WO2012156591A1 - Composition catalytique a base de ruthenium comprenant un compose de type silane ou siloxane et procede de métathèse des olefines utilisant ladite composition - Google Patents

Composition catalytique a base de ruthenium comprenant un compose de type silane ou siloxane et procede de métathèse des olefines utilisant ladite composition Download PDF

Info

Publication number
WO2012156591A1
WO2012156591A1 PCT/FR2012/000119 FR2012000119W WO2012156591A1 WO 2012156591 A1 WO2012156591 A1 WO 2012156591A1 FR 2012000119 W FR2012000119 W FR 2012000119W WO 2012156591 A1 WO2012156591 A1 WO 2012156591A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
composition according
ligand
catalytic composition
rucl
Prior art date
Application number
PCT/FR2012/000119
Other languages
English (en)
Inventor
Mikael Berthod
Séverine FORGET
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2012156591A1 publication Critical patent/WO2012156591A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/123Organometallic polymers, e.g. comprising C-Si bonds in the main chain or in subunits grafted to the main chain
    • B01J31/124Silicones or siloxanes or comprising such units
    • B01J31/126Silicones or siloxanes or comprising such units the siloxanes or siloxane units, cyclic or not, comprising an additional Si-H bond, e.g. polyhydromethylsiloxane [PHMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2286Alkynes, e.g. acetylides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/02Metathesis reactions at an unsaturated carbon-to-carbon bond
    • C07C6/04Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/54Metathesis reactions, e.g. olefin metathesis
    • B01J2231/543Metathesis reactions, e.g. olefin metathesis alkene metathesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines

Definitions

  • the present invention relates to metathesis of olefins, which is a catalytic conversion reaction of olefins, consisting in exchanging the alkylidene groups of the starting olefins.
  • the metathesis reaction has become an important tool for carbon-carbon bond formation in the fields of petrochemistry, polymers, oleochemistry and fine chemistry.
  • This catalyst composition is used for the homometathesis of -octene, 2-octene of methyl oleate or 1-tetradecene, as well as for ring opening polymerization by metathesis, for example from cis, cis- 1,5-cyclooctadiene.
  • EP-B2-0942914 of the California Institute of Technology describes the synthesis of a ruthenium or osmium-based metathesis catalyst by reacting an alkene or an alkyne with a ruthenium hydride complex or osmium, optionally in the presence of hydrogen.
  • US-B2-6,610,626 discloses a method for the in-situ generation of a metathesis catalyst by reaction between an N-heterocyclic carbene, a metal complex [(arene) MXX '] 2 and an alkyne. The synthesis is preferentially done in the presence of base.
  • An object of the invention is to provide a novel catalyst composition for the metathesis of olefins comprising a ruthenium compound (A), a compound (B) comprising a carbon-carbon triple bond and a silane or siloxane-type compound ( C) used as an activator of said catalytic composition.
  • Another object of the invention is to provide a process for metathesis of olefins using said catalytic composition and operating in the absence of hydrogen gas, said process making it possible both to obtain a catalytic activity and a selectivity improved.
  • An advantage of the invention and in particular the implementation of the method according to the invention in the absence of gaseous hydrogen is to allow a simplified implementation of said method.
  • the present invention relates to a ruthenium catalytic composition for the metathesis of olefins.
  • the present invention relates to a catalyst composition comprising a ruthenium compound (A), a compound (B) comprising a carbon-carbon triple bond and a silane or siloxane compound (C).
  • the present invention also relates to a method for metathesis of olefins implementing said catalytic composition, in particular for the following non-limitatively enumerated reactions: ring closure by metathesis, acyclic metathesis metathesis polymerization, ring-opening polymerization by metathesis, acyclic olefin metathesis, cross metathesis of cyclic and acyclic olefins and metathesis of functionalized olefins.
  • the present invention describes a catalyst composition
  • a catalyst composition comprising a ruthenium compound (A), a compound (B) comprising a carbon-carbon triple bond and a silane or siloxane compound (C).
  • the ruthenium compound (A) used in the catalytic composition according to the invention may advantageously contain a phosphorus ligand.
  • said catalytic composition also comprises a neutral electron donor compound (D).
  • the ruthenium compound (A) used in the catalytic composition according to the invention is advantageously chosen from compounds of Ru (II), Ru (III) or Ru (IV) containing an anionic ligand (X), optionally an arene ligand and optionally a phosphorus ligand.
  • said ruthenium compound (A) is represented by the general formula:
  • X is an anionic ligand
  • PR ' 3 is a phosphorus ligand
  • the grouping (arena) is an arena ligand
  • n 2, 3 or 4;
  • X is an anionic ligand advantageously chosen from halides, sulphates, alkyl sulphates, aryl sulphates, alkyl sulphonates, aryl sulphonates, alkyl sulfinates, aryl sulfinates, acyls, carbonates, carboxylates, alkoxides, phenates, amides and the pyrolures.
  • Said anionic ligands may suitably be substituted, preferably by one or more groups chosen from the CC 12 alkyl, groups CC 12 alcoholates, the groups C 5 -C 2 4 and aryl halides.
  • Said substituent groups with the exception of the halides, may advantageously be themselves substituted by one or more of the groups chosen from halides, C alkyl groups, CC 6 alkoxide groups, and aryl groups.
  • X is an anionic ligand chosen from halide ligands, benzoates, tosylates, mesylates, trifluoromethanesulfonates, pyrolides and CF 3 C0 2 trifluoroacetate groups, CH 3 C0 2 acetates, (CH 3 ) 3 CO, (CF 3 ) 2 (CH 3 ) CO, (CF 3 ) (CH 3 ) 2 CO, C 6 F 5 O, PhO, MeO and EtO.
  • anionic ligand chosen from halide ligands, benzoates, tosylates, mesylates, trifluoromethanesulfonates, pyrolides and CF 3 C0 2 trifluoroacetate groups, CH 3 C0 2 acetates, (CH 3 ) 3 CO, (CF 3 ) 2 (CH 3 ) CO, (CF 3 ) (CH 3 ) 2 CO, C 6 F 5 O, PhO, MeO and EtO.
  • the anionic ligand X is chosen from halide ligands and very preferably from chlorides and bromides.
  • the group (PR ' 3 ) of the ruthenium compound (A) is a phosphorus ligand in which P is a phosphorus atom and R' is chosen from R groups and (OR) in which the groups R are identical or different and are chosen from hydrogen, halogen, alkyl, cycloalkyl, aryl and arylalkyl groups, substituted or unsubstituted, each of groups containing up to 20 carbon atoms.
  • the substituents of said groups may advantageously be chosen from halides, alkyl groups and aryl groups having up to 20 carbon atoms.
  • R ' is a group OR, R' and R are not a hydrogen or a halide.
  • R ' is a group R
  • at least one of R is not hydrogen or halogen.
  • the group (PR ' 3 ) is preferably chosen from phosphines and phosphites of formula PR 3 , P (OR) 3 , PH 2 R, PHRR 1 , PRR 1 R 2 and P (OR) (OR) (OR) (OR 2 ) in which the groups R, R 1 and R 2 are all identical or different and are chosen from alkyl, cycloalkyl, aryl and arylalkyl groups each having from 1 to 20 carbon atoms and preferably from 1 to 12 carbon atoms.
  • Each of said groups R, R 1 and R 2 can advantageously be substituted or unsubstituted.
  • the substituents may advantageously be among halogens, preferably fluorine (F), chlorine (Cl), bromine (Br) and iodine (I), alkyl groups and aryl groups having up to 20 carbon atoms. carbon, preferably up to 12 carbon atoms and even more preferably up to 8 carbon atoms.
  • halogens preferably fluorine (F), chlorine (Cl), bromine (Br) and iodine (I)
  • alkyl groups and aryl groups having up to 20 carbon atoms. carbon, preferably up to 12 carbon atoms and even more preferably up to 8 carbon atoms.
  • the phosphorus ligand (PR ' 3 ) of the ruthenium compound (A) is preferably a phosphine, preferably a tri-alkyl or cycloalkyl phosphine chosen from tricyclohexylphosphines, triisopropylphosphines and tricyclopentylphosphines, a chosen di-alkyl or cycloalkylphosphine.
  • dicyclohexylphosphines dicyclohexylphenylphosphines, di-tert-butylphosphines and di-tert-butylchlorophosphines or a tri-aryl phosphine chosen from triphenylphosphine, tri (methylphenyl) phosphine, trimesitylphosphine, tri (dimethylphenyl) phosphine, tri [(trifluoromethyl) phenyl] phosphine.
  • the arene group of the ruthenium compound (A) is advantageously an aromatic ligand comprising up to 20 carbon atoms, preferably up to 15 carbon atoms, said group being substituted or unsubstituted.
  • the substituents of said arene ligand are chosen from halides, CC 2 alkyl groups, CC 12 alkoxide groups and C 5 -C 2 4 aryl groups.
  • said arene ligand is chosen from alkylbenzenes, polyalkylbenzenes, arylbenzenes, polyarylbenzenes, halobenzenes, haloalkylbenzenes, haloarylbenzenes, alkylnaphthalenes, arylnaphthalenes, polyalkylnaphthalenes, polyarylnaphthalenes, halonaphthalenes, haloalkylnaphthalenes, and haloarylnaphthalenes.
  • said arene ligand is chosen from benzene, toluene, xylene, cumene, cymene, p-cymene, durene, trimethylsilylbenzene, and naphthalene, said groups being substituted or not.
  • Said arene ligand can also advantageously be dicyclic, or unicyclic with 5-7 atoms.
  • Said arene ligand may also advantageously contain at least one heteroatom preferably selected from nitrogen, sulfur, oxygen and boron, in the ring.
  • said arene ligand is advantageously selected from pyridine, thiophene, and furan, substituted or unsubstituted.
  • alkyl means a straight or branched hydrocarbon chain CC 15, preferably C r Cio and even more preferably CC.
  • Preferred alkyl groups are preferably selected from methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and t-butyl.
  • cycloalkyl is meant a cyclic, monocyclic C 3 -C 10 hydrocarbon-based group, and preferably a C 4 -C 8 cyclopentyl, cyclohexyl or polycyclic (bicyclic or tricyclic) group, such as, for example, adamantyl groups. or norbornyl.
  • aryl is meant an aromatic mono- or polycyclic group, preferably mono- or bicyclic C 6 -C 20 .
  • Preferred aryl groups are preferably selected from phenyl and naphthyl groups.
  • the group is polycyclic, that is to say it comprises more than one ring nucleus, the cyclic rings can advantageously be condensed two by two or attached in pairs by ⁇ bonds.
  • Arylalkyl or “aralkyl” is meant a hydrocarbon group, linear or branched bearer of a monocyclic aromatic ring C 7 -C 2 aliphatic chain comprising 1 or 2 carbon atoms.
  • a preferred arylalkyl or aralkyl group is benzyl.
  • said ruthenium compound (A) used in the catalytic composition according to the invention is chosen from compounds of formula: RuX 3 , RuX 3 hydrate, RuX 2 (PRR 1 R) 3 , RuX 2 (PHRR 1 ) 3 , RuX 2 (PH 2 R) 3 , RuX 2 [P (OR) (OR 1 ) (OR 2 )] 3 , RuX 2 (PRR 1 R 2 ) 4 , RuX 2 (PHRR 1 ) 4 , RuX 2 (PH 2 R) 4 , RuX 2 [P (OR) (OR 1 ) (OR 2 )] 4 , [RuX 2 (arene)] 21
  • RuX 2 (arene) PRR 1 R 2
  • RuX 2 (arene) PHRR 1 RuX 2 (arene) (PH 2 R) and
  • RuX 2 (arene) [(P (OR) (OR) (OR 2 )].
  • said ruthenium compound (A) is chosen from compounds of formula RuCl 3 , RuCl 3 hydrate, RuBr 3 , RuBr 3 hydrate, RuCl 2 (p-cymene) 2 , RuCl 2 (4-tert butyltoluene)] 2 , [RuCl 2 (1,3-diisopropylbenzene)] 2 , RuCl 2 (PPh 3 ) 3 and RuCl 2 (PPh 3 ) 4 .
  • said catalytic composition also advantageously comprises a neutral electron donor compound (D).
  • Said neutral electron donor compound (D) is advantageously chosen from phosphorus compounds, sulfur compounds, nitrogen compounds and carbenes.
  • said neutral electron donor compound (D) is advantageously chosen from sulphoxides and sulphones.
  • said electron donor neutral compound (D) is a nitrogen compound
  • said two-electron donor compound (D) is advantageously chosen from amines, amides, imines, nitrosyls, pyridines, imidazoles, substituted imidazoles and pyrazines.
  • said electron donor neutral compound (D) is a carbene
  • said two-electron donor compound (D) is advantageously chosen from N-heterocyclic carbenes, ⁇ -heterocyclic carbenes, cyclic amino-alkyl carbenes and triazolylidenes.
  • said ruthenium compound (A) does not contain phosphorous ligand (PR ' 3 ) and said catalytic composition comprises a neutral electron donor compound (D).
  • said neutral electron donor compound (D) is a phosphorus compound
  • said neutral electron donor compound (D) is advantageously chosen from phosphines and phosphites of formula PR 3 , P (OR) 3 , PH 2 R, PHRR 1 , PRR R 2 and P (OR) (OR 1 ) (OR 2 ) in which the groups R, R 1 and R 2 are all identical or different and are chosen from alkyl, cycloalkyl, aryl and arylalkyls each having from 1 to 20 carbon atoms and preferably from 1 to 12 carbon atoms. Each of said groups R, R 1 and R 2 can advantageously be substituted or unsubstituted.
  • the substituents may advantageously be among halogens and sulphonates, preferably fluorine (F), chlorine (Cl), bromine (Br) and iodine (I), alkyl groups and aryl groups having up to 20 carbon atoms, preferably up to 12 carbon atoms and even more preferably up to 8 carbon atoms.
  • said electron donor neutral compound (D) is a phosphorus compound.
  • said two-electron donor neutral compound (D) is a phosphine, and even more preferably a tri-alkyl or cycloalkyl phosphine chosen from tricyclohexylphosphines, triisopropylphosphines and tricyclopentylphosphines, or a di-alkyl or cycloalkyl phosphine chosen from dicyclohexylphosphines, dicyclohexylphenylphosphines, di-tert-butylphosphines and di-tert-butylchlorophosphines or a triarylphosphine chosen from triphenylphosphine, tri (methylphenyl) phosphine, trimesitylphosphine, tri (dimethylphenyl) phosphine, tri [(trifluoromethyl) phenyl] phosphine.
  • the compound (B) comprising a carbon-carbon triple bond used in the catalytic composition according to the invention is a compound containing at least one carbon-carbon triple bond which may be a C 2 -C 2 alkyne, preferably having up to about 16 carbon atoms, preferably up to about 12 carbon atoms, more preferably up to about 8 carbon atoms, said compound (B) may be substituted or unsubstituted.
  • Said compound (B) may advantageously be a terminal alkyne, an internal alkyne, or an alkyne having one or more, preferably one or two, functional substituent groups selected from aliphatic, alkenyl and aromatic groups, said groups preferably having up to about 20 carbon atoms, more preferably up to about 12 carbon atoms, more preferably up to about 8 carbon atoms, substituents selected from halogens such as fluorine, chlorine, bromine or iodine, ester groups, hydroxy, ketones, aldehydes, ethers, carboxyls, amides, anhydrides, nitriles, silyl and amines, alone or as a mixture.
  • halogens such as fluorine, chlorine, bromine or iodine
  • said compound (B) is chosen from acetylene compounds (C 2 H 2 ), propyne, 1-butyne, 2-butyne, 1-pentyne, 2-pentyne, 1-hexyne, 2-hexyne, 3-hexyne , 1-heptyne, 1-octyl, 1-decyne, -dodecyne, 3,3-dimethyl-butyl, trimethylsilylacetylene, phenylacetylene, diphenylacetylene, 2-butyne-1,4-diol, 1,1-diphenyl-2-propyn 1-ol, 1- (3,5-dimethoxyphenyl) -1-phenylprop-2-yn-1-ol, propargyl alcohol, propargyl chloride, propargyl bromide, propargyl acetate, propargyl propionate, propargyl butyrate, propargyl benzo
  • said compound (B) is chosen from the compounds 2-butyne-1,4-diol, 1,1-diphenyl-2-propyn-1-ol, 1- (3,5-dimethoxyphenyl) -1- phenylprop-2-yn-1-ol, 1-hexyne and 3,3-dimethyl-1-butyne.
  • the compound (C) used in the catalytic composition according to the invention is a compound of silane or siloxane type.
  • said compound (C) is a silane compound of formula (II) or a siloxane compound of formula (I), said formulas being as follows:
  • R 1 represents an alkyl, cycloalkyl or aryl group.
  • R 2 represents a hydrogen, an alkyl group, cycloalkyl or aryl.
  • R 3 represents a hydrogen, a halide, an alkyl, cycloalkyl or aryl group.
  • x is a number varying from 0 to 50, preferably from 0 to 10, and preferably x is equal to 0 or 1.
  • said preferred siloxane compounds are the compounds corresponding to the formula (I) in which the groups R 1 and R 2 are identical and preferably represent an alkyl group having 1 to 4 carbon atoms and preferably a methyl group.
  • a very preferred siloxane compound is tetramethyldisiloxane.
  • said preferred silane compounds are the compounds corresponding to the formula (II) in which R 3 represents a hydrogen, an alkyl group or an aryl group.
  • the most preferred silane compounds are selected from phenylsilane and tributylsilane.
  • Said catalytic composition may also advantageously comprise an additive (E) preferably chosen from organic and inorganic bases.
  • (E) is advantageously chosen from potassium carbonate, cesium carbonate and sodium carbonate.
  • (E) is advantageously chosen from n-butyllithium, sec-butyllithium, tert-butyllithium, potassium hexamethyldisilazane, potassium tert-butylate, pyridine, triethylamine , piperidine, benzylmethylamine.
  • the additive (E) is an inorganic base and, preferably, the additive (E) is potassium carbonate.
  • the catalytic composition according to the invention comprises and is preferably composed of a ruthenium compound (A), a compound (B) comprising a carbon-carbon triple bond, a silane compound or a siloxane compound ( C), a compound (D) neutral electron donor in the case where said ruthenium compound (A) does not contain phosphorus ligand and optionally an additive (E).
  • a silane-type or siloxane-type compound (C) in place of gaseous hydrogen makes it possible to improve the catalytic activity. of said catalytic composition, the conversion of reagent, and the yield of product in the process implemented according to the invention. Furthermore, it is preferable that an activator be present as a component of the catalyst composition to increase the catalytic activity of said composition, the reagent conversion and the product yield.
  • an activator be present as a component of the catalyst composition to increase the catalytic activity of said composition, the reagent conversion and the product yield.
  • the use of a silane compound or siloxane type (C) in place of hydrogen gas allows a simplified implementation.
  • the B / A molar ratios expressed as compounds are preferably in the range of from 0.1 to 500, preferably from 0.1 to 100 and most preferably from 0.1 to 10.
  • the C / A molar ratios expressed as compounds are preferably in the range of 0.1 to 1000, preferably in the range of 0.1 to 100 and most preferably in the range of 0.1 to 10.
  • D / A molar ratios are advantageously in the range of 0.1 to 100 and preferably 0.1 to 10.
  • the molar ratios E / A are advantageously in the range from 0.1 to 100 and preferably from 0.1 to 10.
  • the present invention also relates to a method for metathesis of olefins implementing said catalytic composition in the absence of hydrogen gas.
  • An advantage of the present invention lies in the fact that the absence of hydrogen gas in the reaction medium allows a greater simplicity of implementation of said method.
  • the olefin metathesis process according to the invention comprises ring closure by metathesis, acyclic diene metathesis polymerization, metathesis ring opening polymerization, acyclic olefin metathesis, cross metathesis of cyclic olefins and acyclic and metathesis of functionalized olefins which comprises contacting at least one olefin with the catalytic composition described according to the invention, preferably in the absence of hydrogen gas.
  • the olefins used in the process according to the invention are advantageously chosen from linear alpha-olefins, linear internal olefins, branched alpha-olefins and branched internal olefins.
  • the olefins used in the process according to the invention are chosen from alpha-olefins and, preferably, linear alpha-olefins, branched alpha-olefins and olefins containing the functional groups such as acids, esters and the like. hydroxy, ketone, aldehyde, ether, carboxyl, amine, amide, anhydride, nitrile, halogen, phosphine, phosphite.
  • the amount of catalyst composition used for the metathesis reaction depends on a variety of factors such as the identity of the reagents and the reaction conditions employed. As a result, the amount of catalyst composition required will be optimally and independently defined for each reaction. However, preferably, the molar ratio of the ruthenium compound (A) used and olefins is between 1 and 10,000 ppm. preferably, the molar ratio of the ruthenium compound (A) / olefin is between 1 and 1000 ppm.
  • solvents which can be used according to the process of the invention can be chosen from organic solvents, protic solvents or water.
  • the solvents that can be used for the metathesis according to the present invention can for example be chosen from aromatic hydrocarbons such as benzene, toluene and xylenes, halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene, aliphatic hydrocarbons such as pentane, hexane, heptane and cyclohexane, chlorinated alkanes such as dichloromethane, chloroform and 1,2-dichloroethane, ethers such as diethyl ether and tetrahydrofuran, alcohols such as methanol and ethanol or the water.
  • a preferred solvent is chlorobenzene.
  • the combinations of these solvents may also be advantageously used. Any amount of solvent may advantageously be employed, but the use of at least the minimum amount required for the dissolution of the compound (A) is preferred and such a minimum amount is readily determined by those skilled in the art.
  • the volume of the solvent may be very small relative to the volume of olefin reactants employed.
  • Said metathesis process of the olefins according to the invention is advantageously carried out under vigorous stirring, insofar as it allows a good contact between the reagents (which may be gaseous for some) and said catalytic composition.
  • Said metathesis process of the olefins according to the invention can advantageously be carried out under a nitrogen or argon atmosphere, preferably at atmospheric pressure.
  • Said method of metathesis of olefins according to. the invention is advantageously carried out at a temperature of between -78 ° C. and 150 ° C., and preferably between 20 ° and 80 ° C.
  • the pressure of the reaction is advantageously between atmospheric pressure and 100 bar (10 7 Pa) and preferably between atmospheric pressure and 30 bar (3.10 6 Pa).
  • Said gaseous reagent is advantageously used pure or as a mixture or diluted with an inert paraffin.
  • the various metathesis reactions of the olefins of the process of the invention are catalyzed by the catalytic composition which has been described previously.
  • the compounds of said catalytic composition is advantageously added to the reaction medium as a solid but it can also be advantageously added in solution when it is dissolved in a suitable solvent.
  • Said olefin metathesis process according to the invention can advantageously be carried out as well in a closed system (batch), as in a semi-open system or in a continuous system, and with one or more reaction stages.
  • reaction time or residence time in a continuous reaction for the olefin metathesis process according to the invention is preferably from about one second to about one day; preferably about five minutes to about 10 hours.
  • Ru Complex The RuCI 3 , 3H 2 O complex solutions (Strem chemicals 40-43% Ru) are prepared by dissolving 92 mg of RuCl 3 , 3H 2 O in 5 ml of anhydrous ethanol (aidrich). The solvents are used without purification.
  • 1-octene Before use, a peroxide test is carried out on 1-octene. If the test is positive, 1-octene is purified on a column of alumina.
  • the operating conditions are as follows:
  • step 3 0 min
  • the tetradecene selectivity is calculated with the following formula:
  • phosphine solution 0.6 mL of a 0.14M solution of 2-butyne-1,4-diol (aldrich) in a flask under an inert atmosphere equipped with a condenser and a magnetic bar are introduced in chlorobenzene, 1.1 ml of phenylsilane at 0.07M in chlorobenzene, 5 ml of 1-octene, and 0.1 ml of the RuCl 3 solution, 3H 2 O.
  • the heating set point of the heating plate is set to 80 ° C. . When the set point is reached, it is left stirring for 2 hours.
  • phosphine solution 0.6 mL of a solution of 1,1-diphenyl-2-propyn-1-ol (aldrich), are introduced into a flask under an inert atmosphere equipped with a condenser and a magnetic bar. to 0.14m in chlorobenzene, 0.6 mL of phenylsilane to 0.14m in chlorobenzene, 5 mL of 1-octene and 0.11 mL of solution of RuCl 3 3H 2 0. rule the heating setpoint hotplate 80 ° C. When the set point is reached, it is left stirring for 2 hours.
  • phosphine solution 0.6 mL of a solution of 1,1-diphenyl-2-propyn-1-ol (aldrich), are introduced into a flask under an inert atmosphere equipped with a condenser and a magnetic bar.
  • 0.14M in chlorobenzene 0.6 mL of 0.14M tributylsilane in chlorobenzene, 5 mL of 1-octene, and 0.11 mL of RuCl 3 H 3 O 2 solution .
  • the heating set point of the hotplate is set to 80 ° C. When the set point is reached, it is left stirring for 2 hours.
  • phosphine solution 0.6 mL of a 0.14M solution of 2-butyne-1,4-diol (aldrich) in a flask under an inert atmosphere equipped with a condenser and a magnetic bar are introduced in chlorobenzene, 0.6 mL of 0.14M tetramethyldisiloxane in chlorobenzene, 5 mL of 1-octene, and 0.11 mL of the RuCl 3 solution, 3H 2 O. set the heating set point of the hotplate to 80 ° C. When the set point is reached, it is left stirring for 2 hours.
  • phosphine solution 0.6 mL of a solution of 1,1-diphenyl-2-propyn-1-ol (aldrich), are introduced into a flask under an inert atmosphere equipped with a condenser and a magnetic bar.
  • 0.14M in chlorobenzene 0.6 mL of 0.14M tetramethyldisiloxane in chlorobenzene, 5 mL of 1-octene, and 0.11 mL of RuCI 3 solution, 3H 2 0.
  • the heating set point of the hotplate is adjusted to 80 ° C. When the set point is reached, it is left stirring for 2 hours.
  • phosphine solution 0.6 mL of a solution of 1,1-diphenyl-2-propyn-1-ol (aldrich), are introduced into a flask under an inert atmosphere equipped with a condenser and a magnetic bar. to 0.14m in chlorobenzene, 5 mL of 1-octene, and 0.1 mL of the solution of RuCl 3 3H 2 0. rule the heating setpoint of the heating plate at 80 ° C. When the set point is reached, it is left stirring for 2 hours.
  • Example 9 not in accordance with the invention (without activating compound of silane or siloxane type (C) and in the presence of hydrogen gas)
  • phosphine solution 0.6 mL of a solution of 1,1-diphenyl-2-propyn-1-ol (aldrich), are introduced into a flask under an inert atmosphere equipped with a condenser and a magnetic bar. 0.14M in chlorobenzene, 5 mL of 1-octene, and 0. 1 mL of the RuCl 3 solution, 3H 2 0. Throughout the duration of the reaction, the hydrogen gas is introduced in a constant flow by bubbling in. the reaction mixture. We set the deposit heating the hot plate to 80 ° C. When the set point is reached, it is left stirring for 2 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention décrit une composition catalytique comprenant un composé de ruthénium (A), un composé (B) comprenant une triple liaison carbone-carbone et un composé de type silane ou de type siloxane (C) ainsi qu'un procédé de métathèse des oléfines opérant en l'absence d'hydrogène gazeux et mettant en oeuvre ladite composition catalytique.

Description

COMPOSITION CATALYTIQUE A BASE DE RUTHENIUM COMPRENANT UN COMPOSE DE TYPE SILANE OU SILOXANE ET PROCEDE DE MÉTATHÈSE DES OLEFINES
UTILISANT LADITE COMPOSITION
Domaine de l'invention
La présente invention concerne la métathèse des oléfines, qui est une réaction catalytique de transformation des oléfines, consistant à échanger les groupements aikylidènes des oléfines de départ.
Figure imgf000002_0001
Étude de l'art antérieur
La réaction de métathèse est devenue un outil important pour la formation de liaison carbone-carbone dans les domaines de la pétrochimie, des polymères, de l'oléochimie et de la chimie fine.
En fonction des substrats utilisés, les applications sont très nombreuses et cette réaction permet d'accéder à une très grande variété de molécules insaturées, comme illustré ci-après : la fermeture de cycle par métathèse, RCM ou « Ring Closing Metathesis » ; la polymérisation par métathèse de diènes acyclique, ADMET ou « Acyclic Diene Metathesis Polymerization » ; la polymérisation par ouverture de cycle par métathèse, ROMP ou « Ring Opening Metathesis Polymerization » ; la métathèse croisée, CM ou « Cross Metathesis » ; la métathèse par ouverture de cycle, ROM ou « Ring Opening Metathesis ».
Figure imgf000002_0002
De nombreux catalyseurs ont été écrits dans la littérature pour la métathèse des oléfines. Malgré de bons résultats obtenus avec des catalyseurs isolés par exemple à base de liaison métal carbène, le métal étant le tungstène, le molybdène ou le ruthénium, leur préparation et utilisation reste coûteuse et délicate pour une application industrielle.
Certaines équipes se sont donc penchées vers une approche de synthèse in-situ du catalyseur. En effet, ce type d'approche permet d'utiliser des réactifs de base, donc plus abordables, et de travailler sur des systèmes simples à mettre en oeuvre, ne nécessitant pas de synthèses inorganiques ou organométalliques multi-étapes.
On peut notamment citer les brevets US-B2-6, 156,692 ou US-B2-6, 159,890 qui décrivent une composition catalytique pour la métathèse d'oléfines comprenant le produit de la réaction entre un composé du ruthénium (II), (III) ou (IV), un composé (B) à base de phosphore, arsenic ou antimoine et un composé (C) contenant au moins une triple liaison, en présence d'oléfine et d'hydrogène gazeux utilisé comme activateur. Cette composition catalytique est utilisée pour l'homométathèse du -octène, du 2-octène de l'oléate de méthyle ou du 1 -tétradécène, ainsi que pour la polymérisation par ouverture de cycle par métathèse, par exemple à partir de cis,cis-1 ,5-cyclooctadiène.
Le brevet EP-B2-0942914 de l'Institut de Technologie de Californie décrit la synthèse d'un catalyseur de métathèse à base de ruthénium ou d'osmium, en faisant réagir un alcène ou un alcyne avec un complexe hydrure de ruthénium ou d'osmium, éventuellement en présence d'hydrogène.
Le brevet US-B2-6, 610,626 décrit un procédé pour la génération in-situ d'un catalyseur de métathèse, par réaction entre un carbène N-héterocyclique, un complexe métallique [(arène)MXX']2 et un alcyne. La synthèse se fait préférentiellement en présence de base.
Des tests ont été effectués pour estimer la reproductibilité de l'homométathèse du 1 -octène en utilisant les systèmes catalytiques in-situ décrits dans la littérature et notamment dans les brevets US-B2-6, 156,692 ou US-B2-6, 159,890 ou dans Vosloo et al. J. Mol. Cal A, 2002, 90, 185-195. Ils ont montré des difficultés à reproduire de façon très précise les résultats.
Dans un souci de meilleure reproductibilité et de plus grande simplicité de mise en œuvre, la demanderesse a cherché à mettre au point une nouvelle composition catalytique générée in- situ pour des réactions de métathèse.
Un objectif de l'invention est de fournir une nouvelle composition catalytique pour la métathèse des oléfines comprenant un composé de ruthénium (A), un composé (B) comprenant une triple liaison carbone-carbone et un composé de type silane ou de type siloxane (C) utilisé comme activateur de ladite composition catalytique. Un autre objectif de l'invention est de fournir un procédé de métathèse des oléfines utilisant ladite composition catalytique et opérant en l'absence d'hydrogène gazeux, ledit procédé permettant à la fois l'obtention d'une activité catalytique et d'une sélectivité améliorées.
Un avantage de l'invention et en particulier de la mise en œuvre du procédé selon l'invention en l'absence d'hydrogène gazeux est de permettre une mise en œuvre simplifiée dudit procédé.
Résumé de l'invention
La présente invention concerne une composition catalytique à base de ruthénium pour la métathèse des oléfines. La présente invention concerne une composition catalytique comprenant un composé de ruthénium (A), un composé (B) comprenant une triple liaison carbone-carbone et un composé de type silane ou de type siloxane (C).
La présente invention concerne également un procédé de métathèse des oléfines mettant en œuvre ladite composition catalytique, en particulier pour les réactions suivantes énumérés non limitativement : la fermeture de cycle par métathèse, la polymérisation par métathèse de diènes acyclique, la polymérisation par ouverture de cycle par métathèse, la métathèse d'oléfine acycliques, la métathèse croisée d'oléfines cycliques et acycliques et la métathèse d'oléfines fonctionnalisées.
Description détaillée de l'invention
La présente invention décrit une composition catalytique comprenant un composé de ruthénium (A), un composé (B) comprenant une triple liaison carbone-carbone et un composé de type silane ou de type siloxane (C).
Le composé de ruthénium (A) utilisé dans la composition catalytique selon l'invention peut avantageusement contenir un ligand phosphoré. Dans le cas où ledit composé de ruthénium (A) ne contient pas de ligand phosphoré, ladite composition catalytique comprend également un composé neutre donneur d'électrons (D).
Le composé de ruthénium (A) utilisé dans la composition catalytique selon l'invention est avantageusement choisi parmi les composés de Ru(ll), Ru(lll) ou Ru(IV) contenant un ligand anionique (X), éventuellement un ligand arène et éventuellement un ligand phosphoré. De préférence, ledit composé de ruthénium (A) est représenté par la formule générale :
[RuXn(PR'3)q(arène)p]2
dans laquelle : X est un ligand anionique; (PR'3) est un ligand phosphoré;
le groupement (arène) est un ligand arène;
n = 2, 3 ou 4;
q = 0, 1 , 2, 3 ou 4;
p = 0 ou 1 ;
et z = 1 ou 2.
X est un ligand anionique avantageusement choisis parmi les halogénures, les sulfate, les alkylsulfates, les arylsulfates, les alkylsulfonates, les arylsulfonàtes, les alkylsulfinates, les arylsulfinates, les acyles, les carbonates, les carboxylates, les alcoolates, les phénates, les amidures et les pyrolures. Lesdits ligands anioniques peuvent avantageusement être substitués, de préférence par un ou plusieurs des groupements choisis parmi les groupements C C12 alkyle, les groupements C C12 alcoolates, les groupements C5-C24 aryle et les halogénures. Lesdits groupements substituants, à l'exception des halogénures, peuvent avantageusement être eux-mêmes substitués par un ou plusieurs des groupes choisis parmi les halogénures, les groupements C Ce alkyles, les groupements C C6 alcoolates, et les groupements aryles.
De préférence, X est un ligand anionique choisi parmi les ligands halogénures, les benzoates, les tosylates, les mesylates, les trifluoromethane-sulfonates, les pyrolures et les groupes trifluoroacétates CF3C02, acétates CH3C02, (CH3)3CO, (CF3)2(CH3)CO, (CF3)(CH3)2CO, C6F50, PhO, MeO et EtO.
De manière préférée, le ligand anionique X est choisi parmi les ligands halogénures et de manière très préférée parmi les chlorures et bromures.
Dans le cas ou q = 1 , 2, 3 ou 4, le groupement (PR'3) du composé de ruthénium (A) est un ligand phosphoré dans lequel P est un atome de phosphore et R' est choisi parmi les groupes R et (OR) dans lesquels les groupements R sont identiques ou différents et sont choisis parmi les groupements hydrogène, halogénures, alkyles, cycloalkyles, aryles et arylalkykes, substitués ou non, chacun des groupements comportant jusqu'à 20 atomes de carbones. Les susbtituants desdits groupements peuvent avantageusement être choisis parmi les halogénures, les groupes alkyles et les groupes aryles ayant jusqu'à 20 atomes de carbone. Dans le cas ou R' est un groupe OR, R' et R ne sont pas un hydrogène ou un halogénure. Dans le cas ou R' est un groupe R, au moins un des R n'est pas un hydrogène ou un halogène. Le groupement (PR'3) est de préférence choisi parmi les phosphines et les phosphites de formule PR3, P(OR)3, PH2R, PHRR1, PRR1R2 et P(OR)(OR )(OR2) dans lesquelles les groupements R, R1 et R2 sont tous identiques ou différents et sont choisis parmi les groupes alkyles, cycloalkyles, aryles et arylalkyles ayant chacun de 1 à 20 atomes de carbones et de préférence de 1 à 12 atomes de carbones. Chacun desdits groupes R, R1 et R2 peut avantageusement être substitués ou non. Les substituants peuvent avantageusement être parmi les halogènes, de préférence le fluor (F), le chlore (Cl), le brome (Br) et l'iode (I), les groupements alkyles et les groupements aryles ayant jusqu'à 20 atomes de carbone, de préférence jusqu'à 12 atomes de carbone et de manière encore plus préférée jusqu'à 8 atomes de carbone.
Le ligand phosphoré (PR'3) du composé de ruthénium (A) est de préférence une phosphine, de manière préféré une tri - alkyle ou cycloalkyle phosphine choisie parmi les tricyclohexylphosphines, les triisopropylphosphines et les tricyclopentylphosphines, une di- alkyle ou cycloalkyle phosphine choisie parmi les dicyclohexylphosphines, les dicyclohexylphenylphosphines, les Di-tert-butylphosphines et les Di-tert- butylchlorophosphines ou une tri-aryle phosphine choisie parmi la triphénylphosphine, la tri(methylphenyl)phosphine, la trimesitylphosphine, la tri(dimethylphenyi)phosphine, la tri[(trifluoromethyl)phenyl]phosphine. Le groupement arène du composé de ruthénium (A) est avantageusement un ligand aromatique comportant jusqu'à 20 atomes de carbones, de manière préférée jusqu'à 15 atomes de carbone, ledit groupement étant substitués ou non. Les substituants dudit ligand arène sont choisis parmi les halogénures, les groupements C C 2 alkyle, les groupements C C12 alcoolates et les groupements C5-C24 aryle.
De préférence, ledit ligand arène est choisi parmi les alkylbenzènes, les polyalkylbenzenes, les arylbenzenes, les polyarylbenzenes, les halobenzenes, les haloalkylbenzenes, les haloarylbenzenes, les alkylnaphtalènes, les arylnaphthalenes, les polyalkylnaphthalenes, les polyarylnaphthalenes, les halonaphthalenes, les haloalkylnaphthalenes, et les haloarylnaphthalenes. De manière préférée, ledit ligand arène est choisi parmi le benzène, le toluène, le xylène, le cumène, le cymene, le p-cymene, le durene, le trimethylsilylbenzene, et le naphtalène, lesdits groupements étant substituées ou non. Ledit ligand arène peut également avantageusement être dicyclique, ou unicyclique à 5- 7 atomes. Ledit ligand arène peut également avantageusement contenir au moins un hétéroatome de préférence choisi parmi l'azote, le soufre, l'oxygène et le bore, dans le cycle. Dans ce cas, ledit ligand arène est avantageusement choisi parmi la pyridine, le thiophène, et le furanne, substitués ou non.
Au sens de la présente description, on entend par « alkyle », une chaîne hydrocarbonée linéaire ou ramifiée en C C15, de préférence en CrCio et encore plus préférentiellement en C C . Des groupes alkyle préférés sont avantageusement choisis parmi les groupes méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, et t-butyle.
Par « cycloalkyle », on entend un groupe hydrocarboné cyclique, monocyclique en C3-C10, et de préférence un groupe cyclopentyle, cyclohexyle ou polycyclique (bi- ou tricyclique) en C4-Ci8, tels que par exemple les groupes adamantyle ou norbornyle.
Par « aryle », on entend un groupe mono- ou polycyclique aromatique, de préférence, mono- ou bicyclique en C6-C20. Des groupe aryles préférés sont avantageusmeent choisis parmi les groupes phényle et naphtyle. Lorsque le groupe est polycyclique c'est-à-dire qu'il comprend plus d'un noyau cyclique, les noyaux cycliques peuvent avantageusement être condensés deux à deux ou rattachés deux à deux par des liaisons σ.
Par « arylalkyle », ou « aralkyle » on entend un groupe hydrocarboné, linéaire ou ramifié porteur d'un cycle aromatique monocyclique en C7-Ci2, la chaîne aliphatique comprenant 1 ou 2 atomes de carbone. Un groupe arylalkyle ou aralkyle préféré est le benzyle.
De préférence, ledit composé de ruthénium (A) utilisé dans la composition catalytique selon l'invention est choisi parmi les composés de formule : RuX3, RuX3 hydraté, RuX2(PRR1R )3, RuX2(PHRR1)3, RuX2(PH2R)3, RuX2[P(OR)(OR1)(OR2)]3, RuX2(PRR1R2)4, RuX2(PHRR1)4, RuX2(PH2R)4, RuX2[P(OR)(OR1)(OR2)]4, [RuX2(arene)]2l
RuX2(arène)(PRR1R2), RuX2(arene)PHRR1), RuX2(arène)(PH2R) et
RuX2(arene)[(P(OR)(OR )(OR2)].
De manière préférée, ledit composé de ruthénium (A) est choisi parmi les composés de formule RuCI3, RuCI3 hydraté, RuBr3, RuBr3 hydraté, [RuCI2(p-cymene)]2, [RuCI2(4-tert- butyltoluene)]2, [RuCI2(1 ,3-diisopropylbenzene)]2, RuCI2(PPh3)3 et RuCI2(PPh3)4.
Dans le cas où ledit composé de ruthénium (A) ne contient pas de ligand phosphoré (PR'3), ladite composition catalytique comprend également avantageusement un composé neutre donneur d'électrons (D). Ledit composé neutre donneur d'électrons (D) est avantageusement choisi parmi les composés phosphorés, les composés soufrés, les composés azotés et les carbènes . Dans le cas ou ledit composé neutre donneur d'électrons (D) est un composé soufrés, ledit composé donneur de deux électrons (D) est avantageusement choisi parmi les sulfoxydes et les sulfones.
Dans le cas ou ledit composé neutre donneur d'électrons (D) est un composé azotés, ledit composé donneur de deux électrons (D) est avantageusement choisi parmi les aminés, amides, imines, nitrosyles, pyridines, imidazoles, imidazoles substitués et pyrazines.
Dans le cas ou ledit composé neutre donneur d'électrons (D) est un carbène, ledit composé donneur de deux électrons (D) est avantageusement choisi parmi les carbènes N- hétérocycliques, carbènes P-hétérocycliques, carbènes amino alkyles cycliques et triazolylidenes.
Dans le cas ou q = 0, ledit composé de ruthénium (A) ne contient pas de ligand phosphoré (PR'3) et ladite composition catalytique comprend un composé neutre donneur d'électrons (D).
Dans le cas ou ledit composé neutre donneur d'électrons (D) est un composé phosphoré, ledit composé neutre donneur d'électrons (D) est avantageusement choisi parmi les phosphines et les phosphites de formule PR3, P(OR)3, PH2R, PHRR1, PRR R2 et P(OR)(OR1)(OR2) dans lesquelles les groupements R, R1 et R2 sont tous identiques ou différents et sont choisis parmi les groupes alkyles, cycloalkyles, aryles et arylalkyles ayant chacun de 1 à 20 atomes de carbones et de préférence de 1 à 12 atomes de carbones. Chacun desdits groupes R, R1 et R2 peut avantageusement être substitués ou non. Les substituants peuvent avantageusement être parmi les halogènes et les sulfonates, de préférence le fluor (F), le chlore (Cl), le brome (Br) et l'iode (I), les groupements alkyles et les groupements aryles ayant jusqu'à 20 atomes de carbone, de préférence jusqu'à 12 atomes de carbone et de manière encore plus préférée jusqu'à 8 atomes de carbone.
De préférence, ledit composé neutre donneur d'électrons (D) est un composé phosphoré.
De manière très préférée, ledit composé neutre donneur de deux électrons (D) est une phosphine, et de manière encore plus préférée une tri - alkyle ou cycloalkyle phosphine choisie parmi les tricyclohexylphosphines, les triisopropylphosphines et les tricyclopentylphosphines, ou une di- alkyle ou cycloalkyle phosphine choisie parmi les dicyclohexylphosphines, les dicyclohexylphenylphosphines, les Di-tert-butylphosphines et les Di-tert-butylchlorophosphines ou une tri-aryle phosphine choisie parmi la triphénylphosphine, la tri(methylphenyl)phosphine, la trimesitylphosphine, la tri(dimethylphenyl)phosphine, la tri[(trifluoromethyl)phenyl]phosphine. ι
Le composé (B) comprenant une triple liaison carbone-carbone utilisé dans la composition catalytique selon l'invention est un composé contenant au moins une triple liaison carbone carbone qui peut être un alcyne C2-C2o, de préférence ayant jusqu'à environ 16 atomes de carbone, de manière préférée, jusqu'à environ 12 atomes de carbone, de manière plus préférée, jusqu'à environ 8 atomes de carbone, ledit composé (B) pouvant être substitué ou non. Ledit compose (B) peut avantageusement être un alcyne terminal, un alcyne interne, ou un alcyne possédant un ou plusieurs de préférence un ou deux, groupes substituants fonctionnels choisis parmi les groupements aliphatiques, alcényles et aromatiques, lesdits groupements ayant de préférence jusqu'à environ 20 atomes de carbone, de manière préférée, jusqu'à environ 12 atomes de carbone, de manière plus préférée, jusqu'à environ 8 atomes de carbone, des substituants choisis parmi les halogènes tels que le fluor, le chlore, le brome ou l'iode, les groupements esters, les hydroxy, les cétones, les aldéhydes, les éthers, les carboxyles, les amides, les anhydrides, les nitriles, les silyl et les aminés, seuls ou en mélange.
De préférence, ledit composé (B) est choisi parmi les composés acétylène (C2H2), propyne, 1-butyne, 2-butyne, 1-pentyne, 2-pentyne, 1-hexyne, 2-hexyne, 3-hexyne, 1- heptyne, 1-octyne, 1-decyne, -dodecyne, 3,3-dimethy -butyne, trimethylsilylacetylene, phénylacétylène, le diphenylacetylene, 2-butyne- 1 ,4-diol, 1 ,1-diphenyl-2-propyn-1-ol, 1-(3,5- dimethoxyphenyl)-1-phenylprop-2-yn-1-ol, alcool propargylique, chlorure de propargylique, bromure propargylique, acétate propargylique, propionate propargylique, butyrate propargylique, le benzoate propargylique, 1 ,4-dichloro-2-butyne, monobutyrate de 2-butyne- 1 ,4-diol, dibutyrate de 2-butyne-1 ,4-diol, tert-butylacetylene, et di-tert-butylacetylene et les dérivés d'ester du 2-butyne-1 ,4-diol tels que par exemple le 1 ,4-diacetoxy-2-butyne, monoacetate de 2-butyne-1 ,4-diol, le diacétate de 2-butyne-1 ,4-diol, le monopropionate de 2- butyne-1 ,4-diol, le dipropionate de 2-butyne-1 ,4-diol, le monobenzoate de 2-butyne-1 ,4-diol et le dibenzoate de 2-butyne-1 ,4-diol.
De manière préférée, ledit composé (B) est choisi parmi les composés 2-butyne-1 ,4- diol, 1 ,1-diphenyl-2-propyn-1-ol, 1-(3,5-dimethoxyphenyl)-1-phenylprop-2-yn-1-ol, 1-hexyne et 3,3-dimethyl-1-butyne.
Le composé (C) utilisé dans la composition catalytique seion l'invention est un composé de type silane ou de type siloxane. De préférence, ledit composé (C) est un composé de type silane répondant à la formule (II) ou un composé de type siloxane répondant à la formule (I), lesdites formules étant les suivantes :
Figure imgf000010_0001
(I)
dans lesquelles :
- R-i représente un groupe alkyle, cycloalkyle ou aryle.
- R2 représente un hydrogène, un groupe alkyle, cycloalkyle ou aryle.
- R3 représente un hydrogène, un halogénure, un groupe alkyle, cycloalkyle ou aryle.
- x est un nombre variant de 0 à 50, de préférence entre 0 et 10 et de manière préférée x est égal à 0 ou 1.
Dans le cas où le composé (C) est un composé de type siloxane, lesdits composés de type siloxane préférés sont les composés répondant à la formule (I) dans laquelle les groupes R, et R2 sont identiques et représentent de préférence un groupe alkyle ayant de 1 à 4 atomes de carbone et de manière préférée un groupe méthyle.
Un composé de type siloxane très préféré est le tétraméthyldisiloxane.
Dans le cas où le composé (C) est un composé de type silane, lesdits composés de type silane préférés sont les composés répondant à la formule (II) dans laquelle R3 représentent un hydrogène, un groupe alkyl ou un groupe aryle.
Les composés de type silane très préférés sont choisis parmi le phenylsilane et le tributylsilane.
Ladite composition catalytique peut également avantageusement comprendre un additif (E) de préférence choisi parmi les bases organiques et inorganiques. Dans le cas ou ledit additif est une base inorganique, (E) est avantageusement choisi parmi le carbonate de potassium, le carbonate de césium et le carbonate de sodium.
Dans le cas ou ledit additif est une base organique, (E) est avantageusement choisi parmi, le n-butyllithium, le sec-butyllithium, le ter-butyllithium, le potassium hexamethyldisilazane, le ter-butylate de potassium, la pyridine, la triethylamine, la piperidine, la benzylmethylamine.
De préférence, l'additif (E) est une base inorganique et de manière préférée, l'additif (E) est le carbonate de potassium. La composition catalytique selon l'invention comprend et est de préférence constituée d'un composé de ruthénium (A), d'un composé (B) comprenant une triple liaison carbone- carbone, d'un composé de type silane ou de type siloxane (C), d'un composé (D) neutre donneur d'électrons dans le cas ou ledit composé de ruthénium (A) ne contient pas de ligand phosphoré et éventuellement d'un additif (E).
De manière surprenante, il a été trouvé que l'utilisation d'un composé de type silane ou de type siloxane (C) à la place de l'hydrogène gazeux, comme un activateur de ladite composition catalytique permet d'améliorer l'activité catalytique de ladite composition catalytique, la conversion de réactif, et le rendement en produit dans le procédé mis en oeuvre selon l'invention. Par ailleurs, il est préférable qu'un activateur soit présent comme composant de la composition catalytique pour augmenter l'activité catalytique de ladite composition, la conversion de réactif et le rendement du produit. De plus, l'utilisation d'un composé de type silane ou de type siloxane (C) à la place de l'hydrogène gazeux permet une mise en œuvre simplifiée.
Les ratios molaires B/A exprimé en tant que composés, sont avantageusement compris dans la gamme de 0,1 à 500, de préférence de 0,1 à 100 et de manière préférée de 0,1 à 10.
Les ratios molaires C/A exprimé en tant que composés, sont avantageusement compris dans la gamme de 0,1 à 1000, de préférence dans la gamme 0,1 à 100 et de manière préférée dans la gamme 0,1 à 10.
Les ratios molaires D/A , exprimé en tant que composés, sont avantageusement compris dans la gamme de 0,1 à 100 et de préférence 0,1 à 10.
Dans le cas où la composition catalytique comprend un additif (E), les ratios molaires E/A, exprimé en tant que composés, sont avantageusement compris dans la gamme de 0,1 à 100 et de préférence de 0, 1 à 10.
La présente invention concerne également un procédé de métathèse des oléfines mettant en œuvre ladite composition catalytique en l'absence d'hydrogène gazeux. Un avantage de la présente invention réside dans le fait que l'absence d'hydrogène gazeux dans le milieu réactionnel permet une plus grande simplicité de mise en œuvre dudit procédé.
Le procédé de métathèse des oléfines selon l'invention comprend la fermeture de cycle par métathèse, la polymérisation par métathèse de diènes acyclique, la polymérisation par ouverture de cycle par métathèse, la métathèse d'oléfine acycliques, la métathèse croisée d'oléfines cycliques et acycliques et la métathèse d'oléfines fonctionnalisées qui consiste à mettre en contact au moins une oléfine avec la composition catalytique décrite selon l'invention, de préférence en l'absence d'hydrogène gazeux.
Les oléfines mises en œuvre dans le procédé selon l'invention sont avantageusement choisies parmi les alpha-oléfines linéaires, les oléfines internes linéaires, les alpha-oléfines branchées et les oléfines internes branchées. De préférence, les oléfines mises en œuvre dans le procédé selon l'invention sont choisies parmi les alpha-oléfines et de manière préférée, alpha-oléfines linéaires, les alpha-oléfines branchées et les oléfines contenant les groupes fonctionnels tels que acides, ester, hydroxy, cétone, aldéhyde, éther, carboxyle, aminé, amide, anhydride, nitrile, halogène, phosphine, phosphite. La quantité de composition catalytique utilisée pour la réaction de métathèse dépend d'une variété de facteurs comme l'identité des réactifs et des conditions réactionnelles qui sont employées. De ce fait, la quantité de composition catalytique nécessaire sera définie de manière optimale et indépendante pour chaque réaction. Toutefois, de préférence, le ratio molaire du composé de ruthénium (A) utilisé et des oléfines est compris entre 1 et 10000 ppm. de manière préférée, le ratio molaire du composé de ruthénium (A) / oléfine est compris entre 1 et 1000 ppm.
Le procédé de métathèse des oléfines selon l'invention peut avantageusement être réalisé en l'absence ou en présence d'un solvant. Le cas échéant, des solvants utilisables selon le procédé de l'invention peuvent être choisis parmi les solvants organiques, les solvants protiques ou l'eau. Les solvants utilisables pour la métathèse selon la présente invention peuvent par exemple être choisis parmi les hydrocarbures aromatiques tels que le benzène, le toluène et les xylènes, les hydrocarbures aromatiques halogénés tels que le chlorobenzène et le dichlorobenzène, les hydrocarbures aliphatiques tels que le pentane, l'hexane, l'heptane et le cyclohexane, les alcanes chlorés tels que le dichlorométhane, le chloroforme et le 1 ,2-dichloroéthane, les éthers tels que le diéthyléther et le tetrahydrofurane, les alcools tels que le méthanol et l'éthanol ou l'eau. Un solvant préféré est le chlorobenzène.
Les combinaisons de ces solvants peuvent également être avantageusement utilisés. N'importe quelle quantité de solvant peut avantageusement être employée, mais l'utilisation au moins de la quantité minimale exigée pour la dissolution du composé (A) est préférée et une telle quantité minimale est facilement déterminée par l'homme du métier. Le volume du solvant peut être très petit relativement au volume de réactifs d'oléfine employés. Ledit procédé de métathèse des oléfines selon l'invention est avantageusement mis en oeuvre sous une vigoureuse agitation, dans la mesure où elle permet un bon contact entre les réactifs (qui peuvent être gazeux pour certains) et ladite composition catalytique. Ledit procédé de métathèse des oléfines selon l'invention peut avantageusement être mis en œuvre sous une atmosphère d'azote ou d'argon, de préférence à pression atmosphérique. Généralement, une gamme large de températures peut être utilisée. Ledit procédé de métathèse des oléfines selon . l'invention est avantageusement mis en œuvre à une température la température comprise entre -78°C et 150°C, et de préférence entre 20 et 80°C.
Dans le cas d'un réactif gazeux tel que par exemple l'éthylène, la pression de la réaction est avantageusement comprise entre la pression atmosphérique et 100 bars (107 Pa) et de préférence entre la pression atmosphérique et 30 bars (3.106 Pa). Ledit réactif gazeux est avantageusement utilisé pur ou en mélange ou dilué avec une paraffine inerte.
Les différentes réactions de métathèse des oléfines du procédé de l'invention sont catalysées par la composition catalytique qui a été décrite précédemment. Les composés de ladite composition catalytique est avantageusement ajoutée au milieu réactionnel en tant que solide mais elle peut également être avantageusement ajouté en solution quand elle est dissoute dans un solvant approprié. Ledit procédé de métathèse des oléfine selon l'invention peut avantageusement être conduit aussi bien en système fermé (batch), qu'en système semi-ouvert ou en système continu, et ce avec un ou p^sieurs étages de réaction.
Généralement, le temps de réaction ou le temps de séjour dans une réaction continue pour le procédé de métathèse d'oléfine selon l'invention est avantageusement d'environ une seconde à environ un jour ; de préférence environ cinq minutes à environ 10 heures.
L'invention sera encore davantage explicitée au vu des exemples illustratifs donnés ci-après qui mettent en évidence les avantages des compositions catalytiques et du procédé selon l'invention.
Les exemples ci-après illustrent l'invention sans en limiter la portée. Exemples
Préparation des solutions Phosphine : 99 mg de tncyclohexylphosphine (aidrich) est dissous dans 5 ml de chlorobenzene (aidrich 99%) et stocké sous atmosphère inerte.
Complexe de Ru : Les solutions de complexe RuCI3, 3H20 (Strem chemicals 40-43% Ru) sont, préparées en dissolvant 92 mg de RuCI3, 3H20 dans 5 ml d'éthanol anhydre (aidrich). Les solvants sont utilisés sans purification.
Traitement des oléfines
Avant utilisation, on réalise un test de peroxydes sur le 1-octène. Si le test est positif, le 1-octène est purifié sur colonne d'alumine.
Analyses chromatographiques
Les produits de l'homométathèse du 1-octène sont analysés en chromatographie phase gaz sur colonne PONA dont les caractéristiques sont les suivantes:
- phase stationnaire : 100% diméthyl polysiloxane (OV1 )
- longueur : 50m
- diamètre interne : 0,20mm
- épaisseur de film : 0,5μιη
Les conditions opératoires sont les suivantes :
Température: température initiale : 70 °C
palier 1 : 0 min
pente 1 : 10 °C/min
température 2 r : 140°C
palier 2 : 5 min
pente 2 : 5°C/min
température 3 : 200°C
palier 3 : 0 min
pente 3 : 15°C/min 4
température finale : 280°C
palier final : 0 min
temps d'acquisition : 29.33min Injecteur : Split
T°C injecteur : 300 °C
Ratio de split : 60
Détecteur FID : 300°C
Hydrogène : 40 ml/min
Air : 400 ml/min
Make up Hélium+débit colonne : 30 ml/min
Gaz vecteur hélium : Pression en tête de colonne : 41.5 Psi
Débit : 1.25 ml/min
Mode de régulation : débit constante
Injection : Volume injecté : 0,5 μΙ
La conversion du -octène est calculée avec la formule suivante :
((mole 1-octène départ - mole 1-octène final)/ mole 1-octène départ)*100
La sélectivité en tétradécène est calculée avec la formule suivante :
((mole tétradécène*2)/(mole 1-octène départ - mole 1-octène final))*100 Exemple 1 selon l'invention
Dans un ballon sous atmosphère inerte muni d'un réfrigérant et d'un barreau aimanté on introduit 0.3 mL de la solution de Phosphine, 0.6 mL d'une solution de 2-butyne-1 ,4- diol (aldrich) à 0.14M dans le chlorobenzene, 1.1 mL de phenylsilane à 0.07M dans le chlorobenzene, 5 mL de 1-octène, et 0.1 1 mL de la solution de RuCI3,3H20. On règle la consigne de chauffe de la plaque chauffante à 80°C. Lorsque la consigne est atteinte, on laisse sous agitation pendant 2heures.
A la fin du test, on ajoute environ 200 mg de dodécane (étalon interne), on prélève le milieu réactionnel puis on le filtre sur une "mini colonne", de silice fabriquée avec une pipette pasteur. Le filtrat est ensuite dilué dans de l'heptane et passé en chromatographie phase gaz. La conversion du 1 -octène et la sélectivité en tétradécène sont calculées avec les données GC. Les résultats obtenus sont les suivants : Conversion du 1 -octène : 61 %. Sélectivité en tétradécène : 97%
Exemple 2 selon l'invention
Dans un ballon sous atmosphère inerte muni d'un réfrigérant et d'un barreau aimanté on introduit 0.3 mL de la solution de Phosphine, 0.6 mL d'une solution de 1 , 1-diphenyl-2- propyn-1 -ol (aldrich) à 0.14M dans le chlorobenzene, 0.6 mL de phenylsilane à 0.14M dans le chlorobenzene, 5 mL de 1-octène, et 0.11 mL de la solution de RuCI3,3H20. On règle la consigne de chauffe de la plaque chauffante à 80°C. Lorsque la consigne est atteinte, on laisse sous agitation pendant 2heures.
A la fin du test, on ajoute environ 200 mg de dodécane (étalon interne), on prélève le milieu réactionnel puis on le filtre sur une "mini colonne", de silice fabriquée avec une pipette pasteur. Le filtrat est ensuite dilué dans de l'heptane et passé en chromatographie phase gaz. La conversion du 1 -octène et la sélectivité en tétradécène sont calculées avec les données GC. Les résultats obtenus sont les suivants : Conversion du 1-octène : 64%. Sélectivité en tétradécène : 99%
Exemple 3 selon l'invention
Dans un ballon sous atmosphère inerte muni d'un réfrigérant et d'un barreau aimanté on introduit 0.3 mL de la solution de Phosphine, 0.6 mL d'une solution de 1 ,1-diphenyl-2- propyn-1-ol (aldrich) à 0.14M dans le chlorobenzene, 0.6 mL de tributylsilane à 0.14M dans le chlorobenzene, 5 mL de 1 -octène, et 0.11 mL de la solution de RuCI3,3H20. On règle la consigne de chauffe de la plaque chauffante à 80°C. Lorsque la consigne est atteinte, on laisse sous agitation pendant 2heures.
A la fin du test, on ajoute environ 200 mg de dodécane (étalon interne), on prélève le milieu réactionnel puis on le filtre sur une "mini colonne", de silice fabriquée avec une pipette pasteur. Le filtrat est ensuite dilué dans de l'heptane et passé en chromatographie phase gaz. La conversion du 1 -octène et la sélectivité en tétradécène sont calculées avec les données GC. Les résultats obtenus sont les suivants : Conversion du 1-octène : 71 %. Sélectivité en tétradécène : 99%
Exemple 4 selon l'invention
Dans un ballon sous atmosphère inerte muni d'un réfrigérant et d'un barreau aimanté on introduit 0.3 mL de la solution de Phosphine, 0.6 mL d'une solution de 2-butyne-1 ,4- diol (aldrich) à 0.14M dans le chlorobenzene, 0.6 mL de tetramethyldisiloxane à 0.14M dans le chlorobenzene, 5 mL de 1-octène, et 0.11 mL de la solution de RuCI3,3H20. On règle la consigne de chauffe de la plaque chauffante à 80°C. Lorsque la consigne est atteinte, on laisse sous agitation pendant 2heures.
A la fin du test, on ajoute environ 200 mg de dodécane (étalon interne), on prélève le milieu réactionnel puis on le filtre sur une "mini colonne", de silice fabriquée avec une pipette pasteur. Le filtrat est ensuite dilué dans de l'heptane et passé en chromatographie phase gaz. La conversion du -octène et la sélectivité en tétradécène sont calculées avec les données GC. Les résultats obtenus sont les suivants : Conversion du 1-octène : 84%. Sélectivité en tétradécène : 83% Exemple 5 selon l'invention
Dans un ballon sous atmosphère inerte muni d'un réfrigérant et d'un barreau aimanté on introduit 0.3 mL de la solution de Phosphine, 0.6 mL d'une solution de 1 ,1-diphenyl-2- propyn-1-ol (aldrich) à 0.14M dans le chlorobenzene, 0.6 mL de tetramethyldisiloxane à 0.14M dans le chlorobenzene, 5 mL de 1-octène, et 0.11 mL de la solution de RuCI3,3H20. On règle la consigne de chauffe de la plaque chauffante à 80°C. Lorsque la consigne est atteinte, on laisse sous agitation pendant 2heures.
A la fin du test, on ajoute environ 200 mg de dodécane (étalon interne), on prélève le milieu réactionnel puis on le filtre sur une "mini colonne", de silice fabriquée avec une pipette pasteur. Le filtrat est ensuite dilué dans de l'heptane et passé en chromatographie phase gaz. La conversion du 1-octène et la sélectivité en tétradécène sont calculées avec les données GC. Les résultats obtenus sont les suivants : Conversion du 1-octène : 51%. Sélectivité en tétradécène : 99%
Exemple 6 selon l'invention
Dans un ballon sous atmosphère inerte muni d'un réfrigérant et d'un barreau aimanté on introduit 0.3 mL de la solution de Phosphine, 0.6 mL d'une solution de 3,3-dimethyl-1- butyne (aldrich N°244392) à 0.14M dans le chlorobenzene, 0.6 mL de tributylsilane à 0.14M dans le chlorobenzene, 5 mL de 1-octène, et 2.5 mg de [RuCI2)(p-cymene)2]2 (Aldrich N°343706). On règle la consigne de chauffe de la plaque chauffante à 80°C. Lorsque la consigne est atteinte, on laisse sous agitation pendant 2 heures.
A la fin du test, on ajoute environ 200 mg de dodécane (étalon interne), on prélève le milieu réactionnel puis on le filtre sur une "mini colonne", de silice fabriquée avec une pipette pasteur. Le filtrat est ensuite dilué dans de l'heptane et passé en chromatographie phase gaz. La conversion du 1-octène et la sélectivité en tétradécène sont calculées avec les données GC. Les résultats obtenus sont les suivants : Conversion du 1-octène : 73%. Sélectivité en tétradécène : 99% Exemple 7 selon l'invention
Dans un ballon sous atmosphère inerte muni d'un réfrigérant et d'un barreau aimanté on introduit 0.3 ml_ de la solution de Phosphine, 0.6 ml_ d'une solution de 3,3-dimethyl-1- butyne (aldriçh N°244392) à 0.14M dans le chlorobenzene, 0.6 mL de phenylsilane à 0.14M dans le chlorobenzene, 5 mL de 1-octène, et 7.7 mg de RuCI2(PPh3)3 (Aldrich N°223662). On règle la consigne de chauffe de la plaque chauffante à 80°C. Lorsque la consigne est atteinte, on laisse sous agitation pendant 2 heures.
A la fin du test, on ajoute environ 200 mg de dodécane (étalon interne), on prélève le milieu réactionnel puis on le filtre sur une "mini colonne", de silice fabriquée avec une pipette pasteur. Le filtrat est ensuite dilué dans de l'heptane et passé en chromatographie phase gaz. La conversion du 1-octène et la sélectivité en tétradécène sont calculées avec les données GC. Les résultats obtenus sont les suivants : Conversion du 1-octène : 69%. Sélectivité en tétradécène : 99% Exemple 8 non conforme à l'invention (sans composé activateur de type silane ou siloxane (C) )
Dans un ballon sous atmosphère inerte muni d'un réfrigérant et d'un barreau aimanté on introduit 0.3 mL de la solution de Phosphine, 0.6 mL d'une solution de 1 ,1-diphenyl-2- propyn-1-ol (aldrich) à 0.14M dans le chlorobenzene, 5 mL de 1-octène, et 0.1 mL de la solution de RuCI3,3H20. On règle la consigne de chauffe de la plaque chauffante à 80°C. Lorsque la consigne est atteinte, on laisse sous agitation pendant 2 heures.
A la fin du test, on ajoute environ 200 mg de dodécane (étalon interne), on prélève le milieu réactionnel puis on le filtre sur une "mini colonne", de silice fabriquée avec une pipette pasteur. Le filtrat est ensuite dilué dans de l'heptane et passé en chromatographie phase gaz. La conversion du 1-octène et la sélectivité en tétradécène sont calculées avec les données GC. Les résultats obtenus sont les suivants : Conversion du 1-octène : 10%. Sélectivité en tétradécène : 89%
Exemple 9 non conforme à l'invention (sans composé activateur de type silane ou siloxane (C) et en présence d'hydrogène gazeux)
Dans un ballon sous atmosphère inerte muni d'un réfrigérant et d'un barreau aimanté on introduit 0.3 mL de la solution de Phosphine, 0.6 mL d'une solution de 1 ,1-diphenyl-2- propyn-1-ol (aldrich) à 0.14M dans le chlorobenzene, 5 mL de 1-octène, et 0. 1 mL de la solution de RuCI3,3H20. Durant toute la durée de la réaction de l'hydrogène gazeux est introduit en flux constant par bullage dans le mélange réactionnel. On règle la consigne de chauffe de la plaque chauffante à 80°C. Lorsque la consigne est atteinte, on laisse sous agitation pendant 2 heures.
A la fin du test, on ajoute environ 200 mg de dodécane (étalon interne), on prélève le milieu réactionnel puis on le filtre sur une "mini colonne", de silice fabriquée avec une pipette pasteur. Le filtrat est ensuite dilué dans de l'heptane et passé en chromatographie phase gaz. La conversion du 1-octène et la sélectivité en tétradécène sont calculées avec les données GC. Les résultats obtenus sont les suivants : Conversion du 1-octène : 50%. Sélectivité en tétradécène : 78%
Les exemples ci dessus démontrent donc que la mise en oeuvre de la composition catalytique selon l'invention dans un procédé de métathèse des oléfines selon l'invention permet l'amélioration de l'activité catalytique en terme de conversion et de la sélectivité par rapport aux systèmes catalytiques ne contenant pas de composé activateur de type silane ou siloxane et par rapport aux systèmes catalytiques de l'art antérieur mis en oeuvre dans des procédés opérant en présence d'hydrogène gazeux.

Claims

REVENDICATIONS
1. Composition catalytique comprenant un composé de ruthénium (A), un composé (B) comprenant une triple liaison carbone-carbone et un composé de type silane ou de type siloxane (C).
2. Composition catalytique selon la revendication 1 dans laquelle le composé de ruthénium (A) contient un ligand phosphoré.
3. Composition catalytique selon la revendication 1 dans laquelle ladite composition catalytique comprend également un composé neutre donneur d'électrons (D), dans le cas où ledit composé de ruthénium (A) ne contient pas de ligand phosphoré.
4. Composition catalytique selon la revendication 3 dans laquelle ledit composé neutre donneur d'électrons (D) est un composé phosphoré choisi parmi les phosphines.
5. Composition catalytique selon l'une des revendications 1 à 4 dans laquelle ledit composé de ruthénium (A) est choisi parmi les composés de Ru(ll), Ru(lll) ou Ru(IV) contenant un ligand anionique (X), éventuellement un ligand arène et éventuellement un ligand phosphoré.
6. Composition catalytique selon la revendication 5 dans laquelle ledit composé de ruthénium (A) est représenté par la formule générale :
[RuXn(PR'3)q(arène)p]z
dans laquelle : X est un ligand anionique;
(PR'3) est un ligand phosphoré;
le groupement (arène) est un ligand arène;
n = 2, 3 ou 4;
q = 0, 1, 2, 3 ou 4;
p = 0 ou 1;
et z = 1 ou 2.
7. Composition catalytique selon la revendication 6 dans laquelle le ligand anionique X est choisi parmi les ligands halogénures.
8. Composition catalytique selon l'une des revendications 6 ou 7 dans laquelle le ligand phosphoré (PR'3) du composé de ruthénium (A) est une phosphine.
9. Composition catalytique selon l'une des revendications 6 à 8 dans laquelle ledit ligand arène est choisi parmi le benzène, le toluène, le xylène, le cumène, le cymene, le p-cymene, le durene, le trimethylsilylbenzene, et le naphtalène, lesdits groupements étant substituées ou non.
10. Composition catalytique selon l'une des revendications 1 à 9 dans laquelle ledit composé de ruthénium (A) est choisi parmi les composés de formule RuCI3, RuCI3 hydraté, RuBr3, RuBr3 hydraté, [RuCI2(p-cymene)]2, [RuCI2(4-tert-butyltoluene)]2, [RuCI2(1 ,3- diisopropylbenzene)]2, RuCI2(PPh3)3 et RuCI2(PPh3)4.
11. Composition catalytique selon l'une des revendications 1 à 10 dans laquelle ledit composé (B) est choisi parmi les composés 2-butyne-1 ,4-diol, 1 ,1-diphenyl-2-propyn-1 -ol, 1-
(3,5-dimethoxyphenyl)-1-phenylprop-2-yn-1-ol, 1-hexyne et le 3,3-dimethyl-1-butyne.
12. Composition catalytique selon l'une des revendications 1 à 11 dans laquelle le composé (C) est un composé de type silane répondant à la formule (II) ou un composé de type siloxàne répondant à la formule (I), lesdites formules étant les suivantes :
Figure imgf000021_0001
dans lesquelles :
RÏ représente un groupe alkyle, cycloalkyle ou aryle.
R2 représente un hydrogène, un groupe alkyle, cycloalkyle ou aryle.
- R3 représente un hydrogène, un halogénure, un groupe alkyle, cycloalkyle ou aryle.
- x est un nombre variant de 0 à 50, de préférence entre 0 et 10 et de manière préférée x est égal à 0 ou 1.
13. Composition catalytique selon l'une des revendications 1 à 12 dans laquelle les ratios molaires B/A exprimé en tant que composés, sont compris dans la gamme de 1 à 500, et les ratios molaires C/A exprimé en tant que composés, sont compris dans la gamme de 1 à 1000.
14. Procédé de métathèse des oléfines opérant en l'absence d'hydrogène gazeux et mettant en œuvre la composition catalytique selon l'une des revendications 1 à 13.
PCT/FR2012/000119 2011-05-19 2012-03-30 Composition catalytique a base de ruthenium comprenant un compose de type silane ou siloxane et procede de métathèse des olefines utilisant ladite composition WO2012156591A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR11/01542 2011-05-19
FR1101542A FR2975310B1 (fr) 2011-05-19 2011-05-19 Composition catalytique a base de ruthenium comprenant un compose de type silane ou siloxane et procede de metathese des olefines utilisant ladite composition

Publications (1)

Publication Number Publication Date
WO2012156591A1 true WO2012156591A1 (fr) 2012-11-22

Family

ID=46001298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/000119 WO2012156591A1 (fr) 2011-05-19 2012-03-30 Composition catalytique a base de ruthenium comprenant un compose de type silane ou siloxane et procede de métathèse des olefines utilisant ladite composition

Country Status (2)

Country Link
FR (1) FR2975310B1 (fr)
WO (1) WO2012156591A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107935812A (zh) * 2017-12-13 2018-04-20 大连大学 钌催化烷基芳酮与二苯乙炔反应制备多芳取代萘衍生物的方法
CN107954821A (zh) * 2017-12-13 2018-04-24 大连大学 一种钌催化二苄基甲酮与内炔环化反应制备多芳取代萘衍生物的方法及应用
CN107973691A (zh) * 2017-12-13 2018-05-01 大连大学 钌催化芳香酮与二苯乙炔环化反应制备多芳取代萘衍生物的方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1079600B (de) * 1957-02-06 1960-04-14 Wacker Chemie Gmbh Verfahren zur Reduktion chemischer Verbindungen
US5264408A (en) * 1990-03-23 1993-11-23 University Of South Carolina Ceramic materials, method of preparing the same and hydrogenation and oxidation processes using the same
WO1999022866A1 (fr) * 1997-11-05 1999-05-14 Bp Amoco Corporation Systeme catalyseur contenant du ruthenium et servant a la metathese d'olefines
EP0927577A1 (fr) * 1997-12-26 1999-07-07 Takasago International Corporation Catalyseur de métathèse au ruthénium et méthode pour produire les produits de réction d'une oléfine par réaction de métathèse en utilisant ce catalyseur
US6156692A (en) 1996-04-30 2000-12-05 Bp Amoco Corporation Ruthenium-containing catalyst composition for olefin metathesis
US6610626B2 (en) 2000-09-05 2003-08-26 Cymetech, Llp Highly active metathesis catalysts generated in situ from inexpensive and air stable precursors
EP0942914B1 (fr) 1996-11-15 2005-07-27 California Institute Of Technology Synthese de catalyseurs de metathese a base d'osmium ou de ruthenium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1079600B (de) * 1957-02-06 1960-04-14 Wacker Chemie Gmbh Verfahren zur Reduktion chemischer Verbindungen
US5264408A (en) * 1990-03-23 1993-11-23 University Of South Carolina Ceramic materials, method of preparing the same and hydrogenation and oxidation processes using the same
US6156692A (en) 1996-04-30 2000-12-05 Bp Amoco Corporation Ruthenium-containing catalyst composition for olefin metathesis
US6159890A (en) 1996-04-30 2000-12-12 Bp Amoco Corporation Ruthenium-containing catalyst system for olefin metathesis
EP0942914B1 (fr) 1996-11-15 2005-07-27 California Institute Of Technology Synthese de catalyseurs de metathese a base d'osmium ou de ruthenium
WO1999022866A1 (fr) * 1997-11-05 1999-05-14 Bp Amoco Corporation Systeme catalyseur contenant du ruthenium et servant a la metathese d'olefines
EP0927577A1 (fr) * 1997-12-26 1999-07-07 Takasago International Corporation Catalyseur de métathèse au ruthénium et méthode pour produire les produits de réction d'une oléfine par réaction de métathèse en utilisant ce catalyseur
US6610626B2 (en) 2000-09-05 2003-08-26 Cymetech, Llp Highly active metathesis catalysts generated in situ from inexpensive and air stable precursors

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
C. VAN SCHALKWYK ET AL: "An investigation into the activity of the in situ ruthenium(III) chloride catalytic system for the metathesis of 1-octene", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 190, no. 1-2, 4 June 2002 (2002-06-04), pages 185 - 195, XP055015470, ISSN: 1381-1169, DOI: 10.1016/S1381-1169(02)00238-8 *
FÜRSTNER A: "OLEFIN METATHESIS AND BEYOND", ANGEWANDTE CHEMIE. INTERNATIONAL EDITION, WILEY VCH VERLAG, WEINHEIM, vol. 39, no. 17, 1 September 2000 (2000-09-01), pages 3012 - 3043, XP002957487, ISSN: 1433-7851, DOI: 10.1002/1521-3773(20000901)39:17<3012::AID-ANIE3012>3.3.CO;2-7 *
SHIORI HANADA ET AL: "Practical Access to Amines by Platinum-Catalyzed Reduction of Carboxamides with Hydrosilanes: Synergy of Dual Si-H Groups Leads to High Efficiency and Selectivity", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, no. 41, 28 September 2009 (2009-09-28), pages 15032 - 15040, XP055015469, ISSN: 0002-7863, DOI: 10.1021/ja9055307 *
VOSLOO ET AL., J. MOL. CAT. A, vol. 190, 2002, pages 185 - 195

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107935812A (zh) * 2017-12-13 2018-04-20 大连大学 钌催化烷基芳酮与二苯乙炔反应制备多芳取代萘衍生物的方法
CN107954821A (zh) * 2017-12-13 2018-04-24 大连大学 一种钌催化二苄基甲酮与内炔环化反应制备多芳取代萘衍生物的方法及应用
CN107973691A (zh) * 2017-12-13 2018-05-01 大连大学 钌催化芳香酮与二苯乙炔环化反应制备多芳取代萘衍生物的方法及应用
CN108101733A (zh) * 2017-12-13 2018-06-01 大连大学 钌催化氟代芳酮与二苯乙炔反应制备多芳取代萘衍生物的方法
CN108101733B (zh) * 2017-12-13 2020-06-02 大连大学 钌催化氟代芳酮与二苯乙炔反应制备多芳取代萘衍生物的方法
CN107954821B (zh) * 2017-12-13 2020-06-02 大连大学 一种钌催化二苄基甲酮与内炔环化反应制备多芳取代萘衍生物的方法及应用
CN107935812B (zh) * 2017-12-13 2020-06-26 大连大学 钌催化烷基芳酮与二苯乙炔反应制备多芳取代萘衍生物的方法
CN107973691B (zh) * 2017-12-13 2020-06-26 大连大学 钌催化芳香酮与二苯乙炔环化反应制备多芳取代萘衍生物的方法及应用

Also Published As

Publication number Publication date
FR2975310A1 (fr) 2012-11-23
FR2975310B1 (fr) 2014-03-14

Similar Documents

Publication Publication Date Title
CA3007314C (fr) Composition catalytique a base de nickel et de ligand de type phosphine et d&#39;une base de lewis et son utilisation dans un procede d&#39;oligomerisation des olefines
WO2017072026A1 (fr) Composition catalytique a base de nickel en presence d&#39;un activateur specifique et son utilisation dans un procede d&#39;oligomerisation des olefines
FR2934178A1 (fr) Compositions catalytiques pour la metathese de corps gras insatures avec des olefines et procedes de metathese les mettant en oeuvre
EP3019273B1 (fr) Nouveaux catalyseurs a ligand silene
EP3019272B1 (fr) Nouveaux catalyseurs a ligand silylene
FR2804622A1 (fr) Composition catalytique pour la dimerisation, la codimerisation et l&#39;oligomerisation des olefines
EP2939742A1 (fr) Nouvelle composition catalytique à base de nickel et son utilisation dans un procédé d&#39;oligomérisation des oléfines
EP3317247A1 (fr) Procédé de préparation de polyols
EP2939743A1 (fr) Nouveaux complexes à base de nickel et leur utilisation dans un procede de transformations des olefines
EP0748326B1 (fr) Diphosphines optiquement actives, leur preparation par dedoublement du melange racemique
WO2012156591A1 (fr) Composition catalytique a base de ruthenium comprenant un compose de type silane ou siloxane et procede de métathèse des olefines utilisant ladite composition
EP2939744A1 (fr) Nouveaux complexes cycliques à base de nickel et leur utilisation dans un procédé de transformation des olefines
FR2806644A1 (fr) Composition catalytique et procede pour la catalyse de dimerisation, de codimerisation et d&#39;oligomerisation des olefines
FR3005049A1 (fr) Procede de metathese d&#39;olefines issues de coupes fischer-tropsch utilisant un complexe du ruthenium comportant un diaminocarbene n-heterocyclique dissymetrique
FR2947189A1 (fr) Procede de peparation d&#39;une composition catalytique pour la metathese de corps gras insatures
EP0912467B1 (fr) Procede d&#39;hydrogenation asymetrique d&#39;un compose cetonique et derive
FR2804678A1 (fr) Procede pour la dimerisation selective du propylene principalement en dimeres ramifies
WO2013079820A1 (fr) Procede de metathese d&#39;olefines lineaires alpha utilisant un complexe du ruthenium comportant un carbene n-heterocyclique dissymetrique
FR2951727A1 (fr) Nouveaux complexes et procedes de synthese d&#39;organometalliques du groupe 6 et leur utilisation dans un procede de metathese des olefines
FR2806645A1 (fr) Composition catalytique et procede de dimerisation, de codimerisation et d&#39;oligomerisation des olefines
EP0968220A1 (fr) Diphosphines de 6,6&#39;-bis-(1-phosphanorbornadiene)
FR2999185A1 (fr) Procede de metathese d&#39;olefines lineaires alpha utilisant un complexe du ruthenium comportant un diaminocarbene n-heterocyclique dissymetrique insature
FR3002161A1 (fr) Procede de metathese d&#39;olefines issues de coupes fischer-tropsch utilisant un complexe du ruthenium comportant un diaminocarbene n-heterocyclique symetrique
FR3087773A1 (fr) Nouveau compose a base d’aluminium
FR3082759A1 (fr) Composition catalytique a base de nickel et d&#39;un reducteur organique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12716486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12716486

Country of ref document: EP

Kind code of ref document: A1