WO2012156632A2 - Procede de fabrication par soudage diffusion d'une piece monobloc pour une turbomachine - Google Patents

Procede de fabrication par soudage diffusion d'une piece monobloc pour une turbomachine Download PDF

Info

Publication number
WO2012156632A2
WO2012156632A2 PCT/FR2012/051058 FR2012051058W WO2012156632A2 WO 2012156632 A2 WO2012156632 A2 WO 2012156632A2 FR 2012051058 W FR2012051058 W FR 2012051058W WO 2012156632 A2 WO2012156632 A2 WO 2012156632A2
Authority
WO
WIPO (PCT)
Prior art keywords
rings
mandrel
blank
metal
layer
Prior art date
Application number
PCT/FR2012/051058
Other languages
English (en)
Other versions
WO2012156632A3 (fr
Inventor
Thierry Godon
Bruno Jacques Gérard DAMBRINE
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to EP12728667.2A priority Critical patent/EP2709783B1/fr
Priority to CA2836022A priority patent/CA2836022A1/fr
Priority to BR112013029034A priority patent/BR112013029034A2/pt
Priority to US14/117,718 priority patent/US9199331B2/en
Priority to CN201280023293.4A priority patent/CN103561890B/zh
Priority to JP2014510859A priority patent/JP6030124B2/ja
Priority to RU2013156244/02A priority patent/RU2593245C2/ru
Publication of WO2012156632A2 publication Critical patent/WO2012156632A2/fr
Publication of WO2012156632A3 publication Critical patent/WO2012156632A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/021Isostatic pressure welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P13/00Making metal objects by operations essentially involving machining but not covered by a single other subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/04Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine or like blades from several pieces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/236Diffusion bonding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/14Two-dimensional elliptical
    • F05D2250/141Two-dimensional elliptical circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/614Fibres or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the present invention relates to a method for manufacturing by diffusion welding of a single-piece part for a turbomachine such as a turbojet engine or an airplane turboprop, this part being for example a power transmission shaft between the main shaft of a turbojet and gearbox drive machines or accessory equipment of the engine (commonly called AGB shaft in the field, AGB being the acronym for Accessory Gear Box).
  • a turbomachine such as a turbojet engine or an airplane turboprop
  • this part being for example a power transmission shaft between the main shaft of a turbojet and gearbox drive machines or accessory equipment of the engine (commonly called AGB shaft in the field, AGB being the acronym for Accessory Gear Box).
  • the AGB shaft is relatively thin and long, with a length of the order of one meter for large diameter motors, and is generally made in two parts arranged end to end for reasons of mechanical strength and vibration. The adjacent ends of these two parts are guided and centered in rotation by an intermediate bearing ensuring the passage of the natural modes of vibratory frequencies.
  • This method consists in forming a blank of the shaft around a rotating cylindrical mandrel by winding on the mandrel at least one wire coming from a coil or a reel, so as to form several coaxial annular layers and superimposed wire son surrounding the mandrel and which are each formed of several contiguous turns, and then subjecting the blank to a treatment of hot isostatic pressing (CIC) diffusion welding (CIC, Hot Isostatic Pressing - HIP) in a appropriate tools.
  • CIC hot isostatic pressing
  • HIP Hot Isostatic Pressing - HIP
  • the invention aims in particular to provide a simple, effective and economical solution to this problem.
  • each layer of metal son of the blank is formed of independent rings which are engaged on the mandrel and stacked next to each other.
  • the metal wires form independent rings that do not come directly from a reel or a reel and are not wound on the mandrel, which makes it possible to produce circular or non-circular section pieces.
  • the stacking of the rings on the mandrel can be done at room temperature.
  • the circular section pieces are made from circular rings which are engaged on a cylindrical mandrel.
  • the non-circular section pieces (and for example polygonal: triangular, rectangular, square, etc.) are made from rings of corresponding non-circular shape which are engaged on a mandrel of complementary shape (non-cylindrical).
  • the rings are engaged on the mandrel being positioned at one end of the mandrel, coaxially with it, and then being moved in translation on the mandrel, parallel to its longitudinal axis.
  • the rings of the same layer are stacked on top of each other.
  • the rings of the same layer are arranged horizontally next to each other.
  • the compression can be done in isothermal press or in an autoclave bag, according to the number of pieces to produce.
  • the rings are preformed before engagement on the mandrel to adopt the aforementioned circular or non-circular form.
  • the preforming of the rings allows them to take any shape corresponding to the section of the piece to be made.
  • the rings of an inner layer have a polygonal shape and the rings of an outer layer have the same polygonal shape with a transverse dimension greater than that rings of the inner layer.
  • the preforming of the rings can be done manually (for small diameter wire) or by means of appropriate tools.
  • the diameter of the wire of the rings is for example between 1 and 6mm approximately.
  • the mandrel has a radius which is preferably greater than the diameter of the wire of the rings.
  • the rings can be closed or not split.
  • the inner and outer diameters of these rings are fixed and each ring of an outer layer extends around a ring of an inner layer and is aligned transversely with that ring of the inner layer.
  • the outer diameter of a ring of an inner layer is equal to the inner diameter of a ring of the outer layer surrounding the inner layer.
  • the closed rings can be obtained directly by their manufacturing process. Alternatively, they can be obtained by conformation of a wire metal whose free ends are close together and fixed to one another, for example by welding.
  • the stack of these rings is square type. Indeed, a half cross-sectional view of these rings comprises four circles whose centers are located at the four corners of a square. In a particular embodiment of the invention, the expansion of this stack is of the order of 21.5%.
  • the rings are of the open or split type at a point in their circumference.
  • these rings are deformable by spacing or approximation of their free ends.
  • the outer diameter of a ring of an inner layer is then greater than the inner diameter of a ring of the outer layer surrounding the inner layer.
  • the stack of these rings (of the same diameter) is of the equilateral triangle type, a half cross-sectional view of these rings comprising three circles whose centers are located at the corners of an equilateral triangle.
  • the expansion of this stack is of the order of 9.31%.
  • each split ring engaged on the mandrel is preferably angularly offset from those of the adjacent rings around the longitudinal axis of the mandrel. This makes it possible to distribute these openings around the longitudinal axis of the mandrel, over the entire axial dimension of the mandrel and to avoid creating zones in the blank where the amount of metal supplied by the wires would be insufficient and would generate voids in the piece to realize.
  • the part to be produced is for example a shaft or a disk or bladed ring monoblock (DAM or ANAM) turbomachine.
  • At least one annular layer of metal-coated ceramic fibers formed for example of a fabric or a sheet of fibers, is disposed between two layers of metal son.
  • Each fiber comprises a core of ceramic material (such as silicon carbide Sic) covered with a coating (by EGV or other) of metal (Ti, Al, B, etc.), this metal being preferably the same as that of the aforementioned rings.
  • the part thus comprises, after diffusion welding, a homogeneous metal matrix which provides a binder function for the part and protection of the fibers which take up the forces to which the part is subjected.
  • This solution makes it possible to increase the stiffness of the part without increasing its density. It also makes it possible to increase the Young's modulus ratio on the density of the part and to raise the natural modes of vibratory frequencies. In the case of an AGB shaft, it makes it possible to eliminate the aforementioned intermediate bearing which is no longer necessary.
  • Other materials such as SiC fabrics, Ti, Al, or TiAI strips or any material having properties for superplastic forming and diffusion bonding may be wound or stacked around the mandrel.
  • FIG. 1 is a schematic axial sectional view of a mandrel on which is formed a blank by stacking metal rings and illustrates a step of the method according to the invention
  • FIG. 2 is a schematic view of a metal ring according to the invention, of the closed or non-split type
  • FIG. 3 is a schematic view of an alternative embodiment of a metal ring according to the invention, of the open or split type;
  • FIG. 4 is a diagrammatic view in axial section of stacked closed rings and FIG. 5 is a diagrammatic view in axial section of split slotted rings;
  • FIG. 6 schematically represents the repeating pattern of a square stack as represented in FIG. 4 and
  • FIG. 7 schematically represents the repeating pattern of an equilateral triangle stack as represented in FIG. 5;
  • FIG. 8 is a schematic axial sectional view of a mandrel on which are stacked metal rings according to another step of the method according to the invention.
  • FIG. 9 is a diagrammatic half-view in axial section of a tool for implementing diffusion welding of the workpiece and illustrates another step of the method according to the invention.
  • Steps of the method according to the invention are schematically represented in Figures 1, 8 and 9, this method for manufacturing a single piece for a turbomachine, such as a shaft or a disc or bladed ring monobloc.
  • metal rings 10 are engaged on a mandrel 12 and stacked at a predetermined distance L so as to form one or more coaxial and superposed annular layers of metal rings around the mandrel.
  • the rings 10 of the same layer have the same diameter and are arranged next to each other along the longitudinal axis A of the mandrel, the thickness of this layer being equal to the diameter of the wire forming the rings.
  • the mandrel 12 has a cylindrical shape in the example shown but could have another shape in section, for example triangular, square, rectangular, or polygonal, as will be described in more detail in the following.
  • This mandrel is arranged vertically or horizontally and can be fixed.
  • the rings 10 are engaged on the mandrel 12 being positioned at one end of the mandrel, coaxially with it, and moved in translation on the mandrel, parallel to the axis A.
  • An annular flange 14 is preferably mounted on the mandrel at one end thereof and forms bearing means of the first ring of each annular layer extending around the mandrel.
  • the rings 10 are stacked at a distance L which is determined according to the length of the part to be manufactured.
  • the number of rings per layer is a function of the diameter of the wire which is for example between 1 and 6 mm.
  • the rings can be made of TiA6V or ⁇ 6242 type titanium alloy providing thermomechanical and light weight resistance.
  • the rings 10 are shaped so as to take a shape corresponding to the shape of the part to be manufactured, which may be circular, square, rectangular, triangular, and so on.
  • This preforming step can be performed from a wire from a coil or reel.
  • the rings 10 ', 10 are of the closed or non-split type as represented in FIG. 2, or of the open or split type as represented in FIG. 3.
  • the rings are circular and are intended to to be mounted on a cylindrical mandrel.
  • the closed rings 10 ' have fixed internal and external diameters. In the case where they are obtained by preforming a wire, the free ends 15 opposite each ring 10 'are brought together and fixed to one another, for example by welding.
  • Figures 4 and 6 show the type of stack (square) obtained with closed rings 10 '.
  • the inner diameter of the rings of the inner layer is substantially equal to or slightly greater than the outer diameter of the mandrel 12, and the outer diameter of these rings is substantially equal to or slightly less than the inner diameter of the rings of the outer layer ( Figure 4).
  • Each ring of an inner layer is surrounded by a ring of an outer layer, these two rings being located in the same plane transverse to the axis A.
  • FIG. 6 represents the transverse half-sections of four adjacent rings distributed on two layers, an inner layer formed of two rings and an outer layer formed of two rings surrounding the two rings of the inner layer.
  • the stack is of the square type because the centers of the half sections (in the form of a circle) of the wires are located at the four corners of a square. In a particular embodiment of the invention, the expansion of this stack is of the order of 21.5%.
  • the diameters of the split rings 10 can be modified by spacing or approximation of their free ends 16 ( Figure 3)
  • Figures 5 and 7 show the type of stack (equilateral triangle) obtained with open rings 10".
  • the internal diameter of the rings of the inner layer is substantially equal to or slightly greater than the outer diameter of the mandrel 12, and the outer diameter of these rings is greater than the internal diameter of the rings of the outer layer, which forces the rings of the outer layer. to adopt a position in which they are located between two rings of the inner layer, outside of them ( Figure 5).
  • Each ring of the outer layer is located in a transverse plane passing substantially in the middle of two transverse planes passing respectively through the two adjacent rings of the inner layer.
  • Figure 7 shows the half-cross sections of three adjacent rings distributed over two layers, an inner layer formed of two rings and an outer ring located outside and between the rings of the inner layer.
  • the stack is of the equilateral triangle type because the centers of the (circle-like) sections of the wires are located at the corners of an equilateral triangle.
  • the expansion of this stack is of the order of 9.31%.
  • the rings 10 "are stacked on the mandrel so that their openings are angularly offset relative to each other about the axis A. These openings can thus be evenly distributed or not around the axis A , which avoids the creation of areas where the metal would fail and voids may appear during the compression phase.
  • the inner layer of metal rings 10 is surrounded by a composite fibrous structure which may consist of a fabric or a ply of ceramic fibers 18 coated with metal.
  • the fiber coating metal 18 and the metal of the metal rings 10 are preferably identical in nature (in TiA6V or 6242 for example) to optimize the subsequent step of the process relating to the hot isostatic pressing operation and diffusion welding.
  • the fabric or the ply of fibers 18 is wound on the first layer of metal rings 10 so that the fibers extend parallel to the axis A of the mandrel 12.
  • a winding of several tissues or plies can be provided to from the same tissue, or from one or more other separate tissues wound coaxially.
  • the fabrics can be of different species and different diameters of coated fibers.
  • the length of the composite fibrous structure is less than or equal to the length L of the first layer of metal rings 10.
  • the fibers 18 may be wound around the mandrel and extend circumferentially about the axis A.
  • coated ceramic fibers may be any coated ceramic fibers.
  • the coated ceramic fibers may be any suitable coated ceramic fibers.
  • SiC / Ti SiC / Al, SiC / B, etc.
  • a next step of the method according to the invention shown in Figure 8 is to cover the aforementioned fibrous structure of at least one other layer of metal rings 10, these metal rings being stacked around the mandrel 12 as indicated in the foregoing.
  • Metal rings 10 are furthermore arranged in front of and behind the fibrous structure so that it is embedded in the metal of the final piece to achieve.
  • a blank E of the part was thus gradually formed around the mandrel.
  • This blank E may comprise more than one thousand rings and several fibrous structures of the aforementioned type, these fibrous structures being separated from each other by at least one layer of metal rings.
  • the blank E is then subjected to a hot isostatic pressing treatment (CIC or HIP) under an isothermal press or in an autoclave bag (the choice depending in particular on the number of parts to be produced).
  • CIC hot isostatic pressing treatment
  • HIP hot isothermal press
  • autoclave bag the choice depending in particular on the number of parts to be produced.
  • the blank is set up in a suitable tool (FIG. 9) and a strong compression is exerted on the blank at an appropriate elevated temperature so that the metal of the rings and the fiber coating soften and flow. by filling all the empty spaces between the rings of the different layers until the connection of the different elements by welding diffusion.
  • the blank is placed in a deformable bag of mild steel which is then introduced into an autoclave.
  • This autoclave is brought to an isostatic pressure of 1000 bar and a temperature of 940 ° C (for TiA6V), so that the entire bag deforms by retracting by evacuation of the air and applies to the blank a uniform pressure until the creep of the metal with bonding by diffusion welding.
  • the method according to the invention makes it possible to produce non-circular shaped section pieces, for example with a pentagonal (FIG. 10), rectangular (FIG. 11) or triangular-shaped section (FIG. 12).
  • the preforming step of the method according to the invention then consists in preforming the rings to give them a shape of the desired type, these rings being engaged and stacked on a mandrel section complementary shape.
  • rectangular-shaped rings are engaged on a parallelepipedal mandrel of rectangular section, for producing a one-piece piece of rectangular section such as that shown in Figure 1 1.
  • These rings may be closed or non-split as well as open or split type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Procédé de fabrication par soudage diffusion d'une pièce monobloc pour une turbomachine, comprenant les étapes consistant à réaliser une ébauche de la pièce autour d'un mandrin (12), l'ébauche comprenant plusieurs couches annulaires coaxiales et superposées d'anneaux (10) indépendants en fil métallique, empilés les uns sur les autres autour du mandrin, à soumettre l'ébauche à une compression isostatique à chaud de façon pour obtenir une pièce monobloc, et à usiner éventuellement cette pièce.

Description

Procédé de fabrication par soudage diffusion
d'une pièce monobloc pour une turbomachine
La présente invention concerne un procédé de fabrication par soudage diffusion d'une pièce monobloc pour une turbomachine telle qu'un turboréacteur ou un turbopropulseur d'avion, cette pièce étant par exemple un arbre de transmission de puissance entre l'arbre principal d'un turboréacteur et un boîtier à engrenages d'entraînement des machines ou équipements accessoires du moteur (appelé couramment arbre AGB dans le domaine, AGB étant l'acronyme de Accessory Gear Box).
L'arbre AGB est relativement fin et long, avec une longueur de l'ordre du mètre pour les moteurs de grand diamètre, et est en général réalisé en deux parties disposées bout à bout pour des raisons de tenue mécanique et aux vibrations. Les extrémités adjacentes de ces deux parties sont guidées et centrées en rotation par un palier intermédiaire assurant le passage des modes propres de fréquences vibratoires.
On a déjà proposé de fabriquer cet arbre d'une seule pièce par soudage diffusion. Ce procédé consiste à former une ébauche de l'arbre autour d'un mandrin cylindrique tournant par enroulement sur le mandrin d'au moins un fil métallique provenant d'une bobine ou d'un dévidoir, de façon à former plusieurs couches annulaires coaxiales et superposées de fils métalliques qui entourent le mandrin et qui sont chacune formées de plusieurs spires jointives, puis à soumettre l'ébauche à un traitement de soudage diffusion par compression isostatique à chaud (CIC, de l'anglais Hot Isostatic Pressing - HIP) dans un outillage approprié. La pièce obtenue est monobloc et peut subir un usinage de finition si nécessaire.
Il est également connu de renforcer ce type de pièce par des fibres céramiques enduites de métal et enroulées en une ou plusieurs couches sur le mandrin entre deux couches, respectivement interne et externe, de fils métalliques. Les demandes antérieures FR 1 1/50194, FR 1 1/51706 et FR 1 1/52129 de la demanderesse décrivent des procédés du type précité.
Cependant, les procédés de la technique antérieure ne permettent pas de fabriquer des pièces à section non circulaire car il est difficile voire impossible d'enrouler un fil métallique autour d'un mandrin de forme non cylindrique.
L'invention a notamment pour but d'apporter une solution simple, efficace et économique à ce problème.
Elle propose à cet effet un procédé de fabrication par soudage diffusion d'une pièce monobloc pour une turbomachine, comprenant les étapes consistant à :
- réaliser autour d'un mandrin une ébauche de la pièce comprenant plusieurs couches annulaires coaxiales et superposées de fils métalliques,
- soumettre l'ébauche à une compression isostatique à chaud pour obtenir une pièce monobloc,
- et usiner éventuellement cette pièce,
caractérisé en ce que chaque couche de fils métalliques de l'ébauche est formée d'anneaux indépendants qui sont engagés sur le mandrin et empilés les uns à côté des autres.
Selon l'invention, les fils métalliques forment des anneaux indépendants qui ne proviennent pas directement d'une bobine ou d'un dévidoir et ne sont pas enroulés sur le mandrin, ce qui permet de réaliser des pièces à section circulaire ou non circulaire. L'empilement des anneaux sur le mandrin peut se faire à température ambiante.
Les pièces à section circulaire sont réalisées à partir d'anneaux de forme circulaire qui sont engagés sur un mandrin cylindrique. Les pièces à section non circulaire (et par exemple polygonale : triangulaire, rectangulaire, carrée, etc.) sont réalisées à partir d'anneaux de forme non circulaire correspondante qui sont engagés sur un mandrin de forme complémentaire (non cylindrique). Les anneaux sont engagés sur le mandrin en étant positionnés à une extrémité du mandrin, coaxialement à celui-ci, puis en étant déplaçés en translation sur le mandrin, parallèlement à son axe longitudinal. Lorsque le mandrin est orienté verticalement, les anneaux d'une même couche sont empilés les uns sur les autres. Lorsque le mandrin est orienté horizontalement, les anneaux d'une même couche sont disposés horizontalement les uns à côté des autres.
La compression peut se faire sous presse isotherme ou dans un sac à l'autoclave, en fonction du nombre de pièces à produire.
Selon une autre caractéristique de l'invention, les anneaux sont préformés avant leur engagement sur le mandrin pour adopter la forme circulaire ou non circulaire précitée. Le préformage des anneaux leur permet de prendre n'importe quelle forme correspondant à la section de la pièce à réaliser. A titre d'exemple, dans le cas où un arbre à section polygonale doit être réalisé, les anneaux d'une couche interne ont une forme polygonale et les anneaux d'une couche externe ont une même forme polygonale avec une dimension transversale supérieure à celle des anneaux de la couche interne. Le préformage des anneaux peut être réalisé manuellement (pour les fils métalliques de faible diamètre) ou au moyen d'un outillage approprié.
Le diamètre du fil métallique des anneaux est par exemple compris entre 1 et 6mm environ. Le mandrin a un rayon qui est de préférence supérieur au diamètre du fil métallique des anneaux.
Les anneaux peuvent être fermés ou non fendus. Dans ce cas, les diamètres interne et externe de ces anneaux sont fixes et chaque anneau d'une couche externe s'étend autour d'un anneau d'une couche interne et est aligné transversalement avec cet anneau de la couche interne. Le diamètre externe d'un anneau d'une couche interne est égal au diamètre interne d'un anneau de la couche externe entourant la couche interne. Les anneaux fermés peuvent être obtenus directement par leur procédé de fabrication. En variante, ils peuvent être obtenus par conformation d'un fil métallique dont les extrémités libres sont rapprochées et fixées l'une à l'autre, par exemple par soudage.
Quand on considère quatre anneaux adjacents répartis sur deux couches, à savoir une couche interne formée de deux anneaux et une couche externe formée de deux anneaux entourant les deux anneaux de la couche interne, l'empilement de ces anneaux (de même diamètre) est du type carré. En effet, une demi vue en coupe transversale de ces anneaux comprend quatre cercles dont les centres sont situés aux quatre coins d'un carré. Dans un exemple particulier de réalisation de l'invention, le foisonnement de cet empilement est de l'ordre de 21 ,5%.
En variante, les anneaux sont du type ouvert ou fendu en un point de leur circonférence. Dans ce cas, ces anneaux sont déformables par écartement ou par rapprochement de leurs extrémités libres. Ceci permet de faire varier les diamètres interne et externe des anneaux et d'autoriser un montage des anneaux sur le mandrin dans lequel chaque anneau d'une couche externe s'étend entre deux anneaux d'une couche interne. Le diamètre externe d'un anneau d'une couche interne est alors supérieur au diamètre interne d'un anneau de la couche externe entourant la couche interne. L'empilement de ces anneaux (de même diamètre) est du type triangle équilatéral, une demi vue en coupe transversale de ces anneaux comprenant trois cercles dont les centres sont situés aux coins d'un triangle équilatéral. Dans un exemple particulier de réalisation de l'invention, le foisonnement de cet empilement est de l'ordre de 9,31 %.
L'ouverture de chaque anneau fendu engagé sur le mandrin est de préférence décalée angulairement par rapport à celles des anneaux adjacents, autour de l'axe longitudinal du mandrin. Ceci permet de répartir ces ouvertures autour de l'axe longitudinal du mandrin, sur toute la dimension axiale du mandrin et d'éviter de créer des zones dans l'ébauche où la quantité de métal apportée par les fils serait insuffisante et générerait des vides dans la pièce à réaliser. La pièce à réaliser est par exemple un arbre ou un disque ou anneau aubagé monobloc (DAM ou ANAM) de turbomachine.
Avantageusement, au moins une couche annulaire de fibres céramiques enduites de métal, formée par exemple d'un tissu ou d'une nappe de fibres, est disposée entre deux couches de fils métalliques.
Cette couche de fibres permet de renforcer la pièce. Chaque fibre comprend une âme en matériau céramique (tel qu'en carbure de silicium Sic) recouverte d'une enduction (par EGV ou autre) en métal (Ti, Al, B, etc.), ce métal étant de préférence le même que celui des anneaux précités. La pièce comprend ainsi, après soudage diffusion, une matrice métallique homogène qui assure une fonction de liant pour la pièce et de protection des fibres qui reprennent les efforts auxquels est soumise la pièce. Cette solution permet d'augmenter la raideur de la pièce sans augmenter sa masse volumique. Elle permet également d'augmenter le rapport module d'Young sur masse volumique de la pièce et de remonter les modes propres de fréquences vibratoires. Dans le cas d'un arbre AGB, elle permet de supprimer le palier intermédiaire précité qui n'est plus nécessaire. D'autres matériaux tels que des tissus en SiC, des feuillards en Ti, en Al, ou en TiAI ou tout matériau présentant des propriétés permettant un formage superplastique et un soudage diffusion peuvent être enroulés ou empilés autour du mandrin.
L'invention sera mieux comprise et d'autres caractéristiques, détails et avantages de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif en référence aux dessins annexés dans lesquels :
- la figure 1 est une vue schématique en coupe axiale d'un mandrin sur lequel est formée une ébauche par empilement d'anneaux métalliques et illustre une étape du procédé selon l'invention ;
- la figure 2 est une vue schématique d'un anneau métallique selon l'invention, du type fermé ou non fendu;
- la figure 3 est une vue schématique d'une variante de réalisation d'un anneau métallique selon l'invention, du type ouvert ou fendu;
- la figure 4 est une vue schématique en coupe axiale d'anneaux fermés empilés et la figure 5 est une vue schématique en coupe axiale d'anneaux fendus empilés ;
- la figures 6 représente schématiquement le motif de répétition d'un empilement carré tel que représenté en figure 4 et la figure 7 représente schématiquement le motif de répétition d'un empilement triangle équilatéral tel que représenté en figure 5 ;
- la figure 8 est une vue schématique en coupe axiale d'un mandrin sur lequel sont empilés des anneaux métalliques selon une autre étape du procédé selon l'invention ;
- la figure 9 est une demi-vue schématique en coupe axiale d'un outillage de mise en œuvre du soudage diffusion de la pièce et illustre une autre étape du procédé selon l'invention ; et
- les figures 10 à 12 représentent des anneaux non circulaires selon des variantes de réalisation du procédé selon l'invention.
Des étapes du procédé selon l'invention sont schématiquement représentées aux figures 1 , 8 et 9, ce procédé permettant de fabriquer une pièce monobloc pour une turbomachine, telle qu'un arbre ou un disque ou anneau aubagé monobloc.
Dans une première étape représentée en figure 1 , des anneaux métalliques 10 sont engagés sur un mandrin 12 et empilés sur une distance L prédéterminée de façon à former une ou plusieurs couches annulaires coaxiales et superposées d'anneaux métalliques autour du mandrin. Les anneaux 10 d'une même couche ont le même diamètre et sont disposés les uns à côté des autres le long de l'axe longitudinal A du mandrin, l'épaisseur de cette couche étant égale au diamètre du fil métallique formant les anneaux.
Le mandrin 12 a une forme cylindrique dans l'exemple représenté mais pourrait avoir une autre forme en section, par exemple triangulaire, carrée, rectangulaire, ou polygonale, comme cela sera décrit plus en détail dans ce qui suit. Ce mandrin est disposé verticalement ou horizontalement et peut être fixe.
Les anneaux 10 sont engagés sur le mandrin 12 en étant positionnés à une extrémité du mandrin, coaxialement à celui-ci, et déplacés en translation sur le mandrin, parallèlement à l'axe A. Un flasque annulaire 14 est de préférence monté sur le mandrin à une extrémité de celui-ci et forme des moyens d'appui du premier anneau de chaque couche annulaire s'étendant autour du mandrin. Les anneaux 10 sont empilés sur une distance L qui est déterminée en fonction de la longueur de la pièce à fabriquer. Le nombre d'anneaux par couche est fonction du diamètre du fil métallique qui est par exemple compris entre 1 et 6mm environ.
Les anneaux peuvent être réalisés dans un alliage de titane de type TiA6V ou ΤΊ6242 assurant résistance thermomécanique et légèreté.
Dans une étape préliminaire non représentée du procédé selon l'invention, les anneaux 10 sont conformés de façon à prendre une forme correspondant à la forme de la pièce à fabriquer, qui peut être à section circulaire, carrée, rectangulaire, triangulaire, etc. Cette étape de préformage peut être réalisée à partir d'un fil métallique provenant d'une bobine ou d'un dévidoir.
Les anneaux 10', 10" sont du type fermé ou non fendu comme représenté en figure 2, ou du type ouvert ou fendu comme représenté en figure 3. Dans ces deux exemples de réalisation de l'invention, les anneaux sont circulaires et sont destinés à être montés sur un mandrin cylindrique.
Les anneaux fermés 10' ont des diamètre interne et externe fixes. Dans le cas où ils sont obtenus par préformage d'un fil métallique, les extrémités libres 15 en regard de chaque anneau 10' sont rapprochées et fixées l'une à l'autre, par exemple par soudage.
Les figures 4 et 6 représentent le type d'empilement (carré) obtenu avec des anneaux fermés 10'. Le diamètre interne des anneaux de la couche interne est sensiblement égal ou légèrement supérieur au diamètre externe du mandrin 12, et le diamètre externe de ces anneaux est sensiblement égal ou légèrement inférieur au diamètre interne des anneaux de la couche externe (figure 4). Chaque anneau d'une couche interne est entouré par un anneau d'une couche externe, ces deux anneaux étant situés dans un même plan transversal par rapport à l'axe A. La figure 6 représente les demi-sections transversales de quatre anneaux adjacents répartis sur deux couches, une couche interne formée de deux anneaux et une couche externe formée de deux anneaux entourant les deux anneaux de la couche interne. L'empilement est du type carré car les centres des demi sections (en forme de cercle) des fils sont situés aux quatre coins d'un carré. Dans un exemple particulier de réalisation de l'invention, le foisonnement de cet empilement est de l'ordre de 21 ,5%.
Les diamètres des anneaux fendus 10" peuvent être modifiés par écartement ou rapprochement de leurs extrémités libres 16 (figure 3). Les figures 5 et 7 représentent le type d'empilement (triangle équilatéral) obtenu avec des anneaux ouverts 10". Le diamètre interne des anneaux de la couche interne est sensiblement égal ou légèrement supérieur au diamètre externe du mandrin 12, et le diamètre externe de ces anneaux est supérieur au diamètre interne des anneaux de la couche externe, ce qui force les anneaux de la couche externe à adopter une position dans laquelle ils sont situés entre deux anneaux de la couche interne, à l'extérieur de ceux-ci (figure 5). Chaque anneau de la couche externe est situé dans un plan transversal passant sensiblement au milieu de deux plans transversaux passant respectivement par les deux anneaux adjacents de la couche interne. La figure 7 représente les demi-sections transversales de trois anneaux adjacents répartis sur deux couches, une couche interne formée de deux anneaux et un anneau externe situé à l'extérieur et entre les anneaux de la couche interne. L'empilement est du type triangle équilatéral car les centres des sections (en forme de cercle) des fils sont situés aux coins d'un triangle équilatéral. Dans un exemple particulier de réalisation de l'invention, le foisonnement de cet empilement est de l'ordre de 9,31 %. De préférence, les anneaux 10" sont empilés sur le mandrin de sorte que leurs ouvertures soient décalées angulairement les unes par rapport aux autres autour de l'axe A. Ces ouvertures peuvent ainsi être réparties de manière régulière ou non autour de l'axe A, ce qui permet d'éviter la création de zones où le métal ferait défaut et où des vides pourraient apparaître lors de la phase de compression.
Comme représenté en figure 1 , la couche interne d'anneaux métalliques 10 est entourée par une structure fibreuse composite qui peut être constituée d'un tissu ou d'une nappe de fibres céramiques 18 enduites de métal.
Le métal d'enduction des fibres 18 et le métal des anneaux métalliques 10 sont de préférence de nature identique (en TiA6V ou en 6242 par exemple) pour optimiser l'étape ultérieure du procédé relative à l'opération de compression isostatique à chaud et de soudage diffusion.
Le tissu ou la nappe de fibres 18 est enroulé sur la première couche d'anneaux métalliques 10 de façon à ce que les fibres s'étendent parallèlement à l'axe A du mandrin 12. Un enroulement de plusieurs tissus ou nappes peut être prévu à partir du même tissu, ou à partir d'un ou de plusieurs autres tissus distincts enroulés coaxialement. Les tissus peuvent être de différentes espèces et de différents diamètres de fibres enduites. La longueur de la structure fibreuse composite est inférieure ou égale à la longueur L de la première couche d'anneaux métalliques 10.
En variante, les fibres 18 peuvent être enroulées autour du mandrin et s'étendre circonférentiellement autour de l'axe A.
A titre d'exemples, les fibres céramiques enduites peuvent être en
SiC/Ti, en SiC/AI, SiC/B, etc.
Une étape suivante du procédé selon l'invention représentée en figure 8 consiste à recouvrir la structure fibreuse précitée d'au moins une autre couche d'anneaux métalliques 10, ces anneaux métalliques étant empilés autour du mandrin 12 comme indiqué dans ce qui précède. Des anneaux métalliques 10 sont en outre disposés en avant et en arrière de la structure fibreuse pour que celle-ci soit noyée dans le métal de la pièce finale à réaliser.
Une ébauche E de la pièce a ainsi été progressivement formée autour du mandrin. Cette ébauche E peut comprendre plus d'un millier d'anneaux 10 et plusieurs structures fibreuses du type précité, ces structures fibreuses étant séparées les unes des autres par au moins une couche d'anneaux métalliques.
L'ébauche E est ensuite soumise à un traitement de compression isostatique à chaud (CIC ou HIP) sous une presse isotherme ou bien dans un sac à l'autoclave (le choix dépendant notamment du nombre de pièces à produire). On met en place l'ébauche dans un outillage 20 approprié (figure 9) et une forte compression est exercée sur l'ébauche sous une température élevée appropriée, de façon que le métal des anneaux et de l'enrobage des fibres se ramollisse et flue en remplissant tous les espaces vides entre les anneaux des différentes couches jusqu'à la liaison des différents éléments par soudage diffusion.
Dans une variante non représentée, l'ébauche est placée dans une poche déformable en acier doux laquelle est ensuite introduite dans un autoclave. Cet autoclave est porté à une pression isostatique de 1000 bars et une température de 940°C (pour le TiA6V), de sorte que la totalité de la poche se déforme en se rétractant par évacuation de l'air et applique sur l'ébauche une pression uniforme jusqu'au fluage du métal avec liaison par soudage diffusion.
Avantageusement, plusieurs poches peuvent être introduites dans l'autoclave pour réaliser simultanément plusieurs pièces en réduisant les coûts de fabrication.
Le procédé selon l'invention permet de réaliser des pièces à section de forme non circulaire, et par exemple à section de forme pentagonale (figure 10), rectangulaire (figure 1 1 ) ou triangulaire (figure 12). L'étape de préformage du procédé selon l'invention consiste alors à préformer les anneaux pour leur donner une forme du type désiré, ces anneaux étant engagés et empilés sur un mandrin à section de forme complémentaire. Par exemple, des anneaux de forme rectangulaire sont engagés sur un mandrin parallélépipédique de section rectangulaire, pour la réalisation d'une pièce monobloc de section rectangulaire telle que celle représentée en figure 1 1 . Ces anneaux peuvent être du type fermé ou non fendu ainsi que de type ouvert ou fendu.

Claims

REVENDICATIONS
1 . Procédé de fabrication par soudage diffusion d'une pièce monobloc pour une turbomachine, comprenant les étapes consistant à :
- réaliser autour d'un mandrin (12) une ébauche (E) de la pièce comprenant plusieurs couches annulaires coaxiales et superposées de fils métalliques,
- soumettre l'ébauche à une compression isostatique à chaud pour obtenir une pièce monobloc,
- et usiner éventuellement cette pièce,
caractérisé en ce que chaque couche de fils métalliques de l'ébauche est formée d'anneaux (10) indépendants qui sont engagés et empilés sur le mandrin.
2. Procédé selon la revendication 1 , caractérisé en ce que les anneaux (10) ont une forme circulaire ou non-circulaire, et par exemple polygonale.
3. Procédé selon la revendication 2, caractérisé en ce que les anneaux (10) sont préformés avec une forme circulaire ou non circulaire avant leur engagement sur le mandrin (12).
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que le mandrin (12) a une forme cylindrique ou non cylindrique.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que les anneaux (10) sont du type fermé ou non fendu.
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que les anneaux (10) sont du type ouvert ou fendu en un point de leur circonférence.
7. Procédé selon la revendication 6, caractérisé en ce que l'ouverture de chaque anneau (10) engagé sur le mandrin (12) est décalée angulairement par rapport à celles des anneaux adjacents, autour de l'axe longitudinal du mandrin.
8. Procédé selon l'une des revendications précédentes, caractérisé en ce que la pièce est un arbre ou un disque ou anneau aubagé monobloc de turbomachine.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'au moins une couche annulaire de fibres céramiques enduites de métal, par exemple sous forme d'un tissu ou d'une nappe de fibres (18), est disposée entre deux couches de fils métalliques sur le mandrin.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce que les anneaux (10) sont engagés sur le mandrin (12) en étant positionnés à une extrémité du mandrin, coaxialement à celui-ci, et déplacés en translation sur le mandrin, parallèlement à son axe longitudinal (A).
PCT/FR2012/051058 2011-05-18 2012-05-11 Procede de fabrication par soudage diffusion d'une piece monobloc pour une turbomachine WO2012156632A2 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP12728667.2A EP2709783B1 (fr) 2011-05-18 2012-05-11 Procede de fabrication par soudage diffusion d'une piece monobloc pour une turbomachine
CA2836022A CA2836022A1 (fr) 2011-05-18 2012-05-11 Procede de fabrication par soudage diffusion d'une piece monobloc pour une turbomachine
BR112013029034A BR112013029034A2 (pt) 2011-05-18 2012-05-11 processo de fabricação de uma peça monobloco para uma turbomáquina através de soldagem por difusão
US14/117,718 US9199331B2 (en) 2011-05-18 2012-05-11 Method for fabricating a single-piece part for a turbine engine by diffusion bonding
CN201280023293.4A CN103561890B (zh) 2011-05-18 2012-05-11 采用扩散粘结技术制作涡轮发动机整体部件的方法
JP2014510859A JP6030124B2 (ja) 2011-05-18 2012-05-11 タービンエンジン用の単一片部品を拡散接合によって製作する方法
RU2013156244/02A RU2593245C2 (ru) 2011-05-18 2012-05-11 Способ изготовления моноблочной детали для турбомашины при помощи диффузионной сварки

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1154326 2011-05-18
FR1154326A FR2975317B1 (fr) 2011-05-18 2011-05-18 Procede de fabrication par soudage diffusion d'une piece monobloc pour une turbomachine

Publications (2)

Publication Number Publication Date
WO2012156632A2 true WO2012156632A2 (fr) 2012-11-22
WO2012156632A3 WO2012156632A3 (fr) 2013-01-24

Family

ID=46321092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/051058 WO2012156632A2 (fr) 2011-05-18 2012-05-11 Procede de fabrication par soudage diffusion d'une piece monobloc pour une turbomachine

Country Status (9)

Country Link
US (1) US9199331B2 (fr)
EP (1) EP2709783B1 (fr)
JP (1) JP6030124B2 (fr)
CN (1) CN103561890B (fr)
BR (1) BR112013029034A2 (fr)
CA (1) CA2836022A1 (fr)
FR (1) FR2975317B1 (fr)
RU (1) RU2593245C2 (fr)
WO (1) WO2012156632A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2796230A1 (fr) * 2013-04-22 2014-10-29 Gervaux Ltd Procédé de fabrication d'un composant métallique par utilisation d'enroulement de fil métallique et pressage isostatique à chaud

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2970715B1 (fr) * 2011-01-21 2014-10-17 Snecma Structure fibreuse tissee multicouches ayant une partie tubulaire creuse, procede de fabrication et piece composite la comportant
US9713861B2 (en) * 2014-09-29 2017-07-25 General Electric Company Manufacturing system and method for fabricating a component
CN108104880A (zh) * 2016-11-25 2018-06-01 中国航发商用航空发动机有限责任公司 整体叶环的制备方法和整体叶环
CN113182773B (zh) * 2021-01-28 2023-01-24 西北工业大学 一种TiAl基合金异质扩散连接接头强化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1150194A (fr) 1955-05-18 1958-01-08 Owens Illinois Glass Co Milieu conducteur pour borne d'anode d'un tube à rayons cathodiques
FR1151706A (fr) 1956-06-19 1958-02-05 Rau Swf Autozubehoer Dispositif de commande pour mécanismes d'essuie-glace, notamment pour véhicules automobiles
FR1152129A (fr) 1956-03-01 1958-02-12 Centre Nat Rech Scient Dispositifs pour la climatisation naturelle des habitations

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1334538A1 (ru) * 1985-11-19 1995-02-09 Л.Е. Гришмановский Способ изготовления многослойных ленточных материалов диффузионной сваркой
DE4208100C2 (de) 1992-03-13 1994-05-26 Mtu Muenchen Gmbh Rohling zur Herstellung von faserverstärkten Beschichtungen oder Metallbauteilen
RU2127178C1 (ru) * 1996-07-04 1999-03-10 Опытно-конструкторское бюро машиностроения Способ соединения деталей из разнородных материалов
DE69930748T2 (de) * 1999-11-04 2006-11-02 Avio S.P.A. Verfahren zur Herstellung eines Bauteiles aus Verbundwerkstoff
JP2001301072A (ja) * 2000-04-20 2001-10-30 Mitsubishi Heavy Ind Ltd 繊維強化複合材料製リング及びその製造方法
GB0327044D0 (en) * 2003-11-18 2004-04-07 Rolls Royce Plc A method of manufacturing a fibre reinforced metal matrix composite article and a cassette for use therein
GB0327002D0 (en) * 2003-11-20 2003-12-24 Rolls Royce Plc A method of manufacturing a fibre reinforced metal matrix composite article
CN101061289A (zh) * 2004-06-24 2007-10-24 贝克休斯公司 热等静压处理的铸造阀瓣
FR2886291B1 (fr) * 2005-05-27 2007-07-13 Snecma Moteurs Sa Procede de fabrication d'un insert bobine de fils enduits
DE102007004531A1 (de) * 2007-01-24 2008-07-31 Eads Deutschland Gmbh Faserverbundwerkstoff mit metallischer Matrix und Verfahren zu seiner Herstellung
FR2919283B1 (fr) * 2007-07-26 2010-09-17 Snecma Piece mecanique comportant un insert en materiau composite.
FR2925897B1 (fr) * 2007-12-28 2010-07-30 Messier Dowty Sa Procede de fabrication de pieces avec insert en materiau composite a matrice metallique
FR2925895B1 (fr) * 2007-12-28 2010-02-05 Messier Dowty Sa Procede de fabrication d'une piece metallique renforcee de fibres ceramiques

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1150194A (fr) 1955-05-18 1958-01-08 Owens Illinois Glass Co Milieu conducteur pour borne d'anode d'un tube à rayons cathodiques
FR1152129A (fr) 1956-03-01 1958-02-12 Centre Nat Rech Scient Dispositifs pour la climatisation naturelle des habitations
FR1151706A (fr) 1956-06-19 1958-02-05 Rau Swf Autozubehoer Dispositif de commande pour mécanismes d'essuie-glace, notamment pour véhicules automobiles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2796230A1 (fr) * 2013-04-22 2014-10-29 Gervaux Ltd Procédé de fabrication d'un composant métallique par utilisation d'enroulement de fil métallique et pressage isostatique à chaud
WO2014173702A1 (fr) * 2013-04-22 2014-10-30 Gervaux Ltd Procédé de fabrication d'un composant métallique par enroulement de fil et pressage isostatique à chaud

Also Published As

Publication number Publication date
RU2013156244A (ru) 2015-06-27
EP2709783A2 (fr) 2014-03-26
US20140068937A1 (en) 2014-03-13
BR112013029034A2 (pt) 2017-01-10
JP6030124B2 (ja) 2016-11-24
JP2014515079A (ja) 2014-06-26
US9199331B2 (en) 2015-12-01
RU2593245C2 (ru) 2016-08-10
CN103561890B (zh) 2016-02-10
FR2975317A1 (fr) 2012-11-23
CN103561890A (zh) 2014-02-05
WO2012156632A3 (fr) 2013-01-24
CA2836022A1 (fr) 2012-11-22
FR2975317B1 (fr) 2013-05-31
EP2709783B1 (fr) 2017-11-15

Similar Documents

Publication Publication Date Title
EP2709783B1 (fr) Procede de fabrication par soudage diffusion d'une piece monobloc pour une turbomachine
CA2548607C (fr) Procede de fabrication d'une piece avec un insert en materiau composite a matrice metallique et fibres ceramiques
CA2694544C (fr) Piece mecanique comportant un insert en materiau composite
CA2548630C (fr) Procede de fabrication d'une nappe liee constituee de fils ceramiques a matrice metallique, dispositif de mise en oeuvre du procede et nappe liee obtenue par le procede
EP2680991B1 (fr) Procédé pour fabriquer une pièce métallique de révolution monobloc incorporant un renfort de fibres céramiques
CA2694370C (fr) Piece mecanique comportant un insert en materiau composite
CA2824374C (fr) Structure fibreuse tissee multicouches ayant une partie tubulaire creuse, procede de fabrication et piece composite la comportant
FR2886291A1 (fr) Procede de fabrication d'un insert bobine de fils enduits
EP1950003B1 (fr) Pièce tubulaire comportant un insert en matière composite à matrice métallique
FR2970266A1 (fr) Procede de fabrication d'une piece metallique annulaire monobloc a insert de renfort en materiau composite, et piece obtenue
FR2946552A1 (fr) Procede pour l'usinage par outil pcd d'aubes de turbine en cmc.
CA2783421A1 (fr) Procede de fabrication d'un insert de forme droite en materiau composite a matrice metallique
CA2829012C (fr) Procede pour fabriquer une piece metallique de revolution monobloc a partir de structures fibreuses composites
EP2552629B1 (fr) Methode de fabrication d'un insert de forme allongee en materiau composite a matrice metallique
FR2741383A1 (fr) Procede de fabrication d'un rotor composite a matrice metallique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12728667

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2836022

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14117718

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014510859

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012728667

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012728667

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013156244

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013029034

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013029034

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131111