JP4761575B2 - Glass product manufacturing equipment - Google Patents

Glass product manufacturing equipment Download PDF

Info

Publication number
JP4761575B2
JP4761575B2 JP2007140131A JP2007140131A JP4761575B2 JP 4761575 B2 JP4761575 B2 JP 4761575B2 JP 2007140131 A JP2007140131 A JP 2007140131A JP 2007140131 A JP2007140131 A JP 2007140131A JP 4761575 B2 JP4761575 B2 JP 4761575B2
Authority
JP
Japan
Prior art keywords
furnace body
glass
oxygen burner
furnace
manufacturing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007140131A
Other languages
Japanese (ja)
Other versions
JP2008290921A (en
Inventor
宏司 松井
達哉 岡本
真悟 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Toyo Glass Co Ltd
AGC Inc
Original Assignee
Daido Steel Co Ltd
Asahi Glass Co Ltd
Toyo Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Asahi Glass Co Ltd, Toyo Glass Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2007140131A priority Critical patent/JP4761575B2/en
Publication of JP2008290921A publication Critical patent/JP2008290921A/en
Application granted granted Critical
Publication of JP4761575B2 publication Critical patent/JP4761575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)

Description

本発明はガラス瓶、ガラスコップ、板ガラス等のガラス製品の製造装置に関し、更に詳しくは所謂小ロット多品種のガラス製品をエネルギ効率良く且つ短時間で製造することができるガラス製品の製造装置に関する。   The present invention relates to an apparatus for producing glass products such as glass bottles, glass cups, and plate glasses, and more particularly to an apparatus for producing glass products capable of producing so-called small lot and many types of glass products in an energy efficient manner in a short time.

従来、ガラス製品の製造装置として、ガラス溶解炉と、このガラス溶解炉に接続された温度調整槽と、この温度調整槽の排出口に必要な場合には切断機等を介して接続された成形装置とを備えるものが使用されている。そしてかかるガラス製品の製造装置におけるガラス溶解炉としては、炉内上流部に溶解ゾーンが形成され、また炉内中流部から下流部にかけて清澄ゾーン(ガス抜きゾーン)が形成された相当に長大なものが使用されており、かかるガラス溶解炉はその最上流部から炉内に投入したガラス原料や副原料(以下これらをガラス原料等という)を、該ガラス溶解炉の側壁に取付けたバーナで溶解するようになっている(例えば特許文献1〜3参照)。   Conventionally, as a glass product manufacturing apparatus, a glass melting furnace, a temperature adjusting tank connected to the glass melting furnace, and a molding connected to a discharge port of the temperature adjusting tank through a cutting machine or the like if necessary. What is provided with a device is used. As a glass melting furnace in such a glass product manufacturing apparatus, a melting zone is formed in the upstream part of the furnace, and a clarification zone (gas venting zone) is formed from the midstream part to the downstream part in the furnace. The glass melting furnace uses a burner attached to the side wall of the glass melting furnace to melt the glass raw materials and auxiliary materials (hereinafter referred to as glass raw materials) introduced into the furnace from the most upstream part. (See, for example, Patent Documents 1 to 3).

しかし、前記のようなガラス溶解炉を備える従来のガラス製品の製造装置には、ガラス溶解炉の炉内に投入したガラス原料等をバーナの燃焼による炉内輻射を利用して溶解するようになっているため、1)バーナとして酸素バーナを燃焼させる場合であっても、エネルギ効率が悪い、2)炉内に投入するガラス原料等には融点の異なる様々なものが含まれており、これらのなかで融点の低いものは溶解が早いが、融点の高いものは溶解が遅いので、全体としての均質溶解が難しく、均質溶解にかかる時間が長い、3)ガラス溶解炉の炉内に生成するガラス溶解物の上部に未溶解のガラス原料等の低温物が存在するため、ガラス溶解物中に発生するガスが抜け難く、ガス抜きにかかる時間が長い、という問題があり、またかかる問題に起因し、結果としてガラス溶解炉が長大なものとなって、炉内のガラス溶解物の入れ替えが誠に厄介であるため、4)小ロット多品種のガラス製品の製造に著しく不向きという問題がある。
特開平11−11953号公報 特開平11−11954号公報 特開2005−15299号公報
However, in the conventional glass product manufacturing apparatus equipped with the glass melting furnace as described above, the glass raw material or the like charged into the glass melting furnace is melted by using the in-furnace radiation by the burner combustion. Therefore, 1) Even when an oxygen burner is burned as a burner, the energy efficiency is poor. 2) Various materials having different melting points are included in the glass raw materials to be put into the furnace. Among them, those having a low melting point dissolve quickly, but those having a high melting point dissolve slowly, so it is difficult to achieve homogeneous melting as a whole and the time required for homogeneous melting is long. 3) Glass produced in a glass melting furnace Due to the presence of undissolved glass raw materials at the top of the melt, there is a problem that the gas generated in the glass melt is difficult to escape and the time required for degassing is long. , Glass melting furnace becomes as very long as fruit, for replacement of the glass melt in the furnace is indeed cumbersome, 4) there is a problem that significantly unsuitable for the manufacture of glass products of small lot multi-product.
JP-A-11-11953 Japanese Patent Laid-Open No. 11-11954 JP 2005-15299 A

本発明が解決しようとする課題は、小ロット多品種のガラス製品をエネルギ効率良く且つ短時間で製造することができる装置を提供する処にある。   The problem to be solved by the present invention is to provide an apparatus capable of producing a glass product of a small lot and various types in an energy efficient manner in a short time.

前記の課題を解決する本発明は、ガラス溶解炉の分割された上部炉体を一つ又は二つ以上備える上部機構と、該上部炉体と当接してガラス溶解炉を形成することとなる分割された下部炉体、該下部炉体に接続された温度調整槽及び該温度調整槽の排出口に接続された成形装置を含む組を一組又は二組以上備える下部機構とから成り、該上部機構及び該下部機構の一方又は双方が移動可能に装備されていて、該上部炉体には天井壁に酸素バーナが下向きで取付けられており、該酸素バーナには酸素濃度90容量%以上の支燃ガスが供給され、またガラス原料等が気体搬送により供給されるようになっていて、上部機構の少なくとも一つの上部炉体を下部機構の少なくとも一つの組の下部炉体に当接させてガラス溶解炉を形成した状態にて、酸素バーナを下向きで燃焼させると共にガラス原料等をその火炎中に下向きで供給して溶解し、溶解したガラス溶解物を直下の下部炉体に一時的に貯留して、そのまま温度調整槽へと流出させるようにして成ることを特徴とするガラス製品の製造装置に係る。   The present invention for solving the above-mentioned problems is an upper mechanism including one or two or more divided upper furnace bodies of a glass melting furnace, and a division that forms a glass melting furnace in contact with the upper furnace body. The lower furnace body, a temperature control tank connected to the lower furnace body, and a lower mechanism comprising one or more sets including a molding device connected to the discharge port of the temperature control tank, One or both of the mechanism and the lower mechanism are movably equipped, and the upper furnace body has an oxygen burner attached to the ceiling wall in a downward direction, and the oxygen burner has an oxygen concentration of 90% by volume or more. Combustion gas is supplied, and glass raw materials and the like are supplied by gas conveyance. At least one upper furnace body of the upper mechanism is brought into contact with at least one set of lower furnace bodies of the lower mechanism, and glass is supplied. With the melting furnace formed, oxygen -Burn the furnace downward and supply glass raw material etc. downward in the flame to melt it, temporarily store the melted glass melt in the lower furnace body directly below, and flow out to the temperature control tank as it is The present invention relates to an apparatus for manufacturing a glass product.

本発明に係るガラス製品の製造装置は、上部機構と下部機構とから成っている。上部機構は、ガラス溶解炉の分割された上部炉体を一つ又は二つ以上備えている。下部機構は、前記の上部炉体と当接してガラス溶解炉を形成することとなる分割された下部炉体、該下部炉体に接続された温度調整槽及び該温度調整槽の排出口に接続された成形装置を含む組を一組又は二組以上備えている。かかる上部機構及び下部機構は、一方が他方に対して、又は双方が互いに移動可能に装備されている。この場合の移動手段としては、上部機構及び/又は下部機構を、レール上を自走する台車上に支持する手段、レール上を牽引走行するクレーンで吊下げ支持する手段等、それ自体は公知の手段を採用できる。   The glass product manufacturing apparatus according to the present invention includes an upper mechanism and a lower mechanism. The upper mechanism includes one or more divided upper furnace bodies of the glass melting furnace. The lower mechanism is connected to the divided lower furnace body that comes into contact with the upper furnace body to form a glass melting furnace, the temperature adjustment tank connected to the lower furnace body, and the discharge port of the temperature adjustment tank One set or two or more sets including the formed molding apparatus are provided. The upper mechanism and the lower mechanism are equipped so that one can move relative to the other or both. As the moving means in this case, a means for supporting the upper mechanism and / or the lower mechanism on a carriage that runs on the rail, a means for supporting the suspension by a crane that pulls on the rail, and the like are known per se. Means can be adopted.

本発明に係るガラス製品の製造装置において、下部機構の温度調整槽及び成形装置の構成それ自体は、これらが組として移動可能に装備されているか否かを除き、従来のガラス製品の製造装置と同様になっているので、以下は主に、上部炉体と下部炉体とに分割されたガラス溶解炉について説明する。上部機構におけるガラス溶解炉の分割された上部炉体には天井壁に酸素バーナが下向きで取付けられている。   In the glass product manufacturing apparatus according to the present invention, the temperature adjusting tank of the lower mechanism and the configuration of the forming apparatus itself are the same as those of the conventional glass product manufacturing apparatus, except that these are movably equipped as a set. Since it is the same, the following mainly demonstrates the glass melting furnace divided | segmented into the upper furnace body and the lower furnace body. An oxygen burner is attached to the ceiling wall in a downward direction in the divided upper furnace body of the glass melting furnace in the upper mechanism.

上部炉体の酸素バーナには酸素濃度90容量%以上の支燃ガスが供給され、またガラス原料等が気体搬送により供給されるようになっていて、該酸素バーナを下向きで燃焼させるときにガラス原料等をその火炎中に下向きで供給して溶解するようになっている。かかる酸素バーナそれ自体としては、公知のものを転用でき、例えば特開平8−312938号公報、特開2000−55340号公報及び特開2000−103656号公報等に記載されているような酸素バーナを転用できる。これらの酸素バーナは、先端部におけるノズル構造が、中心部から外周部に向かい、例えば燃料供給ノズル、一次支燃ガス供給ノズル、被処理物(ガラス原料等)供給ノズル及び二次支燃ガス供給ノズルのように、複数の供給ノズルが同心円状に配列されたものからなっている。   The oxygen burner of the upper furnace body is supplied with a combustion support gas having an oxygen concentration of 90% by volume or more, and glass raw materials and the like are supplied by gas transportation. When the oxygen burner is burned downward, glass is used. Raw materials and the like are supplied and dissolved downward in the flame. As such an oxygen burner itself, a known one can be used. For example, an oxygen burner described in JP-A-8-312938, JP-A-2000-55340, JP-A-2000-103656, and the like can be used. Can be diverted. In these oxygen burners, the nozzle structure at the tip is directed from the center to the outer periphery, for example, a fuel supply nozzle, a primary combustion gas supply nozzle, an object to be treated (glass raw material etc.) supply nozzle, and a secondary combustion gas supply Like a nozzle, it consists of a plurality of supply nozzles arranged concentrically.

上部機構及び/又は下部機構を移動し、上部機構の少なくとも一つの上部炉体を下部機構の少なくとも一つの組の下部炉体に当接させて、双方でガラス溶解炉を形成した状態にて、該上部炉体の酸素バーナを下向きで燃焼させると共にガラス原料等をその火炎中に下向きで供給して溶解し、溶解したガラス溶解物を該下部炉体の炉底部に一時的に貯留して、そのまま例えばスロートを介して該下部炉体と同じ組の温度調整槽へと流出させる。   In a state where the upper mechanism and / or the lower mechanism is moved, at least one upper furnace body of the upper mechanism is brought into contact with at least one set of lower furnace bodies of the lower mechanism, and a glass melting furnace is formed by both. Combusting the oxygen burner of the upper furnace body downward and supplying glass raw material or the like downward into the flame to melt, and temporarily storing the molten glass melt at the furnace bottom of the lower furnace body, As it is, it is made to flow out to the same temperature control tank as the lower furnace body through, for example, a throat.

前記のように酸素バーナをガラス溶解炉の分割された炉体上部の天井壁に下向きで取付け、これに酸素濃度90容量%以上の支燃ガスを供給して下向きで燃焼させると、火炎それ自体の温度が高くなるだけでなく、その火炎は直下に位置する下部炉体の炉底部に一時的に貯留されるガラス溶解物の湯面をも加熱する。かかる火炎中にガラス原料等を下向きで供給すると、該ガラス原料等は極めて短時間で溶解する。しかもこのとき、下向きで燃焼する高温の火炎中に下向きで供給したガラス原料等の水分は一気に蒸発し、炭酸化合物の形態をとるものは分解してガスを放出するので、炉底部におけるガラス溶解物中でのガス発生量は著しく低くなる。その上、かかるガラス溶解物は一時的ではあっても炉底部に貯留され、ここで均質化とガス抜きが促されるので、従来のガラス溶解炉のように清澄ゾーン(ガス抜きゾーン)を経由するまでもなく、そのまま温度調整槽へ流出させても、ガラス製品の原料に相当するものとして何ら支障はない。求められるガラス製品の物性や形状に応じて、最も適切な上部炉体を選び、また下部炉体、温度調整槽及び成形装置が含まれる組を選んで、該上部炉体を該下部炉体に当接させて前記のようなガラス溶解炉を形成することにより、小ロット多品種のガラス製品をエネルギ効率良く且つ短時間で製造することができるのである。   As described above, when the oxygen burner is mounted downward on the ceiling wall of the upper part of the divided furnace body of the glass melting furnace and supplied with a supporting gas having an oxygen concentration of 90% by volume or more and burned downward, the flame itself In addition to the increase in temperature, the flame also heats the molten metal surface temporarily stored in the bottom of the lower furnace body located immediately below. When glass raw material or the like is supplied downward in such a flame, the glass raw material or the like dissolves in a very short time. In addition, at this time, moisture such as glass raw material supplied downward in a high-temperature flame that burns downward evaporates all at once, and those in the form of carbonate compounds decompose and release gas, so the glass melt at the bottom of the furnace The amount of gas generated inside is significantly reduced. In addition, such glass melt is temporarily stored in the bottom of the furnace, where homogenization and degassing are promoted, so that it passes through the refining zone (degassing zone) like a conventional glass melting furnace. Needless to say, there is no problem even if it is allowed to flow out into the temperature control tank as it is as a raw material for glass products. Select the most appropriate upper furnace body according to the required physical properties and shape of the glass product, and also select a set including the lower furnace body, temperature control tank and molding device, and use the upper furnace body as the lower furnace body. By forming the glass melting furnace as described above by abutting, glass products of a small lot and a variety can be manufactured in an energy efficient manner in a short time.

本発明に係るガラス製品の製造装置では、装置全体の構成上、上部機構が上部炉体を一つ備え、移動可能に装備されていて、下部機構が下部炉体、温度調整槽及び成形装置を含む組を二組以上備え、固定的に設置されたものが好ましく、また上部機構が上部炉体を一つ備え、固定的に設置されていて、下部機構が下部炉体、温度調整槽及び成形装置を含む組を二組以上備え、移動可能に装備されたものが好ましい。いずれの場合も、上部機構や下部機構の移動は、直線状であってもよいし、リング状であってもよい。   In the apparatus for manufacturing glass products according to the present invention, the upper mechanism is provided with one upper furnace body and is movably equipped, and the lower mechanism includes a lower furnace body, a temperature control tank, and a molding device. It is preferable that two or more sets are included and fixedly installed, and that the upper mechanism has one upper furnace body and is fixedly installed, and the lower mechanism is the lower furnace body, the temperature adjustment tank and the molding. It is preferable that two or more sets including the device are provided and movable. In any case, the movement of the upper mechanism and the lower mechanism may be linear or ring-shaped.

更に上部炉体の天井壁に下向きで取付けた酸素バーナには昇降手段を設け、該昇降手段の作動によりそれらの先端部と下部炉体の炉底部に一時的に貯留されたガラス溶解物の湯面との間の距離を可変となるようにするのが好ましい。酸素バーナの燃焼量を調節するだけでなく、これらのバーナの先端部とガラス溶解物の湯面との間の距離をも変えることによって、ガラス溶解物、なかでもその湯面の加熱をより自在に制御できるようにするのである。酸素バーナの燃焼量を調節すると、それらの火炎長さが変わり、火炎の先端部とガラス溶解物の湯面との間の距離が変わることが多いが、この距離が適正でない場合は、かかる距離を前記の昇降手段により適正に制御できる。   Further, the oxygen burner attached downward to the ceiling wall of the upper furnace body is provided with elevating means, and the glass melt hot water temporarily stored at the tip and bottom of the lower furnace body by the operation of the elevating means. It is preferable to make the distance between the surfaces variable. Not only can the amount of oxygen burner be burned, but also the distance between the tip of these burners and the surface of the molten glass can be changed to make the glass melt, especially the surface of the molten metal, more flexible. So that it can be controlled. Adjusting the amount of combustion of the oxygen burners changes their flame length and often changes the distance between the flame tip and the melt surface of the glass melt. Can be appropriately controlled by the lifting means.

更にまた下部炉体の炉底部には小プールを形成し、生成したガラス溶解物を該小プールに一時的に貯留して、該小プールからこれを形成する堰をオーバーフローすることにより温度調整槽へと流出させるようにするのが好ましい。生成したガラス溶解物をかかる小プールに一時的に貯留することにより、ガラス溶解物の均質化とガス抜きを更に促すことができる。   Furthermore, a temperature control tank is formed by forming a small pool at the bottom of the furnace body of the lower furnace body, temporarily storing the generated glass melt in the small pool, and overflowing the weir forming this from the small pool. It is preferable to let it flow into By temporarily storing the generated glass melt in such a small pool, homogenization and degassing of the glass melt can be further promoted.

本発明に係るガラス製品の製造装置によると、小ロット多品種のガラス製品を、エネルギ効率良く且つ短時間で製造することができるという効果がある。   According to the glass product manufacturing apparatus of the present invention, there is an effect that it is possible to manufacture glass products of a large variety of small lots efficiently and in a short time.

図1は本発明に係るガラス製品の製造装置のうちでガラス瓶の製造装置を略示する全体平面図である。図1に略示したガラス瓶の製造装置は、上部機構11と下部機構51とから成っており、上部機構11はガラス溶解炉の分割された上部炉体21を一つ備えていて、下部機構51は上部炉体21と当接してガラス溶解炉を形成することとなる分割された下部炉体61〜64、下部炉体61〜64にスロートを介して接続された温度調整槽71〜74、温度調整槽71〜74の排出口に接続された切断機81〜84(但し図1では図示を省略、以下同じ)及び切断機81〜84に投入シュートを介して接続された成形装置91〜94を含む組を合計で四組備えている。   FIG. 1 is an overall plan view schematically showing a glass bottle manufacturing apparatus in a glass product manufacturing apparatus according to the present invention. The glass bottle manufacturing apparatus schematically shown in FIG. 1 includes an upper mechanism 11 and a lower mechanism 51, and the upper mechanism 11 includes one divided upper furnace body 21 of a glass melting furnace. Is divided into the lower furnace bodies 61 to 64 which are in contact with the upper furnace body 21 to form a glass melting furnace, the temperature adjusting tanks 71 to 74 connected to the lower furnace bodies 61 to 64 through throats, the temperature Cutting machines 81 to 84 (not shown in FIG. 1, not shown in FIG. 1) connected to the discharge ports of the adjustment tanks 71 to 74 and forming devices 91 to 94 connected to the cutting machines 81 to 84 via a charging chute are provided. A total of four sets are included.

上部機構11を構成する上部炉体21は、2本の平行するレール31,32上を自走する台車33にシリンダ機構34,35を介して支持されるようになっており、シリンダ機構34,35により持ち上げた状態で2本のレール31,32に沿い直線状に移動するようになっている。一方、下部機構51を構成する前記の各組は等間隔で横並びに設置されており、各組の下部炉体61〜64は2本のレール31,32に沿い直線状に移動する上部炉体21が直下に臨むこととなる位置に設置されている。図1の場合には、上部炉体21が下部炉体63を直下に臨む位置にて、シリンダ機構34,35を作動し、上部炉体21を下降させて、下部炉体63と当接させることにより、双方でガラス溶解炉を形成した状態を示している。図1の場合、上部炉体21を一つ備える上部機構11が移動可能に装備されており、下部炉体61〜64、温度調整槽71〜74、切断機81〜84及び成形装置91〜94を含む組を合計で四組備える下部機構51が固定的に設置されているのである。   The upper furnace body 21 constituting the upper mechanism 11 is supported by a carriage 33 that is self-propelled on two parallel rails 31 and 32 via cylinder mechanisms 34 and 35. In a state where it is lifted by 35, it moves linearly along the two rails 31, 32. On the other hand, the above-mentioned groups constituting the lower mechanism 51 are installed side by side at equal intervals, and the lower furnace bodies 61 to 64 of each group move in a straight line along the two rails 31 and 32. 21 is installed at a position where it faces directly below. In the case of FIG. 1, the cylinder mechanisms 34 and 35 are operated at a position where the upper furnace body 21 faces the lower furnace body 63 directly below, and the upper furnace body 21 is lowered and brought into contact with the lower furnace body 63. This shows a state in which a glass melting furnace is formed on both sides. In the case of FIG. 1, the upper mechanism 11 having one upper furnace body 21 is movably equipped, and the lower furnace bodies 61 to 64, the temperature adjusting tanks 71 to 74, the cutting machines 81 to 84, and the molding apparatuses 91 to 94. The lower mechanism 51 having a total of four sets including the above is fixedly installed.

図2は図1のガラス瓶の製造装置を一部縦断面で拡大して略示する部分側面図である。前記したように上部炉体21を下降させて下部炉体63と当接させることによりガラス溶解炉が形成されており、かかるガラス溶解炉を形成する下部炉体63の下流側にスロート65を介して温度調整槽73が、また温度調整槽73の排出口に切断機83が、更に切断機83の下流側に投入シュートを介して成形装置93が接続されている。ガラス溶解炉を除く他の構成は従来のガラス瓶の製造装置とほぼ同様になっているが、図1や2に略示したガラス溶解炉は、横断面がほぼ正方形で、全体としてはやや縦長の、外観が直方体様を呈しており、それを構成する上部炉体21の天井壁に酸素バーナ22が下向きで取付けられていて、酸素バーナ22が直下に臨む下部炉体63の炉底部にガラス溶解物Aが一時的に貯留されるようになっている。酸素バーナ22はシリンダ機構23を介して上部炉体21の天井壁に取付けられており、昇降可能となっていて、その先端部とガラス溶解物Aの湯面との間の距離が可変となっている。   FIG. 2 is a partial side view schematically showing the glass bottle manufacturing apparatus of FIG. As described above, the upper furnace body 21 is lowered and brought into contact with the lower furnace body 63 to form a glass melting furnace, and the throat 65 is provided downstream of the lower furnace body 63 forming the glass melting furnace. The cutting machine 83 is connected to the temperature adjusting tank 73, the discharge port of the temperature adjusting tank 73, and the molding device 93 is connected to the downstream side of the cutting machine 83 via a charging chute. Except for the glass melting furnace, the configuration is almost the same as that of the conventional glass bottle manufacturing apparatus, but the glass melting furnace schematically shown in FIGS. 1 and 2 has a substantially square cross section and is slightly vertically long as a whole. The outer appearance is a rectangular parallelepiped, and the oxygen burner 22 is attached downward on the ceiling wall of the upper furnace body 21 constituting the same, and the glass melts at the bottom of the lower furnace body 63 where the oxygen burner 22 faces directly below. Object A is temporarily stored. The oxygen burner 22 is attached to the ceiling wall of the upper furnace body 21 via the cylinder mechanism 23 and can be moved up and down, and the distance between the tip of the glass burner A and the molten metal surface of the glass melt A is variable. ing.

酸素バーナ22は前記したような複数の供給ノズルが同心円状に配列されたものからなっている。かかる酸素バーナ22には吸着式酸素発生装置24から燃焼制御ユニット25を介し酸素濃度90容量%以上の支燃ガスが供給されるようになっており、また燃料タンク26から燃焼制御ユニット25を介し燃料ガスが供給されるようになっている。更に酸素バーナ22には粉粒状のガラス原料等が気体搬送で供給されるように気体搬送系41が接続されている。気体搬送系41の上流側にはドライヤ付きコンプレッサ42が接続されており、その途中にガラス原料等供給系43が接続されている。ガラス原料等供給系43は、ガラス原料等貯留用のホッパ44、ホッパ44に接続された定量切出装置45、定量切出装置45に接続された振動篩46、振動篩46に接続された定量供給装置47を備え、また振動篩46で篩分けられた粗大物を破砕して振動篩46の上流側に戻す破砕機48を備えている。ホッパ44、定量切出装置45、振動篩46及び定量供給装置47を経由し、また必要に応じ破砕機48をも経由してガラス原料等供給系43から気体搬送系41へ粉粒状のガラス原料等を定量供給しつつ、更に酸素バーナ22へと供給するようになっている。図2の場合には、ガラス溶解炉を形成する上部炉体21の天井壁に下向きで取付けた酸素バーナ22へ燃料ガス及び酸素濃度90容量%以上の支燃ガスを供給して下向きで燃焼させ、その火炎中に粉粒状のガラス原料等を下向きで供給して溶解するようになっている。   The oxygen burner 22 is composed of a plurality of supply nozzles arranged concentrically as described above. The oxygen burner 22 is supplied with combustion-supporting gas having an oxygen concentration of 90% by volume or more from the adsorption-type oxygen generator 24 via the combustion control unit 25, and from the fuel tank 26 via the combustion control unit 25. Fuel gas is supplied. Further, a gas transport system 41 is connected to the oxygen burner 22 so that powdery glass raw materials and the like are supplied by gas transport. A compressor 42 with a dryer is connected to the upstream side of the gas transport system 41, and a glass raw material supply system 43 is connected in the middle thereof. The glass raw material supply system 43 includes a glass raw material storage hopper 44, a quantitative cutting device 45 connected to the hopper 44, a vibrating sieve 46 connected to the quantitative cutting device 45, and a fixed quantity connected to the vibrating sieve 46. A crusher 48 is provided that includes a supply device 47 and crushes the coarse material sieved by the vibrating sieve 46 and returns it to the upstream side of the vibrating sieve 46. Powdered glass raw material from the glass raw material supply system 43 to the gas conveying system 41 via the hopper 44, the quantitative cutting device 45, the vibrating sieve 46 and the quantitative supply device 47, and also via the crusher 48 as necessary. Etc. are supplied to the oxygen burner 22 while being supplied in a fixed quantity. In the case of FIG. 2, the fuel gas and the combustion supporting gas having an oxygen concentration of 90% by volume or more are supplied to the oxygen burner 22 mounted downward on the ceiling wall of the upper furnace body 21 forming the glass melting furnace and burned downward. In this flame, powdery glass raw material or the like is supplied downward and melted.

図2の場合、前記のようにガラス原料等をガラス溶解炉を形成する上部炉体21の酸素バーナ22で溶解し、生成したガラス溶解物Aを該ガラス溶解炉を形成する下部炉体63の炉底部に一時的に貯留し、ここで均質化とガス抜きとを促した後、スロート65を介して温度調整槽73へと流出させるようになっている。そして温度調整槽73で温度調整したガラス溶解物を排出口を介して切断機83で1本分のガラス瓶量に切断した後、切断したものを投入シュートを介して成形装置93へと供して、ブロー成形することによりガラス瓶Bを製造するようになっている。   In the case of FIG. 2, the glass raw material or the like is melted by the oxygen burner 22 of the upper furnace body 21 forming the glass melting furnace as described above, and the generated glass melt A is formed in the lower furnace body 63 forming the glass melting furnace. After temporarily storing in the bottom of the furnace, and promoting the homogenization and degassing here, it flows out to the temperature adjusting tank 73 through the throat 65. And after cutting the glass melt whose temperature has been adjusted in the temperature adjusting tank 73 into the amount of one glass bottle with the cutting machine 83 through the discharge port, the cut one is provided to the forming device 93 through the charging chute, The glass bottle B is manufactured by blow molding.

求められるガラス瓶の物性に応じてホッパ44に貯留する粉粒状のガラス原料等の組成を変え、また求められるガラス瓶の大きさや形状に応じて下部機構51のなかから適切な成形装置等を含む組を選び、例えば図1で最も左側の組を選んだ場合にはこの組の下部炉体61上に上部炉体21を移動して双方を当接させることによりガラス溶解炉を形成し、以下は前記したことと同様にしてガラス瓶を製造する。   Depending on the required physical properties of the glass bottle, the composition of the powdered glass raw material and the like stored in the hopper 44 is changed. For example, when the leftmost group in FIG. 1 is selected, a glass melting furnace is formed by moving the upper furnace body 21 onto the lower furnace body 61 of this group and bringing them into contact with each other. A glass bottle is produced in the same manner as described above.

図3は本発明に係るガラス製品の製造装置のうちで他のガラス瓶の製造装置を一部省略して略示する全体平面図である。ここでは説明の便宜上、図1と同様の構成部分については、図1と同じ符号にaを付記して示した。図3に略示したガラス瓶の製造装置も、上部機構11aと下部機構51aとから成っており、上部機構11aはガラス溶解炉の分割された上部炉体21aを一つ備えていて、下部機構51aは上部炉体21aと当接してガラス溶解炉を形成することとなる分割された下部炉体61a〜64a、下部炉体61a〜64aにスロートを介して接続された温度調整槽71a〜74a、温度調整槽71a〜74aの排出口に接続された切断機81a〜84a(但し図3では図示を省略、以下同じ)及び切断機81a〜84aに投入シュートを介して接続された成形装置91a〜94aを含む組を合計で四組備えている。   FIG. 3 is an overall plan view schematically showing a glass product manufacturing apparatus according to the present invention with a part of another glass bottle manufacturing apparatus omitted. Here, for convenience of explanation, the same reference numerals as those in FIG. 1 are given to the same components as those in FIG. The glass bottle manufacturing apparatus schematically shown in FIG. 3 also includes an upper mechanism 11a and a lower mechanism 51a. The upper mechanism 11a includes one upper furnace body 21a that is a divided glass melting furnace, and the lower mechanism 51a. Is a divided lower furnace body 61a to 64a that comes into contact with the upper furnace body 21a to form a glass melting furnace, temperature adjustment tanks 71a to 74a connected to the lower furnace bodies 61a to 64a through a throat, Cutting machines 81a to 84a connected to the discharge ports of the adjusting tanks 71a to 74a (not shown in FIG. 3, but the same shall apply hereinafter) and forming apparatuses 91a to 94a connected to the cutting machines 81a to 84a via a charging chute. A total of four sets are included.

上部機構11aを構成する上部炉体21aは、水平方向へは移動しないものの、図示しないシリンダ機構により昇降するようになっている。一方、下部機構51aを構成する前記の各組は等間隔の横並びで台車33a上に装備されており、台車33aは2本の平行するレール31a,32aに沿い直線状に移動するようになっている。図3の場合には、上部炉体21aが下部炉体63aを直下に臨む位置にて、図示しないシリンダ機構を作動し、上部炉体21aを下降させて、下部炉体63aと当接させることにより、双方でガラス溶解炉を形成した状態を示している。図3の場合、上部炉体21aを一つ備える上部機構11aが昇降を除き固定的に設置されており、下部炉体61a〜64a、温度調整槽71a〜74a、切断機81a〜84a及び成形装置91a〜94aを含む組を合計で四組備える下部機構51aが移動可能に装備されているのである。説明を省略するが、図3の場合もその他は図1や2の場合と同様になっている。   The upper furnace body 21a constituting the upper mechanism 11a does not move in the horizontal direction, but is moved up and down by a cylinder mechanism (not shown). On the other hand, each of the above-mentioned groups constituting the lower mechanism 51a is mounted on the carriage 33a in a line with equal intervals, and the carriage 33a moves linearly along two parallel rails 31a and 32a. Yes. In the case of FIG. 3, a cylinder mechanism (not shown) is operated at a position where the upper furnace body 21a directly faces the lower furnace body 63a, and the upper furnace body 21a is lowered and brought into contact with the lower furnace body 63a. Thus, a state in which a glass melting furnace is formed on both sides is shown. In the case of FIG. 3, the upper mechanism 11a having one upper furnace body 21a is fixedly installed except for raising and lowering, and the lower furnace bodies 61a to 64a, the temperature adjusting tanks 71a to 74a, the cutting machines 81a to 84a, and the molding apparatus. A lower mechanism 51a having a total of four sets including 91a to 94a is movably equipped. Although not described, the case of FIG. 3 is the same as that of FIGS.

図4は本発明に係るガラス製品の製造装置のうちで更に他のガラス瓶の製造装置を一部省略して略示する全体平面図である。ここでは説明の便宜上、図1と同様の構成部分については、図1と同じ符号にbを付記して示した。図4に略示したガラス瓶の製造装置は、上部機構11bと下部機構51bとから成っており、上部機構11bはガラス溶解炉の分割された上部炉体21bを一つ備えていて、下部機構51bは上部炉体21bと当接してガラス溶解炉を形成することとなる分割された下部炉体61b〜66b、下部炉体61b〜66bにスロートを介して接続された温度調整槽71b〜76b、温度調整槽71b〜76bの排出口に接続された切断機81b〜86b(但し図4では図示を省略、以下同じ)及び切断機81b〜86bに投入シュートを介して接続された成形装置91b〜96bを含む組を合計で六組備えている。   FIG. 4 is an overall plan view schematically showing a glass product manufacturing apparatus according to the present invention with a part of another glass bottle manufacturing apparatus omitted. Here, for convenience of explanation, components similar to those in FIG. 1 are denoted by the same reference numerals as in FIG. The glass bottle manufacturing apparatus schematically shown in FIG. 4 includes an upper mechanism 11b and a lower mechanism 51b. The upper mechanism 11b includes one divided upper furnace body 21b of a glass melting furnace, and the lower mechanism 51b. Is divided into the lower furnace bodies 61b to 66b, which contact the upper furnace body 21b to form a glass melting furnace, the temperature adjusting tanks 71b to 76b connected to the lower furnace bodies 61b to 66b through the throat, Cutting machines 81b to 86b (not shown in FIG. 4, omitted in FIG. 4) connected to the discharge ports of the adjustment tanks 71b to 76b, and forming devices 91b to 96b connected to the cutting machines 81b to 86b via a charging chute are provided. There are a total of 6 pairs including the set.

上部機構11bを構成する上部炉体21bは、2本のリング状のレール31b,32b上を自走する共に図示しない台車上にシリンダ機構を介して支持されるようになっており、かかるシリンダ機構により持ち上げた状態で2本のレール31b,32bに沿いリング状に移動するようになっている。一方、下部機構51bを構成する前記の各組は等間隔で放射状に設置されており、各組の下部炉体61b〜66bは2本のレール31b,32bに沿いリング状に移動する上部炉体21bが直下に臨むこととなる位置に設置されている。図4の場合には、上部炉体21bが下部炉体63bを直下に臨む位置にて、図示しないシリンダ機構を作動し、上部炉体21bを下降させて、下部炉体63bと当接させることにより、双方でガラス溶解炉を形成した状態を示している。図4の場合、上部炉体21bを一つ備える上部機構11bが移動可能に装備されており、下部炉体61b〜66b、温度調整槽71b〜76b、切断機81b〜86b及び成形装置91b〜96bを含む組を合計で六組備える下部機構51bが固定的に設置されているのである。説明を省略するが、図4の場合もその他は図1や2の場合と同様になっている。   The upper furnace body 21b constituting the upper mechanism 11b is self-propelled on the two ring-shaped rails 31b and 32b and is supported on a cart (not shown) via a cylinder mechanism. It moves in a ring shape along the two rails 31b and 32b in a state where it is lifted by the above. On the other hand, the above-mentioned groups constituting the lower mechanism 51b are installed radially at equal intervals, and the lower furnace bodies 61b to 66b of each group move in a ring shape along the two rails 31b and 32b. It is installed in a position where 21b faces directly below. In the case of FIG. 4, a cylinder mechanism (not shown) is operated at a position where the upper furnace body 21b directly faces the lower furnace body 63b, and the upper furnace body 21b is lowered and brought into contact with the lower furnace body 63b. Thus, a state in which a glass melting furnace is formed on both sides is shown. In the case of FIG. 4, an upper mechanism 11b including one upper furnace body 21b is movably equipped, and lower furnace bodies 61b to 66b, temperature control tanks 71b to 76b, cutting machines 81b to 86b, and molding apparatuses 91b to 96b. The lower mechanism 51b having a total of six sets including the above is fixedly installed. Although the description is omitted, the other cases in FIG. 4 are the same as those in FIGS.

図5は本発明に係るガラス製品のうちで更にまた他のガラス瓶の製造装置を一部縦断面で拡大して略示する部分側面図である。図5で図示及び説明を省略する他の構成は図1及び図2のガラス瓶の製造装置と同様になっており、図5は図2と対応しているが、ここでは説明の便宜上、図2と同様の構成部分については、図2と同じ符号にcを付記して示した。図5のガラス瓶の製造装置も、図2のガラス瓶の製造装置と同様、上部機構11cの上部炉体21cを下降させて下部機構51cの下部炉体63cと当接させることによりガラス溶解炉が形成されており、かかるガラス溶解炉を形成する下部炉体63cの下流側に温度調整槽73cが、また温度調整槽73cの排出口に切断機83cが接続されていて、更に切断機83cの下流側にいずれも図示しない投入シュートを介して成形装置が接続されている。上部炉体21cの天井壁には酸素バーナ22cが下向きで取付けられており、酸素バーナ22cが直下に臨む下部炉体63cの炉底部に小プール66が形成されていて、小プール66に生成するガラス溶解物Cが一時的に貯留されるようになっている。酸素バーナ22cはシリンダ機構23cを介して上部炉体21cの天井壁に取付けられており、昇降可能となっていて、その先端部と小プール66のガラス溶解物Cの湯面との間の距離が可変となっている。図5の場合、ガラス原料等をガラス溶解炉を形成する上部炉体21cの酸素バーナ22cで溶解し、生成したガラス溶解物Cを該ガラス溶解炉を形成する下部炉体63cの炉底部の小プール66に一時的に貯留し、ここで均質化とガス抜きとを更に一層促した後、小プール66を形成する堰67をオーバーフローして温度調整槽73cへと流出させるようになっている。そして温度調整槽73cで温度調整したガラス溶解物を排出口を介して切断機83cで1本分のガラス瓶量に切断した後、切断したものをいずれも図示しない投入シュートを介して成形装置へと供して、ブロー成形することによりガラス瓶を製造するようになっている。   FIG. 5 is a partial side view schematically showing a further part of the glass bottle manufacturing apparatus in the glass product according to the present invention, partially enlarged in vertical section. 5 is the same as that of the glass bottle manufacturing apparatus of FIGS. 1 and 2, and FIG. 5 corresponds to FIG. 2. Here, for convenience of explanation, FIG. Constituent parts that are the same as those shown in FIG. As in the glass bottle manufacturing apparatus of FIG. 2, the glass bottle manufacturing apparatus of FIG. 5 forms a glass melting furnace by lowering the upper furnace body 21c of the upper mechanism 11c and bringing it into contact with the lower furnace body 63c of the lower mechanism 51c. The temperature adjusting tank 73c is connected to the downstream side of the lower furnace body 63c forming the glass melting furnace, and the cutting machine 83c is connected to the discharge port of the temperature adjusting tank 73c, and further downstream of the cutting machine 83c. In either case, a molding apparatus is connected via a charging chute (not shown). An oxygen burner 22c is attached downward on the ceiling wall of the upper furnace body 21c, and a small pool 66 is formed at the furnace bottom of the lower furnace body 63c with the oxygen burner 22c facing directly below, and is generated in the small pool 66. The glass melt C is temporarily stored. The oxygen burner 22c is attached to the ceiling wall of the upper furnace body 21c via the cylinder mechanism 23c, and can move up and down. The distance between the tip of the oxygen burner 22c and the molten metal surface of the glass melt C in the small pool 66 is provided. Is variable. In the case of FIG. 5, glass raw materials and the like are melted by the oxygen burner 22c of the upper furnace body 21c that forms the glass melting furnace, and the generated glass melt C is small in the furnace bottom portion of the lower furnace body 63c that forms the glass melting furnace. After temporarily storing in the pool 66 and further promoting homogenization and degassing, the weir 67 forming the small pool 66 overflows and flows out to the temperature control tank 73c. Then, after the glass melt whose temperature has been adjusted in the temperature adjusting tank 73c is cut into the amount of one glass bottle by the cutting machine 83c through the discharge port, all of the cut pieces are sent to the molding apparatus through a not-shown charging chute. The glass bottle is manufactured by blow molding.

本発明に係るガラス製品の製造装置のうちでガラス瓶の製造装置を一部省略して略示する全体平面図。BRIEF DESCRIPTION OF THE DRAWINGS The whole top view which abbreviate | omits and partially shows the manufacturing apparatus of a glass bottle among the manufacturing apparatuses of the glass product which concerns on this invention. 図1のガラス瓶の製造装置を一部縦断面で拡大して略示する部分側面図。FIG. 2 is a partial side view schematically showing the glass bottle manufacturing apparatus of FIG. 本発明に係るガラス製品の製造装置のうちで他のガラス瓶の製造装置を一部省略して略示する全体平面図。The whole top view which abbreviate | omits and partially shows the manufacturing apparatus of another glass bottle among the manufacturing apparatuses of the glass product which concerns on this invention. 本発明に係るガラス製品の製造装置のうちで更に他のガラス瓶の製造装置を一部省略して略示する全体平面図。The whole top view which abbreviate | omits and partially shows the manufacturing apparatus of another glass bottle among the manufacturing apparatuses of the glass product which concerns on this invention. 本発明に係るガラス製品の製造装置のうちで更にまた他のガラス瓶の製造装置を一部縦断面で拡大して略示する部分側面図。The partial side view which expands and shows in part a longitudinal cross-section partially another glass bottle manufacturing apparatus among the glass product manufacturing apparatuses which concern on this invention.

符号の説明Explanation of symbols

11,11a,11b,11c 上部機構
21,21a,21b,21c 上部炉体
22,22c 酸素バーナ
31,32,31a,32a,31b,32b,31c,32c レール
33,33a,33c 台車
23,34,35,23c,34c,35c シリンダ機構
41 気体搬送系
43 ガラス原料等供給系
61〜64,61a〜64a,61b〜66b,63c 下部炉体
71〜74,71a〜74a,71b〜76b,73c 温度調整槽
91〜94,91a〜94a,91b〜96b 成形装置
11, 11a, 11b, 11c Upper mechanism 21, 21a, 21b, 21c Upper furnace body 22, 22c Oxygen burner 31, 32, 31a, 32a, 31b, 32b, 31c, 32c Rail 33, 33a, 33c Carriage 23, 34, 35, 23c, 34c, 35c Cylinder mechanism 41 Gas transport system 43 Glass raw material supply system 61-64, 61a-64a, 61b-66b, 63c Lower furnace body 71-74, 71a-74a, 71b-76b, 73c Temperature adjustment Tank 91-94, 91a-94a, 91b-96b

Claims (5)

ガラス溶解炉の分割された上部炉体を一つ又は二つ以上備える上部機構と、該上部炉体と当接してガラス溶解炉を形成することとなる分割された下部炉体、該下部炉体に接続された温度調整槽及び該温度調整槽の排出口に接続された成形装置を含む組を一組又は二組以上備える下部機構とから成り、該上部機構及び該下部機構の一方又は双方が移動可能に装備されていて、該上部炉体には天井壁に酸素バーナが下向きで取付けられており、該酸素バーナには酸素濃度90容量%以上の支燃ガスが供給され、またガラス原料及び副原料が気体搬送により供給されるようになっていて、上部機構の少なくとも一つの上部炉体を下部機構の少なくとも一つの組の下部炉体に当接させてガラス溶解炉を形成した状態にて、酸素バーナを下向きで燃焼させると共にガラス原料及び副原料をその火炎中に下向きで供給して溶解し、溶解したガラス溶解物を直下の下部炉体に一時的に貯留して、そのまま温度調整槽へと流出させるようにして成ることを特徴とするガラス製品の製造装置。   An upper mechanism having one or more divided upper furnace bodies of a glass melting furnace, a divided lower furnace body that comes into contact with the upper furnace body to form a glass melting furnace, and the lower furnace body And a lower mechanism provided with one or two or more sets including a molding device connected to the discharge port of the temperature adjusting tank, and one or both of the upper mechanism and the lower mechanism are The upper furnace body has an oxygen burner attached to the ceiling wall in a downward direction. The oxygen burner is supplied with a combustion support gas having an oxygen concentration of 90% by volume or more. In a state where the auxiliary raw material is supplied by gas conveyance, and at least one upper furnace body of the upper mechanism is brought into contact with at least one set of lower furnace bodies of the lower mechanism to form a glass melting furnace Burn the oxygen burner downwards At the same time, the glass raw material and auxiliary raw materials are supplied and melted downward in the flame, and the melted glass melt is temporarily stored in the lower furnace body directly below, and allowed to flow out to the temperature control tank as it is. An apparatus for producing glass products characterized by comprising: 上部機構が上部炉体を一つ備え、移動可能に装備されていて、下部機構が下部炉体、温度調整槽及び成形装置を含む組を二組以上備え、固定的に設置された請求項1記載のガラス製品の製造装置。   The upper mechanism includes one upper furnace body and is movably equipped, and the lower mechanism includes two or more sets including a lower furnace body, a temperature control tank, and a molding device, and is fixedly installed. The glass product manufacturing apparatus described. 上部機構が上部炉体を一つ備え、固定的に設置されていて、下部機構が下部炉体、温度調整槽及び成形装置を含む組を二組以上備え、移動可能に装備された請求項1記載のガラス製品の製造装置。   The upper mechanism includes one upper furnace body and is fixedly installed, and the lower mechanism includes two or more sets including a lower furnace body, a temperature control tank, and a molding device, and is movably equipped. The glass product manufacturing apparatus described. 上部炉体の酸素バーナに昇降手段が設けられており、該昇降手段の作動により該酸素バーナの先端部と下部炉体に一時的に貯留されたガラス溶解物の湯面との間の距離が可変となるようにした請求項1〜3のいずれか一つの項記載のガラス製品の製造装置。   A lifting means is provided in the oxygen burner of the upper furnace body, and the distance between the tip of the oxygen burner and the molten metal surface of the glass melt temporarily stored in the lower furnace body by the operation of the lifting means is The apparatus for manufacturing a glass product according to any one of claims 1 to 3, wherein the apparatus is variable. 下部炉体の炉底部に小プールが形成されており、ガラス溶解物を該小プールに一時的に貯留して、該小プールからオーバーフローにより温度調整槽へと流出させるようにした請求項1〜4のいずれか一つの項記載のガラス製品の製造装置。   A small pool is formed in the bottom of the furnace body of the lower furnace body, glass melt is temporarily stored in the small pool, and is allowed to flow out from the small pool to the temperature adjustment tank by overflow. 4. The apparatus for producing a glass product according to any one of 4 above.
JP2007140131A 2007-05-28 2007-05-28 Glass product manufacturing equipment Active JP4761575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140131A JP4761575B2 (en) 2007-05-28 2007-05-28 Glass product manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007140131A JP4761575B2 (en) 2007-05-28 2007-05-28 Glass product manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2008290921A JP2008290921A (en) 2008-12-04
JP4761575B2 true JP4761575B2 (en) 2011-08-31

Family

ID=40166046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140131A Active JP4761575B2 (en) 2007-05-28 2007-05-28 Glass product manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4761575B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110126594A1 (en) * 2009-12-01 2011-06-02 Asahi Glass Company, Limited Apparatus for producing molten glass, apparatus and process for producing glass products
KR101965003B1 (en) 2011-05-17 2019-04-02 에이지씨 가부시키가이샤 Method for producing molten glass, glass-melting furnace, method for producing glass article, and device for producing glass article
KR20140027217A (en) * 2011-06-17 2014-03-06 아사히 가라스 가부시키가이샤 Glass melter, method for manufacturing molten glass, method for manufacturing glass article, and device for manufacturing glass article
JP7363796B2 (en) 2018-10-04 2023-10-18 Agc株式会社 Flat glass manufacturing equipment

Also Published As

Publication number Publication date
JP2008290921A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
EP3027569B1 (en) Process for manufacturing vitrified material by melting
US20130086944A1 (en) Systems and methods for making foamed glass using submerged combustion
JP5605767B2 (en) Glass melting furnace, molten glass manufacturing method, glass product manufacturing apparatus, and glass product manufacturing method
JP4499417B2 (en) Apparatus and method for melting batch material
JP4761575B2 (en) Glass product manufacturing equipment
US8573007B2 (en) Process for producing molten glass, glass-melting furnace, process for producing glass products and apparatus for producing glass products
EP2433911A1 (en) Methods and apparatus for recycling glass products using submerged combustion
WO2011001757A1 (en) Method for manufacturing molten glass, glass-melting furnace, glass article manufacturing device, and glass article manufacturing method
US20120159994A1 (en) Glass melting furnace, process for producing molten glass, apparatus for producing glass product, and process for producing glass product
JP2009532321A (en) Furnace with submerged burner and overhead burner
WO2011021576A1 (en) Glass melting furnace, molten glass producing method, glass product producing device, and glass product producing method
JP2007297239A (en) Method and apparatus for dissolving glass raw material and glass production apparatus
JP5717054B2 (en) Glass melting furnace, molten glass manufacturing method, glass product manufacturing apparatus, and glass product manufacturing method
JP2006199549A (en) Method and apparatus for dissolving glass material and glass production apparatus
CN102459100A (en) Material feeding method, material feeding apparatus, and glass plate manufacturing apparatus and method
US20200172421A1 (en) Manufacturing of continuous mineral fibers
CA3180917A1 (en) Glass manufacturing
US20220411306A1 (en) Feeder Alcove and Batch Feeding Apparats for a Melter
US20110126594A1 (en) Apparatus for producing molten glass, apparatus and process for producing glass products
RU2648085C2 (en) Method of cleaning the glass-melting tanks for manufacturing of glass items
US8627685B2 (en) Method for melting at least one powdered mineral material
CN102849923A (en) Novel discharging equipment of microcrystalline glass melting furnace
Polcyn The Fully Compartmentalized Glass Furnace
US759329A (en) Glass-drawing apparatus.
RU67576U1 (en) LINE FOR PRODUCTION OF SHEET POLISHED GLASS

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4761575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250