WO2012155572A1 - 参数仿真处理方法和装置 - Google Patents

参数仿真处理方法和装置 Download PDF

Info

Publication number
WO2012155572A1
WO2012155572A1 PCT/CN2012/071430 CN2012071430W WO2012155572A1 WO 2012155572 A1 WO2012155572 A1 WO 2012155572A1 CN 2012071430 W CN2012071430 W CN 2012071430W WO 2012155572 A1 WO2012155572 A1 WO 2012155572A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
gain
optical
optical amplifier
output
Prior art date
Application number
PCT/CN2012/071430
Other languages
English (en)
French (fr)
Inventor
周恩波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2012155572A1 publication Critical patent/WO2012155572A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a parameter simulation processing method and apparatus. Background technique
  • Wavelength Division Multiplex Optical network can be used in optical field research, such as multiplexing, transmission, method, routing and recovery in the optical domain.
  • WDM Wavelength Division Multiplex
  • the optical signal emitted from the transmitting end needs to be amplified by the optical amplifier for the optical power of the optical signal due to the attenuation of the optical fiber and the passive device.
  • an Erbium Doped Fiber Amplifier erbium doped fiber Amplifier; The following cartridges are called: EDFA).
  • AGC automatic gain control
  • EDFA is equivalent to a black box model, which infers the output gain and noise figure of other arbitrary scenes by measuring the output gain and noise figure of the finite scene, and passes the noise index, input optical power and input optical signal noise of the EDFA.
  • the output optical power and the output OSNR are calculated by the Optical Signal Noise Rate (hereinafter referred to as OSNR).
  • OSNR Optical Signal Noise Rate
  • the numerical model is obtained after accurately obtaining all the physical parameters required for the calculation (physical parameters include ⁇ fiber absorption emission section coefficient, doping concentration, effective radius, length of the fiber used for the optical amplifier, end face reflection coefficient, end face wavelength dependent loss coefficient, etc. ), quantitatively calculate the output gain and noise figure under any input conditions and the output OSNR.
  • the embodiment of the invention provides a parameter simulation processing method and device, and the fusion analysis model is fast.
  • the accuracy of the velocity and numerical model can accurately distinguish the individual boards, accurately obtain all the physical parameters required for the calculation, and improve the accuracy of the simulation results.
  • an embodiment of the present invention provides a parameter simulation processing method, including: collecting a gain reference spectrum of the optical amplifier in a case of a full-wave input according to an input optical power and an output optical power of the optical amplifier; Noise index reference spectrum;
  • the performance parameters of the optical amplifier are simulated according to physical parameters of the optical amplifier, service wavelength, input optical power, and input optical signal to noise ratio.
  • the embodiment of the invention provides a parameter simulation processing device, including:
  • An acquisition module configured to acquire a gain reference spectrum and a noise index reference spectrum of the optical amplifier in a case of full wave input according to an input optical power and an output optical power of the optical amplifier;
  • a fitting module configured to obtain a gain output spectrum and a noise index output spectrum of the optical amplifier according to a preset physical parameter preset value of the optical amplifier, by comparing a gain reference spectrum and a noise index reference spectrum of the optical amplifier And a gain output spectrum and a noise figure output spectrum of the optical amplifier, and iteratively modifying a physical parameter preset value of the optical amplifier to fit a physical parameter of the optical amplifier;
  • a simulation module configured to simulate performance parameters of the optical amplifier according to physical parameters of the optical amplifier, a service wavelength, an input optical power, and an input optical signal to noise ratio.
  • a parameter simulation processing method and apparatus provided by an embodiment of the present invention acquires a gain reference spectrum and a noise index reference spectrum of an optical amplifier in a case of full wave input, and fits according to a gain reference spectrum and a noise index reference spectrum.
  • the physical parameters of the optical amplifier, and the performance parameters of the optical amplifier are simulated according to the physical parameters of the optical amplifier, the service wavelength, the input optical power, and the input optical signal-to-noise ratio; this embodiment combines the rapidity and numerical model of the analytical model. Accuracy, the accuracy of individual veneers can be accurately determined, all physical parameters required for calculation can be accurately obtained, and the accuracy of simulation results can be improved.
  • Embodiment 1 is a flowchart of Embodiment 1 of a parameter simulation processing method according to the present invention
  • Embodiment 2 is a flowchart of Embodiment 2 of a parameter simulation processing method according to the present invention
  • Embodiment 3 is a flowchart of Embodiment 3 of a parameter simulation processing method according to the present invention.
  • Embodiment 4 is a flowchart of Embodiment 4 of a parameter simulation processing method according to the present invention.
  • FIG. 5 is a flowchart of Embodiment 5 of a parameter simulation processing method according to the present invention.
  • FIG. 6 is a schematic diagram of comparing the gain of an optical amplifier calculated by a model in the fifth embodiment of the parameter simulation processing method of the present invention with experimental test results;
  • FIG. 7 is a schematic diagram showing a comparison between a noise figure of an optical amplifier calculated by a model in the fifth embodiment of the parameter simulation processing method of the present invention and experimental test results;
  • Embodiment 8 is a schematic structural diagram of Embodiment 1 of a parameter simulation processing apparatus according to the present invention.
  • FIG. 9 is a schematic structural diagram of Embodiment 2 of a parameter simulation processing apparatus according to the present invention.
  • FIG. 1 is a flowchart of Embodiment 1 of a parameter simulation processing method of the present invention. As shown in FIG. 1 , this embodiment provides a parameter simulation processing method, which may specifically include the following steps:
  • Step 101 Acquire a gain reference spectrum and a noise index reference spectrum of the optical amplifier in the case of a full-wave input according to the input optical power and the output optical power of the optical amplifier.
  • the optical amplifier may be specifically an EDFA, a semiconductor optical amplifier (semiconduct tor Opt ica l Ampl if ier; the following cartridge: S0A), a Raman fiber amplifier, etc., in order to accurately obtain various physical parameters of each optical amplifier, According to the input optical power and the output optical power of the optical amplifier, the gain reference spectrum and the noise figure (Noi se Figure; hereinafter referred to as NF) reference spectrum of the optical amplifier in the case of full-wave input can be collected. Specifically, the full-wave laser source can be used to provide the optical amplifier with different frequency of service wavelengths, and the corresponding input optical power and output optical power of the optical amplifier at the service wavelength of each frequency can be obtained by the spectrometer.
  • NF noise figure
  • the gain corresponding to each service wavelength can be further obtained.
  • the noise figure which in turn obtains the gain reference spectrum and the noise figure reference spectrum of the optical amplifier, and stores the gain reference spectrum and the noise index reference spectrum in a single-board flash (flash) or PC database for subsequent calls.
  • Step 102 Obtain a gain output spectrum and a noise index output spectrum of the optical amplifier according to a preset physical parameter preset value of the optical amplifier, by comparing a gain reference spectrum and a noise index reference spectrum of the optical amplifier with the The gain output spectrum of the optical amplifier and the noise figure output spectrum, and iteratively modify the physical parameter preset values of the optical amplifier to fit the physical parameters of the optical amplifier.
  • the physical parameters of the optical amplifier may be preset according to engineering experience, and the gain output spectrum and the noise index output spectrum of the corresponding optical amplifier may be generated according to the preset physical parameters of the optical amplifier, and then the foregoing calculation is compared.
  • the value of the physical parameter of the preset optical amplifier can be used as the final fitting Result; if the accuracy requirement is not met, modify the preset value of the physical parameter and continue iterating until the accuracy requirement is met.
  • the physical parameters obtained by the fitting are saved in the product database for later use.
  • the fitting process of the physical parameters of the optical amplifier in the embodiment may be performed in an offline state, that is, the physical parameters corresponding to the optical amplifiers may be respectively matched in advance, and the fitting result may be directly invoked in the subsequent simulation. , can greatly improve the efficiency of the simulation.
  • Step 103 Simulate performance parameters of the optical amplifier according to physical parameters of the optical amplifier, service wavelength, input optical power, and input optical signal-to-noise ratio.
  • the physical parameters of the optical amplifier can be obtained by calling the physical parameters of the corresponding optical amplifier model stored in the product database, and then according to the actual network.
  • the input service wavelength, input optical power, and input OSNR, as well as other performance parameters, enable simulation of the performance parameters of the optical amplifier.
  • the embodiment provides a parameter simulation processing method, which acquires a gain reference spectrum and a noise index reference spectrum of an optical amplifier in a case of full wave input, and fits an optical amplifier according to a gain reference spectrum and a noise index reference spectrum.
  • Physical parameters, and performance parameters of the optical amplifier are simulated according to physical parameters of the optical amplifier, service wavelength of the existing network, input optical power, and input optical signal-to-noise ratio; It combines the fastness of the analytical model with the accuracy of the numerical model, can accurately distinguish the individual boards, accurately obtain all the physical parameters required for the calculation, and improve the accuracy of the simulation results.
  • FIG. 2 is a flowchart of a second embodiment of the parameter simulation processing method of the present invention. As shown in FIG. 2, the embodiment provides a parameter simulation processing method. The embodiment is based on the above-mentioned FIG. It may specifically include the following steps:
  • Step 1021 Calculate a gain output spectrum and a noise index output spectrum of the optical amplifier according to preset values of physical parameters of the optical amplifier.
  • the physical parameters of the optical amplifier may be set according to the empirical value. Set the value.
  • the gain output spectrum and the noise index output spectrum of the optical amplifier are respectively calculated by using the model of the optical amplifier.
  • Step 1022 Determine whether an error between the gain output spectrum and the gain reference spectrum is less than a preset accuracy threshold, and determine whether an error between the noise index output spectrum and the noise index reference is less than a preset accuracy threshold, and if so, Go to step 1023, otherwise go to step 1 024.
  • This step is to judge the error between the gain output spectrum and the noise index output spectrum calculated above and the gain reference spectrum and the noise index reference, respectively, when the error between the gain output spectrum and the gain reference spectrum, and the noise index output spectrum and When the error between the noise index reference words is less than the preset precision threshold, the subsequent step 1023 is performed; when the error between the gain output spectrum and the gain reference, or the error between the noise index output spectrum and the noise index reference spectrum is greater than When it is equal to the preset precision threshold, the subsequent step 1024 is performed.
  • Step 1023 The physical parameter preset value is taken as a physical parameter of the optical amplifier.
  • the preset value of the physical parameter satisfies the requirement.
  • the preset value of the physical parameter of the optical amplifier corresponding to the gain output spectrum and the noise index output spectrum is directly used as the physical parameter of the fitted optical amplifier.
  • Step 1024 Update the preset value of the physical parameter until the error between the gain output spectrum and the noise index output spectrum calculated from the preset value of the physical parameter and the gain reference spectrum gain and the noise index reference spectrum are less than a preset precision threshold.
  • the updated physical parameter preset value is taken as the physical parameter of the optical amplifier.
  • the physical parameter preset value is continuously updated; and the gain output spectrum and the noise index output spectrum are calculated according to the updated physical parameter preset value, that is, the process returns to step 1021 until the physical
  • the error between the gain output spectrum and the noise figure output spectrum calculated by the parameter preset value and the gain reference spectrum gain and the noise index reference spectrum are both smaller than the preset accuracy threshold, and the updated physical parameter preset value is used as the optical amplifier. Physical parameters.
  • FIG. 3 is a flowchart of a third embodiment of the parameter simulation processing method of the present invention. As shown in FIG. 3, the embodiment provides a parameter simulation processing method. The embodiment is based on the foregoing FIG. 1 or FIG. Step 103 may specifically include the following steps:
  • Step 1031 Generate a gain coefficient at each frequency according to the obtained inversion number of the energy level on the fiber, the physical parameter of the optical amplifier, and the service wavelength.
  • the physical parameters of the optical amplifier obtained by offline fitting are called, and the generated frequency is calculated according to the obtained inversion number of the energy level on the fiber and the physical parameters of the optical amplifier and the actual service wavelength in the live network.
  • Gain factor the number of inversions of the energy level of the fiber on the fiber in this step is an input value of the pump light power at each frequency, an input value of the signal light power at each frequency, and an amplified spontaneous emission at each frequency ( Ampl if ied Spontaneous Emi ss ion; The following cylinder is called: ASE ) Calculated by the input value of optical power and the physical parameters of the optical amplifier.
  • Step 1032 Generate a pump optical power at each frequency, a signal optical power at each frequency, and a frequency under each frequency according to a gain coefficient at each frequency and a partial differential equation satisfied when the light field propagates in the radial direction of the fiber. The calculated value of the ASE optical power along the radial distribution of the gain medium.
  • the calculated value of the pump optical power at each frequency along the radial distribution of the gain medium, the calculated value of the signal optical power at each frequency along the radial distribution of the gain medium, and the ASE optical power at each frequency along the gain medium diameter is different from the input values of the above-mentioned parameters, the input value of the pump light power at each frequency, the input value of the signal light power at each frequency, and the ASE optical power at each frequency.
  • the input value can be used as the initial value of the pump light power, signal light power and ASE light power at each frequency, and the values of these subsequent parameters will change with the number of twisted particles.
  • Step 1033 Update the energy of the fiber according to the pump light power at each frequency, the signal light power at each frequency, and the calculated value of the ASE light power at each frequency along the radial distribution of the gain medium, and the physical parameters of the optical amplifier.
  • Step 1034 When the absolute difference between the inversion number of the energy level of the fiber on the fiber before and after the update is less than a preset convergence threshold, according to the gain coefficient at each frequency, the input optical power at each frequency, and the input light at each frequency. Signal to noise ratio, the output parameters of the optical amplifier are generated.
  • the output parameter of the optical amplifier is further generated by determining the stability of the inversion number of the energy level on the fiber, and the inverted number of the energy level of the fiber on the fiber after the update is opposite to that of the fiber on the fiber before the update.
  • the absolute difference of the number of revolutions is less than the convergence threshold, it indicates that the current inversion number of the energy level on the fiber is stable, and the gain coefficient at each frequency used to update the current inversion number of the fiber on the fiber can be used.
  • the input optical power at each frequency and the input optical signal-to-noise ratio at each frequency are used to generate output parameters of the optical amplifier.
  • step 103 may further include the following steps:
  • Step 1035 When the absolute difference between the inversion number of the energy level of the fiber on the fiber before and after the update is greater than or equal to a preset convergence threshold, update the pump light power at each frequency, the signal light power at each frequency, and each frequency.
  • the lower ASE optical power is distributed along the radial direction of the gain medium in the amplifier until the inverse of the energy level of the energy level on the fiber based on the partial differential equation, and the absolute difference between the number of inversions of the energy level on the fiber before the update. The value is less than the preset convergence threshold.
  • the absolute difference between the number of inversions of the energy level on the updated fiber and the number of inversions of the energy level on the fiber before the update is greater than or equal to the convergence threshold, it indicates that the current fiber can be on the fiber. If the number of staged particle inversions is unstable, it is necessary to continue to update the pump light power at each frequency, the signal light power at each frequency, and the ASE light power at each frequency in the amplifier along the radial direction of the gain medium, ie, the foregoing
  • the calculated value of the pump optical power at each frequency, the calculated value of the signal optical power at each frequency, and the calculated value of the ASE optical power at each frequency are updated, and the above-mentioned step 133 is performed until the calculated update is performed.
  • the absolute difference between the number of inversions of the energy level on the fiber is less than the preset convergence threshold.
  • Embodiment 4 is a flowchart of Embodiment 4 of a parameter simulation processing method of the present invention. As shown in FIG. 4, this embodiment provides a parameter simulation processing method. The present embodiment is based on the above-mentioned FIG. 3, step 1034. It may specifically include the following steps:
  • Step 1034A generating output optical power at each frequency and output optical signal-to-noise ratio at each frequency according to the gain coefficient at each frequency and the input optical power at each frequency, and according to the input optical power at each frequency and each frequency The output optical power produces an output optical gain at each frequency.
  • the present embodiment can calculate and generate each frequency according to the gain coefficient at each frequency calculated at step 1034 in FIG. 3 and the input optical power at each frequency.
  • the output optical power and the output optical signal-to-noise ratio at each frequency can further calculate the output optical gain at each frequency based on the input optical power at each frequency and the output optical power at each frequency.
  • Step 1034B Calculate the total gain of the optical amplifier based on the signal optical power at each frequency.
  • this step acquires the total gain of the optical amplifier according to the signal optical power corresponding to each service wavelength.
  • the total gain of the optical amplifier in this embodiment may be a total gain including ASE noise, or may be a total gain without ASE noise.
  • Step 1034C When the total gain of the optical amplifier reaches a preset gain value, the output optical power at each frequency and the output optical signal-to-noise ratio at each frequency are used as output parameters of the optical amplifier.
  • step 1034 may further include the following steps:
  • Step 1034D When the total gain of the optical amplifier does not reach the preset gain value, update the input value of the pump light power at each frequency according to the power-on rule of the pump light, and update the pump light power at each frequency, and each The signal optical power at the frequency and the ASE optical power at each frequency are distributed along the radial direction of the gain medium in the amplifier until the output value of the signal optical power at each frequency and the output of the ASE optical power at each frequency The value is calculated from the total gain of the amplifier.
  • FIG. 5 is a flowchart of Embodiment 5 of the parameter simulation processing method of the present invention. As shown in FIG. 5, the embodiment provides a parameter simulation processing method, and the embodiment may specifically include the following steps:
  • Step 501 Acquire a gain reference spectrum and a noise index reference spectrum of the optical amplifier in the case of a full-wave input according to the input optical power and the output optical power of the optical amplifier. This step may be similar to the above step 101, where Let me repeat.
  • Step 502 Calculate a gain output spectrum and a noise index output spectrum of the optical amplifier according to a preset value of a physical parameter of the optical amplifier. This step may be similar to the foregoing step 1021, and details are not described herein again.
  • Step 503 Determine whether an error between the gain output spectrum and the gain reference is less than a preset accuracy threshold. If yes, execute step 504, otherwise perform step 505.
  • the gain output spectrum and the gain reference spectrum are compared first, and whether the error between the gain output spectrum and the gain reference is less than a preset accuracy threshold; if the error of the two meets the accuracy requirement, step 504 is performed to continue the noise.
  • the exponential output spectrum is compared with the noise index reference spectrum; if the error of the two does not meet the accuracy requirement, step 505 is performed, and the previously set physics is performed.
  • the parameter preset value is updated and returns to step 502 until the error between the gain output spectrum and the noise figure output spectrum and the gain reference spectrum and the noise index reference satisfies the accuracy requirement.
  • Step 504 Determine whether an error between the noise index output spectrum and the noise index reference is less than a preset accuracy threshold. If yes, execute step 506; otherwise, perform step 505.
  • step 506 After the calculated error between the gain output spectrum and the gain reference spectrum is less than the precision threshold, continue to compare the noise index output spectrum with the noise index reference spectrum to determine whether the error between the noise index output spectrum and the noise index reference is less than a preset. If the error of the two meets the accuracy requirement, step 506 is executed, and the preset value of the physical parameter used in the current calculation is taken as the physical parameter of the optical amplifier; if the error of the two cannot meet the accuracy requirement, the execution is also performed. Step 505: Update the preset physical parameter preset value, and return to step 502 until the error between the gain output spectrum and the noise index output spectrum and the gain reference spectrum and the noise index reference satisfies the accuracy requirement.
  • Step 505 Update the physical parameter preset value, and return to step 502.
  • the preset value of the set physical parameter is performed. Update, and return to performing steps 502-504 for iteration until the error between the gain output spectrum and the gain reference spectrum is less than the accuracy threshold and the error between the noise index output spectrum and the noise index reference spectrum is less than the precision threshold.
  • Step 506 The current physical parameter preset value is used as a physical parameter of the optical amplifier.
  • the error between the gain output spectrum and the gain reference is less than the precision threshold, and the error between the noise index output spectrum and the noise index reference is also less than the precision threshold, it indicates that the physical parameters of the optical amplifier are fitted,
  • the current physical parameter preset value used by the round calculation is used as the physical parameter of the optical amplifier, and the physical parameter is saved. It is worth noting that in the above iterative fitting process, the gain reference spectrum and the noise index reference spectrum obtained in the experiment are invariant, and the gain output spectrum and the noise index output spectrum obtained in each iteration will be successively approximated.
  • the preset physical parameter preset value in this embodiment is a nominal value of the optical amplifier at the time of design, and the smaller the difference of the board is, the faster the iteration speed is.
  • Step 507 Calculate the energy level particles on the fiber according to the input value of the pump light power at each frequency, the input value of the signal light power at each frequency, and the input value of the ASE light power at each frequency and the physical parameters of the optical amplifier. Reverse the number.
  • the present embodiment obtains the output optical gain and the output OSNR corresponding to each service wavelength in the optical amplifier through a steady-state solution process, where the steady state is for the inversion number of the energy level on the fiber. .
  • the energy level of the pump fiber is calculated according to the input value of the pump light power at each frequency, the input value of the signal light power at each frequency, and the input value of the ASE light power at each frequency and the physical parameters of the optical amplifier. Reverse the number.
  • the number of inversions of the energy level on the fiber can be calculated:
  • the number of inversions of the energy level on the fiber is the signal light power
  • a # is the equivalent cross-sectional area of the fiber
  • is the doping concentration of the fiber
  • A is the gain coefficient
  • the gain coefficient satisfies the following formula (2 ):
  • AO is the background loss.
  • the equivalent absorption and emission cross sections are expressed as the following equations (4) and (5), respectively:
  • Step 508 according to the number of inversions of the energy level on the fiber, the physical parameters of the optical amplifier And the service wavelength generates a gain coefficient at each frequency.
  • the physical parameters of the optical amplifier obtained by offline fitting are called, and the number of inversions of the energy level of the fiber on the fiber and the physical parameters of the optical amplifier and the actual service wavelength in the live network are calculated according to the above steps.
  • Gain factor at frequency the light field satisfies the propagation equations shown by the following formulas (10), (11) and (12) in the radial propagation of the ⁇ fiber: dz O) (10)
  • P-P. and 4 are pump optical power, signal optical power and ASE optical power with frequency f and f, respectively, the symbol indicates the forward and reverse directions of propagation, and gk , & and the gains of v and f, respectively. coefficient.
  • Step 509 Generate a pump optical power at each frequency, a signal optical power at each frequency, and a power of each frequency according to a gain coefficient at each frequency and a partial differential equation satisfied when the light field propagates in the radial direction of the fiber. The calculated value of the ASE optical power along the radial distribution of the gain medium.
  • the partial differential equation shown is used to calculate the calculated value of the pump light power at each frequency along the radial distribution of the gain medium, the calculated value of the signal light power at each frequency along the radial distribution of the gain medium, and the ASE optical power at each frequency.
  • the calculated value of the radial distribution along the gain medium wherein, when calculating the ASE optical power, the ASE optical power can be divided on the spectrum, and the frequency interval is ⁇ .
  • Step 51 updating the energy on the fiber according to the pump light power at each frequency, the signal light power at each frequency, and the calculated value of the ASE light power at each frequency along the radial distribution of the gain medium and the physical parameters of the optical amplifier. The number of stages of particle inversion.
  • the calculated value of the distribution can be based on the relationship between the optical power shown in the above formula (1) and the number of inversions of the energy level on the fiber, and the new energy level of the fiber is obtained according to the relevant physical parameters of the optical amplifier.
  • the number of particle inversions is the update of the number of inversions of the energy level on the fiber.
  • Step 51 Determine whether the absolute difference of the number of inversions of the energy level of the fiber on the fiber before and after the update is less than a preset convergence threshold. If yes, execute step 51 3; otherwise, perform step 5 12 .
  • this step it is determined whether the absolute difference between the inversion number of the energy level of the fiber on the fiber obtained by the above step 5 07 and the step 51 0 is less than a preset convergence threshold, where the absolute difference may be the absolute difference between the two.
  • the value that is, whether the number of inversions of the energy level on the fiber before and after the update is stable is determined. If the absolute difference between the two is less than the preset convergence threshold, indicating that the number of inversions of the energy level on the fiber is stable, perform the subsequent step 5 1 3, otherwise perform step 512 to continue pumping at each frequency.
  • the optical power, the signal optical power at each frequency, and the ASE optical power at each frequency are updated in the amplifier along the radial distribution of the gain medium.
  • Step 512 Update the pump optical power at each frequency, the signal optical power at each frequency, and the ASE optical power at each frequency along the radial direction of the gain medium in the amplifier, and return to step 51 0.
  • the frequency is updated.
  • the pump optical power, the signal optical power at each frequency, and the ASE optical power at each frequency are distributed along the radial direction of the gain medium in the amplifier, and return to step 51 0-51 1 until the energy level particles on the fiber are reversed.
  • the number of revolutions is stable.
  • Step 51 3 Generate each frequency according to the gain coefficient at each frequency and the input optical power at each frequency.
  • the output optical power is lower and the output optical signal-to-noise ratio at each frequency, and the output optical gain at each frequency is generated according to the input optical power at each frequency and the output optical power at each frequency.
  • the output optical power at each frequency and the output optical signal-to-noise ratio at each frequency can be calculated, and then according to each frequency.
  • the input optical power at the lower and the output optical power at each frequency are used to calculate the output optical gain at each frequency.
  • Step 514 Calculate the total gain of the optical amplifier according to the signal optical power at each frequency.
  • this step acquires the total gain of the optical amplifier according to the signal optical power corresponding to each service wavelength.
  • the total gain of the optical amplifier in this embodiment may be a total gain including ASE noise, or may be a total gain without ASE noise.
  • the light can be calculated according to the output light power of the output signal light and the output ASE light at each frequency, and the input signal light of each frequency and the input light power of the input ASE light.
  • the total gain of the amplifier including the ASE noise may specifically be the ratio of the sum of the output signal light at each frequency and the output optical power of the output ASE light to the sum of the input signal light at each frequency and the input optical power of the input ASE light.
  • the total ASE noise-free total of the optical amplifier can be calculated according to the output optical power of the output signal light at each frequency and the input optical power of the input signal light at each frequency.
  • the gain may specifically be a ratio of a sum of output optical powers of output signal lights at respective frequencies and a sum of input optical powers of input signal lights at respective frequencies.
  • Step 515 it is judged whether the total gain of the optical amplifier reaches a preset gain value, and if yes, step 517 is performed, otherwise step 51 6 is performed.
  • this step determines whether the total gain of the amplifier reaches a preset gain value, specifically whether the total gain of the ASE noise of the optical amplifier or the total gain of the ASE noise is reached. Set the gain value, that is, choose either one. If the total gain of the optical amplifier has reached the preset gain value, then the subsequent step 517 is performed, otherwise step 51 6 is performed to update the input value of the pump light power at each frequency.
  • Step 516 Update the input value of the pump light power at each frequency according to the power-on rule of the pump light, and update the pump light power at each frequency, the signal light power at each frequency, and the ASE light work at each frequency.
  • the rate is distributed radially along the gain medium in the amplifier and returns to step 507.
  • this step updates the input value of the pump optical power at each frequency according to the power-on rules of the Puguang, and updates The pump optical power at each frequency, the signal optical power at each frequency, and the ASE optical power at each frequency are distributed along the radial direction of the gain medium in the amplifier, and return to step 507 to re-execute the steady state solution until The calculated total gain of the optical amplifier reaches a preset gain value.
  • Step 517 The output optical power at each frequency and the output optical signal-to-noise ratio at each frequency are used as output parameters of the optical amplifier.
  • the output optical power at each frequency calculated above and the output 0SNR at each frequency can be used as the optical amplifier.
  • the output parameters complete the parameter simulation process of the optical amplifier.
  • FIG. 6 and 7 are respectively a schematic diagram of comparing the gain and noise index of the optical amplifier calculated by the model in the fifth embodiment of the parameter simulation processing method of the present invention with experimental test results, as shown in FIG. 6, where the abscissa represents the service wavelength, The embodiment is sampled from the range of the service wavelength of 1530 leg to 1560 nm as an experimental test point, and the ordinate represents the gain of the optical amplifier, and the corresponding gain is in the range of 19-20. 5 dB; as shown in FIG. The abscissa represents the service wavelength.
  • the sampling is taken from the range of the service wavelength of 153 Onm-156 Onm as the experimental test point, and the ordinate represents the noise figure (NF) of the optical amplifier, and the corresponding noise index is 6-9 dB.
  • the calculation results of the model in this embodiment are represented by a cross in the figure, and the experimental test results are represented by a circle. It can be seen that the model calculation results of the gain and noise figure of the optical amplifier are basically consistent with the experimental test results.
  • the embodiment provides a parameter simulation processing method, which acquires a gain reference spectrum and a noise index reference spectrum of an optical amplifier in a case of full wave input, and fits an optical amplifier according to a gain reference spectrum and a noise index reference spectrum.
  • the physical parameters are simulated according to the physical parameters of the optical amplifier, the service wavelength, the input optical power, and the input optical signal-to-noise ratio.
  • the real-time simulation of the live network is performed by introducing a numerical model.
  • the real-time online prediction and simulation of optical power and 0SNR is more accurate than the analytical model in the prior art, and it acquires the physical parameters of the personalized veneer by using the analytical mode, which is faster than the numerical model in the prior art. .
  • a fast iterative solution is performed by a parallel calculation method, and the calculation time is compressed into the real-time calculation requirement range, and the accuracy of the operation is also ensured, and in particular, the spectral hole burning is performed in the short wave participation (Spec t Ra l Ho le Burn ing; The following barrel is called: SHB).
  • SHB short wave participation
  • the embodiment uses the light release board to The gain and noise index reference spectrum in the case of full-wave input is measured at the time of shipment. It is only necessary to save the data cartridge in the database of the board or PC to match this method, and it will not increase the customer's cost.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the steps of the foregoing method embodiments are included; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 8 is a schematic structural diagram of a first embodiment of a parameter emulation processing apparatus according to the present invention.
  • the embodiment provides a parameter emulation processing apparatus, which can specifically perform the steps in the first embodiment of the foregoing method. Let me repeat.
  • the parameter simulation processing device provided in this embodiment may specifically include a collection module 801, a fitting module 802, and a simulation module 803.
  • the acquisition module 801 is configured to collect a gain reference spectrum and a noise index reference spectrum of the optical amplifier in the case of a full-wave input according to the input optical power and the output optical power of the optical amplifier.
  • the fitting module 802 is configured to obtain a gain output spectrum and a noise exponential output spectrum of the optical amplifier according to a preset physical parameter preset value of the optical amplifier, by comparing a gain reference spectrum and a noise index reference spectrum of the optical amplifier A gain output spectrum and a noise figure output spectrum of the optical amplifier are used, and the physical parameter preset values of the optical amplifier are iteratively modified to fit the physical parameters of the optical amplifier.
  • the simulation module 803 is configured to simulate the performance parameters of the optical amplifier according to the physical parameters of the optical amplifier, the service wavelength, the input optical power, and the input optical signal to noise ratio.
  • FIG. 9 is a schematic structural diagram of a second embodiment of a parameter emulation processing apparatus according to the present invention.
  • the embodiment provides a parameter emulation processing apparatus, which can specifically perform the steps in the second embodiment to the fifth embodiment. , will not repeat them here.
  • the parameter emulation processing apparatus provided in this embodiment is based on the foregoing FIG. 8 , and the fitting module 802 may specifically include a calculating unit 8021 , a fitting unit 8022 , and a first updating unit 8023 .
  • the calculating unit 8021 is configured to calculate a gain output spectrum and a noise exponential output spectrum of the optical amplifier according to a physical parameter preset value of the optical amplifier.
  • the fitting unit 8022 is configured to: when an error between the gain output spectrum and the gain reference spectrum, and an error between the noise index output spectrum and the noise index reference spectrum is less than a preset accuracy threshold,
  • the physical parameter preset value is used as a physical parameter of the optical amplifier.
  • the first updating unit 8023 is configured to: when an error between the gain output spectrum and the gain reference spectrum, or an error between the noise index output spectrum and the noise index reference spectrum is not less than a preset accuracy threshold, Updating the physical parameter preset value until the gain output spectrum and the noise index output spectrum calculated according to the physical parameter preset value and the gain reference spectral gain The error between the noise index reference spectrum and the noise index reference spectrum is less than a preset accuracy threshold, and the updated physical parameter preset value is used as a physical parameter of the optical amplifier.
  • the simulation module 803 may specifically include a first generation unit 8031, a second generation unit 8032, a second update unit 8033, and a simulation unit 8034.
  • the first generating unit 8031 is configured to generate a gain coefficient at each frequency according to the obtained number of inversions of the energy level on the fiber, the physical parameters of the optical amplifier, and the service wavelength.
  • the second generating unit 8032 is configured to generate, according to the gain coefficient at each frequency and a partial differential equation satisfied when the light field propagates in the radial direction in the fiber, to generate a radial distribution of the pump light power at each frequency along the gain medium.
  • the second updating unit 8033 is configured to calculate, according to a radial distribution of the pump optical power at the respective frequencies, a calculated value along a radial distribution of the gain medium, and a calculated value of the signal optical power at the respective frequencies along a radial direction of the gain medium, and the respective The calculated value of the ASE optical power at the frequency along the radial distribution of the gain medium and the physical parameters of the optical amplifier update the number of inversions of the energy level on the fiber.
  • the simulation unit 8034 is configured to: according to the gain coefficient at each frequency, the input optical power at each frequency, when the absolute difference between the number of inversions of the energy level of the fiber on the fiber before and after the update is less than a preset convergence threshold
  • the input optical signal to noise ratio at each frequency produces an output parameter of the optical amplifier.
  • the simulation module 803 in this embodiment may further include a third update unit 8035, where the third update unit 8035 is configured to: when the update, the absolute difference of the energy level of the energy level on the fiber is greater than or equal to the preset When the threshold is converged, the pump optical power at each frequency, the signal optical power at each frequency, and the ASE optical power at each frequency are distributed along the radial direction of the gain medium in the amplifier until The partial difference between the inversion number of the energy level on the fiber of the fiber calculated by the partial differential equation and the number of inversions of the energy level of the fiber on the fiber before the update is less than the preset convergence threshold.
  • the generating sub-unit 80341 is configured to generate output optical power at each frequency and output optical signal-to-noise ratio at each frequency according to the gain coefficient at each frequency and the input optical power at each frequency, and according to the input light at each frequency.
  • the power and output optical power at each frequency produces an output optical gain at each frequency.
  • the calculation sub-unit 80342 is for calculating the total gain of the optical amplifier based on the signal light power at each frequency.
  • the simulation subunit 80343 is configured to: when the total gain of the optical amplifier reaches a preset gain value, use the output optical power at each frequency and the output optical signal-to-noise ratio at each frequency as the optical amplifier Output parameters.
  • the new subunit 80344 is configured to: when the total gain of the optical amplifier does not reach a preset gain value, update an input value of the pump optical power at each frequency according to a power-on rule of the pump light, and update the The pump optical power at each frequency, the signal optical power at each of the frequencies, and the ASE optical power at each of the frequencies are distributed along the radial direction of the gain medium in the amplifier until it is based on the updated frequencies The output value of the signal light power and the output value of the ASE light power at each frequency are calculated until the total gain of the ASE noise of the amplifier reaches a preset gain value.
  • the embodiment provides a parameter simulation processing device, which acquires a gain reference spectrum and a noise index reference spectrum of an optical amplifier in a case of full wave input, and fits an optical amplifier according to a gain reference spectrum and a noise index reference spectrum.
  • the physical parameters are simulated according to the physical parameters of the optical amplifier, the service wavelength of the live network, the input optical power, and the input optical signal-to-noise ratio.
  • This embodiment introduces a numerical model in real-time simulation of the live network. Performing real-time online prediction and simulation of fast optical power and 0SNR is more accurate than the analytical model in the prior art, and it acquires the physical parameters of the personalized veneer by using the analytical mode, compared with the numerical model in the prior art. More quickly.
  • a fast iterative solution is performed by a parallel calculation method, and the calculation time is compressed into the real-time calculation requirement range, and the accuracy of the operation is also ensured, and the spectral hole burning in the short wave participation is particularly reduced (Spectra l Hole Burning; The following barrels are called: SHB).
  • SHB Spectra l Hole Burning
  • the gain and noise index reference spectrum in the case of full wave input is measured when the optical board is produced and shipped, and only the data cartridge can be saved in the database of the single board or the PC to match. This method does not increase the cost of the customer.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Lasers (AREA)

Abstract

本发明实施例公开了一种参数仿真处理方法和装置,方法包括:根据光放大器的输入光功率和输出光功率,采集在满波输入的情况下的光放大器的增益参考谱和噪声指数参考谱;根据预设的光放大器的物理参数预设值得到光放大器的增益输出谱和噪声指数输出谱,通过比较光放大器的增益参考谱和噪声指数参考谱与光放大器的增益输出谱和噪声指数输出谱,并迭代修改光放大器的物理参数预设值来;根据光放大器的物理参数、业务波长、输入光功率和输入光信噪比对光放大器的性能参数进行仿真。装置包括采集模块、拟合模块和仿真模块。本实施例融合了解析模型的快速性和数值模型的准确性,准确获取计算所需的所有物理参数,提高了仿真结果的精确性。

Description

参数仿真处理方法和装置
本申请要求于 2011 年 5 月 18 日提交中国专利局、 申请号为 201110129262.4、 发明名称为"参数仿真处理方法和装置"的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术, 尤其涉及一种参数仿真处理方法和装置。 背景技术
波分复用 ( Wavelength Division Multiplex; 以下筒称: WDM ) 光网络能 够在光域中进行信号的复用、 传输、 方法、 选路以及恢复等, 已经成为光通信 领域研究的热点。在 WDM网络中从发送端发出的光信号在光纤传输过程中由 于光纤和无源器件的衰耗, 需要光放大器对光信号的光功率进行放大,通常采 用掺铒光纤放大器( Erbium Doped Fiber Amplifier; 以下筒称: EDFA ) 中继的 方式。对每一级 EDFA而言, 为了保证下一级的输出光功率在固定的光功率范 围内, 其工作模式设定为自动增益控制 ( Automatic Gain Control; 以下筒称: AGC )模式, 其工作特性为总输出增益是固定值。 因此, 对 EDFA进行仿真, 对评估信道光功率和信道质量有非常重要的作用。
现有技术中通常采用解析模型和数值模型来仿真 EDFA的输出参数。在解 析模型中, EDFA相当于黑盒模型, 其通过测量有限场景的输出增益和噪声指 数来推断其他任意场景的输出增益和噪声指数, 并通过 EDFA的噪声指数、输 入光功率和输入光信噪比( Optical Signal Noise Rate; 以下筒称: OSNR )来计 算输出光功率和输出 OSNR。而数值模型是在准确获知计算所需的所有物理参 数之后(物理参数包括铒纤吸收发射截面系数、 掺杂浓度、 有效半径、 光放大 器所用铒纤长度、 端面反射系数、 端面波长相关损耗系数等), 定量计算任意 输入条件下的输出增益和噪声指数以及输出 OSNR。
然而, 现有技术中的解析模型准确性较低, 而数值模型的精度理论上虽然 高于解析模型,但由于个体单板的差异性较大, 实际中是无法精确预估计算所 需的各单板的某些物理参数,导致计算结果的准确性降低, 不具备实际应用价 值。
发明内容
本发明实施例在于提供一种参数仿真处理方法和装置,融合解析模型的快 速性和数值模型的准确性, 能够精确个体单板的差异性, 准确获取计算所需的 所有物理参数, 提高仿真结果的精确性。
为了实现上述目的, 本发明实施例提供了一种参数仿真处理方法, 包括: 根据光放大器的输入光功率和输出光功率,采集在满波输入的情况下的所 述光放大器的增益参考谱和噪声指数参考谱;
根据预设的所述光放大器的物理参数预设值得到所述光放大器的增益输 出谱和噪声指数输出谱,通过比较所述光放大器的增益参考谱和噪声指数参考 谱与所述光放大器的增益输出谱和噪声指数输出谱,并迭代修改所述光放大器 的物理参数预设值来拟合所述光放大器的物理参数;
根据所述光放大器的物理参数、业务波长、输入光功率和输入光信噪比对 所述光放大器的性能参数进行仿真。
本发明实施例提供了一种参数仿真处理装置, 包括:
采集模块, 用于根据光放大器的输入光功率和输出光功率, 采集在满波输 入的情况下的所述光放大器的增益参考谱和噪声指数参考谱;
拟合模块,用于根据预设的所述光放大器的物理参数预设值得到所述光放 大器的增益输出谱和噪声指数输出谱,通过比较所述光放大器的增益参考谱和 噪声指数参考谱与所述光放大器的增益输出谱和噪声指数输出谱,并迭代修改 所述光放大器的物理参数预设值来拟合所述光放大器的物理参数;
仿真模块, 用于根据所述光放大器的物理参数、 业务波长、输入光功率和 输入光信噪比对所述光放大器的性能参数进行仿真。
本发明实施例提供的一种参数仿真处理方法和装置,通过采集获取在满波 输入的情况下的光放大器的增益参考谱和噪声指数参考谱,根据增益参考谱和 噪声指数参考谱来拟合光放大器的物理参数, 并根据光放大器的物理参数、 业 务波长、输入光功率和输入光信噪比来对光放大器的性能参数进行仿真; 本实 施例融合了解析模型的快速性和数值模型的准确性,能够精确个体单板的差异 性, 准确获取计算所需的所有物理参数, 提高了仿真结果的精确性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作一筒单地介绍, 显而易见地, 下面描 述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出 创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明参数仿真处理方法实施例一的流程图;
图 2为本发明参数仿真处理方法实施例二的流程图;
图 3为本发明参数仿真处理方法实施例三的流程图;
图 4为本发明参数仿真处理方法实施例四的流程图;
图 5为本发明参数仿真处理方法实施例五的流程图;
图 6 为本发明参数仿真处理方法实施例五中模型计算得到的光放大器的 增益与实验测试结果的比较示意图;
图 7 为本发明参数仿真处理方法实施例五中模型计算得到的光放大器的 噪声指数与实验测试结果的比较示意图;
图 8为本发明参数仿真处理装置实施例一的结构示意图;
图 9为本发明参数仿真处理装置实施例二的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。基于本发明中 的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
图 1为本发明参数仿真处理方法实施例一的流程图,如图 1所示, 本实施例 提供了一种参数仿真处理方法, 可以具体包括如下步骤:
步骤 101 , 根据光放大器的输入光功率和输出光功率, 采集在满波输入的 情况下的光放大器的增益参考谱和噪声指数参考谱。
在本实施例中, 光放大器可以具体为 EDFA、 半导体光放大器 ( Semiconduc tor Opt ica l Ampl i f ier; 以下筒称: S0A )和拉曼光纤放大器等, 为了准确获取各光放大器的各个物理参数,可以根据光放大器的输入光功率和 输出光功率, 采集在满波输入的情况下的光放大器的增益参考谱和噪声指数 ( Noi se Figure; 以下筒称: NF )参考谱。 具体可以通过满波激光源向光放大 器提供不同频率的业务波长,通过光谱仪来获取光放大器在各频率的业务波长 下对应的输入光功率和输出光功率。根据采集到的光放大器在满波输入的情况 下的输入光功率和输出光功率便可以进一步获取到各业务波长对应的增益和 噪声指数, 进而获取到该光放大器的增益参考谱和噪声指数参考谱, 并将该增 益参考谱和噪声指数参考谱存储在单板闪存( f lash )或者 PC数据库中, 以备 后续调用。
步骤 102 , 根据预设的所述光放大器的物理参数预设值得到所述光放大器 的增益输出谱和噪声指数输出谱,通过比较所述光放大器的增益参考谱和噪声 指数参考谱与所述光放大器的增益输出谱和噪声指数输出谱,并迭代修改所述 光放大器的物理参数预设值来拟合所述光放大器的物理参数。
在采集到光放大器的增益参考谱和噪声指数参考语后,根据该增益参考谱 和噪声指数参考谱对光放大器的物理参数进行拟合,以获取到各光放大器的各 物理参数的准确值,相当于完成光放大器的建模过程。本实施例具体可以先根 据工程经验预先设定一套光放大器的相关物理参数,根据预设的光放大器的物 理参数可以生成相应的光放大器的增益输出谱和噪声指数输出谱,然后比较前 述计算得到的增益参考谱与该增益输出谱,以及噪声指数参考谱与噪声指数输 出谱; 如果二者的误差满足精度要求, 则可以将该预设的光放大器的物理参数 的值作为最终拟合的结果; 如果不满足精度要求, 则修改物理参数的预设值, 继续迭代直到满足精度要求为止。 同时, 本实施例将拟合获取到的物理参数保 存在产品数据库中, 以备后续使用。 其中, 本实施例中的上述对光放大器的物 理参数的拟合过程可以在离线状态下进行,即可以事先拟合得到各光放大器分 别对应的物理参数,后续仿真时直接调用拟合结果即可, 则可以大大提高仿真 的效率。
步骤 103 , 根据光放大器的物理参数、 业务波长、 输入光功率和输入光信 噪比对光放大器的性能参数进行仿真。
在通过上述步骤拟合出光放大器的物理参数后,在现网使用过程中, 可以 通过调用保存在产品数据库中对应光放大器型号的物理参数,获取到光放大器 的物理参数, 再根据现网中实际输入的业务波长、 输入光功率和输入 OSNR以 及其他性能参数, 便可以实现对该光放大器的性能参数的仿真。
本实施例提供了一种参数仿真处理方法,通过采集获取在满波输入的情况 下的光放大器的增益参考谱和噪声指数参考谱,根据增益参考谱和噪声指数参 考谱来拟合光放大器的物理参数, 并根据光放大器的物理参数、现网的业务波 长、输入光功率和输入光信噪比来对光放大器的性能参数进行仿真; 本实施例 融合了解析模型的快速性和数值模型的准确性, 能够精确个体单板的差异性, 准确获取计算所需的所有物理参数, 提高了仿真结果的精确性。
图 2为本发明参数仿真处理方法实施例二的流程图,如图 2所示, 本实施例 提供了一种参数仿真处理方法, 本实施例在上述图 1所示的基础之上, 步骤 102 可以具体包括如下步骤:
步骤 1021 , 根据光放大器的物理参数预设值计算光放大器的增益输出谱 和噪声指数输出谱。
在本实施例中,在通过上述步骤采集得到该光放大器的增益参考谱和噪声 指数参考语后,在对光放大器的物理参数进行拟合时, 可以先根据经验值设置 光放大器的物理参数预设值。本步骤为根据该物理参数预设值, 采用光放大器 的模型分别计算得到光放大器的增益输出谱和噪声指数输出谱。
步骤 1022 , 判断增益输出谱与增益参考谱之间的误差是否小于预设的精 度阈值, 以及判断噪声指数输出谱与噪声指数参考语之间的误差是否小于预 设的精度阈值, 如果是, 则执行步骤 1023 , 否则执行步骤 1 024。
本步骤为判断上述计算得到的增益输出谱和噪声指数输出谱分别与增益 参考谱和噪声指数参考语之间的误差, 当增益输出谱与增益参考谱之间的误 差, 以及噪声指数输出谱与噪声指数参考语之间的误差均小于预设的精度阈 值时, 执行后续步骤 1023 ; 当增益输出谱与增益参考语之间的误差, 或者噪 声指数输出谱与噪声指数参考谱之间的误差大于或等于预设的精度阈值时, 执行后续步骤 1024。
步骤 1023 , 将物理参数预设值作为光放大器的物理参数。
当增益输出谱与增益参考谱之间的误差,以及噪声指数输出谱与噪声指数 参考语之间的误差均小于预设的精度阈值时, 表明本次计算增益输出谱和噪 声指数输出谱所使用的物理参数预设值满足要求, 本实施例直接将该增益输 出谱和噪声指数输出谱对应的光放大器的物理参数预设值, 作为拟合后的光 放大器的物理参数。
步骤 1024 , 更新物理参数预设值, 直到根据物理参数预设值计算得到的 增益输出谱和噪声指数输出谱与增益参考谱增益和噪声指数参考谱之间的误 差均小于预设的精度阈值,并将更新后的物理参数预设值作为光放大器的物理 参数。 当增益输出谱与增益参考语之间的误差,或者噪声指数输出谱与噪声指数 参考谱之间的误差大于或等于预设的精度阈值时,表明本次计算增益输出谱和 噪声指数输出谱所使用的物理参数预设值不能达到要求,则继续更新该物理参 数预设值; 再根据更新后的物理参数预设值计算增益输出谱和噪声指数输出 谱, 即返回执行步骤 1021 , 直到根据物理参数预设值计算得到的增益输出谱 和噪声指数输出谱与增益参考谱增益和噪声指数参考谱之间的误差均小于预 设的精度阈值, 并将更新后的物理参数预设值作为光放大器的物理参数。
图 3为本发明参数仿真处理方法实施例三的流程图,如图 3所示, 本实施例 提供了一种参数仿真处理方法, 本实施例在上述图 1或图 2所示的基础之上, 步 骤 103可以具体包括如下步骤:
步骤 1031 , 根据获取的铒纤上能级粒子反转数、 光放大器的物理参数和 业务波长生成各频率下的增益系数。
本步骤为对离线拟合得到的光放大器的物理参数进行调用,根据获取到的 铒纤上能级粒子反转数以及光放大器的物理参数和现网中的实际业务波长来 计算生成各频率下的增益系数。具体地, 本步骤中的铒纤上能级粒子反转数是 根据各频率下的泵浦光功率的输入值、各频率下的信号光功率的输入值和各频 率下的放大的自发辐射( Ampl if ied Spontaneous Emi s s ion; 以下筒称: ASE ) 光功率的输入值以及光放大器的物理参数而计算得到。
步骤 1032 , 根据各频率下的增益系数以及当光场在铒纤中沿径向传播时 满足的偏微分方程, 生成各频率下的泵浦光功率、各频率下的信号光功率和各 频率下的 ASE光功率沿增益介质径向分布的计算值。
本实施例中各频率下的泵浦光功率沿增益介质径向分布的计算值、各频率 下的信号光功率沿增益介质径向分布的计算值和各频率下的 ASE 光功率沿增 益介质径向分布的计算值, 与上述提到的各参数的输入值是不同的,各频率下 的泵浦光功率的输入值、 各频率下的信号光功率的输入值和各频率下的 ASE 光功率的输入值可以作为各频率下的泵浦光功率、信号光功率和 ASE光功率的 初始值, 后续这些参数的值会随着铒纤粒子反转数而发生改变。
步骤 1033 , 根据各频率下的泵浦光功率、 各频率下的信号光功率和各频 率下的 ASE光功率沿增益介质径向分布的计算值, 以及光放大器的物理参数, 更新铒纤上能级粒子反转数。 步骤 1034 , 当更新前后的铒纤上能级粒子反转数的绝对差值小于预设的 收敛阈值时,根据各频率下的增益系数、各频率下的输入光功率和各频率下的 输入光信噪比, 生成光放大器的输出参数。
本实施例通过判断铒纤上能级粒子反转数的稳定性来进一步生成光放大 器的输出参数,当更新后的铒纤上能级粒子反转数与更新前的铒纤上能级粒子 反转数的绝对差值小于收敛阈值时,表明当前的铒纤上能级粒子反转数已经稳 定,则可以根据更新当前的铒纤上能级粒子反转数所使用的各频率下的增益系 数、各频率下的输入光功率和各频率下的输入光信噪比, 来生成光放大器的输 出参数。
进一步地, 上述步骤 103还可以包括如下步骤:
步骤 1035 , 当更新前后的铒纤上能级粒子反转数的绝对差值大于或等于 预设的收敛阈值时, 更新各频率下的泵浦光功率、各频率下的信号光功率和各 频率下的 ASE光功率在放大器中沿增益介质径向的分布,直到根据偏微分方程 计算得到的铒纤上能级粒子反转数,与更新前的铒纤上能级粒子反转数的绝对 差值小于预设的收敛阈值为止。
在本实施例中,当更新后的铒纤上能级粒子反转数与更新前的铒纤上能级 粒子反转数的绝对差值大于或等于收敛阈值时,表明当前的铒纤上能级粒子反 转数不稳定, 则需要继续更新各频率下的泵浦光功率、各频率下的信号光功率 和各频率下的 ASE光功率在放大器中沿增益介质径向的分布,即对前述各频率 下的泵浦光功率的计算值、 各频率下的信号光功率的计算值和各频率下的 ASE 光功率的计算值进行更新, 并返回执行上述步骤 133 , 直到计算得到的更新前 后的铒纤上能级粒子反转数的绝对差值小于预设的收敛阈值为止。
图 4为本发明参数仿真处理方法实施例四的流程图,如图 4所示, 本实施例 提供了一种参数仿真处理方法,本实施例在上述图 3所示的基础之上,步骤 1034 可以具体包括如下步骤:
步骤 1034A, 根据各频率下的增益系数和各频率下的输入光功率生成各频 率下的输出光功率和各频率下的输出光信噪比,并根据各频率下的输入光功率 和各频率下的输出光功率生成各频率下的输出光增益。
在计算光放大器的输出参数时, 本实施例可以根据图 3中步骤 1034最后 计算得到的各频率下的增益系数和各频率下的输入光功率,来计算生成各频率 下的输出光功率和各频率下的输出光信噪比,进而可以根据各频率下的输入光 功率和各频率下的输出光功率来计算生成各频率下的输出光增益。
步骤 1034B, 根据各频率下的信号光功率计算光放大器的总增益。
当通过上述稳定求解过程获取到各业务波长对应的输出光增益和输出 0SNR后, 本步骤根据各业务波长对应的信号光功率获取该光放大器的总增益。 其中, 本实施例中的光放大器的总增益可以为含 ASE噪声的总增益,也可以为 不含 ASE噪声的总增益。
步骤 1034C , 当光放大器的总增益达到预设的增益值时, 将各频率下的输 出光功率和各频率下的输出光信噪比作为光放大器的输出参数。
进一步地, 上述步骤 1034还可以包括如下步骤:
步骤 1034D , 当光放大器的总增益未达到预设的增益值, 按照泵浦光的上 电规则更新各频率下的泵浦光功率的输入值, 并更新各频率下的泵浦光功率、 各频率下的信号光功率和各频率下的 ASE光功率在放大器中沿增益介质径向的 分布, 直到根据更新后的各频率下的信号光功率的输出值和各频率下的 ASE光 功率的输出值计算得到的放大器的总增益。
图 5为本发明参数仿真处理方法实施例五的流程图,如图 5所示, 本实施例 提供了一种参数仿真处理方法, 本实施例可以具体包括如下步骤:
步骤 501 , 根据光放大器的输入光功率和输出光功率, 采集在满波输入的 情况下的所述光放大器的增益参考谱和噪声指数参考谱,本步骤可以与上述步 骤 101类似, 此处不再赘述。
步骤 502 , 根据光放大器的物理参数预设值计算所述光放大器的增益输出 谱和噪声指数输出谱, 本步骤可以类似上述步骤 1021 , 此处不再赘述。
步骤 503 , 判断增益输出谱与增益参考语之间的误差是否小于预设的精度 阈值, 如果是, 则执行步骤 504 , 否则执行步骤 505。
在计算得到光放大器的增益输出谱和噪声指数输出语后,分别判断光放大 器的增益输出谱和噪声指数输出谱与增益参考谱和噪声指数参考谱之间的误 差是否满足精度要求。本步骤为先比较增益输出谱与增益参考谱, 判断增益输 出谱与增益参考语之间的误差是否小于预设的精度阈值;如果二者的误差满足 精度要求, 则执行步骤 504 , 继续对噪声指数输出谱与噪声指数参考谱进行比 较; 如果二者的误差不能满足精度要求, 则执行步骤 505 , 对之前设定的物理 参数预设值进行更新, 并返回执行步骤 502 , 直到增益输出谱和噪声指数输出 谱与增益参考谱和噪声指数参考语之间的误差均满足精度要求为止。
步骤 504 , 判断噪声指数输出谱与噪声指数参考语之间的误差是否小于预 设的精度阈值, 如果是, 则执行步骤 506 , 否则执行步骤 505。
当计算得到的增益输出谱与增益参考谱之间的误差小于精度阈值后,继续 比较噪声指数输出谱与噪声指数参考谱,判断噪声指数输出谱与噪声指数参考 语之间的误差是否小于预设的精度阈值; 如果二者的误差满足精度要求, 则执 行步骤 506 , 将本次计算所使用的物理参数预设值作为光放大器的物理参数; 如果二者的误差不能满足精度要求, 则也执行步骤 505 , 对之前设定的物理参 数预设值进行更新, 并返回执行步骤 502 , 直到增益输出谱和噪声指数输出谱 与增益参考谱和噪声指数参考语之间的误差均满足精度要求为止。
步骤 505 , 更新物理参数预设值, 并返回执行步骤 502。
当增益输出谱与增益参考语之间的误差大于或等于精度阈值,或者噪声指 数输出谱与噪声指数参考语之间的误差大于或等于精度阈值时,则对设定的物 理参数预设值进行更新, 并返回执行步骤 502-504进行迭代, 直到增益输出谱 与增益参考谱之间的误差小于精度阈值,且噪声指数输出谱与噪声指数参考谱 之间的误差小于精度阈值为止。
步骤 506 , 将当前物理参数预设值作为光放大器的物理参数。
当增益输出谱与增益参考语之间的误差小于精度阈值,且噪声指数输出谱 与噪声指数参考语之间的误差也小于精度阈值时,则表明该光放大器的物理参 数拟合完毕,将本轮计算所使用的当前物理参数预设值作为光放大器的物理参 数, 并将该物理参数进行保存。 值得说明的是, 在上述迭代拟合过程中, 实验 中得到的增益参考谱和噪声指数参考谱是不变的,每次迭代得到的增益输出谱 和噪声指数输出谱将会逐次逼近实验得到的增益参考谱和噪声指数参考谱,此 外, 本实施例中预先设定的物理参数预设值为光放大器在设计时的标称值, 单 板的差异性越小则迭代的速度越快。
需要指出的是,本实施例中的上述步骤 501-506为对光放大器的物理参数 的拟合过程, 这些步骤可以离线执行, 即可以在进行参数仿真之前事先拟合得 到, 并进行保存, 其与后续的步骤之间不存在紧密的时序关系, 在进行参数仿 真时再调用拟合得到的结果即可。 步骤 507, 根据各频率下的泵浦光功率的输入值、 各频率下的信号光功率 的输入值和各频率下的 ASE光功率的输入值以及光放大器的物理参数计算铒纤 上能级粒子反转数。
在进行参数仿真时,本实施例通过稳态求解过程来获取光放大器中各业务 波长对应的输出光增益和输出 OSNR, 此处的稳态是针对铒纤上能级粒子反转 数而言的。本步骤为根据各频率下的泵浦光功率的输入值、各频率下的信号光 功率的输入值和各频率下的 ASE光功率的输入值以及光放大器的物理参数计 算铒纤上能级粒子反转数。 其中, 各频率下的泵浦光功率的输入值、 各频率下 的信号光功率的输入值和各频率下的 ASE光功率的输入值可以为 z=0时所对应 的已知功率值, 则根据公式(1 )所示的铒纤上能级粒子反转数的径向相关关 系可以计算得到铒纤上能级粒子反转数:
Figure imgf000011_0001
其中, 为铒纤上能级粒子反转数, 为信号光功率, A#为铒纤的等效横截 面积, ^为铒纤的掺杂浓度, A为增益系数, 该增益系数满足如下公式(2 ):
Figure imgf000011_0002
其中, 和 分别为铒纤对频率为 V .光场的等效吸收截面和发射截面,
A O 为背景损耗。 Γ214/13/24/15/2能级的弛豫特征时间,满足如下公式(3 ): ζ = Α^ / τ21 ( 3 ) 其中, 为饱和相关参数。 等效吸收和发射截面 和 分别表示为如下公式 ( 4 )和( 5 ):
Figure imgf000011_0003
其中: ^ (6)
R^=∑g'{^)-^+ (7)
Figure imgf000012_0001
其中, "( 和 分别为铒纤在波长 .处的吸收和发射截面, ( , λ)为铒纤增益抑制相关参数。 步骤 508, 根据铒纤上能级粒子反转数、 光放大器的物理参数和业务波长 生成各频率下的增益系数。
本步骤为对离线拟合得到的光放大器的物理参数进行调用,根据上述步骤 计算得到的铒纤上能级粒子反转数以及光放大器的物理参数和现网中的实际 业务波长来计算生成各频率下的增益系数。 其中, 光场在铒纤中沿径向 ζ传播 时满足如下公式( 10 ) 、 ( 11 )和( 12 )所示的传播方程: dz O) ( 10)
dPis jz)
g priz) (ii ) dz
Figure imgf000012_0002
其中, P— P .和 4 分别为频率为 和 f的泵浦光功率, 信号光 功率和 ASE光功率, 士符号表示正向和逆向传播方向, gk、 &和 分别为 和 v/f的增益系数。 步骤 509 , 根据各频率下的增益系数以及当光场在铒纤中沿径向传播时满 足的偏微分方程生成各频率下的泵浦光功率、各频率下的信号光功率和各频率 下的 ASE光功率沿增益介质径向分布的计算值。
在获取到各频率下的增益系数后,又可根据上述公式(10)、 (11 )和(12) 所示的偏微分方程来计算各频率下的泵浦光功率沿增益介质径向分布的计算 值、 各频率下的信号光功率沿增益介质径向分布的计算值和各频率下的 ASE光 功率沿增益介质径向分布的计算值。 其中, 在计算 ASE光功率时, 可以将 ASE 光功率在频谱上进行分割, 频率间隔为 ^。 步骤 51 0 , 根据各频率下的泵浦光功率、 各频率下的信号光功率和各频率 下的 ASE光功率沿增益介质径向分布的计算值以及光放大器的物理参数, 更新 铒纤上能级粒子反转数。
在获取到各频率下的泵浦光功率沿增益介质径向分布的计算值、各频率下 的信号光功率沿增益介质径向分布的计算值和各频率下的 ASE光功率沿增益介 质径向分布的计算值, 又可根据上述公式(1 )所示的光功率与铒纤上能级粒 子反转数之间的关系式,并根据光放大器的相关物理参数得到新的铒纤上能级 粒子反转数, 即对铒纤上能级粒子反转数进行更新。
步骤 51 1 , 判断更新前后的铒纤上能级粒子反转数的绝对差值是否小于预 设的收敛阈值, 如果是, 则执行步骤 51 3 , 否则执行步骤 5 12。
本步骤为判断上述步骤 5 07和步骤 51 0计算得到的铒纤上能级粒子反转数 的绝对差值是否小于预设的收敛阈值,此处的绝对差值可以为二者差值的绝对 值, 即判断更新前后的铒纤上能级粒子反转数是否稳定。如果二者的绝对差值 小于预设的收敛阈值, 则表明该铒纤上能级粒子反转数已经稳定, 则执行后续 步骤 5 1 3 , 否则执行步骤 512 , 继续对各频率下的泵浦光功率、 各频率下的信号 光功率和各频率下的 ASE光功率在放大器中沿增益介质径向的分布进行更新。
步骤 512 , 更新各频率下的泵浦光功率、 各频率下的信号光功率和各频率 下的 ASE光功率在放大器中沿增益介质径向的分布, 并返回执行步骤 51 0。
当上述步骤 5 07和步骤 51 0计算得到的铒纤上能级粒子反转数的绝对差值 大于预设的收敛阈值, 即铒纤上能级粒子反转数不稳定时, 更新各频率下的泵 浦光功率、 各频率下的信号光功率和各频率下的 ASE光功率在放大器中沿增益 介质径向的分布, 并返回执行步骤 51 0-51 1 , 直到铒纤上能级粒子反转数稳定 为止。
步骤 51 3 , 根据各频率下的增益系数和各频率下的输入光功率生成各频率 下的输出光功率和各频率下的输出光信噪比,并根据各频率下的输入光功率和 所述各频率下的输出光功率生成各频率下的输出光增益。
当上述步骤 5 07和步骤 51 0计算得到的铒纤上能级粒子反转数的绝对差值 小于预设的收敛阈值, 即铒纤上能级粒子反转数已稳定时,表明稳定求解过程 结束,则可以根据最后计算得到的各频率下的增益系数和各频率下的输入光功 率, 来计算生成各频率下的输出光功率和各频率下的输出光信噪比, 进而可以 根据各频率下的输入光功率和各频率下的输出光功率来计算生成各频率下的 输出光增益。
步骤 514 , 根据各频率下的信号光功率计算光放大器的总增益。
当通过上述稳定求解过程获取到各业务波长对应的输出光增益和输出
0SNR后, 本步骤根据各业务波长对应的信号光功率获取该光放大器的总增益。 其中, 本实施例中的光放大器的总增益可以为含 ASE噪声的总增益, 也可以为 不含 ASE噪声的总增益。 具体地, 对于含 ASE噪声的总增益来说, 可以根据各频 率下的输出信号光和输出 ASE光的输出光功率, 以及各频率下的输入信号光和 输入 ASE光的输入光功率来计算光放大器的含 ASE噪声的总增益,具体可以为各 频率下的输出信号光和输出 ASE光的输出光功率之和与各频率下的输入信号光 和输入 ASE光的输入光功率之和的比值。对于不含 ASE噪声的总增益来说, 可以 根据各频率下的输出信号光的输出光功率和所述各频率下的输入信号光的输 入光功率计算所述光放大器的不含 ASE噪声的总增益, 具体可以为各频率下的 输出信号光的输出光功率之和与各频率下的输入信号光的输入光功率之和的 比值。
步骤 515 , 判断光放大器的总增益是否达到预设的增益值, 如果是, 则执 行步骤 517 , 否则执行步骤 51 6。
在计算得到光放大器的总增益后,本步骤为判断该放大器的总增益是否达 到预设的增益值, 具体可以为判断光放大器的含 ASE噪声的总增益或者含 ASE 噪声的总增益是否达到预设的增益值, 即二者选其一。如果光放大器的总增益 已经达到预设的增益值, 则执行后续步骤 517 , 否则执行步骤 51 6 , 更新各频率 下的泵浦光功率的输入值。
步骤 516 , 按照泵浦光的上电规则更新各频率下的泵浦光功率的输入值, 并更新各频率下的泵浦光功率、 各频率下的信号光功率和各频率下的 ASE光功 率在放大器中沿增益介质径向的分布, 并返回执行步骤 507。
当光放大器的含 ASE噪声的总增益或者含 ASE噪声的总增益未达到预设的 增益值时, 本步骤按照浦光的上电规则更新各频率下的泵浦光功率的输入值, 并更新各频率下的泵浦光功率、 各频率下的信号光功率和各频率下的 ASE光功 率在放大器中沿增益介质径向的分布, 并返回执行步骤 507 , 即重新进行上述 稳态求解, 直到计算得到的光放大器的总增益达到预设的增益值为止。
步骤 517 , 将各频率下的输出光功率和各频率下的输出光信噪比作为光放 大器的输出参数。
当光放大器的含 ASE噪声的总增益或者含 ASE噪声的总增益达到预设的增 益值时, 则可以将上述计算得到的各频率下的输出光功率和各频率下的输出 0SNR作为该光放大器的输出参数, 完成光放大器的参数仿真过程。
图 6和 7分别为本发明参数仿真处理方法实施例五中模型计算得到的光放 大器的增益和噪声指数与实验测试结果的比较示意图, 如图 6所示, 图中横坐 标代表业务波长, 本实施例从业务波长为 1530腿 -1560nm的范围中采样作为实 验测试点, 纵坐标代表光放大器的增益, 相应地得到的增益在 19-20. 5dB的范 围内; 如图 7所示, 图中横坐标代表业务波长, 本实施例从业务波长为 153 Onm-156 Onm的范围中采样作为实验测试点, 纵坐标代表光放大器的噪声指 数(NF ) , 相应地得到的噪声指数为 6-9dB的范围内。 本实施例中模型计算结 果在图中以十字表示, 而实验测试结果以圓圏表示, 可以看出, 光放大器的增 益和噪声指数的模型计算结果与实验测试结果基本吻合。
本实施例提供了一种参数仿真处理方法,通过采集获取在满波输入的情况 下的光放大器的增益参考谱和噪声指数参考谱,根据增益参考谱和噪声指数参 考谱来拟合光放大器的物理参数, 并根据光放大器的物理参数、 业务波长、 输 入光功率和输入光信噪比来对光放大器的性能参数进行仿真;本实施例在现网 实时仿真时,通过引入了数值模型进行快速的光功率和 0SNR的实时在线预测和 仿真, 比现有技术中的解析模型更加准确, 而其通过采用解析模式的获取个性 化单板的各物理参数, 比现有技术中的数值模型更加迅速。本实施例通过一种 并行的计算方式进行快速迭代求解,将计算时间压缩到实时计算的要求范围之 内,同时也保证了运算的精度,特别能降低是在短波参与时光谱烧孔( Spec t ra l Ho l e Burn ing; 以下筒称: SHB )所带来的误差。 且本实施例利用光放单板出 产发货时测量在满波输入的情况下的增益和噪声指数参考谱,仅需要将数据筒 单保存在单板 f lash或 PC机的数据库中便可以匹配本方法, 并不会增加客户的 成本。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: R0M、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
图 8为本发明参数仿真处理装置实施例一的结构示意图,如图 8所示, 本实 施例提供了一种参数仿真处理装置,可以具体执行上述方法实施例一中的各个 步骤, 此处不再赘述。本实施例提供的参数仿真处理装置可以具体包括采集模 块 801、 拟合模块 802和仿真模块 803。 其中, 采集模块 801用于根据光放大器的 输入光功率和输出光功率,采集在满波输入的情况下的所述光放大器的增益参 考谱和噪声指数参考谱。 拟合模块 802用于根据预设的所述光放大器的物理参 数预设值得到所述光放大器的增益输出谱和噪声指数输出谱,通过比较所述光 放大器的增益参考谱和噪声指数参考谱与所述光放大器的增益输出谱和噪声 指数输出谱,并迭代修改所述光放大器的物理参数预设值来拟合所述光放大器 的物理参数。 仿真模块 803用于根据所述光放大器的物理参数、 业务波长、 输 入光功率和输入光信噪比对所述光放大器的性能参数进行仿真。
图 9为本发明参数仿真处理装置实施例二的结构示意图,如图 9所示, 本实 施例提供了一种参数仿真处理装置,可以具体执行上述方法实施例二到实施例 五中的各个步骤, 此处不再赘述。本实施例提供的参数仿真处理装置在上述图 8所示的基础之上, 拟合模块 802可以具体包括计算单元 8021、 拟合单元 8022 和第一更新单元 8023。其中,计算单元 8021用于根据所述光放大器的物理参数 预设值计算所述光放大器的增益输出谱和噪声指数输出谱。拟合单元 8022用于 当所述增益输出谱与所述增益参考谱之间的误差,以及所述噪声指数输出谱与 噪声指数参考谱之间的误差均小于预设的精度阈值时,将所述物理参数预设值 作为所述光放大器的物理参数。第一更新单元 8023用于当所述增益输出谱与所 述增益参考谱之间误差,或所述噪声指数输出谱与所述噪声指数参考谱之间的 误差不小于预设的精度阈值时, 更新所述物理参数预设值, 直到根据所述物理 参数预设值计算得到的增益输出谱和噪声指数输出谱与所述增益参考谱增益 和所述噪声指数参考谱之间的误差均小于预设的精度阈值,并将更新后的物理 参数预设值作为所述光放大器的物理参数。
进一步地, 仿真模块 803可以具体包括第一生成单元 8031、 第二生成单元 8032、 第二更新单元 8033和仿真单元 8034。 其中, 第一生成单元 8031用于根据 获取的铒纤上能级粒子反转数、所述光放大器的物理参数和业务波长生成各频 率下的增益系数。第二生成单元 8032用于根据所述各频率下的增益系数以及当 光场在铒纤中沿径向传播时满足的偏微分方程,生成各频率下的泵浦光功率沿 增益介质径向分布的计算值、各频率下的信号光功率沿增益介质径向分布的计 算值和各频率下的 ASE光功率沿增益介质径向分布的计算值。 第二更新单元 8033用于根据所述各频率下的泵浦光功率沿增益介质径向分布的计算值、所述 各频率下的信号光功率沿增益介质径向分布的计算值和所述各频率下的 ASE光 功率沿增益介质径向分布的计算值以及所述光放大器的物理参数,更新铒纤上 能级粒子反转数。仿真单元 8034用于当更新前后的铒纤上能级粒子反转数的绝 对差值小于预设的收敛阈值时,根据所述各频率下的增益系数、所述各频率下 的输入光功率和所述各频率下的输入光信噪比生成所述光放大器的输出参数。
进一步地, 本实施例中的仿真模块 803还可以包括第三更新单元 8035 , 第 三更新单元 8035用于当更新前后的铒纤上能级粒子反转数的绝对差值大于或 等于预设的收敛阈值时, 更新所述各频率下的泵浦光功率、所述各频率下的信 号光功率和所述各频率下的 ASE光功率在放大器中沿增益介质径向的分布, 直 到根据所述偏微分方程计算得到的铒纤上能级粒子反转数,与更新前的铒纤上 能级粒子反转数的绝对差值小于预设的收敛阈值为止。
80342和仿真子单元 80343。 其中, 生成子单元 80341用于根据各频率下的增益 系数和各频率下的输入光功率生成各频率下的输出光功率和各频率下的输出 光信噪比,并根据各频率下的输入光功率和各频率下的输出光功率生成各频率 下的输出光增益。 计算子单元 80342用于根据各频率下的信号光功率计算光放 大器的总增益。 仿真子单元 80343用于当所述光放大器的总增益达到预设的增 益值时,将所述各频率下的输出光功率和所述各频率下的输出光信噪比作为所 述光放大器的输出参数。 新子单元 80344用于当所述光放大器的总增益未达到预设的增益值时, 按照泵 浦光的上电规则更新所述各频率下的泵浦光功率的输入值,并更新所述各频率 下的泵浦光功率、 所述各频率下的信号光功率和所述各频率下的 ASE光功率在 放大器中沿增益介质径向的分布,直到根据更新后的所述各频率下的信号光功 率的输出值和所述各频率下的 ASE光功率的输出值,计算得到的放大器的含 ASE 噪声的总增益达到预设的增益值为止。
本实施例提供了一种参数仿真处理装置,通过采集获取在满波输入的情况 下的光放大器的增益参考谱和噪声指数参考谱,根据增益参考谱和噪声指数参 考谱来拟合光放大器的物理参数, 并根据光放大器的物理参数、现网的业务波 长、输入光功率和输入光信噪比来对光放大器的性能参数进行仿真; 本实施例 在现网实时仿真时通过引入了数值模型进行快速的光功率和 0SNR的实时在线 预测和仿真, 比现有技术中的解析模型更加准确, 而其通过采用解析模式的获 取个性化单板的各物理参数, 比现有技术中的数值模型更加迅速。本实施例通 过一种并行的计算方式进行快速迭代求解,将计算时间压缩到实时计算的要求 范围之内, 同时也保证了运算的精度, 特别能降低是在短波参与时光谱烧孔 ( Spectra l Hole Burning; 以下筒称: SHB )所带来的误差。 且本实施例利用 光放单板出产发货时测量在满波输入的情况下的增益和噪声指数参考谱,仅需 要将数据筒单保存在单板 f lash或 PC机的数据库中便可以匹配本方法, 并不会 增加客户的成本。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述实施例所记载的技术方案进行修改, 或者对其中 部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本 质脱离本发明实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种参数仿真处理方法, 其特征在于, 包括:
根据光放大器的输入光功率和输出光功率,采集在满波输入的情况下的所 述光放大器的增益参考谱和噪声指数参考谱;
根据预设的所述光放大器的物理参数预设值得到所述光放大器的增益输 出谱和噪声指数输出谱,通过比较所述光放大器的增益参考谱和噪声指数参考 谱与所述光放大器的增益输出谱和噪声指数输出谱,并迭代修改所述光放大器 的物理参数预设值来拟合所述光放大器的物理参数;
根据所述光放大器的物理参数、业务波长、输入光功率和输入光信噪比对 所述光放大器的性能参数进行仿真。
2、 根据权利要求 1所述的方法, 其特征在于, 所述通过比较所述光放大 器的增益参考谱和噪声指数参考谱与所述光放大器的增益输出谱和噪声指数 输出谱,并迭代修改所述光放大器的物理参数预设值来拟合所述光放大器的物 理参数包括:
当所述增益输出谱与所述增益参考谱之间的误差,以及所述噪声指数输出 谱与噪声指数参考谱之间的误差均小于预设的精度阈值时,将所述物理参数预 设值作为所述光放大器的物理参数;
当所述增益输出谱与所述增益参考语之间误差,或所述噪声指数输出谱与 所述噪声指数参考语之间的误差不小于预设的精度阈值时,更新所述物理参数 预设值,直到根据所述物理参数预设值计算得到的增益输出谱和噪声指数输出 谱与所述增益参考谱增益和所述噪声指数参考谱之间的误差均小于预设的精 度阈值, 并将更新后的物理参数预设值作为所述光放大器的物理参数。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述根据所述光放大 器的物理参数、业务波长、输入光功率和输入光信噪比对所述光放大器的性能 参数进行仿真包括:
根据获取的铒纤上能级粒子反转数、所述光放大器的物理参数和业务波长 生成各频率下的增益系数;
根据所述各频率下的增益系数以及当光场在铒纤中沿径向传播时满足的 偏微分方程, 生成各频率下的泵浦光功率、各频率下的信号光功率和各频率下 的放大的自发辐射 ASE光功率沿增益介质径向分布的计算值; 根据所述各频率下的泵浦光功率、所述各频率下的信号光功率和所述各频 率下的 ASE光功率沿增益介质径向分布的计算值, 以及所述光放大器的物理 参数, 更新铒纤上能级粒子反转数;
当更新前后的铒纤上能级粒子反转数的绝对差值小于预设的收敛阈值时, 根据所述各频率下的增益系数、各频率下的输入光功率和各频率下的输入光信 噪比, 生成所述光放大器的输出参数。
4、 根据权利要求 3所述的方法, 其特征在于, 所述根据所述光放大器的 物理参数、业务波长、输入光功率和输入光信噪比对所述光放大器的性能参数 进行仿真还包括:
当更新前后的铒纤上能级粒子反转数的绝对差值大于或等于预设的收敛 阈值时, 更新所述各频率下的泵浦光功率、所述各频率下的信号光功率和所述 各频率下的 ASE光功率在放大器中沿增益介质径向的分布, 直到根据所述偏 微分方程计算得到的铒纤上能级粒子反转数,与更新前的铒纤上能级粒子反转 数的绝对差值 d、于预设的收敛阈值为止。
5、 根据权利要求 3所述的方法, 其特征在于, 所述铒纤上能级粒子反转 数为根据各频率下的泵浦光功率的输入值、各频率下的信号光功率的输入值和 各频率下的 ASE光功率的输入值以及所述光放大器的物理参数而计算得到。
6、 根据权利要求 3所述的方法, 其特征在于, 所述根据所述各频率下的 增益系数、各频率下的输入光功率和各频率下的输入光信噪比生成所述光放大 器的输出参数包括:
根据所述各频率下的增益系数和各频率下的输入光功率生成各频率下的 输出光功率和各频率下的输出光信噪比,并根据所述各频率下的输入光功率和 所述各频率下的输出光功率生成各频率下的输出光增益;
根据各频率下的信号光功率计算光放大器的总增益;
当所述光放大器的总增益达到预设的增益值时,将所述各频率下的输出光 功率和所述各频率下的输出光信噪比作为所述光放大器的输出参数。
7、 根据权利要求 6所述的方法, 其特征在于, 所述根据所述各频率下的 增益系数、各频率下的输入光功率和各频率下的输入光信噪比生成所述光放大 器的输出参数还包括:
当所述光放大器的总增益未达到预设的增益值,按照泵浦光的上电规则更 新各频率下的泵浦光功率的输入值, 并更新各频率下的泵浦光功率、各频率下 的信号光功率和各频率下的 ASE光功率在放大器中沿增益介质径向的分布, 直到根据更新后的各频率下的信号光功率的输出值和各频率下的 ASE光功率 的输出值, 计算得到的放大器的总增益达到预设的增益值为止。
8、 一种参数仿真处理装置, 其特征在于, 包括:
采集模块, 用于根据光放大器的输入光功率和输出光功率, 采集在满波输 入的情况下的所述光放大器的增益参考谱和噪声指数参考谱;
拟合模块,用于根据预设的所述光放大器的物理参数预设值得到所述光放 大器的增益输出谱和噪声指数输出谱,通过比较所述光放大器的增益参考谱和 噪声指数参考谱与所述光放大器的增益输出谱和噪声指数输出谱,并迭代修改 所述光放大器的物理参数预设值来拟合所述光放大器的物理参数;
仿真模块, 用于根据所述光放大器的物理参数、 业务波长、输入光功率和 输入光信噪比对所述光放大器的性能参数进行仿真。
9、 根据权利要求 8所述的装置, 其特征在于, 所述拟合模块包括: 计算单元,用于根据所述光放大器的物理参数预设值计算所述光放大器的 增益输出谱和噪声指数输出谱;
拟合单元, 用于当所述增益输出谱与所述增益参考谱之间的误差, 以及所 述噪声指数输出谱与噪声指数参考谱之间的误差均小于预设的精度阈值时,将 所述物理参数预设值作为所述光放大器的物理参数;
第一更新单元, 用于当所述增益输出谱与所述增益参考语之间误差, 或所 述噪声指数输出谱与所述噪声指数参考谱之间的误差不小于预设的精度阈值 时, 更新所述物理参数预设值, 直到根据所述物理参数预设值计算得到的增益 输出谱和噪声指数输出谱与所述增益参考谱增益和所述噪声指数参考谱之间 的误差均小于预设的精度阈值,并将更新后的物理参数预设值作为所述光放大 器的物理参数。
10、 根据权利要求 8或 9所述的装置, 其特征在于, 所述仿真模块包括: 第一生成单元, 用于根据获取的铒纤上能级粒子反转数、所述光放大器的 物理参数和业务波长生成各频率下的增益系数;
第二生成单元,用于根据所述各频率下的增益系数以及当光场在铒纤中沿 径向传播时满足的偏微分方程, 生成各频率下的泵浦光功率、各频率下的信号 光功率和各频率下的放大的自发辐射 ASE光功率沿增益介质径向分布的计算 值;
第二更新单元, 用于根据所述各频率下的泵浦光功率、所述各频率下的信 号光功率和所述各频率下的 ASE光功率沿增益介质径向分布的计算值以及所 述光放大器的物理参数, 更新铒纤上能级粒子反转数;
仿真单元,用于当更新前后的铒纤上能级粒子反转数的绝对差值小于预设 的收敛阈值时,根据所述各频率下的增益系数、所述各频率下的输入光功率和 所述各频率下的输入光信噪比生成所述光放大器的输出参数。
11、 根据权利要求 10所述的装置, 其特征在于, 所述仿真模块还包括 第三更新单元,用于当更新前后的铒纤上能级粒子反转数的绝对差值大于 或等于预设的收敛阈值时, 更新所述各频率下的泵浦光功率、所述各频率下的 信号光功率和所述各频率下的 ASE 光功率在放大器中沿增益介质径向的分 布, 直到根据所述偏微分方程计算得到的铒纤上能级粒子反转数, 与更新前的 铒纤上能级粒子反转数的绝对差值小于预设的收敛阈值为止。
12、 根据权利要求 10所述的装置, 其特征在于, 所述仿真单元包括: 生成子单元,用于根据所述各频率下的增益系数和各频率下的输入光功率 生成各频率下的输出光功率和各频率下的输出光信噪比,并根据所述各频率下 的输入光功率和所述各频率下的输出光功率生成各频率下的输出光增益; 计算子单元, 用于根据各频率下的信号光功率计算所述光放大器的总增 益;
仿真子单元, 用于当所述光放大器的总增益达到预设的增益值时,将所述 各频率下的输出光功率和所述各频率下的输出光信噪比作为所述光放大器的 输出参数。
13、 根据权利要求 12所述的装置, 其特征在于, 所述仿真单元还包括: 更新子单元, 用于当所述光放大器的总增益未达到预设的增益值时,按照 泵浦光的上电规则更新各频率下的泵浦光功率的输入值,并更新各频率下的泵 浦光功率、 各频率下的信号光功率和各频率下的 ASE光功率在放大器中沿增 益介质径向的分布,直到根据更新后的各频率下的信号光功率的输出值和各频 率下的 ASE光功率的输出值, 计算得到的放大器的总增益达到预设的增益值 为止。
PCT/CN2012/071430 2011-05-18 2012-02-22 参数仿真处理方法和装置 WO2012155572A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110129262.4 2011-05-18
CN201110129262.4A CN102790643B (zh) 2011-05-18 2011-05-18 参数仿真处理方法和装置

Publications (1)

Publication Number Publication Date
WO2012155572A1 true WO2012155572A1 (zh) 2012-11-22

Family

ID=47155951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071430 WO2012155572A1 (zh) 2011-05-18 2012-02-22 参数仿真处理方法和装置

Country Status (2)

Country Link
CN (1) CN102790643B (zh)
WO (1) WO2012155572A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978309A (zh) * 2022-07-01 2022-08-30 国网西藏电力有限公司 一种拉曼增益系数的测量方法和装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015109449A1 (zh) 2014-01-22 2015-07-30 华为技术有限公司 确定拉曼光放大器的增益的方法、装置和拉曼光放大器
CN106656340B (zh) * 2017-01-06 2019-03-19 无锡市德科立光电子技术有限公司 拉曼光纤放大器传输光纤接头损耗的探测方法
CN107276669B (zh) * 2017-06-17 2019-09-20 邹恒 超高速率超密集波分复用光信噪比监测方法及系统
CN112217561B (zh) * 2019-07-11 2022-06-03 烽火通信科技股份有限公司 C+l波段的光功率自动均衡方法及系统
CN112671458A (zh) * 2019-10-15 2021-04-16 富士通株式会社 拉曼放大系统的传输损伤分解模型的建立方法、装置和系统
CN111769869B (zh) * 2020-06-30 2022-07-12 无锡市德科立光电子技术有限公司 一种光通信系统最大传输距离的预判方法
CN114978304B (zh) * 2022-05-12 2023-08-25 上海交通大学 光放大器增益谱测量方法、系统及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598680A (zh) * 2003-09-15 2005-03-23 中兴通讯股份有限公司 一种实现在线光纤拉曼放大器增益自动控制的装置和方法
CN1794615A (zh) * 2004-12-23 2006-06-28 阿尔卡特公司 控制拉曼放大器增益的方法
CN1878037A (zh) * 2005-06-08 2006-12-13 华为技术有限公司 增益锁定参数表生成方法
CN101505190A (zh) * 2008-02-04 2009-08-12 华为技术有限公司 一种光功率调测方法和设备
CN101789829A (zh) * 2009-12-22 2010-07-28 高致慧 分布式拉曼光纤放大器增益控制方法及装置
CN101958750A (zh) * 2010-05-21 2011-01-26 华中科技大学 一种基于光参量放大器的全光信号质量监测器
WO2011026502A1 (en) * 2009-09-04 2011-03-10 Nokia Siemens Networks Oy Optical fiber amplifier compromising an embedded filter and a control method with improved feedforward control performance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877517B1 (fr) * 2004-10-20 2007-02-23 Micsystemes Sa Sa "procede et systeme de distribution de signaux hautes frequences dans un reseau cable en paires torsadees"
KR100975882B1 (ko) * 2007-08-17 2010-08-13 한국전자통신연구원 시간분할 다중화 수동형 광전송 방식에 파장분할 다중화기술을 적용한 광가입자망 시스템 및 서비스 제공 방법
US8121560B1 (en) * 2008-10-23 2012-02-21 Scintera Networks, Inc. Pre-distortion with enhanced convergence for linearization

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598680A (zh) * 2003-09-15 2005-03-23 中兴通讯股份有限公司 一种实现在线光纤拉曼放大器增益自动控制的装置和方法
CN1794615A (zh) * 2004-12-23 2006-06-28 阿尔卡特公司 控制拉曼放大器增益的方法
CN1878037A (zh) * 2005-06-08 2006-12-13 华为技术有限公司 增益锁定参数表生成方法
CN101505190A (zh) * 2008-02-04 2009-08-12 华为技术有限公司 一种光功率调测方法和设备
WO2011026502A1 (en) * 2009-09-04 2011-03-10 Nokia Siemens Networks Oy Optical fiber amplifier compromising an embedded filter and a control method with improved feedforward control performance
CN101789829A (zh) * 2009-12-22 2010-07-28 高致慧 分布式拉曼光纤放大器增益控制方法及装置
CN101958750A (zh) * 2010-05-21 2011-01-26 华中科技大学 一种基于光参量放大器的全光信号质量监测器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978309A (zh) * 2022-07-01 2022-08-30 国网西藏电力有限公司 一种拉曼增益系数的测量方法和装置

Also Published As

Publication number Publication date
CN102790643A (zh) 2012-11-21
CN102790643B (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2012155572A1 (zh) 参数仿真处理方法和装置
CN113726301B (zh) 一种光纤拉曼放大器动态增益调控方法及设备
US9577403B2 (en) Multi-wavelength distributed raman amplification set-up
Zhang et al. Fedaudio: A federated learning benchmark for audio tasks
US8525981B2 (en) Return loss measurement system
CN105699053A (zh) 基于循环自外差干涉法的精密测量激光线宽装置及方法
JP3936958B2 (ja) 増幅媒体性能シミュレーションの装置および方法並びに光増幅器
Zulkifli et al. Self-calibrating automated characterization system for depressed cladding EDFA applications using LabVIEW software with GPIB
Li et al. A data-effective black-box EDFA gain model with singular value decomposition
CN101374025A (zh) 光放大器增益平坦滤波器的谱形确定方法
Vanin et al. Spectral functional forms for gain and noise characterization of erbium-doped fiber amplifiers
Yigit et al. Three-stage six-pass EDFA preamplifier design and EDFA parameters’ optimization
Li et al. A Data-Efficient Erbium-Doped Fiber Amplifier Model Under Partial Channel Loadings
Liu et al. Building a digital twin of EDFA: a grey-box modeling approach
Zhang et al. Improved Physics-based Raman Amplifier Model in C+ L Networks through Input Parameter Refinement
WO2003049240A1 (fr) Procede de modelisation d'amplificateurs a fibres optiques
Di Muro The Er3+-fiber gain coefficient derived from a dynamic gain tilt technique
Ferreira et al. Site-dependent pumping effect on two-level EDFAs
CN116599580A (zh) 一种计算拉曼放大场景非线性噪声的方法和装置
CN115549776A (zh) 拉曼放大系统仿真方法与装置
Ferreira et al. Raman amplifier undepleted pump model customization to include pump-to-pump interactions
Heckel et al. Novel characterization and reliability method for erbium-doped fiber amplifiers based on the use of photonics transmission simulation
Zhulidova et al. Relationship between SBS Threshold and SBS Gain
Gong et al. Research on Raman fiber amplifier using neural network combining PSO algorithm
Tromborg et al. Multicanonical evaluation of the tails of the probability density function of semiconductor optical amplifier output power fluctuations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785668

Country of ref document: EP

Kind code of ref document: A1