WO2012157066A1 - Exhaust purifying apparatus for internal combustion engine - Google Patents

Exhaust purifying apparatus for internal combustion engine Download PDF

Info

Publication number
WO2012157066A1
WO2012157066A1 PCT/JP2011/061192 JP2011061192W WO2012157066A1 WO 2012157066 A1 WO2012157066 A1 WO 2012157066A1 JP 2011061192 W JP2011061192 W JP 2011061192W WO 2012157066 A1 WO2012157066 A1 WO 2012157066A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
injection valve
exhaust
mass
exhaust gas
Prior art date
Application number
PCT/JP2011/061192
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 和浩
中山 茂樹
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/061192 priority Critical patent/WO2012157066A1/en
Publication of WO2012157066A1 publication Critical patent/WO2012157066A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust purification device for an internal combustion engine.
  • An exhaust emission control device that purifies NOx by supplying urea water (NH 3 ) in an amount corresponding to the estimated NOx generation amount to a selective reduction type NOx catalyst is known (see, for example, Patent Document 1). .
  • the attachment position of the injection valve, the injection hole shape, and the like are determined so that urea water (NH 3 ) is uniformly distributed in the exhaust pipe.
  • the NOx distribution in the exhaust gas may not be uniform due to the influence of the shape of the exhaust pipe. That is, the NOx distribution and the reducing agent distribution in the exhaust gas may deviate. For this reason, there is a possibility that the reducing agent is insufficient at locations where the NOx concentration in the exhaust is high, and the reducing agent becomes excessive at locations where the NOx concentration is low. As a result, the NOx purification rate may decrease, or NH 3 remaining in the catalyst without being used for NOx purification may be biased and adsorbed to the catalyst. Furthermore, there is a possibility that NH 3 may slip through the catalyst.
  • a technique for measuring five parameters of exhaust flow rate, exhaust temperature, mixture temperature, mixture pressure, and atmospheric humidity, weighting each parameter, and supplying a reducing agent based on the weighted five parameters (For example, refer to Patent Document 2).
  • weighting of five parameters is learned so that the NOx distribution and the reducing agent distribution are matched.
  • a plurality of reducing agent injection valves are provided. The supply amount of the reducing agent from each injection valve is controlled according to the NOx distribution.
  • the present invention has been made in view of the above-described problems, and an object thereof is to appropriately supply a reducing agent.
  • an exhaust gas purification apparatus for an internal combustion engine comprises: A catalyst provided in the exhaust passage of the internal combustion engine; A supply device for supplying a reducing agent to the catalyst; An exhaust gas purification apparatus for an internal combustion engine comprising: The supply device supplies the reducing agent toward a place where the mass of the exhaust gas is larger than a place where the mass of the exhaust gas is small.
  • the exhaust density is not uniform, and there are places where the exhaust density is high and low. Then, the mass per unit volume is relatively large at locations where the exhaust density is high, and the mass per unit volume is relatively small at locations where the exhaust density is low. That is, the location where the exhaust mass is small may be a location where the exhaust density is relatively low. Further, the location where the mass of the exhaust is large may be a location where the density of the exhaust is relatively high. Further, the location where the exhaust mass is small and the location where the exhaust mass is large may be the location where the mass of the exhaust is the smallest and the location where the mass is the largest. That is, the reducing agent may be supplied toward a location where the mass of exhaust gas is the largest.
  • the portion where the mass of exhaust gas is large contains more components to be purified than the portion where the mass of exhaust gas is small. For this reason, in the location where the mass of exhaust gas is large, more reducing agent is required.
  • the reducing agent toward a location where the mass of the exhaust gas is large, it is possible to supply more reducing agent to a location where more components to be purified are contained. Thereby, purification efficiency can be improved. Further, the supply amount of the reducing agent can be reduced. Moreover, since it becomes possible to supply the reducing agent according to the amount of the component to be purified, it is possible to suppress the excess reducing agent from adhering to the catalyst and reducing the purification rate. Moreover, it can suppress that an excessive reducing agent passes a catalyst. In this way, the reducing agent can be properly supplied.
  • the supply device includes an injection valve that injects the reducing agent
  • the injection valve may be formed with an injection hole for injecting a reducing agent toward a portion where the mass of the exhaust gas is large.
  • the injection valve includes one or a plurality of injection holes, and the injection holes are formed so that the center of gravity of the reducing agent injected from each injection hole passes through a portion where the mass of the exhaust gas is large. May be.
  • the reducing agent is dispersed in a wider range.
  • concentration of the reducing agent is high and there are places where it is low.
  • a place where the concentration of the reducing agent is high may be formed on the center side of the spray, or may be formed on the outer side. is there.
  • more reducing agent exists around the center of gravity of the injected reducing agent.
  • the position of the center of gravity of the reducing agent may vary depending on the shape of the nozzle hole. For this reason, if the nozzle hole is formed so that the center of gravity of the reducing agent passes through a portion where the mass of the exhaust gas is large, more reducing agent can be supplied to a portion where there are more components to be purified.
  • each nozzle hole is formed so that a portion where the spray of the reducing agent injected from each nozzle hole passes through a portion where the mass of the exhaust gas is larger. May be. That is, since the concentration of the reducing agent is higher in the areas where the sprays overlap than in the areas where the sprays do not overlap, more reducing agent can be supplied. Moreover, you may form an injection hole so that the reducing agent injected from each injection hole may each pass through the location where the mass of exhaust_gas
  • the center of gravity may be the mass center of the mass distribution of the reducing agent at a predetermined distance from the injection valve.
  • a plurality of the injection valves may be provided, and the injection valves may be arranged so that the reducing agent injected from each injection valve overlaps at a location where the mass of the exhaust gas is large.
  • the number of injection holes of each injection valve may be one or plural.
  • the place where the concentration of the reducing agent is high may be formed on the center side of the spray, or may be formed on the outer side.
  • the attachment position of each injection valve may be adjusted so that the position where the reducing agent injected from each injection valve overlaps becomes the mass center of the mass distribution of the reducing agent.
  • the reducing agent can be properly supplied.
  • FIG. 1 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a first embodiment. It is the figure which illustrated the form of spraying of the injection valve concerning Example 1. It is the figure which showed an example of the relationship between the mass distribution of the exhaust_gas
  • FIG. 5 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a second embodiment.
  • FIG. 6 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a third embodiment.
  • FIG. 5 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a second embodiment.
  • FIG. 6 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to
  • FIG. 10 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a fourth embodiment.
  • FIG. 10 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a fourth embodiment.
  • FIG. 10 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a fourth embodiment.
  • FIG. 10 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a fourth embodiment.
  • FIG. 10 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a fourth embodiment. It is a figure which shows schematic structure of the conventional injection valve. It is a figure which shows schematic structure of the injection valve which concerns on Example 5.
  • FIG. It is a figure which shows schematic structure of the other injection valve which concerns on Example 5.
  • FIG. It is a figure which shows schematic structure of the injection valve provided with one injection hole. It is a figure which shows
  • FIG. 1 is a diagram showing a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to the present embodiment.
  • the internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine having four cylinders.
  • the following embodiments can be similarly applied even to a gasoline engine.
  • the exhaust passage 2 is connected to the internal combustion engine 1.
  • An injection valve 3 and a catalyst 4 are provided in the exhaust passage 2 in order from the upstream side in the exhaust flow direction.
  • the injection valve 3 injects a reducing agent.
  • a reducing agent derived from ammonia such as fuel (HC) or urea water can be used. What is used as the reducing agent depends on the type of the catalyst 4. Then, the reducing agent reacts with the catalyst 4.
  • the injection hole of the injection valve 3 can be formed so that the spray R of the injection valve 3 has the following shape.
  • FIG. 2 is a diagram illustrating the form of the spray R of the injection valve 3 according to the present embodiment.
  • FIG. 2 shows a cross-sectional shape of the spray R of the reducing agent injected from the injection valve 3.
  • This cross section is a cross section orthogonal to the central axis of the injection valve 3 at a predetermined distance from the injection valve 3.
  • the inside of the region surrounded by the solid line indicates the range where the spray R from each nozzle hole exists.
  • the broken line indicates the tip of the injection valve 3.
  • FIG. 2A shows a case where three nozzle holes are provided.
  • three injection holes are arranged at equal intervals around the central axis of the injection valve 3. Therefore, three sprays R are formed at an equal angle around the central axis of the injection valve 3.
  • FIG. 2 (B) and FIG. 2 (C) are cases where four nozzle holes are provided.
  • four injection holes are arranged at equal intervals around the central axis of the injection valve 3.
  • four sprays R are formed at equal angles around the central axis of the injection valve 3.
  • three injection holes are arranged at equal intervals around the central axis of the injection valve 3, and further one is arranged on the central axis of the injection valve 3. Therefore, three sprays R are formed at an equal angle around the central axis of the injection valve 3, and one spray R is formed on the central axis of the injection valve 3.
  • FIG. 2 (D) and 2 (E) show a case where five nozzle holes are provided.
  • FIG. 2D five injection holes are arranged at equal intervals around the central axis of the injection valve 3.
  • five sprays R are formed at equal angles around the central axis of the injection valve 3.
  • FIG. 2 (E) four injection holes are arranged at equal intervals around the central axis of the injection valve 3, and one further is arranged on the central axis of the injection valve 3.
  • four sprays R are formed at an equal angle around the central axis of the injection valve 3, and one spray R is formed on the central axis of the injection valve 3.
  • FIG. 2 (F) and FIG. 2 (G) are cases where six nozzle holes are provided.
  • FIG. 2 (F) six injection holes are arranged at equal intervals around the central axis of the injection valve 3.
  • six sprays R are formed at equal angles around the central axis of the injection valve 3.
  • FIG. 2G five injection holes are arranged at equal intervals around the central axis of the injection valve 3, and further one is arranged on the central axis of the injection valve 3. Therefore, five sprays R are formed at equal angles around the central axis of the injection valve 3, and one spray R is formed on the central axis of the injection valve 3.
  • FIG. 2 (H) shows a case where seven nozzle holes are provided.
  • six injection holes are arranged at equal intervals around the central axis of the injection valve 3, and one further is arranged on the central axis of the injection valve 3.
  • six sprays R are formed at equal angles around the central axis of the injection valve 3, and one spray R is formed on the central axis of the injection valve 3.
  • the center of gravity of the reducing agent is on an extension line of the central axis of the injection valve 3.
  • This center of gravity may be the center of gravity or the center of mass of the reducing agent present in the cross section orthogonal to the central axis. That is, it is good also as a mass center of mass distribution of the spray R shown in FIG.
  • the center of gravity of the reducing agent may not be on an extension line of the central axis of the injection valve 3.
  • the injection hole of the injection valve 3 may be one or two.
  • the catalyst 4 examples include an occlusion reduction type NOx catalyst, a selective reduction type NOx catalyst, an oxidation catalyst, and a three-way catalyst. Further, the catalyst 4 may be carried on a particulate filter. Further, a particulate filter may be provided upstream or downstream of the catalyst 4.
  • the internal combustion engine 1 configured as described above is provided with an ECU 10 that is an electronic control unit for controlling the internal combustion engine 1.
  • the ECU 10 controls the operation state of the internal combustion engine 1 according to the operation conditions of the internal combustion engine 1 and the request of the driver.
  • the ECU 10 is connected to an accelerator opening sensor 12 capable of detecting an engine load by outputting an electric signal corresponding to the amount of depression of the accelerator pedal 11, and a crank position sensor 13 for detecting the engine speed via electric wiring. Output signals from these sensors are input to the ECU 10.
  • the injection valve 3 is connected to the ECU 10 via electric wiring, and the injection valve 3 is controlled by the ECU 10.
  • the injection valve 3 is assumed to inject urea water
  • the catalyst 4 is a selective reduction type NOx catalyst. Then, the urea water injected from the injection valve 3 is hydrolyzed by the heat of the exhaust gas to become ammonia (NH 3 ), and part or all of the urea water is adsorbed on the catalyst 4. This ammonia selectively reduces NOx. Then, ammonia is supplied to the catalyst 4 or adsorbed in advance, and the NOx is reduced when NOx passes through the catalyst 4.
  • the exhaust density may vary depending on the location. That is, the mass per unit volume may vary depending on the location. For this reason, mass distribution arises. And in a location where mass is large, there are more NOx, HC, and CO than in a small location. For this reason, the amounts of NOx, HC, and CO flowing into the catalyst 4 are not uniform, and deviation occurs depending on the shape of the exhaust passage 2 and the like. In the catalyst 4, there are a portion where the exhaust mass is large and a portion where the exhaust mass is small. Therefore, when the reducing agent is uniformly supplied to the catalyst 4, excess or deficiency of the reducing agent may occur depending on the location. .
  • an amount of reducing agent corresponding to the mass of exhaust gas that is, the amount of NOx, HC, CO can be supplied. it can.
  • FIG. 3 is a diagram showing an example of the relationship between the mass distribution of the exhaust gas in the exhaust passage 2 and the spray R of the reducing agent injected from the injection valve 3.
  • FIG. 3 is a cross section cut by a plane orthogonal to the central axis of the exhaust passage 2.
  • An inner region surrounded by a broken line in FIG. 3 is a portion A where the mass of the exhaust gas is relatively large, and a region outside the broken line in FIG. 3 is a portion B where the mass of the exhaust gas is relatively small.
  • the center of the location A where the exhaust mass is relatively large is assumed to be substantially equal to the central axis of the exhaust passage 2.
  • the mass of exhaust gas may be the mass of exhaust gas per unit volume.
  • the injection valve 3 is attached so that the reducing agent is supplied toward the location A where the mass of the exhaust gas is relatively large.
  • the injection valve 3 is attached so that the central axis of the injection valve 3 and the central axis of the exhaust passage 2 downstream of the injection valve 3 coincide.
  • the central axis of the injection valve 3 and the central axis of the exhaust passage 2 can be matched by using a portion where the exhaust passage 2 is bent.
  • the center of gravity of the reducing agent injected from the injection valve 3 exists on the central axis of the exhaust passage 2. That is, the center of gravity of the reducing agent passes through the portion A where the mass of the exhaust gas is relatively large.
  • the concentration of the reducing agent is relatively high at and around the center of gravity of the reducing agent. For this reason, more reducing agent can be supplied to the location A where the mass of the exhaust gas is relatively large.
  • the attachment position and the injection hole shape of the injection valve 3 may be adjusted so that the locations where the respective sprays R overlap each other pass the location A where the mass of the exhaust gas is relatively large.
  • the direction of the central axis of the injection valve 3 and the flow direction of the exhaust need not be parallel. That is, it is only necessary that the center of gravity of the reducing agent passes through the location A where the exhaust mass is relatively large.
  • the injection hole of the injection valve 3 may be directed to the location A where the mass of the exhaust gas is relatively large.
  • the injection valve 3 may be formed with an injection hole for injecting the reducing agent toward the location A where the mass of the exhaust gas is relatively large.
  • the location A where the exhaust mass is relatively large may be displaced from the central axis of the exhaust passage 2.
  • the attachment position of the injection valve 3 or the injection hole shape is adjusted according to the location A where the mass of the exhaust gas is relatively large.
  • the mass distribution of the exhaust can be obtained in advance by experiments or simulations. Further, the exhaust gas mass distribution may change depending on the operating state of the internal combustion engine 1. For example, the exhaust mass distribution in a predetermined operation state is obtained, and the injection valve 3 is installed in accordance with the exhaust mass distribution. Then, the reducing agent is supplied in a predetermined operation state.
  • the operating state is determined based on, for example, the engine speed and the engine load. This operation state may be an operation state in which the reducing agent can be supplied.
  • the center of gravity of the reducing agent or the part where the sprays R overlap each other passes through the part A where the mass of the exhaust gas is relatively large. To do.
  • the exhaust mass is relatively larger than the location B where the exhaust amount is relatively small. More A reducing agent is supplied to the location A.
  • FIG. 4 is a diagram showing an example of the mass distribution of the exhaust when the catalyst 4 is viewed from the upstream side of the exhaust passage 2. This mass distribution is on the upstream end face of the catalyst 4.
  • An inner region surrounded by a broken line in FIG. 4 is a portion A where the mass of the exhaust gas is relatively large, and a region outside the broken line in FIG. 4 is a portion B where the mass of the exhaust gas is relatively small.
  • the mass of exhaust gas may be the mass of exhaust gas per unit volume.
  • FIG. 4 there is a deviation between the center axis C of the catalyst 4 and the center D where the exhaust mass is relatively large. For example, if the exhaust passage 2 is bent just upstream of the catalyst 4, centrifugal force acts on the exhaust, resulting in a mass distribution as shown in FIG. 4.
  • the mounting position, the injection hole shape, and the number of injection holes of the injection valve 3 are adjusted so that more reducing agent is supplied to the location A where the exhaust mass is relatively large.
  • the injection valve 3 may be attached to a portion where the cross-sectional area of the exhaust passage 2 increases toward the downstream side, and the reducing agent may be injected therefrom in parallel with the central axis of the catalyst 4.
  • a reducing agent can be supplied according to the amount of components to be purified.
  • a NOx catalyst is used as the catalyst 4 and urea water is used as the reducing agent
  • a larger amount of ammonia can be adsorbed in a portion where a lot of NOx passes, so that the NOx purification rate can be improved. it can.
  • ammonia can be prevented from passing through the catalyst 4.
  • HC is supplied as a reducing agent, it is possible to suppress the HC from adhering to the catalyst 4 and preventing the exhaust gas from being purified. Furthermore, deterioration due to the temperature rise of the catalyst 4 can be suppressed. Moreover, it can suppress that the catalyst 4 is clogged with a particulate matter.
  • FIG. 5 is a diagram showing a schematic configuration of the exhaust gas purification apparatus for an internal combustion engine according to the present embodiment.
  • FIG. 5A is a view showing the arrangement of the device
  • FIG. 5B is a view of the exhaust passage 2 where the injection valve 3 is attached as viewed from the upstream side.
  • symbol is attached
  • an oxidation catalyst 41 and a particulate filter 42 are provided upstream of the injection valve 3.
  • a selective reduction type NOx catalyst 43 is provided downstream of the injection valve 3.
  • the injection valve 3 is attached to a location where the exhaust passage 2 between the particulate filter 42 and the selective reduction type NOx catalyst 43 is narrowed.
  • the injection valve 3 is attached so that its central axis is orthogonal to the central axis of the exhaust passage 2.
  • the injection hole of the injection valve 3 is formed so that the concentration of the reducing agent injected from the injection valve 3 is high on the central axis of the injection valve 3 and decreases as the distance from the central axis increases. It is assumed that the portion where the mass of the exhaust is relatively large is on the central axis of the exhaust passage 2.
  • the injection valve 3 can be attached even if the particulate filter 42 and the selective reduction type NOx catalyst 43 are close to each other. Moreover, since the disturbance of the exhaust gas becomes large at the location where the exhaust passage 2 is narrowed, atomization of the reducing agent can be promoted.
  • FIG. 6 is a diagram showing a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to the present embodiment.
  • FIG. 6A is a diagram showing the arrangement of the apparatus
  • FIG. 6B is a diagram of the particulate filter 42 viewed from the downstream side of the particulate filter 42.
  • symbol is attached
  • the injection valve 3 is attached so that the spray R from the injection valve 3 collides with the downstream end face of the particulate filter 42. For this reason, the injection valve 3 is attached to a portion downstream of the particulate filter 42 and having a smaller sectional area of the exhaust passage 2 toward the downstream side.
  • the portion where the mass of the exhaust is relatively large is on the central axis of the exhaust passage 2. Then, the reducing agent injection direction is determined so that the center of gravity of the reducing agent passes through a point where the downstream end surface of the particulate filter 42 and the central axis of the exhaust passage 2 intersect.
  • the injection valve 3 can be attached even if the particulate filter 42 and the selective reduction type NOx catalyst 43 are close to each other. Further, since the temperature of the end face of the particulate filter 42 is high due to the heat of exhaust gas, for example, hydrolysis of urea water can be promoted.
  • FIG. 7 to 11 are diagrams showing a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to the present embodiment.
  • FIG. 7A, FIG. 8A, and FIG. 9A are views of the catalyst 4 viewed from the lateral direction.
  • 7B, FIG. 8B, FIG. 9B, FIG. 10, and FIG. 11 are views of the catalyst 4 viewed from the upstream side of the catalyst 4.
  • FIG. 11 shows the shapes of the sprays R, R1, and R2 when the exhaust passage 2 is assumed to be absent. .
  • the cross section of the catalyst 4 orthogonal to the exhaust flow direction is relatively long in one direction (vertical direction) and relatively short in the other direction (horizontal direction) orthogonal to the one direction.
  • the cross-sectional shape of the catalyst 4 may be oval or rectangular.
  • the central axis of the exhaust passage 2 is shifted between the upstream side and the downstream side of the catalyst 4. That is, the exhaust passage 2 upstream of the catalyst 4 is located above the central axis of the catalyst 4, and the exhaust passage 2 downstream of the catalyst 4 is located below the central axis of the catalyst 4. Yes.
  • the mass of the exhaust gas and the mass of the reducing agent tend to vary depending on the location.
  • the injection valve 3 is attached to the straight portion of the exhaust passage 2 upstream from the catalyst 4.
  • the straight portion of the exhaust passage 2 is located upstream of the portion where the cross-sectional area of the exhaust passage 2 increases toward the downstream side in accordance with the shape of the catalyst 4.
  • the injection valve 3 is attached so that its central axis is orthogonal to the central axis of the exhaust passage 2. It is assumed that the portion where the mass of the exhaust is relatively large is on the central axis of the exhaust passage 2.
  • the exhaust emission control device configured as described above, it is possible to supply more reducing agent to a location where the mass of the exhaust is relatively large. Further, even if the cross-sectional area of the exhaust passage 2 is increased immediately upstream of the catalyst 4 toward the downstream side, a reducing agent corresponding to the mass of the exhaust gas flowing into the catalyst 4 is supplied. Moreover, a reducing agent can be supplied also to a location where the mass of exhaust gas is relatively small. Thus, the reducing agent can be supplied according to the mass of the exhaust.
  • the injection valve 3 is mounted on the upstream side of the catalyst 4 and on the downstream side of the portion where the cross section of the exhaust passage 2 becomes larger toward the downstream side. Then, the reducing agent is injected in parallel with the upstream end face of the catalyst 4 and in the major axis direction of the upstream end face. Further, as shown in FIG. 8 (B), the spray R1 near the extension line of the central axis of the injection valve 3 has a relatively high concentration, and the spray at a position away from the extension line of the central axis of the injection valve 3. A nozzle hole is formed so that the concentration of R2 is relatively low. That is, the concentration is higher on the center side of the spray. It is assumed that a portion having a relatively large exhaust mass is formed along the long axis of the catalyst 4.
  • two injection valves 3 are mounted on the upstream side of the catalyst 4 and on the downstream side of the portion where the cross section of the exhaust passage 2 becomes larger on the downstream side. And in each injection valve 3, the reducing agent is injected in parallel with the upstream end face of the catalyst 4 and in the major axis direction of the upstream end face. In addition, nozzle holes and the like are formed so that the spray R from each injection valve 3 is uniform.
  • the concentration of the reducing agent increases because more reducing agent exists at the locations where the sprays R overlap.
  • more reducing agent can be supplied to locations where the exhaust mass is relatively large.
  • a reducing agent can be supplied also to another location.
  • the reducing agent can be supplied according to the mass of the exhaust.
  • the injection valve 3 is attached on the upstream side of the catalyst 4 and on the downstream side of the portion where the cross section of the exhaust passage 2 becomes larger toward the downstream side. Further, the injection valve 3 injects a reducing agent in a diagonal direction parallel to the upstream end face of the upstream end face of the catalyst 4. Further, the spray R1 near the extension of the central axis of the injection valve 3 has a relatively high concentration, and the spray R2 away from the extension of the central axis of the injection valve 3 has a relatively low concentration. A nozzle hole or the like is formed.
  • two injection valves 3 are attached opposite to the upstream side of the catalyst 4 and the downstream side of the portion where the cross section of the exhaust passage 2 becomes larger toward the downstream side. Further, the injection valve 3 injects a reducing agent in a diagonal direction parallel to the upstream end face of the upstream end face of the catalyst 4. In addition, nozzle holes and the like are formed so that the spray R from each injection valve 3 is uniform.
  • the exhaust gas purification apparatus configured as described above, since a larger amount of the reducing agent is present at the portion where the spray R overlaps, more reducing agent can be supplied to the portion where the mass of the exhaust gas is relatively large. Moreover, a reducing agent can be supplied also to another location. Thus, the reducing agent can be supplied according to the mass of the exhaust.
  • FIG. 12 is a diagram showing a schematic configuration of a conventional injection valve 3.
  • FIG. 12A is a cross-sectional view when the tip of the injection valve 3 is cut along the central axis
  • FIG. 12B is a diagram of the tip of the injection valve 3 as viewed from an extension line of the central axis.
  • FIG. 12C shows the concentration distribution of the reducing agent at a predetermined distance from the injection valve 3.
  • the injection hole 31 of the injection valve 3 is formed so that the cross section orthogonal to the central axis of the injection valve 3 is rectangular.
  • the rectangular length of this cross section is longer toward the tip side of the injection valve 3.
  • the width of the rectangle of the cross section is constant.
  • the spray R is formed at a predetermined angle.
  • the angles of the nozzle hole 31 and the spray R are smaller than the angles of the nozzle hole 31 and the spray R shown in FIG.
  • FIG. 13 is a diagram showing a schematic configuration of the injection valve 3 according to the present embodiment.
  • FIG. 13A is a cross-sectional view when the tip of the injection valve 3 is cut along the central axis
  • FIG. 13B is a view of the tip of the injection valve 3 as viewed from an extension line of the central axis.
  • FIG. 13C is a view showing the concentration distribution of the reducing agent at a predetermined distance from the injection valve 3.
  • the injection hole 31 is formed so that the angle of the injection hole 31 and the spray R is larger than that of the injection valve 3 shown in FIG. That is, comparing the injection valve 3 shown in FIG. 12 with a cross-sectional shape, the injection valve 3 shown in FIG. Note that the rectangular width of the cross section is the same as that shown in FIG.
  • the reducing agent peels from the nozzle hole 31 when the reducing agent passes through the nozzle hole 31.
  • more reducing agent flows through the central axis side of the injection valve 3.
  • a spray R1 having a relatively high concentration is formed on the extension line of the central axis of the injection valve 3
  • a spray R2 having a relatively low concentration is formed at both ends.
  • the concentration of the reducing agent on the extension line of the central axis of the injection valve 3 can be increased.
  • by directing the injection hole 31 to a location where the mass of the exhaust is large most of the injected reducing agent is directed to a location where the mass of the exhaust is large.
  • the concentration of the reducing agent on the extension line of the central axis of the injection valve 3 can be increased by setting the angle of the injection hole 31 so that the reducing agent is peeled off from the wall surface of the injection hole 31.
  • FIG. 14 is a diagram showing a schematic configuration of another injection valve 3 according to the present embodiment.
  • FIG. 14A is a cross-sectional view when the tip of the injection valve 3 is cut along the central axis
  • FIG. 14B is a diagram of the tip of the injection valve 3 as viewed from an extension line of the central axis.
  • FIG. 14C shows the concentration distribution of the reducing agent at a predetermined distance from the injection valve 3.
  • the injection hole 31 is provided at a position shifted from the central axis of the injection valve 3. Thereby, the spray R1 having a relatively high concentration is formed on the center side, and the spray R2 having a relatively low concentration is formed on both ends. In this way, the concentration of the reducing agent on the extension line of the injection hole 31 of the injection valve 3 can be increased. Then, by directing the injection hole 31 to a location where the mass of the exhaust is large, most of the injected reducing agent is directed to a location where the mass of the exhaust is large. For this reason, more reducing agent can be supplied to the location where the mass of exhaust gas is large.
  • FIG. 15 is a diagram showing a schematic configuration of the injection valve 3 having one injection hole 31.
  • FIG. 15A is a cross-sectional view when the tip of the injection valve 3 is cut along the central axis, and
  • FIG. 15B shows the concentration distribution of the reducing agent at a predetermined distance from the injection valve 3. It is.
  • the injection valve 3 shown in FIG. 15 is formed such that the reducing agent advances in the direction of the arrow in FIG. If it does so, more reducing agents will distribute
  • FIG. Thereby, the spray R2 having a relatively low concentration is formed on the extended line of the central axis of the injection valve 3, and the spray R1 having a relatively high concentration is formed around the spray R2.
  • FIG. 16 is a diagram showing a schematic configuration of another injection valve 3 having one injection hole 31.
  • FIG. 16A is a cross-sectional view when the tip of the injection valve 3 is cut along the central axis
  • FIG. 16B shows the concentration distribution of the reducing agent at a predetermined distance from the injection valve 3. It is.
  • the injection valve 3 shown in FIG. 16 is formed such that the reducing agent advances in the direction of the arrow in FIG. If it does so, more reducing agents will distribute
  • FIG. As a result, a spray R1 having a relatively high concentration is formed on the extension line of the central axis of the injection valve 3, and a spray R2 having a relatively low concentration is formed therearound.
  • the concentration distribution of the reducing agent also changes depending on the shape of the injection valve 3. Then, by directing the nozzle hole 31 to a location where the mass of the exhaust is large, most of the injected reducing agent is directed to a location where the mass of the exhaust is large. For this reason, more reducing agent can be supplied to the location where the mass of exhaust gas is large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

In order to supply a reducing agent appropriately in an exhaust purifying apparatus for an internal combustion engine, which exhaust purifying apparatus is provided with a catalyst disposed in an exhaust channel of the internal combustion engine and a supply apparatus for supplying the reducing agent to the catalyst, the supply apparatus supplies the reducing agent toward a location with a larger mass of exhaust rather than a location with a smaller mass of exhaust. Thus, an appropriate amount of the reducing agent in view of the mass of exhaust can be supplied.

Description

内燃機関の排気浄化装置Exhaust gas purification device for internal combustion engine
 本発明は、内燃機関の排気浄化装置に関する。 The present invention relates to an exhaust purification device for an internal combustion engine.
 推定されるNOxの発生量に応じた量の尿素水(NH)を選択還元型NOx触媒に供給することによりNOxを浄化する排気浄化装置が知られている(例えば、特許文献1参照。)。 An exhaust emission control device that purifies NOx by supplying urea water (NH 3 ) in an amount corresponding to the estimated NOx generation amount to a selective reduction type NOx catalyst is known (see, for example, Patent Document 1). .
 このような従来の排気浄化装置では、尿素水(NH)が排気管内で均一に分布するように、噴射弁の取り付け位置及び噴孔形状などが決定されていた。しかし、排気中のNOx分布は、排気管の形状などの影響により均一でないこともある。すなわち、排気中のNOx分布と還元剤分布とがずれていることがある。このため、排気中のNOx濃度が高い箇所では還元剤が不足し、NOx濃度が低い箇所では還元剤が過剰になる虞がある。そうすると、NOxの浄化率が低下したり、NOxの浄化に使われずに触媒に残ったNHが触媒に偏って吸着されたりする虞がある。さらに、NHが触媒をすり抜ける虞がある。 In such a conventional exhaust purification device, the attachment position of the injection valve, the injection hole shape, and the like are determined so that urea water (NH 3 ) is uniformly distributed in the exhaust pipe. However, the NOx distribution in the exhaust gas may not be uniform due to the influence of the shape of the exhaust pipe. That is, the NOx distribution and the reducing agent distribution in the exhaust gas may deviate. For this reason, there is a possibility that the reducing agent is insufficient at locations where the NOx concentration in the exhaust is high, and the reducing agent becomes excessive at locations where the NOx concentration is low. As a result, the NOx purification rate may decrease, or NH 3 remaining in the catalyst without being used for NOx purification may be biased and adsorbed to the catalyst. Furthermore, there is a possibility that NH 3 may slip through the catalyst.
 また、排気流量、排気温度、混合気温度、混合気圧力、大気湿度の5つのパラメータを計測して、各パラメータに重み付けを行い、重み付けを行った5つのパラメータに基づいて還元剤を供給する技術が知られている(例えば、特許文献2参照。)。この技術では、NOx分布と還元剤分布とを一致させるように5つのパラメータの重み付けを学習している。また、NOx分布と還元剤分布とを一致させるために、還元剤の噴射弁を複数備えている。そして、NOx分布に合わせて、各噴射弁からの還元剤の供給量を制御している。 Further, a technique for measuring five parameters of exhaust flow rate, exhaust temperature, mixture temperature, mixture pressure, and atmospheric humidity, weighting each parameter, and supplying a reducing agent based on the weighted five parameters (For example, refer to Patent Document 2). In this technique, weighting of five parameters is learned so that the NOx distribution and the reducing agent distribution are matched. In order to make the NOx distribution and the reducing agent distribution coincide with each other, a plurality of reducing agent injection valves are provided. The supply amount of the reducing agent from each injection valve is controlled according to the NOx distribution.
 しかし、乗用車に適用する場合には、噴射弁を取り付ける位置が限られる。このため、複数の噴射弁を設けることが困難となる虞がある。また、複数の噴射弁を制御しなければならないため、制御が複雑になる虞もある。 However, when applied to a passenger car, the position where the injection valve is attached is limited. For this reason, it may be difficult to provide a plurality of injection valves. Further, since a plurality of injection valves must be controlled, there is a possibility that the control becomes complicated.
特開2005-264731号公報JP 2005-264731 A 特開2002-276344号公報JP 2002-276344 A
 本発明は、上記したような問題点に鑑みてなされたものであり、還元剤を適正に供給することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to appropriately supply a reducing agent.
 上記課題を達成するために本発明に係る内燃機関の排気浄化装置は、
 内燃機関の排気通路に設けられる触媒と、
 前記触媒へ還元剤を供給する供給装置と、
を備える内燃機関の排気浄化装置において、
 前記供給装置は、排気の質量が小さい箇所よりも大きい箇所に向けて還元剤を供給する。
In order to achieve the above object, an exhaust gas purification apparatus for an internal combustion engine according to the present invention comprises:
A catalyst provided in the exhaust passage of the internal combustion engine;
A supply device for supplying a reducing agent to the catalyst;
An exhaust gas purification apparatus for an internal combustion engine comprising:
The supply device supplies the reducing agent toward a place where the mass of the exhaust gas is larger than a place where the mass of the exhaust gas is small.
 ここで、排気の密度は均一でなく、排気の密度が高い箇所や低い箇所が存在する。そして、排気の密度が高い箇所においては、単位体積当たりの質量が比較的大きく、排気の密度が低い箇所においては、単位体積当たりの質量が比較的小さい。すなわち、排気の質量が小さい箇所は、排気の密度が比較的低い箇所としてもよい。また、排気の質量が大きい箇所は、排気の密度が比較的高い箇所としてもよい。また、排気の質量が小さい箇所及び大きい箇所は、排気の質量が最も小さい箇所及び最も大きい箇所としてもよい。すなわち、排気の質量が最も大きい箇所に向けて還元剤を供給してもよい。 Here, the exhaust density is not uniform, and there are places where the exhaust density is high and low. Then, the mass per unit volume is relatively large at locations where the exhaust density is high, and the mass per unit volume is relatively small at locations where the exhaust density is low. That is, the location where the exhaust mass is small may be a location where the exhaust density is relatively low. Further, the location where the mass of the exhaust is large may be a location where the density of the exhaust is relatively high. Further, the location where the exhaust mass is small and the location where the exhaust mass is large may be the location where the mass of the exhaust is the smallest and the location where the mass is the largest. That is, the reducing agent may be supplied toward a location where the mass of exhaust gas is the largest.
 そして、排気の質量が大きい箇所では、排気の質量が小さい箇所よりも、浄化すべき成分がより多く含まれる。このため、排気の質量が大きい箇所では、より多くの還元剤を必要とする。これに対し、排気の質量が大きい箇所に向けて還元剤を供給することで、浄化すべき成分がより多く含まれる箇所に還元剤をより多く供給することができる。これにより、浄化効率を向上させることができる。また、還元剤の供給量を低減することができる。また、浄化すべき成分の量に応じた還元剤の供給が可能となるため、余剰の還元剤が触媒に付着して浄化率が低減することを抑制できる。また、余剰の還元剤が触媒を通過することを抑制できる。このようにして、還元剤を適正に供給することができる。 And, the portion where the mass of exhaust gas is large contains more components to be purified than the portion where the mass of exhaust gas is small. For this reason, in the location where the mass of exhaust gas is large, more reducing agent is required. On the other hand, by supplying the reducing agent toward a location where the mass of the exhaust gas is large, it is possible to supply more reducing agent to a location where more components to be purified are contained. Thereby, purification efficiency can be improved. Further, the supply amount of the reducing agent can be reduced. Moreover, since it becomes possible to supply the reducing agent according to the amount of the component to be purified, it is possible to suppress the excess reducing agent from adhering to the catalyst and reducing the purification rate. Moreover, it can suppress that an excessive reducing agent passes a catalyst. In this way, the reducing agent can be properly supplied.
 本発明においては、前記供給装置は、前記還元剤を噴射する噴射弁を備え、
 前記噴射弁には、前記排気の質量が大きい箇所に向けて還元剤を噴射する噴孔が形成されてもよい。
In the present invention, the supply device includes an injection valve that injects the reducing agent,
The injection valve may be formed with an injection hole for injecting a reducing agent toward a portion where the mass of the exhaust gas is large.
 このように噴孔を形成することにより、浄化すべき成分がより多い箇所に向けて還元剤を噴射することができる。これにより、浄化効率を向上させることができる。 By forming the nozzle holes in this way, it is possible to inject the reducing agent toward a location where there are more components to be purified. Thereby, purification efficiency can be improved.
 本発明においては、前記噴射弁は、前記噴孔を1つ又は複数備え、各噴孔から噴射される還元剤の重心が、前記排気の質量が大きい箇所を通るように、前記噴孔が形成されてもよい。 In the present invention, the injection valve includes one or a plurality of injection holes, and the injection holes are formed so that the center of gravity of the reducing agent injected from each injection hole passes through a portion where the mass of the exhaust gas is large. May be.
 ここで、複数の噴孔を備えることにより、より広い範囲に還元剤が分散する。しかし、還元剤の濃度が高い箇所もあれば、低い箇所もある。また、噴孔が1つであっても、噴孔の形状によっては、還元剤の濃度が高い場所が噴霧の中心側に形成される場合もあれば、それよりも外側に形成される場合もある。そして、噴射された還元剤の重心の周りには、より多くの還元剤が存在する。この還元剤の重心の位置は、噴孔の形状によって変わる場合もある。このため、還元剤の重心が、排気の質量が大きい箇所を通るように噴孔を形成しておけば、浄化すべき成分がより多い箇所に、より多くの還元剤を供給することができる。 Here, by providing a plurality of nozzle holes, the reducing agent is dispersed in a wider range. However, there are places where the concentration of the reducing agent is high and there are places where it is low. Moreover, even if there is one nozzle hole, depending on the shape of the nozzle hole, a place where the concentration of the reducing agent is high may be formed on the center side of the spray, or may be formed on the outer side. is there. And more reducing agent exists around the center of gravity of the injected reducing agent. The position of the center of gravity of the reducing agent may vary depending on the shape of the nozzle hole. For this reason, if the nozzle hole is formed so that the center of gravity of the reducing agent passes through a portion where the mass of the exhaust gas is large, more reducing agent can be supplied to a portion where there are more components to be purified.
 なお、複数の噴孔を備えている場合には、各噴孔から噴射される還元剤の噴霧が重なっている箇所が、排気の質量がより大きい箇所を通過するように各噴孔を形成してもよい。すなわち、噴霧が重なっている箇所は、重なっていない箇所よりも、還元剤の濃度が高いため、より多くの還元剤を供給することができる。また、各噴孔から噴射された還元剤が、排気の質量がより大きい箇所を夫々通過するように噴孔を形成してもよい。何れの場合であっても、浄化すべき成分がより多い箇所に、より多くの還元剤を供給することができる。なお、重心は、噴射弁から所定の距離における還元剤の質量分布の質量中心としてもよい。 In addition, when a plurality of nozzle holes are provided, each nozzle hole is formed so that a portion where the spray of the reducing agent injected from each nozzle hole passes through a portion where the mass of the exhaust gas is larger. May be. That is, since the concentration of the reducing agent is higher in the areas where the sprays overlap than in the areas where the sprays do not overlap, more reducing agent can be supplied. Moreover, you may form an injection hole so that the reducing agent injected from each injection hole may each pass through the location where the mass of exhaust_gas | exhaustion is larger. In any case, it is possible to supply more reducing agent to a location where there are more components to be purified. The center of gravity may be the mass center of the mass distribution of the reducing agent at a predetermined distance from the injection valve.
 本発明においては、前記噴射弁を複数備え、各噴射弁から噴射される還元剤が、前記排気の質量が大きい箇所で重なるように、各噴射弁を配置してもよい。 In the present invention, a plurality of the injection valves may be provided, and the injection valves may be arranged so that the reducing agent injected from each injection valve overlaps at a location where the mass of the exhaust gas is large.
 夫々の噴射弁から噴射される還元剤が重なる箇所では、より多くの還元剤が存在する。そして、排気の質量が大きい箇所において、噴霧が重なることにより、この箇所により多くの還元剤を供給することができる。すなわち、浄化すべき成分がより多い箇所に、より多くの還元剤を供給することができる。この場合、各噴射弁の噴孔の数は、1つであってもよく、また、複数であってもよい。噴孔が1つの場合には、還元剤の濃度が高い場所が噴霧の中心側に形成されるものであってもよく、それよりも外側に形成されるものであってもよい。また、各噴射弁の取り付け位置を調整して、各噴射弁から噴射される還元剤の重なる位置が、還元剤の質量分布の質量中心となるようにしてもよい。 There are more reducing agents at the locations where the reducing agents injected from the respective injection valves overlap. And in the location where the mass of exhaust gas is large, the spray overlaps, so that more reducing agent can be supplied to this location. That is, a larger amount of reducing agent can be supplied to locations where there are more components to be purified. In this case, the number of injection holes of each injection valve may be one or plural. When there is one nozzle hole, the place where the concentration of the reducing agent is high may be formed on the center side of the spray, or may be formed on the outer side. Moreover, the attachment position of each injection valve may be adjusted so that the position where the reducing agent injected from each injection valve overlaps becomes the mass center of the mass distribution of the reducing agent.
 本発明によれば、還元剤を適正に供給することができる。 According to the present invention, the reducing agent can be properly supplied.
実施例1に係る内燃機関の排気浄化装置の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a first embodiment. 実施例1に係る噴射弁の噴霧の形態を例示した図である。It is the figure which illustrated the form of spraying of the injection valve concerning Example 1. 排気通路内の排気の質量分布と、噴射弁から噴射された還元剤の噴霧との関係の一例を示した図である。It is the figure which showed an example of the relationship between the mass distribution of the exhaust_gas | exhaustion in an exhaust passage, and the spray of the reducing agent injected from the injection valve. 触媒を排気通路の上流側から見たときの排気の質量分布の一例を示した図である。It is the figure which showed an example of the mass distribution of exhaust when a catalyst is seen from the upstream of an exhaust passage. 実施例2に係る内燃機関の排気浄化装置の概略構成を示す図である。FIG. 5 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a second embodiment. 実施例3に係る内燃機関の排気浄化装置の概略構成を示す図である。FIG. 6 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a third embodiment. 実施例4に係る内燃機関の排気浄化装置の概略構成を示す図である。FIG. 10 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a fourth embodiment. 実施例4に係る内燃機関の排気浄化装置の概略構成を示す図である。FIG. 10 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a fourth embodiment. 実施例4に係る内燃機関の排気浄化装置の概略構成を示す図である。FIG. 10 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a fourth embodiment. 実施例4に係る内燃機関の排気浄化装置の概略構成を示す図である。FIG. 10 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a fourth embodiment. 実施例4に係る内燃機関の排気浄化装置の概略構成を示す図である。FIG. 10 is a diagram illustrating a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to a fourth embodiment. 従来の噴射弁の概略構成を示す図である。It is a figure which shows schematic structure of the conventional injection valve. 実施例5に係る噴射弁の概略構成を示す図である。It is a figure which shows schematic structure of the injection valve which concerns on Example 5. FIG. 実施例5に係る他の噴射弁の概略構成を示す図である。It is a figure which shows schematic structure of the other injection valve which concerns on Example 5. FIG. 噴孔を1つ備える噴射弁の概略構成を示す図である。It is a figure which shows schematic structure of the injection valve provided with one injection hole. 噴孔を1つ備える他の噴射弁の概略構成を示す図である。It is a figure which shows schematic structure of the other injection valve provided with one injection hole.
 以下、本発明に係る内燃機関の排気浄化装置の具体的な実施態様について図面に基づいて説明する。 Hereinafter, specific embodiments of the exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described with reference to the drawings.
 図1は、本実施例に係る内燃機関の排気浄化装置の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒を有する水冷式の4サイクル・ディーゼルエンジンである。なお、以下の実施例は、ガソリンエンジンであっても同様に適用することができる。 FIG. 1 is a diagram showing a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to the present embodiment. The internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine having four cylinders. The following embodiments can be similarly applied even to a gasoline engine.
 内燃機関1には、排気通路2が接続されている。排気通路2には、排気の流れ方向で上流側から順に、噴射弁3及び触媒4が設けられている。 The exhaust passage 2 is connected to the internal combustion engine 1. An injection valve 3 and a catalyst 4 are provided in the exhaust passage 2 in order from the upstream side in the exhaust flow direction.
 噴射弁3は、還元剤を噴射する。還元剤には、例えば、燃料(HC)または尿素水等のアンモニア由来の還元剤を用いることができる。還元剤に何を用いるのかは、触媒4の種類に応じて決まる。そして、還元剤は、触媒4にて反応する。なお、噴射弁3の噴霧Rが以下のような形状となるように、該噴射弁3の噴孔を形成することができる。 The injection valve 3 injects a reducing agent. As the reducing agent, for example, a reducing agent derived from ammonia such as fuel (HC) or urea water can be used. What is used as the reducing agent depends on the type of the catalyst 4. Then, the reducing agent reacts with the catalyst 4. The injection hole of the injection valve 3 can be formed so that the spray R of the injection valve 3 has the following shape.
 ここで、図2は、本実施例に係る噴射弁3の噴霧Rの形態を例示した図である。図2は、噴射弁3から噴射される還元剤の噴霧Rの断面形状を示している。この断面は、噴射弁3から所定距離において該噴射弁3の中心軸と直交する断面である。図2において実線で囲まれる領域の内部は各噴孔からの噴霧Rが存在する範囲を示している。なお、破線は噴射弁3の先端を示している。 Here, FIG. 2 is a diagram illustrating the form of the spray R of the injection valve 3 according to the present embodiment. FIG. 2 shows a cross-sectional shape of the spray R of the reducing agent injected from the injection valve 3. This cross section is a cross section orthogonal to the central axis of the injection valve 3 at a predetermined distance from the injection valve 3. In FIG. 2, the inside of the region surrounded by the solid line indicates the range where the spray R from each nozzle hole exists. The broken line indicates the tip of the injection valve 3.
 図2(A)は、噴孔を3つ備えている場合である。この場合には、噴孔は、噴射弁3の中心軸を中心として等間隔に3つ配置される。このため、各噴霧Rは、噴射弁3の中心軸の周りに等角度に3つ形成される。 FIG. 2A shows a case where three nozzle holes are provided. In this case, three injection holes are arranged at equal intervals around the central axis of the injection valve 3. Therefore, three sprays R are formed at an equal angle around the central axis of the injection valve 3.
 図2(B)及び図2(C)は、噴孔を4つ備えている場合である。図2(B)の場合には、噴孔は、噴射弁3の中心軸を中心として等間隔に4つ配置される。このため、各噴霧Rは、噴射弁3の中心軸の周りに等角度に4つ形成される。また、図2(C)の場合には、噴孔は、噴射弁3の中心軸を中心として等間隔に3つ配置され、さらに噴射弁3の中心軸上に1つ配置される。このため、噴射弁3の中心軸の周りに等角度に3つの噴霧Rが形成され、さらに噴射弁3の中心軸上に1つの噴霧Rが形成される。 FIG. 2 (B) and FIG. 2 (C) are cases where four nozzle holes are provided. In the case of FIG. 2B, four injection holes are arranged at equal intervals around the central axis of the injection valve 3. For this reason, four sprays R are formed at equal angles around the central axis of the injection valve 3. In the case of FIG. 2C, three injection holes are arranged at equal intervals around the central axis of the injection valve 3, and further one is arranged on the central axis of the injection valve 3. Therefore, three sprays R are formed at an equal angle around the central axis of the injection valve 3, and one spray R is formed on the central axis of the injection valve 3.
 図2(D)及び図2(E)は、噴孔を5つ備えている場合である。図2(D)の場合には、噴孔は、噴射弁3の中心軸を中心として等間隔に5つ配置される。このため、各噴霧Rは、噴射弁3の中心軸の周りに等角度に5つ形成される。また、図2(E)の場合には、噴孔は、噴射弁3の中心軸を中心として等間隔に4つ配置され、さらに噴射弁3の中心軸上に1つ配置される。このため、噴射弁3の中心軸の周りに等角度に4つの噴霧Rが形成され、さらに噴射弁3の中心軸上に1つの噴霧Rが形成される。 2 (D) and 2 (E) show a case where five nozzle holes are provided. In the case of FIG. 2D, five injection holes are arranged at equal intervals around the central axis of the injection valve 3. For this reason, five sprays R are formed at equal angles around the central axis of the injection valve 3. In the case of FIG. 2 (E), four injection holes are arranged at equal intervals around the central axis of the injection valve 3, and one further is arranged on the central axis of the injection valve 3. For this reason, four sprays R are formed at an equal angle around the central axis of the injection valve 3, and one spray R is formed on the central axis of the injection valve 3.
 図2(F)及び図2(G)は、噴孔を6つ備えている場合である。図2(F)の場合には、噴孔は、噴射弁3の中心軸を中心として等間隔に6つ配置される。このため、各噴霧Rは、噴射弁3の中心軸の周りに等角度に6つ形成される。また、図2(G)の場合には、噴孔は、噴射弁3の中心軸を中心として等間隔に5つ配置され、さらに噴射弁3の中心軸上に1つ配置される。このため、噴射弁3の中心軸の周りに等角度に5つの噴霧Rが形成され、さらに噴射弁3の中心軸上に1つの噴霧Rが形成される。 FIG. 2 (F) and FIG. 2 (G) are cases where six nozzle holes are provided. In the case of FIG. 2 (F), six injection holes are arranged at equal intervals around the central axis of the injection valve 3. For this reason, six sprays R are formed at equal angles around the central axis of the injection valve 3. In the case of FIG. 2G, five injection holes are arranged at equal intervals around the central axis of the injection valve 3, and further one is arranged on the central axis of the injection valve 3. Therefore, five sprays R are formed at equal angles around the central axis of the injection valve 3, and one spray R is formed on the central axis of the injection valve 3.
 図2(H)は、噴孔を7つ備えている場合である。この場合には、噴孔は、噴射弁3の中心軸を中心として等間隔に6つ配置され、さらに噴射弁3の中心軸上に1つ配置される。このため、噴射弁3の中心軸の周りに等角度に6つの噴霧Rが形成され、さらに噴射弁3の中心軸上に1つの噴霧Rが形成される。 FIG. 2 (H) shows a case where seven nozzle holes are provided. In this case, six injection holes are arranged at equal intervals around the central axis of the injection valve 3, and one further is arranged on the central axis of the injection valve 3. For this reason, six sprays R are formed at equal angles around the central axis of the injection valve 3, and one spray R is formed on the central axis of the injection valve 3.
 なお、図2に示した何れの場合も、還元剤の重心が噴射弁3の中心軸の延長線上にある。この重心は、中心軸と直交する断面に存在する還元剤の重心または質量中心としてもよい。すなわち、図2に示した噴霧Rの質量分布の質量中心としてもよい。また、この還元剤の重心は、噴射弁3の中心軸の延長線上になくてもよい。さらに、噴射弁3の噴孔は1つ又は2つであってもよい。 In any case shown in FIG. 2, the center of gravity of the reducing agent is on an extension line of the central axis of the injection valve 3. This center of gravity may be the center of gravity or the center of mass of the reducing agent present in the cross section orthogonal to the central axis. That is, it is good also as a mass center of mass distribution of the spray R shown in FIG. Further, the center of gravity of the reducing agent may not be on an extension line of the central axis of the injection valve 3. Furthermore, the injection hole of the injection valve 3 may be one or two.
 触媒4には、例えば、吸蔵還元型NOx触媒、選択還元型NOx触媒、酸化触媒、または三元触媒を挙げることができる。また、触媒4はパティキュレートフィルタに担持されていてもよい。また、触媒4よりも上流側または下流側にパティキュレートフィルタを備えていても良い。 Examples of the catalyst 4 include an occlusion reduction type NOx catalyst, a selective reduction type NOx catalyst, an oxidation catalyst, and a three-way catalyst. Further, the catalyst 4 may be carried on a particulate filter. Further, a particulate filter may be provided upstream or downstream of the catalyst 4.
 以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御する。 The internal combustion engine 1 configured as described above is provided with an ECU 10 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 10 controls the operation state of the internal combustion engine 1 according to the operation conditions of the internal combustion engine 1 and the request of the driver.
 ECU10には、アクセルペダル11の踏込量に応じた電気信号を出力し機関負荷を検出可能なアクセル開度センサ12、及び機関回転数を検出するクランクポジションセンサ13が電気配線を介して接続され、これらセンサの出力信号がECU10に入力されるようになっている。一方、ECU10には、噴射弁3が電気配線を介して接続されており、該ECU10により噴射弁3が制御される。 The ECU 10 is connected to an accelerator opening sensor 12 capable of detecting an engine load by outputting an electric signal corresponding to the amount of depression of the accelerator pedal 11, and a crank position sensor 13 for detecting the engine speed via electric wiring. Output signals from these sensors are input to the ECU 10. On the other hand, the injection valve 3 is connected to the ECU 10 via electric wiring, and the injection valve 3 is controlled by the ECU 10.
 なお、本実施例では、たとえば、噴射弁3は尿素水を噴射するものとし、触媒4は選択還元型NOx触媒とする。そうすると、噴射弁3から噴射された尿素水は、排気の熱で加水分解されアンモニア(NH)となり、その一部又は全部が触媒4に吸着する。このアンモニアがNOxを選択的に還元させる。そして、触媒4にアンモニアを供給し、又は予め吸着させておき、触媒4をNOxが通過するときに該NOxを還元させる。 In this embodiment, for example, the injection valve 3 is assumed to inject urea water, and the catalyst 4 is a selective reduction type NOx catalyst. Then, the urea water injected from the injection valve 3 is hydrolyzed by the heat of the exhaust gas to become ammonia (NH 3 ), and part or all of the urea water is adsorbed on the catalyst 4. This ammonia selectively reduces NOx. Then, ammonia is supplied to the catalyst 4 or adsorbed in advance, and the NOx is reduced when NOx passes through the catalyst 4.
 ところで、排気通路2内では、排気の密度が場所によって異なる場合がある。すなわち、単位体積当たりの質量が場所によって異なる場合がある。このため、質量分布が生じる。そして、質量が大きい箇所では、小さい箇所よりも、NOx,HC,COが多く存在する。このため、触媒4に流入するNOx,HC,COの量も均一ではなく、排気通路2の形状などによって偏りが生じる。そして、触媒4においても、排気の質量が大きい箇所と、小さい箇所と、が存在するため、触媒4に対して還元剤を均一に供給した場合には、場所によって還元剤の過不足が生じ得る。 By the way, in the exhaust passage 2, the exhaust density may vary depending on the location. That is, the mass per unit volume may vary depending on the location. For this reason, mass distribution arises. And in a location where mass is large, there are more NOx, HC, and CO than in a small location. For this reason, the amounts of NOx, HC, and CO flowing into the catalyst 4 are not uniform, and deviation occurs depending on the shape of the exhaust passage 2 and the like. In the catalyst 4, there are a portion where the exhaust mass is large and a portion where the exhaust mass is small. Therefore, when the reducing agent is uniformly supplied to the catalyst 4, excess or deficiency of the reducing agent may occur depending on the location. .
 これに対し、排気の質量が大きい箇所に対して、より多くの還元剤を供給することで、排気の質量、すなわち、NOx,HC,COの量に見合った量の還元剤を供給することができる。 On the other hand, by supplying more reducing agent to a portion where the mass of exhaust gas is large, an amount of reducing agent corresponding to the mass of exhaust gas, that is, the amount of NOx, HC, CO can be supplied. it can.
 ここで、図3は、排気通路2内の排気の質量分布と、噴射弁3から噴射された還元剤の噴霧Rとの関係の一例を示した図である。図3は、排気通路2の中心軸と直交する面により切断した断面である。図3中の破線で囲まれた内側の領域は、排気の質量が比較的大きい箇所Aであり、図3中の破線よりも外側の領域は、排気の質量が比較的小さい箇所Bである。図3においては、排気の質量が比較的大きな箇所Aの中心が、排気通路2の中心軸と略等しいものとする。排気の質量は、単位体積当たりの排気の質量としてもよい。 Here, FIG. 3 is a diagram showing an example of the relationship between the mass distribution of the exhaust gas in the exhaust passage 2 and the spray R of the reducing agent injected from the injection valve 3. FIG. 3 is a cross section cut by a plane orthogonal to the central axis of the exhaust passage 2. An inner region surrounded by a broken line in FIG. 3 is a portion A where the mass of the exhaust gas is relatively large, and a region outside the broken line in FIG. 3 is a portion B where the mass of the exhaust gas is relatively small. In FIG. 3, the center of the location A where the exhaust mass is relatively large is assumed to be substantially equal to the central axis of the exhaust passage 2. The mass of exhaust gas may be the mass of exhaust gas per unit volume.
 この場合、排気の質量が比較的大きな箇所Aに向かって還元剤が供給されるように、噴射弁3を取り付ける。このため、噴射弁3の中心軸と、該噴射弁3よりも下流側の排気通路2の中心軸と、が一致するように該噴射弁3を取り付ける。例えば、図1に示されるように、排気通路2が曲がっている箇所を利用することで、噴射弁3の中心軸と、排気通路2の中心軸と、を合わせることができる。そうすると、噴射弁3から噴射された還元剤の重心は、排気通路2の中心軸上に存在する。すなわち、排気の質量が比較的大きい箇所Aを、還元剤の重心が通る。還元剤の重心やその周りでは、還元剤の濃度が比較的高い。このため、排気の質量が比較的大きい箇所Aに対して、より多くの還元剤を供給することができる。 In this case, the injection valve 3 is attached so that the reducing agent is supplied toward the location A where the mass of the exhaust gas is relatively large. For this reason, the injection valve 3 is attached so that the central axis of the injection valve 3 and the central axis of the exhaust passage 2 downstream of the injection valve 3 coincide. For example, as shown in FIG. 1, the central axis of the injection valve 3 and the central axis of the exhaust passage 2 can be matched by using a portion where the exhaust passage 2 is bent. Then, the center of gravity of the reducing agent injected from the injection valve 3 exists on the central axis of the exhaust passage 2. That is, the center of gravity of the reducing agent passes through the portion A where the mass of the exhaust gas is relatively large. The concentration of the reducing agent is relatively high at and around the center of gravity of the reducing agent. For this reason, more reducing agent can be supplied to the location A where the mass of the exhaust gas is relatively large.
 また、夫々の噴霧Rが重なる箇所が、排気の質量が比較的大きい箇所Aを通るように、噴射弁3の取り付け位置や噴孔形状を調整してもよい。なお、噴射弁3の中心軸方向と、排気の流れ方向が平行でなくてもよい。すなわち、還元剤の重心が、排気の質量が比較的大きい箇所Aを通過すればよい。また、噴射弁3の噴孔を排気の質量が比較的大きな箇所Aに向けてもよい。また、排気の質量が比較的大きな箇所Aに向けて還元剤を噴射する噴孔を噴射弁3に形成するとしてもよい。 Further, the attachment position and the injection hole shape of the injection valve 3 may be adjusted so that the locations where the respective sprays R overlap each other pass the location A where the mass of the exhaust gas is relatively large. The direction of the central axis of the injection valve 3 and the flow direction of the exhaust need not be parallel. That is, it is only necessary that the center of gravity of the reducing agent passes through the location A where the exhaust mass is relatively large. Further, the injection hole of the injection valve 3 may be directed to the location A where the mass of the exhaust gas is relatively large. Further, the injection valve 3 may be formed with an injection hole for injecting the reducing agent toward the location A where the mass of the exhaust gas is relatively large.
 なお、排気の質量が比較的大きい箇所Aが、排気通路2の中心軸からずれている場合もある。この場合には、排気の質量が比較的大きい箇所Aに合わせて、噴射弁3の取り付け位置または噴孔形状を調整する。排気の質量分布は、予め実験またはシミュレーション等により求めることができる。また、内燃機関1の運転状態によって排気の質量分布が変化する場合もある。例えば、所定の運転状態のときの排気の質量分布を求めておき、該排気の質量分布に合わせて噴射弁3を設置する。そして、所定の運転状態のときに還元剤を供給する。運転状態は、たとえば機関回転数及び機関負荷に基づいて判断する。この運転状態は、還元剤を供給し得る運転状態としてもよい。 It should be noted that the location A where the exhaust mass is relatively large may be displaced from the central axis of the exhaust passage 2. In this case, the attachment position of the injection valve 3 or the injection hole shape is adjusted according to the location A where the mass of the exhaust gas is relatively large. The mass distribution of the exhaust can be obtained in advance by experiments or simulations. Further, the exhaust gas mass distribution may change depending on the operating state of the internal combustion engine 1. For example, the exhaust mass distribution in a predetermined operation state is obtained, and the injection valve 3 is installed in accordance with the exhaust mass distribution. Then, the reducing agent is supplied in a predetermined operation state. The operating state is determined based on, for example, the engine speed and the engine load. This operation state may be an operation state in which the reducing agent can be supplied.
 たとえば、図2に示したように、複数の噴霧Rが存在する場合には、還元剤の重心、または、各噴霧Rが重なる箇所が、排気の質量が比較的大きい箇所Aを通過するようにする。このように、噴射弁3の取り付け位置、噴孔形状、噴孔数を、排気の質量分布に応じて変えることで、排気の量が比較的小さい箇所Bよりも、排気の質量が比較的大きい箇所Aに、より多くの還元剤が供給されるようにする。 For example, as shown in FIG. 2, when there are a plurality of sprays R, the center of gravity of the reducing agent or the part where the sprays R overlap each other passes through the part A where the mass of the exhaust gas is relatively large. To do. In this way, by changing the mounting position, injection hole shape, and number of injection holes of the injection valve 3 according to the exhaust gas mass distribution, the exhaust mass is relatively larger than the location B where the exhaust amount is relatively small. More A reducing agent is supplied to the location A.
 また、図4は、触媒4を排気通路2の上流側から見たときの排気の質量分布の一例を示した図である。この質量分布は、触媒4の上流側端面におけるものである。図4中の破線で囲まれた内側の領域は、排気の質量が比較的大きい箇所Aであり、図4中の破線よりも外側の領域は、排気の質量が比較的小さい箇所Bである。排気の質量は、単位体積当たりの排気の質量としてもよい。 FIG. 4 is a diagram showing an example of the mass distribution of the exhaust when the catalyst 4 is viewed from the upstream side of the exhaust passage 2. This mass distribution is on the upstream end face of the catalyst 4. An inner region surrounded by a broken line in FIG. 4 is a portion A where the mass of the exhaust gas is relatively large, and a region outside the broken line in FIG. 4 is a portion B where the mass of the exhaust gas is relatively small. The mass of exhaust gas may be the mass of exhaust gas per unit volume.
 図4においては、触媒4の中心軸Cと、排気の質量が比較的大きい箇所の中心Dと、にはずれが生じている。たとえば、触媒4のすぐ上流において排気通路2が曲がっていると、排気に遠心力が働き、図4に示すような質量分布となる。 In FIG. 4, there is a deviation between the center axis C of the catalyst 4 and the center D where the exhaust mass is relatively large. For example, if the exhaust passage 2 is bent just upstream of the catalyst 4, centrifugal force acts on the exhaust, resulting in a mass distribution as shown in FIG. 4.
 このような場合においても、排気の質量が比較的大きい箇所Aにより多くの還元剤が供給されるように、噴射弁3の取り付け位置、噴孔形状、噴孔数を調整する。たとえば、排気通路2の断面積が下流側ほど大きくなる部位に噴射弁3を取り付け、そこから触媒4の中心軸と平行に還元剤を噴射してもよい。 Even in such a case, the mounting position, the injection hole shape, and the number of injection holes of the injection valve 3 are adjusted so that more reducing agent is supplied to the location A where the exhaust mass is relatively large. For example, the injection valve 3 may be attached to a portion where the cross-sectional area of the exhaust passage 2 increases toward the downstream side, and the reducing agent may be injected therefrom in parallel with the central axis of the catalyst 4.
 このように、本実施例によれば、排気の質量が比較的大きい箇所Aにより多くの還元剤を供給できる。すなわち、浄化すべき成分の量に応じて還元剤を供給することができる。たとえば、触媒4にNOx触媒を採用し、還元剤に尿素水を採用した場合には、NOxが多く通過する箇所により多くのアンモニアを吸着させることができるため、NOxの浄化率を向上させることができる。また、アンモニアが触媒4をすり抜けることを抑制できる。また、還元剤としてHCを供給したときに、該HCが触媒4に付着して排気の浄化を妨げることを抑制できる。さらに、触媒4の温度上昇による劣化を抑制できる。また、粒子状物質により触媒4が詰まることを抑制できる。 Thus, according to the present embodiment, more reducing agent can be supplied to the location A where the mass of the exhaust gas is relatively large. That is, a reducing agent can be supplied according to the amount of components to be purified. For example, when a NOx catalyst is used as the catalyst 4 and urea water is used as the reducing agent, a larger amount of ammonia can be adsorbed in a portion where a lot of NOx passes, so that the NOx purification rate can be improved. it can. Further, ammonia can be prevented from passing through the catalyst 4. Further, when HC is supplied as a reducing agent, it is possible to suppress the HC from adhering to the catalyst 4 and preventing the exhaust gas from being purified. Furthermore, deterioration due to the temperature rise of the catalyst 4 can be suppressed. Moreover, it can suppress that the catalyst 4 is clogged with a particulate matter.
 図5は、本実施例に係る内燃機関の排気浄化装置の概略構成を示す図である。図5(A)は、装置の配置を示した図であり、図5(B)は、噴射弁3が取り付けられている箇所の排気通路2を上流側から見た図である。なお、実施例1と同じ部材については、同じ符号を付して説明を省略する。 FIG. 5 is a diagram showing a schematic configuration of the exhaust gas purification apparatus for an internal combustion engine according to the present embodiment. FIG. 5A is a view showing the arrangement of the device, and FIG. 5B is a view of the exhaust passage 2 where the injection valve 3 is attached as viewed from the upstream side. In addition, about the same member as Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 本実施例では、噴射弁3よりも上流側に、酸化触媒41及びパティキュレートフィルタ42を備えている。また、噴射弁3よりも下流側に、選択還元型NOx触媒43を備えている。噴射弁3は、パティキュレートフィルタ42と選択還元型NOx触媒43との間の排気通路2が絞られている箇所に取り付けられる。そして、噴射弁3は、その中心軸が排気通路2の中心軸と直交するように取り付けられている。噴射弁3から噴射される還元剤は、噴射弁3の中心軸上で濃度が高く、該中心軸から離れるにしたがって濃度が低くなるように、噴射弁3の噴孔が形成されている。なお、排気の質量が比較的大きい箇所は、排気通路2の中心軸上にあるものとする。 In this embodiment, an oxidation catalyst 41 and a particulate filter 42 are provided upstream of the injection valve 3. Further, a selective reduction type NOx catalyst 43 is provided downstream of the injection valve 3. The injection valve 3 is attached to a location where the exhaust passage 2 between the particulate filter 42 and the selective reduction type NOx catalyst 43 is narrowed. The injection valve 3 is attached so that its central axis is orthogonal to the central axis of the exhaust passage 2. The injection hole of the injection valve 3 is formed so that the concentration of the reducing agent injected from the injection valve 3 is high on the central axis of the injection valve 3 and decreases as the distance from the central axis increases. It is assumed that the portion where the mass of the exhaust is relatively large is on the central axis of the exhaust passage 2.
 このように構成された排気浄化装置においても、排気の質量が比較的大きい箇所に還元剤をより多く供給することができる。また、パティキュレートフィルタ42と、選択還元型NOx触媒43とが接近していても噴射弁3を取り付けることができる。また、排気通路2が絞られている箇所では、排気の乱れが大きくなるため、還元剤の霧化を促進させることができる。 Even in the exhaust emission control device configured as described above, it is possible to supply more reducing agent to a location where the mass of the exhaust is relatively large. Further, the injection valve 3 can be attached even if the particulate filter 42 and the selective reduction type NOx catalyst 43 are close to each other. Moreover, since the disturbance of the exhaust gas becomes large at the location where the exhaust passage 2 is narrowed, atomization of the reducing agent can be promoted.
 図6は、本実施例に係る内燃機関の排気浄化装置の概略構成を示す図である。図6(A)は、装置の配置を示した図であり、図6(B)は、パティキュレートフィルタ42よりも下流側から該パティキュレートフィルタ42を見た図である。なお、実施例1または実施例2と同じ部材については、同じ符号を付して説明を省略する。 FIG. 6 is a diagram showing a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to the present embodiment. FIG. 6A is a diagram showing the arrangement of the apparatus, and FIG. 6B is a diagram of the particulate filter 42 viewed from the downstream side of the particulate filter 42. In addition, about the same member as Example 1 or Example 2, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 本実施例では、噴射弁3からの噴霧Rが、パティキュレートフィルタ42の下流側端面に衝突するように、該噴射弁3が取り付けられている。このため、噴射弁3を、パティキュレートフィルタ42よりも下流側であって、排気通路2の断面積が下流側ほど小さくなる部位に取り付けている。 In this embodiment, the injection valve 3 is attached so that the spray R from the injection valve 3 collides with the downstream end face of the particulate filter 42. For this reason, the injection valve 3 is attached to a portion downstream of the particulate filter 42 and having a smaller sectional area of the exhaust passage 2 toward the downstream side.
 なお、排気の質量が比較的大きい箇所は、排気通路2の中心軸上にあるものとする。そして、還元剤の重心が、パティキュレートフィルタ42の下流側端面と、排気通路2の中心軸と、が交差する点を通るように還元剤の噴射方向を決定する。 It should be noted that the portion where the mass of the exhaust is relatively large is on the central axis of the exhaust passage 2. Then, the reducing agent injection direction is determined so that the center of gravity of the reducing agent passes through a point where the downstream end surface of the particulate filter 42 and the central axis of the exhaust passage 2 intersect.
 このように構成された排気浄化装置においても、排気の質量が比較的大きい箇所に還元剤をより多く供給することができる。また、パティキュレートフィルタ42と、選択還元型NOx触媒43とが接近していても噴射弁3を取り付けることができる。また、パティキュレートフィルタ42の端面では、排気の熱により温度が高くなっているため、たとえば尿素水の加水分解を促進させることができる。 Even in the exhaust emission control device configured as described above, it is possible to supply more reducing agent to a location where the mass of the exhaust is relatively large. Further, the injection valve 3 can be attached even if the particulate filter 42 and the selective reduction type NOx catalyst 43 are close to each other. Further, since the temperature of the end face of the particulate filter 42 is high due to the heat of exhaust gas, for example, hydrolysis of urea water can be promoted.
 図7から図11は、本実施例に係る内燃機関の排気浄化装置の概略構成を示す図である。図7(A)、図8(A)、図9(A)は、触媒4を横方向から見た図である。また、図7(B)、図8(B)、図9(B)、図10、図11は、触媒4よりも上流側から該触媒4を見た図である。なお、実施例1から実施例3と同じ部材については、同じ符号を付して説明を省略する。また、図7(B)、図8(B)、図9(B)、図10、図11においては、排気通路2が無いと仮定したときの噴霧R,R1,R2の形状を示している。 7 to 11 are diagrams showing a schematic configuration of an exhaust gas purification apparatus for an internal combustion engine according to the present embodiment. FIG. 7A, FIG. 8A, and FIG. 9A are views of the catalyst 4 viewed from the lateral direction. 7B, FIG. 8B, FIG. 9B, FIG. 10, and FIG. 11 are views of the catalyst 4 viewed from the upstream side of the catalyst 4. FIG. In addition, about the same member as Example 1- Example 3, the same code | symbol is attached | subjected and description is abbreviate | omitted. 7 (B), FIG. 8 (B), FIG. 9 (B), FIG. 10, and FIG. 11 show the shapes of the sprays R, R1, and R2 when the exhaust passage 2 is assumed to be absent. .
 本実施例における触媒4の排気の流れ方向と直交する断面は、一方向(上下方向)に比較的長く、該一方向と直交する他方向(左右方向)に比較的短い。たとえば、触媒4の断面形状が楕円形または長方形であってもよい。そして、排気通路2は、触媒4の上流側と下流側とで中心軸がずれている。すなわち、触媒4よりも上流側の排気通路2は、触媒4の中心軸よりも上方に位置し、触媒4よりも下流側の排気通路2は、触媒4の中心軸よりも下方に位置している。このような触媒4においては、場所によって、排気の質量や、還元剤の質量にばらつきを生じやすい。 In the present embodiment, the cross section of the catalyst 4 orthogonal to the exhaust flow direction is relatively long in one direction (vertical direction) and relatively short in the other direction (horizontal direction) orthogonal to the one direction. For example, the cross-sectional shape of the catalyst 4 may be oval or rectangular. The central axis of the exhaust passage 2 is shifted between the upstream side and the downstream side of the catalyst 4. That is, the exhaust passage 2 upstream of the catalyst 4 is located above the central axis of the catalyst 4, and the exhaust passage 2 downstream of the catalyst 4 is located below the central axis of the catalyst 4. Yes. In such a catalyst 4, the mass of the exhaust gas and the mass of the reducing agent tend to vary depending on the location.
 そこで、図7に示した場合では、触媒4よりも上流の排気通路2の直線部分に噴射弁3を取り付けている。この排気通路2の直線部分は、触媒4の形状に合わせて排気通路2の断面積が下流側ほど大きくなる部位よりも上流側に位置する。そして、噴射弁3は、その中心軸が排気通路2の中心軸と直交するように取り付けられている。なお、排気の質量が比較的大きい箇所は、排気通路2の中心軸上にあるものとする。 Therefore, in the case shown in FIG. 7, the injection valve 3 is attached to the straight portion of the exhaust passage 2 upstream from the catalyst 4. The straight portion of the exhaust passage 2 is located upstream of the portion where the cross-sectional area of the exhaust passage 2 increases toward the downstream side in accordance with the shape of the catalyst 4. The injection valve 3 is attached so that its central axis is orthogonal to the central axis of the exhaust passage 2. It is assumed that the portion where the mass of the exhaust is relatively large is on the central axis of the exhaust passage 2.
 このように構成された排気浄化装置においても、排気の質量が比較的大きい箇所に還元剤をより多く供給することができる。また、触媒4のすぐ上流側で排気通路2の断面積が下流側ほど大きくなっていても、触媒4に流入する排気の質量に応じた還元剤が供給される。また、排気の質量が比較的小さい箇所にも還元剤を供給することができる。このように、排気の質量に応じて還元剤を供給することができる。 Even in the exhaust emission control device configured as described above, it is possible to supply more reducing agent to a location where the mass of the exhaust is relatively large. Further, even if the cross-sectional area of the exhaust passage 2 is increased immediately upstream of the catalyst 4 toward the downstream side, a reducing agent corresponding to the mass of the exhaust gas flowing into the catalyst 4 is supplied. Moreover, a reducing agent can be supplied also to a location where the mass of exhaust gas is relatively small. Thus, the reducing agent can be supplied according to the mass of the exhaust.
 また、図8に示した場合では、触媒4よりも上流側であって、排気通路2の断面が下流側ほど大きくなる部位よりも下流側に噴射弁3を取り付けている。そして、触媒4の上流側端面と平行に且つ該上流側端面の長軸方向に還元剤を噴射している。また、図8(B)に示されるように、噴射弁3の中心軸線の延長線上に近い箇所の噴霧R1は比較的濃度が高く、噴射弁3の中心軸の延長線上から離れた箇所の噴霧R2は比較的濃度が低くなるように、噴孔が形成されている。すなわち、噴霧の中心側でより濃度が高くなっている。なお、触媒4の長軸に沿って、排気の質量が比較的大きい箇所が形成されているものとする。 Further, in the case shown in FIG. 8, the injection valve 3 is mounted on the upstream side of the catalyst 4 and on the downstream side of the portion where the cross section of the exhaust passage 2 becomes larger toward the downstream side. Then, the reducing agent is injected in parallel with the upstream end face of the catalyst 4 and in the major axis direction of the upstream end face. Further, as shown in FIG. 8 (B), the spray R1 near the extension line of the central axis of the injection valve 3 has a relatively high concentration, and the spray at a position away from the extension line of the central axis of the injection valve 3. A nozzle hole is formed so that the concentration of R2 is relatively low. That is, the concentration is higher on the center side of the spray. It is assumed that a portion having a relatively large exhaust mass is formed along the long axis of the catalyst 4.
 このように構成された排気浄化装置においても、排気の質量が比較的大きい箇所に還元剤をより多く供給することができる。また、その他の箇所にも還元剤を供給することができる。このように、排気の質量に応じて還元剤を供給することができる。 Even in the exhaust emission control device configured as described above, it is possible to supply more reducing agent to a location where the mass of the exhaust is relatively large. Moreover, a reducing agent can be supplied also to another location. Thus, the reducing agent can be supplied according to the mass of the exhaust.
 また、図9に示した場合では、触媒4よりも上流側であって、排気通路2の断面が下流側ほど大きくなる部位よりも下流側に噴射弁3を対向させて2つ取り付けている。そして、夫々の噴射弁3において触媒4の上流側端面と平行に且つ該上流側端面の長軸方向に還元剤を噴射している。また、夫々の噴射弁3からの噴霧Rは均一となるように、噴孔などが形成されている。 Further, in the case shown in FIG. 9, two injection valves 3 are mounted on the upstream side of the catalyst 4 and on the downstream side of the portion where the cross section of the exhaust passage 2 becomes larger on the downstream side. And in each injection valve 3, the reducing agent is injected in parallel with the upstream end face of the catalyst 4 and in the major axis direction of the upstream end face. In addition, nozzle holes and the like are formed so that the spray R from each injection valve 3 is uniform.
 このように構成された排気浄化装置では、夫々の噴霧Rが重なる箇所においてより多くの還元剤が存在するために、還元剤の濃度が高くなる。排気の質量が比較的大きい箇所において、夫々の噴霧Rを重ねることで、排気の質量が比較的大きい箇所に還元剤をより多く供給することができる。また、その他の箇所にも還元剤を供給することができる。このように、排気の質量に応じて還元剤を供給することができる。 In the exhaust emission control device configured in this way, the concentration of the reducing agent increases because more reducing agent exists at the locations where the sprays R overlap. By superimposing the sprays R at locations where the exhaust mass is relatively large, more reducing agent can be supplied to locations where the exhaust mass is relatively large. Moreover, a reducing agent can be supplied also to another location. Thus, the reducing agent can be supplied according to the mass of the exhaust.
 また、図10に示した場合では、触媒4よりも上流側であって、排気通路2の断面が下流側ほど大きくなる部位よりも下流側に噴射弁3を取り付けている。また、噴射弁3は、触媒4の上流側端面において対角線方向に該上流側端面と平行に還元剤を噴射している。また、噴射弁3の中心軸線の延長線上に近い箇所の噴霧R1は比較的濃度が高く、噴射弁3の中心軸の延長線上から離れた箇所の噴霧R2は比較的濃度が低くなるように、噴孔などが形成されている。 In the case shown in FIG. 10, the injection valve 3 is attached on the upstream side of the catalyst 4 and on the downstream side of the portion where the cross section of the exhaust passage 2 becomes larger toward the downstream side. Further, the injection valve 3 injects a reducing agent in a diagonal direction parallel to the upstream end face of the upstream end face of the catalyst 4. Further, the spray R1 near the extension of the central axis of the injection valve 3 has a relatively high concentration, and the spray R2 away from the extension of the central axis of the injection valve 3 has a relatively low concentration. A nozzle hole or the like is formed.
 このように構成された排気浄化装置においても、排気の質量が比較的大きい箇所に還元剤をより多く供給することができる。また、その他の箇所にも還元剤を供給することができる。このように、排気の質量に応じて還元剤を供給することができる。 Even in the exhaust emission control device configured as described above, it is possible to supply more reducing agent to a location where the mass of the exhaust is relatively large. Moreover, a reducing agent can be supplied also to another location. Thus, the reducing agent can be supplied according to the mass of the exhaust.
 また、図11に示した場合では、触媒4よりも上流側であって、排気通路2の断面が下流側ほど大きくなる部位よりも下流側に噴射弁3を対向させて2つ取り付けている。また、噴射弁3は、触媒4の上流側端面において対角線方向に該上流側端面と平行に還元剤を噴射している。また、夫々の噴射弁3からの噴霧Rは均一となるように、噴孔などが形成されている。 Further, in the case shown in FIG. 11, two injection valves 3 are attached opposite to the upstream side of the catalyst 4 and the downstream side of the portion where the cross section of the exhaust passage 2 becomes larger toward the downstream side. Further, the injection valve 3 injects a reducing agent in a diagonal direction parallel to the upstream end face of the upstream end face of the catalyst 4. In addition, nozzle holes and the like are formed so that the spray R from each injection valve 3 is uniform.
 このように構成された排気浄化装置においても、噴霧Rが重なる箇所において還元剤がより多く存在するため、排気の質量が比較的大きい箇所に還元剤をより多く供給することができる。また、その他の箇所にも還元剤を供給することができる。このように、排気の質量に応じて還元剤を供給することができる。 Also in the exhaust gas purification apparatus configured as described above, since a larger amount of the reducing agent is present at the portion where the spray R overlaps, more reducing agent can be supplied to the portion where the mass of the exhaust gas is relatively large. Moreover, a reducing agent can be supplied also to another location. Thus, the reducing agent can be supplied according to the mass of the exhaust.
 図12は、従来の噴射弁3の概略構成を示す図である。図12(A)は、噴射弁3の先端を中心軸に沿って切断したときの断面図であり、図12(B)は、噴射弁3の先端部を中心軸の延長線上から見た図であり、図12(C)は、噴射弁3から所定距離における還元剤の濃度分布を示した図である。 FIG. 12 is a diagram showing a schematic configuration of a conventional injection valve 3. FIG. 12A is a cross-sectional view when the tip of the injection valve 3 is cut along the central axis, and FIG. 12B is a diagram of the tip of the injection valve 3 as viewed from an extension line of the central axis. FIG. 12C shows the concentration distribution of the reducing agent at a predetermined distance from the injection valve 3.
 噴射弁3の噴孔31は、噴射弁3の中心軸と直交する断面が長方形となるように形成されている。この断面の長方形の長さは、噴射弁3の先端側ほど長い。また、断面の長方形の幅は、一定である。このため、噴霧Rは、所定の角度で形成される。噴孔31及び噴霧Rの角度は、後述する図13に示した噴孔31及び噴霧Rの角度よりも小さい。 The injection hole 31 of the injection valve 3 is formed so that the cross section orthogonal to the central axis of the injection valve 3 is rectangular. The rectangular length of this cross section is longer toward the tip side of the injection valve 3. Moreover, the width of the rectangle of the cross section is constant. For this reason, the spray R is formed at a predetermined angle. The angles of the nozzle hole 31 and the spray R are smaller than the angles of the nozzle hole 31 and the spray R shown in FIG.
 このように構成された噴射弁3では、還元剤が噴孔31を通過する際に、該噴孔31の壁面に沿って多くの還元剤が流通するため、噴霧Rの断面が図12(C)に示すように例えば長円となる。そして、この長円の長軸の両端部分には比較的濃度の高い噴霧R1が形成され、噴射弁3の中心軸の延長線上には比較的濃度の低い噴霧R2が形成される。このため、還元剤の重心は噴射弁3の中心軸の延長線上にあるものの、該中心軸の延長線上に供給される還元剤の量は少ない。 In the injection valve 3 configured in this manner, when the reducing agent passes through the injection hole 31, a large amount of the reducing agent flows along the wall surface of the injection hole 31, so that the cross section of the spray R is shown in FIG. ), For example, an ellipse. A spray R1 having a relatively high concentration is formed at both ends of the long axis of the ellipse, and a spray R2 having a relatively low concentration is formed on an extension line of the central axis of the injection valve 3. For this reason, although the center of gravity of the reducing agent is on the extension line of the central axis of the injection valve 3, the amount of the reducing agent supplied on the extension line of the central axis is small.
 これに対し、噴孔31の形状を調整することにより、噴射弁3の中心軸の延長線上に多くの還元剤を供給することができる。 On the other hand, by adjusting the shape of the injection hole 31, a large amount of reducing agent can be supplied on the extended line of the central axis of the injection valve 3.
 図13は、本実施例に係る噴射弁3の概略構成を示す図である。図13(A)は、噴射弁3の先端を中心軸に沿って切断したときの断面図であり、図13(B)は、噴射弁3の先端部を中心軸の延長線上から見た図であり、図13(C)は、噴射弁3から所定距離における還元剤の濃度分布を示した図である。 FIG. 13 is a diagram showing a schematic configuration of the injection valve 3 according to the present embodiment. FIG. 13A is a cross-sectional view when the tip of the injection valve 3 is cut along the central axis, and FIG. 13B is a view of the tip of the injection valve 3 as viewed from an extension line of the central axis. FIG. 13C is a view showing the concentration distribution of the reducing agent at a predetermined distance from the injection valve 3.
 図13に示した噴射弁3では、図12に示した噴射弁3よりも、噴孔31及び噴霧Rの角度がより大きくなるように、該噴孔31が形成されている。すなわち、図12に示した噴射弁3と断面形状を比較すると、図13に示した噴射弁3のほうが、先端側ほど断面の長方形の長さがより長い。なお、断面の長方形の幅は、図12に示した場合と同じである。 In the injection valve 3 shown in FIG. 13, the injection hole 31 is formed so that the angle of the injection hole 31 and the spray R is larger than that of the injection valve 3 shown in FIG. That is, comparing the injection valve 3 shown in FIG. 12 with a cross-sectional shape, the injection valve 3 shown in FIG. Note that the rectangular width of the cross section is the same as that shown in FIG.
 このように噴孔31を形成すると、還元剤が噴孔31を通過するときに、噴孔31から還元剤が剥離する。そうすると、噴射弁3の中心軸側をより多くの還元剤が流通することになる。これにより、噴射弁3の中心軸の延長線上には比較的濃度の高い噴霧R1が形成され、両端に比較的濃度の低い噴霧R2が形成される。このようにして、噴射弁3の中心軸の延長線上の還元剤の濃度を高くすることができる。そうすると、排気の質量が大きい箇所に噴孔31を向けることで、噴射された還元剤の多くが排気の質量が大きい箇所に向かうことになる。このため、排気の質量の大きい箇所により多くの還元剤を供給することができる。つまり、噴孔31の角度を、還元剤が噴孔31の壁面から剥離するような角度とすることにより、噴射弁3の中心軸の延長線上の還元剤の濃度を高くすることができる。 When the nozzle hole 31 is formed in this way, the reducing agent peels from the nozzle hole 31 when the reducing agent passes through the nozzle hole 31. As a result, more reducing agent flows through the central axis side of the injection valve 3. As a result, a spray R1 having a relatively high concentration is formed on the extension line of the central axis of the injection valve 3, and a spray R2 having a relatively low concentration is formed at both ends. In this way, the concentration of the reducing agent on the extension line of the central axis of the injection valve 3 can be increased. Then, by directing the injection hole 31 to a location where the mass of the exhaust is large, most of the injected reducing agent is directed to a location where the mass of the exhaust is large. For this reason, more reducing agent can be supplied to the location where the mass of exhaust gas is large. In other words, the concentration of the reducing agent on the extension line of the central axis of the injection valve 3 can be increased by setting the angle of the injection hole 31 so that the reducing agent is peeled off from the wall surface of the injection hole 31.
 また、図14は、本実施例に係る他の噴射弁3の概略構成を示す図である。図14(A)は、噴射弁3の先端を中心軸に沿って切断したときの断面図であり、図14(B)は、噴射弁3の先端部を中心軸の延長線上から見た図であり、図14(C)は、噴射弁3から所定距離における還元剤の濃度分布を示した図である。 FIG. 14 is a diagram showing a schematic configuration of another injection valve 3 according to the present embodiment. FIG. 14A is a cross-sectional view when the tip of the injection valve 3 is cut along the central axis, and FIG. 14B is a diagram of the tip of the injection valve 3 as viewed from an extension line of the central axis. FIG. 14C shows the concentration distribution of the reducing agent at a predetermined distance from the injection valve 3.
 図14に示した噴射弁3では、噴孔31が、噴射弁3の中心軸からずれた位置に設けられている。これにより、比較的濃度の高い噴霧R1が中心側に形成され、比較的濃度の低い噴霧R2が両端側に形成される。このようにして、噴射弁3の噴孔31の延長線上の還元剤の濃度を高くすることができる。そうすると、排気の質量が大きい箇所に噴孔31を向けることで、噴射された還元剤の多くが排気の質量が大きい箇所に向かうことになる。このため、排気の質量の大きい箇所により多くの還元剤を供給することができる。 In the injection valve 3 shown in FIG. 14, the injection hole 31 is provided at a position shifted from the central axis of the injection valve 3. Thereby, the spray R1 having a relatively high concentration is formed on the center side, and the spray R2 having a relatively low concentration is formed on both ends. In this way, the concentration of the reducing agent on the extension line of the injection hole 31 of the injection valve 3 can be increased. Then, by directing the injection hole 31 to a location where the mass of the exhaust is large, most of the injected reducing agent is directed to a location where the mass of the exhaust is large. For this reason, more reducing agent can be supplied to the location where the mass of exhaust gas is large.
 図15は、噴孔31を1つ備える噴射弁3の概略構成を示す図である。図15(A)は、噴射弁3の先端を中心軸に沿って切断したときの断面図であり、図15(B)は、噴射弁3から所定距離における還元剤の濃度分布を示した図である。 FIG. 15 is a diagram showing a schematic configuration of the injection valve 3 having one injection hole 31. FIG. 15A is a cross-sectional view when the tip of the injection valve 3 is cut along the central axis, and FIG. 15B shows the concentration distribution of the reducing agent at a predetermined distance from the injection valve 3. It is.
 図15に示した噴射弁3は、還元剤が図15(A)の矢印方向に向かって進むように形成されている。そうすると、噴射弁3の中心軸から離れた位置をより多くの還元剤が流通することになる。これにより、噴射弁3の中心軸の延長線上には比較的濃度の低い噴霧R2が形成され、その周りに比較的濃度の高い噴霧R1が形成される。 The injection valve 3 shown in FIG. 15 is formed such that the reducing agent advances in the direction of the arrow in FIG. If it does so, more reducing agents will distribute | circulate the position away from the center axis | shaft of the injection valve 3. FIG. Thereby, the spray R2 having a relatively low concentration is formed on the extended line of the central axis of the injection valve 3, and the spray R1 having a relatively high concentration is formed around the spray R2.
 一方、図16は、噴孔31を1つ備える他の噴射弁3の概略構成を示す図である。図16(A)は、噴射弁3の先端を中心軸に沿って切断したときの断面図であり、図16(B)は、噴射弁3から所定距離における還元剤の濃度分布を示した図である。 On the other hand, FIG. 16 is a diagram showing a schematic configuration of another injection valve 3 having one injection hole 31. FIG. 16A is a cross-sectional view when the tip of the injection valve 3 is cut along the central axis, and FIG. 16B shows the concentration distribution of the reducing agent at a predetermined distance from the injection valve 3. It is.
 図16に示した噴射弁3は、還元剤が図16(A)の矢印方向に向かって進むように形成されている。そうすると、噴射弁3の中心軸の延長線上をより多くの還元剤が流通することになる。これにより、噴射弁3の中心軸の延長線上には比較的濃度の高い噴霧R1が形成され、その周りに比較的濃度の低い噴霧R2が形成される。 The injection valve 3 shown in FIG. 16 is formed such that the reducing agent advances in the direction of the arrow in FIG. If it does so, more reducing agents will distribute | circulate on the extension line | wire of the center axis | shaft of the injection valve 3. FIG. As a result, a spray R1 having a relatively high concentration is formed on the extension line of the central axis of the injection valve 3, and a spray R2 having a relatively low concentration is formed therearound.
 このように、噴射弁3の形状によっても還元剤の濃度分布が変わる。そして、排気の質量が大きい箇所に噴孔31を向けることで、噴射された還元剤の多くが排気の質量が大きい箇所に向かうことになる。このため、排気の質量の大きい箇所により多くの還元剤を供給することができる。 Thus, the concentration distribution of the reducing agent also changes depending on the shape of the injection valve 3. Then, by directing the nozzle hole 31 to a location where the mass of the exhaust is large, most of the injected reducing agent is directed to a location where the mass of the exhaust is large. For this reason, more reducing agent can be supplied to the location where the mass of exhaust gas is large.
 また、排気の質量が大きくなる箇所に合わせて噴射弁3を選択したり、取り付け位置を変えたりすることで、排気の質量の大きい箇所により多くの還元剤を供給することができる。 Further, by selecting the injection valve 3 in accordance with the location where the exhaust mass becomes large or changing the mounting position, it is possible to supply more reducing agent to the location where the exhaust mass is large.
1     内燃機関
2     排気通路
3     噴射弁
4     触媒
10   ECU
11   アクセルペダル
12   アクセル開度センサ
13   クランクポジションセンサ
31   噴孔
41   酸化触媒
42   パティキュレートフィルタ
43   選択還元型NOx触媒
1 Internal combustion engine 2 Exhaust passage 3 Injection valve 4 Catalyst 10 ECU
11 Accelerator pedal 12 Accelerator opening sensor 13 Crank position sensor 31 Injection hole 41 Oxidation catalyst 42 Particulate filter 43 Selective reduction type NOx catalyst

Claims (4)

  1.  内燃機関の排気通路に設けられる触媒と、
     前記触媒へ還元剤を供給する供給装置と、
    を備える内燃機関の排気浄化装置において、
     前記供給装置は、排気の質量が小さい箇所よりも大きい箇所に向けて還元剤を供給する内燃機関の排気浄化装置。
    A catalyst provided in the exhaust passage of the internal combustion engine;
    A supply device for supplying a reducing agent to the catalyst;
    An exhaust gas purification apparatus for an internal combustion engine comprising:
    The supply device is an exhaust purification device of an internal combustion engine that supplies a reducing agent toward a location where the mass of exhaust gas is larger than a location where the mass of the exhaust is small.
  2.  前記供給装置は、前記還元剤を噴射する噴射弁を備え、
     前記噴射弁には、前記排気の質量が大きい箇所に向けて還元剤を噴射する噴孔が形成される請求項1に記載の内燃機関の排気浄化装置。
    The supply device includes an injection valve that injects the reducing agent,
    The exhaust purification device for an internal combustion engine according to claim 1, wherein the injection valve is formed with an injection hole for injecting a reducing agent toward a portion where the mass of the exhaust gas is large.
  3.  前記噴射弁は、前記噴孔を1つ又は複数備え、各噴孔から噴射される還元剤の重心が、前記排気の質量が大きい箇所を通るように、前記噴孔が形成される請求項2に記載の内燃機関の排気浄化装置。 The injection valve includes one or a plurality of injection holes, and the injection holes are formed such that the center of gravity of the reducing agent injected from each injection hole passes through a portion where the mass of the exhaust gas is large. 2. An exhaust gas purification apparatus for an internal combustion engine according to 1.
  4.  前記噴射弁を複数備え、各噴射弁から噴射される還元剤が、前記排気の質量が大きい箇所で重なるように、各噴射弁を配置する請求項2に記載の内燃機関の排気浄化装置。 3. The exhaust gas purification apparatus for an internal combustion engine according to claim 2, wherein a plurality of the injection valves are provided, and the respective injection valves are arranged such that a reducing agent injected from each injection valve overlaps at a location where the mass of the exhaust gas is large.
PCT/JP2011/061192 2011-05-16 2011-05-16 Exhaust purifying apparatus for internal combustion engine WO2012157066A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/061192 WO2012157066A1 (en) 2011-05-16 2011-05-16 Exhaust purifying apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/061192 WO2012157066A1 (en) 2011-05-16 2011-05-16 Exhaust purifying apparatus for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2012157066A1 true WO2012157066A1 (en) 2012-11-22

Family

ID=47176435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061192 WO2012157066A1 (en) 2011-05-16 2011-05-16 Exhaust purifying apparatus for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2012157066A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136262A1 (en) * 2014-03-11 2015-09-17 Johnson Matthey Catalysts (Germany) Gmbh Compact cylindrical selective catalytic reduction system for nitrogen oxide reduction in the oxygen-rich exhaust of 500 to 4500 kw internal combustion engines
WO2015185297A1 (en) * 2014-06-04 2015-12-10 Robert Bosch Gmbh Injection module and exhaust system having an injection module
US9616383B2 (en) 2014-02-06 2017-04-11 Johnson Matthey Catalysts (Germany) Gmbh Compact selective catalytic reduction system for nitrogen oxide reduction in the oxygen-rich exhaust of 500 to 4500 kW internal combustion engines
US10443587B2 (en) 2013-06-28 2019-10-15 Robert Bosch Gmbh High-pressure fuel pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239727A (en) * 2002-02-13 2003-08-27 Komatsu Ltd Exhaust emission control device
JP2009085050A (en) * 2007-09-28 2009-04-23 Denso Corp Additive injection valve, additive injection device and exhaust emission control system
JP2010242704A (en) * 2009-04-09 2010-10-28 Toyota Industries Corp Purifier of exhaust gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239727A (en) * 2002-02-13 2003-08-27 Komatsu Ltd Exhaust emission control device
JP2009085050A (en) * 2007-09-28 2009-04-23 Denso Corp Additive injection valve, additive injection device and exhaust emission control system
JP2010242704A (en) * 2009-04-09 2010-10-28 Toyota Industries Corp Purifier of exhaust gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10443587B2 (en) 2013-06-28 2019-10-15 Robert Bosch Gmbh High-pressure fuel pump
US9616383B2 (en) 2014-02-06 2017-04-11 Johnson Matthey Catalysts (Germany) Gmbh Compact selective catalytic reduction system for nitrogen oxide reduction in the oxygen-rich exhaust of 500 to 4500 kW internal combustion engines
WO2015136262A1 (en) * 2014-03-11 2015-09-17 Johnson Matthey Catalysts (Germany) Gmbh Compact cylindrical selective catalytic reduction system for nitrogen oxide reduction in the oxygen-rich exhaust of 500 to 4500 kw internal combustion engines
CN106170613A (en) * 2014-03-11 2016-11-30 庄信万丰催化剂(德国)有限公司 The compact cylindrical selective catalytic reduction system operating of the nitrogen oxides reduction in the oxygen rich exhaust of the internal combustion engine of 500kW to 4500kW
US9803529B2 (en) 2014-03-11 2017-10-31 Johnson Matthey Catalysts (Germany) Gmbh Compact cylindrical selective catalytic reduction system for nitrogen oxide reduction in the oxygen-rich exhaust of 500 to 4500 kW internal combustion engines
CN106170613B (en) * 2014-03-11 2019-04-09 庄信万丰催化剂(德国)有限公司 Selective catalytic reduction system operating and its application method
WO2015185297A1 (en) * 2014-06-04 2015-12-10 Robert Bosch Gmbh Injection module and exhaust system having an injection module
CN106536882A (en) * 2014-06-04 2017-03-22 罗伯特·博世有限公司 Injection module and exhaust system having an injection module

Similar Documents

Publication Publication Date Title
JP4706631B2 (en) Exhaust purification device
JP5141779B2 (en) Exhaust gas purification device for internal combustion engine
US10012124B2 (en) Angled and compact exhaust gas aftertreatment device
JP4888171B2 (en) Exhaust purification device
JP5610120B2 (en) Engine exhaust purification system
EP3030767B1 (en) Method, apparatus and system for aftertreatment of exhaust gas
JP4949152B2 (en) Exhaust gas purification device for internal combustion engine
US7971433B2 (en) Helical exhaust passage
WO2014196456A1 (en) Urea solution spray nozzle
JP2007198316A (en) Device and method for controlling exhaust gas of internal combustion engine
JP6108427B2 (en) Urea water injection nozzle
JP2009275666A (en) Emission control device of internal combustion engine
WO2012157066A1 (en) Exhaust purifying apparatus for internal combustion engine
US20140166141A1 (en) Reductant Injection System with Control Valve
JP5500909B2 (en) Exhaust purification device
US20090084088A1 (en) Exhaust gas purifying system
JP2018044528A (en) Engine exhaust emission control device
JP2013002335A (en) Exhaust gas after-treatment device
JP5287988B2 (en) Exhaust gas purification device for internal combustion engine
EP2597281B1 (en) Exhaust gas purification device for internal combustion engine
JP2009097436A (en) Exhaust emission control device of internal combustion engine
JP6627479B2 (en) Exhaust gas purification device
US20080163616A1 (en) Apparatus for Mixing a Liquid Medium Into a Gaseous Medium
JP6724750B2 (en) Selective reduction catalyst system
WO2012172945A1 (en) Exhaust gas after-treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 11865669

Country of ref document: EP

Kind code of ref document: A1