WO2012153958A2 - 고소작업대의 직선이동제어 방법 및 장치 - Google Patents

고소작업대의 직선이동제어 방법 및 장치 Download PDF

Info

Publication number
WO2012153958A2
WO2012153958A2 PCT/KR2012/003558 KR2012003558W WO2012153958A2 WO 2012153958 A2 WO2012153958 A2 WO 2012153958A2 KR 2012003558 W KR2012003558 W KR 2012003558W WO 2012153958 A2 WO2012153958 A2 WO 2012153958A2
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
coordinates
information
boom
rotation
Prior art date
Application number
PCT/KR2012/003558
Other languages
English (en)
French (fr)
Other versions
WO2012153958A3 (ko
Inventor
박대규
Original Assignee
주식회사 스마트로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 스마트로닉스 filed Critical 주식회사 스마트로닉스
Publication of WO2012153958A2 publication Critical patent/WO2012153958A2/ko
Publication of WO2012153958A3 publication Critical patent/WO2012153958A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F11/00Lifting devices specially adapted for particular uses not otherwise provided for
    • B66F11/04Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • B66F17/006Safety devices, e.g. for limiting or indicating lifting force for working platforms

Definitions

  • the present invention relates to a linear movement control method and apparatus for an aerial platform that is easy to operate ergonomically. More specifically, the operation command of the rectangular coordinate system (Rectangular Coordinate System) which is familiar to humans in operation of the aerial platform is received from the driver and converted into the control command of the spherical coordinate system. It relates to a control method and apparatus for outputting.
  • the rectangular coordinate system Rectangular Coordinate System
  • the angle ⁇ between the vertical axis (z axis) and the aerial platform boom 30 is 'relief angle' or 'relief angle', between the x axis and the boom seen in plan view.
  • the angle ⁇ of the angle is referred to as 'turning angle' or 'turning angle'
  • the angle ⁇ between the boom and the rear surface (or front side) of the work surface as viewed in plan view is referred to as 'turning angle' or 'turning angle'.
  • the coordinate system inherent to the aerial platform drive device is a fixed coordinate system
  • the vertical axis (z axis) of the fixed coordinate system as a rotation axis is a rotational coordinate system 'rotating coordinate system'
  • the rotational coordinate system indicating the current work table position is a current rotation coordinate system 'Or' Current coordinate system '
  • the rotary coordinate system used to process the worktable operation command to calculate the next worktable position is called' next rotation coordinate system 'or' next coordinate system '.
  • the aerial platform (or ladder car), which is very much used in various sites such as building construction, ship construction, fire fighting structure, etc., is a kind of crane, and as shown in FIG. 1, a base 10 firmly supported on the ground and the base Up and down relief 26 is possible by being connected to the turntable 20, which is provided and pivots 25 around the z axis, and the boom connecting portion 21 and the hydraulic cylinder 22 provided as part of the turntable.
  • the length 35 is also configured to include a flexible boom 30, the worktable 40 is provided at the end of the boom and can be rotated 45 in the horizontal direction about the z 'axis.
  • the base is semi-permanently fixed to the ground, or is installed in the vehicle to be movable after the work, the work table 40 on which the worker 50 is always kept horizontal for the safety of the worker.
  • the aerial platform having such a structure has a structure P of the spherical coordinate system in which the position P of the working platform (or boom end) consists essentially of the length of the boom r, the relief angle ⁇ , and the pivot angle ⁇ .
  • the prior art uses a control method in which the driver individually adjusts the length r, the relief angle?, the turning angle?, and the rotation angle? of the work table. That is, the position of the work table was controlled by using four levers or a HMI (Human Machine Interface) using two joysticks as in the example shown in FIG.
  • HMI Human Machine Interface
  • FIG. 3 is a typical joystick HMI of the prior art.
  • the icons representing the driving command used coordinate elements of the spherical coordinate system instead of the icons commonly used to help the understanding of the correlation between the driving command and the coordinate elements actually controlled.
  • all but the rotation command of the work table control the operation of the boom. Since the operation of the boom is to control the coordinate system of the spherical coordinate system, there is no direct correlation with the linear movement of the workbench.
  • both joysticks are operated in the 1 o'clock or 2 o'clock direction, a complex driving command occurs, and it is very difficult for the driver to intuitively predict the result of the complex driving command.
  • the reason for repeating the above trial and error is that human spatial cognitive ability is unfamiliar with the spherical coordinate system and that the process of converting the rectangular coordinates into the spherical coordinates is not intuitive. That is, the driver's brain acts as a coordinate transformation, causing problems such as repeated trial and error of driving operation, non-linear space movement, deterioration of space movement speed, and safety accidents due to inadequate driving operation.
  • the worktable when moving from one point on the target wall surface to the target point, it is desirable in terms of safety and efficiency if the worktable can automatically track the shape of the wall to maintain a constant distance from the wall at all times, One difficulty in operation and control could not exist in the prior art.
  • the work robot mounted on the workbench performs painting work, water cleaning, welding work, etc. of a ship or building, there is an advantage that a person does not have to do a difficult and dangerous aerial work, but the above operation and control Due to the difficulty of precise position control of the worktable is impossible because it could not be implemented in the prior art.
  • An object of the present invention to solve the above problems is to provide a method and apparatus for linear movement control of an aerial platform that can be operated using a rectangular coordinate system operation command familiar to humans as in the example shown in FIG.
  • Another object of the present invention is to provide a method and apparatus for linear movement control of an aerial platform, which can be operated by automatically tracking the curved surface even if the target wall is a curved surface.
  • Another object of the present invention is to provide a method and apparatus for linear movement control of an aerial platform equipped with a robot capable of unmanned operation according to a drawing provided in advance.
  • the control method of the present invention for solving the above problems one end is connected to the position corresponding to the origin of the three-dimensional coordinate system and is connected to the other end of the boom (boom) and the boom that can adjust the length, undulation angle, turning angle
  • the control method of aerial platform including a worktable that can be rotated left and right , according to the rotation angle of the workbench, the coordinates of the target point of the workbench in the rectangular coordinate system in which the x, y-axis rotates with the z-axis as the rotation axis and converts it to the spherical coordinate It has the feature of controlling using one piece of information.
  • Step of moving the worktable by rotating the worktable with the rotation angle value of the next coordinate system and driving the boom with the old coordinate value of the fixed coordinate system at the same time.
  • Step of moving the worktable by rotating the worktable with the rotation angle value of the next coordinate system and driving the boom with the old coordinate value of the fixed coordinate system at the same time.
  • the control device of the present invention for solving the above problems, one end is connected to the position corresponding to the origin of the three-dimensional coordinate system, the boom (boom) and the other end of the boom that can adjust the length, relief angle, turning angle
  • a control device for aerial platform including a work platform connected to the left and right rotation, the control information input unit for inputting the rotation information and the front, rear, left and right, up and down movement information of the work platform;
  • the target coordinates of the work table are calculated based on the information provided by the control information input unit in a rectangular coordinate system whose x and y axes rotate with the z axis as the rotation axis according to the rotation angle of the work table.
  • Rotation coordinate calculator And a driving information output unit for outputting the result information calculated by the rotary coordinate calculating unit to a driving device of an aerial platform.
  • control device HMI Human Machine Interface
  • control information input unit includes two or more joysticks, 'work table forward' at 12 o'clock of the first joystick, 'work table backward' at 6 o'clock, 3 o'clock 'Turn Work Table Right', 'Turn Work Table Left' Control Command at 9 o'clock, 'Work Table Up' at 12 o'clock of the 2nd Joystick, 'Working Table Down' at 6 o'clock, 'Work Table at 3 o'clock 'Move to right' and '9 o'clock' have the characteristic of assigning 'move to worktable' control command.
  • control device further includes means for automatically adjusting the rotation of the work table so that two or more distance measuring means are provided on the front surface of the work table and the distance to the work target wall surface measured by each distance measuring means is the same.
  • control device further has a robot control means for operating the work robot based on the work information extracted from the drawings stored in the form of a computer recording medium and at least one work robot provided on the work table.
  • 1 is a simplified view of a conventional aerial platform.
  • Figure 4 is an embodiment of a remote control joystick HMI of the present invention.
  • Figure 4 is a plan view of the aerial platform for explaining the "line movement after rotation" control method of the present invention.
  • Figure 6 is a flow chart of the 'line move post-rotation' control method of the present invention.
  • FIG. 7 is a plan view of the aerial platform for explaining the "pre-rotation after moving" control method of the present invention
  • Figure 8 is a flow chart of the 'pre-rotation after moving' control method of the present invention
  • FIG. 9 is a cross-sectional view of the aerial platform for explaining the correction of the aerial platform position control error.
  • Figure 4 shows an example of the present invention joystick HMI.
  • the HMI shown in FIG. 4 controls the position of the work table in the three-dimensional rectangular coordinate system. Therefore, it has a direct correlation with the linear movement of the work table in the three-dimensional Cartesian coordinate system, providing an ergonomically very intuitive HMI for the aerial platform operator.
  • the driver can easily and intuitively predict the result of a complex driving command generated when both joysticks are operated in the 1 o'clock or 2 o'clock direction.
  • the joystick 4 controls the movement of the work surface on the horizontal plane (xy plane), and the right joystick controls the work surface movement on the vertical plane (work surface, the xz plane).
  • the joystick is operated in any of 360 degree directions and the work bench moves in proportion to how much it is flipped.
  • the former provides a feeling similar to driving a wheelchair or a car, while the latter provides a feeling similar to controlling cursor movement on a computer screen or manipulating an aircraft.
  • the aerial platform of the present invention can linearly move in a three-dimensional rectangular coordinate system space, it can move along an arbitrary trajectory in three-dimensional space, and therefore, of course, scan a two-dimensional plane, especially a vertical plane, or It can move along any trajectory on the dimensional plane.
  • the work robot can be less weight than the worker, which means that the work platform can be made safer and higher work platform at a lower cost. For example, if you imagine drawing a new painting on a large installed signboard, or if you are thinking about painting or cleaning a ship or building, you will be convinced of the infinite usefulness of unmanned work using such aerial work robots. .
  • FIG. 2 shows the representation used in the specification of the present invention.
  • the x, y, and z axes represent coordinate axes of the rectangular coordinate system
  • the point P is represented by (x, y, z), which is represented by the spherical coordinate system of the method used in the present specification (r, ⁇ , ⁇ ).
  • the relationship between the two coordinate values is represented by the following equations 1 and 2, which means that the coordinate value conversion between the two coordinate systems is possible by these equations.
  • the aerial platform of the present invention receives rotation information ( ⁇ ) and movement information in the directions of right and left ( ⁇ x), front and rear ( ⁇ y), and up and down ( ⁇ z), and should be taken next from the information and the current position coordinates.
  • ⁇ x right and left
  • ⁇ y front and rear
  • ⁇ z up and down
  • x F and y F represent a unique coordinate system determined by the aerial platform driving apparatus.
  • the rotation axis of the turntable 20 shown in FIG. 1 is a z-axis, and a fixed coordinate system does not change its position.
  • x, y is a rotary coordinate system ( current coordinate system ) to indicate the current aerial platform position, x N , y N after the rotation and movement by receiving the rotation information and movement information, that is, the next aerial platform position Rotational coordinate system ( next coordinate system ) to express.
  • Figure 5 shows the case of the 'line movement post-rotation' process of first processing the coordinate operation of the target point according to the work table movement information in the current coordinate system and later processing the rotation angle calculation of the rotary coordinate system according to the work table rotation information in the target point 7 is a line for processing a rotation angle of the rotation coordinate system according to the work table rotation information in the current coordinate system first, and then rotated according to the rotation angle, and then processing the coordinate calculation of the target point according to the work table movement information in the coordinate system later.
  • the difference in worktable movement trajectory due to the priority difference of the computation process can be modeled as a polygon circumscribed to a circle and a polygon circumscribed to a circle in the case of circular motion. At this time, if the size of the worktable rotation information and the movement information is small enough, the difference in the movement trajectory can be ignored. When the size of the information becomes infinitely small, all the movement trajectories converge to the circle.
  • the three-dimensional rotational coordinate system in the present invention allows the x-axis to always be parallel to the back (or front) of the workbench and the y-axis to always be parallel to the side of the workbench.
  • the x and y axes rotate with the z axis as the rotation axis.
  • the three-dimensional rotation coordinate system also rotates with the z-axis as the rotation axis.
  • the rotation coordinate system is rotated so that the turning angle ⁇ of the boom also changes accordingly.
  • ⁇ and ⁇ are always the same.
  • the rotational coordinate system rotates so that the y-axis of the rotational coordinate system always coincides (parallel) with the driver's gaze direction (the direction of the front surface of the aerial platform).
  • the driver's line of sight is directed to the work target wall, the work target wall is always parallel to the xz plane of the rotary coordinate system. Therefore, in controlling the position of the aerial platform, the aerial platform can always be linearly moved using the Cartesian coordinate system (see joystick HMI shown in Fig. 4) operation command from the driver's point of view.
  • the above is the essential point of the present invention .
  • FIG. 6 and 8 show a flow chart of the control method of the present invention
  • Figure 6 shows a "line move post-rotation” control process step by step
  • Figure 8 shows a "line rotation post-movement” control process step by step.
  • the control process is not performed only once, but is repeatedly performed continuously.
  • each step of each control process will be described in detail with reference to the accompanying drawings.
  • ⁇ and ⁇ are always the same in the rotary coordinate system, a symbol representing the rotation angle of the work table or the turning angle of the boom will be uniformly used as ⁇ .
  • each element of the rectangular coordinate is , , Is calculated as
  • the target coordinate rectangular coordinates of the workbench are calculated.
  • the arctan value should be calculated by paying attention to the polarities of x 2 and y 2 values.
  • Equation 2 Is calculated as In calculating the arctan value, the arctan value should be calculated by paying attention to the polarity of x N and y N values.
  • Step of converting the next coordinate system spherical coordinates into fixed coordinate system spherical coordinates When the spherical coordinate system is rotated with the z-axis as the rotation axis, only the change of ⁇ occurs.
  • fixed coordinate system spherical coordinates Is , , ⁇ 0N value becomes ⁇ 0 - ⁇ .
  • the aerial platform must be controlled while dividing the straight line connecting the current position and the final target point into a plurality of minute straight lines, and repeating the calculation process of the target point coordinates set by the respective minute straight lines. do. As the size of the minute straight section is smaller, the work table moves along a smoother straight path.
  • the operation information generated by the input device is a relative minute increment of the position with respect to the current position and not an absolute angle or a position coordinate.
  • an electronic controller having a programmable logic controller (PLC) or similar function repeats the control process periodically, so that the micro increment corresponds to a micro increment per unit time (control cycle), that is, speed information on an aerial platform.
  • PLC programmable logic controller
  • the following equations 3 and 4 expressed in the form of differential relations may be applied to the coordinate calculation process instead of the equations (1) and (2).
  • the operation of the aerial platform shown in FIG. 1 can be modeled with the spherical coordinate system of FIG. That is, the spherical coordinate system of FIG. 2 assumes that the rotation axis 31 for adjusting the relief angle of the aerial platform and the rotation axis (z axis) for adjusting the turning angle meet at the origin O.
  • the boom is normally connected to the rotational shaft 31 provided on the upper portion of the boom connecting portion 21 that is firmly fixed to the turntable 20 for adjusting the turning angle, thereby adjusting the relief angle. do. Therefore, modeling the operation of the aerial platform shown in FIG. 1 with the spherical coordinate system of FIG.
  • FIG. 8 is a cross-sectional view of the aerial platform seen from the wz plane of FIG. 2 as a conceptual diagram for explaining the correction of the position error.
  • FIG. Where vector P (w, z), P 1 (w 1 , z 1 ), P 2 (w 2 , z 2 )
  • the relational expression of is established, so in 2D rectangular coordinate system , Becomes If we express this as the coordinate value of the spherical coordinate system, , Becomes Solving this system of equations for r and ⁇ results in Equation 5, and solving for r 2 and ⁇ 2 results in Equation 6, which is the result of the analysis in the wz plane, which is always true regardless of the ⁇ coordinate value of the spherical coordinate system. .
  • the position error by finally obtaining the length and the relief angle of the boom using the above six equations and outputting it to the boom drive device
  • the aerial platform can be controlled without
  • the operator starts the operation after driving the aerial platform as close as possible to a point on the wall to be worked on. Since the movement to another work point is another point on the wall to be worked, only the movement in the left and right (x-axis) or up and down (z-axis) directions is performed.
  • the present invention described above is optimized for this.
  • the operator when the operator first approaches the aerial platform on the wall, it is difficult to drive the wall exactly parallel to the aerial platform. That is, there is a slight angle error with the parallel plane.
  • the target wall is a smooth curved surface, the aerial platform will move away from or collide with the target wall, even if the vehicle is left and right moved up and down afterwards. Therefore, there is a need for additional means for preventing this.
  • the wall surface of the work forms a smooth curved surface in the vertical direction
  • the distance detection means must maintain the difference of the predetermined value determined in advance or during operation between the detected distances.
  • the unmanned work used it may be possible to rotate the worktable in the vertical direction by releasing the horizontal maintenance function of the workbench.
  • two or more distance sensing means may be arranged on the upper surface of the aerial platform, and the aerial platform may be controlled in a similar manner.

Abstract

본 발명은 인간공학적으로 운전이 간편한 고소작업대의 직선이동 제어 방법 및 장치에 관한 것이다. 좀더 상세하게는, 고소작업대의 운전에 있어서 인간이 익숙한 직각좌표계(Rectangular Coordinate System)의 운전명령을 운전자로부터 입력 받아서 구좌표계(Spherical Coordinate System)의 제어명령으로 변환한 다음에 고소작업대의 구동장치로 출력하는 제어 방법 및 장치에 관한 것이다. 본 발명의 제어방법은, 3차원 좌표계의 원점에 해당하는 위치에 일단이 연결되며 길이, 기복각도, 선회각도를 조절 가능한 붐(boom)과 상기 붐의 타단에 연결되며 좌우회전이 가능한 작업대를 포함하는 고소작업대의 제어방법에 있어서, 상기 작업대의 회전각도에 따라 x, y축이 z축을 회전축으로 하여 회전하는 직각좌표계 에서 상기 작업대의 목표지점 좌표를 구하고 이를 구좌표로 변환한 정보를 사용하여 제어하는 특징을 가진다.

Description

[규칙 제26조에 의한 보정 10.05.2012] 고소작업대의 직선이동제어 방법 및 장치
본 발명은 인간공학적으로 운전이 간편한 고소작업대의 직선이동 제어 방법 및 장치에 관한 것이다. 좀더 상세하게는, 고소작업대의 운전에 있어서 인간이 익숙한 직각좌표계(Rectangular Coordinate System)의 운전명령을 운전자로부터 입력 받아서 구좌표계(Spherical Coordinate System)의 제어명령으로 변환한 다음에 고소작업대의 구동장치로 출력하는 제어 방법 및 장치에 관한 것이다.
먼저, 의미전달의 혼동을 피하기 위하여 본 명세서에서 사용되는 몇 가지 중요한 용어를 다음과 같이 정의한다. 도1, 도2, 도5 및 도7을 참조하여, 수직축(z축)과 고소작업대 붐(30) 사이의 각도 θ를 ‘기복각도’ 또는 ‘기복각’, 평면도 상에서 본 x축과 붐 사이의 각도 φ를 ‘선회각도’ 또는 ‘선회각’, 평면도 상에서 본 붐과 작업대 후면(또는 전면) 사이의 각도 α를 ‘회전각도’ 또는 ‘회전각’이라고 부르기로 한다. 또, 고소작업대 구동장치 고유의 좌표계를 ‘고정좌표계’, 상기 고정좌표계의 수직축(z축)을 회전축으로 하여 회전하는 좌표계를 ‘회전좌표계’, 현재의 작업대 위치를 나타내는 회전좌표계를 ‘현재 회전좌표계’ 또는 ‘현재좌표계’, 작업대 운전명령을 처리하여 다음의 작업대 위치를 연산하기 위하여 사용되는 회전좌표계를 ‘다음 회전좌표계’또는‘다음좌표계’라고 부르기로 한다.
빌딩건축, 선박건조, 소방구조 등의 다양한 현장에서 대단히 많이 사용되고 있는 고소작업대(또는 사다리 차)는 일종의 크레인으로서, 통상적으로 도1에 보인 바와 같이 지면에 단단히 지지되는 베이스(10), 상기 베이스에 구비되어 z축을 중심으로 좌우로 선회(25) 가능한 턴테이블(20), 상기 턴테이블에 그 일부로서 구비된 붐 연결부(21) 및 유압실린더(22)와 연결됨으로써 상하 기복(26)이 가능하고, 더불어 길이(35)도 신축 가능한 붐(30), 상기 붐의 끝에 구비되어 z’축을 중심으로 좌우방향으로 회전(45)이 가능한 작업대(40)을 포함하여 구성된다. 여기서 상기 베이스는 지면에 반영구적으로 고정되거나, 작업 후 이동이 가능하도록 차량에 설치되며, 작업자(50)가 탑승하는 작업대(40)는 작업자의 안전을 위해 항상 수평을 유지하고 있다.
도2에 보인 바와 같이, 이러한 구조를 가지는 고소작업대는 그 구조상 작업대(또는 붐 끝)의 위치 P가 본질적으로 붐의 길이 r, 기복각 θ, 선회각 φ로 구성되는 구좌표계의 좌표 P(r,θ,φ)로 표현되므로, 종래기술에서는 운전자가 상기 길이 r, 기복각 θ, 선회각 φ, 및 작업대의 회전각 α를 개별적으로 조절하는 제어방법을 사용하였다. 즉 4개의 레버를 사용하거나, 도3에 보인 일례와 같이 2개의 조이스틱을 사용한 HMI(Human Machine Interface)를 통하여 작업대의 위치를 조종하였다.
도3은 종래기술의 전형적인 조이스틱 HMI이다. 도3에서 운전명령을 표현하는 아이콘들은 통상적으로 사용되는 아이콘이 아닌 구좌표계의 좌표요소를 사용하였는데, 이는 운전명령과 실제 제어되는 좌표요소 사이의 상관관계의 이해를 돕기 위함이다. 도3에서 보인 바와 같이 작업대의 회전명령 이외에는 모두 붐의 작동을 제어하는 명령이다. 붐의 작동은 구좌표계 좌표요소를 제어하는 것이므로 작업대의 직선이동과는 직접적인 상관관계가 없다. 또, 예를 들어 두 개의 조이스틱을 모두 1시나 2시 방향으로 조작하였을 경우에 복합적인 운전명령이 발생하는 데, 이러한 복합적인 운전명령의 결과를 운전자가 직관적으로 예측하기가 대단히 어렵다. 따라서 종래기술에서는 이러한 복합적인 운전명령을 사용하지 않고 일련의 단순 운전명령들을 순서대로 사용하는 것이 통상적인 관례여서, 3시, 6시, 9시, 12시 방향으로만 조작이 가능하도록 상기 조이스틱에 기계적인 제한을 가하거나, 조이스틱이 아닌 4개의 레버를 사용한 HMI를 통하여 개별적으로 제어하도록 하고 있다.
또한, 인간의 공간인지능력은 구좌표계가 아니라 직각좌표계에 익숙하므로, 직각좌표로 표현되는 3차원 공간상의 한 지점에서 다른 지점으로 작업대를 직선이동 하고자 할 때 고소작업대의 운전에 많은 어려움이 있었다. 이를 좀더 구체적으로 설명하자면, ‘①운전자의 공간인지능력에 의하여 목표하는 작업대 위치를 3차원 직각좌표로 인지하고, ②두뇌에서 이를 구좌표로 변환한 다음에, ③붐의 길이 r, 기복각 θ, 선회각 φ 및 작업대 회전각 α를 필요한 양만큼 조절’하는 행위를 시행착오적으로 반복함으로써 최종적으로 원하는 목표지점으로 이동하였다. 이때 상기 행위를 시행착오적으로 반복하는 이유는 인간의 공간인지능력이 구좌표계에 익숙하지 않은 점과 직각좌표를 구좌표로 변환하는 과정이 직관적이지 않은 점 때문이다. 즉 운전자의 두뇌가 좌표변환 역할을 함으로써, 운전조작의 반복적 시행착오, 비직선적 공간이동, 공간이동 속도의 저하 및 운전조작 미숙으로 인한 안전사고 발생 등의 문제점들이 상존하였다.
한편, 작업대상 벽면 상의 한 지점에서 목표 지점으로 이동하고자 할 때, 작업대가 상기 벽면의 형상을 자동으로 추적할 수 있어서 상기 벽면과 일정한 거리를 항상 유지할 수 있다면 안전과 효율의 측면에서 바람직하지만, 상기한 운전 및 제어의 어려움 때문에 종래 기술에서는 존재할 수 없었다. 또 다른 바람직한 예를 들자면, 선박이나 건물의 도장작업, 물청소, 용접작업 등을 작업대에 장착된 작업로봇이 수행하게 되면 힘들고 위험한 고소작업을 사람이 하지 않아도 되는 장점이 있으나, 상기한 운전 및 제어의 어려움으로 인하여 작업대의 정교한 위치제어가 불가능하기 때문에 종래 기술에서는 구현될 수 없었다.
전술한 문제점들을 해결하고자 하는 본 발명의 과제는, 도4에 보인 일례와 같이 인간이 익숙한 직각좌표계 운전명령을 사용하여 운전이 가능한 고소작업대의 직선이동 제어 방법 및 장치를 제공하는 것이다. 또 작업대상 벽면이 곡면이더라도 상기 곡면을 자동으로 추적하여 운전이 가능한 고소작업대의 직선이동 제어 방법 및 장치를 제공하는 것이다. 또 사전에 제공된 도면에 따라 무인작업이 가능한 로봇이 탑재된 고소작업대의 직선이동 제어 방법 및 장치를 제공하는 것이다.
전술한 과제들을 해결하기 위한 본 발명의 제어방법은, 3차원 좌표계의 원점에 해당하는 위치에 일단이 연결되며 길이, 기복각도, 선회각도를 조절 가능한 붐(boom)과 상기 붐의 타단에 연결되며 좌우회전이 가능한 작업대를 포함하는 고소작업대의 제어방법에 있어서, 상기 작업대의 회전각도에 따라 x, y축이 z축을 회전축으로 하여 회전하는 직각좌표계에서 상기 작업대의 목표지점 좌표를 구하고 이를 구좌표로 변환한 정보를 사용하여 제어하는 특징을 가진다.

또한, 다음의 순차적인 단계들을 포함하는 제어과정을 반복적으로 수행하는 특징을 가진다.
1) 작업대의 회전정보 및 좌우, 전후, 상하 이동정보를 입력하는 단계
2) 현재좌표계에서, 작업대의 현재위치 구좌표를 직각좌표로 변환하는 단계
3) 현재좌표계에서, 작업대 이동정보에 따라 목표지점 직각좌표를 연산하는 단계
4) 현재좌표계에서, 목표지점의 직각좌표를 구좌표로 변환하는 단계
5) 작업대 회전정보에 따라 현재좌표계를 회전하여 다음좌표계를 만들고, 목표지점의 현재좌표계 구좌표를 다음좌표계 구좌표로 변환하는 단계
6) 작업대의 다음좌표계 구좌표를 고정좌표계 구좌표로 변환하는 단계
7) 다음좌표계의 회전각도 값으로 작업대를 회전구동하고, 동시에 고정좌표계의 구좌표 값으로 붐을 구동하여 작업대를 이동하는 단계
8) 다음 제어과정을 준비하는 단계

또한, 다음의 순차적인 단계들을 포함하는 제어과정을 반복적으로 수행하는 특징을 가진다.
1) 작업대의 회전정보 및 좌우, 전후, 상하 이동정보를 입력하는 단계
2) 작업대 회전정보에 따라 현재좌표계를 회전하여 다음좌표계를 만들고, 작업대의 현재좌표계 구좌표를 다음좌표계 구좌표로 변환하는 단계
3) 다음좌표계에서, 작업대의 현재위치 구좌표를 직각좌표로 변환하는 단계
4) 다음좌표계에서, 작업대 이동정보에 따라 목표지점 직각좌표를 연산하는 단계
5) 다음좌표계에서, 목표지점의 직각좌표를 구좌표로 변환하는 단계
6) 작업대의 다음좌표계 구좌표를 고정좌표계 구좌표로 변환하는 단계
7) 다음좌표계의 회전각도 값으로 작업대를 회전구동하고, 동시에 고정좌표계의 구좌표 값으로 붐을 구동하여 작업대를 이동하는 단계
8) 다음 제어과정을 준비하는 단계

한편, 전술한 과제들을 해결하기 위한 본 발명의 제어장치는, 3차원 좌표계의 원점에 해당하는 위치에 일단이 연결되며 길이, 기복각도, 선회각도를 조절 가능한 붐(boom)과 상기 붐의 타단에 연결되며 좌우회전이 가능한 작업대를 포함하는 고소작업대의 제어장치에 있어서, 작업대의 회전정보 및 전후, 좌우, 상하 이동정보를 입력하는 제어정보 입력부; 상기 작업대의 회전각도에 따라 x, y축이 z축을 회전축으로 하여 회전하는 직각좌표계에서 상기 제어정보 입력부가 제공하는 정보에 근거하여 상기 작업대의 목표지점 좌표를 연산한 다음에 이를 다시 구좌표로 변환하는 회전좌표 연산부; 및 상기 회전좌표 연산부에서 연산한 결과 정보를 고소작업대의 구동장치에 출력하는 구동정보 출력부;를 포함하는 특징을 가진다.

또한, 상기 제어장치는 상기 제어정보 입력부의 HMI(Human Machine Interface)는 2 이상의 조이스틱을 포함하되, 제1 조이스틱의 12시 방향에는 ‘작업대 전진’, 6시 방향에는 ‘작업대 후진’, 3시 방향에는 ‘작업대 우회전’, 9시 방향에는 ‘작업대 좌회전’ 제어명령을 할당하고, 제2 조이스틱의 12시 방향에는 ‘작업대 상향 이동’, 6시 방향에는 ‘작업대 하향 이동’, 3시 방향에는 ‘작업대 우로 이동’, 9시 방향에는 ‘작업대 좌로 이동’ 제어명령을 할당한 특징을 더 가진다. 또한, 상기 제어장치는 2 이상의 거리측정수단을 상기 작업대의 전면에 구비하고 각각의 거리측정수단이 측정한 작업대상 벽면까지의 거리가 동일하도록 작업대의 회전을 자동 조절하는 수단을 더 가진다. 또한, 상기 제어장치는 상기 작업대에 구비된 1 이상의 작업로봇과, 컴퓨터 기록매체 형태로 저장된 도면으로부터 추출한 작업정보에 근거하여 상기 작업로봇을 작동하는 로봇 제어수단을 더 가진다.
전술한 과제 해결 수단들에 의해, 인간이 익숙한 직각좌표계 운전명령을 사용하여 고소작업대를 운전할 수 있게 되며, 3차원 공간상의 어떤 지점에서 다른 지점으로 고소작업대를 직선이동을 하고자 할 때 신속하고 정확하며 안전한 이동을 할 수 있게 된다. 또 작업대상 벽면이 곡면이더라도 상기 곡면을 자동으로 추적하여 고소작업대를 이동하는 운전이 가능하게 된다. 또 예를 들어서 선박이나 빌딩의 도장작업, 물청소, 용접작업 등을 하고자 할 때, 작업대에 작업자가 탑승하지 않고도 사전에 제공된 도면에 따라 무인작업이 가능한 고소작업로봇을 제공할 수 있게 된다.
도1은 통상적인 고소작업대의 간략도.
도2는 본 명세서에서 사용되는 구좌표계.
도3은 종래기술의 리모컨 조이스틱 HMI의 일례.
도4는 본 발명의 리모컨 조이스틱 HMI의 일 실시례.
도4는 본 발명의 ‘선이동 후회전’ 제어방법을 설명하기 위한 고소작업대의 평면도.
도6은 본 발명의 ‘선이동 후회전’ 제어방법 순서도.
도7은 본 발명의 ‘선회전 후이동’ 제어방법을 설명하기 위한 고소작업대의 평면도
도8은 본 발명의 ‘선회전 후이동’ 제어방법 순서도
도9는 고소작업대 위치제어 오차의 보정을 설명하기 위한 고소작업대의 단면도.
이하, 본 발명의 이해를 돕기 위하여 제공되는 바람직한 실시례를 첨부된 도면을 참조하여 상세히 설명한다. 이하의 실시례는 본 발명의 보다 쉬운 이해를 위해 제공되는 바, 본 실시례에 의해 본 발명의 권리범위가 한정되는 것은 아니다. 덧붙여서 본 명세서의 설명과 첨부된 도면에서, 동일한 목적과 기능을 가지는 구성요소는 그 구성과 도면이 달라지더라도 가능한 한 동일한 명칭과 도면부호를 가지도록 하여 일관성을 유지하였음을 밝혀둔다.

도4는 본 발명기술 조이스틱 HMI의 일례를 보인 것이다. 도3에 보인 종래기술의 HMI가 구좌표계에서 작업대의 위치를 제어하는 것과는 달리, 도4에 보인 HMI는 모든 운전명령이 3차원 직각좌표계에서 작업대의 위치를 제어한다. 따라서 3차원 직각좌표계에서의 작업대 직선이동과 직접적인 상관관계를 가지게 되어, 고소작업대 운전자에게 인간공학적으로 대단히 직관적인 HMI를 제공한다. 예를 들어서, 두 개의 조이스틱을 모두 1시나 2시 방향으로 조작하였을 경우에 발생하는 복합적인 운전명령의 결과를 운전자가 용이하고도 직관적으로 예측할 수 있다. 이를 좀더 자세히 설명하자면, 도4의 왼쪽 조이스틱은 수평면(xy 평면) 상에서의 작업대의 이동을 제어하며, 오른쪽 조이스틱은 수직면(작업대상 벽면, xz 평면) 상에서의 작업대 이동을 제어한다. 또 조이스틱을 360도 전 방향 중 어느 방향으로 조작하고 얼마나 많이 젖히는 가에 비례해서 작업대가 이동한다. 따라서 전자는 휠체어 또는 자동차의 운전과 유사한 느낌을 제공하고, 후자는 컴퓨터 화면상의 커서 움직임을 제어하는 것 또는 항공기의 조종과 유사한 느낌을 제공한다.

한편 본 발명기술의 고소작업대는 3차원 직교좌표계 공간에서 직선이동을 할 수 있으므로 3차원 공간에서 임의의 궤적을 따라 이동할 수 있으며, 따라서 당연히 2차원 평면 특히 수직평면을 주사(scan)하거나, 상기 2차원 평면상에서 임의의 궤적을 따라 움직일 수 있다. 이는 컴퓨터 프로그램에 의해 고소작업대의 이동을 제어할 수 있음을 의미한다. 따라서 고소작업대에 도료분사, 물 분사, 용접 등을 할 수 있는 작업로봇을 탑재한다면, 컴퓨터 기록매체 형태로 저장된 도면으로부터 추출한 작업정보에 근거하여 작동하는 고소작업로봇에 의한 무인작업이 가능해진다. 더구나 상기 작업로봇은 작업자보다 중량이 적을 수 있으며, 이는 보다 더 적은 비용으로 보다 더 안전하고 보다 더 높이 작업 가능한 고소작업대를 만들 수 있음을 의미한다. 예를 들자면, 기 설치된 대형 입간판에 새로 그림을 그려 넣는 작업을 상상해보거나 선박이나 건물의 도장작업, 세척작업 등을 염두에 둔다면, 이러한 고소작업로봇을 사용한 무인작업의 무한한 유용성에 대해 수긍이 갈 것이다.

3차원 공간에서 어떤 점의 위치(벡터)를 구좌표계에서 표현하는 방식은 구좌표계가 적용되는 기술분야마다 조금씩 다르다. 도2는 본 발명의 명세서에서 사용되는 표현방식을 보인 것이다. 도2에서 x, y, z축은 직각좌표계의 좌표축을 나타낸 것으로서 직각좌표계에서 점 P는 (x, y, z)로 표현되며, 이를 본 명세서에서 사용되는 방식의 구좌표계로 표현하면 (r,θ,φ)가 된다. 이때 두 좌표값 사이의 관계는 다음의 수학식 1, 2로 표현되며, 이는 두 좌표계 사이의 좌표값 변환이 이들 식에 의해 가능함을 의미한다.
[수학식 1]
Figure PCTKR2012003558-appb-I000001
Figure PCTKR2012003558-appb-I000002
Figure PCTKR2012003558-appb-I000003
[수학식 2]
Figure PCTKR2012003558-appb-I000004
Figure PCTKR2012003558-appb-I000005
Figure PCTKR2012003558-appb-I000006

도5 및 도7은 본 발명 고소작업대가 회전정보(Δφ) 및 좌우(Δx), 전후(Δy), 상하(Δz) 방향의 이동정보를 입력 받아서, 상기 정보들과 현재위치 좌표로부터 다음에 취해야 할 고소작업대의 자세(회전각)와 위치 좌표를 연산하고 고소작업대의 구동장치에 구동명령을 출력함으로써, 고소작업대가 회전 및 직선 이동하는 상황을 xy평면(지면)에 투사한 평면도이다.
도5 및 도7에서 xF, yF는 고소작업대 구동장치에 의해 정해지는 고유의 좌표계를 나타낸 것으로서 도1에 보인 턴테이블(20)의 회전축을 z축으로 하며 좌표축의 위치가 변하지 않는 고정좌표계이다. 한편 x, y는 현재의 고소작업대 위치를 나타내기 위한 회전좌표계(현재좌표계)이고, xN, yN은 상기 회전정보 및 이동정보를 입력 받아서 회전 및 이동을 한 후, 즉 다음의 고소작업대 위치를 표현하기 위한 회전좌표계(다음좌표계)이다. 이들은 모두 고정좌표계와 동일하게 도1에 보인 턴테이블(20)의 회전축을 z축으로 가지지만, 상기 z축을 회전축으로 하여 좌표계(x, y, xN, yN 축)가 회전한다는 점이 상기 고정좌표계와 다르다.
한편, 도5는 현재좌표계에서 작업대 이동정보에 따른 목표지점의 좌표연산을 먼저 처리하고 목표지점에서 작업대 회전정보에 따라 회전좌표계의 회전각 연산을 나중에 처리하는 ‘선이동 후회전’ 경우를 보인 것이고, 도7은 현재좌표계에서 작업대 회전정보에 따른 회전좌표계의 회전각 연산을 먼저 처리하고, 상기 회전각에 따라 회전하여 만든 다음좌표계에서 작업대 이동정보에 따라 목표지점의 좌표연산을 나중에 처리하는 ‘선회전 후이동’ 경우를 보인 것이다. 이러한 연산과정의 우선순위 차이에 의한 작업대 이동궤적의 차이는, 원운동의 경우에 원에 외접하는 다각형과 원에 내접하는 다각형으로 모형화할 수 있다. 이때 작업대 회전정보 및 이동정보의 크기가 충분히 작으면 상기 이동궤적의 차이는 무시될 수 있으며, 상기 정보의 크기가 무한히 작아지면 상기 이동궤적은 모두 원에 수렴한다.

도5 또는 도7에서 보인 바와 같이, 본 발명기술에서 3차원 회전좌표계는 x축이 작업대의 후면(또는 전면)과 항상 평행을 유지하고 y축이 작업대의 측면과 항상 평행을 유지하도록, 작업대의 회전각 α에 따라 x, y축이 z축을 회전축으로 하여 회전한다. 즉 작업대 회전각 α가 변하면, 그에 따라서 3차원 회전좌표계도 z축을 회전축으로 하여 회전한다. 다른 표현을 하자면, 3차원 회전좌표계에서 작업대 회전각 α가 변하면 붐의 선회각 φ도 그에 따라 변하도록 상기 회전좌표계를 회전한다. 따라서 α와 φ는 그 값이 항상 동일하다. 이는 회전좌표계의 y축이 작업대에 탑승한 운전자의 시선방향(고소작업대의 전면이 향하는 방향)과 항상 일치(평행)하도록 회전좌표계가 회전함을 의미한다. 또 운전자의 시선방향이 작업대상 벽면을 향하게 되면, 상기 작업대상 벽면은 언제나 회전좌표계의 xz 평면과 평행하다. 따라서, 고소작업대의 위치를 제어함에 있어서, 언제나 운전자의 관점에서 본 직교좌표계(도4에 보인 조이스틱 HMI 참조) 운전명령을 사용하여 고소작업대가 직선이동 하도록 할 수 있다. 이상이 본 발명사상의 핵심요지이다.

도6 및 도8은 본 발명 제어방법의 순서도를 보인 것으로서, 도6은 ‘선이동 후회전’ 제어과정을 단계별로 나타낸 것이고, 도8은 ‘선회전 후이동’ 제어과정을 단계별로 나타낸 것이다. 여기서 상기 제어과정은 단 한번만 수행되는 것이 아니고, 끊임없이 반복적으로 수행됨에 유의해야 한다. 이하 각각의 제어과정의 각 단계별로 첨부된 도면을 참조하여 상세히 설명한다. 전술한 바와 같이 회전좌표계에서 α와 φ는 그 값이 항상 동일하므로, 작업대의 회전각 또는 붐의 선회각을 의미하는 기호를 φ로 통일하여 사용하기로 한다.

[‘선이동 후회전’ 제어과정]
1) 작업대의 회전정보(Δφ) 및 좌우(Δx), 전후(Δy), 상하(Δz) 이동정보를 입력하는 단계 - 고소작업대에 작업자가 탑승하는 유인작업의 경우에는, 도4에 일례로 보인 조이스틱 HMI 또는 그와 유사한 HMI로부터 상기 4가지 정보를 입력할 수 있다. 선박이나 건물의 도장작업, 물청소작업, 용접작업 등의 용도에서 고소작업대에 작업로봇을 탑재하여 무인작업을 할 경우에는 컴퓨터 기록매체 형태로 저장된 도면으로부터 추출한 작업정보를 사용하여 상기 4가지 정보를 입력할 수 있다. 한편, 외부로부터 입력되는 작업대의 이동정보가 위치제어 오차를 발생할 만큼 충분히 클 경우에는 보간법(interpolation)을 사용하여 충분히 작은 값으로 나눈 것을 상기 단계의 입력정보로서 사용한다.
2) 현재좌표계에서, 작업대의 현재위치 구좌표를 직각좌표로 변환하는 단계 - 현재좌표계에서, 작업대의 현재위치 구좌표가
Figure PCTKR2012003558-appb-I000007
라 하고, 이것의 직각좌표를
Figure PCTKR2012003558-appb-I000008
라 하면, 직각좌표의 각 요소는 수학식 1에 의해
Figure PCTKR2012003558-appb-I000009
,
Figure PCTKR2012003558-appb-I000010
,
Figure PCTKR2012003558-appb-I000011
로 연산된다.
3) 현재좌표계에서, 작업대 이동정보에 따라 목표지점 직각좌표를 연산하는 단계 - 현재좌표계에서, 작업대의 목표지점 직각좌표를
Figure PCTKR2012003558-appb-I000012
라 하면,
Figure PCTKR2012003558-appb-I000013
,
Figure PCTKR2012003558-appb-I000014
,
Figure PCTKR2012003558-appb-I000015
로 연산된다.
4) 현재좌표계에서, 목표지점의 직각좌표를 구좌표로 변환하는 단계 - 현재좌표계에서, 작업대의 목표지점 구좌표를
Figure PCTKR2012003558-appb-I000016
라 하면, 수학식 2에 의해
Figure PCTKR2012003558-appb-I000017
,
Figure PCTKR2012003558-appb-I000018
,
Figure PCTKR2012003558-appb-I000019
로 연산된다. 이때 arctan 값의 계산에 있어서, x2, y2 값의 극성에 주의해서 arctan 값을 계산하여야 한다.
5) 작업대 회전정보(Δφ)에 따라 현재좌표계를 회전하여 다음좌표계를 만들고, 목표지점의 현재좌표계 구좌표를 다음좌표계 구좌표로 변환하는 단계 - 구좌표계를 z축을 회전축으로 하여 회전하면 φ 값의 변화만 발생한다. 따라서 다음좌표계 구좌표
Figure PCTKR2012003558-appb-I000020
Figure PCTKR2012003558-appb-I000021
,
Figure PCTKR2012003558-appb-I000022
,
Figure PCTKR2012003558-appb-I000023
로 연산된다.
6) 작업대의 다음좌표계 구좌표를 고정좌표계 구좌표로 변환하는 단계 - 5단계에서와 동일한 원리에 의해 고정좌표계 구좌표
Figure PCTKR2012003558-appb-I000024
Figure PCTKR2012003558-appb-I000025
,
Figure PCTKR2012003558-appb-I000026
,
Figure PCTKR2012003558-appb-I000027
로 연산되고 φ0N 값은 φ0-Δφ가 된다.
7) 다음좌표계의 회전각도(φN) 값으로 작업대를 회전구동하고, 동시에 고정좌표계의 구좌표 P2(rF, θF, φF) 값으로 붐을 구동하여 작업대를 이동하는 단계 - 이 단계에서 고소작업대의 구동장치가 실제로 구동된다.
8) 다음 제어과정을 준비하는 단계 - 고소작업대가 이동한 결과를 다음 번의 제어과정에서 현재좌표계 좌표값으로 사용하기 위한 준비작업을 한다. 즉
Figure PCTKR2012003558-appb-I000028
,
Figure PCTKR2012003558-appb-I000029
,
Figure PCTKR2012003558-appb-I000030
,
Figure PCTKR2012003558-appb-I000031
으로 설정된다.

[‘선회전 후이동’ 제어과정]
1) 작업대의 회전정보(Δφ) 및 좌우(Δx), 전후(Δy), 상하(Δz) 이동정보를 입력하는 단계 - ‘선이동 후회전’ 제어과정과 동일하다.
2) 작업대 회전정보(Δφ)에 따라 현재좌표계를 회전하여 다음좌표계를 만들고, 작업대의 현재좌표계 구좌표를 다음좌표계 구좌표로 변환하는 단계 - 구좌표계를 z축을 회전축으로 하여 회전하면 φ요소 값의 변화만 발생한다. 따라서 현재좌표계에서 작업대의 현재위치 구좌표를
Figure PCTKR2012003558-appb-I000032
라 하면, 현재좌표계를 z축을 회전축으로 하여 Δφ만큼 회전한 다음좌표계에서 이것의 구좌표
Figure PCTKR2012003558-appb-I000033
Figure PCTKR2012003558-appb-I000034
,
Figure PCTKR2012003558-appb-I000035
,
Figure PCTKR2012003558-appb-I000036
로 연산된다.
3) 다음좌표계에서, 작업대의 현재위치 구좌표를 직각좌표로 변환하는 단계 - 다음 회전좌표계에서, 작업대의 현재위치 직각좌표
Figure PCTKR2012003558-appb-I000037
의 각 요소는 수학식 1에 의해
Figure PCTKR2012003558-appb-I000038
,
Figure PCTKR2012003558-appb-I000039
,
Figure PCTKR2012003558-appb-I000040
으로 연산된다.
4) 다음좌표계에서, 작업대 이동정보에 따라 목표지점 직각좌표를 연산하는 단계 - 다음 회전좌표계에서, 작업대의 목표지점 직각좌표
Figure PCTKR2012003558-appb-I000041
Figure PCTKR2012003558-appb-I000042
,
Figure PCTKR2012003558-appb-I000043
,
Figure PCTKR2012003558-appb-I000044
으로 연산된다.
5) 다음좌표계에서, 목표지점의 직각좌표를 구좌표로 변환하는 단계 - 다음 회전좌표계에서, 작업대의 목표지점 구좌표
Figure PCTKR2012003558-appb-I000045
는 수학식 2에 의해
Figure PCTKR2012003558-appb-I000046
,
Figure PCTKR2012003558-appb-I000047
,
Figure PCTKR2012003558-appb-I000048
로 연산된다. 이때 arctan 값의 계산에 있어서, xN, yN 값의 극성에 주의해서 arctan 값을 계산하여야 한다.
6) 작업대의 다음좌표계 구좌표를 고정좌표계 구좌표로 변환하는 단계 - 구좌표계를 z축을 회전축으로 하여 회전하면 φ 값의 변화만 발생한다. 따라서 고정좌표계 구좌표
Figure PCTKR2012003558-appb-I000049
Figure PCTKR2012003558-appb-I000050
,
Figure PCTKR2012003558-appb-I000051
,
Figure PCTKR2012003558-appb-I000052
로 연산되고 φ0N 값은 φ0-Δφ가 된다.
7) 다음좌표계의 회전각도(φN) 값으로 작업대를 회전구동하고, 동시에 고정좌표계의 구좌표 P2(rFFF) 값으로 붐을 구동하여 작업대를 이동하는 단계 - ‘선이동 후회전’ 제어과정과 동일하다.
8) 다음 제어과정을 준비하는 단계 - ‘선이동 후회전’ 제어과정과 동일하다.

여기서 밝혀둘 것은, 단 한번의 목표지점 좌표 연산과정에 의해 상기 작업대가 현재위치로부터 최종 목표지점까지 이동하는 것이 아니라는 점이다. 고소작업대 구동장치의 반응시간에 대해 생각해보기로 한다. 본 발명의 제어장치가 상기의 제어과정에 의해 연산된 작업대 회전각도 φN 과 목표지점의 좌표값 rF, θF, φF을 출력하면, 상기 4가지 파라미터 각각의 구동수단이 작동을 시작한다. 유압실린더를 상기 구동수단의 예로 들자면, 유압실린더에 작동유가 공급되기 시작한다. 그러나 각각의 유압실린더는 그 길이와 직경이 다를 것이므로, 단위 시간당 동일한 양의 작동유가 공급되더라도 최종적으로 목표하는 길이만큼 유압실린더가 신축되는 시간(반응시간)은 모두 다르다. 따라서 반응시간이 작은 유압실린더부터 차례로 최종 목표치에 도달하며, 이는 구동장치 설계에 따라 모두 개개의 반응시간뿐만 아니라 유압실린더 구동순서도 다름을 의미한다.
따라서, 만약 단 한번의 좌표 연산과정에 의해 먼 거리를 이동하게 되면, 이동구간 중간 점들의 좌표 값이 결정되지 않으므로 작업대는 운전자가 원하는 경로를 따르는 매끄러운 이동을 할 수 없다. 이러한 문제점을 해결하기 위해서는, 현재위치와 최종 목표지점 사이를 연결하는 직선구간을 다수의 미소 직선구간으로 나누어서, 각각의 미소 직선구간에 의해 설정된 목표지점 좌표의 연산과정을 반복하면서 고소작업대가 제어되어야 한다. 상기 미소 직선구간의 크기가 작을 수록 더욱 더 매끄러운 직선경로를 따라 작업대가 이동하게 된다.
또 버튼이나 조이스틱 등의 입력장치를 사용해서 고소작업대를 운전하는 경우에, 상기 입력장치에 의해 발생하는 운전정보는 현재 위치에 대한 위치의 상대적 미소증분이며 절대적 각도나 위치좌표가 아님에 유의해야 한다. 통상적으로 PLC(Programmable Logic Controller) 또는 그와 유사한 기능을 가지는 전자제어장치는 주기적으로 제어과정을 반복하므로, 상기 미소증분은 단위 시간(제어주기)당 미소증분, 즉 고소작업대의 속도정보에 해당한다. 한편, 상기한 미소 직선구간(증분)의 크기가 충분히 작을 경우에는, 수학식 1, 2 대신에 미분 관계식 형태로 표현된 아래의 수학식 3, 4를 좌표 연산과정에 적용할 수 있다.
[수학식 3]
Figure PCTKR2012003558-appb-I000053
[수학식 4]
Figure PCTKR2012003558-appb-I000054

전술한 발명기술 설명들은, 도1에 보인 고소작업대의 작동을 도2의 구좌표계로 모형화할 수 있음을 가정한 것이다. 즉, 도2의 구좌표계는 원점 O에서 고소작업대의 기복각을 조절하는 회전축(31)과 선회각을 조절하는 회전축(z축)이 만나는 것을 가정하고 있다. 그러나 기계 구조상의 한계 때문에 도1에 보인 바와 같이 선회각을 조절하는 턴테이블(20)에 단단히 고정된 붐 연결부(21)의 상부에 구비된 회전축(31)에서 통상적으로 붐이 연결되어 기복각이 조절된다. 따라서 도1에 보인 고소작업대의 작동을 도2의 구좌표계로 모형화한 것은 실제 제어 시에 작업대의 위치제어 오차를 발생한다. 도8은 위치제어 오차의 보정을 설명하기 위한 개념도로서 도2의 wz 평면에서 본 고소작업대의 단면도이다. 여기서 벡터 P(w, z), P 1(w1, z1), P 2(w2, z2) 사이에는
Figure PCTKR2012003558-appb-I000055
의 관계식이 성립하며, 따라서 2차원 직각좌표계에서
Figure PCTKR2012003558-appb-I000056
,
Figure PCTKR2012003558-appb-I000057
이 된다. 이것을 다시 구좌표계의 좌표값으로 표현하면
Figure PCTKR2012003558-appb-I000058
,
Figure PCTKR2012003558-appb-I000059
이 된다. 이 연립방정식을 r, θ에 대해 풀면 수학식 5가 되고, r2 및 θ2에 대해 풀면 수학식 6이 되는데, 이들은 wz 평면에서 해석한 결과이므로 구좌표계의 φ 좌표값에 무관하게 항상 성립한다.
[수학식 5]
Figure PCTKR2012003558-appb-I000060
Figure PCTKR2012003558-appb-I000061
[수학식 6]
Figure PCTKR2012003558-appb-I000062
Figure PCTKR2012003558-appb-I000063
여기서 붐 연결부(21)의 길이 r1 및 기복각 θ1은 상수이므로, 붐의 길이 r2 및 붐의 기복각 θ2을 알면(측정하면), 실제 위치벡터 P의 좌표 값을 구할 수 있다. 또 도5 내지 도8에서의 제어방법에 보인 좌표변환 및 연산단계에서 실제 위치벡터를 적용한 후, 최종적으로 상기 6식을 사용하여 붐의 길이 및 기복각을 구하고 이를 붐 구동장치에 출력함으로써 위치오차 없이 고소작업대를 제어할 수 있다.

통상적인 고소작업의 예를 들자면, 운전자는 고소작업대를 작업대상 벽면의 한 지점에 최대한 가까이 접근하도록 운전한 후에 작업을 시작한다. 이후 다른 작업지점으로의 이동은 작업대상 벽면 상의 다른 지점이므로 좌우(x축) 또는 상하(z축) 방향의 이동만을 하게 된다. 이상에서 설명한 본 발명기술은 이에 최적화되어 있다. 그러나 최초에 운전자가 작업대상 벽면에 고소작업대를 접근시킬 때, 작업대상 벽면과 고소작업대가 정확히 평행을 이루도록 운전을 하기는 어렵다. 즉 평행면과 약간의 각도 오차가 존재한다. 더군다나 작업대상 벽면이 완만한 곡면을 이루고 있을 경우에는 최초에 정확한 평행을 유지하였다고 하더라도, 이후에 좌우 또는 상하 이동운전을 하게 되면 고소작업대가 작업대상 벽면과 멀어지거나 충돌하게 된다. 따라서 이를 방지하기 위한 수단이 추가적으로 필요하다.
이는 비교적 손쉽게 구현 가능하다. 즉 작업대의 전면에 2 이상의 거리감지수단을 구비하고 상기 거리감지수단 각각이 감지한 작업대상 벽면과의 거리가 동일하도록 고소작업대를 제어하면 된다. 예를 들어서 작업대상 벽면이 좌우방향으로 완만한 곡면을 이룰 경우에 작업대의 전면에 수평방향으로 2 이상의 거리감지수단을 배열한 후에 매회의 제어과정마다 각각의 거리감지수단이 감지한 거리가 동일하도록 고소작업대의 회전각도를 미세하게 조절하면 작업대상 벽면 추적기능을 구현할 수 있다.
또 작업대상 벽면이 상하방향으로 완만한 곡면을 이룰 경우에는 작업대의 전면에 수직방향으로 2 이상의 거리감지수단을 배열함으로써 해결 가능하다. 이때 유인작업의 경우에는 안전을 위해 작업대의 수평유지기능을 유지해야 하므로, 각각의 거리감지수단이 감지한 거리 사이에, 사전 또는 운전 중에 정해지는 일정한 값의 차이를 유지하도록 해야 하며, 작업로봇을 사용한 무인작업의 경우에는 작업대의 수평유지기능을 해제하여 상하방향으로도 작업대의 회전이 가능하도록 할 수도 있다. 또 고소작업대상 벽면이 천장일 경우에는 고소작업대의 상면에 2 이상의 거리감지수단을 배열하고 유사한 방법으로 고소작업대를 제어하면 된다.

이상으로 본 발명의 구성과 그에 따른 바람직한 실시례에 대한 상세한 설명을 마치며, 본 발명은 전술한 바람직한 실시례에만 한정되는 것이 아니라 본 발명의 요지를 벗어나지 않는 범위 내에서 여러 가지로 개량, 변경, 대체 또는 부가하여 실시할 수 있는 것임을 당해 기술분야에서 통상의 지식을 가진 자라면 용이하게 이해할 수 있을 것이다. 한편, ‘포함하다’ 또는 ‘포함하는’의 표현은 본 발명의 요지와 직접적인 관련이 없는 구성요소가 포함되는 것을 배제하지 않으려는 의도임을 밝혀둔다.

Claims (7)

  1. 3차원 좌표계의 원점에 해당하는 위치에 일단이 연결되며 길이, 기복각도, 선회각도를 조절 가능한 붐(boom)과 상기 붐의 타단에 연결되며 좌우회전이 가능한 작업대를 포함하는 고소작업대의 제어방법에 있어서, 상기 작업대의 회전각도에 따라 x, y축이 z축을 회전축으로 하여 회전하는 직각좌표계에서 상기 작업대의 목표지점 좌표를 구하고 이를 구좌표로 변환한 정보를 사용하여 상기 고소작업대를 구동하는 특징을 가진 고소작업대의 직선이동 제어방법.
  2. 3차원 좌표계의 원점에 해당하는 위치에 일단이 연결되며 길이, 기복각도, 선회각도를 조절 가능한 붐(boom)과 상기 붐의 타단에 연결되며 좌우회전이 가능한 작업대를 포함하는 고소작업대의 제어방법에 있어서, 다음의 순차적인 단계들을 포함하는 제어과정을 반복적으로 수행하는 고소작업대의 직선이동 제어방법.
    1) 작업대의 회전정보 및 좌우, 전후, 상하 이동정보를 입력하는 단계
    2) 현재좌표계에서, 작업대의 현재위치 구좌표를 직각좌표로 변환하는 단계
    3) 현재좌표계에서, 작업대 이동정보에 따라 목표지점 직각좌표를 연산하는 단계
    4) 현재좌표계에서, 목표지점의 직각좌표를 구좌표로 변환하는 단계
    5) 작업대 회전정보에 따라 현재좌표계를 회전하여 다음좌표계를 만들고, 목표지점의 현재좌표계 구좌표를 다음좌표계 구좌표로 변환하는 단계
    6) 작업대의 다음좌표계 구좌표를 고정좌표계 구좌표로 변환하는 단계
    7) 다음좌표계의 회전각도 값으로 작업대를 회전구동하고, 동시에 고정좌표계의 구좌표 값으로 붐을 구동하여 작업대를 이동하는 단계
    8) 다음 제어과정을 준비하는 단계
  3. 3차원 좌표계의 원점에 해당하는 위치에 일단이 연결되며 길이, 기복각도, 선회각도를 조절 가능한 붐(boom)과 상기 붐의 타단에 연결되며 좌우회전이 가능한 작업대를 포함하는 고소작업대의 제어방법에 있어서, 다음의 순차적인 단계들을 포함하는 제어과정을 반복적으로 수행하는 고소작업대의 직선이동 제어방법.
    1) 작업대의 회전정보 및 좌우, 전후, 상하 이동정보를 입력하는 단계
    2) 작업대 회전정보에 따라 현재좌표계를 회전하여 다음좌표계를 만들고, 작업대의 현재좌표계 구좌표를 다음좌표계 구좌표로 변환하는 단계
    3) 다음좌표계에서, 작업대의 현재위치 구좌표를 직각좌표로 변환하는 단계
    4) 다음좌표계에서, 작업대 이동정보에 따라 목표지점 직각좌표를 연산하는 단계
    5) 다음좌표계에서, 목표지점의 직각좌표를 구좌표로 변환하는 단계
    6) 작업대의 다음좌표계 구좌표를 고정좌표계 구좌표로 변환하는 단계
    7) 다음좌표계의 회전각도 값으로 작업대를 회전구동하고, 동시에 고정좌표계의 구좌표 값으로 붐을 구동하여 작업대를 이동하는 단계
    8) 다음 제어과정을 준비하는 단계
  4. 3차원 좌표계의 원점에 해당하는 위치에 일단이 연결되며 길이, 기복각도, 선회각도를 조절 가능한 붐(boom)과 상기 붐의 타단에 연결되며 좌우회전이 가능한 작업대를 포함하는 고소작업대의 제어장치에 있어서, 작업대의 회전정보 및 전후, 좌우, 상하 이동정보를 입력하는 제어정보 입력부; 상기 작업대의 회전각도에 따라 x, y축이 z축을 회전축으로 하여 회전하는 직각좌표계에서 상기 제어정보 입력부가 제공하는 정보에 근거하여 상기 작업대의 목표지점 좌표를 연산한 다음에 이를 다시 구좌표로 변환하는 회전좌표 연산부; 및 상기 회전좌표 연산부에서 연산한 결과 정보를 고소작업대의 구동장치에 출력하는 구동정보 출력부;를 포함하는 특징을 가진 고소작업대의 직선이동 제어장치.
  5. 제4항에 있어서, 상기 제어정보 입력부의 HMI(Human Machine Interface)는 2 이상의 조이스틱을 포함하되, 제1 조이스틱의 12시 방향에는 ‘작업대 전진’, 6시 방향에는 ‘작업대 후진’, 3시 방향에는 ‘작업대 우회전’, 9시 방향에는 ‘작업대 좌회전’ 제어명령을 할당하고, 제2 조이스틱의 12시 방향에는 ‘작업대 상향 이동’, 6시 방향에는 ‘작업대 하향 이동’, 3시 방향에는 ‘작업대 우로 이동’, 9시 방향에는 ‘작업대 좌로 이동’ 제어명령을 할당한 특징을 가지는 고소작업대의 직선이동 제어장치.
  6. 제4항에 있어서, 2 이상의 거리측정수단을 상기 작업대의 전면에 구비하고 각각의 거리측정수단이 측정한 작업대상 벽면까지의 거리가 동일하도록 작업대의 회전을 자동 조절하는 수단을 더 가지는 고소작업대의 직선이동 제어장치.
  7. 제4항에 있어서, 상기 작업대에 구비된 1 이상의 작업로봇과, 컴퓨터 기록매체 형태로 저장된 도면으로부터 추출한 작업정보에 근거하여 상기 작업로봇을 작동하는 로봇 제어수단을 더 가지는 고소작업대의 직선이동 제어장치.
PCT/KR2012/003558 2011-05-12 2012-05-07 고소작업대의 직선이동제어 방법 및 장치 WO2012153958A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0044288 2011-05-12
KR1020110044288A KR101467621B1 (ko) 2011-05-12 2011-05-12 고소작업대의 직선이동제어 방법 및 장치

Publications (2)

Publication Number Publication Date
WO2012153958A2 true WO2012153958A2 (ko) 2012-11-15
WO2012153958A3 WO2012153958A3 (ko) 2013-03-21

Family

ID=47139790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003558 WO2012153958A2 (ko) 2011-05-12 2012-05-07 고소작업대의 직선이동제어 방법 및 장치

Country Status (2)

Country Link
KR (1) KR101467621B1 (ko)
WO (1) WO2012153958A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110210068A (zh) * 2019-05-08 2019-09-06 上海航天设备制造总厂有限公司 一种管路组件空间位置装配自动变位装置及装配方法
CN113608233A (zh) * 2021-06-30 2021-11-05 湖南宏动光电有限公司 一种基于坐标变换的虚拟瞄具实现方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384512B1 (ko) * 2012-12-31 2014-04-14 박대규 고소작업대의 선속도제어 방법 및 장치
KR102147339B1 (ko) * 2018-11-19 2020-08-24 주식회사 호룡 센서를 이용한 작업 차량 제어 장치 및 그 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06247699A (ja) * 1993-02-25 1994-09-06 Shin Meiwa Ind Co Ltd 高所作業車の前進・後進制御装置
KR100604017B1 (ko) * 2005-03-30 2006-07-24 대우조선해양 주식회사 선박 도장용 고소차
KR100928102B1 (ko) * 2006-12-31 2009-11-24 사니 헤비 인더스트리 컴패니, 리미티드 지능형 붐 제어 장치
JP2010228905A (ja) * 2009-03-30 2010-10-14 Tadano Ltd 作業機の遠隔操作装置及び遠隔操作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165090A (ja) * 1994-12-09 1996-06-25 Takeshi Hatsuda クレーン制御装置
KR100494235B1 (ko) * 1996-10-18 2005-06-13 가부시키가이샤 야스카와덴키 활선작업용 로봇차 및 그 제어방법
JP2002205899A (ja) * 2001-01-05 2002-07-23 Aichi Corp 高所作業車

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06247699A (ja) * 1993-02-25 1994-09-06 Shin Meiwa Ind Co Ltd 高所作業車の前進・後進制御装置
KR100604017B1 (ko) * 2005-03-30 2006-07-24 대우조선해양 주식회사 선박 도장용 고소차
KR100928102B1 (ko) * 2006-12-31 2009-11-24 사니 헤비 인더스트리 컴패니, 리미티드 지능형 붐 제어 장치
JP2010228905A (ja) * 2009-03-30 2010-10-14 Tadano Ltd 作業機の遠隔操作装置及び遠隔操作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110210068A (zh) * 2019-05-08 2019-09-06 上海航天设备制造总厂有限公司 一种管路组件空间位置装配自动变位装置及装配方法
CN113608233A (zh) * 2021-06-30 2021-11-05 湖南宏动光电有限公司 一种基于坐标变换的虚拟瞄具实现方法及系统

Also Published As

Publication number Publication date
KR20120126474A (ko) 2012-11-21
WO2012153958A3 (ko) 2013-03-21
KR101467621B1 (ko) 2014-12-05

Similar Documents

Publication Publication Date Title
CN103901898B (zh) 一种多自由度机器人的逆运动学通用求解方法
CN103147577B (zh) 多关节类机械臂架的控制方法、设备、系统及工程机械
EP2660014B1 (en) Control device and teaching method for seven-shaft multi-joint robot
Neto et al. High‐level robot programming based on CAD: dealing with unpredictable environments
US20120185089A1 (en) Method for allowing a manipulator to cover a predetermined trajectory, and control device for carrying out said method
KR20150044812A (ko) 티칭 시스템 및 티칭 방법
Shen et al. Asymptotic trajectory tracking of manipulators using uncalibrated visual feedback
CN108748152B (zh) 一种机器人示教方法及系统
WO2012153958A2 (ko) 고소작업대의 직선이동제어 방법 및 장치
KR101876845B1 (ko) 로봇 제어 장치
Payne A five-axis robotic motion controller for designers
Valenzuela-Urrutia et al. Virtual reality-based time-delayed haptic teleoperation using point cloud data
Ibáñez et al. Collaborative robotics in wire harnesses spot taping process
KR20190009106A (ko) 증분형 제어를 이용한 매니퓰레이터 조작기 및 이를 이용한 매니퓰레이터의 제어방법
Ang et al. Multipoint haptic mediator interface for robotic teleoperation
KR101205363B1 (ko) 6자유도 제어기를 이용한 4자유도 로봇 제어방법 및 제어장치
Lee et al. Case studies on glazing robot technology on construction sites
Tayfun et al. Interface design and performance analysis for a haptic robot
Tanzini et al. New interaction metaphors to control a hydraulic working machine's arm
Hanh et al. Implement contour following task of objects with unknown geometric models by using combination of two visual servoing techniques
Zhang et al. A study of flexible force control method on robotic assembly for spacecraft
JP2021186929A (ja) 多軸ロボットの制御方法
Jiang et al. Research on obstacle avoidance path planning algorithm for six-axis robot
Shukla et al. Teleoperation of a uav by a 6-dof parallel manipulator with hybrid mapping for inspection of industrial structures
Borangiu et al. Open architecture for robot controllers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782224

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/03/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12782224

Country of ref document: EP

Kind code of ref document: A2