WO2012153360A1 - Heat exchanger and refrigeration cycle device provided therewith - Google Patents

Heat exchanger and refrigeration cycle device provided therewith Download PDF

Info

Publication number
WO2012153360A1
WO2012153360A1 PCT/JP2011/002550 JP2011002550W WO2012153360A1 WO 2012153360 A1 WO2012153360 A1 WO 2012153360A1 JP 2011002550 W JP2011002550 W JP 2011002550W WO 2012153360 A1 WO2012153360 A1 WO 2012153360A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
path
hole
communication hole
refrigerant flow
Prior art date
Application number
PCT/JP2011/002550
Other languages
French (fr)
Japanese (ja)
Inventor
寿守務 吉村
浩昭 中宗
瑞朗 酒井
宗史 池田
裕之 森本
傑 鳩村
進一 内野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201180070664.XA priority Critical patent/CN103502762B/en
Priority to EP11865155.3A priority patent/EP2706317B1/en
Priority to US14/115,995 priority patent/US20140144611A1/en
Priority to JP2013513821A priority patent/JP5758991B2/en
Priority to PCT/JP2011/002550 priority patent/WO2012153360A1/en
Publication of WO2012153360A1 publication Critical patent/WO2012153360A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/16Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded

Definitions

  • the present invention relates to a heat exchanger that performs heat exchange between a first refrigerant and a second refrigerant, and a refrigeration cycle apparatus including the heat exchanger.
  • a first header connected to both ends and a second header connected to both ends of the second flat tube are provided, and the first flat tube and the second flat tube are parallel to each other in the longitudinal direction (flow direction of the refrigerant).
  • the present invention has been made to solve the above problems, and a first object is to provide a heat exchanger that can be configured compactly and that can be easily manufactured, and a refrigeration cycle apparatus including the heat exchanger. Is to get. And the 2nd objective is to obtain the heat exchanger and refrigeration cycle device which improved heat exchange performance.
  • the heat exchanger includes a first refrigerant path configured by arranging a plurality of first refrigerant channels, which are refrigerant channels through which the first refrigerant flows, arranged in parallel in one row, and a refrigerant through which the second refrigerant flows.
  • a plurality of second refrigerant flow paths, which are flow paths, are arranged in parallel in a row, and the both ends of the first refrigerant path penetrate in the parallel direction of the plurality of first refrigerant flow paths.
  • the first communication holes formed and communicated with all of the first refrigerant flow paths, and are formed so as to penetrate through both ends of the second refrigerant path in the parallel direction of the plurality of second refrigerant flow paths.
  • a second communication hole communicating with the two refrigerant flow paths wherein the first refrigerant flows into one of the first communication holes formed at both ends of the first refrigerant path, and the first refrigerant flow path And flows out to the outside via the other first communication hole, and the second refrigerant passes through both ends of the second refrigerant path.
  • Flows into one of the formed second communication holes flows through the second refrigerant flow path, and flows out to the outside via the other second communication hole, and the first refrigerant flow path and the first
  • the two refrigerant flow paths are parallel to each other and are disposed adjacent to each other, and heat exchange is performed between the first refrigerant and the second refrigerant via a partition wall on the adjacent surface. It is.
  • the first communication hole and the second communication hole are provided in the heat exchanger, it is not necessary to provide separate header pipes for connection to the first refrigerant path and the second refrigerant path.
  • the heat exchanger can be made compact and the manufacturing process can be simplified.
  • FIG. 1 is a structural diagram of a heat exchanger 8 according to Embodiment 1 of the present invention.
  • Fig.1 (a) is a perspective view of the heat exchanger 8
  • FIG.1 (b) is a top view seen from the arrow A direction of Fig.1 (a)
  • FIG. (c) is the side view seen from the arrow B direction of Fig.1 (a).
  • the main body 10 of the heat exchanger 8 according to the present embodiment has a plurality of first refrigerant flow paths 1 a through which a first refrigerant (for example, high-temperature refrigerant) circulates in a line in the longitudinal direction.
  • a first refrigerant for example, high-temperature refrigerant
  • pass 1 formed so that it might penetrate to was comprised.
  • a plurality of second refrigerant flow paths 2a through which a second refrigerant (for example, a low-temperature refrigerant) flows are arranged in a row and penetrated in the longitudinal direction so as to be adjacent to the first refrigerant flow paths 1a of the first refrigerant path 1.
  • pass 2 formed so that is comprised is comprised. Therefore, the first refrigerant path 1 and the second refrigerant path 2 are integrally formed in the main body 10.
  • the main body 10 in which the first refrigerant path 1 and the second refrigerant path 2 are formed is formed of, for example, aluminum or an aluminum alloy, copper or a copper alloy, or steel or a stainless alloy, and is formed by extrusion or pultrusion molding. Manufactured.
  • a first inlet communication hole 3a that communicates with all the first refrigerant flow paths 1a is formed in one of both ends of the main body 10 in the refrigerant flow direction along the arrangement direction of the first refrigerant flow paths 1a.
  • first outlet communication holes 4a communicating with all the first refrigerant flow paths 1a are formed along the direction in which the first refrigerant flow paths 1a are arranged.
  • the side where the first outlet communication holes 4a are formed communicates with all the second refrigerant flow paths 2a along the arrangement direction of the second refrigerant flow paths 2a.
  • a second inlet communication hole 5a is formed.
  • all the second refrigerant flow paths 2a communicate with each other along the arrangement direction of the second refrigerant flow paths 2a.
  • a second outlet communication hole 6a is formed.
  • first inlet communication hole 3a and the second outlet communication hole 6a are formed slightly shifted in the refrigerant flow direction of the first refrigerant flow path 1a (or the second refrigerant flow path 2a). Further, the first outlet communication hole 4a and the second inlet communication hole 5a are formed with a slight shift in the refrigerant flow direction of the first refrigerant flow path 1a (or the second refrigerant flow path 2a).
  • the penetration direction of the first inlet communication hole 3a and the first outlet communication hole 4a is not necessarily perpendicular to the direction of each first refrigerant flow path 1a. Further, the penetrating direction of the second inlet communication hole 5a and the second outlet communication hole 6a is not necessarily perpendicular to the direction of the second refrigerant flow path 2a.
  • One end of the first inlet communication hole 3a, the first outlet communication hole 4a, the second inlet communication hole 5a, and the second outlet communication hole 6a is opened, and the first inlet connection so as to communicate with the outside.
  • the pipe 3, the first outlet connecting pipe 4, the second inlet connecting pipe 5 and the second outlet connecting pipe 6 are connected.
  • the other ends of the first inlet communication hole 3a, the first outlet communication hole 4a, the second inlet communication hole 5a, and the second outlet communication hole 6a are closed by a sealing member or the like.
  • the end portions that are opened (or closed) are: Although all are on the same side, the present invention is not limited to this, and it is not necessary to be on the same side as long as one end is opened in each communication hole and the other end is closed.
  • both ends of the plurality of first refrigerant flow paths 1a and second refrigerant flow paths 2a formed so as to penetrate in the longitudinal direction of the main body 10 are sealed by pinching or the like, or sealed by a sealing member (Not shown).
  • the first inlet communication hole 3a and the first outlet communication hole 4a correspond to the “first communication hole” in the present invention
  • the second inlet communication hole 5a and the second inlet communication hole 6a are the “first communication hole” in the present invention.
  • the first refrigerant flows into the first inlet communication hole 3a through the first inlet connection pipe 3, flows in the order of the first refrigerant path 1, and then the first outlet communication hole 4a, and the first outlet connection pipe 4 Spill from.
  • the second refrigerant flows into the second inlet communication hole 5a via the second inlet connection pipe 5, flows in the order of the second refrigerant path 2, and then the second outlet communication hole 6a, and is connected to the second outlet connection. It flows out from the pipe 6. At that time, heat exchange is performed between the first refrigerant flowing through the first refrigerant path 1 and the second refrigerant flowing through the second refrigerant path 2 in a counterflow through a partition between the refrigerant paths.
  • first inlet communication hole 3a and the first outlet communication hole 4a are provided inside the main body 10 of the heat exchanger 8, it is not necessary to provide a separate header pipe for connecting to the first refrigerant path 1.
  • the heat exchanger 8 can be made compact and the manufacturing process can be simplified. The same applies to the second inlet communication hole 5a and the second outlet communication hole 6a for the second refrigerant path 2.
  • first inlet communication hole 3a and the second outlet communication hole 6a, as well as the first outlet communication hole 4a and the second inlet communication hole 5a are formed slightly shifted in the flow direction of each refrigerant, Since the distance between the adjacent first refrigerant path 1 and the second refrigerant path 2 can be reduced as compared with the case where they are not shifted, the heat exchanger 8 can be made compact.
  • the cross-sectional shapes of the first refrigerant flow path 1a and the second refrigerant flow path 2a are rectangular, but the present invention is not limited to this, and any polygon can be used.
  • it may be circular, or may be a long hole or an ellipse.
  • the flow path cross section of the first refrigerant flow path 1a and the flow path cross section of the second refrigerant flow path 2a need not have the same shape.
  • a groove may be provided on the inner surface of the refrigerant flow path to increase the heat transfer area. In this case, if the groove is processed at the same time as the extrusion of the heat exchanger 8 and the pultrusion molding, the manufacturing operation can be simplified.
  • the same number of refrigerant flow paths are provided in the first refrigerant path 1 and the second refrigerant path 2, but the present invention is not limited to this. That is, the numbers may be different from each other so that the heat exchanger 8 has a high heat transfer performance, a low pressure loss, and a suitable heat exchanger according to the operating condition or fluid property value of the refrigerant in the heat exchanger 8.
  • the first refrigerant path 1 and the second refrigerant path 2 are integrally formed in the main body 10, but the present invention is not limited to this. That is, even when the first refrigerant path 1 and the second refrigerant path 2 are separate pipes and both are joined by brazing or the like, the first inlet communication is connected to the pipe in which the first refrigerant path 1 is formed. If the hole 3a and the first outlet communication hole 4a are provided, it is not necessary to provide a separate header pipe for connecting the refrigerant flow path of the first refrigerant path 1, so that the heat exchanger can be made compact, The manufacturing process can be simplified. The same applies to the case where the second inlet communication hole 5a and the second outlet communication hole 6a are provided in the pipe in which the second refrigerant path 2 is formed.
  • the first inlet connection pipe 3 and the first outlet connection pipe 4 are respectively connected to the first inlet communication hole 3a and the first outlet communication hole 4a from the first inlet communication hole 3a to the first outlet communication hole 4a.
  • a sealing member or the like by brazing or the like
  • an extra sealing member enters and the refrigerant flow paths Can be suppressed and manufacturing variation can be suppressed.
  • the same effect can be acquired also in the 2nd inlet connecting pipe 5 and the 2nd outlet connecting pipe 6 if it is set as the same structure.
  • pass 2 shall be heat-exchanged by counterflow, it is not limited to this Alternatively, heat exchange may be performed as a parallel flow. For example, if the first refrigerant flows in from the first inlet connecting pipe 3 and the second refrigerant flows in from the second outlet connecting pipe 6, the first refrigerant and the second refrigerant become parallel flows.
  • FIG. The heat exchanger 8a according to the present embodiment will be described focusing on differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
  • FIG. 2 is a structural diagram of a heat exchanger 8a according to Embodiment 2 of the present invention.
  • the first refrigerant path 1 through which the first refrigerant flows includes a plurality of first refrigerant flow paths 1a arranged in a line.
  • the plurality of first refrigerant flow paths 1b are arranged in a row so as to be adjacent to the first refrigerant flow path 1a.
  • the second refrigerant path 2 through which the second refrigerant flows includes a plurality of second refrigerant flow paths 2a arranged in a line and a plurality of second refrigerant flow paths 2b adjacent to the second refrigerant flow paths 2a.
  • each of the first refrigerant path 1 and the second refrigerant path 2 is constituted by two sets of refrigerant flow paths, and as shown in FIG. 2, the first refrigerant flow path 1b in the first refrigerant path 1 and The second refrigerant flow path 2a in the second refrigerant path 2 is adjacent.
  • All the first refrigerant flow paths 1a and the first refrigerant flow paths are arranged at one of both ends of the main body 10 in the refrigerant flow direction along the arrangement direction of the first refrigerant flow paths 1a (first refrigerant flow paths 1b).
  • a first inlet communication hole 3a is formed so as to communicate with 1b.
  • the first refrigerant flow paths 1a (first refrigerant flow paths 1b) are communicated with all the second refrigerant flow paths 2a and the second refrigerant flow paths 2b along the alignment direction of the first refrigerant flow paths 1a (first refrigerant flow paths 1b).
  • An outlet communication hole 4a is formed.
  • all the second refrigerant flow paths 2a (second refrigerant flow paths 2b) are arranged along the arrangement direction of the second refrigerant flow paths 2a (second refrigerant flow paths 2b).
  • a second inlet communication hole 5a is formed so as to communicate with the second refrigerant channel 2a and the second refrigerant channel 2b.
  • a second outlet communication hole 6a is formed so as to communicate with the second refrigerant channel 2a and the second refrigerant channel 2b.
  • both ends of the plurality of first refrigerant flow paths 1a, first refrigerant flow paths 1b, second refrigerant flow paths 2a, and second refrigerant flow paths 2b formed through the body 10 in the longitudinal direction are pinched. It is sealed (not shown) by a sealing process or the like by a sealing member.
  • the first refrigerant flows into the first inlet communication hole 3a through the first inlet connection pipe 3, flows through the first refrigerant flow path 1a and the first refrigerant flow path 1b constituting the first refrigerant path 1, and Then, it flows through the first outlet communication hole 4 a and flows out from the first outlet connection pipe 4.
  • the second refrigerant flows into the second inlet communication hole 5a through the second inlet connection pipe 5, and flows through the second refrigerant flow path 2a and the second refrigerant flow path 2b constituting the second refrigerant path 2. Furthermore, it flows through the second outlet communication hole 6 a and flows out from the second outlet connecting pipe 6.
  • the first refrigerant flowing through the first refrigerant flow path 1a and the first refrigerant flow path 1b, and the second refrigerant flowing through the second refrigerant flow path 2a and the second refrigerant flow path 2b are the first refrigerant flow.
  • Heat exchange is performed in a counterflow through a partition wall between the path 1b and the second refrigerant flow path 2a.
  • each refrigerant flow path is also formed when each refrigerant path is configured by a plurality of sets of refrigerant flow paths. Since it is comprised integrally, the thermal resistance which generate
  • each refrigerant path is constituted by two sets of refrigerant flow paths, and these refrigerant flow paths are integrated by one communication hole, so the number of communication holes can be reduced, and the manufacturing process of the heat exchanger 8a can be simplified. Can be planned.
  • the distance between the two sets of refrigerant flow paths in each refrigerant path can be reduced, and the heat exchanger 8a can be made compact. You can plan.
  • each refrigerant path is constituted by two sets of refrigerant flow paths, the heat exchange capacity can be increased.
  • the number of the first refrigerant flow path 1a, the first refrigerant flow path 1b, the second refrigerant flow path 2a, and the second refrigerant flow path 2b is the same, but it is limited to this. It is not a thing. That is, the numbers may be different from each other so that the heat exchanger performance is high, the pressure loss is low, and a suitable heat exchanger is obtained in accordance with the operating condition or flow characteristic value of the refrigerant in the heat exchanger 8a.
  • each refrigerant path is composed of two sets of refrigerant flow paths (for example, the first refrigerant flow path 1b and the first refrigerant flow path 1b in the case of the first refrigerant path 1).
  • each refrigerant path may be constituted by three or more sets of refrigerant flow paths.
  • the first inlet communication hole 3a and the second outlet communication hole 6a may be formed so as to be shifted in the flow direction of the first refrigerant path 1 (or the second refrigerant path 2). .
  • the exchanger 8a can be made compact.
  • Embodiment 3 FIG.
  • the heat exchanger 8b according to the present embodiment will be described focusing on differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
  • FIG. 3 is a structural diagram of a heat exchanger 8b according to Embodiment 3 of the present invention.
  • Fig.3 (a) is a perspective view of the heat exchanger 8b
  • FIG.3 (b) is a top view seen from the arrow A direction of Fig.3 (a)
  • FIG. c) is a side view seen from the direction of arrow B in FIG.
  • the first refrigerant path 1 through which the first refrigerant flows has a plurality of first refrigerant flow paths 1a arranged in a line.
  • the second refrigerant path 2 through which the second refrigerant flows is composed of a plurality of second refrigerant flow paths 2a arranged in a line and a plurality of second refrigerant flow paths 2b arranged in a line. .
  • the row of the refrigerant flow paths of the first refrigerant path 1 and the row of the refrigerant flow paths of the second refrigerant path 2 are alternately arranged every other row. Specifically, when viewed from the direction of arrow B in FIG. 3A, the first refrigerant channel 1a, the second refrigerant channel 2a, the first refrigerant channel 1b, and the second refrigerant channel from the top. They are arranged in the order of 2b.
  • a first inlet communication hole 3a is formed at one of both ends of the main body 10 in the refrigerant flow direction so as to communicate with all the first refrigerant flow paths 1a along the arrangement direction of the first refrigerant flow paths 1a.
  • first inlet communication holes 3b are formed along the direction in which the first refrigerant flow paths 1b are arranged so as to communicate with all the first refrigerant flow paths 1b.
  • first outlet communication holes 4a are formed so as to communicate with all the first refrigerant flow paths 1a along the arrangement direction of the first refrigerant flow paths 1a.
  • a first outlet communication hole 4b is formed along the direction in which the refrigerant flow paths 1b are arranged so as to communicate with all the first refrigerant flow paths 1b.
  • all the second refrigerant flow paths 2a are arranged along the arrangement direction of the second refrigerant flow paths 2a.
  • the second inlet communication hole 5a is formed so as to communicate with the two refrigerant flow paths 2a, and communicates with all the second refrigerant flow paths 2b along the arrangement direction of the second refrigerant flow paths 2b.
  • a second inlet communication hole 5b is formed in the upper part.
  • second outlet communication holes 6a are formed so as to communicate with all the second refrigerant flow paths 2a along the arrangement direction of the second refrigerant flow paths 2a.
  • a second outlet communication hole 6b is formed along the direction in which the refrigerant flow paths 2b are arranged so as to communicate with all the second refrigerant flow paths 2b.
  • the penetration direction of the first inlet communication hole 3a and the first outlet communication hole 4a is not necessarily perpendicular to the direction of each first refrigerant flow path 1a.
  • the penetrating direction of the inlet communication hole 3b and the first outlet communication hole 4b is not necessarily perpendicular to the direction of each first refrigerant channel 1b.
  • the second outlet communication hole 6b is closed at both ends by a sealing member or the like.
  • both ends of the plurality of first refrigerant flow paths 1a, first refrigerant flow paths 1b, second refrigerant flow paths 2a, and second refrigerant flow paths 2b formed through the body 10 in the longitudinal direction are pinched. It is sealed (not shown) by a sealing process or the like by a sealing member.
  • a first inlet collecting hole 31 is formed so as to communicate with both of the first inlet communication hole 3a and the first inlet communication hole 3b along the arrangement direction of the first inlet communication hole 3a.
  • a first outlet collection hole 41 is formed along the direction in which the first outlet communication holes 4b are arranged so as to communicate with both of them.
  • the second inlet communication hole 5a and the second inlet communication hole 5b are arranged along the direction of arrangement of the second inlet communication hole 5b so as to communicate with both of them, and the second outlet communication hole 6a and
  • a second outlet collecting hole 61 is formed along the direction in which the second outlet communicating holes 6b are arranged so as to communicate with both of them.
  • the first inlet collecting hole 31, the first outlet collecting hole 41, the second inlet collecting hole 51, and the second outlet collecting hole 61 are all.
  • the first inlet collecting hole 31 may be formed at any position as long as the first inlet communicating hole 3a and the first inlet communicating hole 3b are aligned with each other.
  • the penetration direction of the first inlet collecting hole 31 is not necessarily perpendicular to the penetration direction of the first inlet communication hole 3a and the first inlet communication hole 3b. .
  • first inlet collecting hole 31 the first outlet collecting hole 41, the second inlet collecting hole 51, and the second outlet collecting hole 61 is opened, and the first inlet connection is made so as to communicate with the outside.
  • the pipe 3, the first outlet connecting pipe 4, the second inlet connecting pipe 5 and the second outlet connecting pipe 6 are connected.
  • the other ends of the first inlet collecting hole 31, the first outlet collecting hole 41, the second inlet collecting hole 51, and the second outlet collecting hole 61 are closed by a sealing member or the like. As shown in FIG.
  • the end portions that are opened (or closed) are These are all on the same side, but the present invention is not limited to this, and it is not necessary to be on the same side as long as one end is opened in each collecting hole and the other end is closed.
  • the first inlet communication hole 3a, the first inlet communication hole 3b, the first outlet communication hole 4a, and the first outlet communication hole 4b correspond to the “first communication hole” of the present invention, and the second inlet communication hole 5a.
  • the second inlet communication hole 5b, the second outlet communication hole 6a, and the second outlet communication hole 6b correspond to the “second communication hole” of the present invention.
  • the first inlet collecting hole 31 and the first outlet collecting hole 41 correspond to the “first collecting hole” of the present invention, and the second inlet collecting hole 51 and the second outlet collecting hole 61 of the present invention are the “first collecting hole”. Corresponds to “2 holes”.
  • the first refrigerant flows into the first inlet collecting hole 31 through the first inlet connecting pipe 3, and flows into the first inlet communicating hole 3a and the first inlet communicating hole 3b.
  • the first refrigerant flowing into the first inlet communication hole 3a flows through the first refrigerant channel 1a and flows out to the first outlet communication hole 4a.
  • coolant which flowed into the 1st inlet communication hole 3b distribute
  • the first refrigerant that has flowed into the first outlet communication hole 4 a and the first outlet communication hole 4 b merges at the first outlet collecting hole 41 and flows out from the first outlet connection pipe 4.
  • the second refrigerant flows into the second inlet collecting hole 51 through the second inlet connecting pipe 5, and flows into the second inlet communicating hole 5a and the second inlet communicating hole 5b, respectively.
  • the second refrigerant flowing into the second inlet communication hole 5a flows through the second refrigerant channel 2a and flows out to the second outlet communication hole 6a.
  • the second refrigerant flowing into the second inlet communication hole 5b flows through the second refrigerant flow path 2b and flows out to the second outlet communication hole 6b.
  • the second refrigerant that has flowed out into the second outlet communication hole 6 a and the second outlet communication hole 6 b merges in the second outlet collecting hole 61 and flows out from the second outlet connection pipe 6.
  • the first refrigerant flowing through the first refrigerant flow path 1a and the first refrigerant flow path 1b and the second refrigerant flowing through the second refrigerant flow path 2a and the second refrigerant flow path 2b are between the respective refrigerant flow paths. Heat exchange is performed in a counterflow through the partition.
  • each refrigerant flow path is integrated even when each refrigerant path is constituted by two sets of refrigerant flow paths. Therefore, the heat resistance generated in the case of being configured separately is suppressed, and the heat exchange performance can be improved.
  • the first inlet collecting hole 31 and the first outlet collecting hole 41 are provided in the main body 10 of the heat exchanger 8b, the first inlet communicating hole 3a, the first inlet communicating hole 3b, and the first outlet communicating hole are provided. It is not necessary to provide a separate header pipe for connecting to 4a and the first outlet communication hole 4b. Therefore, the heat exchanger 8b can be made compact and the manufacturing process can be simplified. The same applies to the second inlet collecting hole 51 and the second outlet collecting hole 61.
  • each refrigerant path is constituted by two sets of refrigerant flow paths, and these refrigerant flow paths are collected by one communication hole, so the number of communication holes can be reduced, and the manufacturing process of the heat exchanger 8b can be simplified. You can plan.
  • each refrigerant path is constituted by two sets of refrigerant flow paths, the heat exchange capacity can be increased.
  • the heat exchanger 8b according to the present embodiment includes the first refrigerant path 1 and the second refrigerant path 2 that are configured by two sets of refrigerant flow paths, like the heat exchanger 8a according to the second embodiment.
  • the rows of the refrigerant flow paths of the first refrigerant path 1 and the rows of the refrigerant flow paths of the second refrigerant path 2 are alternately arranged every other row.
  • the refrigerant flowing through each set of refrigerant flow paths and the refrigerant flowing through another set of refrigerant flow paths adjacent thereto are different from each other, and thus the heat exchanger 8a according to the second embodiment.
  • the heat exchange performance is further improved.
  • the first refrigerant path 1 and the second refrigerant path 2 are integrally formed in the main body 10, but the present invention is not limited to this. That is, even when the first refrigerant path 1 and the second refrigerant path 2 are separate pipes and both are joined by brazing or the like, the first inlet communication is connected to the pipe in which the first refrigerant path 1 is formed. If the hole 3a, the first inlet communication hole 3b, the first outlet communication hole 4a, and the first outlet communication hole 4b are provided, it is necessary to provide a separate header pipe for connecting the refrigerant flow path of the first refrigerant path 1. Therefore, the heat exchanger can be made compact and the manufacturing process can be simplified. The same applies to the case where the second inlet communication hole 5a, the second inlet communication hole 5b, the second outlet communication hole 6a, and the second outlet communication hole 6b are provided in the pipe in which the second refrigerant path 2 is formed. I can say.
  • each refrigerant path is composed of two sets of refrigerant flow paths (for example, if the first refrigerant path 1 is used, the first refrigerant flow path 1a and the first refrigerant flow path 1b
  • each refrigerant path may be constituted by three or more sets of refrigerant flow paths. Further, it is not necessary that the number of sets of refrigerant flow paths in the first refrigerant path 1 and the number of sets of refrigerant flow paths in the second refrigerant path 2 are the same.
  • Embodiment 4 FIG.
  • the heat exchanger 8c according to the present embodiment will be described focusing on differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
  • FIG. 4 is a structural diagram of a heat exchanger 8c according to Embodiment 4 of the present invention. As shown in FIG. 4, a part of both ends of the main body 10 of the heat exchanger 8 c according to the present embodiment in the refrigerant flow direction has a part along the arrangement direction of the first refrigerant flow paths 1 a.
  • a first inlet communication hole 3aa communicating with the first refrigerant flow path 1a (hereinafter referred to as “first first refrigerant flow path group”) is formed. Further, a first inlet communication hole 3ab communicating with the remaining first refrigerant flow path 1a is formed.
  • first refrigerant flow paths 1a communicating with the first inlet communication holes 3aa in the first refrigerant flow paths 1a along the direction in which the first refrigerant flow paths 1a are arranged, and the first A first outlet communication hole 4aa communicating with a part of the first refrigerant flow path 1a (hereinafter referred to as “second first refrigerant flow path group”) communicating with the inlet communication hole 3ab is formed. Further, a first outlet communication hole 4ab communicating with the remaining first refrigerant flow path 1a (hereinafter referred to as “third first refrigerant flow path group”) communicating with the first inlet communication hole 3ab is formed.
  • first second refrigerant channel group communicating with the second refrigerant channel 2a
  • second inlet communication hole 5aa communicating with the remaining second refrigerant flow path 2a
  • the second refrigerant is disposed along the direction in which the second refrigerant flow paths 2a are arranged on the side where the first inlet communication hole 3aa and the first inlet communication hole 3ab are formed in both ends of the main body 10 in the refrigerant flow direction.
  • all the second refrigerant flow paths 2a communicating with the second inlet communication holes 5ab and a part of the second refrigerant flow paths 2a (hereinafter referred to as "second flow paths”) communicating with the second inlet communication holes 5aa.
  • a second outlet communication hole 6ab communicating with the “second refrigerant flow path group” is formed.
  • a second outlet communication hole 6aa communicating with the remaining second refrigerant flow path 2a hereinafter referred to as “third second refrigerant flow path group” communicating with the second inlet communication hole 5aa is formed.
  • the “second first refrigerant flow path group” is adjacent to the “third second refrigerant flow path group”, and the “second first refrigerant flow path group” is the “second second refrigerant flow path group”.
  • the “third refrigerant channel group” is formed adjacent to the “second refrigerant channel group”, and the “third first refrigerant channel group” is formed adjacent to the “second refrigerant channel group”.
  • the first inlet communication hole 3aa and the first inlet communication hole 3ab and the second outlet communication hole 6aa and the second outlet communication hole 6ab are the refrigerant in the first refrigerant channel 1a (or the second refrigerant channel 2a). It is formed with a slight shift in the distribution direction. Further, the first outlet communication hole 4aa and the first outlet communication hole 4ab, and the second inlet communication hole 5aa and the second inlet communication hole 5ab are the refrigerant in the first refrigerant channel 1a (or the second refrigerant channel 2a). It is formed with a slight shift in the distribution direction.
  • first inlet communication hole 3aa and the first inlet communication hole 3ab, and the first outlet communication hole 4aa and the first outlet communication hole 4ab are not necessarily perpendicular to the direction of each first refrigerant flow path 1a.
  • the second inlet communication hole 5aa and the second inlet communication hole 5ab, and the second outlet communication hole 6aa and the second outlet communication hole 6ab need to be perpendicular to the direction of each second refrigerant flow path 2a.
  • the first inlet communication hole 3aa and the first inlet communication hole 3ab are formed in the same direction and coaxial, but are not necessarily in the same direction or coaxial. It doesn't have to be.
  • first outlet communication hole 4aa and the first outlet communication hole 4ab the second inlet communication hole 5aa and the second inlet communication hole 5ab, and the second outlet communication hole 6aa and the second outlet communication hole 6ab. is there.
  • first inlet communication hole 3aa, the first outlet communication hole 4ab, the second inlet communication hole 5ab, and the second outlet communication hole 6aa is opened, and the first inlet connection is made so as to communicate with the outside.
  • a pipe 3 a first outlet connecting pipe 4, a second inlet connecting pipe 5 (not shown in FIG. 4 for the back side of the first outlet connecting pipe 4) and a second outlet connecting pipe 6 are connected.
  • the first inlet communication hole 3aa corresponds to the “first divided communication hole inflow portion” of the present invention, and the first inlet communication hole 3ab and the first outlet communication hole 4aa are the “first divided communication hole” of the present invention.
  • the first outlet communication hole 4ab corresponds to the “folded portion” and corresponds to the “first divided communication hole outflow portion” of the present invention.
  • the second inlet communication hole 5ab corresponds to the “second divided communication hole inflow portion” of the present invention, and the second inlet communication hole 5aa and the second outlet communication hole 6ab are the “second divided communication hole of the present invention.
  • the second outlet communication hole 6aa corresponds to the “folded portion”, and corresponds to the “second divided communication hole outflow portion” of the present invention.
  • the first refrigerant flows into the first inlet communication hole 3aa via the first inlet connection pipe 3, and the first refrigerant channel 1a, the first outlet communication hole 4aa, the first refrigerant channel 1a, and the first inlet communication again. It flows through the hole 3ab, the first refrigerant flow path 1a, and the first outlet communication hole 4ab in this order, and flows out from the first outlet connecting pipe 4.
  • the second refrigerant flows into the second inlet communication hole 5ab via the second inlet connection pipe 5, and then the second refrigerant flow path 2a, the second outlet communication hole 6ab, the second refrigerant flow path 2a, and the second refrigerant flow path again.
  • the first inlet communication hole 3aa and the like for turning the refrigerant flow path are formed inside the main body 10 of the heat exchanger 8c, it is not necessary to provide a separate pipe, and the heat exchanger 8c is compact. Can be achieved.
  • the flow operation of the first refrigerant and the second refrigerant has been described as both flowing back.
  • the present invention is not limited to this, and one refrigerant is folded back.
  • the other refrigerant may flow linearly as in the first embodiment.
  • which refrigerant is to be turned back and forth is determined according to the operating conditions and physical properties of the respective refrigerants in the heat exchanger, heat transfer performance is high, pressure loss is low, and a suitable heat exchanger It may be selected so that
  • the configurations of the first inlet communication hole 3aa and the first inlet communication hole 3ab, and the first outlet communication hole 4aa and the first outlet communication hole 4ab are the same as described above, and the second inlet communication hole 5aa and the second inlet are maintained.
  • the configuration of the communication hole 5ab, the second outlet communication hole 6aa, and the second outlet communication hole 6ab may be as follows. However, the positional relationship between the first inlet communication hole 3aa and the first inlet communication hole 3ab, the second outlet communication hole 6aa and the second outlet communication hole 6ab, and the first outlet communication hole 4aa and the first outlet communication hole 4ab.
  • the positional relationship between the second inlet communication hole 5aa and the second inlet communication hole 5ab is the same as that shown in FIG. That is, on the side where the first outlet communication hole 4aa and the first outlet communication hole 4ab are formed in both ends of the main body 10 in the refrigerant flow direction, a part of the second refrigerant flow path 2a is arranged along the arrangement direction of the second refrigerant flow paths 2a.
  • the second inlet communication hole 5aa is formed so as to communicate with the second refrigerant flow path 2a (corresponding to the above-mentioned “third second refrigerant flow path group”). Further, the second inlet communication hole 5ab is formed so as to communicate with the remaining second refrigerant flow path 2a.
  • coolant is along the arrangement direction of each 2nd refrigerant
  • all the second refrigerant flow passages 2a communicating with the second inlet communication holes 5aa and a part of the second refrigerant flow passages 2a communicating with the second inlet communication holes 5ab (the above-mentioned “secondary passages”).
  • the second outlet communication hole 6aa is formed so as to communicate with the “second refrigerant flow path group”.
  • the second outlet communication hole 6ab is formed so as to communicate with the remaining second refrigerant flow path 2a (corresponding to the above-mentioned “first second refrigerant flow path group”) communicating with the second inlet communication hole 5ab.
  • the second inlet communication hole 5aa and the second outlet communication hole 6ab is opened, and the second inlet connection pipe 5 and the second outlet connection pipe 6 are connected to each other so as to communicate with the outside.
  • the heat exchanger 8c according to the present embodiment divides the communication hole corresponding to the first inlet communication hole 3a of the heat exchanger 8 according to the first embodiment into two parts (first Although the inlet communication hole 3aa and the first inlet communication hole 3ab) are configured (the same applies to the first outlet communication hole 4aa and the first outlet communication hole 4ab), the present invention is not limited to this. That is, it is good also as what is comprised so that the frequency
  • coolant may be increased as 3 or more divisions.
  • the two first outlet communication holes 4ab are arranged on one end side in the parallel direction of the first refrigerant flow path 1a, and the first refrigerant flows in or out, respectively. .
  • the size of the heat exchanger can be kept as it is, and the refrigerant flow path can be further lengthened, so that the heat exchange performance can be further improved.
  • the configuration in which the refrigerant flow path is folded back as in the heat exchanger 8c according to the present embodiment can also be applied to the second and third embodiments.
  • FIG. 5 The heat exchanger 8d according to the present embodiment will be described focusing on differences from the configuration and operation of the heat exchanger 8b according to the third embodiment.
  • FIG. 5 is a structural diagram of a heat exchanger 8d according to Embodiment 5 of the present invention.
  • Fig.5 (a) is a perspective view of the heat exchanger 8d
  • FIG.5 (b) is the top view seen from the arrow A direction of Fig.5 (a)
  • FIG. (c) is the side view seen from the arrow B direction of Fig.5 (a).
  • the first collecting hole 31a is formed so as to communicate with the first inlet communication hole 3a along the direction in which the first inlet communication hole 3a and the first inlet communication hole 3b are arranged.
  • a first collecting hole 31b is formed so as to communicate with the first inlet communication hole 3b.
  • the 1st relay gathering hole 41a is formed along the arrangement direction of the 1st exit communicating hole 4a and the 1st exit communicating hole 4b so that it may communicate with both.
  • the second relay assembly hole 51a is formed along the direction in which the second inlet communication hole 5a and the second inlet communication hole 5b are arranged so as to communicate with both.
  • a second collecting hole 61a is formed along the direction in which the second outlet communication hole 6a and the second outlet communication hole 6b are arranged so as to communicate with the second outlet communication hole 6a.
  • a second collective hole 61b is formed so as to communicate with the hole 6b.
  • first collecting hole 31a, the first collecting hole 31b, the second collecting hole 61a, and the second collecting hole 61b is opened, and the first inlet connecting pipe 3 and the second collecting hole 61b are communicated to the outside.
  • the 1 outlet connection pipe 4, the 2nd outlet connection pipe 6, and the 2nd inlet connection pipe 5 are connected.
  • both ends of the first relay assembly hole 41a and the second relay assembly hole 51a are closed by a sealing member or the like. Therefore, the first outlet connection pipe 4 and the second inlet connection pipe 5 are connected to the surface opposite to the one surface of the main body 10 to which the first inlet connection pipe 3 and the second outlet connection pipe 6 are connected.
  • the first collective hole 31a, the first collective hole 31b, the first relay collective hole 41a, the second relay collective hole 51a, the second collective hole 61a, and The second collecting holes 61b are all formed on the same side (right side), but are not limited thereto. That is, for example, the first collecting hole 31a may be formed at any position as long as it communicates with the first inlet communication hole 3a and has an opening to the outside. The same applies to the first collecting hole 31b, the second collecting hole 61a, and the second collecting hole 61b.
  • first relay collecting hole 41a may be formed at any position as long as the first relay communicating hole 41a is located along the arrangement direction of the first outlet communicating hole 4a and the first outlet communicating hole 4b. The same applies to the second relay assembly hole 51a. Further, as shown in FIG. 5, the penetration direction of the first relay assembly hole 41a is not necessarily perpendicular to the penetration direction of the first outlet communication hole 4a and the first outlet communication hole 4b. The same applies to the second relay assembly hole 51a.
  • the first collecting hole 31a corresponds to the “first collecting hole inflow portion” of the present invention
  • the first collecting hole 31b corresponds to the “first collecting hole outflow portion” of the present invention
  • the second collecting hole 61b corresponds to a “second collecting hole inflow portion” of the present invention
  • the second collecting hole 61a corresponds to a “second collecting hole outflow portion” of the present invention.
  • the first refrigerant flows into the first collecting hole 31a through the first inlet connection pipe 3, and flows into the first inlet communication hole 3a.
  • the first refrigerant flowing into the first inlet communication hole 3a flows through the first refrigerant channel 1a and flows out to the first outlet communication hole 4a.
  • coolant which flowed out to the 1st exit communication hole 4a flows out into the 1st exit communication hole 4b via the 1st relay gathering hole 41a.
  • coolant which flowed out to the 1st exit communication hole 4b distribute
  • coolant which flowed out to the 1st inlet communication hole 3b flows out via the 1st exit connection pipe 4 via the 1st collection hole 31b.
  • the second refrigerant flows into the second collecting hole 61b through the second inlet connection pipe 5, and flows into the second outlet communication hole 6b.
  • the second refrigerant flowing into the second outlet communication hole 6b flows through the second refrigerant flow path 2b and flows out to the second inlet communication hole 5b.
  • the second refrigerant that has flowed out into the second inlet communication hole 5b flows into the second inlet communication hole 5a via the second relay collecting hole 51a.
  • the second refrigerant that has flowed out into the second inlet communication hole 5a flows through the second refrigerant flow path 2a and flows out into the second outlet communication hole 6a.
  • the second refrigerant that has flowed out into the second outlet communication hole 6a flows out through the second outlet connecting pipe 6 via the second collecting hole 61a.
  • the first refrigerant flowing through the first refrigerant flow path 1a and the second refrigerant flowing through the second refrigerant flow path 2a are subjected to heat exchange in a counter flow via a partition wall between the refrigerant flow paths.
  • the first refrigerant flowing through the first refrigerant flow path 1b and the second refrigerant flowing through the second refrigerant flow path 2b are subjected to heat exchange in a counter flow through a partition wall between the refrigerant flow paths.
  • the first refrigerant flowing through the first refrigerant flow path 1b and the second refrigerant flowing through the second refrigerant flow path 2a are in a parallel flow relationship. Needless to say, the exchange is carried out.
  • the first relay gathering hole 41a and the like for turning the refrigerant flow path are formed inside the main body 10 of the heat exchanger 8d, it is not necessary to provide a separate pipe, and the heat exchanger 8d is compact. Can be achieved.
  • the flow operation of the first refrigerant and the second refrigerant has been described as both flowing back.
  • the present invention is not limited to this, and one refrigerant is folded back.
  • the other refrigerant may flow linearly as in the fourth embodiment.
  • which refrigerant is to be turned back and forth is determined according to the operating conditions and physical properties of the respective refrigerants in the heat exchanger, heat transfer performance is high, pressure loss is low, and a suitable heat exchanger It may be selected so that
  • Embodiment 6 FIG.
  • a refrigeration cycle apparatus such as an air conditioner, a hot water storage apparatus, and a refrigerator.
  • the refrigeration cycle apparatus according to the present embodiment will be described by taking as an example a case where the heat exchanger 8 according to the first embodiment is mounted.
  • FIG. 6 is a refrigerant circuit diagram showing an example of a refrigeration cycle apparatus according to Embodiment 6 of the present invention.
  • the refrigeration cycle apparatus 200 includes a first compressor 230, a first radiator 231, a heat exchanger 8, a first decompressor 232, and a first cooler 233 connected in order by refrigerant piping.
  • the first refrigerant circuit is provided.
  • the first inlet connection pipe 3 in the heat exchanger 8 is connected to the first radiator 231 by a refrigerant pipe
  • the first outlet connection pipe 4 is connected to the first pressure reducing device 232 by the refrigerant pipe.
  • the first refrigerant circuit is configured such that the first refrigerant, which is a high-temperature refrigerant, circulates and operates in a vapor compression refrigeration cycle.
  • the refrigeration cycle apparatus 200 includes a second refrigerant circuit in which a second compressor 240, a second heat radiator 241, a second pressure reducing device 242, and a heat exchanger 8 are sequentially connected by a refrigerant pipe.
  • the 2nd inlet connection pipe 5 in the heat exchanger 8 is connected to the 2nd decompression device 242 by refrigerant
  • the 2nd exit connection pipe 6 is connected to the 2nd compressor 240 by refrigerant
  • the second refrigerant circuit is configured such that the second refrigerant, which is a low-temperature refrigerant, circulates and operates in a vapor compression refrigeration cycle.
  • a refrigerant such as carbon dioxide, an HFC refrigerant, an HC refrigerant, an HFO refrigerant, ammonia, or a mixed refrigerant thereof is used.
  • carbon dioxide is used as the first refrigerant.
  • the first refrigerant in the gas state is compressed by the first compressor 230 and discharged as a high-temperature and high-pressure supercritical refrigerant.
  • the first high-temperature and high-pressure supercritical refrigerant flows into the first radiator 231 and exchanges heat with air or the like to dissipate heat to become a high-pressure supercritical refrigerant.
  • the high-pressure supercritical first refrigerant flows into the heat exchanger 8, where it is cooled by dissipating heat to the second refrigerant flowing through the second refrigerant circuit. It flows into the apparatus 232 and is depressurized to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • This low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the first cooler 233, evaporates by exchanging heat with air or the like, and becomes a low-temperature and low-pressure gas-state refrigerant.
  • the low-temperature and low-pressure gas state first refrigerant is again sucked into the first compressor 230 and compressed.
  • the second refrigerant in the gas state is compressed by the second compressor 240 and is discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas state second refrigerant flows into the second radiator 241, exchanges heat with air and the like, and condenses to become a high-pressure liquid state refrigerant.
  • the second refrigerant in the high-pressure liquid state flows into the second decompression device 242 and is depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • This low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the heat exchanger 8, where it absorbs heat and evaporates from the first refrigerant flowing through the first refrigerant circuit, and is a low-temperature and low-pressure gas-state refrigerant. It becomes.
  • the second refrigerant in the low-temperature and low-pressure gas state is again sucked into the second compressor 240 and compressed.
  • the heat exchanger 8 when the heat exchanger 8 is downsized, it contributes to downsizing of the entire refrigeration cycle apparatus 200.
  • the heat exchanger 8 is used as a radiator.
  • the present invention is not limited to this, and the circulation direction of the first refrigerant using a four-way valve or the like. If the above is reversed, the heat exchanger 8 can also be used as a cooler.
  • the second refrigerant circuit is shown as a vapor compression refrigeration cycle, but the second refrigerant may be water or a brine (antifreeze) such as an aqueous ethylene glycol solution. May be constituted by a pump.
  • Embodiment 7 FIG.
  • the refrigeration cycle apparatus 200a according to the present embodiment will be described focusing on differences from the configuration and operation of the refrigeration cycle apparatus 200 according to Embodiment 6.
  • FIG. 7 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle apparatus according to Embodiment 7 of the present invention.
  • the refrigeration cycle apparatus 200a is the high temperature discharged from the first compressor 230 except for the first radiator 231 from the configuration of the refrigeration cycle apparatus 200 according to Embodiment 6 shown in FIG.
  • the configuration is such that all of the high-pressure first refrigerant is cooled in the heat exchanger 8. That is, the refrigeration cycle apparatus 200a shown in FIG. 7 is a so-called secondary loop refrigeration cycle apparatus.
  • the heat exchanger 8 in the present embodiment replaces the functions of both the first radiator 231 and the heat exchanger 8 in the seventh embodiment.
  • the heat exchanger 8 was used as a radiator was shown in the refrigeration cycle apparatus 200a shown in FIG. 7, the present invention is not limited to this, and the circulation direction of the first refrigerant using a four-way valve or the like. If the above is reversed, the heat exchanger 8 can also be used as a cooler.
  • Embodiment 8 FIG.
  • the refrigeration cycle apparatus according to the present embodiment will be described by taking as an example a case where the heat exchanger 8 according to the first embodiment is mounted.
  • FIG. 8 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle apparatus according to Embodiment 8 of the present invention.
  • the refrigeration cycle apparatus 200b includes a refrigerant circuit in which a compressor 250, a radiator 251, a heat exchanger 8, a decompression device 252, and a cooler 253 are sequentially connected by refrigerant piping.
  • a bypass pipe 255 branched from the refrigerant pipe between the heat exchanger 8 and the decompression device 252 is an injection port 256 provided in the compression chamber of the compressor 250, or although not shown here, the compressor 250 and the cooling pipe Connected to the device 253.
  • the bypass pressure reducing device 254 and the heat exchanger 8 are installed in this order from the branch point of the refrigerant pipe between the heat exchanger 8 and the pressure reducing device 252.
  • first inlet connecting pipe 3 in the heat exchanger 8 is connected to the radiator 251 through the refrigerant pipe, and the first outlet connecting pipe 4 is connected to the decompression device 252 through the refrigerant pipe.
  • second inlet connecting pipe 5 in the heat exchanger 8 is connected to the bypass pressure reducing device 254 by a refrigerant pipe, and the second outlet connecting pipe 6 is an injection port 256 of the compressor 250 or a compression (not shown here) by the refrigerant pipe. Connected between machine 250 and cooler 253.
  • the gas refrigerant is compressed by the compressor 250 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant flows into the radiator 251, exchanges heat with air or the like to radiate heat, and the high-pressure refrigerant (high-temperature refrigerant) that flows out of the radiator 251 flows into the heat exchanger 8.
  • the high-pressure refrigerant (high-temperature refrigerant) that has flowed into the heat exchanger 8 is cooled by dissipating heat to the low-temperature refrigerant that has flowed out of the bypass decompression device 254, and further flows into the decompression device 252, where it is depressurized. It becomes a two-phase refrigerant.
  • This low-temperature low-pressure gas-liquid two-phase refrigerant flows into the cooler 253, exchanges heat with air or the like, and evaporates to become a low-temperature low-pressure gas refrigerant.
  • This low-temperature and low-pressure gas refrigerant is again sucked into the compressor 250 and compressed.
  • a part of the refrigerant that has flowed out of the heat exchanger 8 branches before flowing into the decompression device 252, and flows into the bypass pipe 255.
  • the refrigerant flowing into the bypass pipe 255 is decompressed by the bypass decompression device 254, becomes a low-temperature gas-liquid two-phase refrigerant (low-temperature refrigerant), and flows into the heat exchanger 8.
  • the low-temperature gas-liquid two-phase refrigerant (low-temperature refrigerant) flowing into the heat exchanger 8 is heated by absorbing heat from the high-temperature refrigerant, and is injected into the compression chamber from the injection port 256 of the compressor 250.
  • refrigerant circulating in the refrigeration cycle apparatus 200b carbon dioxide, HFC refrigerant, HC refrigerant, HFO refrigerant, refrigerant such as ammonia, or a mixed refrigerant thereof is used.
  • the refrigerant that flows through the cooler 253 without reducing the refrigeration effect compared to the case where the heat exchanger 8 is not used.
  • the flow rate can be reduced, and particularly when the piping length between the compressor 250 and the cooler 253 is long, a decrease in performance associated with an increase in pressure loss can be suppressed.
  • the heat exchanger 8 when the heat exchanger 8 is downsized, it contributes to downsizing of the entire refrigeration cycle apparatus 200b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Provided are a compactly configurable and simply structured heat exchanger, and a refrigeration cycle device provided therewith. On one of the two ends of a main body (10) in the refrigerant flow direction, a first inlet-connection hole (3a) which connects with all first refrigerant flow paths (1a) is formed along the arrangement direction of the first refrigerant flow paths (1a), and on the other of the two ends, a first outlet-connection hole (4a) which connects with all of the first refrigerant flow paths (1a) is formed along the arrangement direction of the first refrigerant flow paths (1a).

Description

熱交換器及びそれを備えた冷凍サイクル装置Heat exchanger and refrigeration cycle apparatus including the same
 本発明は、第1冷媒と第2冷媒との間で熱交換を実施させる熱交換器及びそれを備えた冷凍サイクル装置に関する。 The present invention relates to a heat exchanger that performs heat exchange between a first refrigerant and a second refrigerant, and a refrigeration cycle apparatus including the heat exchanger.
 従来の熱交換器として、高温冷媒が流れる複数の貫通穴を有する扁平状の第1扁平管と、低温流体が流れる複数の貫通穴を有する扁平状の第2扁平管と、第1扁平管の両端に接続された第1ヘッダーと、第2扁平管の両端に接続された第2ヘッダーとを備え、第1扁平管と第2扁平管とを長手方向(冷媒の流れ方向)が平行になるようにして、それぞれの扁平な面同士をろう付け等で接触積層させることによって、高い熱交換性能を得るものがある(例えば、特許文献1参照)。 As a conventional heat exchanger, a flat first flat tube having a plurality of through holes through which a high-temperature refrigerant flows, a flat second flat tube having a plurality of through holes through which a low-temperature fluid flows, and a first flat tube A first header connected to both ends and a second header connected to both ends of the second flat tube are provided, and the first flat tube and the second flat tube are parallel to each other in the longitudinal direction (flow direction of the refrigerant). In this way, there is one that obtains high heat exchange performance by causing the flat surfaces to be contact-laminated by brazing or the like (see, for example, Patent Document 1).
特開2002-340485号公報(第8頁、図1)Japanese Patent Laid-Open No. 2002-340485 (page 8, FIG. 1)
 しかしながら、上記のような熱交換器において、扁平管同士を接合するため、接合面が熱抵抗となって、熱交換性能が低下するという問題点がある。
 また、ろう付けによる接合等の際には、接合面にボイドが発生しやすく、熱交換性能低下を招くという問題点もある。
 また、ヘッダーと扁平管との間、及び扁平管同士の張り合わせを同時にろう付け接合する場合、加工時に熱交換器全体を均一な温度に管理する必要があり、また、ろう付け接合に好適なヘッダーと扁平管との高精度なスキマ管理が必要になる等、熱交換器の加工が煩雑かつ困難となるという問題点もある。
 さらに、熱交換容量を増加させるため多層に積層する場合、ヘッダーが干渉する等の問題点もあった。
However, since the flat tubes are joined to each other in the heat exchanger as described above, there is a problem that the joint surface becomes a thermal resistance and the heat exchange performance is lowered.
In addition, when joining by brazing or the like, there is a problem that voids are likely to be generated on the joining surface, resulting in a decrease in heat exchange performance.
In addition, when brazing joints between the header and flat tubes and between flat tubes at the same time, it is necessary to manage the entire heat exchanger at a uniform temperature during processing, and it is also suitable for brazing joints. There is also a problem that the processing of the heat exchanger becomes complicated and difficult, such as requiring high-accuracy clearance management between the flat tube and the flat tube.
Further, when the layers are laminated in order to increase the heat exchange capacity, there is a problem that the header interferes.
 本発明は、上記のような問題点を解決するためになされたものであり、第1の目的は、コンパクトに構成でき、かつ、製造が容易な熱交換器及びそれを備えた冷凍サイクル装置を得ることである。
 そして、第2の目的は、熱交換性能を向上させた熱交換器及び冷凍サイクル装置を得ることである。
The present invention has been made to solve the above problems, and a first object is to provide a heat exchanger that can be configured compactly and that can be easily manufactured, and a refrigeration cycle apparatus including the heat exchanger. Is to get.
And the 2nd objective is to obtain the heat exchanger and refrigeration cycle device which improved heat exchange performance.
 本発明に係る熱交換器は、第1冷媒が流通する冷媒流路である複数の第1冷媒流路が一列に並列配置されて構成された第1冷媒パスと、第2冷媒が流通する冷媒流路である複数の第2冷媒流路が一列に並列配置されて構成された第2冷媒パスと、前記第1冷媒パスの両端に複数の前記第1冷媒流路の並列方向に貫通して形成され、全ての前記第1冷媒流路に連通した第1連通穴と、前記第2冷媒パスの両端に複数の前記第2冷媒流路の並列方向に貫通して形成され、全ての前記第2冷媒流路に連通した第2連通穴と、を備え、前記第1冷媒は、前記第1冷媒パスの両端に形成された前記第1連通穴の一方に流入し、前記第1冷媒流路を流通して、他方の前記第1連通穴を経由して外部に流出し、前記第2冷媒は、前記第2冷媒パスの両端に形成された前記第2連通穴の一方に流入し、前記第2冷媒流路を流通して、他方の前記第2連通穴を経由して外部に流出し、前記第1冷媒流路と前記第2冷媒流路とは、流路方向が平行であり、かつ、互いに隣接して配置され、その隣接面の隔壁を介して前記第1冷媒と前記第2冷媒との熱交換が実施されるものである。 The heat exchanger according to the present invention includes a first refrigerant path configured by arranging a plurality of first refrigerant channels, which are refrigerant channels through which the first refrigerant flows, arranged in parallel in one row, and a refrigerant through which the second refrigerant flows. A plurality of second refrigerant flow paths, which are flow paths, are arranged in parallel in a row, and the both ends of the first refrigerant path penetrate in the parallel direction of the plurality of first refrigerant flow paths. The first communication holes formed and communicated with all of the first refrigerant flow paths, and are formed so as to penetrate through both ends of the second refrigerant path in the parallel direction of the plurality of second refrigerant flow paths. A second communication hole communicating with the two refrigerant flow paths, wherein the first refrigerant flows into one of the first communication holes formed at both ends of the first refrigerant path, and the first refrigerant flow path And flows out to the outside via the other first communication hole, and the second refrigerant passes through both ends of the second refrigerant path. Flows into one of the formed second communication holes, flows through the second refrigerant flow path, and flows out to the outside via the other second communication hole, and the first refrigerant flow path and the first The two refrigerant flow paths are parallel to each other and are disposed adjacent to each other, and heat exchange is performed between the first refrigerant and the second refrigerant via a partition wall on the adjacent surface. It is.
 本発明によれば、熱交換器内部に、第1連通穴及び第2連通穴を設けたため、第1冷媒パス及び第2冷媒パスに接続するための別体のヘッダー管を備える必要がないため、熱交換器のコンパクト化が図れると共に、製造工程を簡素化することができる。 According to the present invention, since the first communication hole and the second communication hole are provided in the heat exchanger, it is not necessary to provide separate header pipes for connection to the first refrigerant path and the second refrigerant path. The heat exchanger can be made compact and the manufacturing process can be simplified.
本発明の実施の形態1に係る熱交換器8の構造図である。It is a structure figure of the heat exchanger 8 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る熱交換器8aの構造図である。It is a structural diagram of the heat exchanger 8a according to Embodiment 2 of the present invention. 本発明の実施の形態3に係る熱交換器8bの構造図である。It is a structural diagram of the heat exchanger 8b which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る熱交換器8cの構造図である。It is a structural diagram of the heat exchanger 8c according to Embodiment 4 of the present invention. 本発明の実施の形態5に係る熱交換器8dの構造図である。It is a structural diagram of the heat exchanger 8d which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る冷凍サイクル装置の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the refrigerating-cycle apparatus which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係る冷凍サイクル装置の一例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows an example of the refrigeration cycle apparatus which concerns on Embodiment 7 of this invention. 本発明の実施の形態8に係る冷凍サイクル装置の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the refrigerating-cycle apparatus which concerns on Embodiment 8 of this invention.
実施の形態1.
(熱交換器8の構成)
 図1は、本発明の実施の形態1に係る熱交換器8の構造図である。このうち、図1(a)は、同熱交換器8の斜視図であり、図1(b)は、図1(a)の矢印A方向から見た平面図であり、そして、図1(c)は、図1(a)の矢印B方向から見た側面図である。
 図1で示されるように、本実施の形態に係る熱交換器8の本体10には、第1冷媒(例えば、高温冷媒)が流通する複数の第1冷媒流路1aを一列に並べて長手方向に貫通するように形成された第1冷媒パス1が構成されている。そして、この第1冷媒パス1の各第1冷媒流路1aに隣接するように、第2冷媒(例えば、低温冷媒)が流通する複数の第2冷媒流路2aを一列に並べて長手方向に貫通するように形成された第2冷媒パス2が構成されている。したがって、この第1冷媒パス1及び第2冷媒パス2は、本体10において一体に形成されている。この第1冷媒パス1及び第2冷媒パス2が形成された本体10は、例えば、アルミニウム若しくはアルミニウム合金、銅若しくは銅合金、又は、鉄鋼若しくはステンレス合金によって形成されており、押し出し又は引き抜き成形等によって製造される。
Embodiment 1 FIG.
(Configuration of heat exchanger 8)
FIG. 1 is a structural diagram of a heat exchanger 8 according to Embodiment 1 of the present invention. Among these, Fig.1 (a) is a perspective view of the heat exchanger 8, FIG.1 (b) is a top view seen from the arrow A direction of Fig.1 (a), and FIG. (c) is the side view seen from the arrow B direction of Fig.1 (a).
As shown in FIG. 1, the main body 10 of the heat exchanger 8 according to the present embodiment has a plurality of first refrigerant flow paths 1 a through which a first refrigerant (for example, high-temperature refrigerant) circulates in a line in the longitudinal direction. The 1st refrigerant | coolant path | pass 1 formed so that it might penetrate to was comprised. A plurality of second refrigerant flow paths 2a through which a second refrigerant (for example, a low-temperature refrigerant) flows are arranged in a row and penetrated in the longitudinal direction so as to be adjacent to the first refrigerant flow paths 1a of the first refrigerant path 1. The 2nd refrigerant | coolant path | pass 2 formed so that is comprised is comprised. Therefore, the first refrigerant path 1 and the second refrigerant path 2 are integrally formed in the main body 10. The main body 10 in which the first refrigerant path 1 and the second refrigerant path 2 are formed is formed of, for example, aluminum or an aluminum alloy, copper or a copper alloy, or steel or a stainless alloy, and is formed by extrusion or pultrusion molding. Manufactured.
 本体10の冷媒流通方向の両端のうち一方には、各第1冷媒流路1aの並び方向に沿って、全ての第1冷媒流路1aに連通する第1入口連通穴3aが形成されている。また、他方には、各第1冷媒流路1aの並び方向に沿って、全ての第1冷媒流路1aに連通する第1出口連通穴4aが形成されている。 A first inlet communication hole 3a that communicates with all the first refrigerant flow paths 1a is formed in one of both ends of the main body 10 in the refrigerant flow direction along the arrangement direction of the first refrigerant flow paths 1a. . On the other hand, first outlet communication holes 4a communicating with all the first refrigerant flow paths 1a are formed along the direction in which the first refrigerant flow paths 1a are arranged.
 さらに、本体10の冷媒流通方向の両端のうち第1出口連通穴4aが形成された側には、各第2冷媒流路2aの並び方向に沿って、全ての第2冷媒流路2aに連通する第2入口連通穴5aが形成されている。また、本体10の冷媒流通方向の両端のうち第1入口連通穴3aが形成された側には、各第2冷媒流路2aの並び方向に沿って、全ての第2冷媒流路2aに連通する第2出口連通穴6aが形成されている。 Further, on both sides of the main body 10 in the refrigerant flow direction, the side where the first outlet communication holes 4a are formed communicates with all the second refrigerant flow paths 2a along the arrangement direction of the second refrigerant flow paths 2a. A second inlet communication hole 5a is formed. Further, on the side where the first inlet communication hole 3a is formed in both ends of the refrigerant flow direction of the main body 10, all the second refrigerant flow paths 2a communicate with each other along the arrangement direction of the second refrigerant flow paths 2a. A second outlet communication hole 6a is formed.
 また、第1入口連通穴3aと第2出口連通穴6aとは、第1冷媒流路1a(又は第2冷媒流路2a)の冷媒流通方向に少しずらして形成されている。また、第1出口連通穴4aと第2入口連通穴5aとは、第1冷媒流路1a(又は第2冷媒流路2a)の冷媒流通方向に少しずらして形成されている。 Also, the first inlet communication hole 3a and the second outlet communication hole 6a are formed slightly shifted in the refrigerant flow direction of the first refrigerant flow path 1a (or the second refrigerant flow path 2a). Further, the first outlet communication hole 4a and the second inlet communication hole 5a are formed with a slight shift in the refrigerant flow direction of the first refrigerant flow path 1a (or the second refrigerant flow path 2a).
 なお、第1入口連通穴3a及び第1出口連通穴4aの貫通方向は、必ずしも各第1冷媒流路1aの方向と垂直になっている必要はない。また、第2入口連通穴5a及び第2出口連通穴6aの貫通方向についても、必ずしも第2冷媒流路2aの方向と垂直になっている必要もない。 In addition, the penetration direction of the first inlet communication hole 3a and the first outlet communication hole 4a is not necessarily perpendicular to the direction of each first refrigerant flow path 1a. Further, the penetrating direction of the second inlet communication hole 5a and the second outlet communication hole 6a is not necessarily perpendicular to the direction of the second refrigerant flow path 2a.
 また、第1入口連通穴3a、第1出口連通穴4a、第2入口連通穴5a及び第2出口連通穴6aの一端は開口されており、それぞれ、外部に連通するように、第1入口接続管3、第1出口接続管4、第2入口接続管5及び第2出口接続管6が接続されている。また、第1入口連通穴3a、第1出口連通穴4a、第2入口連通穴5a及び第2出口連通穴6aの他端は、封止部材等によって閉口されている。
 なお、図1で示されるように、第1入口連通穴3a、第1出口連通穴4a、第2入口連通穴5a及び第2出口連通穴6aについて、開口(又は閉口)される端部は、すべて同じ側になっているが、これに限定されるものではなく、各連通穴において一端が開口され、他端が閉口されている構成であれば、それぞれ同じ側である必要はない。
One end of the first inlet communication hole 3a, the first outlet communication hole 4a, the second inlet communication hole 5a, and the second outlet communication hole 6a is opened, and the first inlet connection so as to communicate with the outside. The pipe 3, the first outlet connecting pipe 4, the second inlet connecting pipe 5 and the second outlet connecting pipe 6 are connected. The other ends of the first inlet communication hole 3a, the first outlet communication hole 4a, the second inlet communication hole 5a, and the second outlet communication hole 6a are closed by a sealing member or the like.
In addition, as shown in FIG. 1, with respect to the first inlet communication hole 3a, the first outlet communication hole 4a, the second inlet communication hole 5a, and the second outlet communication hole 6a, the end portions that are opened (or closed) are: Although all are on the same side, the present invention is not limited to this, and it is not necessary to be on the same side as long as one end is opened in each communication hole and the other end is closed.
 また、本体10の長手方向に貫通して形成された複数の第1冷媒流路1a及び第2冷媒流路2aの両端部は、ピンチ加工等による封止加工、又は、封止部材によって封止(図示せず)されている。 Moreover, both ends of the plurality of first refrigerant flow paths 1a and second refrigerant flow paths 2a formed so as to penetrate in the longitudinal direction of the main body 10 are sealed by pinching or the like, or sealed by a sealing member (Not shown).
 なお、第1入口連通穴3a及び第1出口連通穴4aは、本発明の「第1連通穴」に相当し、第2入口連通穴5a及び第2入口連通穴6aは、本発明の「第2連通穴」に相当する。 The first inlet communication hole 3a and the first outlet communication hole 4a correspond to the “first communication hole” in the present invention, and the second inlet communication hole 5a and the second inlet communication hole 6a are the “first communication hole” in the present invention. Corresponds to “2 communication holes”.
(熱交換器8の熱交換動作)
 次に、図1を参照しながら、熱交換器8における第1冷媒と第2冷媒との熱交換動作について説明する。
(Heat exchange operation of the heat exchanger 8)
Next, the heat exchange operation between the first refrigerant and the second refrigerant in the heat exchanger 8 will be described with reference to FIG.
 第1冷媒は、第1入口接続管3を介して第1入口連通穴3aへ流入し、第1冷媒パス1、そして、第1出口連通穴4aの順に流通して、第1出口接続管4から流出する。一方、第2冷媒は、第2入口接続管5を介して第2入口連通穴5aへ流入し、第2冷媒パス2、そして、第2出口連通穴6aの順に流通して、第2出口接続管6から流出する。その際、第1冷媒パス1を流通する第1冷媒と、第2冷媒パス2を流通する第2冷媒とは、各冷媒パス同士間の隔壁を介して対向流で熱交換が実施される。 The first refrigerant flows into the first inlet communication hole 3a through the first inlet connection pipe 3, flows in the order of the first refrigerant path 1, and then the first outlet communication hole 4a, and the first outlet connection pipe 4 Spill from. On the other hand, the second refrigerant flows into the second inlet communication hole 5a via the second inlet connection pipe 5, flows in the order of the second refrigerant path 2, and then the second outlet communication hole 6a, and is connected to the second outlet connection. It flows out from the pipe 6. At that time, heat exchange is performed between the first refrigerant flowing through the first refrigerant path 1 and the second refrigerant flowing through the second refrigerant path 2 in a counterflow through a partition between the refrigerant paths.
(実施の形態1の効果)
 以上の熱交換器8の構成のように、第1冷媒パス1と第2冷媒パス2とが本体10において一体として構成されているため、第1冷媒が流通する管と第2冷媒が流通する管とが別体で構成された場合における接合面で発生する熱抵抗が抑制され、熱交換性能を向上させることができる。
(Effect of Embodiment 1)
Since the first refrigerant path 1 and the second refrigerant path 2 are integrally formed in the main body 10 as in the configuration of the heat exchanger 8 described above, the pipe through which the first refrigerant circulates and the second refrigerant circulates. The thermal resistance generated at the joint surface when the tube is formed separately is suppressed, and the heat exchange performance can be improved.
 また、熱交換器8の本体10内部に、第1入口連通穴3a及び第1出口連通穴4aを設けたため、第1冷媒パス1に接続するための別体のヘッダー管を備える必要がないため、熱交換器8のコンパクト化が図れると共に、製造工程を簡素化することができる。これについては、第2冷媒パス2についての第2入口連通穴5a及び第2出口連通穴6aについても同様である。 Further, since the first inlet communication hole 3a and the first outlet communication hole 4a are provided inside the main body 10 of the heat exchanger 8, it is not necessary to provide a separate header pipe for connecting to the first refrigerant path 1. The heat exchanger 8 can be made compact and the manufacturing process can be simplified. The same applies to the second inlet communication hole 5a and the second outlet communication hole 6a for the second refrigerant path 2.
 さらに、第1入口連通穴3a及び第2出口連通穴6a、並びに、第1出口連通穴4a及び第2入口連通穴5aは、それぞれ、各冷媒の流通方向に少しずらして形成されているので、ずらさない場合と比較して、隣り合う第1冷媒パス1と第2冷媒パス2との距離を近づけることができるので、熱交換器8のコンパクト化を図ることができる。 Furthermore, since the first inlet communication hole 3a and the second outlet communication hole 6a, as well as the first outlet communication hole 4a and the second inlet communication hole 5a are formed slightly shifted in the flow direction of each refrigerant, Since the distance between the adjacent first refrigerant path 1 and the second refrigerant path 2 can be reduced as compared with the case where they are not shifted, the heat exchanger 8 can be made compact.
 なお、図1で示されるように、第1冷媒流路1a及び第2冷媒流路2aの流路断面の形状を矩形としているが、これに限定されるものではなく、どのような多角形でもよく、耐圧性能を高めるために円形にしてもよく、あるいは、長穴若しくは楕円等としてもよい。この場合、第1冷媒流路1aの流路断面と、第2冷媒流路2aの流路断面とを同形状にする必要もないことは言うまでもない。さらに、伝熱性能を高めるために、冷媒流路内面に溝を設けて伝熱面積を大きくしてもよい。この場合、溝を熱交換器8の押し出し及び引き抜き成形時に、同時に加工するものとすれば、製造作業を簡素化することができる。 As shown in FIG. 1, the cross-sectional shapes of the first refrigerant flow path 1a and the second refrigerant flow path 2a are rectangular, but the present invention is not limited to this, and any polygon can be used. In order to improve the pressure resistance, it may be circular, or may be a long hole or an ellipse. In this case, it goes without saying that the flow path cross section of the first refrigerant flow path 1a and the flow path cross section of the second refrigerant flow path 2a need not have the same shape. Furthermore, in order to improve the heat transfer performance, a groove may be provided on the inner surface of the refrigerant flow path to increase the heat transfer area. In this case, if the groove is processed at the same time as the extrusion of the heat exchanger 8 and the pultrusion molding, the manufacturing operation can be simplified.
 また、図1で示されるように、第1冷媒パス1及び第2冷媒パス2の冷媒流路を同数としているが、これに限定されるものではない。すなわち、熱交換器8における冷媒の動作条件又は流動物性値に合わせて、伝熱性能が高く、圧力損失が低く、かつ、好適な熱交換器となるように、それぞれ異なる数としてもよい。 Further, as shown in FIG. 1, the same number of refrigerant flow paths are provided in the first refrigerant path 1 and the second refrigerant path 2, but the present invention is not limited to this. That is, the numbers may be different from each other so that the heat exchanger 8 has a high heat transfer performance, a low pressure loss, and a suitable heat exchanger according to the operating condition or fluid property value of the refrigerant in the heat exchanger 8.
 また、図1で示されるように、第1冷媒パス1と第2冷媒パス2とが本体10において一体として構成されているが、これに限定されるものではない。すなわち、第1冷媒パス1と第2冷媒パス2とを別体の管として双方をろう付け等で接合する構成とした場合においても、第1冷媒パス1が形成された管に第1入口連通穴3a及び第1出口連通穴4aを設ければ、第1冷媒パス1の冷媒流路の接続するための別体のヘッダー管を備える必要がないため、熱交換器のコンパクト化が図れると共に、製造工程を簡素化することができる。これについては、第2冷媒パス2が形成された管に第2入口連通穴5a及び第2出口連通穴6aを設ける場合についても同様のことが言える。 Further, as shown in FIG. 1, the first refrigerant path 1 and the second refrigerant path 2 are integrally formed in the main body 10, but the present invention is not limited to this. That is, even when the first refrigerant path 1 and the second refrigerant path 2 are separate pipes and both are joined by brazing or the like, the first inlet communication is connected to the pipe in which the first refrigerant path 1 is formed. If the hole 3a and the first outlet communication hole 4a are provided, it is not necessary to provide a separate header pipe for connecting the refrigerant flow path of the first refrigerant path 1, so that the heat exchanger can be made compact, The manufacturing process can be simplified. The same applies to the case where the second inlet communication hole 5a and the second outlet communication hole 6a are provided in the pipe in which the second refrigerant path 2 is formed.
 また、第1入口接続管3及び第1出口接続管4は、それぞれ、第1入口連通穴3a及び第1出口連通穴4aに対して、第1入口連通穴3aから第1出口連通穴4aへ向かう方向のみ、及び、第1出口連通穴4aから第1入口連通穴3aへ向かう方向のみに開口するスリット等の開口部が形成されたパイプを挿入して構成するようにしてもよい。これによって、ろう付け等によって複数の第1冷媒流路1a及び第2冷媒流路2aの両端部を、封止部材等によって封止する場合に、余分な封止部材が侵入して冷媒流路が狭まることを抑制することができ、製造ばらつきを抑制することができる。これについては、第2入口接続管5及び第2出口接続管6においても、同様の構成にすれば、同様の効果を得ることができる。 The first inlet connection pipe 3 and the first outlet connection pipe 4 are respectively connected to the first inlet communication hole 3a and the first outlet communication hole 4a from the first inlet communication hole 3a to the first outlet communication hole 4a. You may make it comprise by inserting the pipe in which opening parts, such as a slit opened only in the direction which goes to only the direction which goes to the 1st exit communication hole 3a from the 1st exit communication hole 4a. Thus, when both ends of the plurality of first refrigerant flow paths 1a and the second refrigerant flow paths 2a are sealed with a sealing member or the like by brazing or the like, an extra sealing member enters and the refrigerant flow paths Can be suppressed and manufacturing variation can be suppressed. About this, the same effect can be acquired also in the 2nd inlet connecting pipe 5 and the 2nd outlet connecting pipe 6 if it is set as the same structure.
 また、第1冷媒パス1を流通する第1冷媒と、第2冷媒パス2を流通する第2冷媒とは、対向流で熱交換が実施されるものとしたが、これに限定されるものではなく、並行流として熱交換を実施するものとしてもよい。例えば、第1冷媒が第1入口接続管3から流入し、かつ、第2冷媒が第2出口接続管6から流入するようにすれば、第1冷媒及び第2冷媒が並行流となる Moreover, although the 1st refrigerant | coolant which distribute | circulates the 1st refrigerant | coolant path | pass 1 and the 2nd refrigerant | coolant which distribute | circulates the 2nd refrigerant | coolant path | pass 2 shall be heat-exchanged by counterflow, it is not limited to this Alternatively, heat exchange may be performed as a parallel flow. For example, if the first refrigerant flows in from the first inlet connecting pipe 3 and the second refrigerant flows in from the second outlet connecting pipe 6, the first refrigerant and the second refrigerant become parallel flows.
実施の形態2.
 本実施の形態に係る熱交換器8aについて、実施の形態1に係る熱交換器8の構成及び動作と異なる点を中心に説明する。
Embodiment 2. FIG.
The heat exchanger 8a according to the present embodiment will be described focusing on differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
(熱交換器8aの構成)
 図2は、本発明の実施の形態2に係る熱交換器8aの構造図である。
 図2で示されるように、本実施の形態に係る熱交換器8aの本体10において、第1冷媒が流れる第1冷媒パス1は、複数の第1冷媒流路1aを一列に並べたものと、その第1冷媒流路1aに隣接するように複数の第1冷媒流路1bを一列に並べたものとによって構成されている。そして、第2冷媒が流れる第2冷媒パス2は、複数の第2冷媒流路2aを一列に並べたものと、その第2冷媒流路2aに隣接するように複数の第2冷媒流路2bを一列に並べたものとによって構成されている。すなわち、第1冷媒パス1及び第2冷媒パス2は、それぞれ2組の冷媒流路によって構成されており、図2で示されるように、第1冷媒パス1における第1冷媒流路1bと、第2冷媒パス2における第2冷媒流路2aとが隣接する構成となっている。
(Configuration of heat exchanger 8a)
FIG. 2 is a structural diagram of a heat exchanger 8a according to Embodiment 2 of the present invention.
As shown in FIG. 2, in the main body 10 of the heat exchanger 8a according to the present embodiment, the first refrigerant path 1 through which the first refrigerant flows includes a plurality of first refrigerant flow paths 1a arranged in a line. The plurality of first refrigerant flow paths 1b are arranged in a row so as to be adjacent to the first refrigerant flow path 1a. The second refrigerant path 2 through which the second refrigerant flows includes a plurality of second refrigerant flow paths 2a arranged in a line and a plurality of second refrigerant flow paths 2b adjacent to the second refrigerant flow paths 2a. Are arranged in a row. That is, each of the first refrigerant path 1 and the second refrigerant path 2 is constituted by two sets of refrigerant flow paths, and as shown in FIG. 2, the first refrigerant flow path 1b in the first refrigerant path 1 and The second refrigerant flow path 2a in the second refrigerant path 2 is adjacent.
 本体10の冷媒流通方向の両端のうち一方には、各第1冷媒流路1a(第1冷媒流路1b)の並び方向に沿って、全ての第1冷媒流路1a及び第1冷媒流路1bに連通するように第1入口連通穴3aが形成されている。また、他方には、各第1冷媒流路1a(第1冷媒流路1b)の並び方向に沿って、全ての第2冷媒流路2a及び第2冷媒流路2bに連通するように第1出口連通穴4aが形成されている。 All the first refrigerant flow paths 1a and the first refrigerant flow paths are arranged at one of both ends of the main body 10 in the refrigerant flow direction along the arrangement direction of the first refrigerant flow paths 1a (first refrigerant flow paths 1b). A first inlet communication hole 3a is formed so as to communicate with 1b. On the other hand, the first refrigerant flow paths 1a (first refrigerant flow paths 1b) are communicated with all the second refrigerant flow paths 2a and the second refrigerant flow paths 2b along the alignment direction of the first refrigerant flow paths 1a (first refrigerant flow paths 1b). An outlet communication hole 4a is formed.
 さらに、本体10の冷媒流通方向の両端のうち第1出口連通穴4aが形成された側には、各第2冷媒流路2a(第2冷媒流路2b)の並び方向に沿って、全ての第2冷媒流路2a及び第2冷媒流路2bに連通するように第2入口連通穴5aが形成されている。また、本体10の冷媒流通方向の両端のうち第1入口連通穴3aが形成された側には、各第2冷媒流路2a(第2冷媒流路2b)の並び方向に沿って、全ての第2冷媒流路2a及び第2冷媒流路2bに連通するように第2出口連通穴6aが形成されている。 Furthermore, on the side where the first outlet communication hole 4a is formed on both ends of the main body 10 in the refrigerant flow direction, all the second refrigerant flow paths 2a (second refrigerant flow paths 2b) are arranged along the arrangement direction of the second refrigerant flow paths 2a (second refrigerant flow paths 2b). A second inlet communication hole 5a is formed so as to communicate with the second refrigerant channel 2a and the second refrigerant channel 2b. Further, on both sides of the refrigerant flow direction of the main body 10 on the side where the first inlet communication hole 3a is formed, all the two refrigerant flow paths 2a (second refrigerant flow paths 2b) are arranged along the arrangement direction of the second refrigerant flow paths 2a (second refrigerant flow paths 2b). A second outlet communication hole 6a is formed so as to communicate with the second refrigerant channel 2a and the second refrigerant channel 2b.
 また、本体10の長手方向に貫通して形成された複数の第1冷媒流路1a、第1冷媒流路1b、第2冷媒流路2a及び第2冷媒流路2bの両端部は、ピンチ加工等による封止加工、又は、封止部材によって封止(図示せず)されている。 In addition, both ends of the plurality of first refrigerant flow paths 1a, first refrigerant flow paths 1b, second refrigerant flow paths 2a, and second refrigerant flow paths 2b formed through the body 10 in the longitudinal direction are pinched. It is sealed (not shown) by a sealing process or the like by a sealing member.
(熱交換器8aの熱交換動作)
 次に、図2を参照しながら、熱交換器8aにおける第1冷媒と第2冷媒との熱交換動作について説明する。
(Heat exchange operation of the heat exchanger 8a)
Next, the heat exchange operation between the first refrigerant and the second refrigerant in the heat exchanger 8a will be described with reference to FIG.
 第1冷媒は、第1入口接続管3を介して第1入口連通穴3aへ流入し、第1冷媒パス1を構成する第1冷媒流路1a及び第1冷媒流路1bを流通し、さらに、第1出口連通穴4aを流通して、第1出口接続管4から流出する。一方、第2冷媒は、第2入口接続管5を介して第2入口連通穴5aへ流入し、第2冷媒パス2を構成する第2冷媒流路2a及び第2冷媒流路2bを流通し、さらに、第2出口連通穴6aを流通して、第2出口接続管6から流出する。その際、第1冷媒流路1a及び第1冷媒流路1bを流通する第1冷媒と、第2冷媒流路2a及び第2冷媒流路2bを流通する第2冷媒とは、第1冷媒流路1bと第2冷媒流路2aとの間の隔壁を介して対向流で熱交換が実施される。 The first refrigerant flows into the first inlet communication hole 3a through the first inlet connection pipe 3, flows through the first refrigerant flow path 1a and the first refrigerant flow path 1b constituting the first refrigerant path 1, and Then, it flows through the first outlet communication hole 4 a and flows out from the first outlet connection pipe 4. On the other hand, the second refrigerant flows into the second inlet communication hole 5a through the second inlet connection pipe 5, and flows through the second refrigerant flow path 2a and the second refrigerant flow path 2b constituting the second refrigerant path 2. Furthermore, it flows through the second outlet communication hole 6 a and flows out from the second outlet connecting pipe 6. At that time, the first refrigerant flowing through the first refrigerant flow path 1a and the first refrigerant flow path 1b, and the second refrigerant flowing through the second refrigerant flow path 2a and the second refrigerant flow path 2b are the first refrigerant flow. Heat exchange is performed in a counterflow through a partition wall between the path 1b and the second refrigerant flow path 2a.
(実施の形態2の効果)
 以上の熱交換器8aにおいては、実施の形態1に係る熱交換器8が有する効果に加え、各冷媒パスを複数の組の冷媒流路によって構成されている場合にも、各冷媒流路が一体で構成されているので、それぞれ別体で構成された場合で発生する熱抵抗が抑制され、熱交換性能を向上させることができる。
(Effect of Embodiment 2)
In the heat exchanger 8a described above, in addition to the effects of the heat exchanger 8 according to Embodiment 1, each refrigerant flow path is also formed when each refrigerant path is configured by a plurality of sets of refrigerant flow paths. Since it is comprised integrally, the thermal resistance which generate | occur | produces when each is comprised separately is suppressed, and heat exchange performance can be improved.
 また、各冷媒パスを2組の冷媒流路によって構成し、これらの冷媒流路を1つの連通穴で集約するため、連通穴の数を削減でき、熱交換器8aの製造工程の簡素化を図ることができる。 In addition, each refrigerant path is constituted by two sets of refrigerant flow paths, and these refrigerant flow paths are integrated by one communication hole, so the number of communication holes can be reduced, and the manufacturing process of the heat exchanger 8a can be simplified. Can be planned.
 また、2組の冷媒流路を集約するために1つの連通穴を形成したので、各冷媒パスの2組の冷媒流路の間の距離を近づけることができ、熱交換器8aのコンパクト化を図ることができる。 In addition, since one communication hole is formed in order to consolidate the two sets of refrigerant flow paths, the distance between the two sets of refrigerant flow paths in each refrigerant path can be reduced, and the heat exchanger 8a can be made compact. You can plan.
 また、各冷媒パスを2組の冷媒流路によって構成したので、熱交換容量を増大させることができる。 Also, since each refrigerant path is constituted by two sets of refrigerant flow paths, the heat exchange capacity can be increased.
 なお、図2で示されるように、第1冷媒流路1a、第1冷媒流路1b、第2冷媒流路2a及び第2冷媒流路2bの数を同数としているが、これに限定されるものではない。すなわち、熱交換器8aにおける冷媒の動作条件又は流動特性値に合わせて、伝熱性能が高く、圧力損失が低く、かつ、好適な熱交換器となるように、それぞれ異なる数としてもよい。 As shown in FIG. 2, the number of the first refrigerant flow path 1a, the first refrigerant flow path 1b, the second refrigerant flow path 2a, and the second refrigerant flow path 2b is the same, but it is limited to this. It is not a thing. That is, the numbers may be different from each other so that the heat exchanger performance is high, the pressure loss is low, and a suitable heat exchanger is obtained in accordance with the operating condition or flow characteristic value of the refrigerant in the heat exchanger 8a.
 また、図2で示されるように、各冷媒パスを構成するのは2組の冷媒流路(例えば、第1冷媒パス1であれば、第1冷媒流路1a及び第1冷媒流路1bの2組の冷媒流路)としたが、これに限定されるものではない。すなわち、熱交換容量を大きくする場合、又は、流路面積を大きくして圧力損失を下げる場合等においては、各冷媒パスは3組以上の冷媒流路によって構成するものとしてもよい。また、第1冷媒パス1の冷媒流路の組の数と、第2冷媒パス2の冷媒流路の組の数が同数である必要もない。 Further, as shown in FIG. 2, each refrigerant path is composed of two sets of refrigerant flow paths (for example, the first refrigerant flow path 1b and the first refrigerant flow path 1b in the case of the first refrigerant path 1). However, the present invention is not limited to this. That is, when the heat exchange capacity is increased, or when the flow path area is increased to reduce the pressure loss, each refrigerant path may be constituted by three or more sets of refrigerant flow paths. Further, it is not necessary that the number of sets of refrigerant flow paths in the first refrigerant path 1 and the number of sets of refrigerant flow paths in the second refrigerant path 2 are the same.
 さらに、実施の形態1と同様に、第1入口連通穴3a及び第2出口連通穴6aは、第1冷媒パス1(又は第2冷媒パス2)の流通方向にずらして形成するものとしてもよい。第1出口連通穴4a及び第2入口連通穴5bについても同様である。これによって、隣り合う第1冷媒パス1と第2冷媒パス2との距離(図2においては、第1冷媒流路1bと第2冷媒流路2aとの距離)を近づけることができるので、熱交換器8aのコンパクト化を図ることができる。 Further, similarly to the first embodiment, the first inlet communication hole 3a and the second outlet communication hole 6a may be formed so as to be shifted in the flow direction of the first refrigerant path 1 (or the second refrigerant path 2). . The same applies to the first outlet communication hole 4a and the second inlet communication hole 5b. As a result, the distance between the adjacent first refrigerant path 1 and the second refrigerant path 2 (the distance between the first refrigerant flow path 1b and the second refrigerant flow path 2a in FIG. 2) can be reduced. The exchanger 8a can be made compact.
実施の形態3.
 本実施の形態に係る熱交換器8bについて、実施の形態1に係る熱交換器8の構成及び動作と異なる点を中心に説明する。
Embodiment 3 FIG.
The heat exchanger 8b according to the present embodiment will be described focusing on differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
(熱交換器8bの構成)
 図3は、本発明の実施の形態3に係る熱交換器8bの構造図である。このうち、図3(a)は、同熱交換器8bの斜視図であり、図3(b)は、図3(a)の矢印A方向から見た平面図であり、そして、図3(c)は、図3(a)の矢印B方向から見た側面図である。
 図3で示されるように、本実施の形態に係る熱交換器8bの本体10には、第1冷媒が流通する第1冷媒パス1は、複数の第1冷媒流路1aを一列に並べたものと、複数の第1冷媒流路1bを一列に並べたものとによって構成されている。そして、第2冷媒が流れる第2冷媒パス2は、複数の第2冷媒流路2aを一列に並べたものと、複数の第2冷媒流路2bを一列に並べたものとによって構成されている。さらに、上記の第1冷媒パス1の冷媒流路の列と第2冷媒パス2の冷媒流路の列とは1列おきに交互に並べて構成されている。具体的には、図3(a)の矢印B方向から見た場合において、上から第1冷媒流路1a、第2冷媒流路2a、第1冷媒流路1b、そして、第2冷媒流路2bの順に並んで構成されている。
(Configuration of heat exchanger 8b)
FIG. 3 is a structural diagram of a heat exchanger 8b according to Embodiment 3 of the present invention. Among these, Fig.3 (a) is a perspective view of the heat exchanger 8b, FIG.3 (b) is a top view seen from the arrow A direction of Fig.3 (a), and FIG. c) is a side view seen from the direction of arrow B in FIG.
As shown in FIG. 3, in the main body 10 of the heat exchanger 8b according to the present embodiment, the first refrigerant path 1 through which the first refrigerant flows has a plurality of first refrigerant flow paths 1a arranged in a line. And a plurality of first refrigerant flow paths 1b arranged in a line. The second refrigerant path 2 through which the second refrigerant flows is composed of a plurality of second refrigerant flow paths 2a arranged in a line and a plurality of second refrigerant flow paths 2b arranged in a line. . Further, the row of the refrigerant flow paths of the first refrigerant path 1 and the row of the refrigerant flow paths of the second refrigerant path 2 are alternately arranged every other row. Specifically, when viewed from the direction of arrow B in FIG. 3A, the first refrigerant channel 1a, the second refrigerant channel 2a, the first refrigerant channel 1b, and the second refrigerant channel from the top. They are arranged in the order of 2b.
 本体10の冷媒流通方向の両端のうち一方には、各第1冷媒流路1aの並び方向に沿って、全ての第1冷媒流路1aに連通するように第1入口連通穴3aが形成されており、また、各第1冷媒流路1bの並び方向に沿って、全ての第1冷媒流路1bに連通するように第1入口連通穴3bが形成されている。また、他方には、各第1冷媒流路1aの並び方向に沿って、全ての第1冷媒流路1aに連通するように第1出口連通穴4aが形成されており、また、各第1冷媒流路1bの並び方向に沿って、全ての第1冷媒流路1bに連通するように第1出口連通穴4bが形成されている。 A first inlet communication hole 3a is formed at one of both ends of the main body 10 in the refrigerant flow direction so as to communicate with all the first refrigerant flow paths 1a along the arrangement direction of the first refrigerant flow paths 1a. In addition, first inlet communication holes 3b are formed along the direction in which the first refrigerant flow paths 1b are arranged so as to communicate with all the first refrigerant flow paths 1b. Further, on the other side, first outlet communication holes 4a are formed so as to communicate with all the first refrigerant flow paths 1a along the arrangement direction of the first refrigerant flow paths 1a. A first outlet communication hole 4b is formed along the direction in which the refrigerant flow paths 1b are arranged so as to communicate with all the first refrigerant flow paths 1b.
 さらに、本体10の冷媒流通方向の両端のうち第1出口連通穴4a及び第1出口連通穴4bが形成された側には、各第2冷媒流路2aの並び方向に沿って、全ての第2冷媒流路2aに連通するように第2入口連通穴5aが形成されており、また、各第2冷媒流路2bの並び方向に沿って、全ての第2冷媒流路2bに連通するように第2入口連通穴5bが形成されている。また、他方には、各第2冷媒流路2aの並び方向に沿って、全ての第2冷媒流路2aに連通するように第2出口連通穴6aが形成されており、また、各第2冷媒流路2bの並び方向に沿って、全ての第2冷媒流路2bに連通するように第2出口連通穴6bが形成されている。 Furthermore, on the side where the first outlet communication hole 4a and the first outlet communication hole 4b are formed on both ends in the refrigerant flow direction of the main body 10, all the second refrigerant flow paths 2a are arranged along the arrangement direction of the second refrigerant flow paths 2a. The second inlet communication hole 5a is formed so as to communicate with the two refrigerant flow paths 2a, and communicates with all the second refrigerant flow paths 2b along the arrangement direction of the second refrigerant flow paths 2b. A second inlet communication hole 5b is formed in the upper part. On the other hand, second outlet communication holes 6a are formed so as to communicate with all the second refrigerant flow paths 2a along the arrangement direction of the second refrigerant flow paths 2a. A second outlet communication hole 6b is formed along the direction in which the refrigerant flow paths 2b are arranged so as to communicate with all the second refrigerant flow paths 2b.
 なお、図3で示されるように、第1入口連通穴3a及び第1出口連通穴4aの貫通方向は、必ずしも各第1冷媒流路1aの方向と垂直になっている必要もなく、第1入口連通穴3b及び第1出口連通穴4bの貫通方向も、必ずしも各第1冷媒流路1bの方向と垂直になっている必要もない。これについては、第2入口連通穴5a及び第2入口連通穴5b、並びに、第2出口連通穴6a及び第2出口連通穴6bの貫通方向についても同様である。 Note that, as shown in FIG. 3, the penetration direction of the first inlet communication hole 3a and the first outlet communication hole 4a is not necessarily perpendicular to the direction of each first refrigerant flow path 1a. The penetrating direction of the inlet communication hole 3b and the first outlet communication hole 4b is not necessarily perpendicular to the direction of each first refrigerant channel 1b. The same applies to the penetrating direction of the second inlet communication hole 5a and the second inlet communication hole 5b, and the second outlet communication hole 6a and the second outlet communication hole 6b.
 また、第1入口連通穴3a、第1入口連通穴3b、第1出口連通穴4a、第1出口連通穴4b、第2入口連通穴5a、第2入口連通穴5b、第2出口連通穴6a及び第2出口連通穴6bは、それぞれ両端が封止部材等によって閉口されている。 The first inlet communication hole 3a, the first inlet communication hole 3b, the first outlet communication hole 4a, the first outlet communication hole 4b, the second inlet communication hole 5a, the second inlet communication hole 5b, and the second outlet communication hole 6a. The second outlet communication hole 6b is closed at both ends by a sealing member or the like.
 また、本体10の長手方向に貫通して形成された複数の第1冷媒流路1a、第1冷媒流路1b、第2冷媒流路2a及び第2冷媒流路2bの両端部は、ピンチ加工等による封止加工、又は、封止部材によって封止(図示せず)されている。 In addition, both ends of the plurality of first refrigerant flow paths 1a, first refrigerant flow paths 1b, second refrigerant flow paths 2a, and second refrigerant flow paths 2b formed through the body 10 in the longitudinal direction are pinched. It is sealed (not shown) by a sealing process or the like by a sealing member.
 また、第1入口連通穴3a及び第1入口連通穴3bの並び方向に沿って、その双方に連通するように第1入口集合穴31が形成されており、また、第1出口連通穴4a及び第1出口連通穴4bの並び方向に沿って、その双方に連通するように第1出口集合穴41が形成されている。また、第2入口連通穴5a及び第2入口連通穴5bの並び方向に沿って、その双方に連通するように第2入口集合穴51が形成されており、また、第2出口連通穴6a及び第2出口連通穴6bの並び方向に沿って、その双方に連通するように第2出口集合穴61が形成されている。
 なお、図3(a)の矢印A方向(平面視)から見た場合に、第1入口集合穴31、第1出口集合穴41、第2入口集合穴51及び第2出口集合穴61が全て同じ側(図3(b)において右側)に形成されているが、これに限定されるものではない。すなわち、例えば、第1入口集合穴31については、第1入口連通穴3a及び第1入口連通穴3bの並び方向に沿う位置であれば、いずれの位置に形成されるものとしてもよい。また、図3(a)で示されるように、第1入口集合穴31の貫通方向は、必ずしも第1入口連通穴3a及び第1入口連通穴3bの貫通方向に垂直になっている必要はない。これは、第1出口集合穴41、第2入口集合穴51及び第2出口集合穴61についても同様である。
A first inlet collecting hole 31 is formed so as to communicate with both of the first inlet communication hole 3a and the first inlet communication hole 3b along the arrangement direction of the first inlet communication hole 3a. A first outlet collection hole 41 is formed along the direction in which the first outlet communication holes 4b are arranged so as to communicate with both of them. The second inlet communication hole 5a and the second inlet communication hole 5b are arranged along the direction of arrangement of the second inlet communication hole 5b so as to communicate with both of them, and the second outlet communication hole 6a and A second outlet collecting hole 61 is formed along the direction in which the second outlet communicating holes 6b are arranged so as to communicate with both of them.
3A, when viewed from the direction of arrow A (plan view), the first inlet collecting hole 31, the first outlet collecting hole 41, the second inlet collecting hole 51, and the second outlet collecting hole 61 are all. Although formed on the same side (the right side in FIG. 3B), it is not limited to this. That is, for example, the first inlet collecting hole 31 may be formed at any position as long as the first inlet communicating hole 3a and the first inlet communicating hole 3b are aligned with each other. Further, as shown in FIG. 3A, the penetration direction of the first inlet collecting hole 31 is not necessarily perpendicular to the penetration direction of the first inlet communication hole 3a and the first inlet communication hole 3b. . The same applies to the first outlet collecting hole 41, the second inlet collecting hole 51, and the second outlet collecting hole 61.
 また、第1入口集合穴31、第1出口集合穴41、第2入口集合穴51及び第2出口集合穴61の一端は開口されており、それぞれ、外部に連通するように、第1入口接続管3、第1出口接続管4、第2入口接続管5及び第2出口接続管6が接続されている。また、第1入口集合穴31、第1出口集合穴41、第2入口集合穴51及び第2出口集合穴61の他端は、封止部材等によって閉口されている。
 なお、図3で示されるように、第1入口集合穴31、第1出口集合穴41、第2入口集合穴51及び第2出口集合穴61について、開口(又は閉口)されている端部は、すべて同じ側になっているが、これに限定されるものではなく、各集合穴において一端が開口され、他端が閉口されている構成であれば、それぞれ同じ側である必要はない。
In addition, one end of the first inlet collecting hole 31, the first outlet collecting hole 41, the second inlet collecting hole 51, and the second outlet collecting hole 61 is opened, and the first inlet connection is made so as to communicate with the outside. The pipe 3, the first outlet connecting pipe 4, the second inlet connecting pipe 5 and the second outlet connecting pipe 6 are connected. The other ends of the first inlet collecting hole 31, the first outlet collecting hole 41, the second inlet collecting hole 51, and the second outlet collecting hole 61 are closed by a sealing member or the like.
As shown in FIG. 3, with respect to the first inlet collecting hole 31, the first outlet collecting hole 41, the second inlet collecting hole 51, and the second outlet collecting hole 61, the end portions that are opened (or closed) are These are all on the same side, but the present invention is not limited to this, and it is not necessary to be on the same side as long as one end is opened in each collecting hole and the other end is closed.
 なお、第1入口連通穴3a、第1入口連通穴3b、第1出口連通穴4a及び第1出口連通穴4bは、本発明の「第1連通穴」に相当し、第2入口連通穴5a、第2入口連通穴5b、第2出口連通穴6a及び第2出口連通穴6bは、本発明の「第2連通穴」に相当する。また、第1入口集合穴31及び第1出口集合穴41は、本発明の「第1集合穴」に相当し、第2入口集合穴51及び第2出口集合穴61は、本発明の「第2集合穴」に相当する。 The first inlet communication hole 3a, the first inlet communication hole 3b, the first outlet communication hole 4a, and the first outlet communication hole 4b correspond to the “first communication hole” of the present invention, and the second inlet communication hole 5a. The second inlet communication hole 5b, the second outlet communication hole 6a, and the second outlet communication hole 6b correspond to the “second communication hole” of the present invention. The first inlet collecting hole 31 and the first outlet collecting hole 41 correspond to the “first collecting hole” of the present invention, and the second inlet collecting hole 51 and the second outlet collecting hole 61 of the present invention are the “first collecting hole”. Corresponds to “2 holes”.
(熱交換器8bの熱交換動作)
 次に、図3を参照しながら、熱交換器8bにおける第1冷媒と第2冷媒との熱交換動作について説明する。
(Heat exchange operation of the heat exchanger 8b)
Next, the heat exchange operation between the first refrigerant and the second refrigerant in the heat exchanger 8b will be described with reference to FIG.
 第1冷媒は、第1入口接続管3を介して第1入口集合穴31へ流入し、第1入口連通穴3a及び第1入口連通穴3bそれぞれに流入する。第1入口連通穴3aに流入した第1冷媒は、第1冷媒流路1aを流通し、第1出口連通穴4aに流出する。また、第1入口連通穴3bに流入した第1冷媒は、第1冷媒流路1bを流通し、第1出口連通穴4bに流出する。そして、第1出口連通穴4a及び第1出口連通穴4bに流出した第1冷媒は、第1出口集合穴41において合流し、第1出口接続管4から流出する。 The first refrigerant flows into the first inlet collecting hole 31 through the first inlet connecting pipe 3, and flows into the first inlet communicating hole 3a and the first inlet communicating hole 3b. The first refrigerant flowing into the first inlet communication hole 3a flows through the first refrigerant channel 1a and flows out to the first outlet communication hole 4a. Moreover, the 1st refrigerant | coolant which flowed into the 1st inlet communication hole 3b distribute | circulates the 1st refrigerant | coolant flow path 1b, and flows out into the 1st exit communication hole 4b. Then, the first refrigerant that has flowed into the first outlet communication hole 4 a and the first outlet communication hole 4 b merges at the first outlet collecting hole 41 and flows out from the first outlet connection pipe 4.
 一方、第2冷媒は、第2入口接続管5を介して第2入口集合穴51へ流入し、第2入口連通穴5a及び第2入口連通穴5bにそれぞれ流入する。第2入口連通穴5aに流入した第2冷媒は、第2冷媒流路2aを流通し、第2出口連通穴6aに流出する。また、第2入口連通穴5bに流入した第2冷媒は、第2冷媒流路2bを流通し、第2出口連通穴6bに流出する。そして、第2出口連通穴6a及び第2出口連通穴6bに流出した第2冷媒は、第2出口集合穴61において合流し、第2出口接続管6から流出する。 On the other hand, the second refrigerant flows into the second inlet collecting hole 51 through the second inlet connecting pipe 5, and flows into the second inlet communicating hole 5a and the second inlet communicating hole 5b, respectively. The second refrigerant flowing into the second inlet communication hole 5a flows through the second refrigerant channel 2a and flows out to the second outlet communication hole 6a. Further, the second refrigerant flowing into the second inlet communication hole 5b flows through the second refrigerant flow path 2b and flows out to the second outlet communication hole 6b. Then, the second refrigerant that has flowed out into the second outlet communication hole 6 a and the second outlet communication hole 6 b merges in the second outlet collecting hole 61 and flows out from the second outlet connection pipe 6.
 第1冷媒流路1a及び第1冷媒流路1bを流通する第1冷媒と、第2冷媒流路2a及び第2冷媒流路2bを流通する第2冷媒とは、各冷媒流路同士間の隔壁を介して対向流で熱交換が実施される。 The first refrigerant flowing through the first refrigerant flow path 1a and the first refrigerant flow path 1b and the second refrigerant flowing through the second refrigerant flow path 2a and the second refrigerant flow path 2b are between the respective refrigerant flow paths. Heat exchange is performed in a counterflow through the partition.
(実施の形態3の効果)
 以上の熱交換器8bにおいては、実施の形態1に係る熱交換器8が有する効果に加え、各冷媒パスを2組の冷媒流路によって構成されている場合にも、各冷媒流路が一体で構成されているので、それぞれ別体で構成された場合で発生する熱抵抗が抑制され、熱交換性能を向上させることができる。
(Effect of Embodiment 3)
In the heat exchanger 8b described above, in addition to the effects of the heat exchanger 8 according to Embodiment 1, each refrigerant flow path is integrated even when each refrigerant path is constituted by two sets of refrigerant flow paths. Therefore, the heat resistance generated in the case of being configured separately is suppressed, and the heat exchange performance can be improved.
 また、熱交換器8bの本体10内部に、第1入口集合穴31及び第1出口集合穴41を設けたため、第1入口連通穴3a及び第1入口連通穴3b、並びに、第1出口連通穴4a及び第1出口連通穴4bに接続するための別体のヘッダー管を備える必要がない。したがって、熱交換器8bのコンパクト化が図れると共に、製造工程を簡素化することができる。これについては、第2入口集合穴51及び第2出口集合穴61についても同様である。 Further, since the first inlet collecting hole 31 and the first outlet collecting hole 41 are provided in the main body 10 of the heat exchanger 8b, the first inlet communicating hole 3a, the first inlet communicating hole 3b, and the first outlet communicating hole are provided. It is not necessary to provide a separate header pipe for connecting to 4a and the first outlet communication hole 4b. Therefore, the heat exchanger 8b can be made compact and the manufacturing process can be simplified. The same applies to the second inlet collecting hole 51 and the second outlet collecting hole 61.
 また、各冷媒パスを2組の冷媒流路によって構成し、これらの冷媒流路を1つの連通穴で集約するため、連通穴の数を削減でき、熱交換器8bの製造工程の簡素化を図ることができる。 In addition, each refrigerant path is constituted by two sets of refrigerant flow paths, and these refrigerant flow paths are collected by one communication hole, so the number of communication holes can be reduced, and the manufacturing process of the heat exchanger 8b can be simplified. You can plan.
 また、各冷媒パスを2組の冷媒流路によって構成したので、熱交換容量を増大させることができる。 Also, since each refrigerant path is constituted by two sets of refrigerant flow paths, the heat exchange capacity can be increased.
 また、本実施の形態に係る熱交換器8bは、実施の形態2に係る熱交換器8aのように、2組の冷媒流路によって構成された第1冷媒パス1及び第2冷媒パス2を隣接させる構成ではなく、第1冷媒パス1の冷媒流路の列と第2冷媒パス2の冷媒流路の列とは1列おきに交互に並べて構成している。これによって、各組の冷媒流路を流通する冷媒と、それと隣り合う別の組の冷媒流路を流通する冷媒とは異なるものとなる構造になるので、実施の形態2に係る熱交換器8aよりもさらに熱交換性能をが向上したものとなる。 Further, the heat exchanger 8b according to the present embodiment includes the first refrigerant path 1 and the second refrigerant path 2 that are configured by two sets of refrigerant flow paths, like the heat exchanger 8a according to the second embodiment. Instead of the adjacent configuration, the rows of the refrigerant flow paths of the first refrigerant path 1 and the rows of the refrigerant flow paths of the second refrigerant path 2 are alternately arranged every other row. As a result, the refrigerant flowing through each set of refrigerant flow paths and the refrigerant flowing through another set of refrigerant flow paths adjacent thereto are different from each other, and thus the heat exchanger 8a according to the second embodiment. As a result, the heat exchange performance is further improved.
 なお、図3で示されるように、第1冷媒パス1と第2冷媒パス2とが本体10において一体として構成されているが、これに限定されるものではない。すなわち、第1冷媒パス1と第2冷媒パス2とを別体の管として双方をろう付け等で接合する構成とした場合においても、第1冷媒パス1が形成された管に第1入口連通穴3a、第1入口連通穴3b、第1出口連通穴4a及び第1出口連通穴4bを設ければ、第1冷媒パス1の冷媒流路の接続するための別体のヘッダー管を備える必要がないため、熱交換器のコンパクト化が図れると共に、製造工程を簡素化することができる。これについては、第2冷媒パス2が形成された管に第2入口連通穴5a、第2入口連通穴5b、第2出口連通穴6a及び第2出口連通穴6bを設ける場合についても同様のことが言える。 In addition, as shown in FIG. 3, the first refrigerant path 1 and the second refrigerant path 2 are integrally formed in the main body 10, but the present invention is not limited to this. That is, even when the first refrigerant path 1 and the second refrigerant path 2 are separate pipes and both are joined by brazing or the like, the first inlet communication is connected to the pipe in which the first refrigerant path 1 is formed. If the hole 3a, the first inlet communication hole 3b, the first outlet communication hole 4a, and the first outlet communication hole 4b are provided, it is necessary to provide a separate header pipe for connecting the refrigerant flow path of the first refrigerant path 1. Therefore, the heat exchanger can be made compact and the manufacturing process can be simplified. The same applies to the case where the second inlet communication hole 5a, the second inlet communication hole 5b, the second outlet communication hole 6a, and the second outlet communication hole 6b are provided in the pipe in which the second refrigerant path 2 is formed. I can say.
 また、図3で示されるように、各冷媒パスを構成するのは2組の冷媒流路(例えば、第1冷媒パス1であれば、第1冷媒流路1a及び第1冷媒流路1bの2組の冷媒流路)としたが、これに限定されるものではない。すなわち、熱交換容量を大きくする場合、又は、流路面積を大きくして圧力損失を下げる場合等においては、各冷媒パスは3組以上の冷媒流路によって構成するものとしてもよい。また、第1冷媒パス1の冷媒流路の組の数と、第2冷媒パス2の冷媒流路の組の数が同数である必要もない。 Further, as shown in FIG. 3, each refrigerant path is composed of two sets of refrigerant flow paths (for example, if the first refrigerant path 1 is used, the first refrigerant flow path 1a and the first refrigerant flow path 1b However, the present invention is not limited to this. That is, when the heat exchange capacity is increased, or when the flow path area is increased to reduce the pressure loss, each refrigerant path may be constituted by three or more sets of refrigerant flow paths. Further, it is not necessary that the number of sets of refrigerant flow paths in the first refrigerant path 1 and the number of sets of refrigerant flow paths in the second refrigerant path 2 are the same.
実施の形態4.
 本実施の形態に係る熱交換器8cについて、実施の形態1に係る熱交換器8の構成及び動作と異なる点を中心に説明する。
Embodiment 4 FIG.
The heat exchanger 8c according to the present embodiment will be described focusing on differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
(熱交換器8cの構成)
 図4は、本発明の実施の形態4に係る熱交換器8cの構造図である。
 図4で示されるように、本実施の形態に係る熱交換器8cの本体10の冷媒流通方向の両端のうち一方には、各第1冷媒流路1aの並び方向に沿って、一部の第1冷媒流路1a(以下、「第1の第1冷媒流路群」という)に連通する第1入口連通穴3aaが形成されている。また、残りの第1冷媒流路1aに連通する第1入口連通穴3abが形成されている。
 また、他方には、各第1冷媒流路1aの並び方向に沿って、第1冷媒流路1aのうち第1入口連通穴3aaに連通する全ての第1冷媒流路1a、及び、第1入口連通穴3abに連通する一部の第1冷媒流路1a(以下、「第2の第1冷媒流路群」という)に連通する第1出口連通穴4aaが形成されている。また、第1入口連通穴3abに連通する残りの第1冷媒流路1a(以下、「第3の第1冷媒流路群」という)に連通する第1出口連通穴4abが形成されている。
(Configuration of heat exchanger 8c)
FIG. 4 is a structural diagram of a heat exchanger 8c according to Embodiment 4 of the present invention.
As shown in FIG. 4, a part of both ends of the main body 10 of the heat exchanger 8 c according to the present embodiment in the refrigerant flow direction has a part along the arrangement direction of the first refrigerant flow paths 1 a. A first inlet communication hole 3aa communicating with the first refrigerant flow path 1a (hereinafter referred to as “first first refrigerant flow path group”) is formed. Further, a first inlet communication hole 3ab communicating with the remaining first refrigerant flow path 1a is formed.
On the other hand, all the first refrigerant flow paths 1a communicating with the first inlet communication holes 3aa in the first refrigerant flow paths 1a along the direction in which the first refrigerant flow paths 1a are arranged, and the first A first outlet communication hole 4aa communicating with a part of the first refrigerant flow path 1a (hereinafter referred to as “second first refrigerant flow path group”) communicating with the inlet communication hole 3ab is formed. Further, a first outlet communication hole 4ab communicating with the remaining first refrigerant flow path 1a (hereinafter referred to as “third first refrigerant flow path group”) communicating with the first inlet communication hole 3ab is formed.
 さらに、本体10の冷媒流方向の両端のうち第1出口連通穴4aa及び第1出口連通穴4abが形成された側には、各第2冷媒流路2aの並び方向に沿って、一部の第2冷媒流路2a(以下、「第1の第2冷媒流路群」という)に連通する第2入口連通穴5abが形成されている。また、残りの第2冷媒流路2aに連通する第2入口連通穴5aaが形成されている。
 また、本体10の冷媒流通方向の両端のうち第1入口連通穴3aa及び第1入口連通穴3abが形成された側には、各第2冷媒流路2aの並び方向に沿って、第2冷媒流路2aのうち第2入口連通穴5abに連通する全ての第2冷媒流路2a、及び、第2入口連通穴5aaに連通する一部の第2冷媒流路2a(以下、「第2の第2冷媒流路群」という)に連通する第2出口連通穴6abが形成されている。また、第2入口連通穴5aaに連通する残りの第2冷媒流路2a(以下、「第3の第2冷媒流路群」という)に連通する第2出口連通穴6aaが形成されている。
Furthermore, on the side where the first outlet communication hole 4aa and the first outlet communication hole 4ab are formed in both ends of the main body 10 in the refrigerant flow direction, a part of the second refrigerant flow path 2a is arranged along the arrangement direction. A second inlet communication hole 5ab communicating with the second refrigerant channel 2a (hereinafter referred to as “first second refrigerant channel group”) is formed. Further, a second inlet communication hole 5aa communicating with the remaining second refrigerant flow path 2a is formed.
In addition, the second refrigerant is disposed along the direction in which the second refrigerant flow paths 2a are arranged on the side where the first inlet communication hole 3aa and the first inlet communication hole 3ab are formed in both ends of the main body 10 in the refrigerant flow direction. Of the flow paths 2a, all the second refrigerant flow paths 2a communicating with the second inlet communication holes 5ab and a part of the second refrigerant flow paths 2a (hereinafter referred to as "second flow paths") communicating with the second inlet communication holes 5aa. A second outlet communication hole 6ab communicating with the “second refrigerant flow path group” is formed. In addition, a second outlet communication hole 6aa communicating with the remaining second refrigerant flow path 2a (hereinafter referred to as “third second refrigerant flow path group”) communicating with the second inlet communication hole 5aa is formed.
 また、上記の「第1の第1冷媒流路群」は「第3の第2冷媒流路群」と隣接するように、「第2の第1冷媒流路群」は「第2の第2冷媒流路群」と隣接するように、そして、「第3の第1冷媒流路群」は「第1の第2冷媒流路群」と隣接するように形成されている。 In addition, the “second first refrigerant flow path group” is adjacent to the “third second refrigerant flow path group”, and the “second first refrigerant flow path group” is the “second second refrigerant flow path group”. The “third refrigerant channel group” is formed adjacent to the “second refrigerant channel group”, and the “third first refrigerant channel group” is formed adjacent to the “second refrigerant channel group”.
 また、第1入口連通穴3aa及び第1入口連通穴3abと、第2出口連通穴6aa及び第2出口連通穴6abとは、第1冷媒流路1a(又は第2冷媒流路2a)の冷媒流通方向に少しずらして形成されている。また、第1出口連通穴4aa及び第1出口連通穴4abと、第2入口連通穴5aa及び第2入口連通穴5abとは、第1冷媒流路1a(又は第2冷媒流路2a)の冷媒流通方向に少しずらして形成されている。 The first inlet communication hole 3aa and the first inlet communication hole 3ab and the second outlet communication hole 6aa and the second outlet communication hole 6ab are the refrigerant in the first refrigerant channel 1a (or the second refrigerant channel 2a). It is formed with a slight shift in the distribution direction. Further, the first outlet communication hole 4aa and the first outlet communication hole 4ab, and the second inlet communication hole 5aa and the second inlet communication hole 5ab are the refrigerant in the first refrigerant channel 1a (or the second refrigerant channel 2a). It is formed with a slight shift in the distribution direction.
 なお、第1入口連通穴3aa及び第1入口連通穴3ab、並びに、第1出口連通穴4aa及び第1出口連通穴4abは、必ずしも各第1冷媒流路1aの方向と垂直になっている必要はない。また、第2入口連通穴5aa及び第2入口連通穴5ab、並びに、第2出口連通穴6aa及び第2出口連通穴6abは、必ずしも各第2冷媒流路2aの方向と垂直になっている必要はない。
 また、図4で示されるように、第1入口連通穴3aa及び第1入口連通穴3abの貫通方向は、同一方向かつ同軸となるように形成されているが、必ずしも同一方向、又は、同軸とならなくてもよい。これは、第1出口連通穴4aa及び第1出口連通穴4ab、第2入口連通穴5aa及び第2入口連通穴5ab、並びに、第2出口連通穴6aa及び第2出口連通穴6abについても同様である。
Note that the first inlet communication hole 3aa and the first inlet communication hole 3ab, and the first outlet communication hole 4aa and the first outlet communication hole 4ab are not necessarily perpendicular to the direction of each first refrigerant flow path 1a. There is no. Further, the second inlet communication hole 5aa and the second inlet communication hole 5ab, and the second outlet communication hole 6aa and the second outlet communication hole 6ab need to be perpendicular to the direction of each second refrigerant flow path 2a. There is no.
In addition, as shown in FIG. 4, the first inlet communication hole 3aa and the first inlet communication hole 3ab are formed in the same direction and coaxial, but are not necessarily in the same direction or coaxial. It doesn't have to be. The same applies to the first outlet communication hole 4aa and the first outlet communication hole 4ab, the second inlet communication hole 5aa and the second inlet communication hole 5ab, and the second outlet communication hole 6aa and the second outlet communication hole 6ab. is there.
 また、第1入口連通穴3aa、第1出口連通穴4ab、第2入口連通穴5ab及び第2出口連通穴6aaの一端は開口されており、それぞれ、外部に連通するように、第1入口接続管3、第1出口接続管4、第2入口接続管5(図4において、第1出口接続管4の裏側のため表示されていない)及び第2出口接続管6が接続されている。 Also, one end of the first inlet communication hole 3aa, the first outlet communication hole 4ab, the second inlet communication hole 5ab, and the second outlet communication hole 6aa is opened, and the first inlet connection is made so as to communicate with the outside. A pipe 3, a first outlet connecting pipe 4, a second inlet connecting pipe 5 (not shown in FIG. 4 for the back side of the first outlet connecting pipe 4) and a second outlet connecting pipe 6 are connected.
 なお、第1入口連通穴3aaは、本発明の「第1分割連通穴流入部」に相当し、第1入口連通穴3ab及び第1出口連通穴4aaは、本発明の「第1分割連通穴折り返し部」に相当し、そして、第1出口連通穴4abは、本発明の「第1分割連通穴流出部」に相当する。また、第2入口連通穴5abは、本発明の「第2分割連通穴流入部」に相当し、第2入口連通穴5aa及び第2出口連通穴6abは、本発明の「第2分割連通穴折り返し部」に相当し、そして、第2出口連通穴6aaは、本発明の「第2分割連通穴流出部」に相当する。 The first inlet communication hole 3aa corresponds to the “first divided communication hole inflow portion” of the present invention, and the first inlet communication hole 3ab and the first outlet communication hole 4aa are the “first divided communication hole” of the present invention. The first outlet communication hole 4ab corresponds to the “folded portion” and corresponds to the “first divided communication hole outflow portion” of the present invention. The second inlet communication hole 5ab corresponds to the “second divided communication hole inflow portion” of the present invention, and the second inlet communication hole 5aa and the second outlet communication hole 6ab are the “second divided communication hole of the present invention. The second outlet communication hole 6aa corresponds to the “folded portion”, and corresponds to the “second divided communication hole outflow portion” of the present invention.
(熱交換器8cの熱交換動作)
 次に、図4を参照しながら、熱交換器8cにおける第1冷媒と第2冷媒との熱交換動作について説明する。
(Heat exchange operation of the heat exchanger 8c)
Next, the heat exchange operation between the first refrigerant and the second refrigerant in the heat exchanger 8c will be described with reference to FIG.
 第1冷媒は、第1入口接続管3を介して第1入口連通穴3aaへ流入し、第1冷媒流路1a、第1出口連通穴4aa、再び第1冷媒流路1a、第1入口連通穴3ab、再び第1冷媒流路1a、そして、第1出口連通穴4abの順に流通して、第1出口接続管4から流出する。一方、第2冷媒は、第2入口接続管5を介して第2入口連通穴5abへ流入し、第2冷媒流路2a、第2出口連通穴6ab、再び第2冷媒流路2a、第2入口連通穴5aa、再び第2冷媒流路2a、そして、第2出口連通穴6aaの順に流通して、第2出口接続管6から流出する。その際、第1冷媒と第2冷媒とは、各冷媒パス同士間の隔壁を介して対向流で熱交換が実施される。 The first refrigerant flows into the first inlet communication hole 3aa via the first inlet connection pipe 3, and the first refrigerant channel 1a, the first outlet communication hole 4aa, the first refrigerant channel 1a, and the first inlet communication again. It flows through the hole 3ab, the first refrigerant flow path 1a, and the first outlet communication hole 4ab in this order, and flows out from the first outlet connecting pipe 4. On the other hand, the second refrigerant flows into the second inlet communication hole 5ab via the second inlet connection pipe 5, and then the second refrigerant flow path 2a, the second outlet communication hole 6ab, the second refrigerant flow path 2a, and the second refrigerant flow path again. It flows in the order of the inlet communication hole 5aa, the second refrigerant flow path 2a, and the second outlet communication hole 6aa again, and then flows out from the second outlet connection pipe 6. At that time, the first refrigerant and the second refrigerant exchange heat with each other through a partition wall between the refrigerant paths.
(実施の形態4の効果)
 以上の熱交換器8cにおいては、実施の形態1に係る熱交換器8が有する効果に加え、それぞれの冷媒の動作条件及び物性値に合わせて、熱交換性能を最大化するために、流路断面積を小さく、かつ、冷媒流通経路を長くする場合、冷媒流通経路が内部で折り返して構成できるので、熱交換器8cの大きさを抑制しつつ、熱交換性能を最大化することができる。
(Effect of Embodiment 4)
In the heat exchanger 8c described above, in addition to the effects of the heat exchanger 8 according to Embodiment 1, in order to maximize the heat exchange performance according to the operating conditions and physical property values of each refrigerant, When the cross-sectional area is small and the refrigerant circulation path is lengthened, the refrigerant circulation path can be folded inside, so that the heat exchange performance can be maximized while suppressing the size of the heat exchanger 8c.
 また、冷媒流通経路の折り返しのための第1入口連通穴3aa等が、熱交換器8cの本体10内部に形成されているので、別体の管を備える必要がなく、熱交換器8cのコンパクト化を図ることができる。 Further, since the first inlet communication hole 3aa and the like for turning the refrigerant flow path are formed inside the main body 10 of the heat exchanger 8c, it is not necessary to provide a separate pipe, and the heat exchanger 8c is compact. Can be achieved.
 なお、本実施の形態に係る熱交換器8cは、第1冷媒及び第2冷媒の流通動作が共に、折り返して流れるものとして説明したが、これに限定されるものではなく、一方の冷媒が折り返して流れ、他方の冷媒が実施の形態1と同様に直線的に流れる構成としてもよい。この場合、いずれの冷媒を、折り返して流すかどうかは、熱交換器のそれぞれの冷媒の動作条件及び物性値に合わせて、伝熱性能が高く、圧力損失が低い、かつ、好適な熱交換器となるように選択すればよい。 In the heat exchanger 8c according to the present embodiment, the flow operation of the first refrigerant and the second refrigerant has been described as both flowing back. However, the present invention is not limited to this, and one refrigerant is folded back. The other refrigerant may flow linearly as in the first embodiment. In this case, which refrigerant is to be turned back and forth is determined according to the operating conditions and physical properties of the respective refrigerants in the heat exchanger, heat transfer performance is high, pressure loss is low, and a suitable heat exchanger It may be selected so that
 また、第1入口連通穴3aa及び第1入口連通穴3ab、並びに、第1出口連通穴4aa及び第1出口連通穴4abの構成は、前述のままとして、第2入口連通穴5aa及び第2入口連通穴5ab、並びに、第2出口連通穴6aa及び第2出口連通穴6abの構成を以下のようにしてもよい。ただし、第1入口連通穴3aa及び第1入口連通穴3ab、並びに、第2出口連通穴6aa及び第2出口連通穴6abの位置関係、並びに、第1出口連通穴4aa及び第1出口連通穴4ab、並びに、第2入口連通穴5aa及び第2入口連通穴5abの位置関係は、図4で示されるものと同様とする。すなわち、本体10の冷媒流通方向の両端のうち第1出口連通穴4aa及び第1出口連通穴4abが形成された側には、各第2冷媒流路2aの並び方向に沿って、一部の第2冷媒流路2a(前述の「第3の第2冷媒流路群」に相当)に連通するように第2入口連通穴5aaを形成する。また、残りの第2冷媒流路2aに連通するように第2入口連通穴5abを形成する。そして、本体10の冷媒流通方向の両端のうち第1入口連通穴3aa及び第1入口連通穴3abが形成された側には、各第2冷媒流路2aの並び方向に沿って、第2冷媒流路2aのうち第2入口連通穴5aaに連通する全ての第2冷媒流路2a、及び、第2入口連通穴5abに連通する一部の第2冷媒流路2a(前述の「第2の第2冷媒流路群」に相当)に連通するように第2出口連通穴6aaを形成する。また、第2入口連通穴5abに連通する残りの第2冷媒流路2a(前述の「第1の第2冷媒流路群」に相当)に連通するように第2出口連通穴6abを形成する。この場合、第2入口連通穴5aa及び第2出口連通穴6abの一端を開口させ、外部に連通するように、それぞれに第2入口接続管5及び第2出口接続管6を接続させる。以上のような構成によっても、第1冷媒及び第2冷媒を対向流によって熱交換が可能であり、図4で示される熱交換器8cと同様の効果を得ることができる。 Further, the configurations of the first inlet communication hole 3aa and the first inlet communication hole 3ab, and the first outlet communication hole 4aa and the first outlet communication hole 4ab are the same as described above, and the second inlet communication hole 5aa and the second inlet are maintained. The configuration of the communication hole 5ab, the second outlet communication hole 6aa, and the second outlet communication hole 6ab may be as follows. However, the positional relationship between the first inlet communication hole 3aa and the first inlet communication hole 3ab, the second outlet communication hole 6aa and the second outlet communication hole 6ab, and the first outlet communication hole 4aa and the first outlet communication hole 4ab. The positional relationship between the second inlet communication hole 5aa and the second inlet communication hole 5ab is the same as that shown in FIG. That is, on the side where the first outlet communication hole 4aa and the first outlet communication hole 4ab are formed in both ends of the main body 10 in the refrigerant flow direction, a part of the second refrigerant flow path 2a is arranged along the arrangement direction of the second refrigerant flow paths 2a. The second inlet communication hole 5aa is formed so as to communicate with the second refrigerant flow path 2a (corresponding to the above-mentioned “third second refrigerant flow path group”). Further, the second inlet communication hole 5ab is formed so as to communicate with the remaining second refrigerant flow path 2a. And the 2nd refrigerant | coolant is along the arrangement direction of each 2nd refrigerant | coolant flow path 2a in the side in which the 1st inlet communication hole 3aa and the 1st inlet communication hole 3ab were formed among the both ends of the refrigerant | coolant distribution direction of the main body 10. Of the flow passages 2a, all the second refrigerant flow passages 2a communicating with the second inlet communication holes 5aa and a part of the second refrigerant flow passages 2a communicating with the second inlet communication holes 5ab (the above-mentioned “secondary passages”). The second outlet communication hole 6aa is formed so as to communicate with the “second refrigerant flow path group”. Further, the second outlet communication hole 6ab is formed so as to communicate with the remaining second refrigerant flow path 2a (corresponding to the above-mentioned “first second refrigerant flow path group”) communicating with the second inlet communication hole 5ab. . In this case, one end of the second inlet communication hole 5aa and the second outlet communication hole 6ab is opened, and the second inlet connection pipe 5 and the second outlet connection pipe 6 are connected to each other so as to communicate with the outside. Even with the configuration as described above, the first refrigerant and the second refrigerant can be heat-exchanged by the counter flow, and the same effect as the heat exchanger 8c shown in FIG. 4 can be obtained.
 また、本実施の形態に係る熱交換器8cは、図4で示されるように、実施の形態1に係る熱交換器8の第1入口連通穴3aに相当する連通穴を2分割(第1入口連通穴3aa及び第1入口連通穴3ab)にする構成(その他、第1出口連通穴4aa及び第1出口連通穴4ab等においても同様)としているが、これに限定されるものではない。すなわち、3分割以上として、各冷媒の折り返し回数を増やすように構成するものとしてもよい。この場合、分割の態様によっては、第1冷媒流路1aの並列方向の一端側に2つの第1出口連通穴4abが配置されることとなり、それぞれ第1冷媒が流入又は流出されることになる。これによって、熱交換器としての大きさはそのままとして、冷媒流通経路をさらに長くすることができるので、熱交換性能をさらに向上させることができる。 Further, as shown in FIG. 4, the heat exchanger 8c according to the present embodiment divides the communication hole corresponding to the first inlet communication hole 3a of the heat exchanger 8 according to the first embodiment into two parts (first Although the inlet communication hole 3aa and the first inlet communication hole 3ab) are configured (the same applies to the first outlet communication hole 4aa and the first outlet communication hole 4ab), the present invention is not limited to this. That is, it is good also as what is comprised so that the frequency | count of folding | turning of each refrigerant | coolant may be increased as 3 or more divisions. In this case, depending on the mode of division, the two first outlet communication holes 4ab are arranged on one end side in the parallel direction of the first refrigerant flow path 1a, and the first refrigerant flows in or out, respectively. . As a result, the size of the heat exchanger can be kept as it is, and the refrigerant flow path can be further lengthened, so that the heat exchange performance can be further improved.
 さらに、本実施の形態に係る熱交換器8cのように冷媒の流通経路を折り返すようにする構成は、実施の形態2及び実施の形態3においても適用可能である。 Furthermore, the configuration in which the refrigerant flow path is folded back as in the heat exchanger 8c according to the present embodiment can also be applied to the second and third embodiments.
実施の形態5.
 本実施の形態に係る熱交換器8dについて、実施の形態3に係る熱交換器8bの構成及び動作と異なる点を中心に説明する。
Embodiment 5. FIG.
The heat exchanger 8d according to the present embodiment will be described focusing on differences from the configuration and operation of the heat exchanger 8b according to the third embodiment.
(熱交換器8dの構成)
 図5は、本発明の実施の形態5に係る熱交換器8dの構造図である。このうち、図5(a)は、同熱交換器8dの斜視図であり、図5(b)は、図5(a)の矢印A方向から見た平面図であり、そして、図5(c)は、図5(a)の矢印B方向から見た側面図である。
 図5で示されるように、第1入口連通穴3a及び第1入口連通穴3bの並び方向に沿って、第1入口連通穴3aに連通するように第1集合穴31aが形成されており、また、第1入口連通穴3bに連通するように第1集合穴31bが形成されている。また、第1出口連通穴4a及び第1出口連通穴4bの並び方向に沿って、その双方に連通するように第1中継集合穴41aが形成されている。
(Configuration of heat exchanger 8d)
FIG. 5 is a structural diagram of a heat exchanger 8d according to Embodiment 5 of the present invention. Among these, Fig.5 (a) is a perspective view of the heat exchanger 8d, FIG.5 (b) is the top view seen from the arrow A direction of Fig.5 (a), and FIG. (c) is the side view seen from the arrow B direction of Fig.5 (a).
As shown in FIG. 5, the first collecting hole 31a is formed so as to communicate with the first inlet communication hole 3a along the direction in which the first inlet communication hole 3a and the first inlet communication hole 3b are arranged. A first collecting hole 31b is formed so as to communicate with the first inlet communication hole 3b. Moreover, the 1st relay gathering hole 41a is formed along the arrangement direction of the 1st exit communicating hole 4a and the 1st exit communicating hole 4b so that it may communicate with both.
 また、第2入口連通穴5a及び第2入口連通穴5bの並び方向に沿って、その双方に連通するように第2中継集合穴51aが形成されている。また、第2出口連通穴6a及び第2出口連通穴6bの並び方向に沿って、第2出口連通穴6aに連通するように第2集合穴61aが形成されており、また、第2出口連通穴6bに連通するように第2集合穴61bが形成されている。 Also, the second relay assembly hole 51a is formed along the direction in which the second inlet communication hole 5a and the second inlet communication hole 5b are arranged so as to communicate with both. A second collecting hole 61a is formed along the direction in which the second outlet communication hole 6a and the second outlet communication hole 6b are arranged so as to communicate with the second outlet communication hole 6a. A second collective hole 61b is formed so as to communicate with the hole 6b.
 また、第1集合穴31a、第1集合穴31b、第2集合穴61a及び第2集合穴61bの一端は開口されており、それぞれ、外部に連通するように、第1入口接続管3、第1出口接続管4、第2出口接続管6及び第2入口接続管5が接続されている。また、第1中継集合穴41a及び第2中継集合穴51aの両端は、封止部材等によって閉口されている。したがって、第1入口接続管3及び第2出口接続管6が接続された本体10の一面と反対側の面に第1出口接続管4及び第2入口接続管5が接続された構成となる。 In addition, one end of the first collecting hole 31a, the first collecting hole 31b, the second collecting hole 61a, and the second collecting hole 61b is opened, and the first inlet connecting pipe 3 and the second collecting hole 61b are communicated to the outside. The 1 outlet connection pipe 4, the 2nd outlet connection pipe 6, and the 2nd inlet connection pipe 5 are connected. Further, both ends of the first relay assembly hole 41a and the second relay assembly hole 51a are closed by a sealing member or the like. Therefore, the first outlet connection pipe 4 and the second inlet connection pipe 5 are connected to the surface opposite to the one surface of the main body 10 to which the first inlet connection pipe 3 and the second outlet connection pipe 6 are connected.
 なお、図5の矢印A方向(平面視)から見た場合に、第1集合穴31a、第1集合穴31b、第1中継集合穴41a、第2中継集合穴51a、第2集合穴61a及び第2集合穴61bが全て同じ側(右側)に形成されているがこれに限定されるものではない。すなわち、例えば、第1集合穴31aについては、第1入口連通穴3aに連通し、外部への開口部を有していれば、いずれの位置に形成されていてもよい。これは、第1集合穴31b、第2集合穴61a及び第2集合穴61bについても同様である。また、第1中継集合穴41aについては、第1出口連通穴4a及び第1出口連通穴4bの並び方向に沿う位置であれば、いずれの位置に形成されるものとしてもよい。これは、第2中継集合穴51aについても同様である。
 また、図5で示されるように、第1中継集合穴41aの貫通方向は、必ずしも第1出口連通穴4a及び第1出口連通穴4bの貫通方向に垂直なっている必要はない。これは、第2中継集合穴51aについても同様である。
When viewed from the direction of arrow A in FIG. 5 (plan view), the first collective hole 31a, the first collective hole 31b, the first relay collective hole 41a, the second relay collective hole 51a, the second collective hole 61a, and The second collecting holes 61b are all formed on the same side (right side), but are not limited thereto. That is, for example, the first collecting hole 31a may be formed at any position as long as it communicates with the first inlet communication hole 3a and has an opening to the outside. The same applies to the first collecting hole 31b, the second collecting hole 61a, and the second collecting hole 61b. Further, the first relay collecting hole 41a may be formed at any position as long as the first relay communicating hole 41a is located along the arrangement direction of the first outlet communicating hole 4a and the first outlet communicating hole 4b. The same applies to the second relay assembly hole 51a.
Further, as shown in FIG. 5, the penetration direction of the first relay assembly hole 41a is not necessarily perpendicular to the penetration direction of the first outlet communication hole 4a and the first outlet communication hole 4b. The same applies to the second relay assembly hole 51a.
 なお、第1集合穴31aは、本発明の「第1集合穴流入部」に相当し、第1集合穴31bは、本発明の「第1集合穴流出部」に相当する。また、第2集合穴61bは、本発明の「第2集合穴流入部」に相当し、第2集合穴61aは、本発明の「第2集合穴流出部」に相当する。 The first collecting hole 31a corresponds to the “first collecting hole inflow portion” of the present invention, and the first collecting hole 31b corresponds to the “first collecting hole outflow portion” of the present invention. The second collecting hole 61b corresponds to a “second collecting hole inflow portion” of the present invention, and the second collecting hole 61a corresponds to a “second collecting hole outflow portion” of the present invention.
(熱交換器8dの熱交換動作)
 次に、図5を参照しながら、熱交換器8dにおける第1冷媒と第2冷媒との熱交換動作について説明する。
(Heat exchange operation of the heat exchanger 8d)
Next, the heat exchange operation between the first refrigerant and the second refrigerant in the heat exchanger 8d will be described with reference to FIG.
 第1冷媒は、第1入口接続管3を介して第1集合穴31aへ流入し、第1入口連通穴3aに流入する。第1入口連通穴3aに流入した第1冷媒は、第1冷媒流路1aを流通し、第1出口連通穴4aに流出する。第1出口連通穴4aに流出した第1冷媒は、第1中継集合穴41aを経由して、第1出口連通穴4bに流出する。第1出口連通穴4bに流出した第1冷媒は、第1冷媒流路1bを流通し、第1入口連通穴3bに流出する。第1入口連通穴3bに流出した第1冷媒は、第1集合穴31b経由して、第1出口接続管4を介して流出する。 The first refrigerant flows into the first collecting hole 31a through the first inlet connection pipe 3, and flows into the first inlet communication hole 3a. The first refrigerant flowing into the first inlet communication hole 3a flows through the first refrigerant channel 1a and flows out to the first outlet communication hole 4a. The 1st refrigerant | coolant which flowed out to the 1st exit communication hole 4a flows out into the 1st exit communication hole 4b via the 1st relay gathering hole 41a. The 1st refrigerant | coolant which flowed out to the 1st exit communication hole 4b distribute | circulates the 1st refrigerant | coolant flow path 1b, and flows out into the 1st inlet communication hole 3b. The 1st refrigerant | coolant which flowed out to the 1st inlet communication hole 3b flows out via the 1st exit connection pipe 4 via the 1st collection hole 31b.
 第2冷媒は、第2入口接続管5を介して第2集合穴61bへ流入し、第2出口連通穴6bに流入する。第2出口連通穴6bに流入した第2冷媒は、第2冷媒流路2bを流通し、第2入口連通穴5bに流出する。第2入口連通穴5bに流出した第2冷媒は、第2中継集合穴51aを経由して、第2入口連通穴5aに流出する。第2入口連通穴5aに流出した第2冷媒は、第2冷媒流路2aを流通し、第2出口連通穴6aに流出する。第2出口連通穴6aに流出した第2冷媒は、第2集合穴61a経由して、第2出口接続管6を介して流出する。 The second refrigerant flows into the second collecting hole 61b through the second inlet connection pipe 5, and flows into the second outlet communication hole 6b. The second refrigerant flowing into the second outlet communication hole 6b flows through the second refrigerant flow path 2b and flows out to the second inlet communication hole 5b. The second refrigerant that has flowed out into the second inlet communication hole 5b flows into the second inlet communication hole 5a via the second relay collecting hole 51a. The second refrigerant that has flowed out into the second inlet communication hole 5a flows through the second refrigerant flow path 2a and flows out into the second outlet communication hole 6a. The second refrigerant that has flowed out into the second outlet communication hole 6a flows out through the second outlet connecting pipe 6 via the second collecting hole 61a.
 第1冷媒流路1aを流通する第1冷媒と、第2冷媒流路2aを流通する第2冷媒とは、各冷媒流路同士間の隔壁を介して対向流で熱交換が実施される。また、第1冷媒流路1bを流通する第1冷媒と、第2冷媒流路2bを流通する第2冷媒とは、各冷媒流路同士間の隔壁を介して対向流で熱交換が実施される。また、第1冷媒流路1bを流通する第1冷媒、及び、第2冷媒流路2aを流通する第2冷媒は並行流の関係となるが、各冷媒流路間同士で隔壁を介して熱交換が実施されるのは言うまでもない。 The first refrigerant flowing through the first refrigerant flow path 1a and the second refrigerant flowing through the second refrigerant flow path 2a are subjected to heat exchange in a counter flow via a partition wall between the refrigerant flow paths. In addition, the first refrigerant flowing through the first refrigerant flow path 1b and the second refrigerant flowing through the second refrigerant flow path 2b are subjected to heat exchange in a counter flow through a partition wall between the refrigerant flow paths. The Further, the first refrigerant flowing through the first refrigerant flow path 1b and the second refrigerant flowing through the second refrigerant flow path 2a are in a parallel flow relationship. Needless to say, the exchange is carried out.
(実施の形態5の効果)
 以上の熱交換器8dにおいては、実施の形態3に係る熱交換器8cが有する効果に加え、それぞれの冷媒の動作条件及び物性値に合わせて、熱交換性能を最大化するために、流路断面積を小さく、かつ、冷媒流通経路を長くする場合、冷媒流通経路が内部で折り返して構成できるので、熱交換器8dの大きさを抑制しつつ、熱交換性能を最大化することができる。
(Effect of Embodiment 5)
In the heat exchanger 8d described above, in addition to the effects of the heat exchanger 8c according to the third embodiment, in order to maximize the heat exchange performance in accordance with the operation conditions and physical property values of each refrigerant, When the cross-sectional area is small and the refrigerant flow path is lengthened, the refrigerant flow path can be configured to be folded inside, so that the heat exchange performance can be maximized while suppressing the size of the heat exchanger 8d.
 また、冷媒流通経路の折り返しのための第1中継集合穴41a等が、熱交換器8dの本体10内部に形成されているので、別体の管を備える必要がなく、熱交換器8dのコンパクト化を図ることができる。 In addition, since the first relay gathering hole 41a and the like for turning the refrigerant flow path are formed inside the main body 10 of the heat exchanger 8d, it is not necessary to provide a separate pipe, and the heat exchanger 8d is compact. Can be achieved.
 なお、本実施の形態に係る熱交換器8dは、第1冷媒及び第2冷媒の流通動作が共に、折り返して流れるものとして説明したが、これに限定されるものではなく、一方の冷媒が折り返して流れ、他方の冷媒が実施の形態4と同様に直線的に流れる構成としてもよい。この場合、いずれの冷媒を、折り返して流すかどうかは、熱交換器のそれぞれの冷媒の動作条件及び物性値に合わせて、伝熱性能が高く、圧力損失が低い、かつ、好適な熱交換器となるように選択すればよい。 In the heat exchanger 8d according to the present embodiment, the flow operation of the first refrigerant and the second refrigerant has been described as both flowing back. However, the present invention is not limited to this, and one refrigerant is folded back. The other refrigerant may flow linearly as in the fourth embodiment. In this case, which refrigerant is to be turned back and forth is determined according to the operating conditions and physical properties of the respective refrigerants in the heat exchanger, heat transfer performance is high, pressure loss is low, and a suitable heat exchanger It may be selected so that
実施の形態6.
 前述の実施の形態1~実施の形態5に係る各熱交換器は、例えば、空気調和装置、貯湯装置及び冷凍機等の冷凍サイクル装置に搭載される。本実施の形態に係る冷凍サイクル装置は、実施の形態1に係る熱交換器8を搭載した場合を例として説明する。
Embodiment 6 FIG.
Each heat exchanger according to Embodiments 1 to 5 described above is mounted on a refrigeration cycle apparatus such as an air conditioner, a hot water storage apparatus, and a refrigerator. The refrigeration cycle apparatus according to the present embodiment will be described by taking as an example a case where the heat exchanger 8 according to the first embodiment is mounted.
(冷凍サイクル装置200の構成)
 図6は、本発明の実施の形態6に係る冷凍サイクル装置の一例を示す冷媒回路図である。
 図6で示されるように、冷凍サイクル装置200は、第1圧縮機230、第1放熱器231、熱交換器8、第1減圧装置232、そして、第1冷却器233が順に冷媒配管によって接続された第1冷媒回路を備えている。また、熱交換器8における第1入口接続管3が冷媒配管によって第1放熱器231に接続され、第1出口接続管4が冷媒配管によって第1減圧装置232に接続されている。この第1冷媒回路は、高温冷媒である第1冷媒が循環し、蒸気圧縮式冷凍サイクルで動作するように構成されている。
(Configuration of refrigeration cycle apparatus 200)
FIG. 6 is a refrigerant circuit diagram showing an example of a refrigeration cycle apparatus according to Embodiment 6 of the present invention.
As shown in FIG. 6, the refrigeration cycle apparatus 200 includes a first compressor 230, a first radiator 231, a heat exchanger 8, a first decompressor 232, and a first cooler 233 connected in order by refrigerant piping. The first refrigerant circuit is provided. In addition, the first inlet connection pipe 3 in the heat exchanger 8 is connected to the first radiator 231 by a refrigerant pipe, and the first outlet connection pipe 4 is connected to the first pressure reducing device 232 by the refrigerant pipe. The first refrigerant circuit is configured such that the first refrigerant, which is a high-temperature refrigerant, circulates and operates in a vapor compression refrigeration cycle.
 また、冷凍サイクル装置200は、第2圧縮機240、第2放熱器241、第2減圧装置242、そして、熱交換器8が順に冷媒配管によって接続された第2冷媒回路を備えている。また、熱交換器8における第2入口接続管5が冷媒配管によって第2減圧装置242に接続され、第2出口接続管6が冷媒配管によって第2圧縮機240に接続されている。この第2冷媒回路は、低温冷媒である第2冷媒が循環し、蒸気圧縮式冷凍サイクルで動作するように構成されている。 Further, the refrigeration cycle apparatus 200 includes a second refrigerant circuit in which a second compressor 240, a second heat radiator 241, a second pressure reducing device 242, and a heat exchanger 8 are sequentially connected by a refrigerant pipe. Moreover, the 2nd inlet connection pipe 5 in the heat exchanger 8 is connected to the 2nd decompression device 242 by refrigerant | coolant piping, and the 2nd exit connection pipe 6 is connected to the 2nd compressor 240 by refrigerant | coolant piping. The second refrigerant circuit is configured such that the second refrigerant, which is a low-temperature refrigerant, circulates and operates in a vapor compression refrigeration cycle.
 第1冷媒及び第2冷媒として、二酸化炭素、HFC系冷媒、HC系冷媒、HFO系冷媒、アンモニア等の冷媒又はそれらの混合冷媒が用いられる。本実施の形態においては、第1冷媒として二酸化炭素が用いられた場合について説明する。 As the first refrigerant and the second refrigerant, a refrigerant such as carbon dioxide, an HFC refrigerant, an HC refrigerant, an HFO refrigerant, ammonia, or a mixed refrigerant thereof is used. In the present embodiment, a case where carbon dioxide is used as the first refrigerant will be described.
(冷凍サイクル装置200の動作)
 ガス状態の第1冷媒は、第1圧縮機230によって圧縮され、高温高圧の超臨界状態の冷媒となって吐出される。この高温高圧の超臨界状態の第1冷媒は、第1放熱器231に流入し、空気等と熱交換して放熱し、高圧の超臨界状態の冷媒になる。この高圧の超臨界状態の第1冷媒は、熱交換器8に流入し、この熱交換器8において、第2冷媒回路を流通する第2冷媒に放熱することによって冷却され、さらに、第1減圧装置232に流入して減圧され、低温低圧の気液二相冷媒になる。この低温低圧の気液二相冷媒は、第1冷却器233に流入し、空気等と熱交換して蒸発し、低温低圧のガス状態の冷媒となる。この低温低圧のガス状態の第1冷媒は、再び、第1圧縮機230に吸入され圧縮される。
(Operation of refrigeration cycle apparatus 200)
The first refrigerant in the gas state is compressed by the first compressor 230 and discharged as a high-temperature and high-pressure supercritical refrigerant. The first high-temperature and high-pressure supercritical refrigerant flows into the first radiator 231 and exchanges heat with air or the like to dissipate heat to become a high-pressure supercritical refrigerant. The high-pressure supercritical first refrigerant flows into the heat exchanger 8, where it is cooled by dissipating heat to the second refrigerant flowing through the second refrigerant circuit. It flows into the apparatus 232 and is depressurized to become a low-temperature low-pressure gas-liquid two-phase refrigerant. This low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the first cooler 233, evaporates by exchanging heat with air or the like, and becomes a low-temperature and low-pressure gas-state refrigerant. The low-temperature and low-pressure gas state first refrigerant is again sucked into the first compressor 230 and compressed.
 一方、ガス状態の第2冷媒は、第2圧縮機240によって圧縮され、高温高圧のガス状態の冷媒となって吐出される。この高温高圧のガス状態の第2冷媒は、第2放熱器241に流入し、空気等と熱交換して凝縮し、高圧の液体状態の冷媒になる。この高圧の液体状態の第2冷媒は、第2減圧装置242で流入して減圧され、低温低圧の気液二相状態の冷媒になる。この低温低圧の気液二相冷媒は、熱交換器8に流入し、この熱交換器8において、第1冷媒回路を流通する第1冷媒から吸熱して蒸発し、低温低圧のガス状態の冷媒となる。この低温低圧のガス状態の第2冷媒は、再び、第2圧縮機240に吸入され圧縮される。 On the other hand, the second refrigerant in the gas state is compressed by the second compressor 240 and is discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas state second refrigerant flows into the second radiator 241, exchanges heat with air and the like, and condenses to become a high-pressure liquid state refrigerant. The second refrigerant in the high-pressure liquid state flows into the second decompression device 242 and is depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. This low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the heat exchanger 8, where it absorbs heat and evaporates from the first refrigerant flowing through the first refrigerant circuit, and is a low-temperature and low-pressure gas-state refrigerant. It becomes. The second refrigerant in the low-temperature and low-pressure gas state is again sucked into the second compressor 240 and compressed.
(実施の形態6の効果)
 以上のような構成の冷凍サイクル装置200においては、第1放熱器231を流出した第1冷媒の過冷却度を大きく確保することができ、冷凍サイクル装置200の効率を大幅に向上することができる。特に、上記の例では、第1冷媒として二酸化炭素を用いているので、熱交換器8において臨界点以上の状態で第2冷媒に対して放熱する場合、冷凍サイクル装置200の効率が特に向上する。
(Effect of Embodiment 6)
In the refrigeration cycle apparatus 200 configured as described above, a large degree of supercooling of the first refrigerant that has flowed out of the first radiator 231 can be secured, and the efficiency of the refrigeration cycle apparatus 200 can be greatly improved. . In particular, in the above example, since carbon dioxide is used as the first refrigerant, the efficiency of the refrigeration cycle apparatus 200 is particularly improved when the heat exchanger 8 dissipates heat to the second refrigerant in a state above the critical point. .
 また、熱交換器8がコンパクト化することによって、冷凍サイクル装置200全体のコンパクト化に寄与することになる。 Moreover, when the heat exchanger 8 is downsized, it contributes to downsizing of the entire refrigeration cycle apparatus 200.
 なお、第1冷媒回路を流れる第1冷媒として、二酸化炭素を用いた例を説明したが、これに限定されるものではなく、HFC系冷媒、HC系冷媒、HFO系冷媒、アンモニア等の冷媒又はそれらの混合冷媒を用いてもよいのは言うまでもない。この場合においても、第1放熱器231を流出した第1冷媒の過冷却度を大きく確保することによって、冷凍サイクル装置200の効率を向上させることができる。 In addition, although the example which used the carbon dioxide was demonstrated as a 1st refrigerant | coolant which flows through a 1st refrigerant circuit, it is not limited to this, HFC type refrigerant | coolant, HC type | system | group refrigerant | coolant, HFO type | system | group refrigerant | coolants, such as ammonia, Needless to say, these mixed refrigerants may be used. Even in this case, the efficiency of the refrigeration cycle apparatus 200 can be improved by ensuring a large degree of supercooling of the first refrigerant that has flowed out of the first radiator 231.
 また、図6で示される冷凍サイクル装置200において、熱交換器8を放熱器として用いた場合を示したが、これに限定されるものではなく、四方弁等を用いて第1冷媒の循環方向を逆にすれば、熱交換器8を冷却器としても用いることができる。 In the refrigeration cycle apparatus 200 shown in FIG. 6, the heat exchanger 8 is used as a radiator. However, the present invention is not limited to this, and the circulation direction of the first refrigerant using a four-way valve or the like. If the above is reversed, the heat exchanger 8 can also be used as a cooler.
 また、本実施の形態では、第2冷媒回路は、蒸気圧縮式冷凍サイクルの場合を示したが、第2冷媒を水又はエチレングリコール水溶液等のブライン(不凍液)としてもよく、第2圧縮機240をポンプで構成してもよい。 In the present embodiment, the second refrigerant circuit is shown as a vapor compression refrigeration cycle, but the second refrigerant may be water or a brine (antifreeze) such as an aqueous ethylene glycol solution. May be constituted by a pump.
 また、図6で示されるように、本実施の形態に係る冷凍サイクル装置200における熱交換器として、実施の形態1に係る熱交換器8を用いた例を示したが、これに限定されるものではなく、実施の形態2~実施の形態5に係る熱交換器8a~8dのいずれかを用いるものとしてもよいのは言うまでもない。 Moreover, as shown in FIG. 6, although the example using the heat exchanger 8 which concerns on Embodiment 1 was shown as a heat exchanger in the refrigerating-cycle apparatus 200 which concerns on this Embodiment, it is limited to this. Needless to say, any one of the heat exchangers 8a to 8d according to the second to fifth embodiments may be used.
実施の形態7.
 本実施の形態に係る冷凍サイクル装置200aについて、実施の形態6に係る冷凍サイクル装置200の構成及び動作と相違する点を中心に説明する。
Embodiment 7 FIG.
The refrigeration cycle apparatus 200a according to the present embodiment will be described focusing on differences from the configuration and operation of the refrigeration cycle apparatus 200 according to Embodiment 6.
(冷凍サイクル装置200aの構成)
 図7は、本発明の実施の形態7に係る冷凍サイクル装置の一例を示す冷媒回路図である。
 図7で示されるように、冷凍サイクル装置200aは、図6で示される実施の形態6に係る冷凍サイクル装置200の構成から第1放熱器231を除き、第1圧縮機230から吐出された高温高圧の第1冷媒の全てを熱交換器8において冷却させる構成としたものである。すなわち、図7で示される冷凍サイクル装置200aは、いわゆる二次ループ形冷凍サイクル装置となっている。この場合、本実施の形態における熱交換器8は、実施の形態7における第1放熱器231及び熱交換器8の双方の作用を代替するものである。
(Configuration of refrigeration cycle apparatus 200a)
FIG. 7 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle apparatus according to Embodiment 7 of the present invention.
As shown in FIG. 7, the refrigeration cycle apparatus 200a is the high temperature discharged from the first compressor 230 except for the first radiator 231 from the configuration of the refrigeration cycle apparatus 200 according to Embodiment 6 shown in FIG. The configuration is such that all of the high-pressure first refrigerant is cooled in the heat exchanger 8. That is, the refrigeration cycle apparatus 200a shown in FIG. 7 is a so-called secondary loop refrigeration cycle apparatus. In this case, the heat exchanger 8 in the present embodiment replaces the functions of both the first radiator 231 and the heat exchanger 8 in the seventh embodiment.
(実施の形態7の効果)
 以上の構成によって、熱交換器8における必要熱交換量が大きくなり、冷凍サイクル装置200a装置全体に占める熱交換器8の容積割合が、第1放熱器231を備えた実施の形態7に係る冷凍サイクル装置200よりも大きくなる。このとき、熱交換器8がコンパクト化されることによって、冷凍サイクル装置200a全体のコンパクト化に寄与することになる。
(Effect of Embodiment 7)
With the above configuration, the necessary heat exchange amount in the heat exchanger 8 is increased, and the volume ratio of the heat exchanger 8 in the entire refrigeration cycle apparatus 200a is the refrigeration according to the seventh embodiment including the first radiator 231. It becomes larger than the cycle device 200. At this time, the heat exchanger 8 is made compact, which contributes to making the entire refrigeration cycle apparatus 200a compact.
 なお、図7で示される冷凍サイクル装置200aにおいて、熱交換器8を放熱器として用いた場合を示したが、これに限定されるものではなく、四方弁等を用いて第1冷媒の循環方向を逆にすれば、熱交換器8を冷却器としても用いることができる。 In addition, although the case where the heat exchanger 8 was used as a radiator was shown in the refrigeration cycle apparatus 200a shown in FIG. 7, the present invention is not limited to this, and the circulation direction of the first refrigerant using a four-way valve or the like. If the above is reversed, the heat exchanger 8 can also be used as a cooler.
実施の形態8.
 本実施の形態に係る冷凍サイクル装置は、実施の形態1に係る熱交換器8を搭載した場合を例として説明する。
Embodiment 8 FIG.
The refrigeration cycle apparatus according to the present embodiment will be described by taking as an example a case where the heat exchanger 8 according to the first embodiment is mounted.
(冷凍サイクル装置200bの構成)
 図8は、本発明の実施の形態8に係る冷凍サイクル装置の一例を示す冷媒回路図である。
 図8で示されるように、冷凍サイクル装置200bは、圧縮機250、放熱器251、熱交換器8、減圧装置252、そして、冷却器253が順に冷媒配管によって接続された冷媒回路を構成している。また、熱交換器8と減圧装置252との間の冷媒配管から分岐されたバイパス配管255が、圧縮機250の圧縮室に設けられたインジェクションポート256、又はここでは図示しないが圧縮機250と冷却器253との間に接続されている。このバイパス配管255には、熱交換器8と減圧装置252との間の冷媒配管の分岐点からバイパス減圧装置254、そして、熱交換器8の順に設置されている。
(Configuration of refrigeration cycle apparatus 200b)
FIG. 8 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle apparatus according to Embodiment 8 of the present invention.
As shown in FIG. 8, the refrigeration cycle apparatus 200b includes a refrigerant circuit in which a compressor 250, a radiator 251, a heat exchanger 8, a decompression device 252, and a cooler 253 are sequentially connected by refrigerant piping. Yes. Further, a bypass pipe 255 branched from the refrigerant pipe between the heat exchanger 8 and the decompression device 252 is an injection port 256 provided in the compression chamber of the compressor 250, or although not shown here, the compressor 250 and the cooling pipe Connected to the device 253. In this bypass pipe 255, the bypass pressure reducing device 254 and the heat exchanger 8 are installed in this order from the branch point of the refrigerant pipe between the heat exchanger 8 and the pressure reducing device 252.
 また、熱交換器8における第1入口接続管3が冷媒配管によって放熱器251に接続され、第1出口接続管4が冷媒配管によって減圧装置252に接続されている。さらに、熱交換器8における第2入口接続管5が冷媒配管によってバイパス減圧装置254に接続され、第2出口接続管6が冷媒配管によって圧縮機250のインジェクションポート256、又はここでは図示しないが圧縮機250と冷却器253との間に接続されている。 Further, the first inlet connecting pipe 3 in the heat exchanger 8 is connected to the radiator 251 through the refrigerant pipe, and the first outlet connecting pipe 4 is connected to the decompression device 252 through the refrigerant pipe. Further, the second inlet connecting pipe 5 in the heat exchanger 8 is connected to the bypass pressure reducing device 254 by a refrigerant pipe, and the second outlet connecting pipe 6 is an injection port 256 of the compressor 250 or a compression (not shown here) by the refrigerant pipe. Connected between machine 250 and cooler 253.
(冷凍サイクル装置200bの動作)
 ガス冷媒は、圧縮機250によって圧縮され、高温高圧のガス冷媒となって吐出される。この高温高圧のガス冷媒は、放熱器251に流入し、空気等と熱交換して放熱し、そして、放熱器251から流出した高圧の冷媒(高温冷媒)は、熱交換器8に流入する。熱交換器8に流入した高圧の冷媒(高温冷媒)は、バイパス減圧装置254から流出した低温冷媒に放熱することによって冷却され、さらに、減圧装置252に流入して減圧され、低温低圧の気液二相冷媒となる。この低温低圧の気液二相冷媒は、冷却器253に流入し、空気等と熱交換して蒸発し、低温低圧のガス冷媒となる。この低温低圧のガス冷媒は、再び、圧縮機250に吸入され圧縮される。
(Operation of refrigeration cycle apparatus 200b)
The gas refrigerant is compressed by the compressor 250 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant flows into the radiator 251, exchanges heat with air or the like to radiate heat, and the high-pressure refrigerant (high-temperature refrigerant) that flows out of the radiator 251 flows into the heat exchanger 8. The high-pressure refrigerant (high-temperature refrigerant) that has flowed into the heat exchanger 8 is cooled by dissipating heat to the low-temperature refrigerant that has flowed out of the bypass decompression device 254, and further flows into the decompression device 252, where it is depressurized. It becomes a two-phase refrigerant. This low-temperature low-pressure gas-liquid two-phase refrigerant flows into the cooler 253, exchanges heat with air or the like, and evaporates to become a low-temperature low-pressure gas refrigerant. This low-temperature and low-pressure gas refrigerant is again sucked into the compressor 250 and compressed.
 また、熱交換器8から流出した冷媒の一部は、減圧装置252に流入する前に分岐して、バイパス配管255に流入する。バイパス配管255に流入した冷媒は、バイパス減圧装置254によって減圧され、低温の気液二相冷媒(低温冷媒)となり、熱交換器8に流入する。熱交換器8に流入した低温の気液二相冷媒(低温冷媒)は、高温冷媒から吸熱することによって加熱され、圧縮機250のインジェクションポート256から圧縮室にインジェクションされる。 Further, a part of the refrigerant that has flowed out of the heat exchanger 8 branches before flowing into the decompression device 252, and flows into the bypass pipe 255. The refrigerant flowing into the bypass pipe 255 is decompressed by the bypass decompression device 254, becomes a low-temperature gas-liquid two-phase refrigerant (low-temperature refrigerant), and flows into the heat exchanger 8. The low-temperature gas-liquid two-phase refrigerant (low-temperature refrigerant) flowing into the heat exchanger 8 is heated by absorbing heat from the high-temperature refrigerant, and is injected into the compression chamber from the injection port 256 of the compressor 250.
 なお、冷凍サイクル装置200bを循環する冷媒としては、二酸化炭素、HFC系冷媒、HC系冷媒、HFO系冷媒、アンモニア等の冷媒又はそれらの混合冷媒が用いられる。 As the refrigerant circulating in the refrigeration cycle apparatus 200b, carbon dioxide, HFC refrigerant, HC refrigerant, HFO refrigerant, refrigerant such as ammonia, or a mixed refrigerant thereof is used.
(実施の形態8の効果)
 以上のように構成された冷凍サイクル装置200bにおいても、放熱器251を流出した冷媒の過冷却度を大きく確保することができ、冷凍サイクル装置200bの効率を大幅に向上させることができる。
(Effect of Embodiment 8)
Also in the refrigeration cycle apparatus 200b configured as described above, a large degree of supercooling of the refrigerant that has flowed out of the radiator 251 can be secured, and the efficiency of the refrigeration cycle apparatus 200b can be greatly improved.
 また、図8で示される冷凍サイクル装置200bにおいては、熱交換器8からインジェクションポート256に流入する低温冷媒の飽和温度(気液平衡温度)が高いほど、圧縮機250の効率が高くなり、所要動力も小さくできる。 Further, in the refrigeration cycle apparatus 200b shown in FIG. 8, the higher the saturation temperature (gas-liquid equilibrium temperature) of the low-temperature refrigerant flowing from the heat exchanger 8 into the injection port 256, the higher the efficiency of the compressor 250. Power can be reduced.
 また、図8で示されるように、熱交換器8によって、放熱器251から流出した高温冷媒を冷却すると、特に外気温度が高く放熱器251から流出する高温冷媒の温度が比較的高い場合、熱交換器8において高温冷媒と低温冷媒との温度差を十分大きくとれる。このため、インジェクションポート256から圧縮機250の圧縮室にインジェクションされる低温冷媒の温度を高めに維持することができ、第1圧縮機230の高い効率を確保することができる。 In addition, as shown in FIG. 8, when the high-temperature refrigerant flowing out of the radiator 251 is cooled by the heat exchanger 8, particularly when the outside air temperature is high and the temperature of the high-temperature refrigerant flowing out of the radiator 251 is relatively high, In the exchanger 8, the temperature difference between the high temperature refrigerant and the low temperature refrigerant can be sufficiently large. For this reason, the temperature of the low-temperature refrigerant injected into the compression chamber of the compressor 250 from the injection port 256 can be maintained high, and high efficiency of the first compressor 230 can be ensured.
 また、バイパス配管255の他端が圧縮機250と冷却器253との間に接続される場合、熱交換器8を用いない場合に比べ、冷凍効果を低下させることなく、冷却器253を流れる冷媒流量を低下させることができ、特に圧縮機250と冷却器253との間の配管長が長い場合、圧力損失の増加に伴う性能の低下を抑制することができる。 Further, when the other end of the bypass pipe 255 is connected between the compressor 250 and the cooler 253, the refrigerant that flows through the cooler 253 without reducing the refrigeration effect compared to the case where the heat exchanger 8 is not used. The flow rate can be reduced, and particularly when the piping length between the compressor 250 and the cooler 253 is long, a decrease in performance associated with an increase in pressure loss can be suppressed.
 また、熱交換器8がコンパクト化することによって、冷凍サイクル装置200b全体のコンパクト化に寄与することになる。 Moreover, when the heat exchanger 8 is downsized, it contributes to downsizing of the entire refrigeration cycle apparatus 200b.
 1 第1冷媒パス、1a、1b 第1冷媒流路、2 第2冷媒パス、2a、2b 第2冷媒流路、3 第1入口接続管、3a、3aa、3ab、3b 第1入口連通穴、4 第1出口接続管、4a、4aa、4ab、4b 第1出口連通穴、5 第2入口接続管、5a、5aa、5ab、5b 第2入口連通穴、6 第2出口接続管、6a、6aa、6ab、6b 第2出口連通穴、8、8a~8d 熱交換器、10 本体、31 第1入口集合穴、31a、31b 第1集合穴、41 第1出口集合穴、41a 第1中継集合穴、51 第2入口集合穴、51a 第2中継集合穴、61 第2出口集合穴、61a、61b 第2集合穴、200、200a、200b 冷凍サイクル装置、230 第1圧縮機、231 第1放熱器、232 第1減圧装置、233 第1冷却器、240 第2圧縮機、241 第2放熱器、242 第2減圧装置、250 圧縮機、251 放熱器、252 減圧装置、253 冷却器、254 バイパス減圧装置、255 バイパス配管、256 インジェクションポート。 1 1st refrigerant path, 1a, 1b 1st refrigerant flow path, 2nd 2nd refrigerant path, 2a, 2b 2nd refrigerant flow path, 3rd 1st inlet connection pipe, 3a, 3aa, 3ab, 3b 1st inlet communication hole, 4 First outlet connecting pipe, 4a, 4aa, 4ab, 4b First outlet connecting hole, 5 Second inlet connecting pipe, 5a, 5aa, 5ab, 5b Second inlet connecting hole, 6 Second outlet connecting pipe, 6a, 6aa , 6ab, 6b, second outlet communication hole, 8, 8a to 8d heat exchanger, 10, main body, 31 first inlet collecting hole, 31a, 31b first collecting hole, 41 first outlet collecting hole, 41a first relay collecting hole 51 second inlet collecting hole, 51a second relay collecting hole, 61 second outlet collecting hole, 61a, 61b second collecting hole, 200, 200a, 200b refrigeration cycle apparatus, 230 first compressor, 231 first radiator , 23 First decompressor, 233, first cooler, 240, second compressor, 241, second radiator, 242, second decompressor, 250 compressor, 251 radiator, 252 decompressor, 253 cooler, 254 bypass decompressor, 255 bypass piping, 256 injection port.

Claims (14)

  1.  第1冷媒が流通する複数の第1冷媒流路が一列に並列配置されて構成された第1冷媒パスと、
     第2冷媒が流通する複数の第2冷媒流路が一列に並列配置されて構成された第2冷媒パスと、
     前記第1冷媒パスの両端に複数の前記第1冷媒流路の並列方向に貫通して形成され、複数の前記第1冷媒流路に連通した第1連通穴と、
     前記第2冷媒パスの両端に複数の前記第2冷媒流路の並列方向に貫通して形成され、複数の前記第2冷媒流路に連通した第2連通穴と、
     を備え、
     前記第1冷媒は、前記第1冷媒パスの両端に形成された前記第1連通穴の一方に流入し、前記第1冷媒流路を流通して、他方の前記第1連通穴を経由して外部に流出し、
     前記第2冷媒は、前記第2冷媒パスの両端に形成された前記第2連通穴の一方に流入し、前記第2冷媒流路を流通して、他方の前記第2連通穴を経由して外部に流出し、
     前記第1冷媒流路と前記第2冷媒流路とは、流路方向が平行であり、かつ、互いに隣接して配置され、その隣接面の隔壁を介して前記第1冷媒と前記第2冷媒との熱交換が実施される
     ことを特徴とする熱交換器。
    A first refrigerant path configured such that a plurality of first refrigerant flow paths through which the first refrigerant flows are arranged in parallel in a row;
    A second refrigerant path configured by arranging a plurality of second refrigerant flow paths through which the second refrigerant flows in parallel in a row;
    A first communication hole formed at both ends of the first refrigerant path so as to penetrate in a parallel direction of the plurality of first refrigerant channels, and communicated with the plurality of first refrigerant channels;
    A second communication hole formed at both ends of the second refrigerant path so as to penetrate in a parallel direction of the plurality of second refrigerant channels, and communicated with the plurality of second refrigerant channels;
    With
    The first refrigerant flows into one of the first communication holes formed at both ends of the first refrigerant path, flows through the first refrigerant flow path, and passes through the other first communication hole. Leaked outside,
    The second refrigerant flows into one of the second communication holes formed at both ends of the second refrigerant path, flows through the second refrigerant flow path, and passes through the other second communication hole. Leaked outside,
    The first refrigerant flow path and the second refrigerant flow path are parallel to each other and are disposed adjacent to each other, and the first refrigerant and the second refrigerant are arranged through a partition wall on the adjacent surface. The heat exchanger is characterized in that heat exchange with is performed.
  2.  前記第1冷媒パス及び前記第2冷媒パスとは、一体として形成された
     ことを特徴とする請求項1記載の熱交換器。
    The heat exchanger according to claim 1, wherein the first refrigerant path and the second refrigerant path are integrally formed.
  3.  前記第1冷媒パスの両端に形成された前記第1連通穴、及び、前記第2冷媒パスの両端に形成された前記第2連通穴のうち、同じ側にある前記第1連通穴及び前記第2連通穴は、前記第1冷媒パス又は前記第2冷媒パスの流路方向に所定量ずらして形成された
     ことを特徴とする請求項1又は請求項2記載の熱交換器。
    Of the first communication hole formed at both ends of the first refrigerant path and the second communication hole formed at both ends of the second refrigerant path, the first communication hole and the second The heat exchanger according to claim 1 or 2, wherein the two communication holes are formed by shifting a predetermined amount in a flow path direction of the first refrigerant path or the second refrigerant path.
  4.  前記第1冷媒パスは、複数の前記第1冷媒流路の組である第1冷媒流路群を複数有し、
     前記第2冷媒パスは、複数の前記第2冷媒流路の組である第2冷媒流路群を複数有した
     ことを特徴とする請求項1~請求項3のいずれか一項に記載の熱交換器。
    The first refrigerant path has a plurality of first refrigerant flow path groups that are a set of a plurality of the first refrigerant flow paths,
    The heat according to any one of claims 1 to 3, wherein the second refrigerant path includes a plurality of second refrigerant flow path groups that are sets of the plurality of second refrigerant flow paths. Exchanger.
  5.  前記第1冷媒パスにおいて、複数の前記第1冷媒流路群が、前記第1冷媒流路の並列方向が並行になるように、かつ、互いに隣接して配置され、
     前記第2冷媒パスにおいて、複数の前記第2冷媒流路群が、前記第2冷媒流路の並列方向が並行になるように、かつ、互いに隣接して配置され、
     隣接配置された複数の前記第1冷媒流路群のうち一端に位置する前記第1冷媒流路群と、隣接配置された複数の前記第2冷媒流路群のうち一端に位置する前記第2冷媒流路群とが隣接して配置され、かつ、前記第1冷媒流路群における前記第1冷媒流路の並列方向と、前記第2冷媒流路群における前記第2冷媒流路の並列方向とが並行となるように構成され、
     前記第1連通穴は、複数の前記第1冷媒流路群を構成する全ての前記第1冷媒流路に連通し、
     前記第2連通穴は、複数の前記第2冷媒流路群を構成する全ての前記第2冷媒流路に連通した
     ことを特徴とする請求項4記載の熱交換器。
    In the first refrigerant path, a plurality of the first refrigerant flow path groups are arranged adjacent to each other such that parallel directions of the first refrigerant flow paths are parallel to each other,
    In the second refrigerant path, a plurality of the second refrigerant flow path groups are arranged adjacent to each other such that parallel directions of the second refrigerant flow paths are parallel to each other,
    The first refrigerant channel group located at one end among the plurality of first refrigerant channel groups arranged adjacent to each other and the second refrigerant located at one end among the plurality of second refrigerant channel groups arranged adjacent to each other. A refrigerant channel group is disposed adjacent to each other, and the parallel direction of the first refrigerant channel in the first refrigerant channel group and the parallel direction of the second refrigerant channel in the second refrigerant channel group. Are configured in parallel,
    The first communication hole communicates with all the first refrigerant flow paths constituting the plurality of first refrigerant flow path groups,
    The heat exchanger according to claim 4, wherein the second communication hole communicates with all the second refrigerant flow paths constituting the plurality of second refrigerant flow path groups.
  6.  前記第1連通穴は、その貫通方向の一端が閉口され、他端が開口され、その開口側から前記第1冷媒が流出入し、
     前記第2連通穴は、その貫通方向の一端が閉口され、他端が開口され、その開口側から前記第2冷媒が流出入する
     ことを特徴とする請求項1~請求項5のいずれかに一項に記載の熱交換器。
    The first communication hole has one end in the penetrating direction closed, the other end opened, and the first refrigerant flows in and out from the opening side,
    6. The second communication hole according to claim 1, wherein one end in the penetrating direction is closed and the other end is opened, and the second refrigerant flows in and out from the opening side. The heat exchanger according to one item.
  7.  前記第1冷媒パスにおける前記各第1冷媒流路群と、前記第2冷媒パスにおける前記各第2冷媒流路群とが、交互に並べて隣接され、かつ、全ての前記冷媒流路群における並列方向が平行となるように構成され、
     前記第1連通穴は、前記各第1冷媒流路群ごとにその両端に形成され、かつ、その貫通方向の両端が閉口され、
     前記第2連通穴は、前記各第2冷媒流路群ごとにその両端に形成され、かつ、その貫通方向の両端が閉口され、
     複数の前記第1連通穴の並列方向に貫通して形成され、その複数の前記第1連通穴に連通した第1集合穴と、複数の前記第2連通穴の並列方向に貫通して形成され、その複数の前記第2連通穴に連通した第2集合穴と、を備え、
     前記第1冷媒は、前記第1冷媒パスの両端に形成された前記第1集合穴の一方に流入し、前記第1冷媒流路を流通して、他方の前記第1集合穴を経由して外部に流出し、
     前記第2冷媒は、前記第2冷媒パスの両端に形成された前記第2集合穴の一方に流入し、前記第2冷媒流路を流通して、他方の前記第2集合穴を経由して外部に流出する
     ことを特徴とする請求項4記載の熱交換器。
    The first refrigerant flow path groups in the first refrigerant path and the second refrigerant flow path groups in the second refrigerant path are alternately arranged adjacent to each other and parallel in all the refrigerant flow path groups. It is configured so that the directions are parallel,
    The first communication holes are formed at both ends of each first refrigerant flow path group, and both ends in the penetrating direction are closed,
    The second communication hole is formed at both ends of each second refrigerant flow path group, and both ends in the penetrating direction are closed,
    A plurality of the first communication holes are formed to penetrate in the parallel direction, and a first assembly hole that communicates with the plurality of first communication holes and a plurality of the second communication holes are formed to penetrate in the parallel direction. A second assembly hole communicating with the plurality of second communication holes,
    The first refrigerant flows into one of the first collecting holes formed at both ends of the first refrigerant path, flows through the first refrigerant flow path, and passes through the other first collecting hole. Leaked outside,
    The second refrigerant flows into one of the second collecting holes formed at both ends of the second refrigerant path, flows through the second refrigerant channel, and passes through the other second collecting hole. The heat exchanger according to claim 4, which flows out to the outside.
  8.  前記第1集合穴は、その貫通方向の一端が閉口され、他端が開口され、その開口側から前記第1冷媒が流出入し、
     前記第2集合穴は、その貫通方向の一端が閉口され、他端が開口され、その開口側から前記第2冷媒が流出入する
    ことを特徴とする請求項7記載の熱交換器。
    The first collecting hole has one end in the penetrating direction closed, the other end opened, and the first refrigerant flows in and out from the opening side,
    8. The heat exchanger according to claim 7, wherein one end of the second collecting hole in the penetrating direction is closed, the other end is opened, and the second refrigerant flows in and out from the opening side.
  9.  前記第1連通穴は、
     前記第1冷媒パスの両端に形成されたもののうち、少なくとも一方が複数に分割され、
     前記第1冷媒を外部から流入させ、複数の前記第1冷媒流路のうち一部に流通させる1つの第1分割連通穴流入部、一部の前記第1冷媒流路から流通してきた前記第1冷媒を、該一部の前記第1冷媒流路以外の一部の前記第1冷媒流路に折り返して流通させる1つ以上の第1分割連通穴折り返し部、及び、前記第1分割連通穴折り返し部から一部の前記第1冷媒流路を流通してきた前記第1冷媒を外部に流出させる1つの第1分割連通穴流出部によって構成され、前記第1冷媒が前記第1冷媒パスを折り返して流れるように構成された
     ことを特徴とする請求項1~請求項8のいずれか一項に記載の熱交換器。
    The first communication hole is
    Of those formed at both ends of the first refrigerant path, at least one is divided into a plurality of parts,
    One first divided communication hole inflow portion that allows the first refrigerant to flow in from the outside and circulates in a part of the plurality of first refrigerant channels, and the first refrigerant channel that has circulated from some of the first refrigerant channels. One or more first divided communication hole folding portions that circulate one refrigerant into a part of the first refrigerant flow channel other than the part of the first refrigerant flow channel, and the first divided communication hole A first divided communication hole outflow portion that causes the first refrigerant that has flowed through a part of the first refrigerant flow path from the turn-back portion to flow to the outside is formed, and the first refrigerant turns back the first refrigerant path. The heat exchanger according to any one of claims 1 to 8, wherein the heat exchanger is configured to flow through.
  10.  前記第2連通穴は、
     前記第2冷媒パスの両端に形成されたもののうち、少なくとも一方が複数に分割され、
     前記第2冷媒を外部から流入させ、複数の前記第2冷媒流路のうち一部に流通させる1つの第2分割連通穴流入部、一部の前記第2冷媒流路から流通してきた前記第1冷媒を、該一部の前記第2冷媒流路以外の一部の前記第2冷媒流路に折り返して流通させる1つ以上の第2分割連通穴折り返し部、及び、前記第2分割連通穴折り返し部から一部の前記第2冷媒流路を流通してきた前記第2冷媒を外部に流出させる1つの第2分割連通穴流出部によって構成され、前記第2冷媒が前記第2冷媒パスを折り返して流れるように構成された
     ことを特徴とする請求項9記載の熱交換器。
    The second communication hole is
    Among those formed at both ends of the second refrigerant path, at least one is divided into a plurality of parts,
    One second divided communication hole inflow portion for allowing the second refrigerant to flow in from the outside and flowing through a part of the plurality of second refrigerant channels, and the second refrigerant channel flowing from a part of the second refrigerant channels. One or more second divided communication hole folding portions that circulate one refrigerant into a part of the second refrigerant flow path other than the part of the second refrigerant flow path, and the second divided communication hole A second divided communication hole outflow portion that allows the second refrigerant that has flowed through a part of the second refrigerant flow path from the turn-back portion to flow to the outside is formed, and the second refrigerant turns back the second refrigerant path. The heat exchanger according to claim 9, wherein the heat exchanger is configured to flow.
  11.  前記第1冷媒パスにおける前記第1冷媒流路群と、前記第2冷媒パスにおける前記各第2冷媒流路群とが、交互に並べて隣接され、かつ、全ての前記冷媒流路群における前記冷媒流路の並列方向が平行となるように構成され、
     前記第1連通穴は、前記各第1冷媒流路群ごとにその両端に形成され、かつ、その貫通方向の両端が閉口され、
     前記第2連通穴は、前記各第2冷媒流路群ごとにその両端に形成され、かつ、その貫通方向の両端が閉口され、
     前記第1冷媒パスの両端のうち一端側にある複数の前記第1連通穴のうち一部に連通するように貫通して形成された第1集合穴流入部、及び、該一端側にある残りの前記第1連通穴に連通するように貫通して形成された第1集合穴流出部によって構成された第1集合穴と、前記第1冷媒パスの両端のうち前記第1集合穴が形成された側と反対側にある複数の前記第1連通穴の並列方向に貫通して形成され、その複数の前記第1連通穴に連通した第1中継集合穴と、複数の前記第2連通穴の並列方向に貫通して形成され、その複数の前記第2連通穴に連通した第2集合穴と、を備え、
     前記第1冷媒は、前記第1冷媒パスの一端に形成された前記第1集合穴流入部に流入し、一部の前記第1冷媒流路群を流通し、前記第1中継集合穴を経由して、異なる前記第1冷媒流路群を折り返して流通し、前記第1集合穴流出部を経由して外部に流出し、
     前記第2冷媒は、前記第2冷媒パスの両端に形成された前記第2集合穴の一方に流入し、前記第2冷媒流路を流通して、他方の前記第2集合穴を経由して外部に流出する
    ことを特徴とする請求項4記載の熱交換器。
    The first refrigerant flow path group in the first refrigerant path and the second refrigerant flow path groups in the second refrigerant path are alternately arranged adjacent to each other, and the refrigerant in all the refrigerant flow path groups. It is configured so that the parallel direction of the flow paths is parallel
    The first communication holes are formed at both ends of each first refrigerant flow path group, and both ends in the penetrating direction are closed,
    The second communication hole is formed at both ends of each second refrigerant flow path group, and both ends in the penetrating direction are closed,
    A first collecting hole inflow portion formed so as to penetrate to some of the plurality of first communication holes on one end side of both ends of the first refrigerant path, and a remaining on the one end side A first collecting hole formed by a first collecting hole outflow portion formed so as to pass through the first communicating hole, and the first collecting hole formed at both ends of the first refrigerant path. A plurality of the first communication holes formed on the opposite side of the first communication hole in a parallel direction, and communicated with the plurality of first communication holes, and a plurality of the second communication holes. A second assembly hole that is formed to penetrate in the parallel direction and communicates with the plurality of second communication holes.
    The first refrigerant flows into the first collecting hole inflow portion formed at one end of the first refrigerant path, flows through a part of the first refrigerant flow path group, and passes through the first relay collecting hole. Then, the different first refrigerant flow path groups are folded and circulated, and flow out to the outside via the first collecting hole outflow portion,
    The second refrigerant flows into one of the second collecting holes formed at both ends of the second refrigerant path, flows through the second refrigerant channel, and passes through the other second collecting hole. The heat exchanger according to claim 4, wherein the heat exchanger flows out to the outside.
  12.  前記第1冷媒パスにおける前記第1冷媒流路群と、前記第2冷媒パスにおける前記各第2冷媒流路群とが、交互に並べて隣接され、かつ、全ての前記冷媒流路群における前記冷媒流路の並列方向が平行となるように構成され、
     前記第1連通穴は、前記各第1冷媒流路群ごとにその両端に形成され、かつ、その貫通方向の両端が閉口され、
     前記第2連通穴は、前記各第2冷媒流路群ごとにその両端に形成され、かつ、その貫通方向の両端が閉口され、
     前記第1冷媒パスの両端のうち一端側にある複数の前記第1連通穴のうち一部に連通するように貫通して形成された第1集合穴流入部、及び、該一端側にある残りの前記第1連通穴に連通するように貫通して形成された第1集合穴流出部によって構成された第1集合穴と、前記第1冷媒パスの両端のうち前記第1集合穴が形成された側と反対側にある複数の前記第1連通穴の並列方向に貫通して形成され、その複数の前記第1連通穴に連通した第1中継集合穴と、前記第2冷媒パスの両端のうち一端側にある複数の前記第2連通穴のうち一部に連通するように貫通して形成された第2集合穴流入部、及び、該一端側にある残りの前記第2連通穴に連通するように貫通して形成された第2集合穴流出部によって構成された第2集合穴と、前記第2冷媒パスの両端のうち前記第2集合穴が形成された側と反対側にある複数の前記第2連通穴の並列方向に貫通して形成され、その複数の前記第2連通穴に連通した第2中継集合穴と、
     前記第1冷媒は、前記第1冷媒パスの一端に形成された前記第1集合流入部に流入し、一部の前記第1冷媒流路群を流通し、前記第1中継集合穴を経由して、異なる前記第1冷媒流路群を折り返して流通し、前記第1集合穴流出部を経由して外部に流出し、
     前記第2冷媒は、前記第2冷媒パスの一端に形成された前記第2集合流入部に流入し、一部の前記第2冷媒流路群を流通し、前記第2中継集合穴を経由して、異なる前記第2冷媒流路群を折り返して流通し、前記第2集合穴流出部を経由して外部に流出する
     ことを特徴とする請求項4記載の熱交換器。
    The first refrigerant flow path group in the first refrigerant path and the second refrigerant flow path groups in the second refrigerant path are alternately arranged adjacent to each other, and the refrigerant in all the refrigerant flow path groups. It is configured so that the parallel direction of the flow paths is parallel
    The first communication holes are formed at both ends of each first refrigerant flow path group, and both ends in the penetrating direction are closed,
    The second communication hole is formed at both ends of each second refrigerant flow path group, and both ends in the penetrating direction are closed,
    A first collecting hole inflow portion formed so as to penetrate to some of the plurality of first communication holes on one end side of both ends of the first refrigerant path, and a remaining on the one end side A first collecting hole formed by a first collecting hole outflow portion formed so as to pass through the first communicating hole, and the first collecting hole formed at both ends of the first refrigerant path. A plurality of the first communication holes on the opposite side of the first communication holes formed in a parallel direction, the first relay assembly holes communicating with the first communication holes, and both ends of the second refrigerant path. Of the plurality of second communication holes on one end side, communicated with the second collecting hole inflow portion formed so as to communicate with a part of the second communication holes, and the remaining second communication holes on the one end side A second collective hole formed by a second collective hole outflow portion formed so as to penetrate therethrough, and A plurality of second communication holes, which are opposite to the side on which the second assembly hole is formed, of both ends of the refrigerant path are formed in a parallel direction and communicated with the plurality of second communication holes. 2 relay holes,
    The first refrigerant flows into the first collective inflow portion formed at one end of the first refrigerant path, flows through a part of the first refrigerant flow path group, and passes through the first relay collective hole. Circulate through the different first refrigerant flow path groups, and flow out to the outside via the first collecting hole outflow portion,
    The second refrigerant flows into the second collective inflow portion formed at one end of the second refrigerant path, flows through a part of the second refrigerant flow path group, and passes through the second relay collective hole. The heat exchanger according to claim 4, wherein the second refrigerant flow path groups different from each other are circulated and flowed to the outside through the second collecting hole outflow portion.
  13.  前記第1冷媒及び前記第2冷媒の流通方向が、少なくとも一部の冷媒流路において対向流となるように構成された
     ことを特徴とする請求項1~請求項12のいずれか一項に記載された熱交換器。
    13. The flow direction of the first refrigerant and the second refrigerant is configured to be a counterflow in at least a part of the refrigerant flow paths. Heat exchanger.
  14.  請求項1~請求項13のいずれか一項に記載の熱交換器を備えた
     ことを特徴とする冷凍サイクル装置。
    A refrigeration cycle apparatus comprising the heat exchanger according to any one of claims 1 to 13.
PCT/JP2011/002550 2011-05-06 2011-05-06 Heat exchanger and refrigeration cycle device provided therewith WO2012153360A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180070664.XA CN103502762B (en) 2011-05-06 2011-05-06 Heat exchanger and there is the freezing cycle device of this heat exchanger
EP11865155.3A EP2706317B1 (en) 2011-05-06 2011-05-06 Heat exchanger and refrigeration cycle device provided therewith
US14/115,995 US20140144611A1 (en) 2011-05-06 2011-05-06 Heat exchanger and refrigeration cycle apparatus equipped with the same
JP2013513821A JP5758991B2 (en) 2011-05-06 2011-05-06 Heat exchanger and refrigeration cycle apparatus including the same
PCT/JP2011/002550 WO2012153360A1 (en) 2011-05-06 2011-05-06 Heat exchanger and refrigeration cycle device provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002550 WO2012153360A1 (en) 2011-05-06 2011-05-06 Heat exchanger and refrigeration cycle device provided therewith

Publications (1)

Publication Number Publication Date
WO2012153360A1 true WO2012153360A1 (en) 2012-11-15

Family

ID=47138863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002550 WO2012153360A1 (en) 2011-05-06 2011-05-06 Heat exchanger and refrigeration cycle device provided therewith

Country Status (5)

Country Link
US (1) US20140144611A1 (en)
EP (1) EP2706317B1 (en)
JP (1) JP5758991B2 (en)
CN (1) CN103502762B (en)
WO (1) WO2012153360A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105509513A (en) * 2014-09-22 2016-04-20 苏州皓璟兄弟照明设计工程有限公司 Dividing wall type heat exchanger
CN107208983B (en) * 2015-01-22 2019-11-26 三菱电机株式会社 Heat-exchangers of the plate type and heat-pump-type outdoor unit
WO2016141033A1 (en) * 2015-03-02 2016-09-09 Board Of Regents, The University Of Texas System Systems and methods for thermally actuated flow control
KR101837046B1 (en) * 2015-07-31 2018-04-19 엘지전자 주식회사 Heat exchanger
CN107851867B (en) * 2015-08-05 2020-09-29 日轻热交株式会社 Cooling device
JP6778851B2 (en) * 2016-12-15 2020-11-04 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system using it
US10670346B2 (en) * 2018-01-04 2020-06-02 Hamilton Sundstrand Corporation Curved heat exchanger
US11306979B2 (en) * 2018-12-05 2022-04-19 Hamilton Sundstrand Corporation Heat exchanger riblet and turbulator features for improved manufacturability and performance
US20210278147A1 (en) * 2020-03-05 2021-09-09 Uchicago Argonne, Llc Additively Manufactured Modular Heat Exchanger Accommodating High Pressure, High Temperature and Corrosive Fluids

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050685A (en) * 1999-08-06 2001-02-23 Sanyo Electric Co Ltd Heat exchanger
JP2002098424A (en) * 2000-09-25 2002-04-05 Zexel Valeo Climate Control Corp Refrigerating cycle
JP2002340485A (en) 2001-05-15 2002-11-27 Mitsubishi Heavy Ind Ltd Heat exchanger for vehicle
JP2003202197A (en) * 2002-01-07 2003-07-18 Denso Corp Heat exchanger

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1331710A (en) * 1961-08-11 1963-07-05 Union Carbide Corp corrosion resistant heat exchanger
DE2220670A1 (en) * 1972-04-27 1973-11-08 Sigri Elektrographit Gmbh BLOCK HEAT EXCHANGER
SE503322C2 (en) * 1995-03-17 1996-05-28 Ericsson Telefon Ab L M Cooling system for electronics
JP3861183B2 (en) * 1995-07-14 2006-12-20 アクトロニクス株式会社 Manufacturing method of small diameter tunnel plate heat pipe
JP2005030659A (en) * 2003-07-11 2005-02-03 Hitachi Home & Life Solutions Inc Heat pump type water heater
JP4196774B2 (en) * 2003-07-29 2008-12-17 株式会社デンソー Internal heat exchanger
JP4179092B2 (en) * 2003-07-30 2008-11-12 株式会社デンソー Heat exchanger
JP4561305B2 (en) * 2004-10-18 2010-10-13 三菱電機株式会社 Heat exchanger
DE102005041732A1 (en) * 2005-09-02 2007-03-15 Daimlerchrysler Ag Internal combustion engine e.g. reciprocating piston type diesel engine, for passenger car, has exhaust gas cooling system with cooler stage having wall that completely or partially contacts coolant on side that opposite to exhaust gas flow
JP2007127398A (en) * 2005-10-05 2007-05-24 Seiko Epson Corp Heat exchanger, method of manufacturing heat exchanger, liquid cooling system, light source device, projector, electronic device unit, and electronic apparatus
ITVI20080106A1 (en) * 2008-05-09 2009-11-10 Refcomp Spa COOLING PLATE FOR A FREQUENCY CONVERTER AND COMPRESSOR USING SUCH A COOLING PLATE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050685A (en) * 1999-08-06 2001-02-23 Sanyo Electric Co Ltd Heat exchanger
JP2002098424A (en) * 2000-09-25 2002-04-05 Zexel Valeo Climate Control Corp Refrigerating cycle
JP2002340485A (en) 2001-05-15 2002-11-27 Mitsubishi Heavy Ind Ltd Heat exchanger for vehicle
JP2003202197A (en) * 2002-01-07 2003-07-18 Denso Corp Heat exchanger

Also Published As

Publication number Publication date
US20140144611A1 (en) 2014-05-29
EP2706317B1 (en) 2018-06-20
CN103502762B (en) 2016-05-11
CN103502762A (en) 2014-01-08
JP5758991B2 (en) 2015-08-05
JPWO2012153360A1 (en) 2014-07-28
EP2706317A1 (en) 2014-03-12
EP2706317A4 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5758991B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
JP5777622B2 (en) Heat exchanger, heat exchange method and refrigeration air conditioner
US10962307B2 (en) Stacked heat exchanger
JP5787992B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
JP6094261B2 (en) Laminate heat exchanger
JP6145189B1 (en) Heat exchanger and air conditioner
KR20150051594A (en) Refrigeration cycle of refrigerator
CN109564070B (en) Heat exchanger and refrigeration system using the same
JP2006329511A (en) Heat exchanger
JP4561305B2 (en) Heat exchanger
EP2918958B1 (en) Plate heat exchanger and refrigeration cycle device provided with plate heat exchanger
JP2006329537A (en) Heat exchanger
JP5709777B2 (en) Heat exchanger and refrigeration air conditioner
RU2693946C2 (en) Micro-channel heat exchanger resistant to frost formation
CN104697232A (en) A heat pump system
WO2012153490A1 (en) Heat exchanger and cold cycle device provided therewith
JP6716016B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
JP2011202921A (en) Evaporator unit
JP7410335B2 (en) Refrigeration circuit and refrigeration equipment
WO2018061185A1 (en) Refrigeration cycle device
JP5731246B2 (en) Heat exchanger and heat exchanger manufacturing method
KR100862809B1 (en) heat exchanger for high pressure condition
JP2004239479A (en) Radiator and vehicle mounted structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180070664.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013513821

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011865155

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14115995

Country of ref document: US