used, and granulation in which an aqueous solution in which the glass raw material is dispersed and dissolved is sprayed in a high temperature atmosphere and dried and solidified. The method is preferred. Further, the glass raw material particles may be composed only of raw materials having a mixing ratio corresponding to the target glass component composition, but the glass raw material particles are further mixed with glass cullet powder having the same composition, and this is mixed with glass. It can also be used as raw material particles GM.
 スプレードライ造粒によりガラス原料粒子GMを得るための一例として、上述の各成分のガラス原料粉末粒子として2~500μmの範囲のガラス原料粉末粒子を蒸留水などの溶媒中に分散してスラリーを構成し、このスラリーをボールミルなどの攪拌装置で所定時間攪拌し、混合し、粉砕したのちにスプレードライ造粒することで上述の各成分のガラス原料粉末粒子がほぼ均一に分散されたガラス原料粒子GMが得られる。
 なお、前述のスラリーを攪拌装置で攪拌する際、原料粉末粒子の均一分散とガラス原料粒子の強度を向上させる目的で2-アミノエタノール、PVA(ポリビニルアルコール)などのバインダーを混合してから攪拌することが好ましい。
 本実施形態において用いるガラス原料粒子GMは、上述のスプレードライ造粒法の他に、転動造粒法、攪拌造粒法などの乾式造粒法により形成することもできる。
As an example of obtaining glass raw material particles GM by spray dry granulation, a glass slurry powder in the range of 2 to 500 μm is dispersed in a solvent such as distilled water as a glass raw material powder particle of each of the above components to form a slurry. Then, the slurry is stirred for a predetermined time by a stirring device such as a ball mill, mixed, pulverized, and then spray-dried granulated, whereby the glass raw material powder particles GM of the above-mentioned components are dispersed almost uniformly. Is obtained.
When the slurry is stirred with a stirrer, a binder such as 2-aminoethanol and PVA (polyvinyl alcohol) is mixed and stirred for the purpose of uniformly dispersing the raw material powder particles and improving the strength of the glass raw material particles. It is preferable.
The glass raw material particles GM used in the present embodiment can be formed by a dry granulation method such as a tumbling granulation method or a stirring granulation method in addition to the above-mentioned spray dry granulation method.
 ガラス原料粒子GMの平均粒径(重量平均)は30~1000μmの範囲が好ましい。より好ましくは、平均粒径(重量平均)が50~500μmの範囲内のガラス原料粒子GMが使用され、さらに70~300μmの範囲内のガラス原料粒子GMが好ましい。このガラス原料粒子GMの一例を拡大して図1に示すが、1つのガラス原料粒子GMにおいて最終目的とするガラスの組成比にほぼ合致するか、近似した組成比となっていることが好ましい。
 ガラス原料粒子GMが溶融した溶融ガラス粒子U1、U2、U3の平均粒径(重量平均)は、通常ガラス原料粒子GMの平均粒径の80%程度となることが多い。ガラス原料粒子GMの粒径は、短時間で加熱でき、発生ガスの放散が容易である点、および粒子間の組成変動の低減の点から、前述の範囲を選択することが好ましい。
The average particle diameter (weight average) of the glass raw material particles GM is preferably in the range of 30 to 1000 μm. More preferably, glass raw material particles GM having an average particle diameter (weight average) in the range of 50 to 500 μm are used, and glass raw material particles GM in the range of 70 to 300 μm are more preferable. An example of the glass raw material particles GM is enlarged and shown in FIG. 1, but it is preferable that one glass raw material particle GM substantially matches the composition ratio of the final target glass or has an approximate composition ratio.
The average particle diameter (weight average) of the molten glass particles U1, U2, and U3 in which the glass raw material particles GM are melted is usually about 80% of the average particle diameter of the glass raw material particles GM. The particle size of the glass raw material particles GM is preferably selected from the above-mentioned range from the viewpoint that it can be heated in a short time, the generated gas can be easily diffused, and the composition variation between the particles is reduced.
 図4は本発明に係る溶融ガラスの製造方法を用いてガラス物品を製造する方法の一例を示すフロー図である。
 図4に示す方法に従い、ガラス物品を製造するには、上述のガラス溶融炉30、30B、30Cを用いた本発明に係る溶融ガラスの製造方法によるガラス溶融工程S1により溶融ガラスGを得たならば、溶融ガラスGを成形装置50に送って目的の形状に成形する成形工程S2を経た後、徐冷工程S3にて徐冷することでガラス物品G5を得ることができる。図4に示すように、さらに必要に応じて、徐冷後のガラスを切断する切断工程S4や、ガラス物品を研磨する工程や、その他の後工程を有してもよい。本発明のガラス物品の製造方法は、前述した本発明に係る溶融ガラスの製造方法によるガラス溶融工程S1を利用することの他は、公知の成形工程および徐冷工程、またその他の公知な付加工程を適用することができる。
FIG. 4 is a flowchart showing an example of a method for producing a glass article using the method for producing molten glass according to the present invention.
In order to manufacture a glass article according to the method shown in FIG. 4, the molten glass G is obtained by the glass melting step S <b> 1 by the molten glass manufacturing method according to the present invention using the glass melting furnaces 30, 30 </ b> B, 30 </ b> C described above. For example, the glass article G5 can be obtained by passing the molten glass G to the molding apparatus 50 and performing the molding step S2 in which the molten glass G is molded into the target shape and then slowly cooling in the slow cooling step S3. As shown in FIG. 4, you may have further the cutting process S4 which cut | disconnects the glass after slow cooling, the process of grind | polishing a glass article, and another post process as needed. The manufacturing method of the glass article of the present invention uses a known molding step and slow cooling step, and other known additional steps, in addition to utilizing the glass melting step S1 according to the above-described molten glass manufacturing method of the present invention. Can be applied.
 なお、本発明におけるガラス原料粒子GMは、ガラス原料の一部についてガラス原料粒子中に含まないもの(以下「一部造粒体」と呼ぶ。)を排除するものではない。この場合に、ガラス原料のうちの一部造粒体に含有しないガラス原料(以下「一部ガラス原料」と呼ぶ。)は、一部造粒体とは同一ないしは別の送入口から加熱気相雰囲気に投入する。一部造粒体と一部ガラス原料とは、少なくともガラス融液上の同じ領域に着液し溶融ガラス粒子となればよい。具体的には、両者をガラス融液面の10平方ミリ内に共存させればよい。このためには、一部ガラス原料に対して一部造粒体の密度、粒子サイズを調整することや一部ガラス原料の投入方法を工夫することによって、一部ガラス原料と一部造粒体の飛翔軌跡が近いものとなるようにすればよい。一部ガラス原料のうちの溶けにくく凝集しやすい成分(珪砂・アルミナ等)は融点を低下させる成分(ホウ酸(HBO)・アルカリ等)とともに一部造粒体を形成するほうがよい。一部ガラス原料のうち融点を低下させる成分は、溶けにくい珪砂を含む一部造粒体とは別に投入されても、一部造粒体と一体になって溶融ガラス粒子を形成しやすい、例えば、ホウ酸・アルカリ等(の過剰分)については、別に投入することができる。その他、一部ガラス原料としては、着色成分を充当してもよい。この場合は、ガラス融液に着液後の溶融ガラスを攪拌することが好ましい。一部造粒体を利用する利点は、必ずしも全てのガラス原料を造粒体にする必要がないこととなり、準備すべき造粒体の必要量を少なくできるため低コスト化できる点などがある。
 なお、本発明におけるガラス原料粒子GMは、その大半を最上方の加熱気相雰囲気に供給するものであるが、その一部を必要に応じて最上段以外の加熱気相雰囲気から供給することを排除するものではない。この場合には、最上段以外の加熱気相雰囲気に供給するガラス原料粒子の量は溶融ガラス粒子となる程度に抑制されるべきである。
In addition, the glass raw material particle GM in this invention does not exclude what is not contained in a glass raw material particle about a part of glass raw material (henceforth a "partially granulated body"). In this case, the glass raw material (hereinafter referred to as “partial glass raw material”) that is not contained in a part of the granulated material is a gas phase heated from the same or different inlet from the part of the granulated body. Put it in the atmosphere. The partially granulated body and the partially glass raw material may be deposited at least in the same region on the glass melt to form molten glass particles. Specifically, both may be allowed to coexist within 10 square millimeters of the glass melt surface. For this purpose, the partial glass raw material and the partial granulated body can be obtained by adjusting the density and particle size of the partial granule with respect to the partial glass raw material or by devising the method of charging the partial glass raw material. The flight trajectory should be close. Some melts hardly aggregation prone components of the glass raw material (silica sand, alumina or the like) had better form part granule with components for lowering the melting point (boric acid (H 3 BO 3), an alkali, etc.). The component that lowers the melting point of a part of the glass raw material is easy to form molten glass particles integrally with the part of the granule, even if it is added separately from the part of the granule containing the silica sand that is difficult to dissolve, for example Boric acid, alkali, etc. (excess thereof) can be added separately. In addition, as a part of the glass raw material, a coloring component may be used. In this case, it is preferable to stir the molten glass after landing on the glass melt. The advantage of using a partly granulated body is that it is not always necessary to make all the glass raw materials into granulated bodies, and there is a point that cost can be reduced because the necessary amount of granulated bodies to be prepared can be reduced.
In addition, although most of the glass raw material particles GM in the present invention are supplied to the uppermost heated gas phase atmosphere, a part thereof is supplied from a heated gas phase atmosphere other than the uppermost layer as necessary. It is not excluded. In this case, the amount of the glass raw material particles supplied to the heated gas phase atmosphere other than the uppermost layer should be suppressed to such an extent that it becomes molten glass particles.
 本発明の技術は、建築用ガラス、車両用ガラス、光学用ガラス、医療用ガラス、表示装置用ガラス、その他一般のガラス物品の製造に広く適用できる。
 なお、2011年5月17日に出願された日本特許出願2011-110428号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
The technology of the present invention can be widely applied to the production of architectural glass, vehicle glass, optical glass, medical glass, display device glass, and other general glass articles.
It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-110428 filed on May 17, 2011 are incorporated herein by reference. .
 1…炉体、1A…炉壁部、1B…貯留部、1C…側壁、2…排気口、2a…排気管、3…排ガス処理装置、4…溶融ガラス排出口、6…ガス供給装置、7a、7b、7c…ガス供給管、8…原料供給器、9…供給管、10…ガラス原料粒子加熱ユニット、11…酸素燃焼バーナー(第1の加熱手段)、12…先端部(熱源発生部)、20…酸素燃焼バーナー(第2の加熱手段)、21…電極、22…アークプラズマ発生装置(第2の加熱手段)、25…酸素燃焼バーナー(第3の加熱手段)、30、30B、30C…ガラス溶融炉、50…成形装置、K1…第1の加熱気相雰囲気、K2…第2の加熱気相雰囲気、K3…第3の加熱気相雰囲気、G…溶融ガラス、GM…ガラス原料粒子、U1…第1の溶融ガラス粒子、U2…第2の溶融ガラス粒子、U3…第3の溶融ガラス粒子、F1、F2、F3…酸素燃焼炎、P…熱プラズマ。  DESCRIPTION OF SYMBOLS 1 ... Furnace body, 1A ... Furnace wall part, 1B ... Storage part, 1C ... Side wall, 2 ... Exhaust port, 2a ... Exhaust pipe, 3 ... Exhaust gas processing apparatus, 4 ... Molten glass discharge port, 6 ... Gas supply apparatus, 7a 7b, 7c ... gas supply pipe, 8 ... raw material feeder, 9 ... supply pipe, 10 ... glass raw material particle heating unit, 11 ... oxyfuel combustion burner (first heating means), 12 ... tip (heat source generator) 20 ... Oxygen combustion burner (second heating means), 21 ... Electrode, 22 ... Arc plasma generator (second heating means), 25 ... Oxyfuel combustion burner (third heating means), 30, 30B, 30C DESCRIPTION OF SYMBOLS ... Glass melting furnace, 50 ... Molding apparatus, K1 ... 1st heating gas phase atmosphere, K2 ... 2nd heating gas phase atmosphere, K3 ... 3rd heating gas phase atmosphere, G ... Molten glass, GM ... Glass raw material particle , U1 ... first molten glass particles, U2 ... second molten glass Particles, U3 ... third molten glass particles, F1, F2, F3 ... oxygen combustion flame, P ... heat plasma.

Claims (14)

  1.  上下方向に並ぶ2以上の加熱気相雰囲気を形成し、その最上方の加熱気相雰囲気にガラス原料粒子を供給し、該ガラス原料粒子を前記2以上の加熱気相雰囲気を通過させることにより溶融ガラス粒子とする溶融ガラスの製造方法。 Two or more heated gas phase atmospheres arranged in the vertical direction are formed, glass raw material particles are supplied to the uppermost heated gas phase atmosphere, and the glass raw material particles are melted by passing through the two or more heated gas phase atmospheres. A method for producing molten glass with glass particles.
  2.  前記2以上の加熱気相雰囲気のうち最上段に最初の加熱気相雰囲気を形成し、前記2以上の加熱気相雰囲気のうち最下段に最後の加熱気相雰囲気を形成し、前記最初の加熱気相雰囲気に前記ガラス原料粒子を供給し、該ガラス原料粒子を前記最初の加熱気相雰囲気から前記最後の加熱気相雰囲気まで順次通過させて前記溶融ガラス粒子とする請求項1に記載の溶融ガラスの製造方法。 The first heated gas phase atmosphere is formed at the uppermost stage among the two or more heated gas phase atmospheres, the last heated gas phase atmosphere is formed at the lowermost stage among the two or more heated gas phase atmospheres, and the first heating is performed. The melting according to claim 1, wherein the glass raw material particles are supplied to a gas phase atmosphere, and the glass raw material particles are sequentially passed from the first heated gas phase atmosphere to the last heated gas phase atmosphere to form the molten glass particles. Glass manufacturing method.
  3.  前記ガラス原料粒子が清澄剤成分を含有する請求項1または2に記載の溶融ガラスの製造方法。 The method for producing molten glass according to claim 1 or 2, wherein the glass raw material particles contain a fining agent component.
  4.  前記最初の加熱気相雰囲気の温度を、前記ガラス原料粒子のガラス化開始温度以上、1500℃以下とする請求項2または3に記載の溶融ガラスの製造方法。 The method for producing molten glass according to claim 2 or 3, wherein the temperature of the first heated gas phase atmosphere is set to a temperature at which the glass raw material particles are vitrified or higher and 1500 ° C or lower.
  5.  前記最後の加熱気相雰囲気の温度を、前記ガラス原料粒子中の清澄剤成分の清澄開始温度以上、20000℃以下とする請求項2~4のいずれか一項に記載の溶融ガラスの製造方法。 The method for producing molten glass according to any one of claims 2 to 4, wherein the temperature of the final heated gas-phase atmosphere is set to a clarification start temperature of the clarifier component in the glass raw material particles or more and 20000 ° C or less.
  6.  前記最初の加熱気相雰囲気を形成する加熱手段の熱源発生部の先端と前記溶融ガラス粒子を貯留して溶融ガラスとした該溶融ガラスの液面との鉛直距離をHとしたとき、前記最後の加熱気相雰囲気を、前記溶融ガラスの液面から上方0.5H以内に形成する請求項2~5のいずれか一項に記載の溶融ガラスの製造方法。 When the vertical distance between the tip of the heat source generating part of the heating means for forming the first heated vapor phase atmosphere and the liquid surface of the molten glass that stores the molten glass particles to form molten glass is H, the last The method for producing molten glass according to any one of claims 2 to 5, wherein a heated gas phase atmosphere is formed within 0.5H above the liquid surface of the molten glass.
  7.  溶融ガラスを収容する炉体と、
     前記炉体の上部に配置されガラス原料粒子を前記炉体の内側に投入するガラス原料粒子投入部と、
     前記ガラス原料粒子投入部の下方に前記ガラス原料粒子を加熱溶融して溶融ガラス粒子にするための加熱気相雰囲気を2以上、上下方向に並ぶように形成する加熱手段と、
     を備えるガラス溶融炉。
    A furnace body containing molten glass;
    A glass raw material particle charging unit disposed at an upper portion of the furnace body and charging glass raw material particles into the furnace body;
    A heating means for forming two or more heating gas phase atmospheres for heating and melting the glass raw material particles into molten glass particles below the glass raw material particle charging portion so as to be arranged in the vertical direction;
    A glass melting furnace.
  8.  前記加熱手段は、前記2以上の加熱気相雰囲気のうち最上段にガラス原料粒子を最初に溶融するための加熱気相雰囲気を形成する最初の加熱手段と、前記2以上の加熱気相雰囲気のうち最下段にガラス原料粒子を最後に溶融するための加熱気相雰囲気を形成する最後の加熱手段と、を備える請求項7に記載のガラス溶融炉。 The heating means includes a first heating means for forming a heated gas phase atmosphere for first melting glass raw material particles in the uppermost stage of the two or more heated gas phase atmospheres; and the two or more heated gas phase atmospheres. A glass melting furnace according to claim 7, further comprising: a last heating means for forming a heated gas phase atmosphere for melting glass raw material particles lastly at the lowest stage.
  9.  前記最初の加熱手段は、燃焼バーナーである請求項8に記載のガラス溶融炉。 The glass melting furnace according to claim 8, wherein the first heating means is a combustion burner.
  10.  前記最後の加熱手段は、燃焼バーナーおよび/または複数の電極で構成される多相アークプラズマ発生装置である請求項8または9に記載のガラス溶融炉。 The glass melting furnace according to claim 8 or 9, wherein the last heating means is a multi-phase arc plasma generator comprising a combustion burner and / or a plurality of electrodes.
  11.  前記最初の加熱手段は、前記炉体の上部に下向きに配置されている請求項8~10のいずれか一項に記載のガラス溶融炉。 The glass melting furnace according to any one of claims 8 to 10, wherein the first heating means is disposed downward on an upper portion of the furnace body.
  12.  前記最初の加熱手段の熱源発生部の先端と前記炉体内の前記溶融ガラス粒子を貯留して溶融ガラスとした該溶融ガラスの液面との鉛直距離をHとしたとき、前記最後の加熱手段は、前記最後の加熱気相雰囲気が前記溶融ガラスの液面から上方0.5H以内に配置されている請求項8~11のいずれか一項に記載のガラス溶融炉。 When the vertical distance between the tip of the heat source generating part of the first heating means and the liquid surface of the molten glass that stores the molten glass particles in the furnace body to form molten glass is H, the last heating means is The glass melting furnace according to any one of claims 8 to 11, wherein the last heated gas phase atmosphere is disposed within 0.5H above the liquid surface of the molten glass.
  13.  請求項1~6のいずれか一項に記載の溶融ガラスの製造方法を用いて溶融ガラスを製造する工程と、該溶融ガラスを成形する工程と、成形後のガラスを徐冷する工程と、を含むガラス物品の製造方法。 A step of producing a molten glass using the method for producing a molten glass according to any one of claims 1 to 6, a step of forming the molten glass, and a step of gradually cooling the formed glass. A method for producing a glass article.
  14.  請求項7~12のいずれか一項に記載のガラス溶融炉と、該ガラス溶融炉により製造された溶融ガラスを成形する成形手段と、成形後のガラスを徐冷する徐冷手段とを備えるガラス物品の製造装置。 A glass comprising the glass melting furnace according to any one of claims 7 to 12, molding means for molding the molten glass produced by the glass melting furnace, and slow cooling means for gradually cooling the glass after molding. Article manufacturing equipment.
PCT/JP2012/061269 2011-05-17 2012-04-26 Method for producing molten glass, glass-melting furnace, method for producing glass article, and device for producing glass article WO2012157432A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280022826.7A CN103534214B (en) 2011-05-17 2012-04-26 The manufacture device of the manufacture method of melten glass, glass melting furnace, the manufacture method of glass article and glass article
JP2013515065A JP5971241B2 (en) 2011-05-17 2012-04-26 Method for producing molten glass and method for producing glass article
KR1020137027054A KR101965003B1 (en) 2011-05-17 2012-04-26 Method for producing molten glass, glass-melting furnace, method for producing glass article, and device for producing glass article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-110428 2011-05-17
JP2011110428 2011-05-17

Publications (1)

Publication Number Publication Date
WO2012157432A1 true WO2012157432A1 (en) 2012-11-22

Family

ID=47176767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061269 WO2012157432A1 (en) 2011-05-17 2012-04-26 Method for producing molten glass, glass-melting furnace, method for producing glass article, and device for producing glass article

Country Status (5)

Country Link
JP (1) JP5971241B2 (en)
KR (1) KR101965003B1 (en)
CN (1) CN103534214B (en)
TW (1) TW201249765A (en)
WO (1) WO2012157432A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047238A1 (en) * 2022-09-02 2024-03-07 Rockwool A/S Process for recycling waste mineral material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109399637A (en) * 2018-11-02 2019-03-01 大连理工大学 A kind of non-diverting electric arc Granulation Equipments of the high temperature of Buddha's warrior attendant wire cutting silicon powder and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199549A (en) * 2005-01-21 2006-08-03 Tokyo Institute Of Technology Method and apparatus for dissolving glass material and glass production apparatus
WO2007129509A1 (en) * 2006-05-01 2007-11-15 Asahi Glass Company, Limited Process for producing glass
JP2007297239A (en) * 2006-04-28 2007-11-15 Tokyo Institute Of Technology Method and apparatus for dissolving glass raw material and glass production apparatus
JP2010515646A (en) * 2007-01-15 2010-05-13 ロックウール インターナショナル アー/エス Mineral fiber manufacturing method and manufacturing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059727A (en) * 1996-08-20 1998-03-03 Nippon Electric Glass Co Ltd Glass melting furnace
JP4761575B2 (en) 2007-05-28 2011-08-31 大同特殊鋼株式会社 Glass product manufacturing equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199549A (en) * 2005-01-21 2006-08-03 Tokyo Institute Of Technology Method and apparatus for dissolving glass material and glass production apparatus
JP2007297239A (en) * 2006-04-28 2007-11-15 Tokyo Institute Of Technology Method and apparatus for dissolving glass raw material and glass production apparatus
WO2007129509A1 (en) * 2006-05-01 2007-11-15 Asahi Glass Company, Limited Process for producing glass
JP2010515646A (en) * 2007-01-15 2010-05-13 ロックウール インターナショナル アー/エス Mineral fiber manufacturing method and manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047238A1 (en) * 2022-09-02 2024-03-07 Rockwool A/S Process for recycling waste mineral material

Also Published As

Publication number Publication date
CN103534214B (en) 2016-10-26
KR20140023312A (en) 2014-02-26
KR101965003B1 (en) 2019-04-02
JPWO2012157432A1 (en) 2014-07-31
JP5971241B2 (en) 2016-08-17
TW201249765A (en) 2012-12-16
CN103534214A (en) 2014-01-22

Similar Documents

Publication Publication Date Title
KR101899171B1 (en) Glass melter, modification method for glass blank, production method for molten glass, production method for glassware, and production apparatus for glassware
CN102648163B (en) The manufacture method of the manufacture method of glass melting furnace, melten glass, the manufacturing installation of glasswork and glasswork
JP5614407B2 (en) Molten glass manufacturing method, glass melting furnace, glass product manufacturing method, and glass product manufacturing apparatus
JP5920218B2 (en) Method for melting glass raw material, method for producing molten glass, and method for producing glass product
TW201111309A (en) Glass melting furnace, process for producing molten glass, apparatus for producing glass product, and process for producing glass product
WO2011001757A1 (en) Method for manufacturing molten glass, glass-melting furnace, glass article manufacturing device, and glass article manufacturing method
TW201127765A (en) Glass melting furnace, molten glass producing method, glass product producing device, and glass product producing method
US11697608B2 (en) Selective chemical fining of small bubbles in glass
TWI486318B (en) A glass melting furnace, a manufacturing method of a molten glass, a manufacturing apparatus for a glass product, and a method for manufacturing a glass product
JP5966933B2 (en) Glass melting furnace, molten glass manufacturing method, glass product manufacturing method, and glass product manufacturing apparatus
JP5971241B2 (en) Method for producing molten glass and method for producing glass article
JP6015741B2 (en) Glass melting furnace, molten glass manufacturing method, glass product manufacturing apparatus, and glass product manufacturing method
JP2012096941A (en) In-flight melting burner, melting method of glass raw material, method of producing molten glass, method of producing glass bead, method of manufacturing glass product, in-flight melting device and device for manufacturing glass product
JP6032201B2 (en) Glass melting furnace, molten glass manufacturing method, glass article manufacturing method, and glass article manufacturing apparatus
JP2012232868A (en) Glass melting furnace, method of producing molten glass, glass beads and glass article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013515065

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137027054

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12786111

Country of ref document: EP

Kind code of ref document: A1