WO2012155697A1 - 一种时延差的纠正方法和系统 - Google Patents

一种时延差的纠正方法和系统 Download PDF

Info

Publication number
WO2012155697A1
WO2012155697A1 PCT/CN2012/073207 CN2012073207W WO2012155697A1 WO 2012155697 A1 WO2012155697 A1 WO 2012155697A1 CN 2012073207 W CN2012073207 W CN 2012073207W WO 2012155697 A1 WO2012155697 A1 WO 2012155697A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay difference
different
time
aps
base station
Prior art date
Application number
PCT/CN2012/073207
Other languages
English (en)
French (fr)
Inventor
赵亚军
毕存磊
莫林梅
孙云锋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012155697A1 publication Critical patent/WO2012155697A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and system for correcting delay differences. Background technique
  • CoMP Coordinatd Multi-Point
  • AP access point
  • one or more access points are set under one base station (cell), and multiple points of CoMP cooperation may be multiple access points from one cell, or multiple access points from multiple cells;
  • the cell includes a primary cell and a coordinated cell of the terminal.
  • CoMP can effectively solve the interference problem at the edge of the cell, thereby improving the capacity and reliability of the wireless link. Therefore, CoMP technology is introduced into the LTE-A (Long Term Evolution-Advanced) system as a key technology.
  • LTE-A Long Term Evolution-Advanced
  • the APs of the CoMP are distributed in different geographical locations, when multiple APs simultaneously send downlink data for one user equipment (UE), the delays of the data sent by different APs to the UE are different, resulting in a delay of arrival.
  • different APs also have certain timing synchronization deviations with each other, so that different APs may have certain synchronization time when sending data to the same UE. Due to the cumulative effect of the timing synchronization deviation and the channel delay difference between the APs, the data transmitted by different APs of the COMP to one UE simultaneously has a certain delay difference, which brings about a decrease in system performance. Summary of the invention
  • the main object of the present invention is to provide a method and system for correcting delay differences, which solves the problem of delay difference caused by the timing synchronization deviation between APs and the cumulative effect of channel delay differences, thereby improving system performance.
  • a method of correcting the delay difference including:
  • the delay difference between the APs of different access points is measured to obtain the delay difference calibration information, and the data transmission of the different APs is adjusted accordingly.
  • the method for measuring a delay difference between different access point APs is:
  • the user equipment UE measures the delay difference between different APs.
  • the base station performs timing synchronization calibration between the APs, and measures the channel delay difference between the UEs reaching each AP.
  • the method for the UE to measure the delay difference between different APs is:
  • the process of obtaining the delay difference calibration information includes:
  • the base station is configured in advance to the UE delay difference calibration correspondence table, and the UE according to the measured delay difference, the feedback
  • the corresponding delay difference calibrates the index of the elements in the corresponding table.
  • the method for performing the timing synchronization calibration between the APs by the base station is:
  • Each AP receives a signal of a reference clock source, and the base station measures the synchronization offset of the reference clock source accordingly;
  • Each AP and the reference AP exchange synchronization information, and the base station calculates the timing synchronization deviation value of each AP relative to the reference AP.
  • the method for the base station to measure the channel delay difference between the UEs and the APs is: transforming the received signals into the time domain, measuring the first time points of different AP channels; and then calculating the difference between the different APs and the reference APs. Delay difference; or,
  • the method for adjusting data transmission of the different APs is:
  • Adjusting the time for each AP to send data to the UE directly in the time domain, and adjusting the time is advanced or lagging;
  • the delay difference represented by the delay difference calibration information includes an integer part and a fractional part.
  • the integer part delay difference is adjusted in the time domain
  • the fractional delay difference is adjusted in the frequency domain.
  • a delay difference correction system comprising a multi-AP delay difference measuring unit and a multi-AP delay difference correcting unit; wherein
  • the multi-AP delay difference measuring unit is configured to measure a delay difference between different APs to obtain delay difference calibration information
  • the multiple AP delay difference correction unit is configured to adjust data transmission of the different AP according to the delay difference calibration information obtained by the multiple AP delay difference measurement unit.
  • the multi-AP delay difference measurement unit is configured to: when measuring a delay difference between different access point APs:
  • the control base station performs timing synchronization calibration between the APs, and measures the channel delay difference between the UEs reaching each AP.
  • the UE is used to: when measuring a delay difference between different APs:
  • Transforming the received signal into the frequency domain measuring the phase deviation of different AP channels at different frequency points; converting the phase deviation into time deviation, and then calculating the time deviation between different APs; or
  • the multi-AP delay difference measurement unit When the multi-AP delay difference measurement unit obtains the delay difference calibration information, it is used to: directly feedback the delay difference of the different APs as the delay difference calibration information to the base station; or
  • the base station is configured to: when performing timing synchronization calibration between APs:
  • Each AP receives a signal of a reference clock source, and the base station measures the synchronization offset of the reference clock source accordingly;
  • Each AP and the reference AP exchange synchronization information, and the base station calculates the timing synchronization deviation value of each AP relative to the reference AP.
  • the base station is configured to: convert the received signal into a time domain, measure a first time point of a different AP channel, and then calculate a different AP relative to the reference AP when measuring a channel delay difference between the UEs and the APs. The difference between the delays; or,
  • Make a coarse time offset estimation in the time domain and perform accurate time estimation in the frequency domain transform the received signal into the time domain, measure the first time point of different AP channels; also transform the received signal into the frequency domain to measure different AP channels.
  • the phase deviation at different frequency points converts the phase deviation into a time deviation, and then calculates the delay difference between different APs relative to the reference AP.
  • the multi-AP delay difference correction unit is configured to: when adjusting data transmission of the different APs:
  • Adjusting the time for each AP to send data to the UE directly in the time domain, and adjusting the time is advanced or lagging;
  • the delay difference represented by the delay difference calibration information includes an integer part and a fractional part.
  • the integer part delay difference is adjusted in the time domain, and the fractional delay difference is in the frequency. Domain adjustment.
  • the technique for correcting the delay difference of the present invention can solve the problem of delay difference caused by the timing synchronization deviation between the APs and the cumulative effect of the channel delay difference, thereby improving system performance and spectrum efficiency.
  • FIG. 1 is a schematic diagram of a time error correction process according to an embodiment of the present invention.
  • FIG. 2 is a diagram of a time error correction system according to an embodiment of the present invention. detailed description
  • the delay difference caused by the timing synchronization deviation and the channel delay difference accumulation effect between the APs is solved, thereby improving the system performance and the spectrum efficiency, and the delay difference between different APs of the UE can be measured.
  • the delay difference calibration information is obtained, and the data transmission of the different APs is adjusted accordingly.
  • the above technical description may have the following two operation schemes.
  • Solution 1 The UE measures and feeds back the delay difference between different APs.
  • the solution generally includes the following steps:
  • Step 1 The base station notifies the UE to perform delay difference measurement between different APs.
  • Step 2 The UE measures a delay difference between different APs according to the configuration of the base station to obtain delay difference calibration information.
  • Step 3 The UE feeds back the delay difference calibration information to the base station.
  • Step 4 The base station adjusts data transmission of different APs according to the delay difference calibration information of different APs fed back by the UE.
  • the delay difference may be subdivided into a timing synchronization deviation and a channel delay difference.
  • the timing synchronization deviation and the channel delay difference are generally not implemented.
  • Solution 2 The base station performs timing synchronization calibration between APs, and measures UE arrival to each AP. Inter-leaf channel channel delay delay difference;
  • Steps one by one the base station station measures the measured amount of each AAPP between the timing and the synchronous step deviation deviation;
  • Step two or two the base station station measures the measured amount of UUEE to reach the time interval delay difference between the respective AAPPs;
  • the inter-delay delay of the inter-channel channel is adjusted, and the UUEE is sent and sent on the data that is not different from the AAPP. .
  • AAPPII, AAPP22, AAPP33, and UUEE11, AAPPII, AAPP22, and AAPP33 are grouped into CCooMMPP small cell clusters. .
  • the following lower surface should be described with reference to the specific embodiments of the present invention. .
  • UUEE measures the measured quantity and the feedback feedback does not differ from the AAPP between the time delay difference
  • AAPP11, AAPP22, and AAPP33 are sent to UUEE11 to send and send downlink data. .
  • the base station station informs that the UUEE enters the time difference between the AAPP and the AAPP. .
  • the base station base station configures the UUEE placed in the CCooMMPP state state according to the condition of the channel channel, and performs the difference between the AAPP and the AAPP time delay difference. Measure the measured amount.
  • the base channel base station based on the information channel condition condition may be such that the UUEE phase is relatively different from the AAPP distance, and is not different from the AAPP synchronous step offset deviation amount or other other Need demand. .
  • the base station station notification informs that the information information of the UUEE may include:: measuring the measurement quantity, starting the time period, and measuring the measurement quantity It is also possible to report the weekly cycle period, the AAPP set combination of the measured quantity, the AAPP 1155 of the measured quantity, the corresponding downlink and downlink reference reference signal number, etc., and may also
  • the package includes:: Reference AAPP for measuring the delay difference of the measured quantity (ie, the time when the time limit of the AAPP is assumed to be the base reference point, and the time of other other AAPPs thereof) The delay difference is based on the time of the AAPP; the optimal preference is to configure the main master AAPP as the base reference point)), and the time delay difference difference quantization table and many more. .
  • the UUEE base is based on the configuration of the base station, and the difference between the measurement and the measurement is not different from that of the AAPP. .
  • UUEE measurement measurement is not different from AAPP's signal signal number to arrival time, a general basis is based on AAPP's respective 2200 downlink reference parameters.
  • the signal signal number is measured by the line measurement, or it may be based on the same synchronous channel channel or PPRRSS (( PPoossiittiioonniinngg rreeffeerreennccee ssiiggnnaall,, positioning reference signal signal number)) Perform line measurement measurements. .
  • the reference downlink signal reference signal number may be considered as CCSSII--RRSS corresponding to the AAPP pair ((CChhaannnneell--SSttaattee IInnffoorrmmaattiioonn RReeffeerreennccee SSiiggnnaall,, channel channel state information information) Refer to the reference signal number)) or CCRRSS (( ccoommmmoonn rreeffeerreennccee ssiiggnnaall,, the special reference signal number in the small cell area). .
  • Method 1 Perform measurements in the time domain.
  • the received signal is transformed into the time domain, and the first time point of the different AP channel is measured. Then calculate the delay difference between different APs;
  • Method 2 Measure in the frequency domain.
  • the received signal is transformed into the frequency domain to measure the phase deviation of different AP channels at different frequency points. Convert the phase deviation to the time offset and then calculate the time offset between the different APs;
  • Method 3 Combine the time-frequency domain measurement, make a coarse time-deviation estimation in the time domain, and perform accurate time estimation in the frequency domain.
  • the received signal is transformed into the time domain to measure the first time point of the different AP channel.
  • the received signal is transformed into the frequency domain to measure the phase deviation of different AP channels at different frequency points. Convert the phase deviation to the delay difference, and then calculate the delay difference between different APs;
  • the time is determined by the time of an AP designated by the base station.
  • the UE obtains the delay difference calibration information according to the measured delay difference, and feeds back to the base station.
  • the method for the UE to feed back the delay difference calibration information may be various, such as:
  • Method 1 directly report the delay difference of different APs as the delay difference calibration information to the base station.
  • the benchmark AP does not require feedback.
  • the feedback content may include the identifier of the AP and the corresponding delay difference.
  • the base station may also define the location of the different APs in the feedback information field in advance. The UE only needs to place the delay difference of each AP according to the agreed field position, and feeds back to the base station. The base station can determine the delay difference of each AP according to the location of the feedback information field by different APs defined in advance.
  • Method 2 The base station configures the UE delay interval calibration correspondence table in advance, and the UE only needs to feedback the index of the element in the corresponding delay difference calibration table as the delay difference calibration information according to the measured delay difference, and does not need feedback.
  • the delay difference itself.
  • the delay difference calibration correspondence table is [-4, -2, 2, 4], and the index of these four elements is represented by two bits; the feedback 00 can represent -4. If the UE feeds back 00, the base station can look up the table to get -4, and then perform a transmission time calibration according to -4.
  • the feedback content may include the identifier of the AP and the corresponding delay difference index.
  • the base station may also define the location of the different APs in the feedback information field in advance, and the UE only needs to place each AP according to the agreed field position.
  • the delay difference calibration information index is indexed and fed back to the base station, and the base station can determine the delay difference index of each AP according to the position of the feedback AP in the feedback information field.
  • different APs can provide time-division feedback, that is, the UE can feedback the measured different AP delay differences, and only feedback the delay difference calibration information of some APs at a time; in addition, for each AP, The feedback information of the complete delay difference is fed back once, and the partial delay difference calibration information can also be fed back multiple times.
  • the base station can perform multiple calibrations based on the information of multiple feedbacks.
  • the base station can adjust the data transmission of different APs according to the delay difference calibration information of different APs fed back by the UE.
  • Method 1 directly adjusting the time for each AP to send data to the UE in the time domain, which may be early or late;
  • Method 2 Calculate a precoding phase adjustment amount corresponding to the frequency subband of the UE according to the delay difference represented by the delay difference calibration information, and accordingly adjust the phase adjustment amount of the corresponding frequency band when precoding the data of the UE .
  • the delay difference represented by the delay difference calibration information includes the integer part and the d and number parts.
  • the integer part delay difference is adjusted in the time domain, and the fractional delay difference is Frequency domain adjustment.
  • Solution 2 The base station performs timing synchronization calibration between the APs, and measures a delay difference between the UEs reaching each AP;
  • the base station measures the timing synchronization deviation between APs.
  • measurement methods such as:
  • Each AP receives the signal of the reference clock source (such as GPS, Beidou system, etc.), and the base station measures the synchronization deviation value of each AP and the reference clock source accordingly.
  • the reference clock source such as GPS, Beidou system, etc.
  • Method 2 Each AP and the reference AP (that is, the time of the AP is assumed to be the reference point, and the delay difference of other APs is based on the time of the AP.
  • the primary AP is preferably configured as the reference point) to synchronize the synchronization information.
  • the base station calculates the timing synchronization offset value of each AP with respect to the reference AP accordingly.
  • the base station measures the delay difference between the UEs arriving at each AP. Specifically, the base station may measure the delay difference of the UE to different APs according to the uplink signal sent by the UE. The measurement is generally based on the uplink reference signal transmitted by the UE.
  • the uplink reference signal may be an SRS (Sounding Reference Symbol) or a DMRS (Demodulation Reference)
  • Method 1 Perform measurements in the time domain.
  • the received signal is transformed into the time domain to measure the first time point of the different AP channel. Then calculate the delay difference between different APs relative to the reference AP.
  • Method 2 Measure in the frequency domain. Transform the received signal into the frequency domain, measure the phase deviation of different AP channels at different frequency points, convert the phase deviation into time deviation, and then calculate the delay difference between different APs relative to the reference AP.
  • Method 3 Combine the time-frequency domain measurement, make a coarse time-deviation estimation in the time domain, and perform accurate time estimation in the frequency domain.
  • the received signal is transformed into the time domain to measure the first time point of the different AP channel.
  • the received signal is transformed into the frequency domain, the phase deviation of different AP channels at different frequency points is measured, the phase deviation is converted into time deviation, and then the delay difference between different APs relative to the reference AP is calculated.
  • the base station adjusts the UE on different APs according to the measured timing synchronization deviation between the APs and the delay difference between the UEs reaching each AP (the timing synchronization deviation and the delay difference are included in the delay difference calibration information).
  • the data is sent. There are many specific methods of operation, such as:
  • Method 1 directly adjusting the time for each AP to send data to the UE in the time domain, which may be early or late;
  • Method 2 Calculate the precoding phase adjustment amount of the corresponding frequency subband of the UE according to the delay difference represented by the delay difference calibration information, and then adjust the pair when the UE data is precoded.
  • the phase adjustment amount of the band should be used.
  • the delay difference represented by the delay difference calibration information includes the integer part and the d and number parts.
  • the integer part delay difference is adjusted in the time domain, and the fractional delay difference is Frequency domain adjustment.
  • the operation of the present invention for correcting the delay difference can represent the flow shown in FIG. 1, and the process includes the following steps:
  • Step 110 Measure the delay difference between different APs to obtain the delay difference calibration information.
  • Step 120 Adjust data transmission of the different AP according to the obtained delay difference calibration information.
  • FIG. 2 is a diagram of a time error correction system according to an embodiment of the present invention.
  • the system includes a connected multiple AP delay difference measurement unit and a multiple AP delay difference correction unit.
  • the multi-AP delay difference measurement unit can measure the delay difference between different APs to obtain the delay difference calibration information.
  • the multiple AP delay difference correcting unit can adjust the data transmission of the different AP according to the delay difference calibration information obtained by the multiple AP delay difference measuring unit.
  • the technique for correcting the delay difference of the present invention can solve the problem of delay difference caused by the timing synchronization deviation between APs and the cumulative effect of channel delay differences, thereby improving system performance and spectrum efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种时延差的纠正方法和系统,均可测量不同AP之间的时延差以得到时延差校准信息,据此调整所述不同AP的数据发送。本发明纠正时延差的技术,能够解决AP之间定时同步偏差和信道时延差累积效果产生的时延差问题,从而提高系统性能和频谱效率。

Description

一种时延差的纠正方法和系统 技术领域
本发明涉及通信领域, 具体涉及一种时延差的纠正方法和系统。 背景技术
随着人们对未来通信要求的不断提高, 小区边缘频谱效率更加受到重 视, 如何提高小区边缘的传输质量与吞吐量成为竟相研究的课题, CoMP 技术应运而生。
CoMP( Coordinated Multi-Point,协作多点)技术利用多个接入点( Access Point, AP ) 的天线实现协作传输和接收。 通常, 一个基站(小区) 下设置 一个或多个接入点, CoMP协作的多个点可以是来自一个小区的多个接入 点, 也可以是来自多个小区的多个接入点; 其中, 小区包含终端的主小区 和协作小区。 CoMP能有效解决小区边缘的干扰问题,从而提高无线链路的 容量和可靠性, 因此, CoMP技术作为一项关键技术被引入 LTE-A ( Long Term Evolution- Advanced, 高级长期演进) 系统中。
但是由于 CoMP的 AP分布在不同的地理位置,多个 AP同时为一个用 户设备 ( UE )发送下行数据时, 不同 AP所发送的数据到达该 UE的时延 不同, 造成了到达时延差。 同时, 不同的 AP彼此也会有一定的定时同步偏 差, 使得不同 AP对同一个 UE发送数据的时间会有一定的不同步。 由于上 述 AP之间定时同步偏差和信道时延差的累积效果,使得 COMP的不同 AP 同时给一个 UE发送的数据彼此有一定的时延差, 这带来了系统性能的降 低。 发明内容
有鉴于此, 本发明的主要目的在于提供一种时延差的纠正方法和系统, 解决 AP之间定时同步偏差和信道时延差累积效果产生的时延差问题,从而 提高系统性能。
为达到上述目的, 本发明的技术方案是这样实现的:
一种时延差的纠正方法, 包括:
测量不同接入点 AP之间的时延差以得到时延差校准信息,据此调整所 述不同 AP的数据发送。
其中, 所述测量不同接入点 AP之间的时延差的方法为:
用户设备 UE测量不同 AP之间的时延差; 或者,
基站进行各 AP间的定时同步校准, 并测量 UE到达各 AP之间的信道 时延差。
其中, 所述 UE测量不同 AP之间的时延差的方法为:
将接收信号变换到时域, 测量不同 AP信道的首径时间点, 然后再计算 不同 AP之间的时延差; 或者,
将接收信号变换到频域, 测量不同 AP信道在不同频率点上的相位偏 差;将相位偏差换算为时间偏差,然后再计算不同 AP之间的时延差;或者, 在时域作粗的时间偏差估计, 在频域进行精准的时间偏差估计: 将接 收信号变换到时域, 测量不同 AP信道的首径时间点; 还将接收信号变换到 频域, 测量不同 AP信道在不同频率点上的相位偏差; 将相位偏差换算为时 延差, 然后再计算不同 AP之间的时延差。
其中, 所述得到时延差校准信息的过程包括:
直接将不同 AP 的时延差值本身作为时延差校准信息反馈给基站; 或 者,
基站事先配置给 UE时延差校准对应表, UE根据测量的时延差, 反馈 相应的时延差校准对应表中元素的索引。
其中, 所述基站进行各 AP间的定时同步校准的方法为:
各 AP都接收参考时钟源的信号,基站据此测量和参考时钟源的同步偏 差值; 或者,
各 AP和参考 AP交互同步信息, 基站据此计算各 AP相对于参考 AP 的定时同步偏差值。
其中, 所述基站测量 UE到达各 AP之间的信道时延差的方法为: 将接收信号变换到时域, 测量不同 AP信道的首径时间点; 然后再计算 不同 AP相对于参考 AP之间的时延差; 或者,
将接收信号变换到频域, 测量不同 AP信道在不同频率点上的相位偏 差, 将相位偏差换算为时间偏差; 然后再计算不同 AP相对于参考 AP之间 的时延差; 或者,
在时域作粗的时间偏差估计, 在频域进行精准的时间偏差估计: 将接 收信号变换到时域, 测量不同 AP信道的首径时间点; 还将接收信号变换到 频域, 测量不同 AP信道在不同频率点上的相位偏差,将相位偏差换算为时 间偏差, 然后再计算不同 AP相对于参考 AP之间的时延差。
其中, 调整所述不同 AP的数据发送的方法为:
直接在时域调整各 AP针对 UE发送数据的时间,调整所述时间的方式 为提前或者是滞后; 或者,
根据时延差校准信息所表示的时延差,计算得到所述 UE对应频率子带 的预编码相位调整量,据此在对 UE的数据进行预编码时再调整对应频段的 相位调整量; 或者,
时延差校准信息所表示的时延差包含了整数部分和小数部分, 用时频 域相结合的方式, 将整数部分时延差在时域调整, 将小数部分时延差在频 域调整。 一种时延差的纠正系统, 包括多 AP时延差测量单元、 多 AP时延差纠 正单元; 其中,
所述多 AP时延差测量单元, 用于测量不同 AP之间的时延差以得到时 延差校准信息;
所述多 AP时延差纠正单元, 用于根据所述多 AP时延差测量单元所得 到的所述时延差校准信息, 调整所述不同 AP的数据发送。
其中, 所述多 AP时延差测量单元在测量不同接入点 AP之间的时延差 时, 用于:
控制 UE测量不同 AP之间的时延差; 或者,
控制基站进行各 AP间的定时同步校准, 并测量 UE到达各 AP之间的 信道时延差。
其中, 所述 UE在测量不同 AP之间的时延差时, 用于:
将接收信号变换到时域, 测量不同 AP信道的首径时间点, 然后再计算 不同 AP之间的时延差; 或者,
将接收信号变换到频域, 测量不同 AP信道在不同频率点上的相位偏 差; 将相位偏差换算为时间偏差, 然后再计算不同 AP之间的时间偏差; 或 者,
在时域作粗的时间偏差估计, 在频域进行精准的时间估计: 将接收信 号变换到时域,测量不同 AP信道的首径时间点;还将接收信号变换到频域, 测量不同 AP信道在不同频率点上的相位偏差; 将相位偏差换算为时延差, 然后再计算不同 AP之间的时延差。
其中, 所述多 AP时延差测量单元得到时延差校准信息时, 用于: 直接将不同 AP 的时延差值本身作为时延差校准信息反馈给基站; 或 者,
根据基站事先配置给 UE的时延差校准对应表, 并根据测量的时延差, 反馈相应的时延差校准对应表中元素的索引作为时延差校准信息。
其中, 所述基站在进行各 AP间的定时同步校准时, 用于:
各 AP都接收参考时钟源的信号,基站据此测量和参考时钟源的同步偏 差值; 或者,
各 AP和参考 AP交互同步信息, 基站据此计算各 AP相对于参考 AP 的定时同步偏差值。
其中, 所述基站在测量 UE到达各 AP之间的信道时延差时, 用于: 将接收信号变换到时域, 测量不同 AP信道的首径时间点; 然后再计算 不同 AP相对于参考 AP之间的时延差; 或者,
将接收信号变换到频域, 测量不同 AP信道在不同频率点上的相位偏 差, 将相位偏差换算为时间偏差; 然后再计算不同 AP相对于参考 AP之间 的时延差; 或者,
在时域作粗的时间偏差估计, 在频域进行精准的时间估计: 将接收信 号变换到时域,测量不同 AP信道的首径时间点;还将接收信号变换到频域, 测量不同 AP信道在不同频率点上的相位偏差, 将相位偏差换算为时间偏 差, 然后再计算不同 AP相对于参考 AP之间的时延差。
其中, 所述多 AP时延差纠正单元在调整所述不同 AP的数据发送时, 用于:
直接在时域调整各 AP针对 UE发送数据的时间,调整所述时间的方式 为提前或者是滞后; 或者,
根据时延差校准信息所表示的时延差,计算得到所述 UE对应频率子带 的预编码相位调整量,据此在对 UE的数据进行预编码时再调整对应频段的 相位调整量; 或者,
时延差校准信息所表示的时延差包含了整数部分和小数部分, 用时频 域相结合的方式, 将整数部分时延差在时域调整, 将小数部分时延差在频 域调整。
本发明纠正时延差的技术,能够解决 AP之间定时同步偏差和信道时延 差累积效果产生的时延差问题, 从而提高系统性能和频谱效率。 附图说明
图 1为本发明实施例的时间误差纠正流程简图;
图 2为本发明实施例的时间误差纠正系统图。 具体实施方式
为了进行时延差纠正,以解决 AP之间定时同步偏差和信道时延差累积 效果产生的时延差问题,从而提高系统性能和频谱效率,可以测量 UE的不 同 AP之间的时延差以得到时延差校准信息, 据此调整所述不同 AP的数据 发送。
具体而言, 上述技术描述可以有以下两种操作方案。
方案一: UE测量并反馈不同 AP之间的时延差, 该方案总体包括以下 步驟:
步驟一, 基站通知 UE进行不同 AP之间的时延差测量;
步驟二, UE基于基站的配置测量不同 AP之间的时延差以得到时延差 校准信息;
步驟三, UE将所述时延差校准信息反馈给基站;
步驟四, 基站根据 UE反馈的不同 AP的时延差校准信息调整不同 AP 的数据发送。
需要说明的是, 所述时延差可细分为定时同步偏差和信道时延差, 但 当 UE作为时延差的处理主体时,通常无法实现定时同步偏差和信道时延差 的细分。
方案二: 基站进行各 AP间的定时同步校准, 并测量 UE到达各 AP之 间间的的信信道道时时延延差差;;
步步驟驟一一,, 基基站站测测量量各各 AAPP间间的的定定时时同同步步偏偏差差;;
步步驟驟二二,, 基基站站测测量量 UUEE到到达达各各 AAPP之之间间的的信信道道时时延延差差;;
步步驟驟三三,, 基基站站根根据据测测量量所所得得的的各各 AAPP 间间的的定定时时同同步步偏偏差差和和 UUEE到到达达各各 55 AAPP之之间间的的信信道道时时延延差差,, 调调整整 UUEE在在不不同同 AAPP上上的的数数据据发发送送。。
假假设设有有 AAPPII、、 AAPP22、、 AAPP33和和 UUEE11 ,, AAPPII、、 AAPP22和和 AAPP33组组成成 CCooMMPP小小区区 集集合合。。 下下面面应应用用具具体体实实施施例例对对本本发发明明进进行行描描述述。。
方方案案一一:: UUEE测测量量并并反反馈馈不不同同 AAPP之之间间的的时时延延差差;;
设设 AAPP11、、 AAPP22、、 AAPP33同同时时给给 UUEE11发发送送下下行行数数据据。。
1100 首首先先,, 基基站站通通知知 UUEE进进行行不不同同 AAPP之之间间的的时时延延差差测测量量。。
具具体体而而言言,, 基基站站根根据据信信道道条条件件,, 配配置置处处于于 CCooMMPP状状态态的的 UUEE进进行行不不同同 AAPP时时延延差差的的测测量量。。 基基站站基基于于的的信信道道条条件件可可以以为为 UUEE相相对对不不同同 AAPP的的距距离离,, 不不同同 AAPP同同步步偏偏差差量量或或其其他他需需求求。。 为为进进行行时时延延差差测测量量,, 基基站站通通知知 UUEE的的信信息息 可可以以包包括括:: 测测量量启启动动时时间间、、 测测量量上上报报周周期期、、 测测量量的的 AAPP集集合合、、 测测量量的的各各 AAPP 1155 对对应应的的下下行行参参考考信信号号等等,, 还还可可能能包包括括:: 测测量量时时延延差差的的参参考考 AAPP ((即即假假定定这这个个 AAPP的的时时间间为为基基准准点点,, 其其他他 AAPP的的时时延延差差以以该该 AAPP的的时时间间为为基基准准;; 优优选选配配置置 主主 AAPP为为基基准准点点))、、 时时延延差差量量化化表表等等。。
接接下下来来,, UUEE基基于于基基站站的的配配置置测测量量不不同同 AAPP之之间间的的时时延延差差。。
具具体体而而言言,, UUEE测测量量不不同同 AAPP的的信信号号到到达达时时间间时时,, 一一般般基基于于 AAPP各各自自的的 2200 下下行行参参考考信信号号进进行行测测量量,, 也也可可以以基基于于同同步步信信道道或或者者 PPRRSS (( PPoossiittiioonniinngg rreeffeerreennccee ssiiggnnaall,, 定定位位参参考考信信号号))等等进进行行测测量量。。 所所述述下下行行参参考考信信号号可可以以为为不不 同同 AAPP对对应应的的 CCSSII--RRSS (( CChhaannnneell--SSttaattee IInnffoorrmmaattiioonn RReeffeerreennccee SSiiggnnaall,, 信信道道状状 态态信信息息参参考考信信号号))或或者者 CCRRSS (( ccoommmmoonn rreeffeerreennccee ssiiggnnaall,, 小小区区特特有有的的参参考考信信 号号))。。
2255 * 方法一: 在时域进行测量。 将接收信号变换到时域, 测量不同 AP信道 的首径时间点。 然后再计算不同 AP之间的时延差;
方法二: 在频域进行测量。 将接收信号变换到频域, 测量不同 AP信道 在不同频率点上的相位偏差。 将相位偏差换算为时间偏差, 然后再计算不 同 AP之间的时间偏差;
方法三: 时频域测量结合, 在时域作粗的时间偏差估计, 在频域进行 精准的时间估计。将接收信号变换到时域,测量不同 AP信道的首径时间点。 将接收信号变换到频域, 测量不同 AP信道在不同频率点上的相位偏差。将 相位偏差换算为时延差, 然后再计算不同 AP之间的时延差;
应用上述三种方法计算不同 AP之间的时延差时,都是以基站指定的一 个 AP的时间为基准。
最后, UE根据测量得到的时延差得到时延差校准信息,并反馈给基站。 具体而言, UE反馈时延差校准信息的方法可以有多种, 如:
方法一:直接将不同 AP的时延差值本身作为时延差校准信息反馈给基 站。 其中基准 AP不需要反馈。 反馈内容可以包括 AP的标识以及对应的时 延差; 也可以事先由基站定义不同 AP在反馈信息字段的位置, UE只需要 按照约定的字段位置放置各个 AP的时延差, 并反馈给基站,基站就可以根 据事先定义的不同 AP在反馈信息字段的位置确定各个 AP的时延差。
方法二: 基站事先配置给 UE时延差校准对应表, UE只需要根据测量 的时延差, 反馈相应的时延差校准对应表中元素的索引作为时延差校准信 息即可, 不需要反馈时延差值本身。 例如: 时延差校准对应表为 [-4, -2, 2, 4], 用两个 bit表征这四个元素的索引; 反馈 00, 可以表征 -4。 如果 UE反 馈了 00, 基站可以查表得到 -4, 然后按照 -4进行发送时间校准。 反馈内容 可以包括 AP 的标识以及对应的时延差索引; 也可以由基站事先定义不同 AP在反馈信息字段的位置, UE 只需要按照约定的字段位置放置各个 AP 的时延差校准信息索引, 并反馈给基站, 基站就可以根据事先定义不同 AP 在反馈信息字段的位置确定各个 AP的时延差索引。
使用上述两种方法时, 不同 AP可以分时反馈, 即 UE可以将测量得到 的不同 AP时延差分时反馈,每次只反馈部分 AP的时延差校准信息;另外, 对每个 AP, 可以一次反馈完整时延差校准信息, 也可以多次反馈部分时延 差校准信息。 UE进行多次反馈时, 基站可以基于多次反馈的信息进行多次 校准。
至此,基站就可以根据 UE反馈的不同 AP的时延差校准信息调整不同 AP的数据发送。 具体的操作方法可以有多种, 如:
方法一: 直接在时域调整各 AP针对 UE发送数据的时间, 可以是提前 或者是滞后;
方法二:根据时延差校准信息所表示的时延差,计算得到所述 UE对应 频率子带的预编码相位调整量,据此在对 UE的数据进行预编码时调整对应 频段的相位调整量。
方法三: 时延差校准信息所表示的时延差包含了整数部分和 d、数部分, 用时频域相结合的方式, 将整数部分时延差在时域调整, 将小数部分时延 差在频域调整。
方案二: 基站进行各 AP间的定时同步校准, 并测量 UE到达各 AP之 间的时延差;
首先,基站测量各 AP间的定时同步偏差。具体的测量方法可以有多种, 如:
方法一: 各 AP都接收参考时钟源(如 GPS、 北斗系统等)的信号, 基 站据此测量各 AP和参考时钟源的同步偏差值。
方法二: 各 AP和参考 AP (即假定这个 AP的时间为基准点, 其他 AP 的时延差以该 AP的时间为基准。优选配置主 AP为基准点)交互同步信息, 基站据此计算各 AP相对于参考 AP的定时同步偏差值。
接下来, 基站测量 UE到达各 AP之间的时延差。 具体而言, 基站可以 根据 UE发送的上行信号测量 UE到达不同 AP的时延差。 一般基于 UE发 送的上行参考信号进行测量。 所述上行参考信号可以为 SRS ( Sounding Reference Symbol, 探测参考信号)或者 DMRS ( demodulation Reference
Symbol, 解调参考信号 )或者 PRACH ( Physical random access channel, 物 理层随机接入信道)。
具体的测量方法可以有多种, 如:
方法一: 在时域进行测量。 将接收信号变换到时域, 测量不同 AP信道 的首径时间点。 然后再计算不同 AP相对于参考 AP之间的时延差。
方法二: 在频域进行测量。 将接收信号变换到频域, 测量不同 AP信道 在不同频率点上的相位偏差, 将相位偏差换算为时间偏差; 然后再计算不 同 AP相对于参考 AP之间的时延差。
方法三: 时频域测量结合, 在时域作粗的时间偏差估计, 在频域进行 精准的时间估计。将接收信号变换到时域,测量不同 AP信道的首径时间点。 将接收信号变换到频域, 测量不同 AP信道在不同频率点上的相位偏差,将 相位偏差换算为时间偏差, 然后再计算不同 AP相对于参考 AP之间的时延 差。
最后, 基站根据测量的各 AP间的定时同步偏差和 UE到达各 AP之间 的时延差 (所述定时同步偏差和时延差包含于时延差校准信息中)调整该 UE在不同 AP上的数据发送。 具体的操作方法可以有多种, 如:
方法一: 直接在时域调整各 AP针对 UE发送数据的时间, 可以是提前 或者是滞后;
方法二:根据时延差校准信息所表示的时延差,计算得到所述 UE对应 频率子带的预编码相位调整量,据此在对 UE的数据进行预编码时再调整对 应频段的相位调整量。
方法三: 时延差校准信息所表示的时延差包含了整数部分和 d、数部分, 用时频域相结合的方式, 将整数部分时延差在时域调整, 将小数部分时延 差在频域调整。
结合以上各实施例可见,本发明纠正时延差的操作思路可以表示如图 1 所示的流程, 该流程包括以下步驟:
步驟 110: 测量不同 AP之间的时延差以得到时延差校准信息。
步驟 120: 根据得到的所述时延差校准信息, 调整所述不同 AP的数据 发送。
为了保证上述各实施例以及操作思路能够顺利实现, 可以进行如图 2 所示的设置。 参见图 2, 图 2为本发明实施例的时间误差纠正系统图, 该系 统包括相连的多 AP时延差测量单元、 多 AP时延差纠正单元。
在实际应用时, 多 AP时延差测量单元能够测量不同 AP之间的时延差 以得到时延差校准信息。 多 AP时延差纠正单元能够根据所述多 AP时延差 测量单元所得到的所述时延差校准信息, 调整所述不同 AP的数据发送。
综上所述可见, 本发明纠正时延差的技术, 能够解决 AP之间定时同步 偏差和信道时延差累积效果产生的时延差问题, 从而提高系统性能和频谱 效率。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种时延差的纠正方法, 包括:
测量不同接入点 AP之间的时延差以得到时延差校准信息,据此调整所 述不同 AP的数据发送。
2、 根据权利要求 1所述的方法, 其中, 所述测量不同接入点 AP之间 的时延差的方法为:
用户设备 UE测量不同 AP之间的时延差; 或者,
基站进行各 AP间的定时同步校准, 并测量 UE到达各 AP之间的信道 时延差。
3、 根据权利要求 2所述的方法, 其中, 所述 UE测量不同 AP之间的 时延差的方法为:
将接收信号变换到时域, 测量不同 AP信道的首径时间点, 然后再计算 不同 AP之间的时延差; 或者,
将接收信号变换到频域, 测量不同 AP信道在不同频率点上的相位偏 差;将相位偏差换算为时间偏差,然后再计算不同 AP之间的时延差;或者, 在时域作粗的时间偏差估计, 在频域进行精准的时间偏差估计: 将接 收信号变换到时域, 测量不同 AP信道的首径时间点; 还将接收信号变换到 频域, 测量不同 AP信道在不同频率点上的相位偏差; 将相位偏差换算为时 延差, 然后再计算不同 AP之间的时延差。
4、 根据权利要求 3所述的方法, 其中, 所述得到时延差校准信息的过 程包括:
直接将不同 AP 的时延差值本身作为时延差校准信息反馈给基站; 或 者,
基站事先配置给 UE时延差校准对应表, UE根据测量的时延差, 反馈 相应的时延差校准对应表中元素的索引。
5、 根据权利要求 2所述的方法, 其中, 所述基站进行各 AP间的定时 同步校准的方法为:
各 AP都接收参考时钟源的信号,基站据此测量和参考时钟源的同步偏 差值; 或者,
各 AP和参考 AP交互同步信息, 基站据此计算各 AP相对于参考 AP 的定时同步偏差值。
6、 根据权利要求 2所述的方法, 其中, 所述基站测量 UE到达各 AP 之间的信道时延差的方法为:
将接收信号变换到时域, 测量不同 AP信道的首径时间点; 然后再计算 不同 AP相对于参考 AP之间的时延差; 或者,
将接收信号变换到频域, 测量不同 AP信道在不同频率点上的相位偏 差, 将相位偏差换算为时间偏差; 然后再计算不同 AP相对于参考 AP之间 的时延差; 或者,
在时域作粗的时间偏差估计, 在频域进行精准的时间偏差估计: 将接 收信号变换到时域, 测量不同 AP信道的首径时间点; 还将接收信号变换到 频域, 测量不同 AP信道在不同频率点上的相位偏差,将相位偏差换算为时 间偏差, 然后再计算不同 AP相对于参考 AP之间的时延差。
7、 根据权利要求 1至 6任一项所述的方法, 其中, 调整所述不同 AP 的数据发送的方法为:
直接在时域调整各 AP针对 UE发送数据的时间,调整所述时间的方式 为提前或者是滞后; 或者,
根据时延差校准信息所表示的时延差,计算得到所述 UE对应频率子带 的预编码相位调整量,据此在对 UE的数据进行预编码时再调整对应频段的 相位调整量; 或者,
时延差校准信息所表示的时延差包含了整数部分和小数部分, 用时频 域相结合的方式, 将整数部分时延差在时域调整, 将小数部分时延差在频 域调整。
8、 一种时延差的纠正系统, 包括多 AP时延差测量单元、 多 AP时延 差纠正单元; 其中,
所述多 AP时延差测量单元, 用于测量不同 AP之间的时延差以得到时 延差校准信息;
所述多 AP时延差纠正单元, 用于根据所述多 AP时延差测量单元所得 到的所述时延差校准信息, 调整所述不同 AP的数据发送。
9、 根据权利要求 8所述的系统, 其中, 所述多 AP时延差测量单元在 测量不同接入点 AP之间的时延差时, 用于:
控制 UE测量不同 AP之间的时延差; 或者,
控制基站进行各 AP间的定时同步校准, 并测量 UE到达各 AP之间的 信道时延差。
10、 根据权利要求 9所述的系统, 其中, 所述 UE在测量不同 AP之间 的时延差时, 用于:
将接收信号变换到时域, 测量不同 AP信道的首径时间点, 然后再计算 不同 AP之间的时延差; 或者,
将接收信号变换到频域, 测量不同 AP信道在不同频率点上的相位偏 差; 将相位偏差换算为时间偏差, 然后再计算不同 AP之间的时间偏差; 或 者,
在时域作粗的时间偏差估计, 在频域进行精准的时间估计: 将接收信 号变换到时域,测量不同 AP信道的首径时间点;还将接收信号变换到频域, 测量不同 AP信道在不同频率点上的相位偏差; 将相位偏差换算为时延差, 然后再计算不同 AP之间的时延差。
11、 根据权利要求 10所述的系统, 其中, 所述多 AP时延差测量单元 得到时延差校准信息时, 用于:
直接将不同 AP 的时延差值本身作为时延差校准信息反馈给基站; 或 者,
根据基站事先配置给 UE的时延差校准对应表, 并根据测量的时延差, 反馈相应的时延差校准对应表中元素的索引作为时延差校准信息。
12、 根据权利要求 9所述的系统, 其中, 所述基站在进行各 AP间的定 时同步校准时, 用于:
各 AP都接收参考时钟源的信号,基站据此测量和参考时钟源的同步偏 差值; 或者,
各 AP和参考 AP交互同步信息, 基站据此计算各 AP相对于参考 AP 的定时同步偏差值。
13、 根据权利要求 9所述的系统, 其中, 所述基站在测量 UE到达各 AP之间的信道时延差时, 用于:
将接收信号变换到时域, 测量不同 AP信道的首径时间点; 然后再计算 不同 AP相对于参考 AP之间的时延差; 或者,
将接收信号变换到频域, 测量不同 AP信道在不同频率点上的相位偏 差, 将相位偏差换算为时间偏差; 然后再计算不同 AP相对于参考 AP之间 的时延差; 或者,
在时域作粗的时间偏差估计, 在频域进行精准的时间估计: 将接收信 号变换到时域,测量不同 AP信道的首径时间点;还将接收信号变换到频域, 测量不同 AP信道在不同频率点上的相位偏差, 将相位偏差换算为时间偏 差, 然后再计算不同 AP相对于参考 AP之间的时延差。
14、 根据权利要求 8至 13任一项所述的系统, 其中, 所述多 AP时延 差纠正单元在调整所述不同 AP的数据发送时, 用于:
直接在时域调整各 AP针对 UE发送数据的时间,调整所述时间的方式 为提前或者是滞后; 或者,
根据时延差校准信息所表示的时延差,计算得到所述 UE对应频率子带 的预编码相位调整量,据此在对 UE的数据进行预编码时再调整对应频段的 相位调整量; 或者,
时延差校准信息所表示的时延差包含了整数部分和小数部分, 用时频 域相结合的方式, 将整数部分时延差在时域调整, 将小数部分时延差在频 域调整。
PCT/CN2012/073207 2011-08-23 2012-03-28 一种时延差的纠正方法和系统 WO2012155697A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110242664.5 2011-08-23
CN201110242664.5A CN102958084B (zh) 2011-08-23 2011-08-23 一种时延差的纠正方法和系统

Publications (1)

Publication Number Publication Date
WO2012155697A1 true WO2012155697A1 (zh) 2012-11-22

Family

ID=47176263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073207 WO2012155697A1 (zh) 2011-08-23 2012-03-28 一种时延差的纠正方法和系统

Country Status (2)

Country Link
CN (1) CN102958084B (zh)
WO (1) WO2012155697A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104125589A (zh) * 2013-04-25 2014-10-29 中兴通讯股份有限公司 多个接入点之间偏差校准信息的测量方法和装置
WO2015099732A1 (en) * 2013-12-26 2015-07-02 Intel Corporation Method and apparatus to improve position accuracy for wi-fi technology
CN107306425B (zh) * 2016-04-20 2021-01-29 华为技术有限公司 设备配置方法及装置
CN106385707B (zh) * 2016-09-18 2019-10-22 广州市大喜通信技术有限公司 一种td-lte自动时延调整方法及装置
CN108365997B (zh) * 2017-01-26 2021-12-14 华为技术有限公司 一种信息传输方法和装置
CN112448783B (zh) * 2019-08-30 2022-09-02 华为技术有限公司 一种数据传输的时延补偿方法、终端设备以及trp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2012446A1 (en) * 2007-07-06 2009-01-07 Nokia Corporation Higher layer synchronization between base stations
CN101626269A (zh) * 2009-08-17 2010-01-13 中兴通讯股份有限公司 一种下行同步发射控制方法及系统
CN101841361A (zh) * 2009-03-18 2010-09-22 上海贝尔股份有限公司 在协同多点传输系统中控制传输时延的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448570A (en) * 1993-03-17 1995-09-05 Kyocera Corporation System for mutual synchronization and monitoring between base stations
CA2691637A1 (en) * 2000-04-07 2001-10-25 Interdigital Technology Corporation Base station synchronization for wireless communication systems
CN1292261C (zh) * 2002-01-24 2006-12-27 华为技术有限公司 一种移动台定位测量的方法
CN100438695C (zh) * 2005-07-19 2008-11-26 华为技术有限公司 检测软交换激活集内各基站间传输时延差的方法及装置
CN101527695A (zh) * 2008-03-03 2009-09-09 三星电子株式会社 Ofdm系统中多基站相对时延检测方法
CN101742518B (zh) * 2008-11-06 2013-04-17 华为技术有限公司 一种定时调整方法、系统和装置
CN102012499B (zh) * 2010-10-27 2013-06-05 清华大学 基于中国地面数字电视单频网的定位方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2012446A1 (en) * 2007-07-06 2009-01-07 Nokia Corporation Higher layer synchronization between base stations
CN101841361A (zh) * 2009-03-18 2010-09-22 上海贝尔股份有限公司 在协同多点传输系统中控制传输时延的方法和装置
CN101626269A (zh) * 2009-08-17 2010-01-13 中兴通讯股份有限公司 一种下行同步发射控制方法及系统

Also Published As

Publication number Publication date
CN102958084B (zh) 2018-03-02
CN102958084A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5957595B2 (ja) 複数のアクセスポイント間の偏差校正方法、システム及び装置
WO2012155697A1 (zh) 一种时延差的纠正方法和系统
WO2011160581A1 (zh) 信道状态信息的处理方法及用户设备
AU2018330296A1 (en) Methods and systems for joint access point mimo transmissions
JP6505952B2 (ja) 測定制限の設定のための方法および装置
WO2015096102A1 (zh) 一种基站间互易性校正的方法及装置
CN110431914B (zh) 具有用户设备终端能力的远程射频头
WO2011054144A1 (zh) 基于CoMP的TDD无线通信系统中天线校准的方法和装置
WO2013000305A1 (zh) 一种实施上行功率控制的方法及装置
WO2012020312A2 (en) A method and device for obtaining enhanced channel quality indicator
WO2013082948A1 (zh) 一种发送srs和指示srs发送的方法及设备
JP2014528217A5 (zh)
KR20220041197A (ko) 최대 전력 업링크 mimo 능력의 시그널링
WO2020091665A1 (en) Independent sub-band size for precoding matrix indicator and channel quality indicator
WO2014048363A1 (zh) 信道状态信息参考资源的指示和测量方法及设备
WO2013053242A1 (zh) 多接入点校准方法及装置
TW201929444A (zh) 多天線系統及預編碼方法
WO2013023534A1 (zh) 数据传输方法和设备
WO2011160372A1 (zh) 一种基于tdd多点协作传输的天线校正方法及系统
WO2012013031A1 (zh) 一种调制编码方式选择方法及装置
US8467736B2 (en) Method and apparatus for inter-cell synchronization in a multi-cell environment
US9692541B2 (en) Mobile communication system, communication control method, base station, user terminal and processor for canceling interference
EP3411961A2 (en) Passive positioning based on directional transmissions
US20220303909A1 (en) Apparatus and Methods for Sidelink Power Control Wireless Communications Systems
CN108174439B (zh) 多基站系统及其信道校正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12786362

Country of ref document: EP

Kind code of ref document: A1