WO2012157257A1 - Driver system - Google Patents

Driver system Download PDF

Info

Publication number
WO2012157257A1
WO2012157257A1 PCT/JP2012/003163 JP2012003163W WO2012157257A1 WO 2012157257 A1 WO2012157257 A1 WO 2012157257A1 JP 2012003163 W JP2012003163 W JP 2012003163W WO 2012157257 A1 WO2012157257 A1 WO 2012157257A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
power supply
voltage
supply voltage
switching circuit
Prior art date
Application number
PCT/JP2012/003163
Other languages
French (fr)
Japanese (ja)
Inventor
直人 濱口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012157257A1 publication Critical patent/WO2012157257A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations

Definitions

  • This disclosure relates to a driver used with a display panel.
  • the driver system is a system that supplies a voltage for driving the display panel.
  • a switching regulator is used as a driver.
  • the driver system receives a voltage for driving the display panel from a power source.
  • a driver according to the prior art is described in Patent Document 1, for example.
  • An object of the present invention is to provide a driver system that can reduce the current flowing through a load when the power supply voltage is restored after the power supply voltage has dropped instantaneously.
  • the driver system receives a power supply voltage, and generates a control circuit that switches a current that flows through a display panel, and a control voltage that is pulse-width modulated based on an output voltage of the switching circuit.
  • the controller includes a detector that detects a falling edge of the power supply voltage and a comparator that compares the power supply voltage with a predetermined threshold.
  • the period for reducing the duty ratio can be determined appropriately.
  • the switching circuit is a boost converter
  • the boost converter includes a field effect transistor
  • the controller and the driver are provided on one semiconductor chip.
  • FIG. 1 is a diagram illustrating a driver system according to an exemplary embodiment of the present invention.
  • FIG. 2 is a waveform diagram showing the operation of the driver system.
  • FIG. 3 is a waveform diagram showing the operation of the conventional system.
  • FIG. 4 is a waveform diagram showing the operation of the driver system in more detail.
  • FIG. 5 is a block diagram showing the configuration of the driver.
  • FIG. 6 is a block diagram showing the configuration of the controller.
  • FIG. 7 is a waveform diagram illustrating the operation of a driver according to an embodiment.
  • FIG. 8 is a waveform diagram showing the operation of the driver according to another embodiment.
  • FIG. 1 is a diagram illustrating a driver system 100 according to an exemplary embodiment of the present invention.
  • the driver system 100 is used for a television having a liquid crystal display (LCD) panel 110, a display monitor for a personal computer, and the like.
  • the driver system 100 supplies a voltage to the LCD panel 110.
  • a backlight 120 may be provided on the back surface of the LCD panel 110.
  • the driver system 100 includes a switching circuit 130, a driver 140, and a controller 150.
  • the driver 140 and the controller 150 are preferably provided on one semiconductor chip 160.
  • the method of putting the functional blocks of the driver system 100 in a package is not limited to this.
  • the driver 140 may be provided on one semiconductor chip, and the controller 150 may be separately provided outside the driver chip.
  • the driver 140 and the controller 150 may be provided on the LCD panel 110.
  • the switching circuit 130 may be provided on the LCD panel 110.
  • the backlight 120 irradiates the back surface of the LCD panel 110 with light.
  • the light from the backlight 120 passes through the LCD panel 110 and reaches the user. With such a configuration, the user can view an image on the LCD panel 110.
  • the backlight 120 is typically driven by a dedicated power source that is different from the driver system 100.
  • the switching circuit 130 receives the power supply voltage Vcc and controls the voltage Vout supplied to the LCD panel 110 based on the control voltage Vg. By this operation, the driver system 100 generates a reference voltage for the LCD panel 110. Examples of the reference voltage of the LCD panel 110 include a high-side gate voltage (Vgh), a low-side gate voltage (Vgl), and a source voltage (Vs). Switching circuit 130 is typically a boost converter.
  • the switching circuit 130 includes a switching element 132, an inductor 134, a diode 136, and a capacitor 138.
  • the switching element 132 is preferably a field effect transistor (FET).
  • FET field effect transistor
  • the specific configuration of the switching circuit 130 is not limited to the circuit shown in FIG. 1 and may be any appropriate switching regulator.
  • a switching element 132 that can be turned off at high speed and a diode 136 with a short reverse recovery time are preferably used.
  • the driver 140 drives the switching circuit 130 by applying a pulse width modulated control voltage Vg to the control terminal of the switching element 132 (here, the gate of the FET).
  • the switching circuit 130 feeds back the output voltage Vout at the output node OUT to the driver 140.
  • the driver 140 can control the operation of the switching circuit 130 so that the output voltage Vout becomes a desired value. For example, when the output voltage Vout is larger than a desired value, the driver 140 decreases the duty ratio of the control voltage Vg. Conversely, when the output voltage Vout is smaller than a desired value, the driver 140 increases the duty ratio of the control voltage Vg.
  • the desired value of the output voltage Vout may be a constant value or a value that varies depending on the brightness of the image.
  • Controller 150 reduces the duty ratio of control voltage Vg in response to the fall of power supply voltage Vcc. That is, the controller 150 outputs the reset signal Vreset to the driver 140 when the power supply voltage Vcc falls to the threshold value Vth at the falling edge of the power supply voltage Vcc.
  • the driver 140 sets the duty ratio of the control voltage Vg to be small while the reset signal Vreset is asserted. The reduction of the duty ratio of the control voltage Vg will be described in detail later with reference to FIGS.
  • assert refers to activating (or validating) a signal (or logical value) in a digital circuit. For example, when a positive logic signal is asserted, it becomes H level. Conversely, when a negative logic signal is asserted, it goes to the L level.
  • Various circuits described in this disclosure may be implemented in either positive logic or negative logic.
  • FIG. 2 is a waveform diagram showing the operation of the driver system 100.
  • the horizontal axis represents time, and the vertical axis represents the power supply voltage Vcc, the reset signal Vreset, the control voltage Vg, the output voltage Vout, and the current Icc from the top.
  • the power supply voltage Vcc is a rated value (also referred to as a normal value) before time t0.
  • An instantaneous voltage drop occurs at time t0.
  • the term “instantaneous voltage drop” means that the power supply voltage Vcc drops instantaneously.
  • the power supply voltage Vcc drops to the threshold value Vth.
  • the controller 150 detects the falling edge of the power supply voltage Vcc and detects that the power supply voltage Vcc has dropped to the threshold value Vth.
  • the controller 150 asserts the reset signal Vreset and outputs it to the driver 140 during a predetermined period Reset from time t1 to time t3.
  • the power supply voltage Vcc returns to the rated value at time t2, but the controller 150 keeps the reset signal Vreset asserted until time t3.
  • the driver 140 sets the duty ratio of the control voltage Vg to be small during the period Reset (time t1 to time t3) during which the reset signal Vreset is asserted.
  • a waveform indicated by a dotted line in the control voltage Vg in FIG. 2 is a control voltage output by a conventional system that does not have the controller 150.
  • the driver system 100 having the controller 150 outputs a control voltage Vg having a waveform indicated by a solid line to the switching circuit 130. That is, the driver system 100 sets the duty ratio of the control voltage Vg to be smaller than that of the conventional system during the period Reset when the power supply voltage is momentarily reduced.
  • the period Treset need only be long enough to cover the transient state of the power supply voltage, and is preferably on the order of several tens of microseconds.
  • the output voltage Vout rises again after the instantaneous voltage drop.
  • a surge voltage is not generated at the output node OUT due to the duty ratio reduction. Therefore, the surge of the current Icc has only a peak value that can be tolerated.
  • FIG. 3 is a waveform diagram showing the operation of the conventional system.
  • the horizontal axis represents time, and the vertical axis represents the power supply voltage Vcc, the output voltage Vout, and the current Icc from the top.
  • the duty ratio of the control voltage is not reduced in response to the instantaneous voltage drop (time t0). Therefore, the rising edge of the output voltage Vout at time t1 becomes very steep. As a result, a surge current also appears in the current Icc (time t1). This surge current causes an undesirable overcurrent to flow through the load.
  • FIG. 4 is a waveform diagram showing the operation of the driver system 100 in more detail.
  • the horizontal axis represents time, and the vertical axis represents the power supply voltage Vcc, the output voltage Vout, and the current Icc from the top.
  • the broken line in FIG. 4 represents a waveform indicating the operation of the conventional system.
  • the controller 150 reduces the duty ratio of the control voltage Vg in response to the instantaneous voltage drop (time t0). Therefore, the rising edge of the output voltage Vout at time t1 is not as steep as the edge in the conventional system. As a result, no high surge current appears in the current Icc. Unlike the surge current of FIG. 3, the surge current at current Icc of FIG. 4 is usually acceptable.
  • the liquid crystal panel needs to be driven with a constant voltage. Therefore, the above operation is advantageous when an irregular power supply voltage Vcc is input.
  • FIG. 5 is a block diagram showing the configuration of the driver 140.
  • the driver 140 includes a comparator 510 and a pulse width modulation (PWM) circuit 520.
  • Comparator 510 receives output voltage Vout at non-inverting input node 512 and receives reference voltage Vref at inverting input node 514. Comparator 510 asserts output 516 when output voltage Vout is greater than a predetermined reference voltage Vref.
  • the comparator 510 is generally realized by an operational amplifier (OP amplifier) having a high amplification factor. The specific amplification factor depends on how much the change in the output voltage Vout is fed back as the change in the pulse width of the control voltage Vg.
  • OP amplifier operational amplifier
  • the PWM circuit 520 makes the output voltage Vout constant by performing pulse width modulation on the control voltage Vg based on the output 516. Specifically, when the output voltage Vout is larger than the reference voltage Vref, the output voltage Vout is lowered by narrowing the pulse width of the control voltage Vg. Conversely, when the output voltage Vout is smaller than the reference voltage Vref, the output voltage Vout is increased by increasing the pulse width of the control voltage Vg. In addition to this control, the PWM circuit 520 reduces the duty ratio of the control voltage Vg when the reset signal Vreset is asserted compared to when the reset signal Vreset is not. In this specification, the term “duty ratio reduction” means that the duty ratio is reduced more than when the reset signal Vreset is not asserted (or a conventional example).
  • FIG. 6 is a block diagram showing the configuration of the controller 150.
  • the controller 150 has an input node 602, a comparator 610, a falling edge detector 650, an AND gate 690, and an output node 698.
  • Controller 150 receives power supply voltage Vcc at input node 602 and outputs reset signal Vreset at output node 698.
  • the comparator 610 compares the power supply voltage Vcc with a predetermined threshold voltage Vth. For example, when the power supply voltage Vcc falls below the threshold voltage Vth, the comparator 610 asserts its output node.
  • the falling edge detector 650 includes inverters 652 and 654, a resistor 656, a capacitor 658, and a NOR gate 662. The falling edge detector 650 detects the falling edge of the power supply voltage Vcc, and asserts the output node 664 for a predetermined period from the detected time.
  • AND gate 690 generates a logical product of the comparison between power supply voltage Vcc and threshold voltage Vth and the detection of the falling edge of power supply voltage Vcc, and outputs the logical product to output node 698.
  • FIG. 7 is a waveform diagram illustrating the operation of the driver 140 according to an embodiment.
  • the horizontal axis represents time, and the vertical axis represents the reset signal Vreset and the duty ratio D of the control voltage Vg from the top.
  • the driver 140 according to an embodiment generates the control voltage Vg so that the duty ratio D of the control voltage Vg is limited by the duty ratio limit Dlimit during the period Reset when the reset signal Vreset is asserted, and outputs the control voltage Vg to the switching circuit 130. To do. With this operation, even if an instantaneous voltage drop occurs, the duty ratio D of the control voltage Vg does not reach the maximum value Dfull, but is limited by the duty ratio limit Dlimit.
  • the driver 140 limits the duty ratio D of the control voltage Vg to a duty ratio limit Dlimit equal to the maximum value Dfull / 2.
  • the value with which the driver 140 limits the duty ratio D is not limited to Dlimit used in the present embodiment, and may be any appropriate value.
  • FIG. 8 is a waveform diagram showing the operation of the driver 140 according to another embodiment.
  • the horizontal axis represents time, and the vertical axis represents the reset signal Vreset and the duty ratio D of the control voltage Vg from the top.
  • the driver 140 according to an embodiment sets the control voltage Vg such that the duty ratio D of the control voltage Vg is limited in stages by the plurality of duty ratios D1, D2, and D3 during the period Reset during which the reset signal Vreset is asserted. And output to the switching circuit 130. By this operation, even if an instantaneous voltage drop occurs, the duty ratio D of the control voltage Vg does not reach the maximum value Dfull, but is limited step by step with the duty ratios D1, D2, and D3.
  • the driver 140 preferably limits the duty ratio D of the control voltage Vg step by step to duty ratios D1, D2, and D3 equal to 0.25Dfull, 0.50Dfull, and 0.75Dfull, respectively.
  • the value that the driver 140 limits the duty ratio D is not limited to D1, D2, and D3 used in the present embodiment, and may be any appropriate value.
  • the term “duty ratio reduction” may be a constant frequency of the control voltage Vg or may be changed. That is, the driver 140 may maintain the frequency of the control voltage Vg constant, reduce the ratio of the on period, or reduce the absolute length of the on period. In either case, as a result, the driver 140 reduces the duty ratio of the control voltage Vg.
  • various functions can be realized as individual elements. Conversely, a plurality of functions may be realized as a single element. For example, a plurality of functions may be realized as a single circuit element such as a single semiconductor chip or a single hybrid integrated circuit. It may be realized above.
  • the present invention is useful in that it can provide a driver system that can reduce the current flowing through the load when the power supply voltage recovers after the power supply voltage drops momentarily.
  • Driver System 110 LCD Panel 120 Backlight 130 Switching Circuit 132 Switching Element 134 Inductor 136 Diode 138 Capacitor 140 Driver 150 Controller 160 Semiconductor Chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Provided is a driver system that is capable of reducing a current flowing through a load in the event of the restitution of a power supply voltage after a momentary drop in the power supply voltage. The driver system is equipped with: a switching circuit that, upon receiving a power supply voltage, switches the current which flows through a display panel; a driver that generates a control voltage which has been pulse-modulated on the basis of an output voltage from the switching circuit and supplies the control voltage to the switching circuit in order to drive the switching circuit; and a controller that reduces the duty ratio of the control voltage in response to a falling edge of the power supply voltage.

Description

ドライバシステムDriver system
 本開示は、ディスプレイパネルと共に用いられるドライバに関する。 This disclosure relates to a driver used with a display panel.
 ドライバシステムは、ディスプレイパネルを駆動するための電圧を供給するシステムである。ディスプレイパネルを駆動するためには、スイッチングレギュレータがドライバとして用いられる。ドライバシステムは、ディスプレイパネルを駆動する電圧を電源から受け取る。従来技術によるドライバは、例えば特許文献1に記載されている。 The driver system is a system that supplies a voltage for driving the display panel. In order to drive the display panel, a switching regulator is used as a driver. The driver system receives a voltage for driving the display panel from a power source. A driver according to the prior art is described in Patent Document 1, for example.
特開2009-33090号公報JP 2009-33090 A
 本発明の発明者は、従来のシステムにおいては、電源電圧が瞬間的に低下すると、電源電圧が復帰したときに負荷(例えばディスプレイパネル)に過電流が流れることを課題と認識した。従来技術によるシステムでは、上述の状態で負荷に過電流が流れることを防止することができなかった。そこで、本発明の目的は、電源電圧が瞬間的に低下したのちに電源電圧が復帰した場合に、負荷に流れる電流を低減できるドライバシステムを提供することにある。 The inventors of the present invention have recognized that, in the conventional system, when the power supply voltage drops momentarily, an overcurrent flows through the load (for example, a display panel) when the power supply voltage is restored. In the system according to the prior art, it has not been possible to prevent an overcurrent from flowing through the load in the above-described state. SUMMARY OF THE INVENTION An object of the present invention is to provide a driver system that can reduce the current flowing through a load when the power supply voltage is restored after the power supply voltage has dropped instantaneously.
 ある実施形態によれば、ドライバシステムは、電源電圧を受け取り、ディスプレイパネルに流れる電流をスイッチングするスイッチング回路と、前記スイッチング回路の出力電圧に基づいてパルス幅変調された制御電圧を発生し、前記制御電圧を前記スイッチング回路に与えることによって前記スイッチング回路を駆動するドライバと、前記電源電圧の立ち下がりに応答して前記制御電圧のデューティ比を低減するコントローラとを備える。 According to an embodiment, the driver system receives a power supply voltage, and generates a control circuit that switches a current that flows through a display panel, and a control voltage that is pulse-width modulated based on an output voltage of the switching circuit. A driver for driving the switching circuit by applying a voltage to the switching circuit; and a controller for reducing a duty ratio of the control voltage in response to a fall of the power supply voltage.
 上記構成により、電源電圧が瞬間的に低下したのちに電源電圧が復帰した場合に、負荷に流れる電流を低減できる。 With the above configuration, when the power supply voltage recovers after the power supply voltage drops instantaneously, the current flowing through the load can be reduced.
 ある実施形態によれば、前記コントローラは、前記電源電圧の立ち下がりエッジを検出する検出器と、前記電源電圧を所定の閾値と比較する比較器とを有する。 According to an embodiment, the controller includes a detector that detects a falling edge of the power supply voltage and a comparator that compares the power supply voltage with a predetermined threshold.
 上記構成により、デューティ比を低減する期間を適切に決定できる。 With the above configuration, the period for reducing the duty ratio can be determined appropriately.
 ある実施形態によれば、前記スイッチング回路は昇圧型コンバータであり、前記昇圧型コンバータは電界効果トランジスタを有する。 According to an embodiment, the switching circuit is a boost converter, and the boost converter includes a field effect transistor.
 上記構成により、所望の出力電圧をより高い効率で発生できる。 With the above configuration, a desired output voltage can be generated with higher efficiency.
 ある実施形態によれば、前記コントローラおよび前記ドライバは1つの半導体チップ上に設けられている。 According to an embodiment, the controller and the driver are provided on one semiconductor chip.
 上記構成により、プリント基板上にマウントされた個別素子によってこれら回路を実現するのに比較して、より安定した回路動作、より低い製造コスト、及び/又はより小さいサイズを達成し得る。 With the above configuration, more stable circuit operation, lower manufacturing cost, and / or smaller size can be achieved compared to realizing these circuits with individual elements mounted on a printed circuit board.
 本発明によれば、電源電圧が瞬間的に低下したのちに電源電圧が復帰した場合に、負荷に流れる電流を低減できるドライバシステムを提供することができる。 According to the present invention, it is possible to provide a driver system that can reduce the current flowing through the load when the power supply voltage recovers after the power supply voltage has dropped instantaneously.
図1は、本発明の例示的実施形態によるドライバシステムを示す図である。FIG. 1 is a diagram illustrating a driver system according to an exemplary embodiment of the present invention. 図2は、ドライバシステムの動作を示す波形図である。FIG. 2 is a waveform diagram showing the operation of the driver system. 図3は、従来のシステムの動作を示す波形図である。FIG. 3 is a waveform diagram showing the operation of the conventional system. 図4は、ドライバシステムの動作をより詳細に示す波形図である。FIG. 4 is a waveform diagram showing the operation of the driver system in more detail. 図5は、ドライバの構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the driver. 図6は、コントローラの構成を示すブロック図である。FIG. 6 is a block diagram showing the configuration of the controller. 図7は、ある実施形態によるドライバの動作を示す波形図である。FIG. 7 is a waveform diagram illustrating the operation of a driver according to an embodiment. 図8は、他の実施形態によるドライバの動作を示す波形図である。FIG. 8 is a waveform diagram showing the operation of the driver according to another embodiment.
 以下、本発明によるドライバシステムの例示的実施形態について、図面を用いて詳細に説明する。図面において同一又は同様の構成要素は、同じ参照符号によって表される。 Hereinafter, exemplary embodiments of a driver system according to the present invention will be described in detail with reference to the drawings. In the drawings, the same or similar components are represented by the same reference numerals.
 (構成)
 図1は、本発明の例示的実施形態によるドライバシステム100を示す図である。ドライバシステム100は、液晶ディスプレイ(LCD)パネル110を有するテレビ、パーソナルコンピュータ用のディスプレイモニタなどに利用される。ドライバシステム100は、LCDパネル110に電圧を供給する。LCDパネル110の背面にはバックライト120が設けられてもよい。ドライバシステム100は、スイッチング回路130、ドライバ140、およびコントローラ150を含む。
(Constitution)
FIG. 1 is a diagram illustrating a driver system 100 according to an exemplary embodiment of the present invention. The driver system 100 is used for a television having a liquid crystal display (LCD) panel 110, a display monitor for a personal computer, and the like. The driver system 100 supplies a voltage to the LCD panel 110. A backlight 120 may be provided on the back surface of the LCD panel 110. The driver system 100 includes a switching circuit 130, a driver 140, and a controller 150.
 ドライバシステム100では、ドライバ140およびコントローラ150は、好ましくは1つの半導体チップ160上に設けられている。しかしドライバシステム100の機能ブロックをパッケージに入れる手法はこれには限定されない。例えば、ドライバ140を1つの半導体チップ上に設け、コントローラ150をドライバチップの外部に別途設けてもよい。代替として、ドライバ140およびコントローラ150は、LCDパネル110上に設けられてもよい。加えてスイッチング回路130もLCDパネル110上に設けられてもよい。 In the driver system 100, the driver 140 and the controller 150 are preferably provided on one semiconductor chip 160. However, the method of putting the functional blocks of the driver system 100 in a package is not limited to this. For example, the driver 140 may be provided on one semiconductor chip, and the controller 150 may be separately provided outside the driver chip. Alternatively, the driver 140 and the controller 150 may be provided on the LCD panel 110. In addition, the switching circuit 130 may be provided on the LCD panel 110.
 バックライト120は、LCDパネル110の背面に光を照射する。バックライト120からの光は、LCDパネル110を透過してユーザに届く。このような構成によりユーザはLCDパネル110上の画像を見ることができる。バックライト120は、典型的にはドライバシステム100とは異なる、専用の電源によって駆動される。 The backlight 120 irradiates the back surface of the LCD panel 110 with light. The light from the backlight 120 passes through the LCD panel 110 and reaches the user. With such a configuration, the user can view an image on the LCD panel 110. The backlight 120 is typically driven by a dedicated power source that is different from the driver system 100.
 スイッチング回路130は、電源電圧Vccを受け取り、制御電圧Vgに基づいてLCDパネル110に供給する電圧Voutを制御する。この動作によって、ドライバシステム100は、LCDパネル110の基準電圧を発生する。LCDパネル110の基準電圧の例としては、High側ゲート電圧(Vgh)、Low側ゲート電圧(Vgl)、ソース電圧(Vs)などが挙げられる。スイッチング回路130は、典型的には昇圧型コンバータである。 The switching circuit 130 receives the power supply voltage Vcc and controls the voltage Vout supplied to the LCD panel 110 based on the control voltage Vg. By this operation, the driver system 100 generates a reference voltage for the LCD panel 110. Examples of the reference voltage of the LCD panel 110 include a high-side gate voltage (Vgh), a low-side gate voltage (Vgl), and a source voltage (Vs). Switching circuit 130 is typically a boost converter.
 スイッチング回路130は、スイッチング素子132、インダクタ134、ダイオード136、およびキャパシタ138を有する。スイッチング素子132は、好ましくは電界効果トランジスタ(FET)である。スイッチング回路130の具体的な構成は図1に示す回路には限定されず、任意の適切なスイッチングレギュレータであり得る。高効率な昇圧型コンバータを実現するために、高速でオフできるスイッチング素子132、および逆回復時間の短いダイオード136が好ましくは利用される。 The switching circuit 130 includes a switching element 132, an inductor 134, a diode 136, and a capacitor 138. The switching element 132 is preferably a field effect transistor (FET). The specific configuration of the switching circuit 130 is not limited to the circuit shown in FIG. 1 and may be any appropriate switching regulator. In order to realize a high-efficiency step-up converter, a switching element 132 that can be turned off at high speed and a diode 136 with a short reverse recovery time are preferably used.
 ドライバ140は、パルス幅変調された制御電圧Vgをスイッチング素子132の制御端子(ここではFETのゲート)に与えることによってスイッチング回路130を駆動する。スイッチング回路130は、出力ノードOUTにおける出力電圧Voutをドライバ140にフィードバックする。このフィードバックループによって、ドライバ140は、出力電圧Voutが所望の値になるようにスイッチング回路130の動作を制御することができる。例えば出力電圧Voutが所望の値より大きいときは、ドライバ140は、制御電圧Vgのデューティ比を小さくする。逆に、出力電圧Voutが所望の値より小さいときは、ドライバ140は、制御電圧Vgのデューティ比を大きくする。ここで出力電圧Voutの所望の値は、一定値であってもよく、画像の明るさなどに依存して変化する値でもよい。 The driver 140 drives the switching circuit 130 by applying a pulse width modulated control voltage Vg to the control terminal of the switching element 132 (here, the gate of the FET). The switching circuit 130 feeds back the output voltage Vout at the output node OUT to the driver 140. With this feedback loop, the driver 140 can control the operation of the switching circuit 130 so that the output voltage Vout becomes a desired value. For example, when the output voltage Vout is larger than a desired value, the driver 140 decreases the duty ratio of the control voltage Vg. Conversely, when the output voltage Vout is smaller than a desired value, the driver 140 increases the duty ratio of the control voltage Vg. Here, the desired value of the output voltage Vout may be a constant value or a value that varies depending on the brightness of the image.
 コントローラ150は、電源電圧Vccの立ち下がりに応答して制御電圧Vgのデューティ比を低減する。すなわちコントローラ150は、電源電圧Vccの立ち下がりエッジにおいて電源電圧Vccが閾値Vthまで下がった時に、リセット信号Vresetをドライバ140に出力する。ドライバ140は、このリセット信号Vresetがアサートされている期間は、制御電圧Vgのデューティ比を小さく設定する。制御電圧Vgのデューティ比の低減は、図2、図7、図8を参照して後で詳細に説明する。 Controller 150 reduces the duty ratio of control voltage Vg in response to the fall of power supply voltage Vcc. That is, the controller 150 outputs the reset signal Vreset to the driver 140 when the power supply voltage Vcc falls to the threshold value Vth at the falling edge of the power supply voltage Vcc. The driver 140 sets the duty ratio of the control voltage Vg to be small while the reset signal Vreset is asserted. The reduction of the duty ratio of the control voltage Vg will be described in detail later with reference to FIGS.
 本明細書でアサートという語は、ディジタル回路において信号(または論理値)をアクティブ(または有効)にすることをいう。例えば正論理の信号がアサートされるとHレベルになる。逆に負論理の信号がアサートされるとLレベルになる。本開示で記載されるさまざまな回路は、正論理、負論理のいずれで実現されてもよい。 In this specification, the term “assert” refers to activating (or validating) a signal (or logical value) in a digital circuit. For example, when a positive logic signal is asserted, it becomes H level. Conversely, when a negative logic signal is asserted, it goes to the L level. Various circuits described in this disclosure may be implemented in either positive logic or negative logic.
 (動作)
 図2は、ドライバシステム100の動作を示す波形図である。横軸は時間を、縦軸は上から電源電圧Vcc、リセット信号Vreset、制御電圧Vg、出力電圧Vout、および電流Iccを表す。電源電圧Vccは時刻t0以前では定格値(正常値ともいう)である。時刻t0において瞬時電圧低下が起こる。本明細書において「瞬時電圧低下」という語は、電源電圧Vccが瞬間的に低下することをいう。
(Operation)
FIG. 2 is a waveform diagram showing the operation of the driver system 100. The horizontal axis represents time, and the vertical axis represents the power supply voltage Vcc, the reset signal Vreset, the control voltage Vg, the output voltage Vout, and the current Icc from the top. The power supply voltage Vcc is a rated value (also referred to as a normal value) before time t0. An instantaneous voltage drop occurs at time t0. In this specification, the term “instantaneous voltage drop” means that the power supply voltage Vcc drops instantaneously.
 時刻t1において電源電圧Vccは閾値Vthまで下がる。時刻t1においてコントローラ150は、電源電圧Vccの立ち下がりエッジを検出し、かつ電源電圧Vccが閾値Vthまで下がったことを検出する。コントローラ150は、時刻t1から時刻t3までの所定の期間Tresetの間、リセット信号Vresetをアサートし、ドライバ140に出力する。図2の例では電源電圧Vccは、時刻t2において定格値に戻るが、コントローラ150はリセット信号Vresetを時刻t3までアサートしたままにする。 At time t1, the power supply voltage Vcc drops to the threshold value Vth. At time t1, the controller 150 detects the falling edge of the power supply voltage Vcc and detects that the power supply voltage Vcc has dropped to the threshold value Vth. The controller 150 asserts the reset signal Vreset and outputs it to the driver 140 during a predetermined period Reset from time t1 to time t3. In the example of FIG. 2, the power supply voltage Vcc returns to the rated value at time t2, but the controller 150 keeps the reset signal Vreset asserted until time t3.
 ドライバ140は、リセット信号Vresetがアサートされている期間Treset(時刻t1~時刻t3)の間は、制御電圧Vgのデューティ比を小さく設定する。具体的には、図2の制御電圧Vgにおいて点線で示される波形は、コントローラ150を持たない従来のシステムが出力する制御電圧である。これ対して、コントローラ150を持つドライバシステム100は、実線で示される波形の制御電圧Vgをスイッチング回路130に出力する。すなわちドライバシステム100は、電源電圧が瞬間的な低下が起こったときに、期間Tresetの間、制御電圧Vgのデューティ比を従来のシステムよりも小さく設定する。期間Tresetは、電源電圧の過渡状態をカバーできる程度に長ければよく、好ましくは数十マイクロ秒のオーダーである。 The driver 140 sets the duty ratio of the control voltage Vg to be small during the period Reset (time t1 to time t3) during which the reset signal Vreset is asserted. Specifically, a waveform indicated by a dotted line in the control voltage Vg in FIG. 2 is a control voltage output by a conventional system that does not have the controller 150. In contrast, the driver system 100 having the controller 150 outputs a control voltage Vg having a waveform indicated by a solid line to the switching circuit 130. That is, the driver system 100 sets the duty ratio of the control voltage Vg to be smaller than that of the conventional system during the period Reset when the power supply voltage is momentarily reduced. The period Treset need only be long enough to cover the transient state of the power supply voltage, and is preferably on the order of several tens of microseconds.
 出力電圧Voutは、瞬時電圧低下の後に再び上昇する。しかしデューティ比低減によって、出力ノードOUTにおいてサージ電圧は発生しない。よって電流Iccのサージも許容できる程度のピーク値しか持たない。 The output voltage Vout rises again after the instantaneous voltage drop. However, a surge voltage is not generated at the output node OUT due to the duty ratio reduction. Therefore, the surge of the current Icc has only a peak value that can be tolerated.
 (効果)
 図3は、従来のシステムの動作を示す波形図である。横軸は時間を、縦軸は上から電源電圧Vcc、出力電圧Vout、および電流Iccを表す。従来のシステムでは、瞬時電圧低下(時刻t0)に応答して制御電圧のデューティ比を低減することはしない。そのため出力電圧Voutの時刻t1における立ち上がりエッジは非常に急峻になる。その結果、電流Iccにもサージ電流が現れる(時刻t1)。このサージ電流は、望ましくない過電流を負荷に流すことになる。
(effect)
FIG. 3 is a waveform diagram showing the operation of the conventional system. The horizontal axis represents time, and the vertical axis represents the power supply voltage Vcc, the output voltage Vout, and the current Icc from the top. In the conventional system, the duty ratio of the control voltage is not reduced in response to the instantaneous voltage drop (time t0). Therefore, the rising edge of the output voltage Vout at time t1 becomes very steep. As a result, a surge current also appears in the current Icc (time t1). This surge current causes an undesirable overcurrent to flow through the load.
 図4は、ドライバシステム100の動作をより詳細に示す波形図である。横軸は時間を、縦軸は上から電源電圧Vcc、出力電圧Vout、および電流Iccを表す。図4の破線は、従来のシステムの動作を示す波形を表す。 FIG. 4 is a waveform diagram showing the operation of the driver system 100 in more detail. The horizontal axis represents time, and the vertical axis represents the power supply voltage Vcc, the output voltage Vout, and the current Icc from the top. The broken line in FIG. 4 represents a waveform indicating the operation of the conventional system.
 ドライバシステム100では、瞬時電圧低下(時刻t0)に応答してコントローラ150が制御電圧Vgのデューティ比を低減する。そのため出力電圧Voutの時刻t1における立ち上がりエッジは、従来のシステムにおけるエッジほど急峻ではなくなる。その結果、電流Iccにも高いサージ電流は現れない。図3のサージ電流とは異なり、図4の電流Iccにおけるサージ電流はふつうは許容できる。 In the driver system 100, the controller 150 reduces the duty ratio of the control voltage Vg in response to the instantaneous voltage drop (time t0). Therefore, the rising edge of the output voltage Vout at time t1 is not as steep as the edge in the conventional system. As a result, no high surge current appears in the current Icc. Unlike the surge current of FIG. 3, the surge current at current Icc of FIG. 4 is usually acceptable.
 液晶パネルは一定の電圧で駆動される必要がある。したがってイレギュラーな電源電圧Vccが入力されたときに上記動作が有利である。 The liquid crystal panel needs to be driven with a constant voltage. Therefore, the above operation is advantageous when an irregular power supply voltage Vcc is input.
 (ドライバの詳細)
 図5は、ドライバ140の構成を示すブロック図である。ドライバ140は、比較器510およびパルス幅変調(PWM)回路520を有する。比較器510は、非反転入力ノード512において出力電圧Voutを受け取り、反転入力ノード514において基準電圧Vrefを受け取る。比較器510は、出力電圧Voutが所定の基準電圧Vrefよりも大きいと出力516をアサートする。比較器510は、一般に増幅率の高い演算増幅器(OPアンプ)によって実現される。具体的な増幅率は、出力電圧Voutの変化をどの程度、制御電圧Vgのパルス幅の変化としてフィードバックするかに依存する。
(Driver details)
FIG. 5 is a block diagram showing the configuration of the driver 140. The driver 140 includes a comparator 510 and a pulse width modulation (PWM) circuit 520. Comparator 510 receives output voltage Vout at non-inverting input node 512 and receives reference voltage Vref at inverting input node 514. Comparator 510 asserts output 516 when output voltage Vout is greater than a predetermined reference voltage Vref. The comparator 510 is generally realized by an operational amplifier (OP amplifier) having a high amplification factor. The specific amplification factor depends on how much the change in the output voltage Vout is fed back as the change in the pulse width of the control voltage Vg.
 PWM回路520は、出力516に基づいて制御電圧Vgをパルス幅変調することによって出力電圧Voutを定電圧化する。具体的には、出力電圧Voutが基準電圧Vrefよりも大きいときは、制御電圧Vgのパルス幅をより狭くすることによって、出力電圧Voutを低くする。逆に、出力電圧Voutが基準電圧Vrefよりも小さいときは、制御電圧Vgのパルス幅をより広くすることによって、出力電圧Voutを高くする。この制御に加えPWM回路520は、リセット信号Vresetがアサートされているときは、そうでないときに比べて制御電圧Vgのデューティ比を低減する。本明細書で「デューティ比の低減」という語は、リセット信号Vresetがアサートされていないとき(または従来例)よりもデューティ比を低減することをいう。 The PWM circuit 520 makes the output voltage Vout constant by performing pulse width modulation on the control voltage Vg based on the output 516. Specifically, when the output voltage Vout is larger than the reference voltage Vref, the output voltage Vout is lowered by narrowing the pulse width of the control voltage Vg. Conversely, when the output voltage Vout is smaller than the reference voltage Vref, the output voltage Vout is increased by increasing the pulse width of the control voltage Vg. In addition to this control, the PWM circuit 520 reduces the duty ratio of the control voltage Vg when the reset signal Vreset is asserted compared to when the reset signal Vreset is not. In this specification, the term “duty ratio reduction” means that the duty ratio is reduced more than when the reset signal Vreset is not asserted (or a conventional example).
 (コントローラの詳細)
 図6は、コントローラ150の構成を示すブロック図である。コントローラ150は、入力ノード602、比較器610、立ち下がりエッジ検出器650、ANDゲート690、および出力ノード698を有する。コントローラ150は、入力ノード602において電源電圧Vccを受け取り、出力ノード698においてリセット信号Vresetを出力する。
(Details of controller)
FIG. 6 is a block diagram showing the configuration of the controller 150. The controller 150 has an input node 602, a comparator 610, a falling edge detector 650, an AND gate 690, and an output node 698. Controller 150 receives power supply voltage Vcc at input node 602 and outputs reset signal Vreset at output node 698.
 比較器610は、電源電圧Vccを所定の閾値電圧Vthと比較する。例えば、電源電圧Vccが閾値電圧Vth以下になると、比較器610はその出力ノードをアサートする。立ち下がりエッジ検出器650は、インバータ652,654、抵抗656、キャパシタ658、およびNORゲート662を有する。立ち下がりエッジ検出器650は、電源電圧Vccの立ち下がりエッジを検出し、検出した時刻から所定の期間、出力ノード664をアサートする。ANDゲート690は、電源電圧Vccの閾値電圧Vthとの比較と、電源電圧Vccの立ち下がりエッジの検出との論理積を生成し、出力ノード698に出力する。 The comparator 610 compares the power supply voltage Vcc with a predetermined threshold voltage Vth. For example, when the power supply voltage Vcc falls below the threshold voltage Vth, the comparator 610 asserts its output node. The falling edge detector 650 includes inverters 652 and 654, a resistor 656, a capacitor 658, and a NOR gate 662. The falling edge detector 650 detects the falling edge of the power supply voltage Vcc, and asserts the output node 664 for a predetermined period from the detected time. AND gate 690 generates a logical product of the comparison between power supply voltage Vcc and threshold voltage Vth and the detection of the falling edge of power supply voltage Vcc, and outputs the logical product to output node 698.
 (デューティ比制限)
 図7は、ある実施形態によるドライバ140の動作を示す波形図である。横軸は時間を、縦軸は上からリセット信号Vreset、制御電圧Vgのデューティ比Dを表す。ある実施形態によるドライバ140は、リセット信号Vresetがアサートされている期間Tresetにおいて、制御電圧Vgのデューティ比Dがデューティ比制限Dlimitで制限されるように制御電圧Vgを生成し、スイッチング回路130に出力する。この動作によって、瞬時電圧低下が起こっても、制御電圧Vgのデューティ比Dは、最大値Dfullに達することなく、デューティ比制限Dlimitで制限される。一般にこのような電圧制限はクリッピングともいう。具体的な例として、好ましくはドライバ140は、制御電圧Vgのデューティ比Dを、最大値Dfull/2に等しいデューティ比制限Dlimitに制限する。ドライバ140がデューティ比Dを制限する値は、本実施形態で用いられるDlimitには限定されず、任意の適切な値であり得る。
(Duty ratio limit)
FIG. 7 is a waveform diagram illustrating the operation of the driver 140 according to an embodiment. The horizontal axis represents time, and the vertical axis represents the reset signal Vreset and the duty ratio D of the control voltage Vg from the top. The driver 140 according to an embodiment generates the control voltage Vg so that the duty ratio D of the control voltage Vg is limited by the duty ratio limit Dlimit during the period Reset when the reset signal Vreset is asserted, and outputs the control voltage Vg to the switching circuit 130. To do. With this operation, even if an instantaneous voltage drop occurs, the duty ratio D of the control voltage Vg does not reach the maximum value Dfull, but is limited by the duty ratio limit Dlimit. In general, such voltage limitation is also called clipping. As a specific example, preferably the driver 140 limits the duty ratio D of the control voltage Vg to a duty ratio limit Dlimit equal to the maximum value Dfull / 2. The value with which the driver 140 limits the duty ratio D is not limited to Dlimit used in the present embodiment, and may be any appropriate value.
 図8は、他の実施形態によるドライバ140の動作を示す波形図である。横軸は時間を、縦軸は上からリセット信号Vreset、制御電圧Vgのデューティ比Dを表す。ある実施形態によるドライバ140は、リセット信号Vresetがアサートされている期間Tresetにおいて、制御電圧Vgのデューティ比Dが複数のデューティ比D1,D2,D3によって段階的に制限されるように制御電圧Vgを生成し、スイッチング回路130に出力する。この動作によって、瞬時電圧低下が起こっても、制御電圧Vgのデューティ比Dは、最大値Dfullに達することなく、デューティ比D1,D2,D3で段階的に制限される。具体的な例として、好ましくはドライバ140は、制御電圧Vgのデューティ比Dを、0.25Dfull,0.50Dfull,0.75Dfullにそれぞれ等しいデューティ比D1,D2,D3に段階的に制限する。ドライバ140がデューティ比Dを制限する値は、本実施形態で用いられるD1,D2,D3には限定されず、任意の適切な値であり得る。 FIG. 8 is a waveform diagram showing the operation of the driver 140 according to another embodiment. The horizontal axis represents time, and the vertical axis represents the reset signal Vreset and the duty ratio D of the control voltage Vg from the top. The driver 140 according to an embodiment sets the control voltage Vg such that the duty ratio D of the control voltage Vg is limited in stages by the plurality of duty ratios D1, D2, and D3 during the period Reset during which the reset signal Vreset is asserted. And output to the switching circuit 130. By this operation, even if an instantaneous voltage drop occurs, the duty ratio D of the control voltage Vg does not reach the maximum value Dfull, but is limited step by step with the duty ratios D1, D2, and D3. As a specific example, the driver 140 preferably limits the duty ratio D of the control voltage Vg step by step to duty ratios D1, D2, and D3 equal to 0.25Dfull, 0.50Dfull, and 0.75Dfull, respectively. The value that the driver 140 limits the duty ratio D is not limited to D1, D2, and D3 used in the present embodiment, and may be any appropriate value.
 本明細書において「デューティ比の低減」という語は、制御電圧Vgの周波数が一定であってもよく、変えられてもよい。すなわちドライバ140は、制御電圧Vgの周波数を一定に維持し、オン期間の割合を低減させてもよく、オン期間の絶対的な長さを低減してもよい。いずれの場合も結果としてはドライバ140は、制御電圧Vgのデューティ比を低減することになる。 In this specification, the term “duty ratio reduction” may be a constant frequency of the control voltage Vg or may be changed. That is, the driver 140 may maintain the frequency of the control voltage Vg constant, reduce the ratio of the on period, or reduce the absolute length of the on period. In either case, as a result, the driver 140 reduces the duty ratio of the control voltage Vg.
 上述の説明で、さまざまな機能は、個別の要素として実現され得る。逆に、複数の機能が単一の要素として実現されてもよい。例えば複数の機能は、単一の半導体チップ、単一のハイブリッド集積回路など、単一の回路要素として実現されてもよい。上に実現されてもよい。 In the above description, various functions can be realized as individual elements. Conversely, a plurality of functions may be realized as a single element. For example, a plurality of functions may be realized as a single circuit element such as a single semiconductor chip or a single hybrid integrated circuit. It may be realized above.
 当業者には理解されるように、上述のさまざまな要素(ハードウェアの要素、ソフトウェアのステップなど)は、その一部が省略されてもよい。逆に、付加的な要素を用いてもよい。 As will be understood by those skilled in the art, some of the various elements described above (hardware elements, software steps, etc.) may be omitted. Conversely, additional elements may be used.
 上に説明されてきたものには、本発明のさまざまな例が含まれる。本発明を記載する目的では、要素や手順の考えられるあらゆる組み合わせを記載することは当然のことながら不可能であるが、当業者なら本発明の多くのさらなる組み合わせおよび順列が可能であることがわかるだろう。したがって本発明は、特許請求の範囲の精神および範囲に入るそのような改変、変更および変形例を全て含むよう意図される。 What has been described above includes various examples of the present invention. For the purposes of describing the present invention, it is of course impossible to describe every possible combination of elements and procedures, but those skilled in the art will recognize that many further combinations and permutations of the present invention are possible. right. Accordingly, the present invention is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims.
 本発明は、電源電圧が瞬間的に低下したのちに電源電圧が復帰した場合に、負荷に流れる電流を低減できるドライバシステムを提供できる点で有用である。 The present invention is useful in that it can provide a driver system that can reduce the current flowing through the load when the power supply voltage recovers after the power supply voltage drops momentarily.
100 ドライバシステム
110 LCDパネル
120 バックライト
130 スイッチング回路
132 スイッチング素子
134 インダクタ
136 ダイオード
138 キャパシタ
140 ドライバ
150 コントローラ
160 半導体チップ
100 Driver System 110 LCD Panel 120 Backlight 130 Switching Circuit 132 Switching Element 134 Inductor 136 Diode 138 Capacitor 140 Driver 150 Controller 160 Semiconductor Chip

Claims (4)

  1.  電源電圧を受け取り、ディスプレイパネルに流れる電流をスイッチングするスイッチング回路と、
     前記スイッチング回路の出力電圧に基づいてパルス幅変調された制御電圧を発生し、前記制御電圧を前記スイッチング回路に与えることによって前記スイッチング回路を駆動するドライバと、
     前記電源電圧の立ち下がりに応答して前記制御電圧のデューティ比を低減するコントローラと
    を備えるドライバシステム。
    A switching circuit that receives a power supply voltage and switches a current flowing through the display panel;
    A driver for driving the switching circuit by generating a pulse width modulated control voltage based on the output voltage of the switching circuit and providing the control voltage to the switching circuit;
    And a controller that reduces a duty ratio of the control voltage in response to a fall of the power supply voltage.
  2.  前記コントローラは、
     前記電源電圧の立ち下がりエッジを検出する検出器と、
     前記電源電圧を所定の閾値と比較する比較器と
    を有する請求項1に記載のドライバシステム。
    The controller is
    A detector for detecting a falling edge of the power supply voltage;
    The driver system according to claim 1, further comprising a comparator that compares the power supply voltage with a predetermined threshold value.
  3.  前記スイッチング回路は昇圧型コンバータであり、前記昇圧型コンバータは電界効果トランジスタを有する請求項2に記載のドライバシステム。 3. The driver system according to claim 2, wherein the switching circuit is a boost converter, and the boost converter includes a field effect transistor.
  4.  前記コントローラおよび前記ドライバが1つの半導体チップ上に設けられている請求項3に記載のドライバシステム。 4. The driver system according to claim 3, wherein the controller and the driver are provided on one semiconductor chip.
PCT/JP2012/003163 2011-05-19 2012-05-15 Driver system WO2012157257A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011112388 2011-05-19
JP2011-112388 2011-05-19

Publications (1)

Publication Number Publication Date
WO2012157257A1 true WO2012157257A1 (en) 2012-11-22

Family

ID=47176606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003163 WO2012157257A1 (en) 2011-05-19 2012-05-15 Driver system

Country Status (1)

Country Link
WO (1) WO2012157257A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258760A (en) * 2021-05-14 2021-08-13 珠海格力电器股份有限公司 Circuit control method and device, electronic equipment and storage medium
CN115765422A (en) * 2023-01-09 2023-03-07 苏州浪潮智能科技有限公司 Power supply circuit control method and device, storage medium and electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215363A (en) * 2002-12-27 2004-07-29 Calsonic Kansei Corp Pwm controller
JP2004297367A (en) * 2003-03-26 2004-10-21 Yamaha Corp Audio amplifier
JP2007151322A (en) * 2005-11-29 2007-06-14 Mitsumi Electric Co Ltd Power circuit and dc-dc converter
JP2007318963A (en) * 2006-05-29 2007-12-06 Tdk Corp Power supply device, vehicle power supply and momentary disconnection preventing circuit
JP2010016198A (en) * 2008-07-03 2010-01-21 Panasonic Corp Semiconductor light source driving device and semiconductor light source driving method
JP2010259219A (en) * 2009-04-24 2010-11-11 Toyota Motor Corp Power supply system, electric vehicle with the same, and method of controlling power supply system
JP2011019317A (en) * 2009-07-08 2011-01-27 Murata Mfg Co Ltd Isolated switching power supply

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215363A (en) * 2002-12-27 2004-07-29 Calsonic Kansei Corp Pwm controller
JP2004297367A (en) * 2003-03-26 2004-10-21 Yamaha Corp Audio amplifier
JP2007151322A (en) * 2005-11-29 2007-06-14 Mitsumi Electric Co Ltd Power circuit and dc-dc converter
JP2007318963A (en) * 2006-05-29 2007-12-06 Tdk Corp Power supply device, vehicle power supply and momentary disconnection preventing circuit
JP2010016198A (en) * 2008-07-03 2010-01-21 Panasonic Corp Semiconductor light source driving device and semiconductor light source driving method
JP2010259219A (en) * 2009-04-24 2010-11-11 Toyota Motor Corp Power supply system, electric vehicle with the same, and method of controlling power supply system
JP2011019317A (en) * 2009-07-08 2011-01-27 Murata Mfg Co Ltd Isolated switching power supply

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258760A (en) * 2021-05-14 2021-08-13 珠海格力电器股份有限公司 Circuit control method and device, electronic equipment and storage medium
CN113258760B (en) * 2021-05-14 2022-11-11 珠海格力电器股份有限公司 Circuit control method and device, electronic equipment and storage medium
CN115765422A (en) * 2023-01-09 2023-03-07 苏州浪潮智能科技有限公司 Power supply circuit control method and device, storage medium and electronic device

Similar Documents

Publication Publication Date Title
US8947056B2 (en) Control circuit for step-up switching regulator
US8624828B2 (en) Control circuit for switching power supply
US8159140B2 (en) Load driving apparatus
JP5205974B2 (en) DC power supply, LED drive power supply, and power supply control semiconductor integrated circuit
US20150156846A1 (en) Over-current protection circuit, led backlight driving circuit and liquid crystal device
JP5211699B2 (en) DC power supply, LED drive power supply, and power supply semiconductor integrated circuit
JP4983735B2 (en) Semiconductor integrated circuit for power control
US20120127151A1 (en) Power supply device, liquid crystal drive device, and liquid crystal display device
JP2006108260A (en) Semiconductor circuit for driving light emitting diode and light emitting diode driving device equipped therewith
JP2007028783A (en) Step-up switching regulator, its control circuit and electronic apparatus employing the circuit
US9069366B2 (en) Switching regulator
US20140063411A1 (en) Liquid crystal display device
US7579813B2 (en) Power regulator having a voltage regulator module and having a voltage buffer module to provide a constant voltage output
JP5071134B2 (en) DC power supply, LED drive power supply, and power supply semiconductor integrated circuit
US8076917B2 (en) Buck switching regulator with improved mode transition and control method thereof
JP6034657B2 (en) LIGHT EMITTING DEVICE CONTROL CIRCUIT, LIGHT EMITTING DEVICE USING THE SAME, AND ELECTRONIC DEVICE
JP2013109921A (en) Drive circuit for light-emitting element, and light-emitting device and electronic equipment using the same
US9504107B2 (en) Backlight unit and display device having the same
WO2012157257A1 (en) Driver system
JP2010277226A (en) Dc stabilized power supply device and electronic apparatus including the same
US20080111528A1 (en) Driving device and switching circuit thereof
TW201251326A (en) Level shifter and booster-driving circuit
KR102502208B1 (en) Dc-dc converter and driving method thereof
US20150194872A1 (en) Power supply device
JP2008271758A (en) Dc-dc converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP